WorldWideScience

Sample records for modelling advanced oxidation

  1. Advanced methods of solid oxide fuel cell modeling

    CERN Document Server

    Milewski, Jaroslaw; Santarelli, Massimo; Leone, Pierluigi

    2011-01-01

    Fuel cells are widely regarded as the future of the power and transportation industries. Intensive research in this area now requires new methods of fuel cell operation modeling and cell design. Typical mathematical models are based on the physical process description of fuel cells and require a detailed knowledge of the microscopic properties that govern both chemical and electrochemical reactions. ""Advanced Methods of Solid Oxide Fuel Cell Modeling"" proposes the alternative methodology of generalized artificial neural networks (ANN) solid oxide fuel cell (SOFC) modeling. ""Advanced Methods

  2. AN ADVANCED OXIDATION PROCESS : FENTON PROCESS

    Directory of Open Access Journals (Sweden)

    Engin GÜRTEKİN

    2008-03-01

    Full Text Available Biological wastewater treatment is not effective treatment method if raw wastewater contains toxic and refractory organics. Advanced oxidation processes are applied before or after biological treatment for the detoxification and reclamation of this kind of wastewaters. The advanced oxidation processes are based on the formation of powerful hydroxyl radicals. Among advanced oxidation processes Fenton process is one of the most promising methods. Because application of Fenton process is simple and cost effective and also reaction occurs in a short time period. Fenton process is applied for many different proposes. In this study, Fenton process was evaluated as an advanced oxidation process in wastewater treatment.

  3. Oxidation Phenomena in Advanced High Strength Steels : Modelling and Experiment

    NARCIS (Netherlands)

    Mao, W.

    2018-01-01

    Galvanized advanced high strength steels (AHSS) will be the most competitive structural material for automotive applications in the next decade. Oxidation of AHSS during the recrystalization annealing process in a continuous galvanizing line to a large extent influences the quality of zinc coating

  4. Test Concept for Advanced Oxidation Techniques

    DEFF Research Database (Denmark)

    Bennedsen, Lars Rønn; Søgaard, Erik Gydesen; Mortensen, Lars

    advanced on-site oxidation tests. The remediation techniques included are electrochemical oxidation, photochemical/photocatalytic oxidation, ozone, hydrogen peroxide, permanganate, and persulfate among others. A versatile construction of the mobile test unit makes it possible to combine different...

  5. ADVANCED OXIDATION PROCESSES (AOX) TEXTILE WASTEWATER

    OpenAIRE

    Salas C., G.

    2014-01-01

    Advanced Oxidation Processes (AOX) are based on the in situ generation of hydroxyradicals (·OH), which have a high oxidation potential. In the case of Fenton processes !he generation of hydroxy radicals takes place by the combination of an oxidation agent (H202) with a catalyst (Fe(II)). These radicals are not selective and they react very fast with the organic matter,being able to oxidize a high variety of organic compounds. This property allows the degradation of pollutants into more biodeg...

  6. ADVANCED OXIDATION PROCESSES FOR FOOD INDUSTRIAL WASTEWATER DECONTAMINATION

    Directory of Open Access Journals (Sweden)

    Dorota Krzemińska

    2015-02-01

    Full Text Available High organic matter content is a basic problem in food industry wastewaters. Typically, the amount and composition of the effluent varies considerably. In the article four groups of advanced processes and their combination of food industry wastewater treatment have been reviewed: electrochemical oxidation (EC, Fenton’s process, ozonation of water and photocatalytic processes. All advanced oxidation processes (AOP`s are characterized by a common chemical feature: the capability of exploiting high reactivity of HO• radicals in driving oxidation processes which are suitable for achieving decolonization and odour reduction, and the complete mineralization or increase of bioavailability of recalcitrant organic pollutants.

  7. Advanced impedance modeling of solid oxide electrochemical cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Hjelm, Johan

    2014-01-01

    Impedance spectroscopy is a powerful technique for detailed study of the electrochemical and transport processes that take place in fuel cells and electrolysis cells, including solid oxide cells (SOCs). Meaningful analysis of impedance measurements is nontrivial, however, because a large number...... techniques to provide good guesses for the modeling parameters, like transforming the impedance data to the distribution of relaxation times (DRT), together with experimental parameter sensitivity studies, is the state-of-the-art approach to achieve good EC model fits. Here we present new impedance modeling...... electrode and 2-D gas transport models which have fewer unknown parameters for the same number of processes, (ii) use of a new model fitting algorithm, “multi-fitting”, in which multiple impedance spectra are fit simultaneously with parameters linked based on the variation of measurement conditions, (iii...

  8. Advanced Oxidation Degradation of Diclofenac

    International Nuclear Information System (INIS)

    Cooper, William J.; Song Weihua

    2012-01-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e - aq ). The bimolecular reaction rate constants (M -1 s -1 ) for diclofenac for •OH was (9.29 ± 0.11) x 10 9 , and, for e- aq was (1.53 ± 0.03) x10 9 . Preliminary degradation mechanisms are suggested based on product analysis using 60 Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  9. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  10. Advanced Oxidation Degradation of Diclofenac

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, William J., E-mail: wcooper@uci.edu [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States); Song Weihua, E-mail: wsong@fudan.edu.cn [Department of Environmental Science & Engineering, Fudan University, Shanghai 200433 (China)

    2012-07-01

    Advanced oxidation/reduction processes (AO/RPs), utilize free radical reactions to directly degrade chemical contaminants as an alternative to traditional water treatment. This study reports the absolute rate constants for reaction of diclofenac sodium and the model compound (2, 6-dichloraniline) with the two major AO/RP radicals; the hydroxyl radical (•OH) and hydrated electron (e{sup -}{sub aq}). The bimolecular reaction rate constants (M{sup -1} s{sup -1}) for diclofenac for •OH was (9.29 ± 0.11) x 10{sup 9}, and, for e- aq was (1.53 ± 0.03) x10{sup 9}. Preliminary degradation mechanisms are suggested based on product analysis using {sup 60}Co γ-irradiation and LC-MS for reaction by-product identification. The toxicity of products was evaluated using the Vibrio fischeri luminescent bacteria method. (author)

  11. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Gholamreza, E-mail: moussavi@modares.ac.ir; Shekoohiyan, Sakine

    2016-11-15

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N{sub 2} was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N{sub 2} selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  12. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process

    International Nuclear Information System (INIS)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-01-01

    Highlights: • Simultaneous advanced oxidation and reduction processes were explored in VUV system. • Complete reduction of nitrate to N_2 was achieved at the presence of acetaminophen. • Complete degradation of acetaminophen was achieved at the presence of nitrate. • Over 95% of acetaminophen was mineralized in the VUV photoreactor. • VUV is a chemical-less advanced process for treating water emerging contaminants. - Abstract: This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO· while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N_2 selectivity achieved at HRT of 80 min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80 min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate.

  13. Advanced Wastewater Photo-oxidation System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Pioneer Astronautics proposes an advanced photocatalytic oxidation reactor for enhancing the reliability and performance of Water Recovery Post Processing systems...

  14. Simultaneous nitrate reduction and acetaminophen oxidation using the continuous-flow chemical-less VUV process as an integrated advanced oxidation and reduction process.

    Science.gov (United States)

    Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-11-15

    This work was aimed at investigating the performance of the continuous-flow VUV photoreactor as a novel chemical-less advanced process for simultaneously oxidizing acetaminophen (ACT) as a model of pharmaceuticals and reducing nitrate in a single reactor. Solution pH was an important parameter affecting the performance of VUV; the highest ACT oxidation and nitrate reduction attained at solution pH between 6 and 8. The ACT was oxidized mainly by HO while the aqueous electrons were the main working agents in the reduction of nitrate. The performance of VUV photoreactor improved with the increase of hydraulic retention time (HRT); the complete degradation of ACT and ∼99% reduction of nitrate with 100% N2 selectivity achieved at HRT of 80min. The VUV effluent concentrations of nitrite and ammonium at HRT of 80min were below the drinking water standards. The real water sample contaminated with the ACT and nitrate was efficiently treated in the VUV photoreactor. Therefore, the VUV photoreactor is a chemical-less advanced process in which both advanced oxidation and advanced reduction reactions are accomplished. This unique feature possesses VUV photoreactor as a promising method of treating water contaminated with both pharmaceutical and nitrate. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy; Branagan, Nicole C.; Petrik, Igor D.; Miner, Kyle D.; Hu, Michael Y.; Zhao, Jiyong; Alp, E. Ercan; Lu, Yi

    2015-10-05

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reaction of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.

  16. Microstructure characterizaton of advanced oxide fuel

    International Nuclear Information System (INIS)

    Rasmussen, D.E.; Gerber, E.W.; McCord, R.B.

    1977-01-01

    Preirradiation porosity, grain size, and microcomposition characteristics are presented for selected advanced oxide (PuO 2 -UO 2 ) LMFBR developmental fuels fabricated for irradiation testing in EBR-II. Quantitative microscopy, electron microprobe analysis, and a recently developed quantitative autoradiographic technique are utilized to relate microstructure characteristics to fabrication parameters

  17. Model for low temperature oxidation during long term interim storage

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne [Service de la Corrosion et du Comportement des Materiaux dans leur Environnement, CEA/Saclay - 91191 Gif-sur-Yvette Cedex (France); Poquillon, Dominique; Monceau, Daniel [CIRIMAT UMR 5085, ENSIACET-INPT, 31077 Toulouse Cedex 4 (France)

    2004-07-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  18. Model for low temperature oxidation during long term interim storage

    International Nuclear Information System (INIS)

    Desgranges, Clara; Bertrand, Nathalie; Gauvain, Danielle; Terlain, Anne; Poquillon, Dominique; Monceau, Daniel

    2004-01-01

    For high-level nuclear waste containers in long-term interim storage, dry oxidation will be the first and the main degradation mode during about one century. The metal lost by dry oxidation over such a long period must be evaluated with a good reliability. To achieve this goal, modelling of the oxide scale growth is necessary and this is the aim of the dry oxidation studies performed in the frame of the COCON program. An advanced model based on the description of elementary mechanisms involved in scale growth at low temperatures, like partial interfacial control of the oxidation kinetics and/or grain boundary diffusion, is developed in order to increase the reliability of the long term extrapolations deduced from basic models developed from short time experiments. Since only few experimental data on dry oxidation are available in the temperature range of interest, experiments have also been performed to evaluate the relevant input parameters for models like grain size of oxide scale, considering iron as simplified material. (authors)

  19. Treatment of reduced sulphur compounds and SO2 by Gas Phase Advanced Oxidation

    DEFF Research Database (Denmark)

    Meusinger, Carl; Bluhme, Anders Brostrøm; Ingemar, Jonas L.

    2017-01-01

    Reduced sulphur compounds (RSCs) emitted from pig farms are a major problem for agriculture, due to their health and environmental impacts and foul odour. This study investigates the removal of RSCs, including H2S, and their oxidation product SO2 using Gas Phase Advanced Oxidation (GPAO). GPAO...... is a novel air cleaning technique which utilises accelerated atmospheric chemistry to oxidise pollutants before removing their oxidation products as particles. Removal efficiencies of 24.5% and 3.9% were found for 461 ppb of H2S and 714 ppb of SO2 in a laboratory system (volumetric flow Q = 75 m3/h......). A numerical model of the reactor system was developed to explore the basic features of the system; its output was in fair agreement with the experiment. The model verified the role of OH radicals in initiating the oxidation chemistry. All sulphur removed from the gas phase was detected as particulate matter...

  20. Electrochemical advanced oxidation processes: today and tomorrow. A review.

    Science.gov (United States)

    Sirés, Ignasi; Brillas, Enric; Oturan, Mehmet A; Rodrigo, Manuel A; Panizza, Marco

    2014-01-01

    In recent years, new advanced oxidation processes based on the electrochemical technology, the so-called electrochemical advanced oxidation processes (EAOPs), have been developed for the prevention and remediation of environmental pollution, especially focusing on water streams. These methods are based on the electrochemical generation of a very powerful oxidizing agent, such as the hydroxyl radical ((•)OH) in solution, which is then able to destroy organics up to their mineralization. EAOPs include heterogeneous processes like anodic oxidation and photoelectrocatalysis methods, in which (•)OH are generated at the anode surface either electrochemically or photochemically, and homogeneous processes like electro-Fenton, photoelectro-Fenton, and sonoelectrolysis, in which (•)OH are produced in the bulk solution. This paper presents a general overview of the application of EAOPs on the removal of aqueous organic pollutants, first reviewing the most recent works and then looking to the future. A global perspective on the fundamentals and experimental setups is offered, and laboratory-scale and pilot-scale experiments are examined and discussed.

  1. Advances in medium and high temperature solid oxide fuel cell technology

    CERN Document Server

    Salvatore, Aricò

    2017-01-01

    In this book well-known experts highlight cutting-edge research priorities and discuss the state of the art in the field of solid oxide fuel cells giving an update on specific subjects such as protonic conductors, interconnects, electrocatalytic and catalytic processes and modelling approaches. Fundamentals and advances in this field are illustrated to help young researchers address issues in the characterization of materials and in the analysis of processes, not often tackled in scholarly books.

  2. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION ...

    Science.gov (United States)

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the commercial-scale data. Performance and cost data is summarized for various APO processes, including vacuum ultraviolet (VUV) photolysis, ultraviolet (UV)/oxidation, photo-Fenton, and dye- or semiconductor-sensitized APO processes. This handbook is intended to assist engineering practitioners in evaluating the applicability of APO processes and in selecting one or more such processes for site-specific evaluation.APO has been shown to be effective in treating contaminated water and air. Regarding contaminated water treatment, UV/oxidation has been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest. Regarding contaminated air treatment, the sensitized APO processes have been evaluated for the most contaminants, while VUV photolysis has been evaluated for the fewest.APO processes for treating contaminated solids generally involve treatment of contaminated slurry or leachate generated using an extraction process such as soil washing. APO has been shown to be effective in treating contaminated solids, primarily at the bench-scale level. Information

  3. Advanced oxidation technologies for chemical demilitarization

    Energy Technology Data Exchange (ETDEWEB)

    Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

    1996-12-31

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

  4. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    Science.gov (United States)

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  5. Anodic oxidation with doped diamond electrodes: a new advanced oxidation process

    International Nuclear Information System (INIS)

    Kraft, Alexander; Stadelmann, Manuela; Blaschke, Manfred

    2003-01-01

    Boron-doped diamond anodes allow to directly produce OH· radicals from water electrolysis with very high current efficiencies. This has been explained by the very high overvoltage for oxygen production and many other anodic electrode processes on diamond anodes. Additionally, the boron-doped diamond electrodes exhibit a high mechanical and chemical stability. Anodic oxidation with diamond anodes is a new advanced oxidation process (AOP) with many advantages compared to other known chemical and photochemical AOPs. The present work reports on the use of diamond anodes for the chemical oxygen demand (COD) removal from several industrial wastewaters and from two synthetic wastewaters with malic acid and ethylenediaminetetraacetic (EDTA) acid. Current efficiencies for the COD removal between 85 and 100% have been found. The formation and subsequent removal of by-products of the COD oxidation has been investigated for the first time. Economical considerations of this new AOP are included

  6. Experimental PIV and CFD studies of UV-peroxide advanced oxidation reactors for water treatment

    International Nuclear Information System (INIS)

    Sozzi, A.; Taghipour, F.

    2004-01-01

    An experimental and numerical study of the flow characteristics in an annular UV reactor, as used for drinking water disinfection or Advanced Oxidation Processes, was carried out using Particle Image Velocimetry (PIV) and Computational Fluid Dynamics (CFD). The influence of different turbulence models and mesh structures on the CFD results was investigated. By qualitative and quantitative comparison of CFD and PIV experimental data, it was shown that the Realizable k-e- turbulence model is best suited for simulating the hydrodynamics of this geometry. (author)

  7. Recent Advances of Solution-Processed Metal Oxide Thin-Film Transistors.

    Science.gov (United States)

    Xu, Wangying; Li, Hao; Xu, Jian-Bin; Wang, Lei

    2018-03-06

    Solution-processed metal oxide thin-film transistors (TFTs) are considered as one of the most promising transistor technologies for future large-area flexible electronics. This review surveys the recent advances in solution-based oxide TFTs, including n-type oxide semiconductors, oxide dielectrics and p-type oxide semiconductors. Firstly, we provide an introduction on oxide TFTs and the TFT configurations and operating principles. Secondly, we present the recent progress in solution-processed n-type transistors, with a special focus on low-temperature and large-area solution processed approaches as well as novel non-display applications. Thirdly, we give a detailed analysis of the state-of-the-art solution-processed oxide dielectrics for low-voltage electronics. Fourthly, we discuss the recent progress in solution-based p-type oxide semiconductors, which will enable the highly desirable future low-cost large-area complementary circuits. Finally, we draw the conclusions and outline the perspectives over the research field.

  8. Oxidative Stress in Aging: Advances in Proteomic Approaches

    Directory of Open Access Journals (Sweden)

    Daniel Ortuño-Sahagún

    2014-01-01

    Full Text Available Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual’s Quality of Life (QOL. Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS], which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8, naked mole-rat (Heterocephalus glaber, and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS and oxidative stress in aging.

  9. Advanced oxidation protein products — biological marker of oxidative stress = Zaawansowane produkty utleniania białek – biologiczne markery stresu oksydacyjnego

    Directory of Open Access Journals (Sweden)

    Anna Cwynar

    2016-09-01

      ABSTRACT Advanced oxidation protein products (AOPPs are mostly derivatives of oxidatively modified albumin. The results of many experimental studies confirm intensification of oxidative modifications of proteins and an increase in concentration of advanced oxidation protein products (AOPPs in different pathological conditions, particularly those with well documented involvement of oxidative stress in their etiopathogenesis, but also those where its role is not yet well understood. Currently intensive research is carried out on the possibility of using AOPPs as useful indicators for diagnosing, prognosis and monitoring of diseases.   Keywords: advanced oxidation protein products, autoimmune disease, oxidative stress   STRESZCZENIE Zaawansowane produkty utleniania białek (AOPPs, to najczęściej pochodne zmodyfikowanej oksydacyjnie albuminy. Wyniki licznych badań doświadczalnych potwierdzają nasilenie oksydacyjnych modyfikacji białek i wzrost stężenia zaawansowanych produktów utleniania białek (AOPPs w różnych stanach patologicznych, szczególnie tych o dobrze udokumentowanym udziale stresu oksydacyjnego w ich etiopatogenezie, ale także takich, w których jego rola nie jest jeszcze dobrze poznana.. Obecnie trwają intensywne badania nad możliwością wykorzystania AOPPs, jako użytecznych wskaźników do diagnozowania, prognozowania oraz monitorowania chorób.   Słowa kluczowe: zaawansowane produkty utleniania białek, choroby autoimmunologiczne, stres oksydacyjny

  10. Considerations in modelling the melting of fuel containing fission products and solute oxides

    International Nuclear Information System (INIS)

    Akbari, F.; Welland, M.J.; Lewis, B.J.; Thompson, W.T.

    2005-01-01

    It is well known that the oxidation of a defected fuel element by steam gives rise to an increase in O/U ratio with a consequent lowering of the incipient melting temperature. Concurrently, the hyperstoichiometry reduces the thermal conductivity thereby raising the centerline fuel pellet temperature for a fixed linear power. The development of fission products soluble in the UO 2 phase or, more important, the deliberate introduction of additive oxides in advanced CANDU fuel bundle designs further affects and generally lowers the incipient melting temperature. For these reasons, the modeling of the molten (hyperstoichiometric) UO 2 phase containing several solute oxides (ZrO 2 , Ln 2 O 3 and AnO 2 ) is advancing in the expectation of developing a moving boundary heat and mass transfer model aimed at better defining the limits of safe operating practice as burnup advances. The paper describes how the molten phase stability model is constructed. The redistribution of components across the solid-liquid interface that attends the onset of melting of a non-stoichiometric UO 2 containing several solutes will be discussed. The issues of how to introduce boundary conditions into heat transfer calculations consistent with the requirements of the Phase Rule will be addressed. The Stefan problem of a moving boundary associated with the solid/liquid interface sets this treatment apart from conventional heat and mass transfer problems. (author)

  11. Radiation Damage in Nuclear Fuel for Advanced Burner Reactors: Modeling and Experimental Validation

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Niels Gronbech; Asta, Mark; Ozolins, Nigel Browning' Vidvuds; de Walle, Axel van; Wolverton, Christopher

    2011-12-29

    The consortium has completed its existence and we are here highlighting work and accomplishments. As outlined in the proposal, the objective of the work was to advance the theoretical understanding of advanced nuclear fuel materials (oxides) toward a comprehensive modeling strategy that incorporates the different relevant scales involved in radiation damage in oxide fuels. Approaching this we set out to investigate and develop a set of directions: 1) Fission fragment and ion trajectory studies through advanced molecular dynamics methods that allow for statistical multi-scale simulations. This work also includes an investigation of appropriate interatomic force fields useful for the energetic multi-scale phenomena of high energy collisions; 2) Studies of defect and gas bubble formation through electronic structure and Monte Carlo simulations; and 3) an experimental component for the characterization of materials such that comparisons can be obtained between theory and experiment.

  12. Oxidative Stress to the Cornea, Changes in Corneal Optical Properties, and Advances in Treatment of Corneal Oxidative Injuries

    Directory of Open Access Journals (Sweden)

    Cestmir Cejka

    2015-01-01

    Full Text Available Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.

  13. Advanced control approach for hybrid systems based on solid oxide fuel cells

    International Nuclear Information System (INIS)

    Ferrari, Mario L.

    2015-01-01

    Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions

  14. Study of Advanced Oxidation System for Water Treatment

    International Nuclear Information System (INIS)

    Widdi Usada; Bambang Siswanto; Suryadi; Agus Purwadi; Isyuniarto

    2007-01-01

    Hygiene water is still a big problem globally as well as energy and food, especially in Indonesia where more than 70 % lived in Java island. One of the efforts in treating hygiene water is to recycle the used water. In this case it is needed clean water technology. Many methods have been done, this paper describes the advanced oxidation technology system based on ozone, titania and plasma discharge. (author)

  15. Recent advancements in the cobalt oxides, manganese oxides and their composite as an electrode material for supercapacitor: a review

    Science.gov (United States)

    Uke, Santosh J.; Akhare, Vijay P.; Bambole, Devidas R.; Bodade, Anjali B.; Chaudhari, Gajanan N.

    2017-08-01

    In this smart edge, there is an intense demand of portable electronic devices such as mobile phones, laptops, smart watches etc. That demands the use of such components which has light weight, flexible, cheap and environmental friendly. So that needs an evolution in technology. Supercapacitors are energy storage devices emerging as one of the promising energy storage devices in the future energy technology. Electrode material is the important part of supercapacitor. There is much new advancement in types of electrode materials as for supercapacitor. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides and their composites as an electrodes material for supercapacitor.

  16. Advanced oxidation processes of decomposing dichloroacetic acid and trichloroacetic acid in water

    Institute of Scientific and Technical Information of China (English)

    WANG Kun-ping; GUO Jin-song; YANG Min; JUNJI Hirotsuji; DENG Rong-sen; LIU Wei

    2008-01-01

    We studied the decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), in water by single oxidants ozone (O3) and ultraviolet radiation (UV) and the advanced oxidation processes (AOPs) constituted by the combinations of O3/UV, H2O2/UV, O3 /H2O2, and O3/H2O2/UV. The concentrations of HAAs were analyzed at specified time intervals to track their decomposition. Except for O3 and UV, the four combined oxidation processes remarkably enhance the decomposition of DCAA and TCAA owing to the generated very reactive hydroxyl radicals. The fastest decomposition process is O3/H2O2/UV, closely followed by O3/UV. DCAA is much easier to decompose than TCAA. The kinetics of HAA decomposition by O3/UV can be described well by a pseudo first-order reaction model under a constant initial dissolved O3 concentration and fixed UV radiation. Humic acids and HCO3- in the reaction system both decrease the decomposition rate constants for DCAA and TCAA. The amount of H2O2 accumulates in the presence of humic acids in the O3/UV process.

  17. Advanced oxidation processes: overall models

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, M. [Univ. de los Andes, Escuela Basica de Ingenieria, La Hechicera, Merida (Venezuela); Curco, D.; Addardak, A.; Gimenez, J.; Esplugas, S. [Dept. de Ingenieria Quimica. Univ. de Barcelona, Barcelona (Spain)

    2003-07-01

    Modelling AOPs implies to consider all the steps included in the process, that means, mass transfer, kinetic (reaction) and luminic steps. In this way, recent works develop models which relate the global reaction rate to catalyst concentration and radiation absorption. However, the application of such models requires to know what is the controlling step for the overall process. In this paper, a simple method is explained which allows to determine the controlling step. Thus, it is assumed that reactor is divided in two hypothetical zones (dark and illuminated), and according to the experimental results, obtained by varying only the reaction volume, it can be decided if reaction occurs only in the illuminated zone or in the all reactor, including dark zone. The photocatalytic degradation of phenol, by using titania degussa P-25 as catalyst, is studied as reaction model. The preliminary results obtained are presented here, showing that it seems that, in this case, reaction only occurs in the illuminated zone of photoreactor. A model is developed to explain this behaviour. (orig.)

  18. Homogenous and heterogenous advanced oxidation of two commercial reactive dyes.

    Science.gov (United States)

    Balcioglu, I A; Arslan, I; Sacan, M T

    2001-07-01

    Two commercial reactive dyes, the azo dye Reactive Black 5 and the copper phythalocyanine dye Reactive Blue 21, have been treated at a concentration of 75 mg l(-1) by titanium dioxide mediated photocatalytic (TiO2/UV), dark and UV-light assisted Fenton (Fe2+/H2O2) and Fenton-like (Fe3+/H2O2) processes in acidic medium. For the treatment of Reactive Black 5, all investigated advanced oxidation processes were quite effective in terms of colour, COD as well as TOC removal. Moreover, the relative growth inhibition of the azo dye towards the marine algae Dunaliella tertiolecta that was initially 70%, did not exhibit an increase during the studied advanced oxidation reactions and complete detoxification at the end of the treatment period could be achieved for all investigated treatment processes. However, for Reactive Blue 21, abatement in COD and UV-VIS absorbance values was mainly due to the adsorption of the dye on the photocatalyst surface and/or the coagulative effect of Fe3+/Fe2+ ions. Although only a limited fraction of the copper phythalocyanine dye underwent oxidative degradation, 47% of the total copper in the dye was already released after 1 h photocatalytic treatment.

  19. Recent Advancements in the Cobalt Oxides, Manganese Oxides, and Their Composite As an Electrode Material for Supercapacitor: A Review

    Directory of Open Access Journals (Sweden)

    Santosh J. Uke

    2017-08-01

    Full Text Available Recently, our modern society demands the portable electronic devices such as mobile phones, laptops, smart watches, etc. Such devices demand light weight, flexible, and low-cost energy storage systems. Among different energy storage systems, supercapacitor has been considered as one of the most potential energy storage systems. This has several significant merits such as high power density, light weight, eco-friendly, etc. The electrode material is the important part of the supercapacitor. Recent studies have shown that there are many new advancement in electrode materials for supercapacitors. In this review, we focused on the recent advancements in the cobalt oxides, manganese oxides, and their composites as an electrode material for supercapacitor.

  20. Metal fires and their implications for advanced reactors. Part 3: Experimental and modeling results

    International Nuclear Information System (INIS)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-01-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  1. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  2. Implementation of advanced electrochemical oxidation for radiochemical concentrate treatment

    International Nuclear Information System (INIS)

    Velin, Anna; Bengtsson, Bernt; Lundblad, Magnus

    2012-09-01

    Water treatments in Nuclear Power Plants include ion exchange, evaporation and mechanical filtration techniques. These technologies are used to control the chemical release and to treat coolant in light water reactor types from chemicals and most importantly, from radioactive nuclides. Most of the conventional methods are efficient, but at the same time producing aqueous concentrates with high organic load. Before final storage, the level of organic content of those concentrates must be reduced. Advanced electrochemical oxidation with Boron Doped Diamond (BDD) electrodes are being investigated in laboratory- and pilot scale for treatment of dilute and concentrated aqueous waste streams at Vattenfall-Ringhals NPP. BDD anodes and cathodes are having high over potential against water electrolysis, and therefore well suitable for oxidation of organics. Dilute wastewater, such as laundry water, which has an initial COD level of around 500 mg/l, was reduced to a level of < 20 mg/l in the laboratory. Evaporator concentrates, with a TS content of 3% and pH of 7-8, were treated in pilot scale of 800 liters, working in batch operation mode, at temperatures between 25-50 deg. C. Initial COD levels between 2500 and 8000 mg/l in concentrate was reduced to < 100 mg/l at the first tests and later to < 300 mg/l. The advanced electrochemical oxidation is proven to be a promising technique for radioactive concentrate treatment. Long-term operation is still ongoing to evaluate the performance of the electrodes, cell components and overall process efficiency. (authors)

  3. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    International Nuclear Information System (INIS)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-01-01

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe"2"+/H_2O_2) and UV/H_2O_2 process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H_2O_2 process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H_2O_2 method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe"2"+/H_2O_2 had a molar ratio of 0.1 and a H_2O_2 concentration of 0.01 mol L"−"1 with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H_2O_2 process, when the pH was 3.5 with a H_2O_2 concentration of 0.01 mol L"−"1 accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H_2O_2 process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe"2"+/H_2O_2 molar ratios, H_2O_2 concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H_2O_2 process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H_2O_2 process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  4. Industrial waste water treatment by advanced oxidation processes; Tratamiento de aguas residuales industriales mediante procesos de oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Gasso, S.; Baldasano, J.M.

    1996-06-01

    Advanced Oxidation Technologies have been defined as processes which involve the generation of highly reactive oxy radicals. These systems show promise for the destruction of non biodegradable and hazardous organic substances in industrial wastewater. Two types of advanced oxidation processes are considered in this paper: (1) systems that use high energy oxidants (O{sub 3}, H{sub 2}O{sub 2}, UV, etc) at ambient temperature to initiate the oxidation reaction, and (2) processes that use molecular oxygen and high temperature and pressure to initiate the reaction (wet oxidation at subcritical and supercritical conditions). The fundamental aspects of these oxidation technologies are discussed, the application framework is defined and the technology development is indicated. (Author) 33 refs.

  5. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-01-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium. (author)

  6. Development of advanced mixed oxide fuels for plutonium management

    International Nuclear Information System (INIS)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium

  7. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin

    2012-10-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days\\' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  8. Pharmaceutical removal during managed aquifer recharge with pretreatment by advanced oxidation

    KAUST Repository

    Lekkerkerker-Teunissen, Karin; Chekol, E. T.; Maeng, Sungkyu; Ghebremichael, Kebreab A.; Houtman, Corine J.; Verliefde, Arne R. D.; Verberk, J. Q J C; Amy, Gary L.; Van Dijk, Johannis C.

    2012-01-01

    Organic micropollutants (OMPs) are detected in sources for drinking water and treatment possibilities are investigated. Innovative removal technologies are available such as membrane filtration and advanced oxidation, but also biological treatment should be considered. By combining an advanced oxidation process with managed aquifer recharge (MAR), two complementary processes are expected to provide a hybrid system for OMP removal, according to the multiple barrier approach. Laboratory scale batch reactor experiments were conducted to investigate the removal of dissolved organic carbon (DOC) and 14 different pharmaceutically active compounds (PhACs) from MAR influent water and water subjected to oxidation, under different process conditions. A DOC removal of 10% was found in water under oxic (aerobic) conditions for batch reactor experiments, a similar value for DOC removal was observed in the field. Batch reactor experiments for the removal of PhACs showed that the removal of pharmaceuticals ranged from negligible to more than 90%. Under oxic conditions, seven out of 14 pharmaceuticals were removed over 90% and 12 out of 14 pharmaceuticals were removed at more than 50% during 30 days of experiments. Under anoxic conditions, four out of 14 pharmaceuticals were removed over 90% and eight out of 14 pharmaceuticals were removed at more than 50% over 30 days' experiments. Carbamazepine and phenazone were persistent both under oxic and anoxic conditions. The PhACs removal efficiency with oxidized water was, for most compounds, comparable to the removal with MAR influent water. Copyright © IWA Publishing 2012.

  9. Kinetics and mechanism of azo dye destruction in advanced oxidation processes

    International Nuclear Information System (INIS)

    Wojnarovits, L.; Palfi, T.; Takacs, E.

    2007-01-01

    The kinetics and mechanism of dye destruction in advanced oxidation processes is discussed on the example of Apollofix Red (Ar-28) radiolysis in aqueous solution. When the reactive intermediate reacts with the color bearing part of the molecule causing with nearly 100% efficiency destruction of the conjugation, the dose dependence, or time dependence of color disappearance is linear. In this case, spectrophotometry can be used to follow-up dye decomposition. Linear dependence was observed when hydrated electrons or hydrogen atoms reacted with the dye. In hydroxyl radical reactions some colored products form with spectra similar to those of the starting dye molecules. For that reason, spectrophotometry gives false result about the intact dye molecule concentration. Analysis by the HPLC reveals logarithmic time dependence in agreement with a theoretical model developed

  10. Radical decomposition of 2,4-dinitrotoluene (DNT at conditions of advanced oxidation. Computational study

    Directory of Open Access Journals (Sweden)

    Liudmyla K. Sviatenko

    2016-12-01

    Full Text Available At the present time one of the main remediation technologies for such environmental pollutant as 2,4-dinitrotoluene (DNT is advanced oxidation processes (AOPs. Since hydroxyl radical is the most common active species for AOPs, in particular for Fenton oxidation, the study modeled mechanism of interaction between DNT and hydroxyl radical at SMD(Pauling/M06-2X/6-31+G(d,p level. Computed results allow to suggest the most energetically favourable pathway for the process. DNT decomposition consists of sequential hydrogen abstractions and hydroxyl attachments passing through 2,4-dinitrobenzyl alcohol, 2,4-dinitrobenzaldehyde, and 2,4-dinitrobenzoic acid. Further replacement of nitro- and carboxyl groups by hydroxyl leads to 2,4-dihydroxybenzoic acid and 2,4-dinitrophenol, respectively. Reaction intermediates and products are experimentally confirmed. Mostly of reaction steps have low energy barriers, some steps are diffusion controlled. The whole process is highly exothermic.

  11. Performance of advanced oxide fuel pins in EBR-II

    International Nuclear Information System (INIS)

    Lawrence, L.A.; Jensen, S.M.; Hales, J.W.; Karnesky, R.A.; Makenas, B.J.

    1986-05-01

    The effects of design and operating parameters on mixed-oxide fuel pin irradiation performance were established for the Hanford Engineering Development Laboratory (HEDL) advanced oxide EBR-II test series. Fourteen fuel pins breached in-reactor with reference 316 SS cladding. Seven of the breaches are attributed to FCMI. Of the remaining seven breached pins, three are attributed to local cladding over-temperatures similar to the breach mechanism for the reference oxide pins irradiated in EBR-II. FCCI was found to be a contributing factor in two high burnup, i.e., 11.7 at. % breaches. The remaining two breaches were attributed to mechanical interaction of UO 2 fuel and fission products accumulated in the lower cladding insulator gap, and a loss of cladding ductility possibly due to liquid metal embrittlement. Fuel smear density appears to have the most significant impact on lifetime. Quantitative evaluations of cladding diameter increases attributed to FCMI, established fuel smear density, burnup, and cladding thickness-to-diameter ratio as the major parameters influencing the extent of cladding strain

  12. Oxide ceramics

    International Nuclear Information System (INIS)

    Ryshkewitch, E.; Richerson, D.W.

    1985-01-01

    The book explores single-phase ceramic oxide systems from the standpoint of physical chemistry and technology. This second edition also focuses on advances in technology since publication of the original edition. These include improvements in raw materials and forming and sintering techniques, and the major role that oxide ceramics have had in development of advanced products and processes. The text is divided into five major sections: general fundamentals of oxide ceramics, advances in aluminum oxide technology, advances in zirconia technology, and advances in beryllium oxide technology

  13. TiO2-Based Advanced Oxidation Nanotechnologies For Water Purification And Reuse

    Science.gov (United States)

    TiO2 photocatalysis, one of the UV-based advanced oxidation technologies (AOTs) and nanotechnologies (AONs), has attracted great attention for the development of efficient water treatment and purification systems due to the effectiveness of TiO2 to generate ...

  14. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  15. Reduction of antibiotic resistance genes in municipal wastewater effluent by advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingying; Zhuang, Yao; Geng, Jinju, E-mail: jjgeng@nju.edu.cn; Ren, Hongqiang; Xu, Ke; Ding, Lili

    2016-04-15

    This study investigated the reduction of antibiotic resistance genes (ARGs), intI1 and 16S rRNA genes, by advanced oxidation processes (AOPs), namely Fenton oxidation (Fe{sup 2+}/H{sub 2}O{sub 2}) and UV/H{sub 2}O{sub 2} process. The ARGs include sul1, tetX, and tetG from municipal wastewater effluent. The results indicated that the Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce selected ARGs effectively. Oxidation by the Fenton process was slightly better than that of the UV/H{sub 2}O{sub 2} method. Particularly, for the Fenton oxidation, under the optimal condition wherein Fe{sup 2+}/H{sub 2}O{sub 2} had a molar ratio of 0.1 and a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} with a pH of 3.0 and reaction time of 2 h, 2.58–3.79 logs of target genes were removed. Under the initial effluent pH condition (pH = 7.0), the removal was 2.26–3.35 logs. For the UV/H{sub 2}O{sub 2} process, when the pH was 3.5 with a H{sub 2}O{sub 2} concentration of 0.01 mol L{sup −1} accompanied by 30 min of UV irradiation, all ARGs could achieve a reduction of 2.8–3.5 logs, and 1.55–2.32 logs at a pH of 7.0. The Fenton oxidation and UV/H{sub 2}O{sub 2} process followed the first-order reaction kinetic model. The removal of target genes was affected by many parameters, including initial Fe{sup 2+}/H{sub 2}O{sub 2} molar ratios, H{sub 2}O{sub 2} concentration, solution pH, and reaction time. Among these factors, reagent concentrations and pH values are the most important factors during AOPs. - Highlights: • AOPs including Fenton oxidation and UV/H{sub 2}O{sub 2} process could reduce ARGs effectively. • Fenton oxidation is slightly more effective than UV/H{sub 2}O{sub 2} process in ARG reduction. • Removal of ARGs by AOPs follows the first-order reaction kinetic model. • Selected ARGs and 16S rRNA genes exhibit similar change trends during AOPs.

  16. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  17. Recent Advances in Antimicrobial Hydrogels Containing Metal Ions and Metals/Metal Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Fazli Wahid

    2017-11-01

    Full Text Available Recently, the rapid emergence of antibiotic-resistant pathogens has caused a serious health problem. Scientists respond to the threat by developing new antimicrobial materials to prevent or control infections caused by these pathogens. Polymer-based nanocomposite hydrogels are versatile materials as an alternative to conventional antimicrobial agents. Cross-linking of polymeric materials by metal ions or the combination of polymeric hydrogels with nanoparticles (metals and metal oxide is a simple and effective approach for obtaining a multicomponent system with diverse functionalities. Several metals and metal oxides such as silver (Ag, gold (Au, zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO2 and magnesium oxide (MgO have been loaded into hydrogels for antimicrobial applications. The incorporation of metals and metal oxide nanoparticles into hydrogels not only enhances the antimicrobial activity of hydrogels, but also improve their mechanical characteristics. Herein, we summarize recent advances in hydrogels containing metal ions, metals and metal oxide nanoparticles with potential antimicrobial properties.

  18. Advanced oxidation of iodinated X-ray contrast media in reverse osmosis brines: the influence of quenching.

    Science.gov (United States)

    Azerrad, Sara P; Gur-Reznik, Shirra; Heller-Grossman, Lilly; Dosoretz, Carlos G

    2014-10-01

    Among the main restrictions for the implementation of advanced oxidation processes (AOPs) for removal of micropollutants present in reverse osmosis (RO) brines of secondary effluents account the quenching performed by background organic and inorganic constituents. Natural organic matter (NOM) and soluble microbial products (SMP) are the main effluent organic matter constituents. The inorganic fraction is largely constituted by chlorides and bicarbonate alkalinity with sodium and calcium as main counterions. The quenching influence of these components, separately and their mixture, in the transformation of model compounds by UVA/TiO2 was studied applying synthetic brines solutions mimicking 2-fold concentrated RO secondary effluents brines. The results were validated using fresh RO brines. Diatrizoate (DTZ) and iopromide (IOPr) were used as model compound. They have been found to exhibit relative high resistance to oxidation process and therefore represent good markers for AOPs techniques. Under the conditions applied, oxidization of DTZ in the background of RO brines was strongly affected by quenching effects. The major contribution to quenching resulted from organic matter (≈70%) followed by bicarbonate alkalinity (≈30%). NOM displayed higher quenching than SMP in spite of its relative lower concentration. Multivalent cations, i.e., Ca(+2), were found to decrease effectiveness of the technique due to agglomeration of the catalyst. However this influence was lowered in presence of NOM. Different patterns of transformation were found for each model compound in which a delayed deiodination was observed for iopromide whereas diatrizoate oxidation paralleled deiodination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Alkaline electrochemical advanced oxidation process for chromium oxidation at graphitized multi-walled carbon nanotubes.

    Science.gov (United States)

    Xue, Yudong; Zheng, Shili; Sun, Zhi; Zhang, Yi; Jin, Wei

    2017-09-01

    Alkaline electrochemical advanced oxidation processes for chromium oxidation and Cr-contaminated waste disposal were reported in this study. The highly graphitized multi-walled carbon nanotubes g-MWCNTs modified electrode was prepared for the in-situ electrochemical generation of HO 2 - . RRDE test results illustrated that g-MWCNTs exhibited much higher two-electron oxygen reduction activity than other nanocarbon materials with peak current density of 1.24 mA cm -2 , %HO 2 - of 77.0% and onset potential of -0.15 V (vs. Hg/HgO). It was originated from the highly graphitized structure and good electrical conductivity as illustrated from the Raman, XRD and EIS characterizations, respectively. Large amount of reactive oxygen species (HO 2 - and ·OH) were in-situ electro-generated from the two-electron oxygen reduction and chromium-induced alkaline electro-Fenton-like reaction. The oxidation of Cr(III) was efficiently achieved within 90 min and the conversion ratio maintained more than 95% of the original value after stability test, offering an efficient and green approach for the utilization of Cr-containing wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gas-phase advanced oxidation for effective, efficient in situ control of pollution

    DEFF Research Database (Denmark)

    Johnson, Matthew Stanley; Nilsson, Elna Johanna Kristina; Svensson, Erik Anders

    2014-01-01

    In this article, gas-phase advanced oxidation, a new method for pollution control building on the photo-oxidation and particle formation chemistry occurring in the atmosphere, is introduced and characterized. The process uses ozone and UV-C light to produce in situ radicals to oxidize pollution......, generating particles that are removed by a filter; ozone is removed using a MnO2 honeycomb catalyst. This combination of in situ processes removes a wide range of pollutants with a comparatively low specific energy input. Two proof-of-concept devices were built to test and optimize the process...... particulate mass. Secondary pollution including formaldehyde and ultrafine particles might be generated, depending on the composition of the primary pollution....

  1. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Jankunaite, Dalia; Racys, Viktoras; Martuzevicius, Dainius

    2017-07-01

    A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO 2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.

  2. Sequencing treatment of industrial wastewater with ultraviolet/H2O2 advanced oxidation and moving bed bioreactor

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Mehrabani Ardekani

    2015-01-01

    Full Text Available Aims: The main purpose of this study was to determine the efficiency of a sequencing treatment including ultraviolet (UV/H 2 O 2 oxidation followed by a moving bed bioreactor (MBBR. Materials and Methods: Effect of solution pH, reaction time, and H 2 O 2 concentration were investigated for an industrial wastewater sample. The effluent of the advanced oxidation processes unit was introduced to the MBBR operated for three hydraulic retention times of 4, 8, and 12 h. Results: The optimum condition for industrial wastewater treatment via advanced oxidation was solution pH: 7, H 2 O 2 dose: 1000 mg/L and 90 min reaction time. These conditions led to 74.68% chemical oxygen demand (COD removal and 66.15% biochemical oxygen demand (BOD 5 removal from presedimentation step effluent that initially had COD and BOD 5 contents of 4,400 and 1,950 mg/L, respectively. Conclusion: Combination of UV/H 2 O 2 advanced oxidation with MBBR could result in effluents that meet water quality standards for discharge to receiving waters.

  3. Basic Principle of Advanced Oxidation Technology : Hybrid Technology Based on Ozone and Titania

    International Nuclear Information System (INIS)

    Widdi Usada; Agus Purwadi

    2007-01-01

    One of problems in health environment is organic liquid waste from many pollutant resources. Environmental friendly technology for degrading this waste is ozone which produced by plasma discharge technology, but its capability is limited. However, it is needed a new environmental friendly technology which has stronger capability. This new technology is so called advanced oxidation technology. Advanced oxidation technology is a hybrid of ozone, peroxide, UV light and photo catalyst. In this paper, it is introduced basic principle of hybrid of ozone and titania photo catalyst semiconductor. The capability of organic liquid degradation will be stronger because there is new radical which is produced by chemical reaction between electron-hole pair from photo catalyst titania and water or oxygen. This new radical then degrades this organic pollutant. This technology is used to degrade phenol. (author)

  4. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  5. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters

    Institute of Scientific and Technical Information of China (English)

    Djalma; Ribeiro; da; Silva; Carlos; A.Martinez-Huítle

    2010-01-01

    In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under ...

  6. MARMOT update for oxide fuel modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Chao [Idaho National Lab. (INL), Idaho Falls, ID (United States); Aagesen, Larry [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ahmed, Karim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tonks, Michael [Pennsylvania State Univ., University Park, PA (United States); Millett, Paul [Univ. of Arkansas, Fayetteville, AR (United States)

    2016-09-01

    This report summarizes the lower-length-scale research and development progresses in FY16 at Idaho National Laboratory in developing mechanistic materials models for oxide fuels, in parallel to the development of the MARMOT code which will be summarized in a separate report. This effort is a critical component of the microstructure based fuel performance modeling approach, supported by the Fuels Product Line in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. The progresses can be classified into three categories: 1) development of materials models to be used in engineering scale fuel performance modeling regarding the effect of lattice defects on thermal conductivity, 2) development of modeling capabilities for mesoscale fuel behaviors including stage-3 gas release, grain growth, high burn-up structure, fracture and creep, and 3) improved understanding in material science by calculating the anisotropic grain boundary energies in UO$_2$ and obtaining thermodynamic data for solid fission products. Many of these topics are still under active development. They are updated in the report with proper amount of details. For some topics, separate reports are generated in parallel and so stated in the text. The accomplishments have led to better understanding of fuel behaviors and enhance capability of the MOOSE-BISON-MARMOT toolkit.

  7. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.

    Science.gov (United States)

    Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes.

    Science.gov (United States)

    Nidheesh, P V; Zhou, Minghua; Oturan, Mehmet A

    2018-04-01

    Wastewater containing dyes are one of the major threats to our environment. Conventional methods are insufficient for the removal of these persistent organic pollutants. Recently much attention has been received for the oxidative removal of various organic pollutants by electrochemically generated hydroxyl radical. This review article aims to provide the recent trends in the field of various Electrochemical Advanced Oxidation Processes (EAOPs) used for removing dyes from water medium. The characteristics, fundamentals and recent advances in each processes namely anodic oxidation, electro-Fenton, peroxicoagulation, fered Fenton, anodic Fenton, photoelectro-Fenton, sonoelectro-Fenton, bioelectro-Fenton etc. have been examined in detail. These processes have great potential to destroy persistent organic pollutants in aqueous medium and most of the studies reported complete removal of dyes from water. The great capacity of these processes indicates that EAOPs constitute a promising technology for the treatment of the dye contaminated effluents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    Science.gov (United States)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  10. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Science.gov (United States)

    Razavi, Behnaz; Song, Weihua; Santoke, Hanoz; Cooper, William J.

    2011-03-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( rad OH) and reducing aqueous electron (e -aq), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with rad OH determined, (6.96±0.16)×10 9, (2.92±0.06)×10 9, (4.16±0.13)×10 9, and (3.13±0.15)×10 9 M -1 s -1, and for e -aq (2.31±0.06)×10 9, (0.45±0.01)×10 9, (1.26±0.01)×10 9, and (0.69±0.02)×10 9 M -1 s -1, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  11. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    International Nuclear Information System (INIS)

    Razavi, Behnaz; Song Weihua; Santoke, Hanoz; Cooper, William J.

    2011-01-01

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ( · OH) and reducing aqueous electron (e - aq ), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with · OH determined, (6.96±0.16)x10 9 , (2.92±0.06)x10 9 , (4.16±0.13)x10 9 , and (3.13±0.15)x10 9 M -1 s -1 , and for e - aq (2.31±0.06)x10 9 , (0.45±0.01)x10 9 , (1.26±0.01)x10 9 , and (0.69±0.02)x10 9 M -1 s -1 , respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using 137 Cs γ-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  12. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  13. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process

    International Nuclear Information System (INIS)

    Abu Amr, Salem S.; Aziz, Hamidi Abdul; Adlan, Mohd Nordin

    2013-01-01

    Highlights: ► Ozone and persulfate reagent (O 3 /S 2 O 8 2- ) was used to treat stabilized leachate. ► Central composite design (CCD) with response surface methodology (RSM) was applied. ► Operating variables including ozone and persulfate dosage, pH variance, and reaction time. ► Optimum removal of COD, color, and NH 3 –N was 72%, 96%, and 76%, respectively. ► A good value of ozone consumption (OC) obtained with 0.60 (kg O 3 /kg COD). - Abstract: The objective of this study was to investigate the performance of employing persulfate reagent in the advanced oxidation of ozone to treat stabilized landfill leachate in an ozone reactor. A central composite design (CCD) with response surface methodology (RSM) was applied to evaluate the relationships between operating variables, such as ozone and persulfate dosages, pH, and reaction time, to identify the optimum operating conditions. Quadratic models for the following four responses proved to be significant with very low probabilities ( 3 –N, and ozone consumption (OC). The obtained optimum conditions included a reaction time of 210 min, 30 g/m 3 ozone, 1 g/1 g COD 0 /S 2 O 8 2- ratio, and pH 10. The experimental results were corresponded well with predicted models (COD, color, and NH 3 –N removal rates of 72%, 96%, and 76%, respectively, and 0.60 (kg O 3 /kg COD OC). The results obtained in the stabilized leachate treatment were compared with those from other treatment processes, such as ozone only and persulfate S 2 O 8 2- only, to evaluate its effectiveness. The combined method (i.e., O 3 /S 2 O 8 2- ) achieved higher removal efficiencies for COD, color, and NH 3 –N compared with other studied applications. Furthermore, the new method is more efficient than ozone/Fenton in advanced oxidation process in the treatment of the same studied leachate

  14. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jian; Liu, Jinping; Huang, Xintang [Institute of Nanoscience and Nanotechnology, Department of Physics, Central China Normal University, Wuhan, Hubei (China); Li, Yuanyuan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan (China); Yuan, Changzhou; Lou, Xiong Wen [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore (China)

    2012-10-02

    Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part ''how to design superior electrode architectures''. In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process.

    Science.gov (United States)

    Kim, Chang-Gyun; Seo, Hyung-Joon; Lee, Byung-Ryul

    2006-01-01

    This study was undertaken to determine the optimal decomposition conditions when 1,4-dioxane was degraded using either the AOPs (Advanced Oxidation Processes) or the BAC-TERRA microbial complex. The advanced oxidation was operated with H2O2, in the range 4.7 to 51 mM, under 254 nm (25 W lamp) illumination, while varying the reaction parameters, such as the air flow rate and reaction time. The greatest oxidation rate (96%) of 1,4-dioxane was achieved with H2O2 concentration of 17 mM after a 2-hr reaction. As a result of this reaction, organic acid intermediates were formed, such as acetic, propionic and butyric acids. Furthermore, the study revealed that suspended particles, i.e., bio-flocs, kaolin and pozzolan, in the reaction were able to have an impact on the extent of 1,4-dioxane decomposition. The decomposition of 1,4-dioxane in the presence of bio-flocs was significantly declined due to hindered UV penetration through the solution as a result of the consistent dispersion of bio-particles. In contrast, dosing with pozzolan decomposed up to 98.8% of the 1,4-dioxane after 2 hr of reaction. Two actual wastewaters, from polyester manufacturing, containing 1,4-dioxane in the range 370 to 450 mg/L were able to be oxidized by as high as 100% within 15 min with the introduction of 100:200 (mg/L) Fe(II):H202 under UV illumination. Aerobic biological decomposition, employing BAC-TERRA, was able to remove up to 90% of 1,4-dioxane after 15 days of incubation. In the meantime, the by-products (i.e., acetic, propionic and valeric acid) generated were similar to those formed during the AOPs investigation. According to kinetic studies, both photo-decomposition and biodegradation of 1,4-dioxane followed pseudo first-order reaction kinetics, with k = 5 x 10(-4) s(-1) and 2.38 x 10(-6) s(-1), respectively. It was concluded that 1,4-dioxane could be readily degraded by both AOPs and BAC-TERRA, and that the actual polyester wastewater containing 1,4-dioxane could be successfully

  16. Advancing Methods for Estimating Soil Nitrous Oxide Emissions by Incorporating Freeze-Thaw Cycles into a Tier 3 Model-Based Assessment

    Science.gov (United States)

    Ogle, S. M.; DelGrosso, S.; Parton, W. J.

    2017-12-01

    Soil nitrous oxide emissions from agricultural management are a key source of greenhouse gas emissions in many countries due to the widespread use of nitrogen fertilizers, manure amendments from livestock production, planting legumes and other practices that affect N dynamics in soils. In the United States, soil nitrous oxide emissions have ranged from 250 to 280 Tg CO2 equivalent from 1990 to 2015, with uncertainties around 20-30 percent. A Tier 3 method has been used to estimate the emissions with the DayCent ecosystem model. While the Tier 3 approach is considerably more accurate than IPCC Tier 1 methods, there is still the possibility of biases in emission estimates if there are processes and drivers that are not represented in the modeling framework. Furthermore, a key principle of IPCC guidance is that inventory compilers estimate emissions as accurately as possible. Freeze-thaw cycles and associated hot moments of nitrous oxide emissions are one of key drivers influencing emissions in colder climates, such as the cold temperate climates of the upper Midwest and New England regions of the United States. Freeze-thaw activity interacts with management practices that are increasing N availability in the plant-soil system, leading to greater nitrous oxide emissions during transition periods from winter to spring. Given the importance of this driver, the DayCent model has been revised to incorproate freeze-thaw cycles, and the results suggests that including this driver can significantly modify the emissions estimates in cold temperate climate regions. Consequently, future methodological development to improve estimation of nitrous oxide emissions from soils would benefit from incorporating freeze-thaw cycles into the modeling framework for national territories with a cold climate.

  17. Advances of study on atmospheric methane oxidation (consumption) in forest soil

    Institute of Scientific and Technical Information of China (English)

    WANG Chen-rui; SHI Yi; YANG Xiao-ming; WU Jie; YUE Jin

    2003-01-01

    Next to CO2, methane (CH4) is the second important contributor to global warming in the atmosphere and global atmospheric CH4 budget depends on both CH4 sources and sinks. Unsaturated soil is known as a unique sink for atmospheric CH4 in terrestrial ecosystem. Many comparison studies proved that forest soil had the biggest capacity of oxidizing atmospheric CH4 in various unsaturated soils. However, up to now, there is not an overall review in the aspect of atmospheric CH4 oxidation (consumption) in forest soil. This paper analyzed advances of studies on the mechanism of atmospheric CH4 oxidation, and related natural factors (Soil physical and chemical characters, temperature and moisture, ambient main greenhouse gases concentrations, tree species, and forest fire) and anthropogenic factors (forest clear-cutting and thinning, fertilization, exogenous aluminum salts and atmospheric deposition, adding biocides, and switch of forest land use) in forest soils. It was believed that CH4 consumption rate by forest soil was limited by diffusion and sensitive to changes in water status and temperature of soil. CH4 oxidation was also particularly sensitive to soil C/N, Ambient CO2, CH4 and N2O concentrations, tree species and forest fire. In most cases, anthropogenic disturbances will decrease atmospheric CH4 oxidation, thus resulting in the elevating of atmospheric CH4. Finally, the author pointed out that our knowledge of atmospheric CH4 oxidation (consumption) in forest soil was insufficient. In order to evaluate the contribution of forest soils to atmospheric CH4 oxidation and the role of forest played in the process of global environmental change, and to forecast the trends of global warming exactly, more researchers need to studies further on CH4 oxidation in various forest soils of different areas.

  18. Treatment of statin compounds by advanced oxidation processes: Kinetic considerations and destruction mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Behnaz, E-mail: brazavi@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Song Weihua, E-mail: wsong@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Santoke, Hanoz, E-mail: hsantoke@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States); Cooper, William J., E-mail: wcooper@uci.ed [Urban Water Research Center, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175 (United States)

    2011-03-15

    This study examined the use of advanced oxidation/reduction processes (AO/RPs) for the destruction of cholesterol lowering statin pharmaceuticals. AO/RPs which utilize the oxidizing hydroxyl radical ({sup {center_dot}O}H) and reducing aqueous electron (e{sup -}{sub aq}), to degrade chemical contaminants are alternatives to traditional water treatment methods, and are alternatives as water reuse becomes more generally implemented. Four major statin pharmaceuticals, fluvastatin, lovastatin, pravastatin and simvastatin, were studied, and the absolute bimolecular reaction rate constants with {sup {center_dot}O}H determined, (6.96{+-}0.16)x10{sup 9}, (2.92{+-}0.06)x10{sup 9}, (4.16{+-}0.13)x10{sup 9}, and (3.13{+-}0.15)x10{sup 9} M{sup -1} s{sup -1}, and for e{sup -}{sub aq} (2.31{+-}0.06)x10{sup 9}, (0.45{+-}0.01)x10{sup 9}, (1.26{+-}0.01)x10{sup 9}, and (0.69{+-}0.02)x10{sup 9} M{sup -1} s{sup -1}, respectively. To provide additional information on the radicals formed upon oxidation, transient spectra were measured and the overall reaction efficiency determined. Radical-based destruction mechanisms for destruction of the statins are proposed based on the LC-MS determination of the stable reaction by-products formed using {sup 137}Cs {gamma}-irradiation of statin solutions. Knowing the reaction rates, reaction efficiencies and destruction mechanisms of these compounds is essential for the consideration of the use of advanced oxidation/reduction processes for the destruction of statins in aqueous systems.

  19. NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling

    CERN Document Server

    1986-01-01

    This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...

  20. Application of Advanced Oxidation Processes in Water Treatment%高级氧化技术在水处理中的应用

    Institute of Scientific and Technical Information of China (English)

    黄洪勋; 孙亚全; 陈明发; 路艳艳

    2012-01-01

    This paper introduces the development and characteristics of advanced oxidation processes. Several advanced oxidation processes, such as chemical oxidation, photocatalytic oxidation, hydrothermal oxidation, high voltage pulsed discharge plasma and ultrasonic, and their application in water treatment are over- viewed. The application of advanced oxidation processes in water treatment will be more mature and be used more widely with the deepening of the research.%介绍了高级氧化技术的发展及其特点,并综述了化学氧化、光催化氧化、水热氧化以及高压脉冲放电等离子体、超声等高级氧化技术及其在水处理中的应用。随着对高级氧化技术不断深入的研究,其在水处理领域的应用将更加成熟并且越来越广泛。

  1. Magnetism-tuning strategies for graphene oxide based on magnetic oligoacene oxide patches model.

    Science.gov (United States)

    Wen, Yanjie; Yen, Chia-Liang; Yan, Linyin; Kono, Hirohiko; Lin, Sheng-Hsien; Ling, Yong-Chien

    2018-01-31

    Graphene oxide (GO) has wide application potential owing to its 2D structure and diverse modification sites for various targeted uses. The introduction of magnetism into GO structures has further advanced the controllability of the application of GO materials. Herein, the concept of modular design and modeling was applied to tune the magnetism of GO. To obtain desirable magnetic properties, diradical-structured GO patches were formed by the introduction of two functional groups to break the Kekule structure of the benzene ring. In these diradical GO patches, the energy of the triplet state was lower than those of the open-shell broken-symmetry singlet state and closed-shell singlet state. To create such multi-radical patches, a practical approach is to determine a substantial spatial separation of the α and β spin densities in the molecule. Thus, systematic design strategies and tests were evaluated. The first strategy was extending the distance between the distribution center of the α and β spin densities; the second was controlling the delocalization directions of the α and β electrons; the third was controlling the delocalization extension of the α and β electrons by oxidative modification, and finally introducing multi-radical structures into the molecular system and controlling the position of each radical. Herein, successful molecular models with a large magnetic coupling constant (∼3600 cm -1 ) were obtained. This study paves the way to explore ferromagnetic MGO guided by theoretical study, which may become reality soon.

  2. Oxidative treatment characteristics of biotreated textile-dyeing wastewater and chemical agents used in a textile-dyeing process by advanced oxidation process.

    Science.gov (United States)

    Lim, B R; Hu, H Y; Ahn, K H; Fujie, K

    2004-01-01

    The oxidative treatment characteristics of biotreated textile-dyeing wastewater and typical chemicals such as desizing, scouring, dispersing and swelling agents used in the textile-dyeing process by advanced oxidation process were experimentally studied. The refractory organic matters remained in the effluent of biological treatment process without degradation may be suitable for the improvement of biodegradability and mineralized to CO2 by combined ozonation with and without hydrogen peroxide. On the other hand, the refractory chemicals contained in the scouring agent A and swelling agent may not be mineralized and their biodegradability may not be improved by ozonation. However, the BOD/DOC ratio of scouring agent B increased from 0.3 to 0.45 after ozonation. Based on the results described above, advanced treatment process involving the ozonation without and with the addition of hydrogen peroxide, followed by biological treatment was proposed for the treatment of refractory wastewater discharged from the textile-dyeing process.

  3. A Simplified Model for Volatile-N Oxidation

    DEFF Research Database (Denmark)

    Hansen, Stine; Glarborg, Peter

    2010-01-01

    In solid fuel flames, NO is largely formed from the oxidation of volatile nitrogen compounds such as HCN and NH3. To be able to model the nitrogen chemistry in these flames, it is necessary to have an adequate model for volatile-N oxidation. Simple global models for oxidation of HCN and NH3 from...... the literature should be used cautiously, since their predictive capabilities are limited, particularly under reducing conditions. Models for HCN/NH3/NO conversion based on the systematic reduction of a detailed chemical kinetic model offer high accuracy but rely on input estimates of combustion intermediates...... for the sub-bituminous and bituminous coals, especially at lower temperatures. The semiempirical correlations for estimating radical concentrations may also be useful in combination with models for other trace species, such as sulfur oxides, organic species, etc....

  4. Investigation of Phenol Removal in Aqueous Solutions Using Advanced Photochemical Oxidation (APO

    Directory of Open Access Journals (Sweden)

    Naser Jamshidi

    2010-01-01

    Full Text Available Most organic compounds are resistant to conven­tional chemical and biological treatments. For this reason, other methods are being studied as alter­natives to the biological and classical physico-chemical pro­cesses. In this study, advanced photochemical oxidation (APO processes (UV, UV/H2O2, UV/H2O2/Fe(II, andUV/H2O2/Fe(III were investigated in lab-scale experiments for the degradation of phenol in an aqueous solution. A medium-pressure 300 watt (UV-C mercury ultraviolet lamp was used as the radiation source and H2O2 30% as the oxidant. Phenol (initial concentration= 0.5 mmol/L was selected as the model due to its high use and application. Some important parameters such as pH, H2O2 input concentration, iron catalyst concentration, the type of iron salt, and duration of UV radiation were studied based on the standard methods. The results showed that the Photo-Fenton process was the most effective treatment under acidic conditions producing a higher rate of phenol degradation over a very short radiation time. The process accelerated the oxidation rate by 4-5 times the rate of the UV/H2O2 process. The optimum conditions were obtained at a pH value of 3, with a molar ratio of 11.61 for H2O2/Phenol and molar ratios of 0.083 and 0.067for Iron/H2O2 in the UV/H2O2/Fe (II and the UV/H2O2/Fe (III systems, respectively.

  5. Fabrication of Electrochemically Reduced Graphene Oxide Modified Gas Diffusion Electrode for In-situ Electrochemical Advanced Oxidation Process under Mild Conditions

    International Nuclear Information System (INIS)

    Dong, Heng; Su, Huimin; Chen, Ze; Yu, Han; Yu, Hongbing

    2016-01-01

    With aim to develop an efficient heterogeneous metal-free cathodic electrochemical advance oxidation process (CEAOP) for persistent organic pollutants (POPs) removal from wastewater under mild conditions, electrochemically reduced graphene oxide (ERGO)-modified gas diffusion electrode (GDE) was prepared for oxygen-containing radicals production via electrochemical oxygen reduction reaction (ORR). A detailed physical characterization was carried out by SEM, Raman spectroscopy, XRD and XPS. The electrocatalytic behavior for ORR was investigated by electrochemical measurements and electrolysis experiments under constant current density. Bisphenol A (BPA) of 20 mg L −1 was used as a model of POPs to evaluate the performance of the CEAOP with ERGO-modified GDE. The results showed that the defects concentration and electrochemical active sites of the ERGO was increased as the reduction time (30 min, 60 min and 120 min), leading to different catalysis on ORR. ·O 2 generation via one-electron ORR was found under the electrocatalysis of ERGO (60 min and 120 min), contributing to a complete degradation of BPA within 20 min and a mineralization current efficiency (MCE) of 74.60%. An alternative metal-free CEAOP independent of Fenton reaction was established based on ERGO-modified GDE for POPs removal from wastewater under mild conditions.

  6. Simulation for Supporting Scale-Up of a Fluidized Bed Reactor for Advanced Water Oxidation

    Directory of Open Access Journals (Sweden)

    Farhana Tisa

    2014-01-01

    Full Text Available Simulation of fluidized bed reactor (FBR was accomplished for treating wastewater using Fenton reaction, which is an advanced oxidation process (AOP. The simulation was performed to determine characteristics of FBR performance, concentration profile of the contaminants, and various prominent hydrodynamic properties (e.g., Reynolds number, velocity, and pressure in the reactor. Simulation was implemented for 2.8 L working volume using hydrodynamic correlations, continuous equation, and simplified kinetic information for phenols degradation as a model. The simulation shows that, by using Fe3+ and Fe2+ mixtures as catalyst, TOC degradation up to 45% was achieved for contaminant range of 40–90 mg/L within 60 min. The concentration profiles and hydrodynamic characteristics were also generated. A subsequent scale-up study was also conducted using similitude method. The analysis shows that up to 10 L working volume, the models developed are applicable. The study proves that, using appropriate modeling and simulation, data can be predicted for designing and operating FBR for wastewater treatment.

  7. Integration of CFD codes and advanced combustion models for quantitative burnout determination

    Energy Technology Data Exchange (ETDEWEB)

    Javier Pallares; Inmaculada Arauzo; Alan Williams [University of Zaragoza, Zaragoza (Spain). Centre of Research for Energy Resources and Consumption (CIRCE)

    2007-10-15

    CFD codes and advanced kinetics combustion models are extensively used to predict coal burnout in large utility boilers. Modelling approaches based on CFD codes can accurately solve the fluid dynamics equations involved in the problem but this is usually achieved by including simple combustion models. On the other hand, advanced kinetics combustion models can give a detailed description of the coal combustion behaviour by using a simplified description of the flow field, this usually being obtained from a zone-method approach. Both approximations describe correctly general trends on coal burnout, but fail to predict quantitative values. In this paper a new methodology which takes advantage of both approximations is described. In the first instance CFD solutions were obtained of the combustion conditions in the furnace in the Lamarmora power plant (ASM Brescia, Italy) for a number of different conditions and for three coals. Then, these furnace conditions were used as inputs for a more detailed chemical combustion model to predict coal burnout. In this, devolatilization was modelled using a commercial macromolecular network pyrolysis model (FG-DVC). For char oxidation an intrinsic reactivity approach including thermal annealing, ash inhibition and maceral effects, was used. Results from the simulations were compared against plant experimental values, showing a reasonable agreement in trends and quantitative values. 28 refs., 4 figs., 4 tabs.

  8. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    Science.gov (United States)

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  10. Investigation of Zircaloy-2 oxidation model for SFP accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Yoshiyuki, E-mail: nemoto.yoshiyuki@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Kaji, Yoshiyuki; Ogawa, Chihiro; Kondo, Keietsu [Japan Atomic Energy Agency, 2-4 Shirakata, Ohaza, Tokai-mura, Naka-gun, Ibaraki, 319-1195 (Japan); Nakashima, Kazuo; Kanazawa, Toru; Tojo, Masayuki [Global Nuclear Fuel – Japan Co., Ltd., 2-3-1, Uchikawa, Yokosuka-shi, Kanagawa, 239-0836 (Japan)

    2017-05-15

    The authors previously conducted thermogravimetric analyses on Zircaloy-2 in air. By using the thermogravimetric data, an oxidation model was constructed in this study so that it can be applied for the modeling of cladding degradation in spent fuel pool (SFP) severe accident condition. For its validation, oxidation tests of long cladding tube were conducted, and computational fluid dynamics analyses using the constructed oxidation model were proceeded to simulate the experiments. In the oxidation tests, high temperature thermal gradient along the cladding axis was applied and air flow rates in testing chamber were controlled to simulate hypothetical SFP accidents. The analytical outputs successfully reproduced the growth of oxide film and porous oxide layer on the claddings in oxidation tests, and validity of the oxidation model was proved. Influence of air flow rate for the oxidation behavior was thought negligible in the conditions investigated in this study. - Highlights: •An oxidation model of Zircaloy-2 in air environment was developed. •The oxidation model was validated by the comparison with oxidation tests using long cladding tubes in hypothetical spent fuel pool accident condition. •The oxidation model successfully reproduced the typical oxidation behavior in air.

  11. Implementation of advanced inbound models

    OpenAIRE

    Koskinen, Juha

    2016-01-01

    The present Master’s Thesis was assigned by company operating in telecommuni-cations industry. The target of the Master’s Thesis was to understand what the biggest benefits are in implementing advanced inbound models into use and why it sometimes takes a longer time to finalize the implementation than planned. In addition the thesis aimed at clarifying how the usage of advanced inbound models should be measured and what the key performance indicators are that can verify the information. The g...

  12. Non steady-state model for dry oxidation of nuclear wastes metallic containers in long term interim storage conditions

    International Nuclear Information System (INIS)

    Bertrand, Nathalie; Desgranges, Clara; Poquillon, Dominique; Monceau, Daniel

    2006-01-01

    oxidation tests. In a second step, in order to increase the reliability of the long term extrapolations from basic models, a non-steady state numerical model able to take into account several elementary steps is built. The aim is to get a more reliable tool to describe mechanisms that control oxide scale growth in this specific low temperature range. The paper has the following contains: Experimental results; Growth kinetics; Scale morphology; A basic model for kinetics of oxidation; Conclusion of the experimental study; EKINOX: Estimation KINetics OXidation: an advanced model; General description; Equations in the model; Results; Future developments; Conclusion. To summarize, the basic model consists in some extrapolations of available experimental data in the temperature range of interest following simple analytical laws deduced from classical oxidation theories. This leads to a very small oxide scale and thus to the loss of very small amounts of metal even for extrapolations to over 100 years. However, the reliability of this kind of basic models is very poor since it is based on the assumption that a single elementary process controls the oxidation rate. Indeed in the temperature range concerned by long term interim deposit of waste containers, several mechanisms can control the oxidation rate. A numerical model able to take in consideration several growth mechanisms is now in progress. At this stage of development, the originality of the proposed advanced model consists in explicitly calculating the vacancy profiles and treating these as non-conservative species. It is based on an original numerical treatment to correctly and easily describe elimination of vacancies at the metal/oxide interface and thus relative motion between the substrate lattice and the oxide one, even for non-stationary states. It can treat Wagner's model but without the quasi-steady state 'hypothesis or also take into account a partial control of the oxidation process by interfacial reaction. In

  13. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  14. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    Science.gov (United States)

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    Science.gov (United States)

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, Łukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen.

  16. Importance of glycolysis and oxidative phosphorylation in advanced melanoma

    Directory of Open Access Journals (Sweden)

    Ho Jonhan

    2012-10-01

    Full Text Available Abstract Serum lactate dehydrogenase (LDH is a prognostic factor for patients with stage IV melanoma. To gain insights into the biology underlying this prognostic factor, we analyzed total serum LDH, serum LDH isoenzymes, and serum lactate in up to 49 patients with metastatic melanoma. Our data demonstrate that high serum LDH is associated with a significant increase in LDH isoenzymes 3 and 4, and a decrease in LDH isoenzymes 1 and 2. Since LDH isoenzymes play a role in both glycolysis and oxidative phosphorylation (OXPHOS, we subsequently determined using tissue microarray (TMA analysis that the levels of proteins associated with mitochondrial function, lactate metabolism, and regulators of glycolysis were all elevated in advanced melanomas compared with nevic melanocytes. To investigate whether in advanced melanoma, the glycolysis and OXPHOS pathways might be linked, we determined expression of the monocarboxylate transporters (MCT 1 and 4. Analysis of a nevus-to-melanoma progression TMA revealed that MCT4, and to a lesser extend MCT1, were elevated with progression to advanced melanoma. Further analysis of human melanoma specimens using the Seahorse XF24 extracellular flux analyzer indicated that metastatic melanoma tumors derived a large fraction of energy from OXPHOS. Taken together, these findings suggest that in stage IV melanomas with normal serum LDH, glycolysis and OXPHOS may provide metabolic symbiosis within the same tumor, whereas in stage IV melanomas with high serum LDH glycolysis is the principle source of energy.

  17. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  18. Design and modeling of an advanced marine machinery system including waste heat recovery and removal of sulphur oxides

    DEFF Research Database (Denmark)

    Frimann Nielsen, Rasmus; Haglind, Fredrik; Larsen, Ulrik

    2014-01-01

    the efficiency of machinery systems. The wet sulphuric acid process is an effective way of removing flue gas sulphur oxides from land-based coal-fired power plants. Moreover, organic Rankine cycles (ORC) are suitable for heat to power conversion for low temperature heat sources. This paper describes the design...... that an ORC placed after the conventional waste heat recovery system is able to extract the sulphuric acid from the exhaust gas, while at the same time increase the combined cycle thermal efficiency by 2.6%. The findings indicate that the technology has potential in marine applications regarding both energy...... and modeling of a highly efficient machinery system which includes the removal of exhaust gas sulphur oxides. The system consists of a two-stroke diesel engine, the wet sulphuric process for sulphur removal, a conventional steam Rankine cycle and an ORC. Results of numerical modeling efforts suggest...

  19. Oxide behaviour modelling progress in COMETHE

    International Nuclear Information System (INIS)

    Vliet, J. van; Hoppe, N.

    1983-01-01

    An attempt has been made to develop a global model which simultaneously describes many important aspects of uranium oxide under irradiation. The individual models describing fuel structural changes, swelling and gas release, which were earlier separate from one another, are now part of a more realistic integral fuel model. Fission gas release depends now on an explicitely calculated open porosity, which is generated by fuel swelling; the latter is in turn connected to fission gas release. The paper describes the individual oxide models and how they are linked together. (author)

  20. Results of modeling advanced BWR fuel designs using CASMO-4

    International Nuclear Information System (INIS)

    Knott, D.; Edenius, M.

    1996-01-01

    Advanced BWR fuel designs from General Electric, Siemens and ABB-Atom have been analyzed using CASMO-4 and compared against fission rate distributions and control rod worths from MCNP. Included in the analysis were fuel storage rack configurations and proposed mixed oxide (MOX) designs. Results are also presented from several cycles of SIMULATE-3 core follow analysis, using nodal data generated by CASMO-4, for cycles in transition from 8x8 designs to advanced fuel designs. (author)

  1. Oxidative treatment of a waste water stream from a molasses processing using ozone and advanced oxidation technologies

    International Nuclear Information System (INIS)

    Gehringer, P.; Szinovatz, W.; Eschweiler, H.; Haberl, R.

    1994-08-01

    The discoloration of a biologically pretreated waste water stream from a molasses processing by ozonation and two advanced oxidation processes (O 3 /H 2 O 2 and O 3 /γ-irradiation, respectively) was studied. Colour removal occurred with all three processes with almost the same efficiency. The main difference of the methods applied was reflected by the BOD increase during the discoloration period. By ozonation it was much higher than by AOPs but it also appeared with AOPs. AOPs were, therefore, not apt for an effective BOD control during discoloration. (authors)

  2. Investigation of combined coagulation and advanced oxidation process efficiency for the removal of Clarithromycin from wastewater

    Directory of Open Access Journals (Sweden)

    ahmad reza Yazdanbakhsh

    2011-06-01

    Conclusion: In general the results of the performed tests indicated that combined coagulation and advanced oxidation process has high efficiency in removal of Claritromycin wastewater COD. But application this method in the industry should be surveyed.

  3. Advance Payment ACO Model

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Advance Payment Model is designed for physician-based and rural providers who have come together voluntarily to give coordinated high quality care to the...

  4. System and method to control h2o2 level in advanced oxidation processes

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to a bio-electrochemical system (BES) and a method of in-situ production and removal of H2O2 using such a bio-electrochemical system (BES). Further, the invention relates to a method for in-situ control of H2O2 content in an aqueous system of advanced oxidation...

  5. Advanced Chemical Reduction of Reduced Graphene Oxide and Its Photocatalytic Activity in Degrading Reactive Black 5

    Directory of Open Access Journals (Sweden)

    Christelle Pau Ping Wong

    2015-10-01

    Full Text Available Textile industries consume large volumes of water for dye processing, leading to undesirable toxic dyes in water bodies. Dyestuffs are harmful to human health and aquatic life, and such illnesses as cholera, dysentery, hepatitis A, and hinder the photosynthetic activity of aquatic plants. To overcome this environmental problem, the advanced oxidation process is a promising technique to mineralize a wide range of dyes in water systems. In this work, reduced graphene oxide (rGO was prepared via an advanced chemical reduction route, and its photocatalytic activity was tested by photodegrading Reactive Black 5 (RB5 dye in aqueous solution. rGO was synthesized by dispersing the graphite oxide into the water to form a graphene oxide (GO solution followed by the addition of hydrazine. Graphite oxide was prepared using a modified Hummers’ method by using potassium permanganate and concentrated sulphuric acid. The resulted rGO nanoparticles were characterized using ultraviolet-visible spectrophotometry (UV-Vis, X-ray powder diffraction (XRD, Raman, and Scanning Electron Microscopy (SEM to further investigate their chemical properties. A characteristic peak of rGO-48 h (275 cm−1 was observed in the UV spectrum. Further, the appearance of a broad peak (002, centred at 2θ = 24.1°, in XRD showing that graphene oxide was reduced to rGO. Based on our results, it was found that the resulted rGO-48 h nanoparticles achieved 49% photodecolorization of RB5 under UV irradiation at pH 3 in 60 min. This was attributed to the high and efficient electron transport behaviors of rGO between aromatic regions of rGO and RB5 molecules.

  6. Development and validation of advanced oxidation protective coatings for super critical steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, M.B.; Scheefer, M. [Alstom Power Ltd., Rugby (United Kingdom); Agueero, A. [Instituto Nacional de Tecnica Aerospacial (INTA) (Spain); Allcock, B. [Monitor Coatings Ltd. (United Kingdom); Norton, B. [Indestructible Paints Ltd. (United Kingdom); Tsipas, D.N. [Aristotle Univ. of Thessaloniki (Greece); Durham, R. [FZ Juelich (Germany); Xiang, Z. [Northumbria Univ. (United Kingdom)

    2006-07-01

    Increasing the efficiency of coal-fired power plant by increasing steam temperatures and pressures brings benefits in terms of cheaper electricity and reduced emissions, particularly CO{sub 2}. In recent years the development of advanced 9%Cr ferritic steels with improved creep strength has enabled power plant operation at temperatures in excess of 600 C, such that these materials are being exploited to construct a new generation of advanced coalfired plant. However, the move to higher temperatures and pressures creates an extremely hostile oxidising environment. To enable the full potential of the new steels to be achieved, it is vital that protective coatings are developed, validated under high temperature steam and applied to candidate components from the steam path. This paper reviews recent work conducted within the Framework V project ''Coatings for Supercritical Steam Cycles'' (SUPERCOAT) to develop and demonstrate advanced slurry and thermal spray coatings capable of providing steam oxidation protection at temperatures in excess of 620 C and up to 300 bar. The programme of work has demonstrated the feasibility of applying a number of candidate coatings to steam turbine power plant components and has generated long-term steam oxidation rate and failure data that underpin the design and application work packages needed to develop and establish this technology for new and retrofit plant. (orig.)

  7. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases

    Directory of Open Access Journals (Sweden)

    Bogna Gryszczyńska

    2017-01-01

    Full Text Available Objectives. The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP and carbonylated proteins, expressed as protein carbonyl content (C=O in abdominal aortic aneurysms (AAA, aortoiliac occlusive disease (AIOD, and chronic kidney disease (CKD. Design and Methods. The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE included 50 patients or hemodialysis (HD consisted of 34 patients. AOPP and C=O were measured using colorimetric assay kit, while C-reactive protein concentration was measured by high-sensitivity assay (hsCRP. Results. The concentration of AOPP in both AAA and AIOD groups was higher than in PRE and HD groups according to descending order: AAA~AIOD > HD > PRE. The content of C=O was higher in the PRE group in comparison to AIOD and AAA according to the descending order: PRE~HD > AAA~AIOD. Conclusions. AAA, AIOD, and CKD-related atherosclerosis (PRE and HD contribute to the changes in the formation of AOPP and C=O. They may promote modification of proteins in a different way, probably due to the various factors that influence oxidative stress here.

  8. 高级氧化技术处理造纸废水的应用研究%Application of Advanced Oxidation Processes in Papermaking Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    杨德敏; 王兵

    2011-01-01

    The advanced oxidation processes has attracted more and more extensive attention due to its higher ability to remove the refractory organic materials in wastewater. The mechanism and the application development in papermaking wastewater treatment of the advanced oxidation processes, such as Fenton reagent oxidation, supercritical water oxidation, photocatalytic oxidation, ultrasonic oxidation, electrocatalytic oxidation, ozone oxidization and wet oxidation, are summarized. The characteristic and existing problems as well as the developing tendency of different advanced oxidation processes are analyzed.%介绍了Fenton类氧化法、超临界水氧化法、光催化氧化法、超声氧化法、电催化氧化法、臭氧氧化法和湿式氧化法等高级氧化技术的作用机理及其在造纸废水处理中的应用进展,分析并指出了各种高级氧化技术的特点以及存在的问题和今后的主要发展方向.

  9. Application of advanced validation concepts to oxide fuel performance codes: LIFE-4 fast-reactor and FRAPCON thermal-reactor fuel performance codes

    Energy Technology Data Exchange (ETDEWEB)

    Unal, C., E-mail: cu@lanl.gov [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Williams, B.J. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Yacout, A. [Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Higdon, D.M. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States)

    2013-10-15

    /validation of MS/MP capabilities because these advanced tools have not yet reached sufficient maturity to support such an investigation. In an earlier paper (Unal et al., 2011), we proposed a methodology that potentially can be used to address these new challenges in the design and licensing of evolving nuclear technology. The main components of the proposed methodology are verification, validation, calibration, and uncertainty quantification. An enhanced calibration concept was introduced and is accomplished through data assimilation. Since advanced MS/MP codes have not yet reached the level of maturity required for a comprehensive validation and calibration exercise, we considered two legacy fuel codes and apply parts of our methodology to these codes to demonstrate the benefits of the new calibration capabilities we recently developed as a part of the proposed framework. This effort does not directly support “born-assessed” validation for advanced MS/MP codes, but is useful to gain insight on legacy modeling deficiencies and to guide and develop recommendations on high and low priority directions for development of advanced codes and advanced experiments, so as to maximize the benefits of advanced validation and uncertainty quantification (VU) efforts involving the next generation of MS/MP code capabilities. This paper discusses the application of advanced validation techniques (sensitivity, calibration, and prediction) to nuclear fuel performance codes FRAPCON (Geelhood et al., 2011a,b) and LIFE-4 (Boltax et al., 1990). FRAPCON is used to predict oxide fuel behavior in light water reactors. LIFE-4 was developed in the 1980s to predict oxide fuel behavior in fast reactors. We introduce a sensitivity ranking methodology to narrow down the selected parameters for follow-up sensitivity and calibration analyses. We use screening methods with both codes and discuss the results. The number of selected modeling parameters was 61 for FRAPCON and 69 for LIFE-4. The screening

  10. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J; Ahokainen, T; Jokilaakso, A [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1998-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  11. Developments in kinetic modelling of chalcocite particle oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jaervi, J.; Ahokainen, T.; Jokilaakso, A. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Materials Processing and Powder Metallurgy

    1997-12-31

    A mathematical model for simulating chalcocite particle oxidation is presented. Combustion of pure chalcocite with oxygen is coded as a kinetic module which can be connected as a separate part of commercial CFD-package, PHOENICS. Heat transfer, fluid flow and combustion phenomena can be simulated using CFD-calculation together with the kinetic model. Interaction between gas phase and particles are taken into account by source terms. The aim of the kinetic model is to calculate the particle temperature, contents of species inside the particle, oxygen consumption and formation of sulphur dioxide. Four oxidation reactions are considered and the shrinking core model is used to describe the rate of the oxidation reactions. The model is verified by simulating the particle oxidation reactions in a laboratory scale laminar-flow furnace under different conditions and the model predicts the effects of charges correctly. In the future, the model validation will be done after experimental studies in the laminar flow-furnace. (author) 18 refs.

  12. Advanced cathode materials for polymer electrolyte fuel cells based on pt/ metal oxides: from model electrodes to catalyst systems.

    Science.gov (United States)

    Fabbri, Emiliana; Pătru, Alexandra; Rabis, Annett; Kötz, Rüdiger; Schmidt, Thomas J

    2014-01-01

    The development of stable catalyst systems for application at the cathode side of polymer electrolyte fuel cells (PEFCs) requires the substitution of the state-of-the-art carbon supports with materials showing high corrosion resistance in a strongly oxidizing environment. Metal oxides in their highest oxidation state can represent viable support materials for the next generation PEFC cathodes. In the present work a multilevel approach has been adopted to investigate the kinetics and the activity of Pt nanoparticles supported on SnO2-based metal oxides. Particularly, model electrodes made of SnO2 thin films supporting Pt nanoparticles, and porous catalyst systems made of Pt nanoparticles supported on Sb-doped SnO2 high surface area powders have been investigated. The present results indicate that SnO2-based supports do not modify the oxygen reduction reaction mechanism on the Pt nanoparticle surface, but rather lead to catalysts with enhanced specific activity compared to Pt/carbon systems. Different reasons for the enhancement in the specific activity are considered and discussed.

  13. Solar photoassisted advanced oxidation process of azo dyes.

    Science.gov (United States)

    Prato-Garcia, D; Buitrón, G

    2009-01-01

    Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx).

  14. Study of Advanced Reactor Mixed Oxide Fuel Production of (U,Th)O2

    International Nuclear Information System (INIS)

    Busron-Masduki; Damunir; Pristi-Hartati; R-Sukarsono; Bangun-Wasito

    2000-01-01

    The high price and starting scarcity of reserved of oil drive the people to drill the alternative nuclear energy. Accelerator-driven Transmutation Waste (ATW) is a prospective technology to solve the problem of used fuel waste, to reduce the anxiety of long term disposal waste, to increase the public acceptance of nuclear energy enter into the third millennium. The future of large nuclear energy appears in many-branched industry will depend on the capability to generate relatively low priced fuel on the basis of commercial nuclear energy. Utilization of uranium-233 -thorium cycle insures long-term fuel supply, makes the nuclear energy production more flexible and enables the self-provision regime to be realized in future. Flowsheet of mixed oxide fuel production for advanced reactor of (U,Th)O 2 is a combination of existing manufacturing equipment and quality assurance program from commercial LWR and HTR. The front-end of flowsheet using sol-gel process. The external sol-gel process is chosen due to simple equipment can anticipate refabrication of U-233 which always contains a few hundred ppm of U-232 and its gamma-emitting daughters, besides yielding smaller waste. The decision to choose external sol-gel process encourages to develop External Gelation Thorium (EGT). In order to get higher density and relatively low compaction pressures (i.e. for advanced LWR) adopted flowsheet EGT is developed to be Sol-Gel Microsphere Pelletization (SGMP). Using the optimal parameters, SGMP become established flowsheet for producing mixed oxide fuel of (U,Th)O 2 for advanced reactor. (author)

  15. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    OpenAIRE

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2017-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty...

  16. Phase-field modeling of corrosion kinetics under dual-oxidants

    Science.gov (United States)

    Wen, You-Hai; Chen, Long-Qing; Hawk, Jeffrey A.

    2012-04-01

    A phase-field model is proposed to simulate corrosion kinetics under a dual-oxidant atmosphere. It will be demonstrated that the model can be applied to simulate corrosion kinetics under oxidation, sulfidation and simultaneous oxidation/sulfidation processes. Phase-dependent diffusivities are incorporated in a natural manner and allow more realistic modeling as the diffusivities usually differ by many orders of magnitude in different phases. Simple free energy models are then used for testing the model while calibrated free energy models can be implemented for quantitative modeling.

  17. Prediction of traffic-related nitrogen oxides concentrations using Structural Time-Series models

    Science.gov (United States)

    Lawson, Anneka Ruth; Ghosh, Bidisha; Broderick, Brian

    2011-09-01

    Ambient air quality monitoring, modeling and compliance to the standards set by European Union (EU) directives and World Health Organization (WHO) guidelines are required to ensure the protection of human and environmental health. Congested urban areas are most susceptible to traffic-related air pollution which is the most problematic source of air pollution in Ireland. Long-term continuous real-time monitoring of ambient air quality at such urban centers is essential but often not realistic due to financial and operational constraints. Hence, the development of a resource-conservative ambient air quality monitoring technique is essential to ensure compliance with the threshold values set by the standards. As an intelligent and advanced statistical methodology, a Structural Time Series (STS) based approach has been introduced in this paper to develop a parsimonious and computationally simple air quality model. In STS methodology, the different components of a time-series dataset such as the trend, seasonal, cyclical and calendar variations can be modeled separately. To test the effectiveness of the proposed modeling strategy, average hourly concentrations of nitrogen dioxide and nitrogen oxides from a congested urban arterial in Dublin city center were modeled using STS methodology. The prediction error estimates from the developed air quality model indicate that the STS model can be a useful tool in predicting nitrogen dioxide and nitrogen oxides concentrations in urban areas and will be particularly useful in situations where the information on external variables such as meteorology or traffic volume is not available.

  18. Development of oxidation heat of the coal left in the mined-out area of a longwall face: Modelling using the fluent software

    Directory of Open Access Journals (Sweden)

    Taraba B.

    2008-01-01

    Full Text Available A commercial CFD software program, Fluent, was used to study oxidation processes in the longwall mined-out (gob area. A three-dimensional model of the gob area with an advancing coal face has been developed. For the model, typical oxidation behavior of a bituminous coal from the Ostrava-Karviná District was incorporated as resulted from laboratory investigations. The longwall gob area was designed on the basis of the actual longwall face district. Detailed measurements in the district then enabled re-verification of the model outputs with actual data in situ. The main attention was paid to modelling the effect of grain size of the coal left in the mined-out area on the oxidation heat and gases evolution. Numerical simulations confirmed the existence of an 'optimal' zone for intense development of the spontaneous heating process in the gob area.

  19. Recent advances of cerium oxide nanoparticles in synthesis, luminescence and biomedical studies:a review

    Institute of Scientific and Technical Information of China (English)

    何立莹; 苏玉民; 蒋兰宏; 石士考

    2015-01-01

    Nanostructured cerium oxide (CeO2) commonly known as nanoceria is a rare earth metal oxide, which plays a technologi-cally important role due to its versatile applications as automobile exhaust catalysts, oxide ion conductors in solid oxide fuel cells, electrode materials for gas sensors, ultraviolet absorbents and glass-polishing materials. However, nanoceria has little or weak lumi-nescence, and therefore its uses in high-performance luminescent devices and biomedical areas are limited. In this review, we present the recent advances of nanoceria in the aspects of synthesis, luminescence and biomedical studies. The CeO2 nanoparticles can be synthesized by solution-based methods including co-precipitation, hydrothermal, microemulsion process, sol-gel techniques, combus-tion reaction and so on. Achieving controlled morphologies and enhanced luminescence efficiency of nanoceria particles are quite es-sential for its potential energy- and environment-related applications. Additionally, a new frontier for nanoceria particles in biomedi-cal research has also been opened, which involves low toxicity, retinopathy, biosensors and cancer therapy aspects. Finally, the sum-mary and outlook on the challenges and perspectives of the nanoceria particles are proposed.

  20. Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel

    International Nuclear Information System (INIS)

    Arndt, M.; Duchoslav, J.; Steinberger, R.; Hesser, G.; Commenda, C.; Samek, L.; Arenholz, E.

    2015-01-01

    Highlights: • Pre-oxidized hot-dip galvanized advanced high strength steel was examined. • The interface was analyzed in detail via high energy resolution Auger spectra. • Evidence for an aluminothermic reduction of the Mn oxide was found. • A new model for galvanizing high manganese steel was developed. - Abstract: Hot-dip galvanized (HDG) 2nd generation advanced high strength steel (AHSS), nano-TWIP (twinning induced plasticity) with 15.8 wt.% Mn, 0.79 wt.% C, was analyzed at the interface between steel and zinc by scanning Auger electron microscopy (AES) in order to confirm and improve an existing model of additional pre-oxidation treatment before annealing and immersion into the hot zinc bath. Furthermore these steel samples were fractured in the analysis chamber of the AES and analyzed without breaking vacuum. In these measurements the results of an aluminothermic reduction of the manganese and iron surface oxides on the steel could be confirmed by AES

  1. COMPARISON OF DIFFERENT ADVANCED OXIDATION PROCESSES DEGRADING P-CHLOROPHENOL IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    H. Movahedyan ، A. M. Seid Mohammadi ، A. Assadi

    2009-07-01

    Full Text Available In present study, degradation of p-chlorophenol using several oxidation systems involving advanced oxidation processes such as ultraviolet/H2O2, microwave/H2O2 and both in the absence of hydrogen peroxide in batch mode by photolytic pilot plant and modified domestic microwave oven was evaluated. The oxidation rate was influenced by many factors, such as the pH value, the amount of hydrogen peroxide, irradiation time and microwave power. The optimum conditions obtained for the best degradation rate were pH=7 and H2O2 concentration of 0.05 mol/L for ultraviolet/H2O2 system and pH=10.5, H2O2 concentration of about 0.1 mol/L and microwave irradiation power of about 600W for microwave/H2O2 system at constant p-chlorophenol concentration. The degradation of p-chlorophenol by different types of oxidation processes followed first order rate decay kinetics. The rate constants were 0.137, 0.012, 0.02 and 0.004/min1 for ultraviolet/H2O2, microwave/H2O2, ultraviolet and microwave irradiation alone. Finally a comparison of the specific energy consumption showed that ultraviolet/H2O2 process reduced the energy consumption by at least 67% compared with the microwave/H2O2 process.

  2. Fully solar-driven thermo- and electrochemistry for advanced oxidation processes (STEP-AOPs) of 2-nitrophenol wastewater.

    Science.gov (United States)

    Nie, Chunhong; Shao, Nan; Wang, Baohui; Yuan, Dandan; Sui, Xin; Wu, Hongjun

    2016-07-01

    The STEP (Solar Thermal Electrochemical Process) for Advanced Oxidation Processes (AOPs, combined to STEP-AOPs), fully driven by solar energy without the input of any other forms of energy and chemicals, is introduced and demonstrated from the theory to experiments. Exemplified by the persistent organic pollutant 2-nitrophenol in water, the fundamental model and practical system are exhibited for the STEP-AOPs to efficiently transform 2-nitrophenol into carbon dioxide, water, and the other substances. The results show that the STEP-AOPs system performs more effectively than classical AOPs in terms of the thermodynamics and kinetics of pollutant oxidation. Due to the combination of solar thermochemical reactions with electrochemistry, the STEP-AOPs system allows the requisite electrolysis voltage of 2-nitrophenol to be experimentally decreased from 1.00 V to 0.84 V, and the response current increases from 18 mA to 40 mA. STEP-AOPs also greatly improve the kinetics of the oxidation at 30 °C and 80 °C. As a result, the removal rate of 2-nitrophenol after 1 h increased from 19.50% at 30 °C to 32.70% at 80 °C at constant 1.90 V. Mechanistic analysis reveals that the oxidation pathway is favorably changed because of thermal effects. The tracking of the reaction displayed that benzenediol and hydroquinone are initial products, with maleic acid and formic acid as sequential carboxylic acid products, and carbon dioxide as the final product. The theory and experiments on STEP-AOPs system exemplified by the oxidation of 2-nitrophenol provide a broad basis for extension of the STEP and AOPs for rapid and efficient treatment of organic wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma

    DEFF Research Database (Denmark)

    Jaworski, Sławomir; Sawosz, Ewa; Kutwin, Marta

    2015-01-01

    Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced grap......, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy.......Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced...... graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission electron microscopy...

  4. Selective Oxidation of a 0.1C-6Mn-2Si Third Generation Advanced High-Strength Steel During Dew-Point Controlled Annealing

    Science.gov (United States)

    Pourmajidian, Maedeh; McDermid, Joseph R.

    2018-03-01

    The present study investigates the selective oxidation of a 0.1C-6Mn-2Si medium-Mn advanced high-strength steel during austenization annealing heat treatments as a function of process atmosphere oxygen partial pressure and annealing time. It was determined that the surface oxide growth kinetics followed a parabolic rate law with the minimum rate belonging to the lowest oxygen partial pressure atmosphere at a dew point of 223 K (- 50 °C). The chemistry of the surface and subsurface oxides was studied using STEM + EELS on the sample cross sections, and it was found that the surface oxides formed under the 223 K (- 50 °C) dew-point atmosphere consisted of a layered configuration of SiO2, MnSiO3, and MnO, while in the case of the higher pO2 process atmospheres, only MnO was detected at the surface. Consistent with the Wagner calculations, it was shown that the transition to internal oxidation for Mn occurred under the 243 K (- 30 °C) and 278 K (+ 5 °C) dew-point atmospheres. However, the predictions of the external to internal oxidation for Si using the Wagner model did not correlate well with the experimental findings nor did the predictions of the Mataigne et al. model for multi-element alloys. Investigations of the internal oxide network at the grain boundaries revealed a multilayer oxide structure composed of amorphous SiO2 and crystalline MnSiO3, respectively, at the oxide core and outer shell. A mechanism for the formation of the oxide morphologies observed, based on kinetic and thermodynamic factors, was proposed. It is expected that only the fine and nodule-like MnO oxides formed on the surface of the samples annealed under the 278 K (+ 5 °C) dew-point process atmosphere for 60 and 120 seconds are sufficiently thin and of the desired dispersed morphology to promote reactive wetting by the molten galvanizing bath.

  5. Supported versus colloidal zinc oxide for advanced oxidation processes

    Science.gov (United States)

    Laxman, Karthik; Al Rashdi, Manal; Al Sabahi, Jamal; Al Abri, Mohammed; Dutta, Joydeep

    2017-07-01

    Photocatalysis is a green technology which typically utilizes either supported or colloidal catalysts for the mineralization of aqueous organic contaminants. Catalyst surface area and surface energy are the primary factors determining its efficiency, but correlation between the two is still unclear. This work explores their relation and hierarchy in a photocatalytic process involving both supported and colloidal catalysts. In order to do this the active surface areas of supported zinc oxide nanorods (ZnO NR's) and colloidal zinc oxide nanoparticles (having different surface energies) were equalized and their phenol oxidation mechanism and capacity was analyzed. It was observed that while surface energy had subtle effects on the oxidation rate of the catalysts, the degradation efficiency was primarily a function of the surface area; which makes it a better parameter for comparison when studying different catalyst forms of the same material. Thus we build a case for the use of supported catalysts, wherein their catalytic efficiency was tested to be unaltered over several days under both natural and artificial light, suggesting their viability for practical applications.

  6. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress.

    Science.gov (United States)

    Chen, Jianfei; Song, Minbao; Yu, Shiyong; Gao, Pan; Yu, Yang; Wang, Hong; Huang, Lan

    2010-02-01

    Endothelial progenitor cells (EPCs) play an important role in preventing atherosclerosis. The factors that regulate the function of EPCs are not completely clear. Increased formation of advanced glycation endproducts (AGEs) is generally regarded as one of the main mechanisms responsible for vascular damage in patients with diabetes and atherosclerosis. AGEs lead to the generation of reactive oxygen species (ROS) and part of the regenerative capacity of EPCs seems to be due to their low baseline ROS levels and reduced sensitivity to ROS-induced cell apoptosis. Therefore, we tested the hypothesis that AGEs can alter functions and promote apoptosis in EPCs through overpress cell oxidant stress. EPCs, isolated from bone marrow, were cultured in the absence or presence of AGEs (50, 100, and 200 microg/ml). A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure the adhesiveness function. MTT assay was used to determine the proliferation function. ROS were analyzed using the ROS assay kit. A spectrophotometer was used to assess superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity, and PCR was used to test mRNA expression of SOD and GSH-PX. SiRNA was used to block receptor for advanced glycation endproducts (RAGEs) expression. Apoptosis was evaluated by Annexin V immunostaining and TUNEL staining. Co-culturing with AGEs increases ROS production, decreases anti-oxidant defenses, overpresses oxidant stress, inhibits the proliferation, migration, and adhesion of EPCs, and induces EPCs apoptosis. In addition, these effects were attenuated during block RAGE protein expression by siRNA. AGEs may serve to impair EPCs functions through RAGE-mediate oxidant stress, and promote EPCs sensitivity toward oxidative-stress-mediated apoptosis, which indicates a new pathophysiological mechanism of disturbed vascular adaptation in atherosclerosis and suggests that lower levels of AGEs might improve the

  7. The oxidative debt of fasting: evidence for short- to medium-term costs of advanced fasting in adult king penguins.

    Science.gov (United States)

    Schull, Quentin; Viblanc, Vincent A; Stier, Antoine; Saadaoui, Hédi; Lefol, Emilie; Criscuolo, François; Bize, Pierre; Robin, Jean-Patrice

    2016-10-15

    In response to prolonged periods of fasting, animals have evolved metabolic adaptations helping to mobilize body reserves and/or reduce metabolic rate to ensure a longer usage of reserves. However, those metabolic changes can be associated with higher exposure to oxidative stress, raising the question of how species that naturally fast during their life cycle avoid an accumulation of oxidative damage over time. King penguins repeatedly cope with fasting periods of up to several weeks. Here, we investigated how adult male penguins deal with oxidative stress after an experimentally induced moderate fasting period (PII) or an advanced fasting period (PIII). After fasting in captivity, birds were released to forage at sea. We measured plasmatic oxidative stress on the same individuals at the start and end of the fasting period and when they returned from foraging at sea. We found an increase in activity of the antioxidant enzyme superoxide dismutase along with fasting. However, PIII individuals showed higher oxidative damage at the end of the fast compared with PII individuals. When they returned from re-feeding at sea, all birds had recovered their initial body mass and exhibited low levels of oxidative damage. Notably, levels of oxidative damage after the foraging trip were correlated to the rate of mass gain at sea in PIII individuals but not in PII individuals. Altogether, our results suggest that fasting induces a transitory exposure to oxidative stress and that effort to recover in body mass after an advanced fasting period may be a neglected carryover cost of fasting. © 2016. Published by The Company of Biologists Ltd.

  8. Modeling of thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode

    Science.gov (United States)

    Heydari, F.; Maghsoudipour, A.; Alizadeh, M.; Khakpour, Z.; Javaheri, M.

    2015-09-01

    Artificial intelligence models have the capacity to eliminate the need for expensive experimental investigation in various areas of manufacturing processes, including the material science. This study investigates the applicability of adaptive neuro-fuzzy inference system (ANFIS) approach for modeling the performance parameters of thermal expansion coefficient (TEC) of perovskite oxide for solid oxide fuel cell cathode. Oxides (Ln = La, Nd, Sm and M = Fe, Ni, Mn) have been prepared and characterized to study the influence of the different cations on TEC. Experimental results have shown TEC decreases favorably with substitution of Nd3+ and Mn3+ ions in the lattice. Structural parameters of compounds have been determined by X-ray diffraction, and field emission scanning electron microscopy has been used for the morphological study. Comparison results indicated that the ANFIS technique could be employed successfully in modeling thermal expansion coefficient of perovskite oxide for solid oxide fuel cell cathode, and considerable savings in terms of cost and time could be obtained by using ANFIS technique.

  9. Increased plasma levels of advanced oxidation protein products (AOPP) as a marker for oxidative stress in patients with active ulcerative colitis.

    Science.gov (United States)

    Alagozlu, Hakan; Gorgul, Ahmet; Bilgihan, Ayse; Tuncer, Candan; Unal, Selahattin

    2013-02-01

    After NADPH oxidase mediated radical formation, hypochloric acid (HOCl) is formed when Cl is used as a substrate by the myeloperoxidase enzyme. Myeloperoxidase is secreted from H2O2 activated leukocytes with polymorphic nuclei. The generation of HOCl also causes the formation of advanced oxidation protein products (AOPP) through damage to normal tissue and protein oxidation. AOPP has been identified as a marker of inflammation in many diseases. However, AOPP has not been investigated in ulcerative colitis. As a result of mucosal inflammation in ulcerative colitis, oxidative stress can occur. We aimed to determine whether plasma AOPP and oxidative stress markers are detectable in active ulcerative colitis. The patient group consisted of 59 patients who were diagnosed with ulcerative colitis in the clinic by histology and endoscopy. The patients were hospitalised and treated in the Gastroenterology Department of Gazi University Medical Facility. The 59 patients were separated into active and inactive groups according to the endoscopic activation index (EAI). Group I consisted of 33 active ulcerative colitis patients, Group II consisted of 26 inactive ulcerative colitis patients and Group III consisted of healthy control subjects. The disease activity of these patients were measured using the Rachmilewitz EAI based on rectosigmoidoscopic or colonoscopic findings. Patients with EAI scores greater than 4 were scored as having active disease (Group I). Patients with EAI0.05). The EAI value was 8.84±0.31 in Group I and 2.76±0.08 in Group II. There were statistically significant differences for EAI between groups (P<0.05). The correlation between AOPP and EAI in all patients with ulcerative colitis were statistically significant (P<0.05, r=0.61). The regression model in this correlation was statistically significant (y=49.68+10.75x, P<0.05). Based on our results, we suggest that AOPP could be used as a non invasive activation marker for ulcerative colitis patients

  10. NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems

    CERN Document Server

    O’Connell, P

    1991-01-01

    Modeling of the rainfall-runoff process is of both scientific and practical significance. Many of the currently used mathematical models of hydrologic systems were developed a genera­ tion ago. Much of the effort since then has focused on refining these models rather than on developing new models based on improved scientific understanding. In the past few years, however, a renewed effort has been made to improve both our fundamental understanding of hydrologic processes and to exploit technological advances in computing and remote sensing. It is against this background that the NATO Advanced Study Institute on Recent Advances in the Modeling of Hydrologic Systems was organized. The idea for holding a NATO ASI on this topic grew out of an informal discussion between one of the co-directors and Professor Francisco Nunes-Correia at a previous NATO ASI held at Tucson, Arizona in 1985. The Special Program Panel on Global Transport Mechanisms in the Geo-Sciences of the NATO Scientific Affairs Division agreed to sp...

  11. Gas transport in solid oxide fuel cells

    CERN Document Server

    He, Weidong; Dickerson, James

    2014-01-01

    This book provides a comprehensive overview of contemporary research and emerging measurement technologies associated with gas transport in solid oxide fuel cells. Within these pages, an introduction to the concept of gas diffusion in solid oxide fuel cells is presented. This book also discusses the history and underlying fundamental mechanisms of gas diffusion in solid oxide fuel cells, general theoretical mathematical models for gas diffusion, and traditional and advanced techniques for gas diffusivity measurement.

  12. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    Science.gov (United States)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  13. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    International Nuclear Information System (INIS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-01-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H 2 O 2 under UV irradiation (H 2 O 2 /UV) and Fenton system under visible light (Fenton/H 2 O 2 /Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H 2 O 2 /UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H 2 O 2 /Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  14. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Science.gov (United States)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2015-12-01

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H2O2 under UV irradiation (H2O2/UV) and Fenton system under visible light (Fenton/H2O2/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H2O2/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H2O2/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  15. A physiologically based kinetic model for bacterial sulfide oxidation.

    Science.gov (United States)

    Klok, Johannes B M; de Graaff, Marco; van den Bosch, Pim L F; Boelee, Nadine C; Keesman, Karel J; Janssen, Albert J H

    2013-02-01

    In the biotechnological process for hydrogen sulfide removal from gas streams, a variety of oxidation products can be formed. Under natron-alkaline conditions, sulfide is oxidized by haloalkaliphilic sulfide oxidizing bacteria via flavocytochrome c oxidoreductase. From previous studies, it was concluded that the oxidation-reduction state of cytochrome c is a direct measure for the bacterial end-product formation. Given this physiological feature, incorporation of the oxidation state of cytochrome c in a mathematical model for the bacterial oxidation kinetics will yield a physiologically based model structure. This paper presents a physiologically based model, describing the dynamic formation of the various end-products in the biodesulfurization process. It consists of three elements: 1) Michaelis-Menten kinetics combined with 2) a cytochrome c driven mechanism describing 3) the rate determining enzymes of the respiratory system of haloalkaliphilic sulfide oxidizing bacteria. The proposed model is successfully validated against independent data obtained from biological respiration tests and bench scale gas-lift reactor experiments. The results demonstrate that the model is a powerful tool to describe product formation for haloalkaliphilic biomass under dynamic conditions. The model predicts a maximum S⁰ formation of about 98 mol%. A future challenge is the optimization of this bioprocess by improving the dissolved oxygen control strategy and reactor design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Advanced oxidation of benzene, toluene, ethylbenzene and xylene isomers (BTEX) by Trametes versicolor.

    Science.gov (United States)

    Aranda, Elisabet; Marco-Urrea, Ernest; Caminal, Gloria; Arias, María E; García-Romera, Inmaculada; Guillén, Francisco

    2010-09-15

    Advanced oxidation of benzene, toluene, ethylbenzene, and o-, m-, and p-xylene (BTEX) by the extracellular hydroxyl radicals (*OH) generated by the white-rot fungus Trametes versicolor is for the first time demonstrated. The production of *OH was induced by incubating the fungus with 2,6-dimethoxy-1,4-benzoquinone (DBQ) and Fe3+-EDTA. Under these conditions, *OH were generated through DBQ redox cycling catalyzed by quinone reductase and laccase. The capability of T. versicolor growing in malt extract medium to produce *OH by this mechanism was shown during primary and secondary metabolism, and was quantitatively modulated by the replacement of EDTA by oxalate and Mn2+ addition to DBQ incubations. Oxidation of BTEX was observed only under *OH induction conditions. *OH involvement was inferred from the high correlation observed between the rates at which they were produced under different DBQ redox cycling conditions and those of benzene removal, and the production of phenol as a typical hydroxylation product of *OH attack on benzene. All the BTEX compounds (500 microM) were oxidized at a similar rate, reaching an average of 71% degradation in 6 h samples. After this time oxidation stopped due to O2 depletion in the closed vials used in the incubations. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Gas-phase advanced oxidation as an integrated air pollution control technique

    Directory of Open Access Journals (Sweden)

    Getachew A. Adnew

    2016-03-01

    Full Text Available Gas-phase advanced oxidation (GPAO is an emerging air cleaning technology based on the natural self-cleaning processes that occur in the Earth’s atmosphere. The technology uses ozone, UV-C lamps and water vapor to generate gas-phase hydroxyl radicals that initiate oxidation of a wide range of pollutants. In this study four types of GPAO systems are presented: a laboratory scale prototype, a shipping container prototype, a modular prototype, and commercial scale GPAO installations. The GPAO systems treat volatile organic compounds, reduced sulfur compounds, amines, ozone, nitrogen oxides, particles and odor. While the method covers a wide range of pollutants, effective treatment becomes difficult when temperature is outside the range of 0 to 80 °C, for anoxic gas streams and for pollution loads exceeding ca. 1000 ppm. Air residence time in the system and the rate of reaction of a given pollutant with hydroxyl radicals determine the removal efficiency of GPAO. For gas phase compounds and odors including VOCs (e.g. C6H6 and C3H8 and reduced sulfur compounds (e.g. H2S and CH3SH, removal efficiencies exceed 80%. The method is energy efficient relative to many established technologies and is applicable to pollutants emitted from diverse sources including food processing, foundries, water treatment, biofuel generation, and petrochemical industries.

  18. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    Science.gov (United States)

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  19. Photochemical methodologies for organic waste treatment: advanced oxidation process using uranyl ion with H2O2

    International Nuclear Information System (INIS)

    Naik, D.B.; Sarkar, S.K.; Mukherjee, T.

    2009-01-01

    Excited uranyl ion is able to degrade dyes such as thionine and methylene blue on irradiation with 254 nm/300 nm light. By adding H 2 O 2 along with uranyl ion, photodegradation takes place with visible light and also with enhanced rate. The hydroxyl radicals generated in the reoxidation of U(IV)/UO 2 + to UO 2 2+ are responsible for this enhanced degradation. The above advanced oxidation process (AOP) was applied to study the oxidation of 2-propanol to acetone. (author)

  20. -Advanced Models for Tsunami and Rogue Waves

    Directory of Open Access Journals (Sweden)

    D. W. Pravica

    2012-01-01

    Full Text Available A wavelet , that satisfies the q-advanced differential equation for , is used to model N-wave oscillations observed in tsunamis. Although q-advanced ODEs may seem nonphysical, we present an application that model tsunamis, in particular the Japanese tsunami of March 11, 2011, by utilizing a one-dimensional wave equation that is forced by . The profile is similar to tsunami models in present use. The function is a wavelet that satisfies a q-advanced harmonic oscillator equation. It is also shown that another wavelet, , matches a rogue-wave profile. This is explained in terms of a resonance wherein two small amplitude forcing waves eventually lead to a large amplitude rogue. Since wavelets are used in the detection of tsunamis and rogues, the signal-analysis performance of and is examined on actual data.

  1. Optical Coherence Tomography: Advanced Modeling

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, Lars; Yura, Harold T.

    2013-01-01

    - and multiple-scattering regimes is derived. An advanced Monte Carlo model for calculating the OCT signal is also derived, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. From the analytical model, an algorithm for enhancing OCT images...... are discussed. Finally, the Wigner phase-space distribution function is derived in a closed-form solution, which may have applications in OCT....

  2. Modelling of UO2 oxidation in steam

    International Nuclear Information System (INIS)

    Brito, A.C.; Iglesias, F.C.; Liu, Y.

    1996-01-01

    A computer model has been developed for calculating oxidation of UO 2 at high temperatures in steam oxidising conditions. Several methods to calculate the partial pressure of oxygen in the fuel and in the environment surrounding the fuel are available. The various methodologies have been compared and the best models have been compiled into a computer model which will be implemented into fuel thermal/mechanical behaviour codes such as FACTAR 2.0 (LOECI) and ELESIM/ELOCA. Calculations from the computer model have been compared to experimental results. The calculated oxidation reaction kinetics are in good agreement with the experimental data. (author)

  3. Advanced Modelling of Trusses with Punched Metal Plate Fasteners

    DEFF Research Database (Denmark)

    Ellegaard, Peter; Nielsen, Jacob

    Most of the finite element programs for design of timber trusses with punched metal fasteners are based on models using beam and fictitious elements. Different models have been used for different types of joints. Common problems for all the models are how to calculate the forces in the nail groups...... and the plates and furthermore, how big 'the deformations in the joints are. By developing an advanced model that includes all parts of the joint, i.e. plate, nail groups and contact it is possible to give a better description of the joint. An advanced model with these properties is presented. The advanced model...

  4. On-the-Fly Kinetic Monte Carlo Simulation of Aqueous Phase Advanced Oxidation Processes.

    Science.gov (United States)

    Guo, Xin; Minakata, Daisuke; Crittenden, John

    2015-08-04

    We have developed an on-the-fly kinetic Monte Carlo (KMC) model to predict the degradation mechanisms and fates of intermediates and byproducts that are produced during aqueous-phase advanced oxidation processes (AOPs). The on-the-fly KMC model is composed of a reaction pathway generator, a reaction rate constant estimator, a mechanistic reduction module, and a KMC solver. The novelty of this work is that we develop the pathway as we march forward in time rather than developing the pathway before we use the KMC method to solve the equations. As a result, we have fewer reactions to consider, and we have greater computational efficiency. We have verified this on-the-fly KMC model for the degradation of polyacrylamide (PAM) using UV light and titanium dioxide (i.e., UV/TiO2). Using the on-the-fly KMC model, we were able to predict the time-dependent profiles of the average molecular weight for PAM. The model provided detailed and quantitative insights into the time evolution of the molecular weight distribution and reaction mechanism. We also verified our on-the-fly KMC model for the destruction of (1) acetone, (2) trichloroethylene (TCE), and (3) polyethylene glycol (PEG) for the ultraviolet light and hydrogen peroxide AOP. We demonstrated that the on-the-fly KMC model can achieve the same accuracy as the computer-based first-principles KMC (CF-KMC) model, which has already been validated in our earlier work. The on-the-fly KMC is particularly suitable for molecules with large molecular weights (e.g., polymers) because the degradation mechanisms for large molecules can result in hundreds of thousands to even millions of reactions. The ordinary differential equations (ODEs) that describe the degradation pathways cannot be solved using traditional numerical methods, but the KMC can solve these equations.

  5. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest.

  6. Study on the Hot Extrusion Process of Advanced Radiation Resistant Oxide Dispersion Strengthened Steel Tubes

    International Nuclear Information System (INIS)

    Choi, Byoungkwon; Noh, Sanghoon; Kim, Kibaik; Kang, Suk Hoon; Chun, Youngbum; Kim, Tae Kyu

    2014-01-01

    Ferritic/martensitic steel has a better thermal conductivity and swelling resistance than austenitic stainless steel. Unfortunately, the available temperature range of ferritic/martensitic steel is limited at up to 650 .deg. C. Oxide dispersion strengthened (ODS) steels have been developed as the most prospective core structural materials for next generation nuclear systems because of their excellent high strength and irradiation resistance. The material performances of this new alloy are attributed to the existence of uniformly distributed nano-oxide particles with a high density, which is extremely stable at high temperature in a ferritic/martensitic matrix. This microstructure can be very attractive in achieving superior mechanical properties at high temperatures, and thus, these favorable microstructures should be obtained through the controls of the fabrication process parameters during the mechanical alloying and hot consolidation procedures. In this study, a hot extrusion process for advanced radiation resistant ODS steel tube was investigated. ODS martensitic steel was designed to have high homogeneity, productivity, and reproducibility. Mechanical alloying and hot consolidation processes were employed to fabricate the ODS steels. A microstructure observation and creep rupture test were examined to investigate the effects of the optimized fabrication conditions. Advanced radiation resistant ODS steel has been designed to have homogeneity, productivity, and reproducibility. For these characteristics, modified mechanical alloying and hot consolidation processes were developed. Microstructure observation revealed that the ODS steel has uniformly distributed fine-grain nano-oxide particles. The fabrication process for the tubing is also being propelled in earnest

  7. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  8. Enhancing hydrophilicity and water permeability of PET track-etched membranes by advanced oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Güven, Olgun [Department of Chemistry, Hacettepe University, 06800 Beytepe, Ankara (Turkey); Zdorovets, Maxim V. [Institute of Nuclear Physics, Ibrahimov Str., 1, 050032 Almaty (Kazakhstan); The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan); Taltenov, Abzal A. [The L.N. Gumilyov Eurasian National University, Satpaev Str., 5, 010008 Astana (Kazakhstan)

    2015-12-15

    In this study we present results on the application of advanced oxidation systems for effective and non-toxic oxidation of poly(ethylene terephthalate) track-etched membranes (PET TeMs) to improve their wettability and water transport properties. Two oxidizing systems: H{sub 2}O{sub 2} under UV irradiation (H{sub 2}O{sub 2}/UV) and Fenton system under visible light (Fenton/H{sub 2}O{sub 2}/Vis) were compared. The surface of functionalized PET TeMs was characterized by using colorimetric assay, contact angle measurements and X-ray photoelectron spectroscopy (XPS). Results clearly showed that water permeability of PET TeMs treated with H{sub 2}O{sub 2}/UV was improved by 28 ± 5% compared with etched-only membrane, the same parameter was found to increase by 13 ± 4% in the case of Fenton/H{sub 2}O{sub 2}/Vis treatment. The proposed oxidation technique is very simple, environment friendly and not requiring special equipment or expensive chemicals. The surface hydrophilicity of the membranes stored for 360 days in air between paper sheets was analyzed by contact angle test, colorimetric assay to measure concentration of carboxylic groups on the surface with toluidine blue and XPS analysis. The hydrophilic properties of oxidized PET TeMs were found to be stable for a long period of time.

  9. Recent advances in Phytosterol Oxidation Products.

    Science.gov (United States)

    O'Callaghan, Yvonne; McCarthy, Florence O; O'Brien, Nora M

    2014-04-11

    Phytosterols and their oxidation products have become increasingly investigated in recent years with respect to their roles in diet and nutrition. We present a comprehensive review of recent literature on Phytosterol Oxidation Products (POP) identifying critical areas for future investigation. It is evident that POP are formed on food storage/preparation; are absorbed and found in human serum; do not directly affect cholesterol absorption; have evidence of atherogenicity and inflammation; have distinct levels of cytotoxicity; are implicated with high levels of oxidative stress, glutathione depletion, mitochondrial dysfunction and elevated caspase activity. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  11. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y; Paulot, F; Carter, WPL; Nolte, CG; Luecken, DJ; Hutzell, WT; Wennberg, PO; Cohen, RC; Pinder, RW

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation ch...

  12. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y.; Carter, W. P. L.; Nolte, C. G.; Luecken, D. J.; Hutzell, W. T.; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W.

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NO_x recycling rates. We incorporate recent advances in isoprene oxidation chemistry int...

  13. Trend and current practices of palm oil mill effluent polishing: Application of advanced oxidation processes and their future perspectives.

    Science.gov (United States)

    Bello, Mustapha Mohammed; Abdul Raman, Abdul Aziz

    2017-08-01

    Palm oil processing is a multi-stage operation which generates large amount of effluent. On average, palm oil mill effluent (POME) may contain up to 51, 000 mg/L COD, 25,000 mg/L BOD, 40,000 TS and 6000 mg/L oil and grease. Due to its potential to cause environmental pollution, palm oil mills are required to treat the effluent prior to discharge. Biological treatments using open ponding system are widely used for POME treatment. Although these processes are capable of reducing the pollutant concentrations, they require long hydraulic retention time and large space, with the effluent frequently failing to satisfy the discharge regulation. Due to more stringent environmental regulations, research interest has recently shifted to the development of polishing technologies for the biologically-treated POME. Various technologies such as advanced oxidation processes, membrane technology, adsorption and coagulation have been investigated. Among these, advanced oxidation processes have shown potentials as polishing technologies for POME. This paper offers an overview on the POME polishing technologies, with particularly emphasis on advanced oxidation processes and their prospects for large scale applications. Although there are some challenges in large scale applications of these technologies, this review offers some perspectives that could help in overcoming these challenges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.

    Science.gov (United States)

    Bagal, Manisha V; Gogate, Parag R

    2013-09-01

    In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3-6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3-11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Advanced training simulator models. Implementation and validation

    International Nuclear Information System (INIS)

    Borkowsky, Jeffrey; Judd, Jerry; Belblidia, Lotfi; O'farrell, David; Andersen, Peter

    2008-01-01

    Modern training simulators are required to replicate plant data for both thermal-hydraulic and neutronic response. Replication is required such that reactivity manipulation on the simulator properly trains the operator for reactivity manipulation at the plant. This paper discusses advanced models which perform this function in real-time using the coupled code system THOR/S3R. This code system models the all fluids systems in detail using an advanced, two-phase thermal-hydraulic a model. The nuclear core is modeled using an advanced, three-dimensional nodal method and also by using cycle-specific nuclear data. These models are configured to run interactively from a graphical instructor station or handware operation panels. The simulator models are theoretically rigorous and are expected to replicate the physics of the plant. However, to verify replication, the models must be independently assessed. Plant data is the preferred validation method, but plant data is often not available for many important training scenarios. In the absence of data, validation may be obtained by slower-than-real-time transient analysis. This analysis can be performed by coupling a safety analysis code and a core design code. Such a coupling exists between the codes RELAP5 and SIMULATE-3K (S3K). RELAP5/S3K is used to validate the real-time model for several postulated plant events. (author)

  16. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    Science.gov (United States)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  17. Advances in computational modeling of catalytic systems used in Claus sulfur recovery

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Lo, J. [Alberta Sulphur Research Ltd., Calgary, AB (Canada). Center for Applied Catalysis and Industrial Sulfur Chemistry

    2010-01-15

    This poster session discussed advances in computation modeling of catalytic systems used in Claus sulfur recovery, focusing on the hydrogen sulphide (H{sub 2}S) and sulphur dioxide (S{sub O}2) absorption of non-alumina Claus active metal oxides, such as titanium oxide and vanadium oxide. These metal oxides were chosen because they promote carbon disulphide (CS{sub 2}) conversion and have a potential use in olefin chemistry. The redox process of H{sub 2}S dissociation on vanadium pentoxide (V{sub 2}O{sub 2}) can take place in single-site reaction or multiple site reactions. Both mechanisms lead to the production of V{sub 2}O{sub 4}S, water (H{sub 2}O) and other species. The overall process of forming VO{sub 4}S is neutral, but kinetics is a controlling factor. The surface sulfidation to form V{sub 2}O{sub 3}S{sub 2} requires a small energy cost but possesses a huge reaction barrier. The formation of H{sub 2}S{sub 2} is energetically favorable. The silica (SiO{sub 2})-supported V{sub 2}O{sub 2} catalyst was described. A proposed mechanism of H{sub 2}S conversion to H{sub 2}O and V=S group was presented along with another reaction route in which the dissociative absorption of H{sub 2}S takes place on O-bridges instead of V=O. Two vanadia catalysts were compared: V{sub 2}O{sub 5} and V{sub 2}O{sub 5}/SiO{sub 2}. 7 figs.

  18. Maturity Model for Advancing Smart Grid Interoperability

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Mark; Widergren, Steven E.; Mater, J.; Montgomery, Austin

    2013-10-28

    Abstract—Interoperability is about the properties of devices and systems to connect and work properly. Advancing interoperability eases integration and maintenance of the resulting interconnection. This leads to faster integration, lower labor and component costs, predictability of projects and the resulting performance, and evolutionary paths for upgrade. When specifications are shared and standardized, competition and novel solutions can bring new value streams to the community of stakeholders involved. Advancing interoperability involves reaching agreement for how things join at their interfaces. The quality of the agreements and the alignment of parties involved in the agreement present challenges that are best met with process improvement techniques. The GridWise® Architecture Council (GWAC) sponsored by the United States Department of Energy is supporting an effort to use concepts from capability maturity models used in the software industry to advance interoperability of smart grid technology. An interoperability maturity model has been drafted and experience is being gained through trials on various types of projects and community efforts. This paper describes the value and objectives of maturity models, the nature of the interoperability maturity model and how it compares with other maturity models, and experiences gained with its use.

  19. Direct modeling of the electrochemistry in the three-phase boundary of solid oxide fuel cell anodes by density functional theory: a critical overview.

    Science.gov (United States)

    Shishkin, M; Ziegler, T

    2014-02-07

    The first principles modeling of electrochemical reactions has proven useful for the development of efficient, durable and low cost solid oxide full cells (SOFCs). In this account we focus on recent advances in modeling of structural, electronic and catalytic properties of the SOFC anodes based on density functional theory (DFT) first principle calculations. As a starting point, we highlight that the adequate analysis of cell electrochemistry generally requires modeling of chemical reactions at the metal/oxide interface rather than on individual metal or oxide surfaces. The atomic models of Ni/YSZ and Ni/CeO2 interfaces, required for DFT simulations of reactions on SOFC anodes are discussed next, together with the analysis of the electronic structure of these interfaces. Then we proceed to DFT-based findings on charge transfer mechanisms during redox reactions on these two anodes. We provide a comparison of the electronic properties of Ni/YSZ and Ni/CeO2 interfaces and present an interpretation of their different chemical performances. Subsequently we discuss the computed energy pathways of fuel oxidation mechanisms, obtained by various groups to date. We also discuss the results of DFT studies combined with microkinetic modeling as well as the results of kinetic Monte Carlo simulations. In conclusion we summarize the key findings of DFT modeling of metal/oxide interfaces to date and highlight possible directions in the future modeling of SOFC anodes.

  20. Advances in methods for detection of anaerobic ammonium oxidizing (anammox) bacteria.

    Science.gov (United States)

    Li, Meng; Gu, Ji-Dong

    2011-05-01

    Anaerobic ammonium oxidation (anammox), the biochemical process oxidizing ammonium into dinitrogen gas using nitrite as an electron acceptor, has only been recognized for its significant role in the global nitrogen cycle not long ago, and its ubiquitous distribution in a wide range of environments has changed our knowledge about the contributors to the global nitrogen cycle. Currently, several groups of methods are used in detection of anammox bacteria based on their physiological and biochemical characteristics, cellular chemical composition, and both 16S rRNA gene and selective functional genes as biomarkers, including hydrazine oxidoreductase and nitrite reductase encoding genes hzo and nirS, respectively. Results from these methods coupling with advances in quantitative PCR, reverse transcription of mRNA genes and stable isotope labeling have improved our understanding on the distribution, diversity, and activity of anammox bacteria in different environments both natural and engineered ones. In this review, we summarize these methods used in detection of anammox bacteria from various environments, highlight the strengths and weakness of these methods, and also discuss the new development potentials on the existing and new techniques in the future.

  1. Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior

    Science.gov (United States)

    Smialek, J. L.; Auping, J. V.

    2004-01-01

    Oxidation of high-temperature aerospace materials is a universal issue for combustion-path components in turbine or rocket engines. In addition to the question of the consumption of material due to growth of protective scale at use temperatures, there is also the question of cyclic effects and spallation of scale on cooldown. The spallation results in the removal of part of the protective oxide in a discontinuous step and thereby opens the way for more rapid oxidation upon reheating. In experiments, cyclic oxidation behavior is most commonly characterized by measuring changes in weight during extended time intervals that include hundreds or thousands of heating and cooling cycles. Weight gains occurring during isothermal scale-growth processes have been well characterized as being parabolic or nearly parabolic functions of time because diffusion controls reaction rates. In contrast, the net weight change in cyclic oxidation is the sum of the effects of the growth and spallation of scale. Typically, the net weight gain in cyclic oxidation is determined only empirically (that is, by measurement), with no unique or straightforward mathematical connection to either the rate of growth or the amount of metal consumed. Thus, there is a need for mathematical modeling to infer spallation mechanisms. COSP is a computer program that models the growth and spallation processes of cyclic oxidation on the basis of a few elementary assumptions that were discussed in COSP: A Computer Model of Cyclic Oxidation, Oxidation of Metals, vol. 36, numbers 1 and 2, 1991, pages 81-112. Inputs to the model include the selection of an oxidation-growth law and a spalling geometry, plus oxide-phase, growth-rate, cycle-duration, and spall-constant parameters. (The spalling fraction is often shown to be a constant factor times the existing amount of scale.) The output of COSP includes the net change in weight, the amounts of retained and spalled oxide, the total amounts of oxygen and metal

  2. Tropospheric Ozone Research: Monitoring and modelling of photo-oxidants over Europe

    NARCIS (Netherlands)

    Beck JP; Roemer MGM; Vosbeek MEJP; Builtjes PJH; RIVM-LLO; TNO-MEP; KEMA

    1996-01-01

    The Dutch activities contributing to the EUROTRAC-TOR programme were set up to study and quantify the underlying chemical and transport processes important to the occurrence of photochemical oxidants in Europe. The project involved establishing an advanced monitoring site at Kollumerwaard,

  3. Advances in molecular modeling of human cytochrome P450 polymorphism.

    Science.gov (United States)

    Martiny, Virginie Y; Miteva, Maria A

    2013-11-01

    Cytochrome P450 (CYP) is a supergene family of metabolizing enzymes involved in the phase I metabolism of drugs and endogenous compounds. CYP oxidation often leads to inactive drug metabolites or to highly toxic or carcinogenic metabolites involved in adverse drug reactions (ADR). During the last decade, the impact of CYP polymorphism in various drug responses and ADR has been demonstrated. Of the drugs involved in ADR, 56% are metabolized by polymorphic phase I metabolizing enzymes, 86% among them being CYP. Here, we review the major CYP polymorphic forms, their impact for drug response and current advances in molecular modeling of CYP polymorphism. We focus on recent studies exploring CYP polymorphism performed by the use of sequence-based and/or protein-structure-based computational approaches. The importance of understanding the molecular mechanisms related to CYP polymorphism and drug response at the atomic level is outlined. © 2013.

  4. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly...... for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions...

  5. Effect of advanced oxidation processes (AOP's) on the toxicity of municipal landfill leachates

    Energy Technology Data Exchange (ETDEWEB)

    Slomczynska, B.; Slomczynski, T. [Inst. of Environmental Engineering Systems, Warsaw Univ. of Technology, Warsaw (Poland); Wasowski, J. [Inst. of Water Supply and Hydraulic Construction, Warsaw Univ. of Technology, Warsaw (Poland)

    2003-07-01

    The aim of present study was to assess the effect of AOP's (oxidation ozone and peroxide/ozone) on the toxicity of leachates from municipal landfill for Warsaw, Poland, using battery of tests. Advanced oxidation processes used to pre-treat leachates were carried out in laboratory conditions after their coagulation with the use of FeCl{sub 3}. The effects of the pre-treatment of leachates using the method of coagulation with FeCl{sub 3} depended on the concentration of organic compounds and with optimal conditions of the process ranged from 40 to 70%. Further pre-treatment of the leachates after coagulation, involving the use of oxidation with O{sub 3} and H{sub 2}O{sub 2}/O{sub 3}, did not caused significant decrease of leachate toxicity. The data of this study demonstrated the usefulness of the battery of tests using Daphnia magna, Artemia franciscana, Scenedesmus quadricauda and Vibrio fischeri for the toxicity evaluation of raw and pre-treated leachates. (orig.)

  6. Recent advances in modeling stellar interiors (u)

    Energy Technology Data Exchange (ETDEWEB)

    Guzik, Joyce Ann [Los Alamos National Laboratory

    2010-01-01

    Advances in stellar interior modeling are being driven by new data from large-scale surveys and high-precision photometric and spectroscopic observations. Here we focus on single stars in normal evolutionary phases; we will not discuss the many advances in modeling star formation, interacting binaries, supernovae, or neutron stars. We review briefly: (1) updates to input physics of stellar models; (2) progress in two and three-dimensional evolution and hydrodynamic models; (3) insights from oscillation data used to infer stellar interior structure and validate model predictions (asteroseismology). We close by highlighting a few outstanding problems, e.g., the driving mechanisms for hybrid {gamma} Dor/{delta} Sct star pulsations, the cause of giant eruptions seen in luminous blue variables such as {eta} Car and P Cyg, and the solar abundance problem.

  7. [Increased oxidized LDL cholesterol levels in peritoneal fluid of women with advanced-stage endometriosis].

    Science.gov (United States)

    Polak, Grzegorz; Mazurek, Diana; Rogala, Ewelina; Nowicka, Aldona; Derewianka-Polak, Magdalena; Kotarski, Jan

    2011-03-01

    Proinflammatory and prooxidative environment in the peritoneal cavity may be involved in the pathogenesis of endometriosis. Imbalance between reactive oxygen species levels and the antioxidant capacity leads to oxidation of low-density lipoproteins (LDL). The importance of oxidized LDL (Ox-LDL) in the development of atherosclerosis is well recognized. The aim of our study was to evaluate for the presence of ox-LDL in the peritoneal fluid (PF) of women with and without endometriosis. A total of 60 women who underwent laparoscopy were divided into groups: endometriosis sufferers with minimal to mild (n 20) and moderate to severe (n 20) stages, and the reference group (n 20) with functional follicle ovarian cysts. Oxidized LDL levels were determined in the PF using enzyme immunoassay Oxidized LDL levels were detectable in all peritoneal fluid samples. Significantly increased levels of ox-LDL were observed in PF of women with stage III/IV endometriosis compared to the reference group (p = 0.03). However peritoneal fluid ox-LDL concentrations did not differ significantly between patients with minimal/mild and women with moderate/severe stage of the disease (p = 0.2). No significant difference in the PF ox-LDL concentrations was also found between women with stage I/II endometriosis and patients with follicle cysts (p = 0.3). Increased peritoneal fluid ox-LDL levels observed in women with advanced-stage endometriosis suggest the important role of oxidative stress in the pathogenesis of the disease.

  8. Development of bubble-induced turbulence model for advanced two-fluid model

    International Nuclear Information System (INIS)

    Hosoi, Hideaki; Yoshida, Hiroyuki

    2011-01-01

    A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small

  9. Development of advanced spent fuel management process. The fabrication and oxidation behavior of simulated metallized spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Ro, Seung Gy; Shin, Y.J.; You, G.S.; Joo, J.S.; Min, D.K.; Chun, Y.B.; Lee, E.P.; Seo, H.S.; Ahn, S.B

    1999-03-01

    The simulated metallized spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the alloying characteristics of the some elements with metal uranium. (Author). 3 refs., 1 tab., 36 figs.

  10. Application of advanced oxidative process in treatment radioactive waste

    International Nuclear Information System (INIS)

    Kim, Catia; Sakata, Solange K.; Ferreira, Rafael V.P.; Marumo, Julio T.

    2009-01-01

    The ion exchange resin is used in the water purification system in both nuclear research and power reactors. Combined with active carbon, the resin removes dissolved elements from water when the nuclear reactor is operating. After its consumption, it becomes a special type of radioactive waste. The usual treatment to this type of waste is the immobilization with Portland cement, which is simple and low cost. However, its low capacity of immobilization and the increase volume of waste have been the challenges. The development of new technologies capable of destroying this waste completely by increasing its solidification is the main target due to the possibility of both volume and cost reduction. The objective of this work was to evaluate ion exchange resin degradation by Advanced Oxidative Process using Fenton's Reagent (H 2 O 2 / Fe +2 ) in different concentration and temperatures. One advantage of this process is that all additional organic compounds or inorganic solids produced are oxidized easily. The degradation experiments were conducted with IRA-400 resin and Fenton's Reagents, varying the H 2O 2 concentration (30% e 50%) and heat temperature (25, 60 and 100 deg C). The resin degradation was confirmed by the presence of BaCO 3 as a white precipitate resulting from the reaction between the Ba(OH) 2 and the CO 2 from the resin degradation. All experiments run in duplicate. Higher degradation was observed with Fenton's Reagent (Fe +2 /H 2 O 2 30%) at 100 deg C after 2 hours. (author)

  11. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    ZAYAS Pérez Teresa; GEISSLER Gunther; HERNANDEZ Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculatio and advanced oxidation processes(AOP)had been studied.The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202,UVO3 and UV/H-H202/O3 processes was determined under acidic conditions.For each of these processes,different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater.Coffee wastewater is characterized by a high chemical oxygen demand(COD)and low total suspended solids.The outcomes of coffee wastewater reeatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD,color,and turbidity.It was found that a reductiOn in COD of 67%could be realized when the coffee wastewater was treated by chemical coagulation-flocculatlon witll lime and coagulant T-1.When coffee wastewater was treated by coagulation-flocculation in combination with UV/H202,a COD reduction of 86%was achieved,although only after prolonged UV irradiation.Of the three advanced oxidation processes considered,UV/H202,uv/03 and UV/H202/03,we found that the treatment with UV/H2O2/O3 was the most effective,with an efficiency of color,turbidity and further COD removal of 87%,when applied to the flocculated coffee wastewater.

  12. Degradation of sodium dodecyl sulphate in water using solar driven Fenton-like advanced oxidation processes

    International Nuclear Information System (INIS)

    Bandala, Erick R.; Pelaez, Miguel A.; Salgado, Maria J.; Torres, Luis

    2008-01-01

    Synthetic wastewater samples containing a model surfactant were treated using two different Fenton-like advanced oxidation processes promoted by solar radiation; the photo-Fenton reaction and Co/PMS/UV processes. Comparison between the different experimental conditions was performed by means of the overall surfactant degradation achieved and by obtaining the initial rate in the first 15 min of reaction (IR 15 ). It was found that, for dark Fenton reaction, the maximum surfactant degradation achieved was 14% under low iron and oxidant concentration. Increasing Fenton reagents by one magnitude order, surfactant degradation achieved 63% in 60 min. The use of solar radiation improved the reaction rate by 17% under same conditions and an additional increase of 12.5% was obtained by adjusting initial pH to 2. IR 15 values for dark and irradiated Fenton reactions were 0.143 and 0.154 mmol/min, respectively, for similar reaction conditions and this value increased to 0.189 mmol/min when initial pH was adjusted. The use of the Co/PMS system allow us to determine an increase in the degradation rate, for low reaction conditions (1 mM of transition metal; 4 mM oxidant) similar to those used in dark Fenton reaction. Surfactant degradation increased from 3%, for Fenton reaction, to 44.5% in the case of Co/PMS. When solar irradiation was included in the experiments, under same reaction conditions described earlier, surfactant degradation up to 64% was achieved. By increasing Co/PMS reagent concentration by almost 9 times under irradiated conditions, almost complete (>99%) surfactant degradation was reached in 5 min. Comparing IR 15 values for Co/PMS and Co/PMS/UV, it allow us to observe that the use of solar radiation increased the degradation rate in one magnitude order when compared with dark experiments and further increase of reagent concentration increased reaction rate twice

  13. Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment

    NARCIS (Netherlands)

    Vughs, D.; Baken, K.A.; Kolkman, A.; Martijn, A.J.; de Voogt, P.

    Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many

  14. Kinetic modeling of antimony(III) oxidation and sorption in soils.

    Science.gov (United States)

    Cai, Yongbing; Mi, Yuting; Zhang, Hua

    2016-10-05

    Kinetic batch and saturated column experiments were performed to study the oxidation, adsorption and transport of Sb(III) in two soils with contrasting properties. Kinetic and column experiment results clearly demonstrated the extensive oxidation of Sb(III) in soils, and this can in return influence the adsorption and transport of Sb. Both sorption capacity and kinetic oxidation rate were much higher in calcareous Huanjiang soil than in acid red Yingtan soil. The results indicate that soil serve as a catalyst in promoting oxidation of Sb(III) even under anaerobic conditions. A PHREEQC model with kinetic formulations was developed to simulate the oxidation, sorption and transport of Sb(III) in soils. The model successfully described Sb(III) oxidation and sorption data in kinetic batch experiment. It was less successful in simulating the reactive transport of Sb(III) in soil columns. Additional processes such as colloid facilitated transport need to be quantified and considered in the model. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Modelling of the partial oxidation of {alpha}, {beta}-unsaturated aldehydes on Mo-V-oxides based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, H.; Petzoldt, J.C.; Stein, B.; Weimer, C.; Gaube, J.W. [Technische Univ. Darmstadt (Germany). Inst. fuer Chemische Technologie

    1998-12-31

    A kinetic model based on the Mars-van Krevelen mechanism that allows to describe the microkinetics of the heterogeneously catalysed partial oxidation of {alpha}, {beta}-unsaturated aldehydes is presented. This conversion is represented by a network, composed of the oxidation of the {alpha}, {beta}-unsaturated aldehyde towards the {alpha}, {beta}-unsaturated carboxylic acid and the consecutive oxidation of the acid as well as the parallel reaction of the aldehyde to products of deeper oxidation. The reaction steps of aldehyde respectively acid oxidation and catalyst reoxidation have been investigated separately in transient experiments. The combination of steady state and transient experiments has led to an improved understanding of the interaction of the catalyst with the aldehyde and the carboxylic acids as well as to a support of the kinetic model assumptions. (orig.)

  16. Performance Assessment of Chemical Coagulation Together with Advanced Oxidation Peroxone Regarding Dye Wastewater Treatment of Appliance Factories

    Directory of Open Access Journals (Sweden)

    A R Shahriyari Farfani

    2016-01-01

    Full Text Available Abstract Introduction: Considering the important role of industry in polluting the environment, the present study aimed to evaluate the performance of chemical coagulation together with advanced oxidation (peroxone regarding dye wastewater treatment of appliance factories. Methods: This study was experimental, which it’s pilot-scale was conducted on the wastewater of the painting appliance Factory. The sample was selected via the combined sampling procedure. The processes used in the present study consisted of chemical coagulation and advanced oxidation (peroxone processes and 250 samples were analyzed. MgCl2, PAC and FeCl3, Bentonite, Cationic Polymer were used for chemical coagulation. The used equipments consisted of Spectrophotometer DR 2000, Jar taste and a ozonation reactor. COD and dye of samples were measured according to standard method. Results: The results revealed that each of the coagulants in its optimal pH were able to arrange the magnesium chloride 86.85%, poly aluminum chloride 88.47% and ferric chloride 85.41% in removal of COD. Poly aluminum chloride achieved the highest dye removal 90.92%. Furthermore, the highest COD removal efficiency was related to the combination of magnesium chloride (1.4 mg/l, poly aluminum chloride (0.6 mg/l and cationic polymers (0.4 mg/l with an efficiency of 89.11%, which managed to remove the dye up to 93.38%. COD removal efficiency reached to 99.67% using advanced oxidation process by peroxone method on pretreated wastewater (with chemical coagulation. Conclusions: For better performance of peroxone treatment, the wastewater should be pretreated for removal of dissolved solids. As a result, due to its suspension status of using peroxone method together chemical coagulation has a high capability to remove COD and dye from appliance Factore ,s wastewater.

  17. Statistical metrology - measurement and modeling of variation for advanced process development and design rule generation

    International Nuclear Information System (INIS)

    Boning, Duane S.; Chung, James E.

    1998-01-01

    Advanced process technology will require more detailed understanding and tighter control of variation in devices and interconnects. The purpose of statistical metrology is to provide methods to measure and characterize variation, to model systematic and random components of that variation, and to understand the impact of variation on both yield and performance of advanced circuits. Of particular concern are spatial or pattern-dependencies within individual chips; such systematic variation within the chip can have a much larger impact on performance than wafer-level random variation. Statistical metrology methods will play an important role in the creation of design rules for advanced technologies. For example, a key issue in multilayer interconnect is the uniformity of interlevel dielectric (ILD) thickness within the chip. For the case of ILD thickness, we describe phases of statistical metrology development and application to understanding and modeling thickness variation arising from chemical-mechanical polishing (CMP). These phases include screening experiments including design of test structures and test masks to gather electrical or optical data, techniques for statistical decomposition and analysis of the data, and approaches to calibrating empirical and physical variation models. These models can be integrated with circuit CAD tools to evaluate different process integration or design rule strategies. One focus for the generation of interconnect design rules are guidelines for the use of 'dummy fill' or 'metal fill' to improve the uniformity of underlying metal density and thus improve the uniformity of oxide thickness within the die. Trade-offs that can be evaluated via statistical metrology include the improvements to uniformity possible versus the effect of increased capacitance due to additional metal

  18. The role of lager beer yeast in oxidative stability of model beer

    DEFF Research Database (Denmark)

    Berner, Torben Sune; Arneborg, Nils

    2012-01-01

    that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced......AIMS: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. METHODS AND RESULTS: Screening of 21 lager brewing yeast strains against diamide and paraquat showed...... in the model beers. CONCLUSIONS: A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. SIGNIFICANCE AND IMPACT...

  19. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  20. Model of dopant action in oxide cathodes

    International Nuclear Information System (INIS)

    Engelsen, Daniel den; Gaertner, Georg

    2005-01-01

    The paper describes an electrochemical model, which largely explains the formation of Ba in the oxide cathode at activation and normal operation. In a non-doped oxide cathode electrolysis of BaO is, besides the exchange reaction from the activators in the cathode nickel, an important source of Ba. By doping with rare earth oxides the conductivity of the oxide layer increases, which implies that the potential difference during current drawing over the oxide layer becomes lower and electrolysis of BaO is suppressed. This implies that the part of the electronic conductivity of the (Ba,Sr)O layer induced by the dopants also controls the sensitivity for poisoning: the higher the dopant level, the larger the sensitivity for poisoning. Furthermore, the suppression of electrolysis during normal operation largely explains why doped oxide cathodes have a better life performance than non-doped cathodes. Finally a hypothesis on the enhancement of sintering upon doping is presented

  1. An investigation to adopt zero liquid discharge in textile dyeing using advanced oxidation processes

    International Nuclear Information System (INIS)

    Ahmd, F.

    2015-01-01

    In this study, a novel idea of using ozone oxidation at the end of reactive dyeing process was explored in order to achieve zero discharge dyeing. An advanced oxidative treatment was given during the dyeing process to remove unfixed and hydrolyzed reactive dyes from cotton substrate. Three different shades were dyed using vinylsulphone reactive class of dyes. At the end of fixation step, washing of fabrics was carried out using appropriate quantities of ozone in the process. Ozone oxidation continued until the liquor was decolorized around 95-100% and COD (Chemical Oxygen Demand) was reduced about 80-90%, thus achieving zero liquid discharge dyeing process. The decolouration efficiency of wastewater was regarded as an indicative of removal of dyes from the textile materials because fabric was being washed continuously in the same liquor. Fabric samples dyed with conventional and new methods were compared in terms of change in shade, colourfastness properties, colour stripping, and fabric appearance. Overall results showed that the use of ozone during reactive dyeing can result in less water consumption, reduced process time, and zero discharge of coloured effluents from textile dyeing factories. (author)

  2. Comprehensive Study of Lanthanum Aluminate High-Dielectric-Constant Gate Oxides for Advanced CMOS Devices

    Directory of Open Access Journals (Sweden)

    Masamichi Suzuki

    2012-03-01

    Full Text Available A comprehensive study of the electrical and physical characteristics of Lanthanum Aluminate (LaAlO3 high-dielectric-constant gate oxides for advanced CMOS devices was performed. The most distinctive feature of LaAlO3 as compared with Hf-based high-k materials is the thermal stability at the interface with Si, which suppresses the formation of a low-permittivity Si oxide interfacial layer. Careful selection of the film deposition conditions has enabled successful deposition of an LaAlO3 gate dielectric film with an equivalent oxide thickness (EOT of 0.31 nm. Direct contact with Si has been revealed to cause significant tensile strain to the Si in the interface region. The high stability of the effective work function with respect to the annealing conditions has been demonstrated through comparison with Hf-based dielectrics. It has also been shown that the effective work function can be tuned over a wide range by controlling the La/(La + Al atomic ratio. In addition, gate-first n-MOSFETs with ultrathin EOT that use sulfur-implanted Schottky source/drain technology have been fabricated using a low-temperature process.

  3. Finite element modelling of the oxidation kinetics of Zircaloy-4 with a controlled metal-oxide interface and the influence of growth stress

    International Nuclear Information System (INIS)

    Zumpicchiat, Guillaume; Pascal, Serge; Tupin, Marc; Berdin-Méric, Clotilde

    2015-01-01

    Highlights: We developed two finite element models of zirconium-based alloy oxidation using the CEA Cast3M code to simulate the oxidation kinetics of Zircaloy-4: the diffuse interface model and the sharp interface model. We also studied the effect of stresses on the oxidation kinetics. The main results are: • Both models lead to parabolic oxidation kinetics in agreement with the Wagner’s theory. • The modellings enable to calculate the stress distribution in the oxide as well as in the metal. • A strong effect of the hydrostatic stress on the oxidation kinetics has been evidenced. • The stress gradient effect changes the parabolic kinetics into a sub-parabolic law closer to the experimental kinetics because of the stress gradient itself, but also because of the growth stress increase with the oxide thickness. - Abstract: Experimentally, zirconium-based alloys oxidation kinetics is sub-parabolic, by contrast with the Wagner theory which predicts a parabolic kinetics. Two finite element models have been developed to simulate this phenomenon: the diffuse interface model and the sharp interface model. Both simulate parabolic oxidation kinetics. The growth stress effects on oxygen diffusion are studied to try to explain the gap between theory and experience. Taking into account the influence of the hydrostatic stress and its gradient into the oxygen flux expression, sub-parabolic oxidation kinetics have been simulated. The sub-parabolic behaviour of the oxidation kinetics can be explained by a non-uniform compressive stress level into the oxide layer.

  4. Metal fires and their implications for advanced reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Nowlen, Steven Patrick; Figueroa, Victor G.; Olivier, Tara Jean; Hewson, John C.; Blanchat, Thomas K.

    2010-10-01

    This report details the primary results of the Laboratory Directed Research and Development project (LDRD 08-0857) Metal Fires and Their Implications for Advance Reactors. Advanced reactors may employ liquid metal coolants, typically sodium, because of their many desirable qualities. This project addressed some of the significant challenges associated with the use of liquid metal coolants, primary among these being the extremely rapid oxidation (combustion) that occurs at the high operating temperatures in reactors. The project has identified a number of areas for which gaps existed in knowledge pertinent to reactor safety analyses. Experimental and analysis capabilities were developed in these areas to varying degrees. In conjunction with team participation in a DOE gap analysis panel, focus was on the oxidation of spilled sodium on thermally massive surfaces. These are spills onto surfaces that substantially cool the sodium during the oxidation process, and they are relevant because standard risk mitigation procedures seek to move spill environments into this regime through rapid draining of spilled sodium. While the spilled sodium is not quenched, the burning mode is different in that there is a transition to a smoldering mode that has not been comprehensively described previously. Prior work has described spilled sodium as a pool fire, but there is a crucial, experimentally-observed transition to a smoldering mode of oxidation. A series of experimental measurements have comprehensively described the thermal evolution of this type of sodium fire for the first time. A new physics-based model has been developed that also predicts the thermal evolution of this type of sodium fire for the first time. The model introduces smoldering oxidation through porous oxide layers to go beyond traditional pool fire analyses that have been carried out previously in order to predict experimentally observed trends. Combined, these developments add significantly to the safety

  5. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways.

    Science.gov (United States)

    Ni, Bing-Jie; Peng, Lai; Law, Yingyu; Guo, Jianhua; Yuan, Zhiguo

    2014-04-01

    Autotrophic ammonia oxidizing bacteria (AOB) have been recognized as a major contributor to N2O production in wastewater treatment systems. However, so far N2O models have been proposed based on a single N2O production pathway by AOB, and there is still a lack of effective approach for the integration of these models. In this work, an integrated mathematical model that considers multiple production pathways is developed to describe N2O production by AOB. The pathways considered include the nitrifier denitrification pathway (N2O as the final product of AOB denitrification with NO2(-) as the terminal electron acceptor) and the hydroxylamine (NH2OH) pathway (N2O as a byproduct of incomplete oxidation of NH2OH to NO2(-)). In this model, the oxidation and reduction processes are modeled separately, with intracellular electron carriers introduced to link the two types of processes. The model is calibrated and validated using experimental data obtained with two independent nitrifying cultures. The model satisfactorily describes the N2O data from both systems. The model also predicts shifts of the dominating pathway at various dissolved oxygen (DO) and nitrite levels, consistent with previous hypotheses. This unified model is expected to enhance our ability to predict N2O production by AOB in wastewater treatment systems under varying operational conditions.

  6. Recent advances in modelling diffuse radiation

    Energy Technology Data Exchange (ETDEWEB)

    Boland, John; Ridley, Barbara [Centre for Industrial and Applied Mathematics, Univ. of South Australia, Mawson Lakes, SA (Australia)

    2008-07-01

    Boland et al (2001) developed a validated model for Australian conditions, using a logistic function instead of piecewise linear or simple nonlinear functions. Recently, Jacovides et al (2006) have verified that this model performs well for locations in Cyprus. Their analysis includes using moving average techniques to demonstrate the form of the relationship, which corresponds well to a logistic relationship. We have made significant advances in both the intuitive and theoretical justification of the use of the logistic function. In the theoretical development of the model utilising advanced non-parametric statistical methods. We have also constructed a method of identifying values that are likely to be erroneous. Using quadratic programming, we can eliminate outliers in diffuse radiation values, the data most prone to errors in measurement. Additionally, this is a first step in identifying the means for developing a generic model for estimating diffuse from global and other predictors (see Boland and Ridley 2007). Our more recent investigations focus on examining the effects of adding additional explanatory variables to enhance the predictability of the model. Examples for Australian and other locations will be presented. (orig.)

  7. Electrochemical advanced oxidation processes as decentralized water treatment technologies to remediate domestic washing machine effluents.

    Science.gov (United States)

    Dos Santos, Alexsandro Jhones; Costa, Emily Cintia Tossi de Araújo; da Silva, Djalma Ribeiro; Garcia-Segura, Sergi; Martínez-Huitle, Carlos Alberto

    2018-03-01

    Water scarcity is one of the major concerns worldwide. In order to secure this appreciated natural resource, management and development of water treatment technologies are mandatory. One feasible alternative is the consideration of water recycling/reuse at the household scale. Here, the treatment of actual washing machine effluent by electrochemical advanced oxidation processes was considered. Electrochemical oxidation and electro-Fenton technologies can be applied as decentralized small-scale water treatment devices. Therefore, efficient decolorization and total organic abatement have been followed. The results demonstrate the promising performance of solar photoelectro-Fenton process, where complete color and organic removal was attained after 240 min of treatment under optimum conditions by applying a current density of 66.6 mA cm -2 . Thus, electrochemical technologies emerge as promising water-sustainable approaches.

  8. Micropollutants removal by full-scale UV-C/sulfate radical based Advanced Oxidation Processes.

    Science.gov (United States)

    Rodríguez-Chueca, J; Laski, E; García-Cañibano, C; Martín de Vidales, M J; Encinas, Á; Kuch, B; Marugán, J

    2018-07-15

    The high chemical stability and the low biodegradability of a vast number of micropollutants (MPs) impede their correct treatment in urban wastewater treatment plants. In most cases, the chemical oxidation is the only way to abate them. Advanced Oxidation Processes (AOPs) have been experimentally proved as efficient in the removal of different micropollutants at lab-scale. However, there is not enough information about their application at full-scale. This manuscript reports the application of three different AOPs based on the addition of homogeneous oxidants [hydrogen peroxide, peroxymonosulfate (PMS) and persulfate anions (PS)], in the UV-C tertiary treatment of Estiviel wastewater treatment plant (Toledo, Spain) previously designed and installed in the facility for disinfection. AOPs based on the photolytic decomposition of oxidants have been demonstrated as more efficient than UV-C radiation alone on the removal of 25 different MPs using low dosages (0.05-0.5 mM) and very low UV-C contact time (4-18 s). Photolysis of PMS and H 2 O 2 reached similar average MPs removal in all the range of oxidant dosages, obtaining the highest efficiency with 0.5 mM and 18 s of contact time (48 and 55% respectively). Nevertheless, PMS/UV-C reached slightly higher removal than H 2 O 2 /UV-C at low dosages. So, these treatments are selective to degrade the target compounds, obtaining different removal efficiencies for each compound regarding the oxidizing agent, dosages and UV-C contact time. In all the cases, H 2 O 2 /UV-C is more efficient than PMS/UV-C, comparing the ratio cost:efficiency (€/m 3 ·order). Even H 2 O 2 /UV-C treatments are more efficient than UV-C alone. Thus, the addition of 0.5 mM of H 2 O 2 compensates the increased of UV-C contact time and therefore the increase of electrical consumption, that it should be need to increase the removal of MPs by UV-C treatments alone. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    NARCIS (Netherlands)

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B.M.; Guliants, V.V.; Benziger, J.B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found

  10. Degradation of triketone herbicides, mesotrione and sulcotrione, using advanced oxidation processes

    International Nuclear Information System (INIS)

    Jović, Milica; Manojlović, Dragan; Stanković, Dalibor; Dojčinović, Biljana; Obradović, Bratislav; Gašić, Uroš; Roglić, Goran

    2013-01-01

    Highlights: • Thirteen products are identified during all degradations for both pesticides. • In all degradations same products and mechanism was observed for both pesticides. • Dominant mechanism for all degradations starts with attack on the carbonyl group. • Only in ozone and DBD degradation one product is formed in radical reaction. • Only in Fenton degradation opening of benzene ring occurs. -- Abstract: Degradation of two triketone herbicides, mesotrione and sulcotrione, was studied using four different advanced oxidation processes (AOPs): ozonization, dielectric barrier discharge (DBD reactor), photocatalysis and Fenton reagent, in order to find differences in mechanism of degradation. Degradation products were identified by high performance liquid chromatography (HPLC–DAD) and UHPLC–Orbitrap–MS analyses. A simple mechanism of degradation for different AOP was proposed. Thirteen products were identified during all degradations for both pesticides. It was assumed that the oxidation mechanisms in the all four technologies were not based only on the production and use of the hydroxyl radical, but they also included other kinds of oxidation mechanisms specific for each technology. Similarity was observed between degradation mechanism of ozonation and DBD. The greatest difference in the products was found in Fenton degradation which included the opening of benzene ring. When degraded with same AOP pesticides gave at the end of treatment the same products. Global toxicity and COD value of samples was determined after all degradations. Real water sample was used to study influence of organic matter on pesticide degradation. These results could lead to accurate estimates of the overall effects of triketone herbicides on environmental ecosystems and also contributed to the development of improved removal processes

  11. QSAR models for oxidation of organic micropollutants in water based on ozone and hydroxyl radical rate constants and their chemical classification

    KAUST Repository

    Sudhakaran, Sairam

    2013-03-01

    Ozonation is an oxidation process for the removal of organic micropollutants (OMPs) from water and the chemical reaction is governed by second-order kinetics. An advanced oxidation process (AOP), wherein the hydroxyl radicals (OH radicals) are generated, is more effective in removing a wider range of OMPs from water than direct ozonation. Second-order rate constants (kOH and kO3) are good indices to estimate the oxidation efficiency, where higher rate constants indicate more rapid oxidation. In this study, quantitative structure activity relationships (QSAR) models for O3 and AOP processes were developed, and rate constants, kOH and kO3, were predicted based on target compound properties. The kO3 and kOH values ranged from 5 * 10-4 to 105 M-1s-1 and 0.04 to 18 * (109) M-1 s-1, respectively. Several molecular descriptors which potentially influence O3 and OH radical oxidation were identified and studied. The QSAR-defining descriptors were double bond equivalence (DBE), ionisation potential (IP), electron-affinity (EA) and weakly-polar component of solvent accessible surface area (WPSA), and the chemical and statistical significance of these descriptors was discussed. Multiple linear regression was used to build the QSAR models, resulting in high goodness-of-fit, r2 (>0.75). The models were validated by internal and external validation along with residual plots. © 2012 Elsevier Ltd.

  12. Data Modeling Challenges of Advanced Interoperability.

    Science.gov (United States)

    Blobel, Bernd; Oemig, Frank; Ruotsalainen, Pekka

    2018-01-01

    Progressive health paradigms, involving many different disciplines and combining multiple policy domains, requires advanced interoperability solutions. This results in special challenges for modeling health systems. The paper discusses classification systems for data models and enterprise business architectures and compares them with the ISO Reference Architecture. On that basis, existing definitions, specifications and standards of data models for interoperability are evaluated and their limitations are discussed. Amendments to correctly use those models and to better meet the aforementioned challenges are offered.

  13. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  14. Advanced computational modeling for in vitro nanomaterial dosimetry.

    Science.gov (United States)

    DeLoid, Glen M; Cohen, Joel M; Pyrgiotakis, Georgios; Pirela, Sandra V; Pal, Anoop; Liu, Jiying; Srebric, Jelena; Demokritou, Philip

    2015-10-24

    Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells "see," during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, K(D), and allows modeling of ENM dissolution over time. Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for K(D) values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high

  15. Advanced Chemical Propulsion Study

    Science.gov (United States)

    Woodcock, Gordon; Byers, Dave; Alexander, Leslie A.; Krebsbach, Al

    2004-01-01

    A study was performed of advanced chemical propulsion technology application to space science (Code S) missions. The purpose was to begin the process of selecting chemical propulsion technology advancement activities that would provide greatest benefits to Code S missions. Several missions were selected from Code S planning data, and a range of advanced chemical propulsion options was analyzed to assess capabilities and benefits re these missions. Selected beneficial applications were found for higher-performing bipropellants, gelled propellants, and cryogenic propellants. Technology advancement recommendations included cryocoolers and small turbopump engines for cryogenic propellants; space storable propellants such as LOX-hydrazine; and advanced monopropellants. It was noted that fluorine-bearing oxidizers offer performance gains over more benign oxidizers. Potential benefits were observed for gelled propellants that could be allowed to freeze, then thawed for use.

  16. Benfotiamine alleviates diabetes-induced cerebral oxidative damage independent of advanced glycation end-product, tissue factor and TNF-alpha.

    Science.gov (United States)

    Wu, Shan; Ren, Jun

    2006-02-13

    Diabetes mellitus leads to thiamine deficiency and multiple organ damage including diabetic neuropathy. This study was designed to examine the effect of benfotiamine, a lipophilic derivative of thiamine, on streptozotocin (STZ)-induced cerebral oxidative stress. Adult male FVB mice were made diabetic with a single injection of STZ (200 mg/kg, i.p.). Fourteen days later, control and diabetic (fasting blood glucose >13.9 mM) mice received benfotiamine (100 mg/kg/day, i.p.) for 14 days. Oxidative stress and protein damage were evaluated by glutathione/glutathione disulfide (GSH/GSSG) assay and protein carbonyl formation, respectively. Pro-oxidative or pro-inflammatory factors including advanced glycation end-product (AGE), tissue factor and tumor necrosis factor-alpha (TNF-alpha) were evaluated by immunoblot analysis. Four weeks STZ treatment led to hyperglycemia, enhanced cerebral oxidative stress (reduced GSH/GSSG ratio), elevated TNF-alpha and AGE levels without changes in protein carbonyl or tissue factor. Benfotiamine alleviated diabetes-induced cerebral oxidative stress without affecting levels of AGE, protein carbonyl, tissue factor and TNF-alpha. Collectively, our results indicated benfotiamine may antagonize diabetes-induced cerebral oxidative stress through a mechanism unrelated to AGE, tissue factor and TNF-alpha.

  17. Selective Oxidation of Lignin Model Compounds.

    Science.gov (United States)

    Gao, Ruili; Li, Yanding; Kim, Hoon; Mobley, Justin K; Ralph, John

    2018-05-02

    Lignin, the planet's most abundant renewable source of aromatic compounds, is difficult to degrade efficiently to welldefined aromatics. We developed a microwave-assisted catalytic Swern oxidation system using an easily prepared catalyst, MoO 2 Cl 2 (DMSO) 2 , and DMSO as the solvent and oxidant. It demonstrated high efficiency in transforming lignin model compounds containing the units and functional groups found in native lignins. The aromatic ring substituents strongly influenced the selectivity of β-ether phenolic dimer cleavage to generate sinapaldehyde and coniferaldehyde, monomers not usually produced by oxidative methods. Time-course studies on two key intermediates provided insight into the reaction pathway. Owing to the broad scope of this oxidation system and the insight gleaned with regard to its mechanism, this strategy could be adapted and applied in a general sense to the production of useful aromatic chemicals from phenolics and lignin. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Efficiency of Advanced H2O2/ZnO Oxidation Process in Ceftriaxone Antibiotic Removal from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Maryam Noroozi cholcheh

    2017-11-01

    Full Text Available A major concern about pharmaceutical pollution is the presence of antibiotics in water resources through their release into sewers where they cause bacterial resistance and enhanced drug-resistance in human-borne pathogens and growing microbial populations in the environment. The objective of this study was to investigate the efficiency of  the advanced H2O2/ZnO oxidation process in removing ceftriaxone from aqueous solutions. For this purpose, an experimental study was conducted in which the SEM, XRD, and TEM techniques were employed to determine the size of Zinc oxide nano-particles. Additionally, the oxidation process parameters of pH (3-11, molar ratio of H2O2/ZnO (1.5-3, initial concentration of ceftriaxone (5–15 mg/L, and contact time (30-90 min were investigated. Teh data thus obntained were subjected top statistical analysis using the SPSS (ANOVA test. XRD results revealeda hexagonal crystal structure for the nano-ZnO. TEM images confirmed the spherical shape of the nanoparticles. Finally, SEM images revealed that the Zn nanoparticles used in this study were less than 30 nanometers in diameter. Based on the results, an optimum pH of 11, a contact time of 90 minutes, and a H2O2/ZnO molar ratio equal to 1.5 were the optimum conditions to achieve a ceftriaxone removal efficiency of 92%. The advance H2O2/ZnO oxidation process may thus be claimed to be highly capable of removing ceftriaxone from aqueous solutions.

  19. Advancing nursing scholarship: the Mozambique model.

    Science.gov (United States)

    Bruce, Judith C; Dippenaar, Joan; Schmollgruber, Shelley; Mphuthi, David D; Huiskamp, Agnes

    2017-01-01

    Despite the importance of Human Resources for Health for the development and functioning of health systems worldwide, many countries continue to be plagued by poor health systems and a lack of adequate health care. Health systems failures may be attributed to both quantitative and qualitative nursing shortages including the lack of advanced skills to lead health initiatives, to conduct research and to educate other nurses. The response by development partners is usually framed around the production of skilled nurses through the processes of up-skilling and scaling-up. The outcome is expanded practice but with scant attention to the professional advancement of nurses. In this paper we present a two-phased capacity development model that adopted professionalization strategies to advance nursing scholarship and consequent postgraduate specialization of the first cohort of nurses in Mozambique. The main objectives were to: develop and implement a clinical course work master's degree in nursing; and ensure sustainability by capacitating the host institution to continue with the master's programme following graduation. Rigorous processes for project discussions, negotiations and monitoring were necessary amid limited resources and a challenging political climate. Forging in-country partnerships, sustaining alliances and government investment are thus key to the success of the Mozambique model. Notwithstanding some difficulties, the process unfolded over a five-year period, graduating the first cohort of 11 senior nurses with a master's degree, specializing either in critical care and trauma nursing, or maternal and neonatal health. Bridging the skills gap between generalist and specialist nurses is essential for them to manage complex and high acuity cases and to reverse associated morbidity and mortality. We conclude that this model serves as a professionalization strategy to advance nurses' scholarship of clinical practice, research and teaching.

  20. Multiscale model of metal alloy oxidation at grain boundaries

    International Nuclear Information System (INIS)

    Sushko, Maria L.; Alexandrov, Vitaly; Schreiber, Daniel K.; Rosso, Kevin M.; Bruemmer, Stephen M.

    2015-01-01

    High temperature intergranular oxidation and corrosion of metal alloys is one of the primary causes of materials degradation in nuclear systems. In order to gain insights into grain boundary oxidation processes, a mesoscale metal alloy oxidation model is established by combining quantum Density Functional Theory (DFT) and mesoscopic Poisson-Nernst-Planck/classical DFT with predictions focused on Ni alloyed with either Cr or Al. Analysis of species and fluxes at steady-state conditions indicates that the oxidation process involves vacancy-mediated transport of Ni and the minor alloying element to the oxidation front and the formation of stable metal oxides. The simulations further demonstrate that the mechanism of oxidation for Ni-5Cr and Ni-4Al is qualitatively different. Intergranular oxidation of Ni-5Cr involves the selective oxidation of the minor element and not matrix Ni, due to slower diffusion of Ni relative to Cr in the alloy and due to the significantly smaller energy gain upon the formation of nickel oxide compared to that of Cr 2 O 3 . This essentially one-component oxidation process results in continuous oxide formation and a monotonic Cr vacancy distribution ahead of the oxidation front, peaking at alloy/oxide interface. In contrast, Ni and Al are both oxidized in Ni-4Al forming a mixed spinel NiAl 2 O 4 . Different diffusivities of Ni and Al give rise to a complex elemental distribution in the vicinity of the oxidation front. Slower diffusing Ni accumulates in the oxide and metal within 3 nm of the interface, while Al penetrates deeper into the oxide phase. Ni and Al are both depleted from the region 3–10 nm ahead of the oxidation front creating voids. The oxide microstructure is also different. Cr 2 O 3 has a plate-like structure with 1.2–1.7 nm wide pores running along the grain boundary, while NiAl 2 O 4 has 1.5 nm wide pores in the direction parallel to the grain boundary and 0.6 nm pores in the perpendicular direction providing an additional

  1. Advanced language modeling approaches, case study: Expert search

    NARCIS (Netherlands)

    Hiemstra, Djoerd

    2008-01-01

    This tutorial gives a clear and detailed overview of advanced language modeling approaches and tools, including the use of document priors, translation models, relevance models, parsimonious models and expectation maximization training. Expert search will be used as a case study to explain the

  2. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  3. Advanced oxidation in waste water treatment; Oxidacion avanzada en el tratamiento de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Baraza, J.; Esplugas, S. [Universitat de Barcelona (Spain)

    2000-07-01

    The treatment of waste waters and, sometimes, drinking water, using advanced oxidation processes is reviewed on the basis of the studies carried out in which the hydroxyl radical plays an important part, with different techniques and reagents offering a broad range of possibilities. A distinction is made between photochemical an non-photochemical processes. A simple presentation of the fundamentals of each method is made together with a wide-ranging review of the literature and the results obtained in the degradation of certain contaminants resistant to conventional chemical treatments. (Author) 43 refs.

  4. Overview of welding of oxide dispersion strengthened (ODS) alloys for advanced nuclear reactor applications

    International Nuclear Information System (INIS)

    Kalvala, Prasad Rao; Raja, K.S.; Misra, Manoranjan; Tache, Ricard A.

    2009-01-01

    Oxide dispersion strengthened (ODS) alloys are very promising materials for Generation IV reactors with a potential to be used at elevated temperatures under severe neutron exposure environment. Welding of the ODS alloys is an understudied problem. In this paper, an overview of welding of the ODS alloys useful for advanced nuclear reactor applications is presented. The microstructural changes and the resultant mechanical properties obtained by various solid state welding processes are reviewed. Based on our results on PM2000, an approach for future work on welding of the ODS alloys is suggested. (author)

  5. Modelling the effect of injection pressure on heat release parameters and nitrogen oxides in direct injection diesel engines

    Directory of Open Access Journals (Sweden)

    Yüksek Levent

    2014-01-01

    Full Text Available Investigation and modelling the effect of injection pressure on heat release parameters and engine-out nitrogen oxides are the main aim of this study. A zero-dimensional and multi-zone cylinder model was developed for estimation of the effect of injection pressure rise on performance parameters of diesel engine. Double-Wiebe rate of heat release global model was used to describe fuel combustion. extended Zeldovich mechanism and partial equilibrium approach were used for modelling the formation of nitrogen oxides. Single cylinder, high pressure direct injection, electronically controlled, research engine bench was used for model calibration. 1000 and 1200 bars of fuel injection pressure were investigated while injection advance, injected fuel quantity and engine speed kept constant. The ignition delay of injected fuel reduced 0.4 crank angle with 1200 bars of injection pressure and similar effect observed in premixed combustion phase duration which reduced 0.2 crank angle. Rate of heat release of premixed combustion phase increased 1.75 % with 1200 bar injection pressure. Multi-zone cylinder model showed good agreement with experimental in-cylinder pressure data. Also it was seen that the NOx formation model greatly predicted the engine-out NOx emissions for both of the operation modes.

  6. Profiling the biological activity of oxide nanomaterials with mechanistic models

    NARCIS (Netherlands)

    Burello, E.

    2013-01-01

    In this study we present three mechanistic models for profiling the potential biological and toxicological effects of oxide nanomaterials. The models attempt to describe the reactivity, protein adsorption and membrane adhesion processes of a large range of oxide materials and are based on properties

  7. [Effects of metal-catalyzed oxidation on the formation of advanced oxidation protein products].

    Science.gov (United States)

    Li, Li; Peng, Ai; Zhu, Kai-Yuan; Yu, Hong; Ll, Xin-Hua; Li, Chang-Bin

    2008-03-11

    To explore the relationship between metal-catalyzed oxidation (MCO) and the formation of advanced oxidation protein products (AOPPs). Specimens of human serum albumin (HSA) and pooled plasma were collected from 3 healthy volunteers and 4 uremia patients were divided into 3 groups: Group A incubated with copper sulfate solution of the concentrations of 0, 0.2, or 0.5 mmol/L, Group B, incubated with hydrogen peroxide 2 mmol/L, and Group C, incubated with copper sulfate 0.2 or 0.5 mmol/L plus hydrogen peroxide 2 mmol/L. 30 min and 24 h later the AOPP level was determined by ultraviolet visible spectrophotometry. High-performance liquid chromatography (HPLC) was used to observe the fragmentation effect on plasma proteins. Ninhydrin method was used to examine the protein fragments. The scavenging capacity of hydroxyl radical by macromolecules was measured so as to estimate the extent of damage for proteins induced by MCO. (1) The AOPP level of the HSA and plasma specimens of the uremia patients increased along with the increase of cupric ion concentration in a dose-dependent manner, especially in the presence of hydrogen peroxide (P < 0.05). (2) Aggregation of proteins was almost negligible in all groups, however, HPLC showed that cupric ion with or without hydrogen peroxide increased the fragments in the HAS specimens (with a relative molecular mass of 5000) and uremia patients' plasma proteins (with the molecular mass 7000). (3) The plasma AOPP level of the healthy volunteers was 68.2 micromol/L +/- 2.4 micromol/L, significantly lower than that of the uremia patients (158.5 micromol/L +/- 8.2 micromol/L). (4) The scavenging ability to clear hydroxyl radical by plasma proteins of the healthy volunteers was 1.38 -9.03 times as higher than that of the uremia patients. MCO contributes to the formation of AOPPs mainly through its fragmentation effect to proteins.

  8. Advanced oxidation-based treatment of furniture industry wastewater.

    Science.gov (United States)

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  9. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2015-07-01

    The present work highlights the novel approach of combination of hydrodynamic cavitation and advanced oxidation processes for wastewater treatment. The initial part of the work concentrates on the critical analysis of the literature related to the combined approaches based on hydrodynamic cavitation followed by a case study of triazophos degradation using different approaches. The analysis of different combinations based on hydrodynamic cavitation with the Fenton chemistry, advanced Fenton chemistry, ozonation, photocatalytic oxidation, and use of hydrogen peroxide has been highlighted with recommendations for important design parameters. Subsequently degradation of triazophos pesticide in aqueous solution (20 ppm solution of commercially available triazophos pesticide) has been investigated using hydrodynamic cavitation and ozonation operated individually and in combination for the first time. Effect of different operating parameters like inlet pressure (1-8 bar) and initial pH (2.5-8) have been investigated initially. The effect of addition of Fenton's reagent at different loadings on the extent of degradation has also been investigated. The combined method of hydrodynamic cavitation and ozone has been studied using two approaches of injecting ozone in the solution tank and at the orifice (at the flow rate of 0.576 g/h and 1.95 g/h). About 50% degradation of triazophos was achieved by hydrodynamic cavitation alone under optimized operating parameters. About 80% degradation of triazophos was achieved by combination of hydrodynamic cavitation and Fenton's reagent whereas complete degradation was achieved using combination of hydrodynamic cavitation and ozonation. TOC removal of 96% was also obtained for the combination of ozone and hydrodynamic cavitation making it the best treatment strategy for removal of triazophos. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Constitutive Modeling of Geomaterials Advances and New Applications

    CERN Document Server

    Zhang, Jian-Min; Zheng, Hong; Yao, Yangping

    2013-01-01

    The Second International Symposium on Constitutive Modeling of Geomaterials: Advances and New Applications (IS-Model 2012), is to be held in Beijing, China, during October 15-16, 2012. The symposium is organized by Tsinghua University, the International Association for Computer Methods and Advances in Geomechanics (IACMAG), the Committee of Numerical and Physical Modeling of Rock Mass, Chinese Society for Rock Mechanics and Engineering, and the Committee of Constitutive Relations and Strength Theory, China Institution of Soil Mechanics and Geotechnical Engineering, China Civil Engineering Society. This Symposium follows the first successful International Workshop on Constitutive Modeling held in Hong Kong, which was organized by Prof. JH Yin in 2007.   Constitutive modeling of geomaterials has been an active research area for a long period of time. Different approaches have been used in the development of various constitutive models. A number of models have been implemented in the numerical analyses of geote...

  11. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  12. European scale modeling of sulfur, oxidized nitrogen and photochemical oxidants. Model development and evaluation for the 1994 growing season

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R. [Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden); Pleijel, K. [Swedish Environmental Research Inst., Goeteborg (Sweden)

    1998-09-01

    A chemical mechanism, including the relevant reactions leading to the production of ozone and other photochemical oxidants, has been implemented in the MATCH regional tracer transport/chemistry/deposition model. The aim has been to develop a model platform that can be used as a basis for a range of regional scale studies involving atmospheric chemistry, including assessment of the importance of different sources of pollutants to the levels of photochemical oxidants and air pollutant forecasting. Meteorological input data to the model were taken from archived output from the operational version of HIRLAM at SMHI. Evaluation of model calculations over Europe for a six month period in 1994 for a range of chemical components show good results considering known sources of error and uncertainties in input data and model formulation. With limited further work the system is sufficiently good to be applied for scenario studies and for regional scale air pollutant forecasts 42 refs, 24 figs, 17 tabs

  13. Recent Progress in Self-Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium-Ion Batteries.

    Science.gov (United States)

    Zhang, Feng; Qi, Limin

    2016-09-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high-performance lithium-ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder-free electrodes for LIBs, self-supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self-supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder-free nanoarray electrodes for practical LIBs in full-cell configuration are outlined. Finally, the future prospects of these self-supported nanoarray electrodes are discussed.

  14. Advances and perspectives in in vitro human gut fermentation modeling.

    Science.gov (United States)

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Organic Micropollutants Removal from Water by Oxidation and Other Processes:QSAR Models, Decision Support System and Hybrids of Processes

    KAUST Repository

    Sudhakaran, Sairam

    2013-08-01

    The presence of organic micropollutants (OMPs) in water is of great environmental concern. OMPs such as endocrine disruptors and certain pharmaceuticals have shown alarming effects on aquatic life. OMPs are included in the priority list of contaminants in several government directorate frameworks. The low levels of OMPs concentration (ng/L to μg/L) force the use of sophisticated analytical instruments. Although, the techniques to detect OMPs are progressing, the focus of current research is only on limited, important OMPs due to the high amount of time, cost and effort involved in analyzing them. Alternatively, quantitative structure activity relationship (QSAR) models help to screen processes and propose appropriate options without considerable experimental effort. QSAR models are well-established in regulatory bodies as a method to screen toxic chemicals. The goal of the present thesis was to develop QSAR models for OMPs removal by oxidation. Apart from the QSAR models, a decision support system (DSS) based on multi-criteria analysis (MCA) involving socio-economic-technical and sustainability aspects was developed. Also, hybrids of different water treatment processes were studied to propose a sustainable water treatment train for OMPs removal. In order to build the QSAR models, the ozone/hydroxyl radical rate constants or percent removals of the OMPs were compiled. Several software packages were used to 5 compute the chemical properties of OMPs and perform statistical analyses. For DSS, MCA was used since it allows the comparison of qualitative (non-monetary, non-metric) and quantitative criteria (e.g., costs). Quadrant plots were developed to study the hybrid of natural and advanced water treatment processes. The QSAR models satisfied both chemical and statistical criteria. The DSS resulted in natural treatment and ozonation as the preferred processes for OMPs removal. The QSAR models can be used as a screening tool for OMPs removal by oxidation. Moreover, the

  16. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  17. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    Energy Technology Data Exchange (ETDEWEB)

    Sodipo, Bashiru Kayode, E-mail: bashirsodipo@gmail.com [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Aziz, Azlan Abdul [School of Physics, Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia); Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-10-15

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  18. Recent advances in synthesis and surface modification of superparamagnetic iron oxide nanoparticles with silica

    International Nuclear Information System (INIS)

    Sodipo, Bashiru Kayode; Aziz, Azlan Abdul

    2016-01-01

    Research on synthesis of superparamagnetic iron oxide nanoparticles (SPION) and its surface modification for biomedical applications is of intense interest. Due to superparamagnetic property of SPION, the nanoparticles have large magnetic susceptibility, single magnetic domain and controllable magnetic behaviour. However, owing to easy agglomeration of SPION, surface modification of the magnetic particles with biocompatible materials such as silica nanoparticle has gained much attention in the last decade. In this review, we present recent advances in synthesis of SPION and various routes of producing silica coated SPION. - Highlights: • We present recent advances in synthesis of SPION and various routes of producing silica coated SPION • The synthetic routes of producing SPION can be classified into three: physical, chemical and biological methods. • The chemical method is the most cited method of producing SPION and it sub-classified into liquid and gas phase. • The techniques of producing silica coated SPION is grouped into seeded and non-seeded methods.

  19. Enhancement of MARS with an Advanced Fuel Model by Coupling FRAPTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong Chol; Lee, Young Jin; Han, Sam Hee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    FRAPTRAN calculates heat conduction, heat transfer from cladding to coolant, elastic-plastic fuel and cladding deformation, cladding oxidation, fission gas release, and fuel rod gas pressure. FRAPTRAN is used for analyzing the fuel response under postulated accidents such as reactivity-initiated accidents (RIAs) and loss-of-coolant accidents (LOCAs), and also for analyzing and interpreting experimental results. Burnup dependent variables such as fuel densification and swelling, and cladding creep and irradiation growth may be considered by incorporating FRAPCON steady state depletion calculation results as the initial conditions. FRAPTRAN-DLL has been successfully verified and the coupled calculations have shown to provide reasonable results. An EOC core loaded with irradiated fuels was analyzed with the integrated code system. The coupled code system has demonstrated its applicability to variety of applications such as assessing the effects of fuel thermal conductivity degradation with burnup. MARS has been enhanced with the advanced fuel model of FRAPTRAN so that users can use the fuel rod performance evaluation capability in the transient analyses.

  20. UVA Light-excited Kynurenines Oxidize Ascorbate and Modify Lens Proteins through the Formation of Advanced Glycation End Products

    Science.gov (United States)

    Linetsky, Mikhail; Raghavan, Cibin T.; Johar, Kaid; Fan, Xingjun; Monnier, Vincent M.; Vasavada, Abhay R.; Nagaraj, Ram H.

    2014-01-01

    Advanced glycation end products (AGEs) contribute to lens protein pigmentation and cross-linking during aging and cataract formation. In vitro experiments have shown that ascorbate (ASC) oxidation products can form AGEs in proteins. However, the mechanisms of ASC oxidation and AGE formation in the human lens are poorly understood. Kynurenines are tryptophan oxidation products produced from the indoleamine 2,3-dioxygenase (IDO)-mediated kynurenine pathway and are present in the human lens. This study investigated the ability of UVA light-excited kynurenines to photooxidize ASC and to form AGEs in lens proteins. UVA light-excited kynurenines in both free and protein-bound forms rapidly oxidized ASC, and such oxidation occurred even in the absence of oxygen. High levels of GSH inhibited but did not completely block ASC oxidation. Upon UVA irradiation, pigmented proteins from human cataractous lenses also oxidized ASC. When exposed to UVA light (320–400 nm, 100 milliwatts/cm2, 45 min to 2 h), young human lenses (20–36 years), which contain high levels of free kynurenines, lost a significant portion of their ASC content and accumulated AGEs. A similar formation of AGEs was observed in UVA-irradiated lenses from human IDO/human sodium-dependent vitamin C transporter-2 mice, which contain high levels of kynurenines and ASC. Our data suggest that kynurenine-mediated ASC oxidation followed by AGE formation may be an important mechanism for lens aging and the development of senile cataracts in humans. PMID:24798334

  1. Specification of advanced safety modeling requirements (Rev. 0).

    Energy Technology Data Exchange (ETDEWEB)

    Fanning, T. H.; Tautges, T. J.

    2008-06-30

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models

  2. Specification of advanced safety modeling requirements (Rev. 0)

    International Nuclear Information System (INIS)

    Fanning, T. H.; Tautges, T. J.

    2008-01-01

    The U.S. Department of Energy's Global Nuclear Energy Partnership has lead to renewed interest in liquid-metal-cooled fast reactors for the purpose of closing the nuclear fuel cycle and making more efficient use of future repository capacity. However, the U.S. has not designed or constructed a fast reactor in nearly 30 years. Accurate, high-fidelity, whole-plant dynamics safety simulations will play a crucial role by providing confidence that component and system designs will satisfy established design limits and safety margins under a wide variety of operational, design basis, and beyond design basis transient conditions. Current modeling capabilities for fast reactor safety analyses have resulted from several hundred person-years of code development effort supported by experimental validation. The broad spectrum of mechanistic and phenomenological models that have been developed represent an enormous amount of institutional knowledge that needs to be maintained. Complicating this, the existing code architectures for safety modeling evolved from programming practices of the 1970s. This has lead to monolithic applications with interdependent data models which require significant knowledge of the complexities of the entire code in order for each component to be maintained. In order to develop an advanced fast reactor safety modeling capability, the limitations of the existing code architecture must be overcome while preserving the capabilities that already exist. To accomplish this, a set of advanced safety modeling requirements is defined, based on modern programming practices, that focuses on modular development within a flexible coupling framework. An approach for integrating the existing capabilities of the SAS4A/SASSYS-1 fast reactor safety analysis code into the SHARP framework is provided in order to preserve existing capabilities while providing a smooth transition to advanced modeling capabilities. In doing this, the advanced fast reactor safety models will

  3. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    International Nuclear Information System (INIS)

    Indacochea, J. E.; Gattu, V. K.; Chen, X.; Rahman, T.

    2017-01-01

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  4. Performance of a Steel/Oxide Composite Waste Form for Combined Waste Steams from Advanced Electrochemical Processes

    Energy Technology Data Exchange (ETDEWEB)

    Indacochea, J. E. [Univ. of Illinois, Chicago, IL (United States); Gattu, V. K. [Univ. of Illinois, Chicago, IL (United States); Chen, X. [Univ. of Illinois, Chicago, IL (United States); Rahman, T. [Univ. of Illinois, Chicago, IL (United States)

    2017-06-15

    The results of electrochemical corrosion tests and modeling activities performed collaboratively by researchers at the University of Illinois at Chicago and Argonne National Laboratory as part of workpackage NU-13-IL-UIC-0203-02 are summarized herein. The overall objective of the project was to develop and demonstrate testing and modeling approaches that could be used to evaluate the use of composite alloy/ceramic materials as high-level durable waste forms. Several prototypical composite waste form materials were made from stainless steels representing fuel cladding, reagent metals representing metallic fuel waste streams, and reagent oxides representing oxide fuel waste streams to study the microstructures and corrosion behaviors of the oxide and alloy phases. Microelectrodes fabricated from small specimens of the composite materials were used in a series of electrochemical tests to assess the corrosion behaviors of the constituent phases and phase boundaries in an aggressive acid brine solution at various imposed surface potentials. The microstructures were characterized in detail before and after the electrochemical tests to relate the electrochemical responses to changes in both the electrode surface and the solution composition. The results of microscopic, electrochemical, and solution analyses were used to develop equivalent circuit and physical models representing the measured corrosion behaviors of the different materials pertinent to long-term corrosion behavior. This report provides details regarding (1) the production of the composite materials, (2) the protocol for the electrochemical measurements and interpretations of the responses of multi-phase alloy and oxide composites, (3) relating corrosion behaviors to microstructures of multi-phase alloys based on 316L stainless steel and HT9 (410 stainless steel was used as a substitute) with added Mo, Ni, and/or Mn, and (4) modeling the corrosion behaviors and rates of several alloy/oxide composite

  5. Advanced aviation environmental modeling tools to inform policymakers

    Science.gov (United States)

    2012-08-19

    Aviation environmental models which conform to international guidance have advanced : over the past several decades. Enhancements to algorithms and databases have increasingly : shown these models to compare well with gold standard measured data. The...

  6. IGF-1, oxidative stress, and atheroprotection

    Science.gov (United States)

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung; Delafontaine, Patrice

    2009-01-01

    Atherosclerosis is a chronic inflammatory disease in which early endothelial dysfunction and subintimal modified lipoprotein deposition progress to complex, advanced lesions that are predisposed to erosion, rupture and thrombosis. Oxidative stress plays a critical role not only in initial lesion formation but also in lesion progression and destabilization. While growth factors are thought to promote vascular smooth muscle cell proliferation and migration, thereby increasing neointima, recent animal studies indicate that IGF-1 exerts pleiotropic anti-oxidant effects along with anti-inflammatory effects that together reduce atherosclerotic burden. This review discusses the effects of IGF-1 in vascular injury and atherosclerosis models, emphasizing the relationship between oxidative stress and potential atheroprotective actions of IGF-1. PMID:20071192

  7. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: A comparative study

    International Nuclear Information System (INIS)

    Catalkaya, Ebru Cokay; Kargi, Fikret

    2007-01-01

    Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H 2 O 2 /Fe 2+ ), UV, UV/H 2 O 2 , photo-Fenton (UV/H 2 O 2 /Fe 2+ ), ozonation and peroxone (ozone/H 2 O 2 ) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H 2 O 2 /Fe 2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used

  8. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  9. Recent advances in numerical modeling of detonations

    Energy Technology Data Exchange (ETDEWEB)

    Mader, C.L.

    1986-12-01

    Three lectures were presented on recent advances in numerical modeling detonations entitled (1) Jet Initiation and Penetration of Explosives; (2) Explosive Desensitization by Preshocking; (3) Inert Metal-Loaded Explosives.

  10. Advanced modelling of optical coherence tomography systems

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Thrane, L.; Yura, H.T.

    2004-01-01

    and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens–Fresnel principle. Moreover, for the first time the model is verified experimentally...... tissue phantom. Such algorithm holds promise for improving OCT imagery and to extend the possibility for functional imaging....

  11. Developing a Model of Advanced Training to Promote Career Advancement for Certified Genetic Counselors: An Investigation of Expanded Skills, Advanced Training Paths, and Professional Opportunities.

    Science.gov (United States)

    Baty, Bonnie J; Trepanier, Angela; Bennett, Robin L; Davis, Claire; Erby, Lori; Hippman, Catriona; Lerner, Barbara; Matthews, Anne; Myers, Melanie F; Robbins, Carol B; Singletary, Claire N

    2016-08-01

    There are currently multiple paths through which genetic counselors can acquire advanced knowledge and skills. However, outside of continuing education opportunities, there are few formal training programs designed specifically for the advanced training of genetic counselors. In the genetic counseling profession, there is currently considerable debate about the paths that should be available to attain advanced skills, as well as the skills that might be needed for practice in the future. The Association of Genetic Counseling Program Directors (AGCPD) convened a national committee, the Committee on Advanced Training for Certified Genetic Counselors (CATCGC), to investigate varied paths to post-master's training and career development. The committee began its work by developing three related grids that view career advancement from the viewpoints of the skills needed to advance (skills), ways to obtain these skills (paths), and existing genetic counselor positions that offer career change or advancement (positions). Here we describe previous work related to genetic counselor career advancement, the charge of the CATCGC, our preliminary work in developing a model through which to view genetic counselor advanced training and career advancement opportunities, and our next steps in further developing and disseminating the model.

  12. Thermal modelling of Advanced LIGO test masses

    International Nuclear Information System (INIS)

    Wang, H; Dovale Álvarez, M; Mow-Lowry, C M; Freise, A; Blair, C; Brooks, A; Kasprzack, M F; Ramette, J; Meyers, P M; Kaufer, S; O’Reilly, B

    2017-01-01

    High-reflectivity fused silica mirrors are at the epicentre of today’s advanced gravitational wave detectors. In these detectors, the mirrors interact with high power laser beams. As a result of finite absorption in the high reflectivity coatings the mirrors suffer from a variety of thermal effects that impact on the detectors’ performance. We propose a model of the Advanced LIGO mirrors that introduces an empirical term to account for the radiative heat transfer between the mirror and its surroundings. The mechanical mode frequency is used as a probe for the overall temperature of the mirror. The thermal transient after power build-up in the optical cavities is used to refine and test the model. The model provides a coating absorption estimate of 1.5–2.0 ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered onto the ring heater. (paper)

  13. Traffic modelling validation of advanced driver assistance systems

    NARCIS (Netherlands)

    Tongeren, R. van; Gietelink, O.J.; Schutter, B. de; Verhaegen, M.

    2007-01-01

    This paper presents a microscopic traffic model for the validation of advanced driver assistance systems. This model describes single-lane traffic and is calibrated with data from a field operational test. To illustrate the use of the model, a Monte Carlo simulation of single-lane traffic scenarios

  14. A general strategy toward graphitized carbon coating on iron oxides as advanced anodes for lithium-ion batteries.

    Science.gov (United States)

    Ding, Chunyan; Zhou, Weiwei; Wang, Bin; Li, Xin; Wang, Dong; Zhang, Yong; Wen, Guangwu

    2017-08-25

    Integration of carbon materials with benign iron oxides is blazing a trail in constructing high-performance anodes for lithium-ion batteries (LIBs). In this paper, a unique general, simple, and controllable strategy is developed toward in situ uniform coating of iron oxide nanostructures with graphitized carbon (GrC) layers. The basic synthetic procedure only involves a simple dip-coating process for the loading of Ni-containing seeds and a subsequent Ni-catalyzed chemical vapor deposition (CVD) process for the growth of GrC layers. More importantly, the CVD treatment is conducted at a quite low temperature (450 °C) and with extremely facile liquid carbon sources consisting of ethylene glycol (EG) and ethanol (EA). The GrC content of the resulting hybrids can be controllably regulated by altering the amount of carbon sources. The electrochemical results reveal remarkable performance enhancements of iron oxide@GrC hybrids compared with pristine iron oxides in terms of high specific capacity, excellent rate and cycling performance. This can be attributed to the network-like GrC coating, which can improve not only the electronic conductivity but also the structural integrity of iron oxides. Moreover, the lithium storage performance of samples with different GrC contents is measured, manifesting that optimized electrochemical property can be achieved with appropriate carbon content. Additionally, the superiority of GrC coating is demonstrated by the advanced performance of iron oxide@GrC compared with its corresponding counterpart, i.e., iron oxides with amorphous carbon (AmC) coating. All these results indicate the as-proposed protocol of GrC coating may pave the way for iron oxides to be promising anodes for LIBs.

  15. 76 FR 68011 - Medicare Program; Advanced Payment Model

    Science.gov (United States)

    2011-11-02

    ...This notice announces the testing of the Advance Payment Model for certain accountable care organizations participating in the Medicare Shared Savings Program scheduled to begin in 2012, and provides information about the model and application process.

  16. Enhancement of the Biodegradability of Methyl tert- Butyl Ether (MTBE by Advanced Oxidation

    Directory of Open Access Journals (Sweden)

    Mehraban Sadeghi

    2006-06-01

    Full Text Available The effectiveness of ozone treatment for improving the biodegradability of recalcitrant pollutants has been proved by investigating the ozonation reaction of Methyl tert-Butyl Ether (MTBE as a bioresistant gasoline oxygenate. Laboratory scale experiments have been carried out at room temperature by bubbling for 120 minutes ozonated air (3.4 ppm/min into 3 liter of an alkaline (pH=11.5 aqueous solution (100 mg/L of MTBE. The experimental results indicated that during the ozonation, complete MTBE degradation occurs in 100 minutes and after this time, ozone consumption goes on very slowly. At the end of the ozonation, after 100 minutes, the initial value of COD (256 mg O2/L is 98 and corresponds to a relative removal of about 62%. As for MTBE solution biodegradability expressed as (BOD5 / (COD ratio, during the first 90 minutes, its value regularly increases from lowest 0.01 up to a maximum of 0.68 that corresponds to an ozone consumption of 1.25 mg per each mg of COD initially present in the solution. The research showed that partial degradation of MTBE in the advanced oxidation processes results an increase in its biological degradation. But more oxidation results lower  (BOD5 / (COD ratio. Also the research showed that for idealization of the chemical oxidation conditions of MTBE, it needs to decrease COD to 46-68% before the biological degradation. The experimental results for determining the rate of MTBE removal due to stripping showed that about 14% of MTBE strips out after an hour of sparging with oxygen gas. The fraction of MTBE oxidized and/or striped increases to about 28% (in pH=7 and 70% (in pH=11.5 with ozonation over the same time period.

  17. Advanced ECP model for BWRs

    International Nuclear Information System (INIS)

    Ullberg, M.; Gott, K.; Lejon, J.; Granath, G.

    2007-01-01

    The new ECP model is based on one-electron transfers only (radical mechanism). It uses reaction rates as the sole fitting parameters and unifies several different aspects of BWR electrochemistry. ECP's dependence on O 2 , H 2 O 2 , H 2 and flow rate is modeled, specifically the different influence of the levels of O 2 and H 2 O 2 , respectively. The ECP's experimental dependence on the passive current in the case of O 2 , and independence in the case of H 2 O 2 , are also modeled. Decomposition of H 2 O 2 , corrosion under oxidizing/reducing conditions, and the electrochemical interactions of O 2 , H 2 O 2 and H 2 are modeled along a SS pipe. The predictive power of the model is demonstrated by the following example: When the model has been fitted to the H 2 O 2 decomposition rate and the ECP in presence of H 2 O 2 , then the ECP in presence of O 2 is effectively determined by the O 2 level and the passive current. (author)

  18. Cellular Automata Modelling of Photo-Induced Oxidation Processes in Molecularly Doped Polymers

    Directory of Open Access Journals (Sweden)

    David M. Goldie

    2016-11-01

    Full Text Available The possibility of employing cellular automata (CA to model photo-induced oxidation processes in molecularly doped polymers is explored. It is demonstrated that the oxidation dynamics generated using CA models exhibit stretched-exponential behavior. This dynamical characteristic is in general agreement with an alternative analysis conducted using standard rate equations provided the molecular doping levels are sufficiently low to prohibit the presence of safe-sites which are impenetrable to dissolved oxygen. The CA models therefore offer the advantage of exploring the effect of dopant agglomeration which is difficult to assess from standard rate equation solutions. The influence of UV-induced bleaching or darkening upon the resulting oxidation dynamics may also be easily incorporated into the CA models and these optical effects are investigated for various photo-oxidation product scenarios. Output from the CA models is evaluated for experimental photo-oxidation data obtained from a series of hydrazone-doped polymers.

  19. Unified computational model of transport in metal-insulating oxide-metal systems

    Science.gov (United States)

    Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.

    2018-04-01

    A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.

  20. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-01-01

    This paper focuses on the use and potential of oxide fuel systems for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Examples are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  1. Experience with oxide fuel for advanced reactors

    International Nuclear Information System (INIS)

    Leggett, R.D.

    1984-04-01

    This paper focuses on the use and potential of oxide fuel system for the LMFBR. The flawless performance of mixed oxide (UO 2 -PuO 2 ) fuel in FFTF to 100,000 MWd/MTM is reviewed and means for achieving 200,000 MWd/MTM are presented. This includes using non-swelling alloys for cladding and ducts to overcome the limitations caused by swelling of the current alloys. Exampled are provided of the inherently safe characteristics of oxide fuel including a large negative Doppler coefficient, its dispersive nature under hypothetical accident scenarios, and the low energy molten fuel-coolant interaction. Developments in fuel fabrication and reprocessing that stress safety and reduced personnel exposure are presented. Lastly, the flexibility to design for maximum fuel supply (high breeding gain) or minimum fuel cost (long lifetime) is shown

  2. Cladding oxidation during air ingress. Part II: Synthesis of modelling results

    International Nuclear Information System (INIS)

    Beuzet, E.; Haurais, F.; Bals, C.; Coindreau, O.; Fernandez-Moguel, L.; Vasiliev, A.; Park, S.

    2016-01-01

    Highlights: • A state-of-the-art for air oxidation modelling in the frame of severe accident is done. • Air oxidation models from main severe accident codes are detailed. • Simulations from main severe accident codes are compared against experimental results. • Perspectives in terms of need for further model development and experiments are given. - Abstract: Air ingress is a potential risk in some low probable situations of severe accidents in a nuclear power plant. Air is a highly oxidizing atmosphere that can lead to an enhanced Zr-based cladding oxidation and core degradation affecting the release of fission products. This is particularly true speaking about ruthenium release, due to its high radiotoxicity and its ability to form highly volatile oxides in a significant manner in presence of air. The oxygen affinity is decreasing from the Zircaloy cladding, fuel and ruthenium inclusions. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues in such scenarios. In the past years, many works have been done on cladding oxidation by air under severe accident conditions. This paper with in addition the paper “Cladding oxidation during air ingress – Part I: Synthesis of experimental results” of this journal issue aim at assessing the state of the art on this phenomenon. In this paper, the modelling of air ingress phenomena in the main severe accident codes (ASTEC, ATHLET-CD, MAAP, MELCOR, RELAP/SCDAPSIM, SOCRAT) is described in details, as well as the validation against the integral experiments QUENCH-10, QUENCH-16 and PARAMETER-SF4. A full review of cladding oxidation by air is thus established.

  3. Modelling of oxidation and hydriding behaviour of Zircaloy-2 pressure tubes in PHWR

    International Nuclear Information System (INIS)

    Sah, D.N.; Sunil Kumar; Khan, K.B.

    2002-01-01

    A computer model named DOCTOR (Deuteriding of Coolant Tubes during Operation of Reactor) has been developed for predicting the axial profile of oxide thickness and hydrogen (Deuterium) concentration in PHWR pressure tubes. This model is applicable to single channel or full core analysis. The main source of hydrogen is considered to be oxidation of pressure tube on the i.d. surface by high temperature coolant water. Three stages of oxidation is considered namely, pre- transition, post transition and accelerated. Oxidation rate is considered to be dependent on channel power, axial power/flux distribution, coolant temperature and pre-existing oxide thickness at the location. The kinetics parameters for oxidation model are derived from the actual measurement of oxide thickness on a number of pressure tubes examined in PIE Division. The input data required for the model are: channel power, channel power factor, axial flux distribution, coolant inlet temperature, critical oxide thickness, hydrogen pick up fraction, initial hydrogen in the material and time of operation (efpy). The model calculates the oxide layer thickness on the inside surface of the pressure tube along the length. The amount of hydrogen picked up by the pressure tube is calculated from the oxide thickness using hydrogen pick up fraction determined from the PIE data. The pressure tube length is divided into a number of axial segments for calculation. The temperature and fast neutron flux assumed to be constant in a given segment. The axial temperature profile calculated from the axial power profile in the channel is used for calculating the oxidation rate at various locations in the pressure tube. The model has been validated with PIE data of hydrogen equivalent measurement on a number of irradiated Zircaloy-2 pressure tubes of various PHWRs. The performance of the model in predicting the axial profile of hydrogen in the pressure tubes has been found to be good. (author)

  4. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    OpenAIRE

    Beber de Souza, Jeanette; Queiroz Valdez, Fernanda; Jeranoski, Rhuan Felipe; Vidal, Carlos Magno de Sousa; Cavallini, Grasiele Soares

    2015-01-01

    The individual methods of disinfection peracetic acid (PAA) and UV radiation and combined process PAA/UV in water (synthetic) and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater), and coliphages (such as virus indicators). Under the experimental conditions investigated, doses o...

  5. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    Energy Technology Data Exchange (ETDEWEB)

    Cristale, Joyce [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Ramos, Dayana D. [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Dantas, Renato F. [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain); School of Technology, University of Campinas-UNICAMP, Paschoal Marmo 1888, 13484-332 Limeira, SP (Brazil); Machulek Junior, Amilcar [Institute of Chemistry, Federal University of Mato Grosso do Sul, Av. Senador Filinto Muller, 1555, CP 549, CEP 79074-460 Campo Grande, MS (Brazil); Lacorte, Silvia [Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-2, 08034 Barcelona, Catalonia (Spain); Sans, Carme; Esplugas, Santiago [Department of Chemical Engineering, University de Barcelona, Marti i Franques 1, 08028 Barcelona, Catalonia (Spain)

    2016-01-15

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L{sup −1} to 150 µg L{sup −1}. During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g{sup −1} dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H{sub 2}O{sub 2} and O{sub 3}) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3}. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. - Highlights: • OPFRs were detected in wastewater and sludge of all studied WWTPs. • Alkyl and chloroalkyl phosphates were present in secondary treatment effluents. • TBOEP, TNBP and TIBP were degraded by UV/H{sub 2}O{sub 2} and O{sub 3} treatment. • TCEP, TCIPP and TDCPP were

  6. Statistical analysis of oxides particles in ODS ferritic steel using advanced electron microscopy

    International Nuclear Information System (INIS)

    Unifantowicz, P.; Schäublin, R.; Hébert, C.; Płociński, T.; Lucas, G.; Baluc, N.

    2012-01-01

    In this work a combination of advanced transmission electron microscopy and spectroscopy techniques enabled a statistically significant analysis of various types of few nanometer size oxides particles in Fe–14Cr–2W–0.3Ti–0.3Y 2 O 3 ferritic steel. These methods include a scanning TEM with EDS and EFTEM coupled with EELS. In addition, principal component analysis was applied to the chemical maps obtained by EFTEM, which drastically improved the signal to noise ratio. Three types of particles were identified in a size range from 2 to 300 nm, namely Cr–Ti–O, Y–O and Y–Ti–O particles, with an average size of 33,16 and 8 nm, respectively. The Cr–Ti–O particles contain Y and Ti enriched zones, which were not observed previously. The EFTEM analysis showed that the titanium addition leads to formation of Y–Ti–O nano-particles, which constitute 84% of the oxides but also precipitation of larger Cr–Ti–O. The presence of small amount of Y–O particles indicated a not sufficient amount of Ti available for reaction during mechanical alloying or consolidation.

  7. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression.

    Science.gov (United States)

    Roomruangwong, Chutima; Anderson, George; Berk, Michael; Stoyanov, Drozdstoy; Carvalho, André F; Maes, Michael

    2018-02-02

    A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Oxide-supported metal clusters: models for heterogeneous catalysts

    International Nuclear Information System (INIS)

    Santra, A K; Goodman, D W

    2003-01-01

    Understanding the size-dependent electronic, structural and chemical properties of metal clusters on oxide supports is an important aspect of heterogeneous catalysis. Recently model oxide-supported metal catalysts have been prepared by vapour deposition of catalytically relevant metals onto ultra-thin oxide films grown on a refractory metal substrate. Reactivity and spectroscopic/microscopic studies have shown that these ultra-thin oxide films are excellent models for the corresponding bulk oxides, yet are sufficiently electrically conductive for use with various modern surface probes including scanning tunnelling microscopy (STM). Measurements on metal clusters have revealed a metal to nonmetal transition as well as changes in the crystal and electronic structures (including lattice parameters, band width, band splitting and core-level binding energy shifts) as a function of cluster size. Size-dependent catalytic reactivity studies have been carried out for several important reactions, and time-dependent catalytic deactivation has been shown to arise from sintering of metal particles under elevated gas pressures and/or reactor temperatures. In situ STM methodologies have been developed to follow the growth and sintering kinetics on a cluster-by-cluster basis. Although several critical issues have been addressed by several groups worldwide, much more remains to be done. This article highlights some of these accomplishments and summarizes the challenges that lie ahead. (topical review)

  9. ARTEAM - Advanced ray tracing with earth atmospheric models

    NARCIS (Netherlands)

    Kunz, G.J.; Moerman, M.M.; Eijk, A.M.J. van

    2002-01-01

    The Advanced Ray Tracing with Earth Atmospheric Models (ARTEAM) aims at a description of the electro-optical propagation environment in the marine atmospheric surface layer. For given meteorological conditions, the model evaluates height- and range-resolved transmission losses, refraction and

  10. Advanced oxidation technologies : photocatalytic treatment of wastewater

    OpenAIRE

    Chen, J.

    1997-01-01

    7.1. Summary and conclusions

    The last two decennia have shown a growing interest in the photocatalytic treatment of wastewater, and more and more research has been carried out into the various aspects of photocatalysis, varying from highly fundamental aspects to practical application. However, despite all this research, there is still much to investigate. Suggested photocatalytic mechanisms, such as those for oxidation by hydroxyl radicals and for oxidation at the surface of photocata...

  11. Combination of Advanced Oxidation and/or Reductive Dehalogenation and Biodegradation for the Decontamination of Waters Contaminated with Chlorinated Organic Compounds.

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Maléterová, Ywetta; Kaštánek, P.

    2007-01-01

    Roč. 42, 7 (2007) , s. 1613-1625 ISSN 0149-6395 R&D Projects: GA MPO FI-IM3/050 Institutional research plan: CEZ:AV0Z40720504 Keywords : advanced oxidation * fenton reaction * consecutive aerobic biodegradation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.048, year: 2007

  12. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    Science.gov (United States)

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    London, A.J., E-mail: andrew.london@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lozano-Perez, S.; Moody, M.P. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Amirthapandian, S.; Panigrahi, B.K.; Sundar, C.S. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Grovenor, C.R.M. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom)

    2015-12-15

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471–503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174–1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe–0.3Y{sub 2}O{sub 3}, Fe–0.2Ti–0.3Y{sub 2}O{sub 3} and Fe–14Cr–0.2Ti–0.3Y{sub 2}O{sub 3}. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors.

  15. Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys.

    Science.gov (United States)

    London, A J; Lozano-Perez, S; Moody, M P; Amirthapandian, S; Panigrahi, B K; Sundar, C S; Grovenor, C R M

    2015-12-01

    Oxide dispersion strengthened ferritic steels (ODS) are being considered for structural components of future designs of fission and fusion reactors because of their impressive high-temperature mechanical properties and resistance to radiation damage, both of which arise from the nanoscale oxide particles they contain. Because of the critical importance of these nanoscale phases, significant research activity has been dedicated to analysing their precise size, shape and composition (Odette et al., Annu. Rev. Mater. Res. 38 (2008) 471-503 [1]; Miller et al., Mater. Sci. Technol. 29(10) (2013) 1174-1178 [2]). As part of a project to develop new fuel cladding alloys in India, model ODS alloys have been produced with the compositions, Fe-0.3Y2O3, Fe-0.2Ti-0.3Y2O3 and Fe-14Cr-0.2Ti-0.3Y2O3. The oxide particles in these three model alloys have been studied by APT in their as-received state and following ion irradiation (as a proxy for neutron irradiation) at various temperatures. In order to adequately quantify the composition of the oxide clusters, several difficulties must be managed, including issues relating to the chemical identification (ranging and variable peak-overlaps); trajectory aberrations and chemical structure; and particle sizing. This paper presents how these issues can be addressed by the application of bespoke data analysis tools and correlative microscopy. A discussion follows concerning the achievable precision in these measurements, with reference to the fundamental limiting factors. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Age- and gender-related alteration in plasma advanced oxidation protein products (AOPP) and glycosaminoglycan (GAG) concentrations in physiological ageing.

    Science.gov (United States)

    Komosinska-Vassev, Katarzyna; Olczyk, Pawel; Winsz-Szczotka, Katarzyna; Kuznik-Trocha, Kornelia; Klimek, Katarzyna; Olczyk, Krystyna

    2012-02-13

    The authors studied the role of increased oxidative stress in the development of oxidative protein damage and extracellular matrix (ECM) components in ageing. The age- and gender-associated disturbances in connective tissue metabolism were evaluated by the plasma chondroitin sulphated glycosaminoglycans (CS-GAG) and non-sulphated GAG-hyaluronan (HA) measurements. Plasma concentration of advanced oxidation protein products (AOPP) was analysed in order to assess oxidative protein damage and evaluate the possible deleterious role of oxidative phenomenon on tissue proteoglycans' metabolism during the physiological ageing process. Sulphated and non-sulphated GAGs as well as AOPP were quantified in plasma samples from 177 healthy volunteers. A linear age-related decline of plasma CS-GAG level was found in this study (r=-0.46; page (r=0.44; page-dependent relationship has been shown in regard to AOPP. AOPP levels significantly increased with age (r=0.63; pphysiological ageing. A significant correlation was found between the concentrations of AOPP and both CS-GAG (r=-0.31; page changes in the ECM are reflected by CS-GAG and HA plasma levels. Strong correlations between AOPP and ECM components indicate that oxidative stress targets protein and non-protein components of the connective tissue matrix during human ageing.

  17. Large-scale Modeling of Nitrous Oxide Production: Issues of Representing Spatial Heterogeneity

    Science.gov (United States)

    Morris, C. K.; Knighton, J.

    2017-12-01

    Nitrous oxide is produced from the biological processes of nitrification and denitrification in terrestrial environments and contributes to the greenhouse effect that warms Earth's climate. Large scale modeling can be used to determine how global rate of nitrous oxide production and consumption will shift under future climates. However, accurate modeling of nitrification and denitrification is made difficult by highly parameterized, nonlinear equations. Here we show that the representation of spatial heterogeneity in inputs, specifically soil moisture, causes inaccuracies in estimating the average nitrous oxide production in soils. We demonstrate that when soil moisture is averaged from a spatially heterogeneous surface, net nitrous oxide production is under predicted. We apply this general result in a test of a widely-used global land surface model, the Community Land Model v4.5. The challenges presented by nonlinear controls on nitrous oxide are highlighted here to provide a wider context to the problem of extraordinary denitrification losses in CLM. We hope that these findings will inform future researchers on the possibilities for model improvement of the global nitrogen cycle.

  18. Simplified kinetic models of methanol oxidation on silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.

    2005-01-01

    Recently the authors developed a microkinetic model of methanol oxidation on silver [A. Andreasen, H. Lynggaard, C. Stegelmann, P. Stoltze, Surf. Sci. 544 (2003) 5-23]. The model successfully explains both surface science experiments and kinetic experiments at industrial conditions applying...

  19. Advances in NMR Spectroscopy for Lipid Oxidation Assessment

    Science.gov (United States)

    Although there are many analytical methods developed for the assessment of lipid oxidation, different analytical methods often give different, sometimes even contradictory, results. The reason for this inconsistency is that although there are many different kinds of oxidation products, most methods ...

  20. Is automated kinetic measurement superior to end-point for advanced oxidation protein product?

    Science.gov (United States)

    Oguz, Osman; Inal, Berrin Bercik; Emre, Turker; Ozcan, Oguzhan; Altunoglu, Esma; Oguz, Gokce; Topkaya, Cigdem; Guvenen, Guvenc

    2014-01-01

    Advanced oxidation protein product (AOPP) was first described as an oxidative protein marker in chronic uremic patients and measured with a semi-automatic end-point method. Subsequently, the kinetic method was introduced for AOPP assay. We aimed to compare these two methods by adapting them to a chemistry analyzer and to investigate the correlation between AOPP and fibrinogen, the key molecule responsible for human plasma AOPP reactivity, microalbumin, and HbA1c in patients with type II diabetes mellitus (DM II). The effects of EDTA and citrate-anticogulated tubes on these two methods were incorporated into the study. This study included 93 DM II patients (36 women, 57 men) with HbA1c levels > or = 7%, who were admitted to the diabetes and nephrology clinics. The samples were collected in EDTA and in citrate-anticoagulated tubes. Both methods were adapted to a chemistry analyzer and the samples were studied in parallel. In both types of samples, we found a moderate correlation between the kinetic and the endpoint methods (r = 0.611 for citrate-anticoagulated, r = 0.636 for EDTA-anticoagulated, p = 0.0001 for both). We found a moderate correlation between fibrinogen-AOPP and microalbumin-AOPP levels only in the kinetic method (r = 0.644 and 0.520 for citrate-anticoagulated; r = 0.581 and 0.490 for EDTA-anticoagulated, p = 0.0001). We conclude that adaptation of the end-point method to automation is more difficult and it has higher between-run CV% while application of the kinetic method is easier and it may be used in oxidative stress studies.

  1. Effects of sonication and advanced chemical oxidants on the unicellular green alga Dunaliella tertiolecta and cysts, larvae and adults of the brine shrimp Artemia salina: a prospective treatment to eradicate invasive organisms from ballast water.

    Science.gov (United States)

    Gavand, Meghana R; McClintock, James B; Amsler, Charles D; Peters, Robert W; Angus, Robert A

    2007-11-01

    Uptake and release of ship-borne ballast water is a major factor contributing to introductions of aquatic phytoplankton and invasive macroinvertebrates. Some invasive unicellular algae can cause harmful algal blooms and produce toxins that build up in food chains. Moreover, to date, few studies have compared the efficacy of ballast water treatments against different life history phases of aquatic macroinvertebrates. In the present study, the unicellular green alga Dunaliella tertiolecta, and three discrete life history phases of the brine shrimp Artemia salina, were independently used as model organisms to study the efficacy of sonication as well as the advanced oxidants, hydrogen peroxide and ozone, as potential ballast water treatments. Algal cells and brine shrimp cysts, nauplii, and adults were subjected to individual and combined treatments of sonication and advanced oxidants. Combined rather than individual treatments consistently yielded the highest levels of mortality in algal cells (100% over a 2 min exposure) and in brine shrimp (100% and 95% for larvae and adults, respectively, over a 2 min exposure). In contrast, mortality levels in brine shrimp cysts (66% over 2 min; increased to 92% over a 20 min exposure) were moderately high but consistently lower than that detected for larval or adult shrimp. Our results indicate that a combination of sonication and advanced chemical oxidants may be a promising method to eradicate aquatic unicellular algae and macroinvertebrates in ballast water.

  2. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.

    2017-01-01

    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  3. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  4. Advanced computational modelling for drying processes – A review

    International Nuclear Information System (INIS)

    Defraeye, Thijs

    2014-01-01

    Highlights: • Understanding the product dehydration process is a key aspect in drying technology. • Advanced modelling thereof plays an increasingly important role for developing next-generation drying technology. • Dehydration modelling should be more energy-oriented. • An integrated “nexus” modelling approach is needed to produce more energy-smart products. • Multi-objective process optimisation requires development of more complete multiphysics models. - Abstract: Drying is one of the most complex and energy-consuming chemical unit operations. R and D efforts in drying technology have skyrocketed in the past decades, as new drivers emerged in this industry next to procuring prime product quality and high throughput, namely reduction of energy consumption and carbon footprint as well as improving food safety and security. Solutions are sought in optimising existing technologies or developing new ones which increase energy and resource efficiency, use renewable energy, recuperate waste heat and reduce product loss, thus also the embodied energy therein. Novel tools are required to push such technological innovations and their subsequent implementation. Particularly computer-aided drying process engineering has a large potential to develop next-generation drying technology, including more energy-smart and environmentally-friendly products and dryers systems. This review paper deals with rapidly emerging advanced computational methods for modelling dehydration of porous materials, particularly for foods. Drying is approached as a combined multiphysics, multiscale and multiphase problem. These advanced methods include computational fluid dynamics, several multiphysics modelling methods (e.g. conjugate modelling), multiscale modelling and modelling of material properties and the associated propagation of material property variability. Apart from the current challenges for each of these, future perspectives should be directed towards material property

  5. Advances in power system modelling, control and stability analysis

    CERN Document Server

    Milano, Federico

    2016-01-01

    Advances in Power System Modelling, Control and Stability Analysis captures the variety of new methodologies and technologies that are changing the way modern electric power systems are modelled, simulated and operated.

  6. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  7. Polarons in advanced materials

    CERN Document Server

    Alexandrov, Alexandre Sergeevich

    2008-01-01

    Polarons in Advanced Materials will lead the reader from single-polaron problems to multi-polaron systems and finally to a description of many interesting phenomena in high-temperature superconductors, ferromagnetic oxides, conducting polymers and molecular nanowires. The book divides naturally into four parts. Part I introduces a single polaron and describes recent achievements in analytical and numerical studies of polaron properties in different electron-phonon models. Part II and Part III describe multi-polaron physics, and Part IV describes many key physical properties of high-temperature superconductors, colossal magnetoresistance oxides, conducting polymers and molecular nanowires, which were understood with polarons and bipolarons. The book is written in the form of self-consistent reviews authored by well-established researchers actively working in the field and will benefit scientists and postgraduate students with a background in condensed matter physics and materials sciences.

  8. FINAL REPORT on Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Hee C. NO; Nam Z. Cho

    2011-01-01

    The U.S. Department of Energy is performing research and development that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Generation IV very high temperature reactor (VHTR). Phenomena Identification and Ranking studies to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important. Consequently, the development of advanced air ingress-related models and verification & validation are of very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air ingress will occur through the break, leading to oxidation of the in-core graphite structure and fuel. This study indicates that depending on the location and the size of the pipe break, the air ingress phenomena are different. In an effort to estimate the proper safety margin, experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model are required. It will also require effective strategies to mitigate the effects of oxidation, eventually. This 3-year project (FY 2008–FY 2010) is focused on various issues related to the VHTR air-ingress accident, including (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the core bottom structures, (d) structural tests of the oxidized core bottom structures, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i) verification and validation of the coupled models.

  9. The miscibility and oxidation study of the simulated metallic spent fuel for the development of an advanced spent fuel management process

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. J.; You, G. S.; Ju, J. S.; Lee, E. P.; Seo, H. S.; Ahn, S. B. [Korea Atomic Energy Research Institute, Taejeon (Korea)

    1999-03-01

    The simulated metallic spent fuel ingots were fabricated and evaluated the oxidation rates and the activation energies under several temperature conditions to develop an advanced spent fuel management process. It was also checked the immiscibility of the some elements with metal uranium. 2 refs., 45 figs. (Author)

  10. The Advanced Modeling, Simulation and Analysis Capability Roadmap Vision for Engineering

    Science.gov (United States)

    Zang, Thomas; Lieber, Mike; Norton, Charles; Fucik, Karen

    2006-01-01

    This paper summarizes a subset of the Advanced Modeling Simulation and Analysis (AMSA) Capability Roadmap that was developed for NASA in 2005. The AMSA Capability Roadmap Team was chartered to "To identify what is needed to enhance NASA's capabilities to produce leading-edge exploration and science missions by improving engineering system development, operations, and science understanding through broad application of advanced modeling, simulation and analysis techniques." The AMSA roadmap stressed the need for integration, not just within the science, engineering and operations domains themselves, but also across these domains. Here we discuss the roadmap element pertaining to integration within the engineering domain, with a particular focus on implications for future observatory missions. The AMSA products supporting the system engineering function are mission information, bounds on information quality, and system validation guidance. The Engineering roadmap element contains 5 sub-elements: (1) Large-Scale Systems Models, (2) Anomalous Behavior Models, (3) advanced Uncertainty Models, (4) Virtual Testing Models, and (5) space-based Robotics Manufacture and Servicing Models.

  11. Advanced fuel cycle cost estimation model and its cost estimation results for three nuclear fuel cycles using a dynamic model in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungki, E-mail: sgkim1@kaeri.re.kr [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ko, Wonil [Korea Atomic Energy Research Institute, 1045 Daedeokdaero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Youn, Saerom; Gao, Ruxing [University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Bang, Sungsig, E-mail: ssbang@kaist.ac.kr [Korea Advanced Institute of Science and Technology, Department of Business and Technology Management, 291 Deahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2015-11-15

    Highlights: • The nuclear fuel cycle cost using a new cost estimation model was analyzed. • The material flows of three nuclear fuel cycle options were calculated. • The generation cost of once-through was estimated to be 66.88 mills/kW h. • The generation cost of pyro-SFR recycling was estimated to be 78.06 mills/kW h. • The reactor cost was identified as the main cost driver of pyro-SFR recycling. - Abstract: The present study analyzes advanced nuclear fuel cycle cost estimation models such as the different discount rate model and its cost estimation results. To do so, an analysis of the nuclear fuel cycle cost of three options (direct disposal (once through), PWR–MOX (Mixed OXide fuel), and Pyro-SFR (Sodium-cooled Fast Reactor)) from the viewpoint of economic sense, focusing on the cost estimation model, was conducted using a dynamic model. From an analysis of the fuel cycle cost estimation results, it was found that some cost gap exists between the traditional same discount rate model and the advanced different discount rate model. However, this gap does not change the priority of the nuclear fuel cycle option from the viewpoint of economics. In addition, the fuel cycle costs of OT (Once-Through) and Pyro-SFR recycling based on the most likely value using a probabilistic cost estimation except for reactor costs were calculated to be 8.75 mills/kW h and 8.30 mills/kW h, respectively. Namely, the Pyro-SFR recycling option was more economical than the direct disposal option. However, if the reactor cost is considered, the economic sense in the generation cost between the two options (direct disposal vs. Pyro-SFR recycling) can be changed because of the high reactor cost of an SFR.

  12. Experimental research on influencing factors of wet removal of NO from coal-fired flue gas by UV/H2O2 advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Wet removal of NO from coal-fired flue gas by UV/H2O2 Advanced Oxidation Process (AOP) were investigated in a self-designed UV-bubble reactor. Several main influencing factors (UV intensity, H2O2 initial concentration, initial pH value, solution temperature, NO initial concentration, liquid-gas ratio and O2 percentage content) on the NO removal efficiency were studied. The results showed that UV intensity, H2O2 initial concentration, NO initial concentration and liquid-gas ratio are the main influencing factors. In the best conditions, the highest NO removal efficiency by UV/H2O2 advanced oxidation process could reach 82.9%. Based on the experimental study, the influencing mechanism of the relevant influencing factors were discussed in depth.

  13. High temperature creep strength of Advanced Radiation Resistant Oxide Dispersion Strengthened Steels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Austenitic stainless steel may be one of the candidates because of good strength and corrosion resistance at the high temperatures, however irradiation swelling well occurred to 120dpa at high temperatures and this leads the decrease of the mechanical properties and dimensional stability. Compared to this, ferritic/martensitic steel is a good solution because of excellent thermal conductivity and good swelling resistance. Unfortunately, the available temperature range of ferritic/martensitic steel is limited up to 650 .deg. C. ODS steel is the most promising structural material because of excellent creep and irradiation resistance by uniformly distributed nano-oxide particles with a high density which is extremely stable at the high temperature in ferritic/martensitic matrix. In this study, high temperature strength of advanced radiation resistance ODS steel was investigated for the core structural material of next generation nuclear systems. ODS martensitic steel was designed to have high homogeneity, productivity and reproducibility. Mechanical alloying, hot isostactic pressing and hot rolling processes were employed to fabricate the ODS steels, and creep rupture test as well as tensile test were examined to investigate the behavior at high temperatures. ODS steels were fabricated by a mechanical alloying and hot consolidation processes. Mechanical properties at high temperatures were investigated. The creep resistance of advanced radiation resistant ODS steels was more superior than those of ferritic/ martensitic steel, austenitic stainless steel and even a conventional ODS steel.

  14. Measurement and modeling of advanced coal conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.; Smoot, L.D.; Brewster, B.S. (Advanced Fuel Research, Inc., East Hartford, CT (United States) Brigham Young Univ., Provo, UT (United States))

    1991-01-01

    The overall objective of this program is the development of predictive capability for the design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. This program will merge significant advances made in measuring and quantitatively describing the mechanisms in coal conversion behavior. Comprehensive computer codes for mechanistic modeling of entrained-bed gasification. Additional capabilities in predicting pollutant formation will be implemented and the technology will be expanded to fixed-bed reactors.

  15. 高级氧化技术在废水处理中的应用研究进展%Application and Progress of Advanced Oxidation Processes inWastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    钟理; 詹怀宇

    2000-01-01

    探讨了高级氧化技术(Advanced Oxidation Processes,即AOPs)如:O3/H2O2,Fenton试剂均相湿式催化氧化;H2O2/UV、O3/UV、O3/H2O2/UV均相光催化氧化;多相湿式催化氧化,多相光催化氧化,多相催化和生化氧化等过程处理废水及其反应机理,论述了AOPs技术在工业废水处理方面的研究进展。%The wastewater treatment and reaction mechanism by Advanced Oxidation Processes such as homogeneous wet catalytic oxidation of O3/H2O2 and Fenton agent, homogeneous photocatalytic oxidation of H2O2/UV,O3/UV and O2/H2O2/UV, and heterogeneous wet catalytic oxidation, heterogeneous photocatalytic oxidation, heterogeneous catalytic and biochemical oxidation were explored. The investigation and progress of AOPs technique in industrial wastewater treatment were overviewed.

  16. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, B.A.

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  17. Materials for advanced power engineering 2010. Proceedings

    International Nuclear Information System (INIS)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd

    2010-01-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  18. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd [eds.

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  19. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  20. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  1. A conceptual model for the fuel oxidation of defective fuel

    International Nuclear Information System (INIS)

    Higgs, J.D.; Lewis, B.J.; Thompson, W.T.; He, Z.

    2007-01-01

    A mechanistic conceptual model has been developed to predict the fuel oxidation behaviour in operating defective fuel elements for water-cooled nuclear reactors. This theoretical work accounts for gas-phase transport and sheath reactions in the fuel-to-sheath gap to determine the local oxygen potential. An improved thermodynamic analysis has also been incorporated into the model to describe the equilibrium state of the oxidized fuel. The fuel oxidation kinetics treatment accounts for multi-phase transport including normal diffusion and thermodiffusion for interstitial oxygen migration in the solid, as well as gas-phase transport in the fuel pellet cracks. The fuel oxidation treatment is further coupled to a heat conduction equation. A numerical solution of the coupled transport equations is obtained by a finite-element technique with the FEMLAB 3.1 software package. The model is able to provide radial-axial profiles of the oxygen-to-uranium ratio and the fuel temperatures as a function of time in the defective element for a wide range of element powers and defect sizes. The model results are assessed against coulometric titration measurements of the oxygen-to-metal profile for pellet samples taken from ten spent defective elements discharged from the National Research Universal Reactor at the Chalk River Laboratories and commercial reactors

  2. 1H NMR and SPME-GC/MS study of hydrolysis, oxidation and other reactions occurring during in vitro digestion of non-oxidized and oxidized sunflower oil. Formation of hydroxy-octadecadienoates.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-01-01

    Both fresh and slightly oxidized sunflower oils, as models of omega-6 rich lipids, were submitted to in vitro gastrointestinal digestion and studied by 1 H NMR and SPME-GC/MS. Changes in lipolysis degree, lipid composition and oxidative level were studied by 1 H NMR. Three quantitative approaches were used and several equations were newly developed. In oxidized oil digestates slightly lower hydrolysis and a higher advance of oxidation took place during digestion. This latter was evidenced by a greater decrease of lipid unsaturation degree and enhanced generation of oxidation products (cis,trans-hydroperoxy-octadecadienoates, cis,trans- and trans,trans-hydroxy-octadecadienoates). For the first time, the generation of hydroxy-octadecadienoates during in vitro digestion is reported. Furthermore, SPME-GC/MS study of non-digested and digested samples headspaces confirmed that lipid oxidation occurred: abundances of volatile markers increased (including potentially toxic alpha,beta-unsaturated aldehydes), especially in oxidized oils digestates. Markers of Maillard-type and esterification reactions were also detected in the digestates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Paraquat: model for oxidant-initiated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bus, J.S.; Gibson, J.E.

    1984-04-01

    Paraquat, a quaternary ammonium bipyridyl herbicide, produces degenerative lesions in the lung after systemic administration to man and animals. The pulmonary toxicity of paraquat resembles in several ways the toxicity of several other lung toxins, including oxygen, nitrofurantoin and bleomycin. Although a definitive mechanism of toxicity of parquat has not been delineated, a cyclic single electron reduction/oxidation of the parent molecule is a critical mechanistic event. The redox cycling of paraquat has two potentially important consequences relevant to the development of toxicity: generation of activated oxygen (e.g., superoxide anion, hydrogen perioxide, hydroxyl radical) which is highly reactive to cellular macromolecules; and/or oxidation of reducing equivalents (e.g., NADPH, reduced glutathione) necessary for normal cell function. Paraquat-induced pulmonary toxicity, therefore, is a potentially useful model for evaluation of oxidant mechanisms of toxicity. Furthermore, characterization of the consequences of intracellular redox cycling of xenobiotics will no doubt provide basic information regarding the role of this phenomena in the development of chemical toxicity. 105 references, 2 figures.

  4. FY-09 Report: Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim

    2009-12-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in the Next Generation Nuclear Plant (NGNP)/Gen-IV very high temperature reactor (VHTR). Phenomena Identification and Ranking Studies to date have identified that an air ingress event following on the heels of a VHTR depressurization is a very important incident. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority for the NGNP Project. Following a loss of coolant and system depressurization incident, air will enter the core through the break, leading to oxidation of the in-core graphite structure and fuel. If this accident occurs, the oxidation will accelerate heat-up of the bottom reflector and the reactor core and will eventually cause the release of fission products. The potential collapse of the core bottom structures causing the release of CO and fission products is one of the concerns. Therefore, experimental validation with the analytical model and computational fluid dynamic (CFD) model developed in this study is very important. Estimating the proper safety margin will require experimental data and tools, including accurate multidimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. It will also require effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods Research and Development project. The second year of this three-year project (FY-08 to FY-10) was focused on (a) the analytical, CFD, and experimental study of air ingress caused by density-driven, stratified, countercurrent flow; (b) advanced graphite oxidation experiments and modeling; (c) experimental study of burn-off in the core bottom structures, (d) implementation of advanced

  5. Advanced Small Modular Reactor Economics Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Thomas J [ORNL

    2014-10-01

    The US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (SMR) research and development activities focus on four key areas: Developing assessment methods for evaluating advanced SMR technologies and characteristics; and Developing and testing of materials, fuels and fabrication techniques; and Resolving key regulatory issues identified by US Nuclear Regulatory Commission and industry; and Developing advanced instrumentation and controls and human-machine interfaces. This report focuses on development of assessment methods to evaluate advanced SMR technologies and characteristics. Specifically, this report describes the expansion and application of the economic modeling effort at Oak Ridge National Laboratory. Analysis of the current modeling methods shows that one of the primary concerns for the modeling effort is the handling of uncertainty in cost estimates. Monte Carlo–based methods are commonly used to handle uncertainty, especially when implemented by a stand-alone script within a program such as Python or MATLAB. However, a script-based model requires each potential user to have access to a compiler and an executable capable of handling the script. Making the model accessible to multiple independent analysts is best accomplished by implementing the model in a common computing tool such as Microsoft Excel. Excel is readily available and accessible to most system analysts, but it is not designed for straightforward implementation of a Monte Carlo–based method. Using a Monte Carlo algorithm requires in-spreadsheet scripting and statistical analyses or the use of add-ons such as Crystal Ball. An alternative method uses propagation of error calculations in the existing Excel-based system to estimate system cost uncertainty. This method has the advantage of using Microsoft Excel as is, but it requires the use of simplifying assumptions. These assumptions do not necessarily bring into question the analytical results. In fact, the

  6. Parabens abatement from surface waters by electrochemical advanced oxidation with boron doped diamond anodes.

    Science.gov (United States)

    Domínguez, Joaquín R; Muñoz-Peña, Maria J; González, Teresa; Palo, Patricia; Cuerda-Correa, Eduardo M

    2016-10-01

    The removal efficiency of four commonly-used parabens by electrochemical advanced oxidation with boron-doped diamond anodes in two different aqueous matrices, namely ultrapure water and surface water from the Guadiana River, has been analyzed. Response surface methodology and a factorial, composite, central, orthogonal, and rotatable (FCCOR) statistical design of experiments have been used to optimize the process. The experimental results clearly show that the initial concentration of pollutants is the factor that influences the removal efficiency in a more remarkable manner in both aqueous matrices. As a rule, as the initial concentration of parabens increases, the removal efficiency decreases. The current density also affects the removal efficiency in a statistically significant manner in both aqueous matrices. In the water river aqueous matrix, a noticeable synergistic effect on the removal efficiency has been observed, probably due to the presence of chloride ions that increase the conductivity of the solution and contribute to the generation of strong secondary oxidant species such as chlorine or HClO/ClO - . The use of a statistical design of experiments made it possible to determine the optimal conditions necessary to achieve total removal of the four parabens in ultrapure and river water aqueous matrices.

  7. Study of the degradation of organic molecules complexing radionuclides by using Advanced Oxidation Processes

    International Nuclear Information System (INIS)

    Rekab, K.

    2014-01-01

    This research thesis reports the study of the application of two AOPs (Advanced Oxidation Processes) to degrade and mineralise organic molecules which are complexing radio-elements, and thus to allow their concentrations by trapping on mineral matrices. EDTA (ethylene diamine tetraacetic acid) is chosen as reference organic complexing agent for preliminary tests performed with inactive cobalt 59 before addressing actual nuclear effluents with active cobalt 60. The author first presents the industrial context (existing nuclear wastes, notably liquid effluents and their processing) and proposes an overview of the state of the art on adsorption and precipitation of cobalt (natural and radioactive isotope). Then, the author presents the characteristics of the various studied oxides, the photochemical reactor used to perform tests, experimental techniques and operational modes. Results are then presented regarding various issues: adsorption of EDTA and the Co-EDTA complex, and cobalt precipitation; determination of the lamp photon flow by chemical actinometry and by using the Keitz method; efficiency of different processes (UV, UV/TiO 2 , UV/H 2 O 2 ) to degrade EDTA and to degrade the Co-EDTA complex; processing of a nuclear effluent coming from La Hague pools with determination of decontamination factors

  8. Advanced Model of Electromagnetic Launcher

    Directory of Open Access Journals (Sweden)

    Karel Leubner

    2015-01-01

    Full Text Available An advanced 2D model of electromagnetic launcher is presented respecting the influence of eddy currents induced in the accelerated ferromagnetic body. The time evolution of electromagnetic field in the system, corresponding forces acting on the projectile and time evolutions of its velocity and current in the field circuit are solved numerically using own application Agros2d. The results are then processed and evaluated in Wolfram Mathematica. The methodology is illustrated with an example whose results are discussed.

  9. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    Directory of Open Access Journals (Sweden)

    J. Lee-Taylor

    2012-08-01

    Full Text Available The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere. Gas phase oxidation schemes are generated for the C8–C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA formation for various preexisting organic aerosol concentration (COA. As expected, simulation results show that (i SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii SOA yield decreases with decreasing COA, (iii SOA production rates increase with increasing COA and (iv the number of oxidation steps (i.e. generations needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA, suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA with large yields. The limitations of the model are discussed.

  10. Recent Advances in Atmospheric Chemistry of Mercury

    Directory of Open Access Journals (Sweden)

    Lin Si

    2018-02-01

    Full Text Available Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate back to the ground. Modeling efforts to assess global cycling of mercury require an accurate understanding of atmospheric mercury chemistry. Yet, there are several key uncertainties precluding accurate modeling of physical and chemical transformations. We focus this article on recent studies (since 2015 on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in determining the dominant atmospheric oxidant of elemental mercury (Hg0 and understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3—in the aqueous reduction of oxidized mercury compounds (HgII as well as in the heterogeneous reactions of Hg on atmospheric-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.

  11. Monte Carlo simulation models of breeding-population advancement.

    Science.gov (United States)

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  12. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  13. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Augustine Chioma Affam

    2018-01-01

    Full Text Available The study compared the technical efficiency and economic cost of five advanced oxidation processes (Fenton, UV photo-Fenton, solar photo-Fenton, UV/TiO2/H2O2 and FeGAC/H2O2 for degradation of the pesticides chlorpyrifos cypermethrin and chlorothalonil in aqueous solution. The highest degradation in terms of COD and TOC removals and improvement of the biodegradability (BOD5/COD ratio index (BI were observed to be (i Fenton - 69.03% (COD, 55.61% (TOC, and 0.35 (BI; (ii UV photo-Fenton -78.56% (COD, 63.76% (TOC and 0.38 (BI;  (iii solar photo-Fenton - 74.19% (COD, 58.32% (TOC and 0.36 (BI; (iv UV/TiO2/H2O2 - 53.62% (COD, 21.54% (TOC, and 0.26 (BI; and  (v the most technical efficient and cost effective process was FeGAC/H2O2. At an optimum condition (FeGAC 5 g/L, H2O2 100 mg/L, and reaction time of 60 min at pH 3, the COD and TOC removal efficiency were 96.19 and 85.60%, respectively, and the biodegradation index was 0.40. The degradation rate constant and cost were 0.0246 min-1 and $0.74/kg TOC, respectively. The FeGAC/H2O2 process is the most technically efficient and cost effective for pretreatment of the pesticide wastewater before biological treatment. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 26nd September 2017; Accepted: 27th September 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Affam, A.C., Chaudhuri, M., Kutty, S.R.M. (2018. Comparison of Five Advanced Oxidation Processes for Degradation of Pesticide in Aqueous Solution. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 179-186 (doi:10.9767/bcrec.13.1.1394.179-186

  14. Degradation of acrylamide by the UV/chlorine advanced oxidation process.

    Science.gov (United States)

    Gao, Ze-Chen; Lin, Yi-Li; Xu, Bin; Pan, Yang; Xia, Sheng-Ji; Gao, Nai-Yun; Zhang, Tian-Yang; Chen, Ming

    2017-11-01

    The degradation of acrylamide (AA) during UV/chlorine advanced oxidation process (AOP) was investigated in this study. The degradation of AA was negligible during UV irradiation alone. However, AA could be effectively degraded and mineralized during UV/chlorination due to the generation of hydroxyl radicals (OH). The degradation kinetics of AA during UV/chlorination fitted the pseudo-first order kinetics with the rate constant between AA and OH radicals being determined as 2.11 × 10 9  M -1  s -1 . The degradation rate and mineralization of AA during UV/chlorination were significantly promoted at acidic conditions as well as increasing chlorine dosage. The volatile degradation products of AA during UV/chlorination were identified using gas chromatography-mass spectrometry and the degradation pathways were then proposed accordingly. The formation of disinfection by-products (DBPs) in Milli-Q water and tap water during UV/chlorination of AA was also investigated. The DBPs included chloroform, dichloroacetonitrile, trichloroacetonitrile, 2,2-dichloroacetamide and 2,2,2-trichloroacetamide. Furthermore, the variations of AA degradation during UV/chlorination in different real water samples were evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  16. Modeling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer i Nàcher, Carles

    2011-01-01

    on N2O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO2– participates as final electron acceptor compared to the oxic pathway. Among......Nitrous oxide (N2O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N2O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N2O...

  17. Advanced oxidation and adsorption modification of dust waste from standard moulding sands

    Directory of Open Access Journals (Sweden)

    A. Baliński

    2010-04-01

    Full Text Available The article discusses the process of advanced oxidation (AO with application of ultrasounds and surface modification of the dust waste collected during dry dedusting of processed moulding sands with bentonite binder. A beneficial effect of both AO and adsorption modification of dust waste, when performed with the selected type of polyelectrolyte, on the technological and mechanical properties of moulding sands prepared with an addition of this dust has been stated. In spite of the bentonite content in moulding sand reduced by 43% and replaced with modified dust waste, the mechanical properties, i.e. the compression and tensile strengths, examined on sand specimens have been improved by 10% and 13%, respectively, with no harm to other basic technological sand properties. At the same time, it was also possible to reduce by about 30% the emission rate of the main gaseous component from the BTEX group, i.e. benzene.

  18. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1994-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  19. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  20. A Structural Molar Volume Model for Oxide Melts Part III: Fe Oxide-Containing Melts

    Science.gov (United States)

    Thibodeau, Eric; Gheribi, Aimen E.; Jung, In-Ho

    2016-04-01

    As part III of this series, the model is extended to iron oxide-containing melts. All available experimental data in the FeO-Fe2O3-Na2O-K2O-MgO-CaO-MnO-Al2O3-SiO2 system were critically evaluated based on the experimental condition. The variations of FeO and Fe2O3 in the melts were taken into account by using FactSage to calculate the Fe2+/Fe3+ distribution. The molar volume model with unary and binary model parameters can be used to predict the molar volume of the molten oxide of the Li2O-Na2O-K2O-MgO-CaO-MnO-PbO-FeO-Fe2O3-Al2O3-SiO2 system in the entire range of compositions, temperatures, and oxygen partial pressures from Fe saturation to 1 atm pressure.

  1. Photoelectrolysis at the oxide-electrolyte interface as interpreted through the 'transition' layer model

    Science.gov (United States)

    Kalia, R. K.; Weber, Michael F.; Schumacher, L.; Dignam, M. J.

    1980-12-01

    A transition layer model of the oxide-electrolyte interface, proposed earlier by one of us, is outlined and then examined in the light of experimental data relating primarily to photoelectrolysis of water at semiconducting oxide electrodes. The model provides useful insight into the behaviour of the system and allows a calculation of thc minimum bias potential needed for photoelectrolysis, thus illuminating the origin of the requirement for such an external bias. In order to electrolyse water without a bias, the model requires an n-type oxide to be sufficiently reduced so that it is thermodynamically capable of chemically reducing water to produce hydrogen at 1 atm pressure. Similarly, for bias-free operation, a p-type metal oxide must be thermodynamically unstable with respect to the release of oxygen at 1 atm pressure. In the face of these requirements it is apparent that oxide stability is bound to be in general a serious problem for nonstoichiometric single metal oxides.

  2. Mathematical modeling of nitrous oxide production in an anaerobic/oxic/anoxic process.

    Science.gov (United States)

    Ding, Xiaoqian; Zhao, Jianqiang; Hu, Bo; Chen, Ying; Ge, Guanghuan; Li, Xiaoling; Wang, Sha; Gao, Kun; Tian, Xiaolei

    2016-12-01

    This study incorporates three currently known nitrous oxide (N 2 O) production pathways: ammonium-oxidizing bacteria (AOB) denitrification, incomplete hydroxylamine (NH 2 OH) oxidation, and heterotrophic denitrification on intracellular polymers, into a mathematical model to describe N 2 O production in an anaerobic/oxic/anoxic (AOA) process for the first time. The developed model was calibrated and validated by four experimental cases, then evaluated by two independent anaerobic/aerobic (AO) studies from literature. The modeling results displayed good agreement with the measured data. N 2 O was primarily generated in the aerobic stage by AOB denitrification (67.84-81.64%) in the AOA system. Smaller amounts of N 2 O were produced via incomplete NH 2 OH oxidation (15.61-32.17%) and heterotrophic denitrification on intracellular polymers (0-12.47%). The high nitrite inhibition on N 2 O reductase led to the increased N 2 O accumulation in heterotrophic denitrification on intracellular polymers. The new model was capable of modeling nitrification-denitrification dynamics and heterotrophic denitrification on intracellular polymers in the AOA system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Global atmospheric model for mercury including oxidation by bromine atoms

    Directory of Open Access Journals (Sweden)

    C. D. Holmes

    2010-12-01

    Full Text Available Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model. We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by

  4. Advanced oxidation protein products induce chondrocyte apoptosis via receptor for advanced glycation end products-mediated, redox-dependent intrinsic apoptosis pathway.

    Science.gov (United States)

    Wu, Qian; Zhong, Zhao-Ming; Zhu, Si-Yuan; Liao, Cong-Rui; Pan, Ying; Zeng, Ji-Huan; Zheng, Shuai; Ding, Ruo-Ting; Lin, Qing-Song; Ye, Qing; Ye, Wen-Bin; Li, Wei; Chen, Jian-Ting

    2016-01-01

    Pro-inflammatory cytokine-induced chondrocyte apoptosis is a primary cause of cartilage destruction in the progression of rheumatoid arthritis (RA). Advanced oxidation protein products (AOPPs), a novel pro-inflammatory mediator, have been confirmed to accumulate in patients with RA. However, the effect of AOPPs accumulation on chondrocyte apoptosis and the associated cellular mechanisms remains unclear. The present study demonstrated that the plasma formation of AOPPs was enhanced in RA rats compared with normal. Then, chondrocyte were treated with AOPPs-modified rat serum albumin (AOPPs-RSA) in vitro. Exposure of chondrocyte to AOPPs activated nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and increased expression of NADPH oxidase subunits, which was mediated by receptor for advanced glycation end products (RAGE), but not scavenger receptor CD36. Moreover, AOPPs challenge triggered NADPH oxidase-dependent ROS generation which induced mitochondrial dysfunction and endoplasmic reticulum stress resulted in activation of caspase family that eventually lead to apoptosis. Lastly, blockade of RAGE, instead of CD36, largely attenuated these signals. Our study demonstrated first time that AOPPs induce chondrocyte apoptosis via RAGE-mediated and redox-dependent intrinsic apoptosis pathway in vitro. These data implicates that AOPPs may represent a novel pathogenic factor that contributes to RA progression. Targeting AOPPs-triggered cellular mechanisms might emerge as a promising therapeutic option for patients with RA.

  5. Advanced Mirror & Modelling Technology Development

    Science.gov (United States)

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  6. The effect of pH on UV-based advanced oxidation technologies - 1,4-Dioxane degradation

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, Tania [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052 (Australia); Coleman, Heather M., E-mail: h.coleman@unsw.edu.au [UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, NSW 2052 (Australia); Amal, Rose [ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052 (Australia)

    2010-10-15

    1,4-Dioxane, is a synthetic organic compound used widely throughout industry as a solvent. 1,4-Dioxane causes liver damage and kidney failure and has been shown to be carcinogenic to animals, and is a potential carcinogen to humans. Its recalcitrant nature means that conventional water treatment methods are ineffective in removing it from water. A class of technologies called advanced oxidation technologies has been shown to completely mineralise 1,4-dioxane. In this study the effects of pH on TiO{sub 2} photocatalysis reactor systems were investigated. pH was found to significantly affect the efficiencies of these processes with neutral pH conditions the most effective.

  7. Behaviour of defective CANDU fuel: fuel oxidation kinetic and thermodynamic modelling

    International Nuclear Information System (INIS)

    Higgs, J.

    2005-01-01

    The thermal performance of operating CANDU fuel under defect conditions is affected by the ingress of heavy water into the fuel element. A mechanistic model has been developed to predict the extent of fuel oxidation in defective fuel and its affect on fuel thermal performance. A thermodynamic treatment of such oxidized fuel has been performed as a basis for the boundary conditions in the kinetic model. Both the kinetic and thermodynamic models have been benchmarked against recent experimental work. (author)

  8. Destruction of microcystins by conventional and advanced oxidation processes: A review

    DEFF Research Database (Denmark)

    Sharma, Virender K.; Triantis, Theodoros M.; Antoniou, Maria G.

    2012-01-01

    oxidants is strongly affected by water quality parameters like pH, DOC and oxidant dose. Although there is a general trend for MCs oxidation (ozone>permanganate>chlorine>>>chlorine-based oxidants), the selection of the appropriate oxidant for toxin elimination during water treatment should be assessed...

  9. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes.

    Science.gov (United States)

    Thanekar, Pooja; Panda, Mihir; Gogate, Parag R

    2018-01-01

    Degradation of carbamazepine (CBZ), a widely detected recalcitrant pharmaceutical in sewage treatment plant (STP) effluent, has been studied in the present work using combination of hydrodynamic cavitation (HC) and advanced oxidation processes (AOPs). Due to its recalcitrant nature, it cannot be removed effectively by the conventional wastewater treatment plants (WWTPs) which make CBZ a pharmaceutical of very high environmental relevance and impact as well as stressing the need for developing new treatment schemes. In the present study, the effect of inlet pressure (3-5bar) and operating pH (3-11) on the extent of degradation have been initially studied with an objective of maximizing the degradation using HC alone. The established optimum conditions as pressure of 4bar and pH of 4 resulted in maximum degradation of CBZ as 38.7%. The combined approaches of HC with ultraviolet irradiation (HC+UV), hydrogen peroxide (HC+H 2 O 2 ), ozone (HC+O 3 ) as well as combination of HC, H 2 O 2 and O 3 (HC+H 2 O 2 +O 3 ) have been investigated under optimized pressure and operating pH. It was observed that a significant increase in the extent of degradation is obtained for the combined operations of HC+H 2 O 2 +O 3 , HC+O 3 , HC+H 2 O 2 , and HC+UV with the actual extent of degradation being 100%, 91.4%, 58.3% and 52.9% respectively. Kinetic analysis revealed that degradation of CBZ fitted into first order kinetics model for all the approaches. The processes were also compared on the basis of cavitational yield and also in terms of total treatment cost. Overall, it has been demonstrated that combined process of HC, H 2 O 2 and O 3 can be effectively used for treatment of wastewater containing CBZ. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  11. Risk assessment model for development of advanced age-related macular degeneration.

    Science.gov (United States)

    Klein, Michael L; Francis, Peter J; Ferris, Frederick L; Hamon, Sara C; Clemons, Traci E

    2011-12-01

    To design a risk assessment model for development of advanced age-related macular degeneration (AMD) incorporating phenotypic, demographic, environmental, and genetic risk factors. We evaluated longitudinal data from 2846 participants in the Age-Related Eye Disease Study. At baseline, these individuals had all levels of AMD, ranging from none to unilateral advanced AMD (neovascular or geographic atrophy). Follow-up averaged 9.3 years. We performed a Cox proportional hazards analysis with demographic, environmental, phenotypic, and genetic covariates and constructed a risk assessment model for development of advanced AMD. Performance of the model was evaluated using the C statistic and the Brier score and externally validated in participants in the Complications of Age-Related Macular Degeneration Prevention Trial. The final model included the following independent variables: age, smoking history, family history of AMD (first-degree member), phenotype based on a modified Age-Related Eye Disease Study simple scale score, and genetic variants CFH Y402H and ARMS2 A69S. The model did well on performance measures, with very good discrimination (C statistic = 0.872) and excellent calibration and overall performance (Brier score at 5 years = 0.08). Successful external validation was performed, and a risk assessment tool was designed for use with or without the genetic component. We constructed a risk assessment model for development of advanced AMD. The model performed well on measures of discrimination, calibration, and overall performance and was successfully externally validated. This risk assessment tool is available for online use.

  12. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  13. Recent advances in modeling nutrient utilization in ruminants1

    NARCIS (Netherlands)

    Kebreab, E.; Dijkstra, J.; Bannink, A.; France, J.

    2009-01-01

    Mathematical modeling techniques have been applied to study various aspects of the ruminant, such as rumen function, post-absorptive metabolism and product composition. This review focuses on advances made in modeling rumen fermentation and its associated rumen disorders, and energy and nutrient

  14. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  15. Advanced fuels safety comparisons

    International Nuclear Information System (INIS)

    Grolmes, M.A.

    1977-01-01

    The safety considerations of advanced fuels are described relative to the present understanding of the safety of oxide fueled Liquid Metal Fast Breeder Reactors (LMFBR). Safety considerations important for the successful implementation of advanced fueled reactors must early on focus on the accident energetics issues of fuel coolant interactions and recriticality associated with core disruptive accidents. It is in these areas where the thermal physical property differences of the advanced fuel have the greatest significance

  16. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    Science.gov (United States)

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  17. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  18. pH effect on decolorization of raw textile wastewater polluted with reactive dyes by advanced oxidation with uv/h2o2

    NARCIS (Netherlands)

    Racyte, J.; Rimeika, M.; Bruning, H.

    2009-01-01

    The effectiveness of the advanced oxidation process (UV/H2O2) in decolorizing real textile wastewater polluted with commercial reactive dyes - Reactive Yellow 84 and Reactive Red 141 was investigated. All the experiments were performed in a lab-scale reactor with the original high pH of the

  19. Fatty acid oxidation changes and the correlation with oxidative stress in different preeclampsia-like mouse models.

    Directory of Open Access Journals (Sweden)

    Xiaoyan Ding

    Full Text Available BACKGROUND: Long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD expression is decreased in placenta of some cases of preeclampsia (PE which may result in free fatty acid (FFA increased. High FFA level will induce oxidative stress, so abnormal long-chain fatty acid-oxidation may participate in the pathogenesis of PE through oxidative stress pathway. METHODS: PE-like groups were ApoC3 transgenic mice with abnormal fatty acid metabolism, classical PE-like models with injection of Nw-nitro-L-arginine-methyl ester (L-NA or lipopolysaccharide (LPS and the antiphospholipid syndrome (APS mouse model with β2GPI injection (ApoC3+NS, ApoC3+L-NA, L-NA, LPS and β2GPI groups. The control group was wild-type mice with normal saline injection. Except for β2GPI mice, the other mice were subdivided into pre-implantation (Pre and mid-pregnancy (Mid subgroups by injection time. RESULTS: All PE-like groups showed hypertension and proteinuria except ApoC3+NS mice only showed hypertension. Serum FFA levels increased significantly except in LPS group compared to controls (P<0.05. LCHAD mRNA and protein expression in the liver and placenta was significantly higher for ApoC3+NS, ApoC3+L-NA and β2GPI mice and lower for L-NA mice than controls (P<0.05 but did not differ between LPS mice and controls. P47phox mRNA and protein expression in the liver significantly increased in all PE-like groups except LPS group, while P47phox expression in the placenta only significantly increased in L-NA and β2GPI groups. CONCLUSIONS: Abnormal long-chain fatty acid-oxidation may play a different role in different PE-like models and in some cases participate in the pathogenesis of PE through oxidative stress pathway.

  20. Oxidation kinetics of model compounds of metabolic waste in supercritical water

    Science.gov (United States)

    Webley, Paul A.; Holgate, Henry R.; Stevenson, David M.; Tester, Jefferson W.

    1990-01-01

    In this NASA-funded study, the oxidation kinetics of methanol and ammonia in supercritical water have been experimentally determined in an isothermal plug flow reactor. Theoretical studies have also been carried out to characterize key reaction pathways. Methanol oxidation rates were found to be proportional to the first power of methanol concentration and independent of oxygen concentration and were highly activated with an activation energy of approximately 98 kcal/mole over the temperature range 480 to 540 C at 246 bar. The oxidation of ammonia was found to be catalytic with an activation energy of 38 kcal/mole over temperatures ranging from 640 to 700 C. An elementary reaction model for methanol oxidation was applied after correction for the effect of high pressure on the rate constants. The conversion of methanol predicted by the model was in good agreement with experimental data.

  1. The aqueous chemistry of oxides

    CERN Document Server

    Bunker, Bruce C

    2016-01-01

    The Aqueous Chemistry of Oxides is a comprehensive reference volume and special topics textbook that explores all of the major chemical reactions that take place between oxides and aqueous solutions. The book highlights the enormous impact that oxide-water reactions have in advanced technologies, materials science, geochemistry, and environmental science.

  2. Modelling of stable isotope fractionation by methane oxidation and diffusion in landfill cover soils

    International Nuclear Information System (INIS)

    Mahieu, Koenraad; De Visscher, Alex; Vanrolleghem, Peter A.; Van Cleemput, Oswald

    2008-01-01

    A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between 12 CH 4 , 13 CH 4 , and 12 CH 3 D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7 vol% in the concentration and a RMSD of 0.8 per mille in the δ 13 C value, with δ 13 C the relative 13 C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods

  3. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    Science.gov (United States)

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  4. Oxidative desulfurization: kinetic modelling.

    Science.gov (United States)

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  5. Oxidative desulfurization: Kinetic modelling

    International Nuclear Information System (INIS)

    Dhir, S.; Uppaluri, R.; Purkait, M.K.

    2009-01-01

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H 2 O 2 over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel

  6. Energy metabolism and nutrient oxidation in the pregnant mink (Mustela vison) as a model for other carnivores.

    Science.gov (United States)

    Tauson, A H; Elnif, J; Hansen, N E

    1994-12-01

    The mink is a strict carnivore and a seasonal breeder, which may be used as an experimental model for other carnivores. The present investigation comprised a total of 44 balance experiments, each including a 24-h measurement of heat production by indirect calorimetry, carried out from mating until close to parturition. For observations with a nonprotein respiratory quotient between 0.7 and 1.0 (n = 42), quantitative oxidation of nutrients was calculated. The weight gain of the uterus during pregnancy was studied in 41 females killed either before mating, before implantation, after implantation or in mid or late true gestation, and energy retention was calculated. Heat production did not increase with advancing stage of gestation. Mean energy retention was low and in some individuals with repeated measurements even negative, indicating that part of the energy requirement for pregnancy may be supplied by mobilization of body reserves. This was reflected by a high level (42%) of fat oxidation in relation to total heat production. Protein oxidation accounted for 38% of heat production. The weight gain of the uterus during pregnancy could be described by logarithmic functions. Energy deposition in fetal tissue was low and only averaged approximately 350 kJ 47 d after mating.

  7. Interim Service ISDN Satellite (ISIS) network model for advanced satellite designs and experiments

    Science.gov (United States)

    Pepin, Gerard R.; Hager, E. Paul

    1991-01-01

    The Interim Service Integrated Services Digital Network (ISDN) Satellite (ISIS) Network Model for Advanced Satellite Designs and Experiments describes a model suitable for discrete event simulations. A top-down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ISDN modeling abstractions are added to permit the determination and performance for the NASA Satellite Communications Research (SCAR) Program.

  8. High-temperature oxidation chemistry of n-butanol--experiments in low-pressure premixed flames and detailed kinetic modeling.

    Science.gov (United States)

    Hansen, N; Harper, M R; Green, W H

    2011-12-07

    An automated reaction mechanism generator is used to develop a predictive, comprehensive reaction mechanism for the high-temperature oxidation chemistry of n-butanol. This new kinetic model is an advancement of an earlier model, which had been extensively tested against earlier experimental data (Harper et al., Combust. Flame, 2011, 158, 16-41). In this study, the model's predictive capabilities are improved by targeting isomer-resolved quantitative mole fraction profiles of flame species in low-pressure flames. To this end, a total of three burner-stabilized premixed flames are isomer-selectively analyzed by flame-sampling molecular-beam time-of-flight mass spectrometry using photoionization by tunable vacuum-ultraviolet synchrotron radiation. For most species, the newly developed chemical kinetic model is capable of accurately reproducing the experimental trends in these flames. The results clearly indicate that n-butanol is mainly consumed by H-atom abstraction with H, O, and OH, forming predominantly the α-C(4)H(9)O radical (CH(3)CH(2)CH(2)˙CHOH). Fission of C-C bonds in n-butanol is only predicted to be significant in a similar, but hotter flame studied by Oßwald et al. (Combust. Flame, 2011, 158, 2-15). The water-elimination reaction to 1-butene is found to be of no importance under the premixed conditions studied here. The initially formed isomeric C(4)H(9)O radicals are predicted to further oxidize by reacting with H and O(2) or to decompose to smaller fragments via β-scission. Enols are detected experimentally, with their importance being overpredicted by the model.

  9. Recent advances in importance sampling for statistical model checking

    NARCIS (Netherlands)

    Reijsbergen, D.P.; de Boer, Pieter-Tjerk; Scheinhardt, Willem R.W.; Haverkort, Boudewijn R.H.M.

    2013-01-01

    In the following work we present an overview of recent advances in rare event simulation for model checking made at the University of Twente. The overview is divided into the several model classes for which we propose algorithms, namely multicomponent systems, Markov chains and stochastic Petri

  10. Thermal oxidative degradation kinetics of agricultural residues using distributed activation energy model and global kinetic model.

    Science.gov (United States)

    Ren, Xiu'e; Chen, Jianbiao; Li, Gang; Wang, Yanhong; Lang, Xuemei; Fan, Shuanshi

    2018-08-01

    The study concerned the thermal oxidative degradation kinetics of agricultural residues, peanut shell (PS) and sunflower shell (SS). The thermal behaviors were evaluated via thermogravimetric analysis and the kinetic parameters were determined by using distributed activation energy model (DAEM) and global kinetic model (GKM). Results showed that thermal oxidative decomposition of two samples processed in three zones; the ignition, burnout, and comprehensive combustibility between two agricultural residues were of great difference; and the combustion performance could be improved by boosting heating rate. The activation energy ranges calculated by the DAEM for the thermal oxidative degradation of PS and SS were 88.94-145.30 kJ mol -1 and 94.86-169.18 kJ mol -1 , respectively. The activation energy obtained by the GKM for the oxidative decomposition of hemicellulose and cellulose was obviously lower than that for the lignin oxidation at identical heating rate. To some degree, the determined kinetic parameters could acceptably simulate experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi

    Science.gov (United States)

    Giguere, Andrew T.; Murthy, Ganti S.; Bottomley, Peter J.; Sayavedra-Soto, Luis A.

    2018-01-01

    ABSTRACT Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi. The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH4+). Up to 60% of NH4+-based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO3−), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO2], and nitrous oxide [N2O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification. PMID:29577088

  12. Genome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi.

    Science.gov (United States)

    Mellbye, Brett L; Giguere, Andrew T; Murthy, Ganti S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Chaplen, Frank W R

    2018-01-01

    Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO 2 , and N 2 O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide gas sources and sinks during complete nitrification in an aerobic coculture of two model nitrifying bacteria, the ammonia-oxidizing bacterium Nitrosomonas europaea and the nitrite-oxidizing bacterium Nitrobacter winogradskyi . The model includes biotic genome-scale metabolic models (iFC578 and iFC579) for each nitrifier and abiotic N oxide reactions. Modeling suggested both biotic and abiotic reactions are important sources and sinks of N oxides, particularly under microaerobic conditions predicted to occur in coculture. In particular, integrative modeling suggested that previous models might have underestimated gross NO production during nitrification due to not taking into account its rapid oxidation in both aqueous and gas phases. The integrative model may be found at https://github.com/chaplenf/microBiome-v2.1. IMPORTANCE Modern agriculture is sustained by application of inorganic nitrogen (N) fertilizer in the form of ammonium (NH 4 + ). Up to 60% of NH 4 + -based fertilizer can be lost through leaching of nitrifier-derived nitrate (NO 3 - ), and through the emission of N oxide gases (i.e., nitric oxide [NO], N dioxide [NO 2 ], and nitrous oxide [N 2 O] gases), the latter being a potent greenhouse gas. Our approach to modeling of nitrification suggests that both biotic and abiotic mechanisms function as important sources and sinks of N oxides during microaerobic conditions and that previous models might have underestimated gross NO production during nitrification.

  13. Comprehensive atmospheric modeling of reactive cyclic siloxanes and their oxidation products

    Science.gov (United States)

    Janechek, Nathan J.; Hansen, Kaj M.; Stanier, Charles O.

    2017-07-01

    Cyclic volatile methyl siloxanes (cVMSs) are important components in personal care products that transport and react in the atmosphere. Octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), dodecamethylcyclohexasiloxane (D6), and their gas-phase oxidation products have been incorporated into the Community Multiscale Air Quality (CMAQ) model. Gas-phase oxidation products, as the precursor to secondary organic aerosol from this compound class, were included to quantify the maximum potential for aerosol formation from gas-phase reactions with OH. Four 1-month periods were modeled to quantify typical concentrations, seasonal variability, spatial patterns, and vertical profiles. Typical model concentrations showed parent compounds were highly dependent on population density as cities had monthly averaged peak D5 concentrations up to 432 ng m-3. Peak oxidized D5 concentrations were significantly less, up to 9 ng m-3, and were located downwind of major urban areas. Model results were compared to available measurements and previous simulation results. Seasonal variation was analyzed and differences in seasonal influences were observed between urban and rural locations. Parent compound concentrations in urban and peri-urban locations were sensitive to transport factors, while parent compounds in rural areas and oxidized product concentrations were influenced by large-scale seasonal variability in OH.

  14. Kinetic Modeling of a Heterogeneous Fenton Oxidative Treatment of Petroleum Refining Wastewater

    Science.gov (United States)

    Basheer Hasan, Diya'uddeen; Abdul Raman, Abdul Aziz; Wan Daud, Wan Mohd Ashri

    2014-01-01

    The mineralisation kinetics of petroleum refinery effluent (PRE) by Fenton oxidation were evaluated. Within the ambit of the experimental data generated, first-order kinetic model (FKM), generalised lumped kinetic model (GLKM), and generalized kinetic model (GKM) were tested. The obtained apparent kinetic rate constants for the initial oxidation step (k 2′), their final oxidation step (k 1′), and the direct conversion to endproducts step (k 3′) were 10.12, 3.78, and 0.24 min−1 for GKM; 0.98, 0.98, and nil min−1 for GLKM; and nil, nil, and >0.005 min−1 for FKM. The findings showed that GKM is superior in estimating the mineralization kinetics. PMID:24592152

  15. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  16. Can polymer thermal oxidative ageing be modelled?

    International Nuclear Information System (INIS)

    Audouin, L.; Colin, X.; Fayolle, B.; Richaud, E.; Verdu, J.

    2010-01-01

    It has been supposed, for a long time, that kinetic modelling of polymer ageing for nonempirical lifetime prediction was out of reach for two main reasons: hyper-complexity of mechanisms and heterogeneity of reactions. The arguments relative to both aspects are examined here. It is concluded that, thanks to recent advances, especially the introduction of numerical methods, kinetic modelling is possible in various important practical cases. (authors)

  17. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    International Nuclear Information System (INIS)

    Zirker, Larry; Jerred, Nathan; Charit, Indrajit; Cole, James

    2012-01-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  18. Recent technological advances in using mouse models to study ovarian cancer.

    Science.gov (United States)

    House, Carrie Danielle; Hernandez, Lidia; Annunziata, Christina Messineo

    2014-01-01

    Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the United States with disease recurrence being the major cause of morbidity and mortality. Despite recent advances in our understanding of the molecular mechanisms responsible for the development of SEOC, the survival rate for women with this disease has remained relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer, including xenograft, syngeneic, and genetically engineered mice, have been developed to provide a mechanism for studying the development and progression of SEOC. Such models strive to increase our understanding of the etiology and dissemination of ovarian cancer in order to overcome barriers to early detection and resistance to standard chemotherapy. Although there is not a single model that is most suitable for studying ovarian cancer, improvements have led to current models that more closely mimic human disease in their genotype and phenotype. Other advances in the field, such as live animal imaging techniques, allow effective monitoring of the microenvironment and therapeutic efficacy. New and improved preclinical mouse models, combined with technological advances to study such models, will undoubtedly render success of future human clinical trials for patients with SEOC.

  19. Analisis Tingkat Motivasi Siswa Dalam Pembelajaran IPA Model Advance Organizer Berbasis Proyek

    Directory of Open Access Journals (Sweden)

    Tasiwan -

    2014-04-01

    Full Text Available atur kemajuan (advance organizer berbasis proyek. Sampel penelitian dipilih secara acak. Pada kelas  eksperimen diterapkan model pembelajaran advance organizer berbasis proyek sedangkan pada kelas kontrol diterapkan pembelajaran langsung (direct instruction tanpa advance organizer. Sebelum pembelajaran di kelas, siswa eksperimen dikelompokkan menjadi 8 kelompok yang terdiri atas 4 – 5 siswa. Setiap kelompok ditugaskan untuk merealisasikan proyek bel listrik, rangkaian arus seri – paralel, dan tuas. Produk proyek digunakan dalam pembelajaran dikelas sebagai advance organizer. Data diperoleh melalui observasi partisipatif, penilaian produk, peta konsep, laporan eksperimen, dan angket. Instrumen motivasi menggunakan skala motivasi ARCS. Hasil penelitian menunjukkan bahwa kelas eksperimen memiliki tingkat motivasi lebih baik dalam aspek perhatian, relevansi, kepercayaan diri, dan kepuasan pembelajaran dengan rata – rata tingkat motivasi sebesar 77,20, sedangkan tanpa advance organizer berbasis proyek sebesar 71,10. Disarankan siswa diberikan kemandirian penuh dalam proyek. This study was conducted to analyze the level of student motivation in learning science through models of advance organizer  based project . Samples were selected at random . In the experimental class advance organizer applied learning model based on a class project while learning control direct instruction without advance organizer . Prior learning in the classroom , students are grouped into 8 experimental groups consisting of 4-5 students . Each group was assigned a project to realize an electric bell , the circuit current series - parallel , and lever . Products used in a learning class project as advance organizer . The data obtained through participant observation , assessment product , concept maps , experimental reports , and questionnaires . Motivation instrument using ARCS motivation scale . Results showed that the experimental class had better motivation level

  20. Pengolahan Limbah Cair Pabrik Pupuk Urea Menggunakan Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Darmadi Darmadi

    2014-06-01

    Full Text Available Limbah cair pabrik pupuk urea terdiri dari urea dan amonium yang masing-masing mempunyai konsentrasi berkisar antara 1500-10000 ppm dan 400-3000 ppm. Konsentrasi urea yang tinggi di dalam badan air dapat menyebabkan blooming algae dalam ekosistem tersebut yang dapat mengakibatkan kehidupan biota air lain terserang penyakit. Peristiwa ini terjadi karena kurangnya nutrisi bagi biota air dan sedikitnya sinar matahari yang dapat menembusi permukaan air. Disamping kedua hal tersebut di atas, algae juga dapat memproduksi senyawa beracun bagi biota air dan manusia. Penelitian ini bertujuan untuk mengolah urea menggunakan oksidasi konvensional (H2O2 dan Advanced Oxidation Processes (kombinasi H2O2-Fe2+ pada pH 5 dengan parameter yang digunakan adalah variasi konsen-trasi awal H2O2  dan konsentrasi Fe2+. Hasil percobaan menunjukkan bahwa penurunan konsentrasi urea tertinggi diperoleh pada penggunaan reagen fenton (8000 ppm H2O2 dan 500 ppm Fe2+, yaitu dapat menurunkan urea dari konsentrasi awal urea 2566,145 ppm menjadi 0 ppm. Kinetika reaksi dekomposisi urea menjadi amonium dan amonium menjadi nitrit dan nitrat yang diuji mengikuti laju kinetika reaksi orde 1 (satu terhadap urea dan orde satu terhadap amonium dengan konstanta laju reaksi masing-masing k1 = 0,019 dan k2 = 0,022 min-1.

  1. Branched-Chain Amino Acid Supplementation Reduces Oxidative Stress and Prolongs Survival in Rats with Advanced Liver Cirrhosis

    Science.gov (United States)

    Mifuji-Moroka, Rumi; Hara, Nagisa; Miyachi, Hirohide; Sugimoto, Ryosuke; Tanaka, Hideaki; Fujita, Naoki; Gabazza, Esteban C.; Takei, Yoshiyuki

    2013-01-01

    Long-term supplementation with branched-chain amino acids (BCAA) is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC) in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (PBCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver. PMID:23936183

  2. A mathematical model of bacteria capable of complete oxidation of ammonium predicts improved nitrogen removal and reduced production of nitrous oxide

    OpenAIRE

    Pokhilko, Alexandra; Ebenhöh, Oliver

    2017-01-01

    The removal of excess nutrients\\ud from water ecosystems requires oxidation of toxic\\ud ammonium by two types of bacteria; one oxidizes\\ud ammonium to nitrite and the other oxidizes nitrite\\ud to nitrate. The oxidation of ammonium is often\\ud incomplete and nitrite accumulates. Nitrite is also\\ud toxic, and is converted by the ammoniumoxidizing\\ud bacteria to nitrous oxide, a powerful\\ud greenhouse gas. Here we use mathematical\\ud modeling to analyze a potential solution to the\\ud problems re...

  3. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  4. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  5. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    Science.gov (United States)

    Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2016-01-01

    Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the

  6. Model-free adaptive control of advanced power plants

    Science.gov (United States)

    Cheng, George Shu-Xing; Mulkey, Steven L.; Wang, Qiang

    2015-08-18

    A novel 3-Input-3-Output (3.times.3) Model-Free Adaptive (MFA) controller with a set of artificial neural networks as part of the controller is introduced. A 3.times.3 MFA control system using the inventive 3.times.3 MFA controller is described to control key process variables including Power, Steam Throttle Pressure, and Steam Temperature of boiler-turbine-generator (BTG) units in conventional and advanced power plants. Those advanced power plants may comprise Once-Through Supercritical (OTSC) Boilers, Circulating Fluidized-Bed (CFB) Boilers, and Once-Through Supercritical Circulating Fluidized-Bed (OTSC CFB) Boilers.

  7. Oxidative stress of crystalline lens in rat menopausal model.

    Science.gov (United States)

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    To evaluate lenticular oxidative stress in rat menopausal models. Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3), and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4). Total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) measurements of the crystalline lenses were analyzed. The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05). The mean TOS values were similar between the groups (p >0.05), whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001). Our results indicate that menopause may not promote cataract formation.

  8. Materials for advanced power engineering 2010. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte-Beckers, Jacqueline; Contrepois, Quentin; Beck, Tilmann; Kuhn, Bernd (eds.)

    2010-07-01

    The 9th Liege Conference on ''Materials for Advanced Power Engineering'' presents the results of the materials related COST Actions 536 ''Alloy Development for Critical Components of Environmentally Friendly Power Plants'' and 538 ''High Temperature Plant Lifetime Extension''. In addition, the broad field of current materials research perspectives for high efficiency, low- and zero- emission power plants and new energy technologies for the next decades are reported. The Conference proceedings are structured as follows: 1. Materials for advanced steam power plants; 2. Gas turbine materials; 3. Materials for nuclear fission and fusion; 4. Solid oxide fuel cells; 5. Corrosion, thermomechanical fatigue and modelling; 6. Zero emission power plants.

  9. Use of advanced oxidation processes for removal of micropollutants

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    photocatalysis when illuminated with UV light, and it may furthermore be arranged so the photocatalyst is immobilized on the UV quartz tubes by coating, which removes the need for a constant addition and subsequent removal of TiO2 to the system. The effect of the current system, and the TiO2 modified system...... was investigated by degradation of the synthetic estrogen 17α-ethinylestradiol (EE2). EE2 was used as the model compound since it is a very potent endocrine disruptor that has been found to have endocrine effects on fish at ppt levels. Also, the disinfection capability with photocatalysis was investigated...... of the microorganisms, photocatalysis works by oxidizing the cell membrane for microorganism adsorbed to the coated surface, which is a more inefficient process per mole UV light....

  10. History of Resistance Welding Oxide Dispersion Strengthened Cladding and other High Temperature Materials at Center for Advanced Energy Studies

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Nathan Jerred; Dr. Indrajit Charit; James Cole

    2012-03-01

    Research proposal 08-1079, 'A Comparative Study of Welded ODS Cladding Materials for AFCI/GNEP,' was funded in 2008 under an Advanced Fuel Cycle Initiative (AFCI) Research and Development Funding Opportunity, number DE-PS07-08ID14906. Th proposal sought to conduct research on joining oxide dispersion strengthen (ODS) tubing material to a solid end plug. This document summarizes the scientific and technical progress achieved during the project, which ran from 2008 to 2011.

  11. High burnup performance of an advanced oxide fuel assembly in FFTF [Fast Flux Test Facility] with ferritic/martensitic materials

    International Nuclear Information System (INIS)

    Bridges, A.E.; Saito, G.H.; Lovell, A.J.; Makenas, B.J.

    1986-05-01

    An advanced oxide fuel assembly with ferritic/martensitic materials has successfully completed its sixth cycle of irradiation in the FFTF, reaching a peak pellet burnup greater than 100 MWd/KgM and a peak fast fluence greater than 15 x 10 22 n/cm 2 . The cladding, wire-wrap, and duct material for the ACO-1 test assembly is the ferritic/martensitic alloy, HT9, which was chosen for use in long-lifetime fuel assemblies because of its good nominal temperature creep strength and low swelling rate. Valuable experience on the performance of HT9 materials has been gained from this test, advancing our quest for long-lifetime fuel. Pertinent data, obtained from the ACO-1 test assembly, will support the irradiation of the Core Demonstration Experiment in FFTF

  12. Evaluating four mathematical models for nitrous oxide production by autotrophic ammonia-oxidizing bacteria.

    Science.gov (United States)

    Ni, Bing-Jie; Yuan, Zhiguo; Chandran, Kartik; Vanrolleghem, Peter A; Murthy, Sudhir

    2013-01-01

    There is increasing evidence showing that ammonia-oxidizing bacteria (AOB) are major contributors to N(2)O emissions from wastewater treatment plants (WWTPs). Although the fundamental metabolic pathways for N(2)O production by AOB are now coming to light, the mechanisms responsible for N(2)O production by AOB in WWTP are not fully understood. Mathematical modeling provides a means for testing hypotheses related to mechanisms and triggers for N(2)O emissions in WWTP, and can then also become a tool to support the development of mitigation strategies. This study examined the ability of four mathematical model structures to describe two distinct mechanisms of N(2)O production by AOB. The production mechanisms evaluated are (1) N(2)O as the final product of nitrifier denitrification with NO(2)- as the terminal electron acceptor and (2) N(2)O as a byproduct of incomplete oxidation of hydroxylamine (NH(2)OH) to NO(2)-. The four models were compared based on their ability to predict N(2)O dynamics observed in three mixed culture studies. Short-term batch experimental data were employed to examine model assumptions related to the effects of (1) NH4+ concentration variations, (2) dissolved oxygen (DO) variations, (3) NO(2)- accumulations and (4) NH(2OH as an externally provided substrate. The modeling results demonstrate that all these models can generally describe the NH4+, NO(2)-, and NO(3)- data. However, none of these models were able to reproduce all measured N(2)O data. The results suggest that both the denitrification and NH(2)OH pathways may be involved in N(2)O production and could be kinetically linked by a competition for intracellular reducing equivalents. A unified model capturing both mechanisms and their potential interactions needs to be developed with consideration of physiological complexity. Copyright © 2012 Wiley Periodicals, Inc.

  13. Removal of surfactants from water by adsorption on activated carbon and advanced oxidation process; Eliminacion de surfactantes de las aguas mediante adsorcion sobre carbon activado y oxidacion avanzada

    Energy Technology Data Exchange (ETDEWEB)

    Mendez Diaz, J. D.; Sanchez Polo, M.; Rivera Utrilla, J.; Bautista, M. I.

    2007-07-01

    The objective of this study was to analyze the elimination process of surfactants from water, using sodium dode-cilbencenesulfonate (SDBS) as model compound, by means of adsorption on activated carbons as well as different processes of advanced oxidation (O{sub 3}, O{sub 3}/H{sub 2}O{sub 2} and O{sub 3}/activated carbon). Results obtained have shown that the activated carbons used have a high efficiency to eliminate SDBS from waters which was enhanced when the adsorption process was carried out in the presence of bacteria. With regard to the oxidation processes studied, the results have indicated that the efficiency in the elimination of SDBS from water of the system based on the simultaneous use of O{sub 3} and powder activated carbon (PAC) is much higher than those of the other systems studied (O{sub 3},O{sub 3}/H{sub 2}O{sub 2}). (Author) 15 refs.

  14. A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell

    Science.gov (United States)

    Coman, Paul T.; Rayman, Sean; White, Ralph E.

    2016-03-01

    This paper presents a mathematical model built for analyzing the intricate thermal behavior of a 18650 LCO (Lithium Cobalt Oxide) battery cell during thermal runaway when venting of the electrolyte and contents of the jelly roll (ejecta) is considered. The model consists of different ODEs (Ordinary Differential Equations) describing reaction rates and electrochemical reactions, as well as the isentropic flow equations for describing electrolyte venting. The results are validated against experimental findings from Golubkov et al. [1] [Andrey W. Golubkov, David Fuchs, Julian Wagner, Helmar Wiltsche, Christoph Stangl, Gisela Fauler, Gernot Voitice Alexander Thaler and Viktor Hacker, RSC Advances, 4:3633-3642, 2014] for two cases - with flow and without flow. The results show that if the isentropic flow equations are not included in the model, the thermal runaway is triggered prematurely at the point where venting should occur. This shows that the heat dissipation due to ejection of electrolyte and jelly roll contents has a significant contribution. When the flow equations are included, the model shows good agreement with the experiment and therefore proving the importance of including venting.

  15. Advanced modelling and numerical strategies in nuclear thermal-hydraulics

    International Nuclear Information System (INIS)

    Staedtke, H.

    2001-01-01

    The first part of the lecture gives a brief review of the current status of nuclear thermal hydraulics as it forms the basis of established system codes like TRAC, RELAP5, CATHARE or ATHLET. Specific emphasis is given to the capabilities and limitations of the underlying physical modelling and numerical solution strategies with regard to the description of complex transient two-phase flow and heat transfer conditions as expected to occur in PWR reactors during off-normal and accident conditions. The second part of the lecture focuses on new challenges and future needs in nuclear thermal-hydraulics which might arise with regard to re-licensing of old plants using bestestimate methodologies or the design and safety analysis of Advanced Light Water Reactors relying largely on passive safety systems. In order to meet these new requirements various advanced modelling and numerical techniques will be discussed including extended wellposed (hyperbolic) two-fluid models, explicit modelling of interfacial area transport or higher order numerical schemes allowing a high resolution of local multi-dimensional flow processes.(author)

  16. 2-Chlorophenol Removal of Aqueous Solution Using Advanced Oxidation Processes Resulting from Iron/ Persulfate and Ultra Violet/ Persulfate

    Directory of Open Access Journals (Sweden)

    Shokufeh Astereki

    2016-06-01

    Full Text Available Background: Advanced oxidation processes are used to remove toxic aromatic compounds with low biodegradability, such as 2-chlorophenol. This study investigated the use of sulfate (SO4- and persulfate (S2O82- radicals, as one of the advanced oxidation methods, to remove 2- chlorophenol from aquatic solutions. Methods: This experimental and pilot-scale study was carried out using two chemical batch reactors; one of the reactors equipped with UV lamps and the other was on the hot plate. In iron/ persulfate (Fe/S2O82- and ultra violet/ persulfate (UV/S2O82- processes different parameters were investigated. Results: Iron, UV, the initial pH of the solution, persulfate concentration have considerable effects on the elimination of 2-chlorophenol in both processes. In both processes, the maximum elimination occurred in acidic conditions. The elimination efficiency was increased by increasing the concentration of 2-chlorophenol and UV intensity, and also by decreasing the concentration of persulfate and iron. Accordingly, in iron/ persulfate and ultra violet/ persulfate processes 2-chlorophenol was eliminated with 99.96% and 99.58% efficiencies, respectively. Conclusion: Sulfate radicals produced from activated persulfate ions with hot-Fe ion and UV radiation have significant impact on the removal of 2-chlorophenol. Therefore, the processes of Fe/S2O82- and UV/S2O82- can be regarded as good choices for industrial wastewater treatment plants operators in the future.

  17. Modelling the Krebs cycle and oxidative phosphorylation.

    Science.gov (United States)

    Korla, Kalyani; Mitra, Chanchal K

    2014-01-01

    The Krebs cycle and oxidative phosphorylation are the two most important sets of reactions in a eukaryotic cell that meet the major part of the total energy demands of a cell. In this paper, we present a computer simulation of the coupled reactions using open source tools for simulation. We also show that it is possible to model the Krebs cycle with a simple black box with a few inputs and outputs. However, the kinetics of the internal processes has been modelled using numerical tools. We also show that the Krebs cycle and oxidative phosphorylation together can be combined in a similar fashion - a black box with a few inputs and outputs. The Octave script is flexible and customisable for any chosen set-up for this model. In several cases, we had no explicit idea of the underlying reaction mechanism and the rate determining steps involved, and we have used the stoichiometric equations that can be easily changed as and when more detailed information is obtained. The script includes the feedback regulation of the various enzymes of the Krebs cycle. For the electron transport chain, the pH gradient across the membrane is an essential regulator of the kinetics and this has been modelled empirically but fully consistent with experimental results. The initial conditions can be very easily changed and the simulation is potentially very useful in a number of cases of clinical importance.

  18. Oxidation flow reactors (OFRs): overview of recent field and modeling studies

    Science.gov (United States)

    Jimenez, Jose-Luis; Palm, Brett B.; Peng, Zhe; Hu, Weiwei; Ortega, Amber M.; Li, Rui; Campuzano-Jost, Pedro; Day, Douglas A.; Stark, Harald; Brune, William H.; de Gouw, Joost; Schroder, Jason

    2016-04-01

    Oxidation flow reactors (OFRs) are popular tools for studying SOA formation and aging in both laboratory and field experiments. In an OFR, the concentration of an oxidant (OH, O3, or NO3) can be increased, leading to hours-months of equivalent atmospheric oxidation during the several-minute OFR residence time. Using gas- and particle-phase measurements from several recent field campaigns, we demonstrate SOA formation after oxidation of ambient air in an OFR. Typically, more SOA formation is observed from nighttime air than daytime air. This indicates that the concentration of SOA-forming gases in ambient air is relatively higher at night. Measured ambient VOCs are not able to explain the magnitude of SOA formation in the OFR, suggesting that typically unmeasured S/IVOCs (possibly VOC oxidation products or direct emissions) play a substantial intermediary role in ambient SOA formation. We also present highlights from recent OFR oxidant chemistry modeling studies. HOx, Ox, and photolysis chemistry was modeled for two common OH production methods (utilizing 185+254 nm UV light, or 254 nm only). OH exposure (OHexp) can be estimated within a factor of ~2 using model-derived equations, and can be verified in situ using VOC decay measurements. OHexp is strongly dependent on external OH reactivity, which may cause significant OH suppression in some circumstances (e.g., lab/source studies with high precursor concentrations). UV light photolysis and reaction with oxygen atoms are typically not major reaction pathways. Modeling the fate of condensable low-volatility organic gases (LVOCs) formed in an OFR suggests that LVOC fate is dependent on particle condensational sink. E.g., for the range of particle condensational sink at a remote pine forest, anywhere from 20-80% of produced LVOCs were predicted to condense onto aerosols for an OHexp of ~1 day, with the remainder lost to OFR or sampling line walls. Similar to large chamber wall loss corrections, a correction is needed

  19. Ferumoxtran-10 advanced magnetics.

    NARCIS (Netherlands)

    Leenders, W.P.J.

    2003-01-01

    Ferumoxtran-10 (Combidex) is an ultra-small superparamagnetic iron oxide molecular resonance imaging contrast agent under development by Advanced Magnetics Ltd and Guerbet for the principal indication of lymph node imaging.

  20. Advanced modelling of optical coherence tomography systems

    International Nuclear Information System (INIS)

    Andersen, Peter E; Thrane, Lars; Yura, Harold T; Tycho, Andreas; Joergensen, Thomas M; Frosz, Michael H

    2004-01-01

    Analytical and numerical models for describing and understanding the light propagation in samples imaged by optical coherence tomography (OCT) systems are presented. An analytical model for calculating the OCT signal based on the extended Huygens-Fresnel principle valid both for the single and multiple scattering regimes is reviewed. An advanced Monte Carlo model for calculating the OCT signal is also reviewed, and the validity of this model is shown through a mathematical proof based on the extended Huygens-Fresnel principle. Moreover, for the first time the model is verified experimentally. From the analytical model, an algorithm for enhancing OCT images is developed; the so-called true-reflection algorithm in which the OCT signal may be corrected for the attenuation caused by scattering. For the first time, the algorithm is demonstrated by using the Monte Carlo model as a numerical tissue phantom. Such algorithm holds promise for improving OCT imagery and to extend the possibility for functional imaging

  1. Modelling toluene oxidation : Incorporation of mass transfer phenomena

    NARCIS (Netherlands)

    Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.

    The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the

  2. Vitamin D deficiency, oxidative stress and antioxidant status: only weak association seen in the absence of advanced age, obesity or pre-existing disease.

    Science.gov (United States)

    Wang, Erica W; Siu, Parco M; Pang, Marco Y; Woo, Jean; Collins, Andrew R; Benzie, Iris F F

    2017-07-01

    Vitamin D deficiency (plasma 25-hydroxycholecalciferol (25(OH)D)70 % of participants were vitamin D deficient. No significant correlations and no biomarker differences across 25(OH)D quartiles or groups were seen except for total antioxidant status. A weak direct association (r 0·252, Pstress biomarkers in the absence of advanced age, obesity and disease, though some evidence of depleted antioxidant status in those with vitamin D deficiency was seen. Poor antioxidant status may pre-date increased oxidative stress. Study of effects of correction of deficiency on antioxidant status and oxidative stress in vitamin D-deficient but otherwise healthy subjects is needed.

  3. Advanced Experimental Analysis of Controls on Microbial Fe(III) Oxide Reduction - Final Report - 09/16/1996 - 03/16/2001; FINAL

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2001-01-01

    Considering the broad influence that microbial Fe(III) oxide reduction can have on subsurface metal/organic contaminant biogeochemistry, understanding the mechanisms that control this process is critical for predicting the behavior and fate of these contaminants in anaerobic subsurface environments. Knowledge of the factors that influence the rates of growth and activity of Fe(III) oxide-reducing bacteria is critical for predicting (i.e., modeling) the long-term influence of these organisms on the fate of contaminants in the subsurface, and for effectively utilizing Fe(III) oxide reduction and associated geochemical affects for the purpose of subsurface metal/organic contamination bioremediation. This research project will refine existing models for microbiological and geochemical controls on Fe(III) oxide reduction, using laboratory reactor systems that mimic, to varying degrees, the physical and chemical conditions of the subsurface. Novel experimental methods for studying the kinetics of microbial Fe(III) oxide reduction and measuring growth rates of Fe(III) oxide-reducing bacteria will be developed. These new methodologies will be directly applicable to studies on subsurface contaminant transformations directly coupled to or influenced by microbial Fe(III) oxide reduction

  4. Analysis of the coexisting pathways for NO and N2O formation in Chernozem using the (15)N-tracer SimKIM-Advanced model.

    Science.gov (United States)

    Stange, Claus Florian; Spott, Oliver; Russow, Rolf

    2013-01-01

    The nitrogen (N) cycle consists of a variety of microbial processes. These processes often occur simultaneously in soils, but respond differently to local environmental conditions due to process-specific biochemical restrictions (e.g. oxygen levels). Hence, soil nitrogen cycling (e.g. soil N gas production through nitrification and denitrification) is individually affected through these processes, resulting in the complex and highly dynamic behaviour of total soil N turnover. The development and application of methods that facilitate the quantification of individual contributions of coexisting processes is a fundamental prerequisite for (i) understanding the dynamics of soil N turnover and (ii) implementing these processes in ecosystem models. To explain the unexpected results of the triplet tracer experiment (TTE) of Russow et al. (Role of nitrite and nitric oxide in the processes of nitrification and denitrification in soil: results from (15)N tracer experiments. Soil Biol Biochem. 2009;41:785-795) the existing SimKIM model was extended to the SimKIM-Advanced model through the addition of three separate nitrite subpools associated with ammonia oxidation, oxidation of organic nitrogen (Norg), and denitrification, respectively. For the TTE, individual treatments with (15)N ammonium, (15)N nitrate, and (15)N nitrite were conducted under oxic, hypoxic, and anoxic conditions, respectively, to clarify the role of nitric oxide as a denitrification intermediate during N2O formation. Using a split nitrite pool, this analysis model explains the observed differences in the (15)N enrichments in nitric oxide (NO) and nitrous oxide (N2O) which occurred in dependence on different oxygen concentrations. The change from oxic over hypoxic to anoxic conditions only marginally increased the NO and N2O release rates (1.3-fold). The analysis using the model revealed that, under oxic and hypoxic conditions, Norg-based N2O production was the dominant pathway, contributing to 90 and 50

  5. In-liquid Plasma. A stable light source for advanced oxidation processes in environmental remediation

    Science.gov (United States)

    Tsuchida, Akihiro; Shimamura, Takeshi; Sawada, Seiya; Sato, Susumu; Serpone, Nick; Horikoshi, Satoshi

    2018-06-01

    A microwave-inspired device that generates stable in-liquid plasma (LP) in aqueous media and emits narrow light emission lines at 280-320 nm, 660 nm and 780 nm is examined as a light source capable of driving photochemical reactions and advanced oxidation processes in wastewater treatments. The microwave-driven lighting efficiency was improved by decompressing the inside of the reaction vessel, which resulted in lowering the incident power of the microwaves and suppressed the deterioration of the microwave irradiation antenna. This protocol made it possible to generate continuous stable plasma in water. Evaluation of the LP device was carried out by revisiting the decomposition of 1,4-dioxane in aqueous media against the use of such other conventional water treatment processes as (i) UV irradiation alone, (ii) TiO2-assisted photocatalysis with UV irradiation (UV/TiO2), (iii) oxidation with sodium hypochlorite (NaClO), and (iv) UV-assisted decomposition in the presence of NaClO (UV/NaClO). The in-liquid plasma technique proved superior to these four other methods. The influence of pH on the LP protocol was ascertained through experiments in acidified (HCl and H2SO4) and alkaline (NaOH and KOH) aqueous media. Except for H2SO4, decomposition of 1,4-dioxane was enhanced in both acidic and alkaline media.

  6. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process

    International Nuclear Information System (INIS)

    Paul Guin, Jhimli; Bhardwaj, Y.K.; Varshney, Lalit

    2017-01-01

    An effective process for the oxidation of Methyl Orange dye (MO) was determined by comparing the mineralization efficiency between two advanced oxidation processes (AOPs) viz., ozonolysis and gamma radiolysis in presence and absence of an added inorganic salt potassium persulfate (K_2S_2O_8). The effects of various operating parameters such as ozone flow rate and reaction temperature were optimized to achieve the best possible mineralization extent of MO by ozonolysis. The mineralization efficiency of MO was significantly enhanced during gamma radiolysis in presence of K_2S_2O_8 (γ+K_2S_2O_8) compared to in absence of K_2S_2O_8. The presence of methyl group at the amine of phenyl ring assisted the mineralization of dye during γ+K_2S_2O_8. The oxygen-equivalent chemical-oxidation capacities (OCC) of ozonolysis and γ+K_2S_2O_8 for 75% mineralization of the dye solution were calculated as 7.008 and 0.0336 kg equiv. O_2 m"−"3, respectively which signifies that γ+K_2S_2O_8 can be explored as an effective AOP. The non-biodegradable MO dye solution became biodegradable even after the dose of 0.5 kGy during γ+K_2S_2O_8 compared to 1 kGy in absence of K_2S_2O_8. The study concludes that a lower dose γ+K_2S_2O_8 could be one of the efficient pretreatment steps before undergoing biological degradation of dye solution. - Highlights: • Systematic investigation was performed for the treatment of Methyl Orange dye solution. • AOPs investigated were ozonolysis and gamma radiolysis. • The OCC and % mineralizations of the AOPs were compared. • Gamma radiolysis in presence of K_2S_2O_8 was found as most effective AOP.

  7. LG Solid Oxide Fuel Cell (SOFC) Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Haberman, Ben [LG Fuel Cell Systems Inc., North Canton, OH (United States); Martinez-Baca, Carlos [LG Fuel Cell Systems Inc., North Canton, OH (United States); Rush, Greg [LG Fuel Cell Systems Inc., North Canton, OH (United States)

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  8. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  9. Designing advanced materials by environmental friendly plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Toader, I.; Valeca, M.; Rusu, O.; Coaca, E.; Marin, A.

    2016-01-01

    In the CANDU-PHWR nuclear reactors, Zr-2.5Nb coated with a black adherent oxide film of 1 to 2 μm in thickness is currently used for the manufacture of pressure tubes. The black oxide thin film has corrosion protective properties. However, it can be damaged during the regular refueling process, thus causing hydrogen/oxygen ingression. Therefore, an enhanced wear and corrosion resistance coating is needed. Plasma electrolytic oxidation (PEO) is an anodic electrochemical treatment, both cost-effective and environmentally friendly, widely used in the formation of a protective oxide film on the metal surface to enhance wear and corrosion resistance as well as prolonging component lifetime. The state of the art reveals that PEO method is suitable for improving the wear resistance of Zr-2.5Nb alloy. Few studies are performed in this field and thus, it is necessary to conduct a more detailed insight study on the processing parameters for PEO treatment. By understanding the influence of process parameters, such as electrolyte temperature and electrolyte composition, we can find the way to obtain a coating with improved mechanical and corrosion properties on zirconium alloys. (authors)

  10. Modelling of Zircaloy-steam-oxidation under severe fuel damage conditions

    International Nuclear Information System (INIS)

    Malang, S.; Neitzel, H.J.

    1983-01-01

    Small break loss-of-coolant accidents and special transients in an LWR, in combination with loss of required safety systems, may lead to an uncovered core for an extended period of time. As a consequence, the cladding temperature could rise up to the melting point due to the decay heat, resulting in severely damaged fuel rods. During heat-up the claddings oxidize due to oxygen uptake from the steam atmosphere in the core. The modeling and assessment of the Zircaloy-steam oxidation under such conditions is important, mainly for two reasons: The oxidation of the cladding influences the temperature transients due to the exothermic heat of reaction; the amount of liquified fuel depends on the oxide layer thickness and the oxygen content of the remaining Zircaloy metal when the melting point is reached. (author)

  11. A model for the release of low-volatility fission products in oxidizing conditions

    International Nuclear Information System (INIS)

    Cox, D.S.; Hunt, C.E.L.; Liu, Z.; Keller, N.A.; Barrand, R.D.; O'Connor, R.F.

    1991-07-01

    A thermodynamic and kinetic model has been developed for calculating low-volatility fission-product releases from UO 2 at high temperatures in oxidizing conditions. Volatilization of the UO 2 matrix is assumed to be the rate controlling process. Oxidation kinetics of the UO 2 are modelled by either interfacial rate control, gas phase oxidant transport control, or solid-state diffusion of oxygen. The vapour pressure of UO 3 in equilibrium with the oxidizing fuel is calculated from thermodynamic data, and volatilization rates are determined using a model for forced convective mass transport. Low-volatility fission-product releases are calculated from the volume of vapourized fuel. Model calculations are conservative compared to experimental data for Zr, La, Ce and Nb fission-product releases from irradiated UO 2 exposed to air at 1973-2350 K. The implications of this conservatism are discussed in terms of possible rate control by processes other than convective mass transport of UO 3 . Coefficients for effective surface area (based on experimental data) and for heterogeneous rate controlling reaction kinetics are introduced to facilitate agreement between calculations and the experimental data.

  12. Combustion modeling in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, L.D.; Hedman, P.O.; Fletcher, T.H. [Brigham Young Univ., Provo, UT (United States)] [and others

    1995-10-01

    The goal of the U.S. Department of Energy`s Advanced Turbine Systems (ATS) program is to help develop and commercialize ultra-high efficiency, environmentally superior, and cost competitive gas turbine systems for base-load applications in the utility, independent power producer, and industrial markets. Combustion modeling, including emission characteristics, has been identified as a needed, high-priority technology by key professionals in the gas turbine industry.

  13. RELAP5 kinetics model development for the Advanced Test Reactor

    International Nuclear Information System (INIS)

    Judd, J.L.; Terry, W.K.

    1990-01-01

    A point-kinetics model of the Advanced Test Reactor has been developed for the RELAP5 code. Reactivity feedback parameters were calculated by a three-dimensional analysis with the PDQ neutron diffusion code. Analyses of several hypothetical reactivity insertion events by the new model and two earlier models are discussed. 3 refs., 10 figs., 6 tabs

  14. Nuclear Energy Advanced Modeling and Simulation (NEAMS) Accident Tolerant Fuels High Impact Problem: Coordinate Multiscale FeCrAl Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, K. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, J. D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Andersson, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wirth, B. D. [Univ. of Tennessee, Knoxville, TN (United States)

    2017-07-26

    Since the events at the Fukushima-Daiichi nuclear power plant in March 2011 significant research has unfolded at national laboratories, universities and other institutions into alternative materials that have potential enhanced ac- cident tolerance when compared to traditional UO2 fuel zircaloy clad fuel rods. One of the potential replacement claddings are iron-chromium-alunimum (FeCrAl) alloys due to their increased oxidation resistance [1–4] and higher strength [1, 2]. While the oxidation characteristics of FeCrAl are a benefit for accident tolerance, the thermal neu- tron absorption cross section of FeCrAl is about ten times that of Zircaloy. This neutronic penalty necessitates thinner cladding. This allows for slightly larger pellets to give the same cold gap width in the rod. However, the slight increase in pellet diameter is not sufficient to compensate for the neutronic penalty and enriching the fuel beyond the current 5% limit appears to be necessary [5]. Current estimates indicate that this neutronic penalty will impose an increase in fuel cost of 15-35% [1, 2]. In addition to the neutronic disadvantage, it is anticipated that tritium release to the coolant will be larger because the permeability of hydrogen in FeCrAl is about 100 times higher than in Zircaloy [6]. Also, radiation-induced hardening and embrittlement of FeCrAl need to be fully characterized experimentally [7]. Due to the aggressive development schedule for inserting some of the potential materials into lead test assemblies or rods by 2022 [8] multiscale multiphysics modeling approaches have been used to provide insight into these the use of FeCrAl as a cladding material. The purpose of this letter report is to highlight the multiscale modeling effort for iron-chromium-alunimum (FeCrAl) cladding alloys as part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program through its Accident Tolerant Fuel (ATF) High Impact Problem (HIP). The approach taken throughout the HIP is to

  15. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques.

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong; Pan, Min

    2017-09-28

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R² > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X₂Cd) at low pH and inner-sphere surface complexation sites (SOCd⁺ and (SO)₂CdOH - species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water-mineral interface.

  16. The Adsorption of Cd(II) on Manganese Oxide Investigated by Batch and Modeling Techniques

    Science.gov (United States)

    Huang, Xiaoming; Chen, Tianhu; Zou, Xuehua; Zhu, Mulan; Chen, Dong

    2017-01-01

    Manganese (Mn) oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II) on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II) concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999). The adsorption of Cd(II) on Mn oxide significantly decreased with increasing ionic strength at pH adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II) on Mn oxide at pH 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II) calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II) on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II) on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd) at low pH and inner-sphere surface complexation sites (SOCd+ and (SO)2CdOH− species) at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface. PMID:28956849

  17. Photocatalytic Oxidation of Azo Dyes and Oxalic Acid in Batch Reactors and CSTR: Introduction of Photon Absorption by Dyes to Kinetic Models

    Directory of Open Access Journals (Sweden)

    I. Grčić

    2018-04-01

    Full Text Available The possibilities of treating industrial effluents and water purification by advanced oxidation processes have been extensively studied; photocatalysis has emerged as a feasible alternative solution. In order to apply the photocatalytic treatment on a larger scale, relevant modeling approaches are necessary. The scope of this work was to investigate the applicability of recently published kinetic models in different reactor systems (batch and CSTR under UVA or UVC irradiation and in combination with two types of TiO2 catalyst, AEROXIDE® P25 and PC-500 for degradation of azo dyes (C.I. Reactive Violet 2, and C.I. Mordant Yellow 10, oxalic acid and their mixtures. The influences of reactor geometry and irradiation intensities on pollutant oxidation efficiency were examined. The effect of photon absorption by dyes in water matrix was thoroughly studied. Relevant kinetic models were introduced to the mass balance for particular reactor system. Resulting models were sufficient for description of pollutant degradation in batch reactors and CSTR. Experimental results showed 1.15 times higher mineralization extents achieved after 7 cycles in CSTR than in batch photoreactor of similar geometry within the equivalent time-span. The application of CSTR in-series could simplify the photocatalytic water treatment on a larger scale.

  18. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu

    2018-02-15

    Natural organic matter (NOM), a key component in aquatic environments, is a complex matrix of organic substances characterized by its fluctuating amounts in water and variable molecular and chemical properties, leading to various interaction schemes with the biogeosphere and hydrologic cycle. These factors, along with the increasing amounts of NOM in surface and ground waters, make the effort of removing naturally-occurring organics from drinking water supplies, and also from municipal wastewater effluents, a challenging task requiring the development of highly efficient and versatile water treatment technologies. Advanced oxidation processes (AOPs) received an increasing amount of attention from researchers around the world, especially during the last decade. The related processes were frequently reported to be among the most suitable water treatment technologies to remove NOM from drinking water supplies and mitigate the formation of disinfection by products (DBPs). Thus, the present work overviews recent research and development studies conducted on the application of AOPs to degrade NOM including UV and/or ozone-based applications, different Fenton processes and various heterogeneous catalytic and photocatalytic oxidative processes. Other non-conventional AOPs such as ultrasonication, ionizing radiation and plasma technologies were also reported. Furthermore, since AOPs are unlikely to achieve complete oxidation of NOM, integration schemes with other water treatment technologies were presented including membrane filtration, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Matys Grygar, Tomáš; Bludská, Jana; Kormunda, M.

    2013-01-01

    Roč. 7, FEB (2013), s. 41 ISSN 1752-153X Institutional support: RVO:61388980 Keywords : graphene * titanium(IV) oxide * graphene oxide * photocatalysis Subject RIV: CA - Inorganic Chemistry Impact factor: 1.663, year: 2013

  20. Environmental assessment of different solar driven advanced oxidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Ivan; Rieradevall, Joan [Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Torrades, Francesc [Departament d' Enginyeria Quimica, ETSEI de Terrassa, Universitat Politecnica de Catalunya, 08222 Terrassa (Barcelona) (Spain); Peral, Jose; Domenech, Xavier [Departament de Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Barcelona) (Spain)

    2005-10-01

    In this work a comparative environmental assessment of different advanced oxidation processes (AOP's) is performed. Two energy scenarios have been considered according to the energy source used: solar energy and electricity (UVA lamp). A life cycle assessment (LCA) is carried out in order to quantify the environmental impacts of the AOP's. The treatments considered are heterogenous photocatalysis, photo-Fenton reactions, the coupling of heterogeneous photocatalysis and photo-Fenton, and heterogeneous photocatalysis in combination with hydrogen peroxide. These AOP's are applied to the treatment of kraft mill bleaching wastewaters. The system under study includes the production of the catalysts, reagents as well as the production of electricity; eight environmental impact categories are assessed for each AOP: global warming, ozone depletion, aquatic eutrophication, acidification, human toxicity, freshwater aquatic toxicity, photochemical ozone formation, and abiotic resource depletion. the results of the LCA show that the environmental impact of AOP's is caused mainly by the amount of electricity consumed, whereas the impact of producing the reagents and catalysts is comparatively low. For this reason, the solar energy scenario reduces the impact more than 90% for almost all AOP's and impact categories. None of the solar driven AOP's can be identified as the best in all impact categories, but heterogenous photocatalysis and photo-Fenton reactions obtain better results than the remaining treatments, since these treatments do not consume simultaneously both TiO{sub 2} and H{sub 2}O{sub 2}, the chemicals with highest environmental burdens in the system. (author)

  1. Impact of uranium-233/thorium cycle on advanced accountability concepts and fabrication facilities. Addendum 2 to application of advanced accountability concepts in mixed oxide fabrication

    International Nuclear Information System (INIS)

    Bastin, J.J.; Jump, M.J.; Lange, R.A.; Crandall, C.C.

    1977-11-01

    The Phase I study of the application of advanced accountability methods (DYMAC) in a uranium/plutonium mixed oxide facility was extended to cover the possible fabrication of uranium-233/thorium fuels. Revisions to Phase II of the DYMAC plan which would be necessitated by such a process are specified. These revisions include shielding requirements, measurement systems, licensing conditions, and safeguards considerations. The impact of the uranium/thorium cycle on a large-scale fuel fabrication facility was also reviewed; it was concluded that the essentially higher radioactivity of uranium/thorium feeds would lead to increased difficulties which tend to preclude early commercial application of the process. An amended schedule for Phase II is included

  2. Mathematical modelling of the kinetics of aerosol oxidation of sulfur dioxide upon electron-beam purification of power-plant flue gases from nitrogen and sulfur oxides

    International Nuclear Information System (INIS)

    Gerasimov, G.Ya.; Gerasimova, T.S.; Fadeev, S.A.

    1996-01-01

    A kinetic model of SO 2 oxidation in flue gases, irradiated with accelerated electron flux is proposed. The model comprises an optimized mechanism of gas phase radiation chemical oxidation of NO and SO 2 , kinetics circuit of SO 2 and NH 3 thermal interaction, kinetic models of volumetric condensation of water and sulfuric acid vapors and liquid-phase oxidation of SO 2 in aerosol drops, produced in the course of volumetric condensation. Calculation results are in a satisfactory agreement with experimental data. (author)

  3. Oxidative stress of crystalline lens in rat menopausal model

    Directory of Open Access Journals (Sweden)

    Semra Acer

    Full Text Available ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1. From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2, 10 were administered a daily injection of methylprednisolone until the end of the study (Group 3, and the remaining 10 rats were administered intraperitoneal streptozocin to induce diabetes mellitus (Group 4. Total oxidant status (TOS, total antioxidant capacity (TAC, and oxidative stress index (OSI measurements of the crystalline lenses were analyzed. Results: The mean OSI was the lowest in group 1 and highest in group 4. Nevertheless, the difference between the groups was not statistically significant in terms of OSI (p >0.05. The mean TOS values were similar between the groups (p >0.05, whereas the mean TAC of group 1 was significantly higher than that of the other groups (p <0.001. Conclusions: Our results indicate that menopause may not promote cataract formation.

  4. Branched-chain amino acid supplementation reduces oxidative stress and prolongs survival in rats with advanced liver cirrhosis.

    Directory of Open Access Journals (Sweden)

    Motoh Iwasa

    Full Text Available Long-term supplementation with branched-chain amino acids (BCAA is associated with prolonged survival and decreased frequency of development of hepatocellular carcinoma (HCC in patients with liver cirrhosis. However, the pharmaceutical mechanism underlying this association is still unclear. We investigated whether continuous BCAA supplementation increases survival rate of rats exposed to a fibrogenic agent and influences the iron accumulation, oxidative stress, fibrosis, and gluconeogenesis in the liver. Further, the effects of BCAA on gluconeogenesis in cultured cells were also investigated. A significant improvement in cumulative survival was observed in BCAA-supplemented rats with advanced cirrhosis compared to untreated rats with cirrhosis (P<0.05. The prolonged survival due to BCAA supplementation was associated with reduction of iron contents, reactive oxygen species production and attenuated fibrosis in the liver. In addition, BCAA ameliorated glucose metabolism by forkhead box protein O1 pathway in the liver. BCAA prolongs survival in cirrhotic rats and this was likely the consequences of reduced iron accumulation, oxidative stress and fibrosis and improved glucose metabolism in the liver.

  5. Kinetic modeling of low density lipoprotein oxidation in arterial wall and its application in atherosclerotic lesions prediction.

    Science.gov (United States)

    Karimi, Safoora; Dadvar, Mitra; Modarress, Hamid; Dabir, Bahram

    2013-01-01

    Oxidation of low-density lipoprotein (LDL) is one of the major factors in atherogenic process. Trapped oxidized LDL (Ox-LDL) in the subendothelial matrix is taken up by macrophage and leads to foam cell generation creating the first step in atherosclerosis development. Many researchers have studied LDL oxidation using in vitro cell-induced LDL oxidation model. The present study provides a kinetic model for LDL oxidation in intima layer that can be used in modeling of atherosclerotic lesions development. This is accomplished by considering lipid peroxidation kinetic in LDL through a system of elementary reactions. In comparison, characteristics of our proposed kinetic model are consistent with the results of previous experimental models from other researches. Furthermore, our proposed LDL oxidation model is added to the mass transfer equation in order to predict the LDL concentration distribution in intima layer which is usually difficult to measure experimentally. According to the results, LDL oxidation kinetic constant is an important parameter that affects LDL concentration in intima layer so that existence of antioxidants that is responsible for the reduction of initiating rates and prevention of radical formations, have increased the concentration of LDL in intima by reducing the LDL oxidation rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Radiation effects in cubic zirconia: A model system for ceramic oxides

    Science.gov (United States)

    Thomé, L.; Moll, S.; Sattonnay, G.; Vincent, L.; Garrido, F.; Jagielski, J.

    2009-06-01

    Ceramics are key engineering materials for electronic, space and nuclear industry. Some of them are promising matrices for the immobilization and/or transmutation of radioactive waste. Cubic zirconia is a model system for the study of radiation effects in ceramic oxides. Ion beams are very efficient tools for the simulation of the radiations produced in nuclear reactors or in storage form. In this article, we summarize the work made by combining advanced techniques (RBS/C, XRD, TEM, AFM) to study the structural modifications produced in ion-irradiated cubic zirconia single crystals. Ions with energies in the MeV-GeV range allow exploring the nuclear collision and electronic excitation regimes. At low energy, where ballistic effects dominate, the damage exhibits a peak around the ion projected range; it accumulates with a double-step process by the formation of a dislocation network. At high energy, where electronic excitations are favored, the damage profiles are rather flat up to several micrometers; the damage accumulation is monotonous (one step) and occurs through the creation and overlap of ion tracks. These results may be generalized to many nuclear ceramics.

  7. Predictive Simulation of Material Failure Using Peridynamics -- Advanced Constitutive Modeling, Verification and Validation

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0309 Predictive simulation of material failure using peridynamics- advanced constitutive modeling, verification , and validation... Self -explanatory. 8. PERFORMING ORGANIZATION REPORT NUMBER. Enter all unique alphanumeric report numbers assigned by the performing organization, e.g...for public release. Predictive simulation of material failure using peridynamics-advanced constitutive modeling, verification , and validation John T

  8. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.

    Science.gov (United States)

    Perez-Garcia, Octavio; Chandran, Kartik; Villas-Boas, Silas G; Singhal, Naresh

    2016-05-01

    Over the coming decades nitrous oxide (N2O) is expected to become a dominant greenhouse gas and atmospheric ozone depleting substance. In wastewater treatment systems, N2O is majorly produced by nitrifying microbes through biochemical reduction of nitrite (NO2(-)) and nitric oxide (NO). However it is unknown if the amount of N2O formed is affected by alternative NO redox reactions catalyzed by oxidative nitrite oxidoreductase (NirK), cytochromes (i.e., P460 [CytP460] and 554 [Cyt554 ]) and flavohemoglobins (Hmp) in ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively). In this study, a mathematical model is developed to assess how N2O formation is affected by such alternative nitrogen redox transformations. The developed multispecies metabolic network model captures the nitrogen respiratory pathways inferred from genomes of eight AOB and NOB species. The performance of model variants, obtained as different combinations of active NO redox reactions, was assessed against nine experimental datasets for nitrifying cultures producing N2O at different concentration of electron donor and acceptor. Model predicted metabolic fluxes show that only variants that included NO oxidation to NO2(-) by CytP460 and Hmp in AOB gave statistically similar estimates to observed production rates of N2O, NO, NO2(-) and nitrate (NO3(-)), together with fractions of AOB and NOB species in biomass. Simulations showed that NO oxidation to NO2(-) decreased N2O formation by 60% without changing culture's NO2(-) production rate. Model variants including NO reduction to N2O by Cyt554 and cNor in NOB did not improve the accuracy of experimental datasets estimates, suggesting null N2O production by NOB during nitrification. Finally, the analysis shows that in nitrifying cultures transitioning from dissolved oxygen levels above 3.8 ± 0.38 to <1.5 ± 0.8 mg/L, NOB cells can oxidize the NO produced by AOB through reactions catalyzed by oxidative NirK. © 2015 Wiley Periodicals, Inc.

  9. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.

    2015-06-23

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  10. Tunable room-temperature ferromagnet using an iron-oxide and graphene oxide nanocomposite

    KAUST Repository

    Lin, Aigu L.; Rodrigues, J. N B; Su, Chenliang; Milletari, M.; Loh, Kian Ping; Wu, Tao; Chen, Wei; Neto, A. H Castro; Adam, Shaffique; Wee, Andrew T S

    2015-01-01

    Magnetic materials have found wide application ranging from electronics and memories to medicine. Essential to these advances is the control of the magnetic order. To date, most room-temperature applications have a fixed magnetic moment whose orientation is manipulated for functionality. Here we demonstrate an iron-oxide and graphene oxide nanocomposite based device that acts as a tunable ferromagnet at room temperature. Not only can we tune its transition temperature in a wide range of temperatures around room temperature, but the magnetization can also be tuned from zero to 0.011 A m2/kg through an initialization process with two readily accessible knobs (magnetic field and electric current), after which the system retains its magnetic properties semi-permanently until the next initialization process. We construct a theoretical model to illustrate that this tunability originates from an indirect exchange interaction mediated by spin-imbalanced electrons inside the nanocomposite. © 2015 Scientific Reports.

  11. Plutonium chemistry: a synthesis of experimental data and a quantitative model for plutonium oxide solubility

    International Nuclear Information System (INIS)

    Haschke, J.M.; Oversby, V.M.

    2002-01-01

    The chemistry of plutonium is important for assessing potential behavior of radioactive waste under conditions of geologic disposal. This paper reviews experimental data on dissolution of plutonium oxide solids, describes a hybrid kinetic-equilibrium model for predicting steady-state Pu concentrations, and compares laboratory results with predicted Pu concentrations and oxidation-state distributions. The model is based on oxidation of PuO 2 by water to produce PuO 2+x , an oxide that can release Pu(V) to solution. Kinetic relationships between formation of PuO 2+x , dissolution of Pu(V), disproportionation of Pu(V) to Pu(IV) and Pu(VI), and reduction of Pu(VI) are given and used in model calculations. Data from tests of pyrochemical salt wastes in brines are discussed and interpreted using the conceptual model. Essential data for quantitative modeling at conditions relevant to nuclear waste repositories are identified and laboratory experiments to determine rate constants for use in the model are discussed

  12. Experimental and modeling study of the oxidation of n- and iso-butanal

    KAUST Repository

    Veloo, Peter S.; Dagaut, P.; Togbé , Casimir; Dayma, Guillaume; Sarathy, Mani; Westbrook, Charles K.; Egolfopoulos, Fokion N.

    2013-01-01

    Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (. n-butyraldehyde) and iso-butanal (. iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. © 2013 The Combustion Institute.

  13. Experimental and modeling study of the oxidation of n- and iso-butanal

    KAUST Repository

    Veloo, Peter S.

    2013-09-01

    Understanding the kinetics of large molecular weight aldehydes is essential in the context of both conventional and alternative fuels. For example, they are key intermediates formed during the low-temperature oxidation of hydrocarbons as well as during the high-temperature oxidation of oxygenated fuels such as alcohols. In this study, an experimental and kinetic modeling investigation of n-butanal (. n-butyraldehyde) and iso-butanal (. iso-butyraldehyde or 2-methylpropanal) oxidation kinetics was performed. Experiments were performed in a jet stirred reactor and in counterflow flames over a wide range of equivalence ratios, temperatures, and pressures. The jet stirred reactor was utilized to observe the evolution of stable intermediates and products for the oxidation of n- and iso-butanal at elevated pressures and low to intermediate temperatures. The counterflow configuration was utilized for the determination of laminar flame speeds. A detailed chemical kinetic interpretative model was developed and validated consisting of 244 species and 1198 reactions derived from a previous study of the oxidation of propanal (propionaldehyde). Extensive reaction pathway and sensitivity analysis was performed to provide detailed insight into the mechanisms governing low-, intermediate-, and high-temperature reactivity. The simulation results using the present model are in good agreement with the experimental laminar flame speeds and well within a factor of two of the speciation data obtained in the jet stirred reactor. © 2013 The Combustion Institute.

  14. Development of nanomaterial-enabled advanced oxidation techniques for treatment of organic micropollutants

    Science.gov (United States)

    Oulton, Rebekah Lynn

    Increasing demand for limited fresh water resources necessitates that alternative water sources be developed. Nonpotable reuse of treated wastewater represents one such alternative. However, the ubiquitous presence of organic micropollutants such as pharmaceuticals and personal care products (PPCPs) in wastewater effluents limits use of this resource. Numerous investigations have examined PPCP fate during wastewater treatment, focusing on their removal during conventional and advanced treatment processes. Analysis of influent and effluent data from published studies reveals that at best 1-log10 concentration unit of PPCP removal can generally be achieved with conventional treatment. In contrast, plants employing advanced treatment methods, particularly ozonation and/or membranes, remove most PPCPs often to levels below analytical detection limits. However, membrane treatment is cost prohibitive for many facilities, and ozone treatment can be very selective. Ozone-recalcitrant compounds require the use of Advanced Oxidation Processes (AOPs), which utilize highly reactive hydroxyl radicals (*OH) to target resistant pollutants. Due to cost and energy use concerns associated with current AOPs, alternatives such as catalytic ozonation are under investigation. Catalytic ozonation uses substrates such as activated carbon to promote *OH formation during ozonation. Here, we show that multi-walled carbon nanotubes (MWCNTs) represent another viable substrate, promoting *OH formation during ozonation to levels exceeding activated carbon and equivalent to conventional ozone-based AOPs. Via a series of batch reactions, we observ a strong correlation between *OH formation and MWCNT surface oxygen concentrations. Results suggest that deprotonated carboxyl groups on the CNT surface are integral to their reactivity toward ozone and corresponding *OH formation. From a practical standpoint, we show that industrial grade MWCNTs exhibit similar *OH production as their research

  15. Advances in HTGR fuel performance models

    International Nuclear Information System (INIS)

    Stansfield, O.M.; Goodin, D.T.; Hanson, D.L.; Turner, R.F.

    1985-01-01

    Advances in HTGR fuel performance models have improved the agreement between observed and predicted performance and contributed to an enhanced position of the HTGR with regard to investment risk and passive safety. Heavy metal contamination is the source of about 55% of the circulating activity in the HTGR during normal operation, and the remainder comes primarily from particles which failed because of defective or missing buffer coatings. These failed particles make up about 5 x 10 -4 fraction of the total core inventory. In addition to prediction of fuel performance during normal operation, the models are used to determine fuel failure and fission product release during core heat-up accident conditions. The mechanistic nature of the models, which incorporate all important failure modes, permits the prediction of performance from the relatively modest accident temperatures of a passively safe HTGR to the much more severe accident conditions of the larger 2240-MW/t HTGR. (author)

  16. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    Science.gov (United States)

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  17. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  18. Cholesterol photo-oxidation: A chemical reaction network for kinetic modeling.

    Science.gov (United States)

    Barnaba, Carlo; Rodríguez-Estrada, Maria Teresa; Lercker, Giovanni; García, Hugo Sergio; Medina-Meza, Ilce Gabriela

    2016-12-01

    In this work we studied the effect of polyunsaturated fatty acids (PUFAs) methyl esters on cholesterol photo-induced oxidation. The oxidative routes were modeled with a chemical reaction network (CRN), which represents the first application of CRN to the oxidative degradation of a food-related lipid matrix. Docosahexaenoic acid (DHA, T-I), eicosapentaenoic acid (EPA, T-II) and a mixture of both (T-III) were added to cholesterol using hematoporphyrin as sensitizer, and were exposed to a fluorescent lamp for 48h. High amounts of Type I cholesterol oxidation products (COPs) were recovered (epimers 7α- and 7β-OH, 7-keto and 25-OH), as well as 5β,6β-epoxy. Fitting the experimental data with the CRN allowed characterizing the associated kinetics. DHA and EPA exerted different effects on the oxidative process. DHA showed a protective effect to 7-hydroxy derivatives, whereas EPA enhanced side-chain oxidation and 7β-OH kinetic rates. The mixture of PUFAs increased the kinetic rates several fold, particularly for 25-OH. With respect to the control, the formation of β-epoxy was reduced, suggesting potential inhibition in the presence of PUFAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A mechanistic model on methane oxidation in the rice rhizosphere

    NARCIS (Netherlands)

    Bodegom, van P.M.; Leffelaar, P.A.; Goudriaan, J.

    2001-01-01

    A mechanistic model is presented on the processes leading to methane oxidation in rice rhizosphere. The model is driven by oxygen release from a rice root into anaerobic rice soil. Oxygen is consumed by heterotrophic and methanotrophic respiration, described by double Monod kinetics, and by iron

  20. Advanced oxidation of acid and reactive dyes

    DEFF Research Database (Denmark)

    Arslan-Alaton, I.; Gursoy, B.H.; Schmidt, Jens Ejbye

    2008-01-01

    M) for 10:hsp sp="0.25" min Fenton treatment at pH 3, resulting in reduced chemical oxygen demand and dissolved organic carbon removal efficiencies; only acetate was detected as a stable dye oxidation end product. During anaerobic digestion, 100, 29% and no inhibition in methane production was observed...

  1. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    Energy Technology Data Exchange (ETDEWEB)

    Whitesides, R. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Killingsworth, N. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McNenly, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petitpas, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-05

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emerging needs of the engine designers, engine modelers and fuel mechanism developers.

  2. Oxidative Stress Associated with Neuronal Apoptosis in Experimental Models of Epilepsy

    Directory of Open Access Journals (Sweden)

    Marisela Méndez-Armenta

    2014-01-01

    Full Text Available Epilepsy is considered one of the most common neurological disorders worldwide. Oxidative stress produced by free radicals may play a role in the initiation and progression of epilepsy; the changes in the mitochondrial and the oxidative stress state can lead mechanism associated with neuronal death pathway. Bioenergetics state failure and impaired mitochondrial function include excessive free radical production with impaired synthesis of antioxidants. This review summarizes evidence that suggest what is the role of oxidative stress on induction of apoptosis in experimental models of epilepsy.

  3. Generalized continua as models for classical and advanced materials

    CERN Document Server

    Forest, Samuel

    2016-01-01

    This volume is devoted to an actual topic which is the focus world-wide of various research groups. It contains contributions describing the material behavior on different scales, new existence and uniqueness theorems, the formulation of constitutive equations for advanced materials. The main emphasis of the contributions is directed on the following items - Modelling and simulation of natural and artificial materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, - Theories including higher gradients, and - Comparison with discrete modelling approaches.

  4. Computational Modeling of Cobalt-based Water Oxidation: Current Status and Future Challenges

    Science.gov (United States)

    Schilling, Mauro; Luber, Sandra

    2018-04-01

    A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysis. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability towards real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  5. Computational Modeling of Cobalt-Based Water Oxidation: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Mauro Schilling

    2018-04-01

    Full Text Available A lot of effort is nowadays put into the development of novel water oxidation catalysts. In this context, mechanistic studies are crucial in order to elucidate the reaction mechanisms governing this complex process, new design paradigms and strategies how to improve the stability and efficiency of those catalysts. This review is focused on recent theoretical mechanistic studies in the field of homogeneous cobalt-based water oxidation catalysts. In the first part, computational methodologies and protocols are summarized and evaluated on the basis of their applicability toward real catalytic or smaller model systems, whereby special emphasis is laid on the choice of an appropriate model system. In the second part, an overview of mechanistic studies is presented, from which conceptual guidelines are drawn on how to approach novel studies of catalysts and how to further develop the field of computational modeling of water oxidation reactions.

  6. The Adsorption of Cd(II on Manganese Oxide Investigated by Batch and Modeling Techniques

    Directory of Open Access Journals (Sweden)

    Xiaoming Huang

    2017-09-01

    Full Text Available Manganese (Mn oxide is a ubiquitous metal oxide in sub-environments. The adsorption of Cd(II on Mn oxide as function of adsorption time, pH, ionic strength, temperature, and initial Cd(II concentration was investigated by batch techniques. The adsorption kinetics showed that the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by pseudo-second-order kinetic model with high correlation coefficients (R2 > 0.999. The adsorption of Cd(II on Mn oxide significantly decreased with increasing ionic strength at pH < 5.0, whereas Cd(II adsorption was independent of ionic strength at pH > 6.0, which indicated that outer-sphere and inner-sphere surface complexation dominated the adsorption of Cd(II on Mn oxide at pH < 5.0 and pH > 6.0, respectively. The maximum adsorption capacity of Mn oxide for Cd(II calculated from Langmuir model was 104.17 mg/g at pH 6.0 and 298 K. The thermodynamic parameters showed that the adsorption of Cd(II on Mn oxide was an endothermic and spontaneous process. According to the results of surface complexation modeling, the adsorption of Cd(II on Mn oxide can be satisfactorily simulated by ion exchange sites (X2Cd at low pH and inner-sphere surface complexation sites (SOCd+ and (SO2CdOH− species at high pH conditions. The finding presented herein plays an important role in understanding the fate and transport of heavy metals at the water–mineral interface.

  7. Development of Operational Parameters for Advanced Voloxidation Process at KAERI

    International Nuclear Information System (INIS)

    Lee, Jae Won; Park, J. J.; Shin, J. M.; Yun, Y. W.; Park, G. I.; Lee, J. W.

    2010-10-01

    KAERI has been developing a voloxidation process as a head-end process of pyroprocessing technology with INL (Idaho National Laboratory). The work scope of KAERI is to develop the operation parameters for advanced voloxidation process at KAERI using surrogate materials and SIMFUEL. In order to evaluate operation conditions of an advanced voloxidation process, oxidation and vaporization behavior of metals and Cs compounds was investigated in terms of thermal treatment atmosphere and temperature by using thermodynamic data. And also, the oxidation and vaporization behavior of semi-volatile fission products with process pressure and temperature was investigated using surrogate materials. Particle size control for U 3 O 8 powder was investigated using SIMFUEL and a rotary voloxidizer. According to analysis of KAERI works, the operation conditions for advanced voloxiation process may be consisted of the following four steps: 1) oxidation of UO 2 pellet into U 3 O 8 powder at 500 .deg. C in oxidative atmosphere, 2) additional oxidation of noble metal alloy and vaporization of high vapor pressure of fission products at 700 .deg. C in oxidative atmosphere, 3) granulation of U 3 O 8 powder and vaporization of Cs compounds at 1200 .deg. C in an atmosphere of argon, and 4) reduction of UO 2+x granules into UO 2 granules at 1000 .deg. C in an atmosphere of 4%H 2 -Ar. This report will be used as a useful means for determining the operation parameters for advanced voloxidation process

  8. Advances in Games Technology: Software, Models, and Intelligence

    Science.gov (United States)

    Prakash, Edmond; Brindle, Geoff; Jones, Kevin; Zhou, Suiping; Chaudhari, Narendra S.; Wong, Kok-Wai

    2009-01-01

    Games technology has undergone tremendous development. In this article, the authors report the rapid advancement that has been observed in the way games software is being developed, as well as in the development of games content using game engines. One area that has gained special attention is modeling the game environment such as terrain and…

  9. Ab initio and kinetic modeling studies of formic acid oxidation

    DEFF Research Database (Denmark)

    Marshall, Paul; Glarborg, Peter

    2015-01-01

    A detailed chemical kinetic model for oxidation of formic acid (HOCHO) in flames has been developed, based on theoretical work and data from literature. Ab initio calculations were used to obtain rate coefficients for reactions of HOCHO with H, O, and HO2. Modeling predictions with the mechanism...

  10. Smart-DS: Synthetic Models for Advanced, Realistic Testing: Distribution Systems and Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat K [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Palmintier, Bryan S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hodge, Brian S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hale, Elaine T [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elgindy, Tarek [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bugbee, Bruce [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rossol, Michael N [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lopez, Anthony J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Krishnamurthy, Dheepak [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Vergara, Claudio [MIT; Domingo, Carlos Mateo [IIT Comillas; Postigo, Fernando [IIT Comillas; de Cuadra, Fernando [IIT Comillas; Gomez, Tomas [IIT Comillas; Duenas, Pablo [MIT; Luke, Max [MIT; Li, Vivian [MIT; Vinoth, Mohan [GE Grid Solutions; Kadankodu, Sree [GE Grid Solutions

    2017-08-09

    The National Renewable Energy Laboratory (NREL) in collaboration with Massachusetts Institute of Technology (MIT), Universidad Pontificia Comillas (Comillas-IIT, Spain) and GE Grid Solutions, is working on an ARPA-E GRID DATA project, titled Smart-DS, to create: 1) High-quality, realistic, synthetic distribution network models, and 2) Advanced tools for automated scenario generation based on high-resolution weather data and generation growth projections. Through these advancements, the Smart-DS project is envisioned to accelerate the development, testing, and adoption of advanced algorithms, approaches, and technologies for sustainable and resilient electric power systems, especially in the realm of U.S. distribution systems. This talk will present the goals and overall approach of the Smart-DS project, including the process of creating the synthetic distribution datasets using reference network model (RNM) and the comprehensive validation process to ensure network realism, feasibility, and applicability to advanced use cases. The talk will provide demonstrations of early versions of synthetic models, along with the lessons learnt from expert engagements to enhance future iterations. Finally, the scenario generation framework, its development plans, and co-ordination with GRID DATA repository teams to house these datasets for public access will also be discussed.

  11. Sulfonamide antibiotic removal and nitrogen recovery from synthetic urine by the combination of rotating advanced oxidation contactor and methylene urea synthesis process

    OpenAIRE

    Fukahori, S.; Fujiwara, T.; Ito, R.; Funamizu, N.

    2015-01-01

    The combination of nitrogen recovery and pharmaceutical removal processes for livestock urine treatment were investigated to suppress the discharge of pollutants and recover nitrogen as resources. We combined methylene urea synthesis from urea and adsorption and photocatalytic decomposition of sulfonamide antibiotic using rotating advanced oxidation contactor (RAOC) contained for obtaining both safe fertilizer and reclaimed water. The methylene urea synthesis could recover urea in synthetic u...

  12. Revealing the fate of the phenylcoumaran linkage during lignin oxidation reactions.

    Science.gov (United States)

    Lahive, Ciaran W; Lancefield, Christopher S; Codina, Anna; Kamer, Paul C J; Westwood, Nicholas J

    2018-03-14

    The fate of most lignin linkages, other than the β-O-4, under selective oxidation conditions is largely unknown. In this work we use advanced β-5 lignin model compounds to identify the fate of phenylcoumaran units in a softwood lignin during oxidation with DDQ. By using model compounds combined with detailed characterisation of the oxidised lignin polymer using HSQC and HMBC NMR we show that phenylcoumarones are a major product, and therefore constitute a novel non-native β-5 linkage in oxidised lignins. Additionally, the reactivity of these units in lignin led us to further investigate their connectivity in lignin, showing that they are found as both phenolic and etherified units. The findings and approach developed here will help improve the efficiency of selective oxidative lignin depolymerisation processes, particularly those aimed at the upgrading of softwood lignin in which phenylcoumarans are a major linkage.

  13. Advanced Fluid Reduced Order Models for Compressible Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Tezaur, Irina Kalashnikova [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Fike, Jeffrey A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Carlberg, Kevin Thomas [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maddix, Danielle [Stanford Univ., CA (United States); Mussoni, Erin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Balajewicz, Maciej [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2017-09-01

    This report summarizes fiscal year (FY) 2017 progress towards developing and implementing within the SPARC in-house finite volume flow solver advanced fluid reduced order models (ROMs) for compressible captive-carriage flow problems of interest to Sandia National Laboratories for the design and qualification of nuclear weapons components. The proposed projection-based model order reduction (MOR) approach, known as the Proper Orthogonal Decomposition (POD)/Least- Squares Petrov-Galerkin (LSPG) method, can substantially reduce the CPU-time requirement for these simulations, thereby enabling advanced analyses such as uncertainty quantification and de- sign optimization. Following a description of the project objectives and FY17 targets, we overview briefly the POD/LSPG approach to model reduction implemented within SPARC . We then study the viability of these ROMs for long-time predictive simulations in the context of a two-dimensional viscous laminar cavity problem, and describe some FY17 enhancements to the proposed model reduction methodology that led to ROMs with improved predictive capabilities. Also described in this report are some FY17 efforts pursued in parallel to the primary objective of determining whether the ROMs in SPARC are viable for the targeted application. These include the implemen- tation and verification of some higher-order finite volume discretization methods within SPARC (towards using the code to study the viability of ROMs on three-dimensional cavity problems) and a novel structure-preserving constrained POD/LSPG formulation that can improve the accuracy of projection-based reduced order models. We conclude the report by summarizing the key takeaways from our FY17 findings, and providing some perspectives for future work.

  14. Impedance Modeling of Solid Oxide Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Mortensen, Jakob Egeberg; Søgaard, Martin; Jacobsen, Torben

    2010-01-01

    A 1-dimensional impedance model for a solid oxide fuel cell cathode is formulated and applied to a cathode consisting of 50/50 wt% strontium doped lanthanum cobaltite and gadolinia doped ceria. A total of 42 impedance spectra were recorded in the temperature range: 555-852°C and in the oxygen...... partial pressure range 0.028-1.00 atm. The recorded impedance spectra were successfully analyzed using the developed impedance model in the investigated temperature and oxygen partial pressure range. It is also demonstrated that the model can be used to predict how impedance spectra evolve with different...

  15. Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model

    Energy Technology Data Exchange (ETDEWEB)

    Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States); PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Mendoza-Sanchez, Beatriz [CRANN, Chemistry School, Trinity College Dublin, Dublin (Ireland); Fernandez, Vincent [Institut des Matériaux Jean Rouxel, 2 rue de la Houssinière, BP 32229, F-44322 Nantes Cedex 3 (France); Veenstra, Rick [PhotoCatalytic Synthesis group, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, University of Twente, Meander 229, P.O. Box 217, 7500 AE Enschede (Netherlands); Dukstiene, Nijole [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu pl. 19, LT-50254 Kaunas (Lithuania); Roberts, Adam [Kratos Analytical Ltd, Trafford Wharf Road, Wharfside, Manchester, M17 1GP (United Kingdom); Fairley, Neal [Casa Software Ltd, Bay House, 5 Grosvenor Terrace, Teignmouth, Devon TQ14 8NE (United Kingdom)

    2015-01-30

    Highlights: • We analyzed and modeled spectral envelopes of complex molybdenum oxides. • Molybdenum oxide films of varying valence and crystallinity were synthesized. • MoO{sub 3} and MoO{sub 2} line shapes from experimental data were created. • Informed amorphous sample model (IASM) developed. • Amorphous molybdenum oxide XPS envelopes were interpreted. - Abstract: Accurate elemental oxidation state determination for the outer surface of a complex material is of crucial importance in many science and engineering disciplines, including chemistry, fundamental and applied surface science, catalysis, semiconductors and many others. X-ray photoelectron spectroscopy (XPS) is the primary tool used for this purpose. The spectral data obtained, however, is often very complex and can be subject to incorrect interpretation. Unlike traditional XPS spectra fitting procedures using purely synthetic spectral components, here we develop and present an XPS data processing method based on vector analysis that allows creating XPS spectral components by incorporating key information, obtained experimentally. XPS spectral data, obtained from series of molybdenum oxide samples with varying oxidation states and degree of crystallinity, were processed using this method and the corresponding oxidation states present, as well as their relative distribution was elucidated. It was shown that monitoring the evolution of the chemistry and crystal structure of a molybdenum oxide sample due to an invasive X-ray probe could be used to infer solutions to complex spectral envelopes.

  16. Reaction modelling of Iron Oxide Bromination in the UT-3 thermochemical cycle for Hydrogen production from water

    International Nuclear Information System (INIS)

    Amir-Rusli

    1996-01-01

    Analysis modelling of the iron oxide bromination had been carried out using experiment data from the iron oxide bromination in the UT-3 thermochemical cycle. Iron oxide in the form of pellets were made of the calcination of the mixture of iron oxide, silica, graphite and cellulose at 1473 K. Thermobalance reactor was used to study the kinetic reactions of the iron oxide bromination at a temperature of 473 K for 2 - 6 hours. The data collected from the experiments were used as input for the common models. However, none of these models could not explain the result of the experiments. A new model, a combination of two kinetic reactions : exposed particle and coated particle was created and worked successfully

  17. Advanced materials and coatings for energy conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    St Pierre, George R. [Ohio State Univ., Materials Science and Engineering Dept., Columbus, OH (United States)

    1997-12-31

    Following an historical review of the development of high-temperature alloys for energy conversion systems including turbine engines, some of the current advances in single crystal materials, intermetallics, metal-matrix composites, and ceramic-matrix composites are discussed. Particular attention is directed at creep phenomena, fatigue properties and oxidation resistance. Included within the discussions is the current status of carbon/carbon composites as potential high-temperature engineering materials and the development of coating systems for thermal barrier and oxidation protection. The specific influences of combustion gas compositions, i.e., oxidation potential, sulfur, halides, etc. are discussed. A current list of eligible advanced materials and coatings systems is presented and assessed. Finally, the critical failure mechanism and life-prediction parameters for some of the new classes of advanced structural materials are elaborated with the view to achieving affordability and extended life with a high degree of reliability. Examples are drawn from a variety of energy conversion systems. (Author)

  18. Development and Validation of a Mathematical Model for Olive Oil Oxidation

    Science.gov (United States)

    Rahmouni, K.; Bouhafa, H.; Hamdi, S.

    2009-03-01

    A mathematical model describing the stability or the susceptibility to oxidation of extra virgin olive oil has been developed. The model has been resolved by an iterative method using differential finite method. It was validated by experimental data of extra virgin olive oil (EVOO) oxidation. EVOO stability was tested by using a Rancimat at four different temperatures 60, 70, 80 and 90° C until peroxide accumulation reached 20 [meq/kg]. Peroxide formation is speed relatively slow; fits zero order reaction with linear regression coefficients varying from 0, 98 to 0, 99. The mathematical model was used to predict the shelf life of bulk conditioned olive oil. This model described peroxide accumulation inside a container in excess of oxygen as a function of time at various positions from the interface air/oil. Good correlations were obtained between theoretical and experimental values.

  19. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  20. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Asieh Hosseini

    2013-01-01

    Full Text Available Diabetic neuropathy (DN is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin, aldose reductase inhibitors (fidarestat, epalrestat, ranirestat, advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine, the hexosamine pathway inhibitor (benfotiamine, inhibitor of poly ADP-ribose polymerase (nicotinamide, and angiotensin-converting enzyme inhibitor (trandolapril. The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials.

  1. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    Science.gov (United States)

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  2. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    Science.gov (United States)

    Turinsky, Paul J.; Kothe, Douglas B.

    2016-05-01

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear power industry that M&S can assist in addressing. To date CASL has developed a multi-physics ;core simulator; based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M

  3. High-temperature oxidation of advanced FeCrNi alloy in steam environments

    Science.gov (United States)

    Elbakhshwan, Mohamed S.; Gill, Simerjeet K.; Rumaiz, Abdul K.; Bai, Jianming; Ghose, Sanjit; Rebak, Raul B.; Ecker, Lynne E.

    2017-12-01

    Alloys of iron-chromium-nickel are being explored as alternative cladding materials to improve safety margins under severe accident conditions. Our research focuses on non-destructively investigating the oxidation behavior of the FeCrNi alloy "Alloy 33" using synchrotron-based methods. The evolution and structure of oxide layer formed in steam environments were characterized using X-ray diffraction, hard X-ray photoelectron spectroscopy, X-ray fluorescence methods and scanning electron microscopy. Our results demonstrate that a compact and continuous oxide scale was formed consisting of two layers, chromium oxide and spinel phase (FeCr2O4) oxides, wherein the concentration of the FeCr2O4 phase decreased from the surface to the bulk-oxide interface.

  4. Optimization of a model of red blood cells for the study of anti-oxidant drugs, in terms of concentration of oxidant and phosphate buffer.

    Science.gov (United States)

    Bureau, A; Lahet, J-J; Lenfant, F; Bouyer, F; Petitjean, M; Chaillot, B; Freysz, M

    2005-08-01

    The aggression of erythrocytes by an oxidative stress induces hemolysis. This paper aims to valid a model of erythrocytes in terms of composition of the phosphate buffer solution and of concentration of a well-known oxidant, AAPH. Three compositions of phosphate buffer solution are mixed with three concentrations of oxidant. The influence of these two parameters on hemolysis is independently studied by a variance analysis and a Kruskal-Wallis test when ANOVA is not available. The hemolysis rate increases with time at fixed oxidant concentration, but is not influenced by the composition of the buffer solution. The highest hemolysis rate, 90%, was only measured within 2 h with the highest oxidant concentration. If we retain this concentration of oxidant, the lower concentration of the buffer can by eliminated by a significant less hemolysis and the highest concentration of the buffer can by chosen in regard of the better precision for a similar hemolysis compared to the mean buffer. We hope to study the effect of anti-oxidant agent with such a model of erythrocytes.

  5. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    Science.gov (United States)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  6. Creating a Balanced Value Proposition. Exploring the Advanced Business Creation Model

    NARCIS (Netherlands)

    Carvalho, J.M.S.; Jonker, J.

    2015-01-01

    This conceptual paper explores the relationships between four dimensions that are important for start-ups: entrepreneurship, business models, strategic planning, and the development of a business plan. Based on an exploration of these dimensions, we present an innovative model - Advanced Business

  7. Promoting advance directives among African Americans: a faith-based model.

    Science.gov (United States)

    Bullock, Karen

    2006-02-01

    Studies show that African Americans are less likely than other ethnic groups to complete advance directives. However, what influences African Americans' decisions to complete or not complete advance directives is unclear. Using a faith-based promotion model, 102 African Americans aged 55 years or older were recruited from local churches and community-based agencies to participate in a pilot study to promote advance care planning. Focus groups were used to collect data on participants' preferences for care, desire to make personal choices, values and attitudes, beliefs about death and dying, and advance directives. A standardized interview was used in the focus groups, and the data were organized and analyzed using NUDIST 4 software (QRS Software, Victoria, Australia). Three fourths of the participants refused to complete advance directives. The following factors influenced the participants' decisions about end-of-life care and completion of an advance directive: spirituality; view of suffering, death, and dying; social support networks; barriers to utilization; and mistrust of the health care system. The dissemination of information apprises individuals of their right to self-determine about their care, but educational efforts may not produce a significant change in behavior toward completion of advance care planning. Thus, ongoing efforts are needed to improve the trust that African Americans have in medical and health care providers.

  8. Nuclear spectroscopy in large shell model spaces: recent advances

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1995-01-01

    Three different approaches are now available for carrying out nuclear spectroscopy studies in large shell model spaces and they are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the recently introduced Monte Carlo method for the shell model; (iii) the spectral averaging theory, based on central limit theorems, in indefinitely large shell model spaces. The various principles, recent applications and possibilities of these three methods are described and the similarity between the Monte Carlo method and the spectral averaging theory is emphasized. (author). 28 refs., 1 fig., 5 tabs

  9. Characterization of subcritical water oxidation with in situ monitoring and self-modeling curve resolution

    International Nuclear Information System (INIS)

    Gemperline, Paul J.; Yang Yu; Bian Zhihui

    2003-01-01

    In this paper, a subcritical water oxidation (SBWO) process was monitored using self-modeling curve resolution (SMCR) of in situ UV-Vis measurements to estimate time-dependant composition profiles of reactants, intermediates and products. A small laboratory scale reactor with UV-Vis fiber-optic probes and a flow cell was used to demonstrate the usefulness of SMCR for monitoring the destruction of model compounds phenol, benzoic acid, and aniline in a dilute aqueous solutions. Hydrogen peroxide was used as the oxidizing reagent at moderate temperature (150-250 deg. C) and pressure (60-90 atm) in a single phase. By use of in situ monitoring, reaction times were easily determined and conditions for efficient oxidations were easily diagnosed without the need for time consuming off-line reference measurements. For selected runs, the destruction of the model compound was confirmed by gas chromatography and chemical oxygen demand (COD) measurements. Suspected intermediate oxidation products were easily detected by the use of UV-Vis spectrometry and self-modeling curve resolution, but could not be detected by gas chromatography

  10. Model study of multiphase DMS oxidation with a focus on halogens

    Directory of Open Access Journals (Sweden)

    R. von Glasow

    2004-01-01

    Full Text Available We studied the oxidation of dimethylsulfide (DMS in the marine boundary layer (MBL with a one-dimensional numerical model and focused on the influence of halogens. Our model runs show that there is still significant uncertainty about the end products of the DMS addition pathway, which is especially caused by uncertainty in the product yield of the reaction of the intermediate product methyl sulfinic acid (MSIA with OH. BrO strongly increases the importance of the addition branch in the oxidation of DMS even when present at mixing ratios smaller than 0.5pmol mol-1. The inclusion of halogen chemistry leads to higher DMS oxidation rates and smaller DMS to SO2 conversion efficiencies. The DMS to SO2 conversion efficiency is also drastically reduced under cloudy conditions. In cloud-free model runs between 5 and 15% of the oxidized DMS reacts further to particulate sulfur, in cloudy runs this fraction is almost 100%. Sulfate production by HOClaq and HOBraq is important in cloud droplets even for small Br- deficits and related small gas phase halogen concentrations. In general, more particulate sulfur is formed when halogen chemistry is included. A possible enrichment of HCO3- in fresh sea salt aerosol would increase pH values enough to make the reaction of S(IV* (=SO2,aq+HSO3-+SO32- with O3 dominant for sulfate production. It leads to a shift from methyl sulfonic acid (MSA to non-sea salt sulfate (nss-SO42- production but increases the total nss-SO42- only somewhat because almost all available sulfur is already oxidized to particulate sulfur in the base scenario. We discuss how realistic this is for the MBL. We found the reaction MSAaq+OH to contribute about 10% to the production of nss-SO42- in clouds. It is unimportant for cloud-free model runs. Overall we find that the presence of halogens leads to processes that decrease the albedo of stratiform clouds in the MBL.

  11. Models for the Configuration and Integrity of Partially Oxidized Fuel Rod Cladding at High Temperatures

    International Nuclear Information System (INIS)

    Siefken, L.J.

    1999-01-01

    Models were designed to resolve deficiencies in the SCDAP/RELAP5/MOD3.2 calculations of the configuration and integrity of hot, partially oxidized cladding. These models are expected to improve the calculations of several important aspects of fuel rod behavior. First, an improved mapping was established from a compilation of PIE results from severe fuel damage tests of the configuration of melted metallic cladding that is retained by an oxide layer. The improved mapping accounts for the relocation of melted cladding in the circumferential direction. Then, rules based on PIE results were established for calculating the effect of cladding that has relocated from above on the oxidation and integrity of the lower intact cladding upon which it solidifies. Next, three different methods were identified for calculating the extent of dissolution of the oxidic part of the cladding due to its contact with the metallic part. The extent of dissolution effects the stress and thus the integrity of the oxidic part of the cladding. Then, an empirical equation was presented for calculating the stress in the oxidic part of the cladding and evaluating its integrity based on this calculated stress. This empirical equation replaces the current criterion for loss of integrity which is based on temperature and extent of oxidation. Finally, a new rule based on theoretical and experimental results was established for identifying the regions of a fuel rod with oxidation of both the inside and outside surfaces of the cladding. The implementation of these models is expected to eliminate the tendency of the SCDAP/RELAP5 code to overpredict the extent of oxidation of the upper part of fuel rods and to underpredict the extent of oxidation of the lower part of fuel rods and the part with a high concentration of relocated material. This report is a revision and reissue of the report entitled, Improvements in Modeling of Cladding Oxidation and Meltdown

  12. Full Service ISDN Satellite (FSIS) network model for advanced ISDN satellite design and experiments

    Science.gov (United States)

    Pepin, Gerard R.

    1992-01-01

    The Full Service Integrated Services Digital Network (FSIS) network model for advanced satellite designs describes a model suitable for discrete event simulations. A top down model design uses the Advanced Communications Technology Satellite (ACTS) as its basis. The ACTS and the Interim Service ISDN Satellite (ISIS) perform ISDN protocol analyses and switching decisions in the terrestrial domain, whereas FSIS makes all its analyses and decisions on-board the ISDN satellite.

  13. Extractive oxidative desulfurization of model oil/crude oil using KSF montmorillonite-supported 12-tungstophosphoric acid

    Directory of Open Access Journals (Sweden)

    Ezzat Rafiee

    2016-10-01

    Full Text Available Abstract 12-Tungstophosphoric acid (PW supported on KSF montmorillonite, PW/KSF, was used as catalyst for deep oxidative desulfurization (ODS of mixed thiophenic compounds in model oil and crude oil under mild conditions using hydrogen peroxide (H2O2 as an oxidizing agent. A one-factor-at-a-time method was applied for optimizing the parameters such as temperature, reaction time, amount of catalyst, type of extractant and oxidant-to-sulfur compounds (S-compounds molar ratio. The corresponding products can be easily removed from the model oil by using ethanol as the best extractant. The results showed high catalytic activity of PW/KSF in the oxidative removal of dibenzothiophene (DBT and mixed thiophenic model oil under atmospheric pressure at 75 °C in a biphasic system. To investigate the oxidation and adsorption effects of crude oil composition on ODS, the effects of cyclohexene, 1,7-octadiene and o-xylene with different concentrations were studied.

  14. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  15. Empirical soot formation and oxidation model

    Directory of Open Access Journals (Sweden)

    Boussouara Karima

    2009-01-01

    Full Text Available Modelling internal combustion engines can be made following different approaches, depending on the type of problem to be simulated. A diesel combustion model has been developed and implemented in a full cycle simulation of a combustion, model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion, and soot pollutant formation. The models of turbulent combustion of diffusion flame, apply to diffusion flames, which one meets in industry, typically in the diesel engines particulate emission represents one of the most deleterious pollutants generated during diesel combustion. Stringent standards on particulate emission along with specific emphasis on size of emitted particulates have resulted in increased interest in fundamental understanding of the mechanisms of soot particulate formation and oxidation in internal combustion engines. A phenomenological numerical model which can predict the particle size distribution of the soot emitted will be very useful in explaining the above observed results and will also be of use to develop better particulate control techniques. A diesel engine chosen for simulation is a version of the Caterpillar 3406. We are interested in employing a standard finite-volume computational fluid dynamics code, KIVA3V-RELEASE2.

  16. Application of the GRI 1.2 Methane Oxidation Model to Methane and Methanol Oxidation in Supercritical Water

    National Research Council Canada - National Science Library

    Rice, Steven

    1997-01-01

    The Gas Research Institute (GRI) has been leading an effort over the past few years to consolidate recent developments in the elementary reaction modeling of the oxidation of methane for combustion applications into a single...

  17. Mathematical Modelling to Predict Oxidative Behaviour of Conjugated Linoleic Acid in the Food Processing Industry

    Directory of Open Access Journals (Sweden)

    Aitziber Ojanguren

    2013-06-01

    Full Text Available Industrial processes that apply high temperatures in the presence of oxygen may compromise the stability of conjugated linoleic acid (CLA bioactive isomers. Statistical techniques are used in this study to model and predict, on a laboratory scale, the oxidative behaviour of oil with high CLA content, controlling the limiting factors of food processing. This modelling aims to estimate the impact of an industrial frying process (140 °C, 7 L/h air on the oxidation of CLA oil for use as frying oil instead of sunflower oil. A factorial design was constructed within a temperature (80–200 °C and air flow (7–20 L/h range. Oil stability index (Rancimat method was used as a measure of oxidation. Three-level full factorial design was used to obtain a quadratic model for CLA oil, enabling the oxidative behaviour to be predicted under predetermined process conditions (temperature and air flow. It is deduced that temperatures applied in food processes affect the oxidation of CLA to a greater extent than air flow. As a result, it is estimated that the oxidative stability of CLA oil is less resistant to industrial frying than sunflower oil. In conclusion, thanks to the mathematical model, a good choice of the appropriate industrial food process can be selected to avoid the oxidation of the bioactive isomers of CLA, ensuring its functionality in novel applications.

  18. Generalized kinetic model of reduction of molecular oxidant by metal containing redox

    International Nuclear Information System (INIS)

    Kravchenko, T.A.

    1986-01-01

    Present work is devoted to kinetics of reduction of molecular oxidant by metal containing redox. Constructed generalized kinetic model of redox process in the system solid redox - reagent solution allows to perform the general theoretical approach to research and to obtain new results on kinetics and mechanism of interaction of redox with oxidants.

  19. Advanced induction machine model in phase coordinates for wind turbine applications

    DEFF Research Database (Denmark)

    Fajardo, L.A.; Iov, F.; Hansen, Anca Daniela

    2007-01-01

    In this paper an advanced phase coordinates squirrel cage induction machine model with time varying electrical parameters affected by magnetic saturation and rotor deep bar effects, is presented. The model uses standard data sheet for characterization of the electrical parameters, it is developed...

  20. Advances in Sun-Earth Connection Modeling

    International Nuclear Information System (INIS)

    Ganguli, S.B.; Gavrishchaka, V.V.

    2003-01-01

    Space weather forecasting is a focus of a multidisciplinary research effort motivated by a sensitive dependence of many modern technologies on geospace conditions. Adequate understanding of the physics of the Sun-Earth connection and associated multi-scale magnetospheric and ionospheric processes is an essential part of this effort. Modern physical simulation models such as multimoment multifluid models with effective coupling from small-scale kinetic processes can provide valuable insight into the role of various physical mechanisms operating during geomagnetic storm/substorm activity. However, due to necessary simplifying assumptions, physical models are still not well suited for accurate real-time forecasting. Complimentary approach includes data-driven models capable of efficient processing of multi-scale spatio-temporal data. However, the majority of advanced nonlinear algorithms, including neural networks (NN), can encounter a set of problems called dimensionality curse when applied to high-dimensional data. Forecasting of rare/extreme events such as large geomagnetic storms/substorms is of the most practical importance but is also very challenging for many existing models. A very promising algorithm that combines the power of the best nonlinear techniques and tolerance to high-dimensional and incomplete data is support vector machine (SVM). We have summarized advantages of the SVM and described a hybrid model based on SVM and extreme value theory (EVT) for rare event forecasting. Results of the SVM application to substorm forecasting and future directions are discussed

  1. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  2. Measurement and modeling of advanced coal conversion processes, Volume III

    Energy Technology Data Exchange (ETDEWEB)

    Ghani, M.U.; Hobbs, M.L.; Hamblen, D.G. [and others

    1993-08-01

    A generalized one-dimensional, heterogeneous, steady-state, fixed-bed model for coal gasification and combustion is presented. The model, FBED-1, is a design and analysis tool that can be used to simulate a variety of gasification, devolatilization, and combustion processes. The model considers separate gas and solid temperatures, axially variable solid and gas flow rates, variable bed void fraction, coal drying, devolatilization based on chemical functional group composition, depolymerization, vaporization and crosslinking, oxidation, and gasification of char, and partial equilibrium in the gas phase.

  3. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  4. Mitochondrial Alterations and Oxidative Stress in an Acute Transient Mouse Model of Muscle Degeneration

    Science.gov (United States)

    Ramadasan-Nair, Renjini; Gayathri, Narayanappa; Mishra, Sudha; Sunitha, Balaraju; Mythri, Rajeswara Babu; Nalini, Atchayaram; Subbannayya, Yashwanth; Harsha, Hindalahalli Chandregowda; Kolthur-Seetharam, Ullas; Bharath, Muchukunte Mukunda Srinivas

    2014-01-01

    Muscular dystrophies (MDs) and inflammatory myopathies (IMs) are debilitating skeletal muscle disorders characterized by common pathological events including myodegeneration and inflammation. However, an experimental model representing both muscle pathologies and displaying most of the distinctive markers has not been characterized. We investigated the cardiotoxin (CTX)-mediated transient acute mouse model of muscle degeneration and compared the cardinal features with human MDs and IMs. The CTX model displayed degeneration, apoptosis, inflammation, loss of sarcolemmal complexes, sarcolemmal disruption, and ultrastructural changes characteristic of human MDs and IMs. Cell death caused by CTX involved calcium influx and mitochondrial damage both in murine C2C12 muscle cells and in mice. Mitochondrial proteomic analysis at the initial phase of degeneration in the model detected lowered expression of 80 mitochondrial proteins including subunits of respiratory complexes, ATP machinery, fatty acid metabolism, and Krebs cycle, which further decreased in expression during the peak degenerative phase. The mass spectrometry (MS) data were supported by enzyme assays, Western blot, and histochemistry. The CTX model also displayed markers of oxidative stress and a lowered glutathione reduced/oxidized ratio (GSH/GSSG) similar to MDs, human myopathies, and neurogenic atrophies. MS analysis identified 6 unique oxidized proteins from Duchenne muscular dystrophy samples (n = 6) (versus controls; n = 6), including two mitochondrial proteins. Interestingly, these mitochondrial proteins were down-regulated in the CTX model thereby linking oxidative stress and mitochondrial dysfunction. We conclude that mitochondrial alterations and oxidative damage significantly contribute to CTX-mediated muscle pathology with implications for human muscle diseases. PMID:24220031

  5. Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system

    Science.gov (United States)

    Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang

    2017-02-01

    A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.

  6. Discrete Event System Based Pyroprocessing Modeling and Simulation: Oxide Reduction

    International Nuclear Information System (INIS)

    Lee, H. J.; Ko, W. I.; Choi, S. Y.; Kim, S. K.; Hur, J. M.; Choi, E. Y.; Im, H. S.; Park, K. I.; Kim, I. T.

    2014-01-01

    Dynamic changes according to the batch operation cannot be predicted in an equilibrium material flow. This study began to build a dynamic material balance model based on the previously developed pyroprocessing flowsheet. As a mid- and long-term research, an integrated pyroprocessing simulator is being developed at the Korea Atomic Energy Research Institute (KAERI) to cope with a review on the technical feasibility, safeguards assessment, conceptual design of facility, and economic feasibility evaluation. The most fundamental thing in such a simulator development is to establish the dynamic material flow framework. This study focused on the operation modeling of pyroprocessing to implement a dynamic material flow. As a case study, oxide reduction was investigated in terms of a dynamic material flow. DES based modeling was applied to build a pyroprocessing operation model. A dynamic material flow as the basic framework for an integrated pyroprocessing was successfully implemented through ExtendSim's internal database and item blocks. Complex operation logic behavior was verified, for example, an oxide reduction process in terms of dynamic material flow. Compared to the equilibrium material flow, a model-based dynamic material flow provides such detailed information that a careful analysis of every batch is necessary to confirm the dynamic material balance results. With the default scenario of oxide reduction, the batch mass balance was verified in comparison with a one-year equilibrium mass balance. This study is still under progress with a mid-and long-term goal, the development of a multi-purpose pyroprocessing simulator that is able to cope with safeguards assessment, economic feasibility, technical evaluation, conceptual design, and support of licensing for a future pyroprocessing facility

  7. A microkinetic model of the methanol oxidation over silver

    DEFF Research Database (Denmark)

    Andreasen, A.; Lynggaard, H.; Stegelmann, C.

    2003-01-01

    A simple microkinetic model for the oxidation of methanol on silver based on surface science studies at UHV and low temperatures has been formulated. The reaction mechanism is a simple Langmuir-Hinshelwood mechanism, with one type of active oxygen and one route to formaldehyde and carbon dioxide......, respectively. The model explains observed reaction orders, selectivity, apparent activation enthalpies and the choice of industrial reaction conditions. More interesting the model disproves the notion that the mechanism deduced from surface science in UHV cannot be responsible for formaldehyde synthesis...

  8. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  9. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    Directory of Open Access Journals (Sweden)

    Jiali Ying

    2015-10-01

    Full Text Available Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests.

  10. PENERAPAN MODEL PEMBELAJARAN ADVANCE ORGANIZER BERVISI SETS TERHADAP PENINGKATAN PENGUASAAN KONSEP KIMIA

    Directory of Open Access Journals (Sweden)

    Ilam Pratitis

    2015-11-01

    Full Text Available This study aims to determine the effect of the application of learning model with advance organizer envisions SETS to increase mastery of chemistry concepts in the high school in Semarang on buffer solution material. The design used in this research is the design of the control group non equivalent. Sampling was conducted with a purposive sampling technique, and obtained a XI 6 science grade as experimental class and class XI 5 science grade as control class. Data collection method used is the method of documentation, testing, observation, and questionnaires. The results showed that the average cognitive achievement of experimental class was 84, while the control class was 82. The result of data analysis showed that the effect of the application of learning model with advance organizer envisions SETS was able to increase the mastery of chemical concepts of 4%, with a correlation rate of 0.2. Based on the results, it can be concluded that the learning model with advance organizer envisions SETS had positive effect of increasing mastery of the concept of chemistry on buffer solution material. The advice given is learning model with organizer envisions SETS should also be applied to other chemistry materials. This is of course accompanied by a change in order to suit the needs of its effect on learning outcomes in the form of concept mastery of chemistry to be more increased.Keywords: Advance Organizer, Buffer Solution, Concept Mastery, SETS

  11. Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV

    Directory of Open Access Journals (Sweden)

    Jeanette Beber de Souza

    2015-01-01

    Full Text Available The individual methods of disinfection peracetic acid (PAA and UV radiation and combined process PAA/UV in water (synthetic and sanitary wastewater were employed to verify the individual and combined action of these advanced oxidative processes on the effectiveness of inactivation of microorganisms indicators of fecal contamination E. coli, total coliforms (in the case of sanitary wastewater, and coliphages (such as virus indicators. Under the experimental conditions investigated, doses of 2, 3, and 4 mg/L of PAA and contact time of 10 minutes and 60 and 90 s exposure to UV radiation, the results indicated that the combined method PAA/UV provided superior efficacy when compared to individual methods of disinfection.

  12. Toxicity Reduction of Reactive Red Dye-238 Using Advanced Oxidation Process by Solar Energy

    Directory of Open Access Journals (Sweden)

    Riyad Al-Anbari

    2017-09-01

    Full Text Available Decolorization of red azo dye (Cibacron Red FN-R from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 and 80 % respectively. It can be concluded, from these experiments, that the using of ZnO as a photocatalysis was exhibited as economical and efficient treatment method to remove reactive red dye-238 from aqueous solution.

  13. Shelf-life modeling of bakery products by using oxidation indices.

    Science.gov (United States)

    Calligaris, Sonia; Manzocco, Lara; Kravina, Giuditta; Nicoli, Maria Cristina

    2007-03-07

    The aim of this work was to develop a shelf-life prediction model of lipid-containing bakery products. To this purpose (i) the temperature dependence of the oxidation rate of bakery products was modeled, taking into account the changes in lipid physical state; (ii) the acceptance limits were assessed by sensory analysis; and (iii) the relationship between chemical oxidation index and acceptance limit was evaluated. Results highlight that the peroxide number, the changes of which are linearly related to consumer acceptability, is a representative index of the quality depletion of biscuits during their shelf life. In addition, the evolution of peroxides can be predicted by a modified Arrhenius equation accounting for the changes in the physical state of biscuit fat. Knowledge of the relationship between peroxides and sensory acceptability together with the temperature dependence of peroxide formation allows a mathematical model to be set up to simply and quickly calculate the shelf life of biscuits.

  14. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  15. Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors

    Science.gov (United States)

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-01

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 · xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 · xH2O nanoparticles (NPs), revealed by the high total specific capacitance (CS,T = 808 F g-1) of RGC without annealing. The contact resistance among RuO2 · xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 · xH2O to achieve 1200 F g-1. The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high CS,T of 973 F g-1 at 25 mV s-1 (much higher than 435 F g-1 of an annealed RuO2 · xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s-1), revealing an advanced electrode material for high-performance supercapacitors.

  16. Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration

    International Nuclear Information System (INIS)

    Guinea, Elena; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Cabot, Pere-Lluis; Arias, Conchita; Centellas, Francesc; Brillas, Enric

    2010-01-01

    Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na 2 SO 4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H 2 O 2 (AO-H 2 O 2 ), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H 2 O 2 from O 2 reduction. In EF, PEF and SPEF, hydroxyl radical (·OH) is formed from Fenton's reaction between added catalytic Fe 2+ and generated H 2 O 2 . Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with ·OH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since ·OH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H 2 O 2 with BDD yields the poorest mineralization because pollutants are only removed with ·OH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of ·OH at its surface. Enrofloxacin decay always follows a pseudo first-order reaction. Its primary aromatic by-products and short intermediates

  17. The state-of-the art of produced water treatment by oxidative advanced processes; Atual estagio de desenvolvimento dos processos oxidativos avancados para o tratamento da agua produzida

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Marcela de A.H.; Marques, Jose Jailton; Rocha, Inaura C.C. da [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Dept. de Engenharia Quimica

    2008-07-01

    The oily wastewater generated in petroleum exploration contains a sort of contaminants that may cause significant environmental impact. For this reason, the number of researchers that are looking for cleaner techniques to treat this kind of wastewater is growing. The advanced oxidation processes (AOPs) are clean and non-selective processes largely used to the treatment of wastewater containing critical substances like textile dyes, pesticides, PCBs, PAHs etc. The treatment systems using AOPs can be homogeneous or heterogeneous and they may use irradiation or not. This work presents a compilation of the results found by many researchers involving AOPs potentially applicable to the treatment of produced water, as follow: H{sub 2}O{sub 2}/UV, H{sub 2}O{sub 2} / Fe{sup 2+} / UV, O{sub 3}/UV, O{sub 3}/ H{sub 2}O{sub 2} etc., showing the state-of-art of oxidation advanced processes. (author)

  18. Mobil pilot unit of the advanced oxidation process for waste water treatment and reuse of the hydrics effluents; Unidade piloto movel de processo oxidativo avancado aplicado a tratamento e reuso de efluentes hidricos

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Lucia Maria Limoeiro; Pereira Junior, Oswaldo de Aquino; Henriques, Sheyla de Oliveira Carvalho; Jacinto Junior, Agenor [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    The chemical oxidation processes which generate free hydroxyl radicals are called Advanced Oxidation Process (AOP). These processes have been studied, in the last decades, as a new alternative for pollutants degradation. In the (AOP)'s there are in situ formation of hydroxyl radicals (OH{center_dot}), which are highly oxidant. Its high oxidation strength becomes it indicated in the treatment of effluent with highly refractory contaminants. It can be used as a partial treatment (taking the effluent to more degradable compounds), as a final treatment (taking the effluent to complete mineralization) or as a complementary treatment to other processes, allowing, for example, its reuse. The applicability of this technology in oily water effluents in all segments of the oil industry, has taken to the development, in the LARA (Laboratory of Treatment and Reuse of Waters - CENPES), of the Advanced Oxidation Process Mobile Pilot Unit (AOP's- MU) with capacity up to 1 m3/h. The (AOP's- MU) are able to produce hydroxyl radical from Fenton's reaction, titanium dioxide heterogeneous photo catalysis and hydrogen peroxide, photo-radiated or not. It is equipped with ultraviolet reactors of different wave lengths and power. (author)

  19. Commodity Alliance Model – An Option for Advancing Private and ...

    African Journals Online (AJOL)

    Commodity Alliance Model – An Option for Advancing Private and Commercial ... that ensure adequate value addition and ultimate remunerative price for farmers' ... and integrating them in terms of fair price determination, information flow and ...

  20. Generalized first-order kinetic model for biosolids decomposition and oxidation during hydrothermal treatment.

    Science.gov (United States)

    Shanableh, A

    2005-01-01

    The main objective of this study was to develop generalized first-order kinetic models to represent hydrothermal decomposition and oxidation of biosolids within a wide range of temperatures (200-450 degrees C). A lumping approach was used in which oxidation of the various organic ingredients was characterized by the chemical oxygen demand (COD), and decomposition was characterized by the particulate (i.e., nonfilterable) chemical oxygen demand (PCOD). Using the Arrhenius equation (k = k(o)e(-Ea/RT)), activation energy (Ea) levels were derived from 42 continuous-flow hydrothermal treatment experiments conducted at temperatures in the range of 200-450 degrees C. Using predetermined values for k(o) in the Arrhenius equation, the activation energies of the various organic ingredients were separated into 42 values for oxidation and a similar number for decomposition. The activation energy values were then classified into levels representing the relative ease at which the organic ingredients of the biosolids were oxidized or decomposed. The resulting simple first-order kinetic models adequately represented, within the experimental data range, hydrothermal decomposition of the organic particles as measured by PCOD and oxidation of the organic content as measured by COD. The modeling approach presented in the paper provide a simple and general framework suitable for assessing the relative reaction rates of the various organic ingredients of biosolids.

  1. Recent advances in modeling nutrient utilization in ruminants.

    Science.gov (United States)

    Kebreab, E; Dijkstra, J; Bannink, A; France, J

    2009-04-01

    Mathematical modeling techniques have been applied to study various aspects of the ruminant, such as rumen function, postabsorptive metabolism, and product composition. This review focuses on advances made in modeling rumen fermentation and its associated rumen disorders, and energy and nutrient utilization and excretion with respect to environmental issues. Accurate prediction of fermentation stoichiometry has an impact on estimating the type of energy-yielding substrate available to the animal, and the ratio of lipogenic to glucogenic VFA is an important determinant of methanogenesis. Recent advances in modeling VFA stoichiometry offer ways for dietary manipulation to shift the fermentation in favor of glucogenic VFA. Increasing energy to the animal by supplementing with starch can lead to health problems such as subacute rumen acidosis caused by rumen pH depression. Mathematical models have been developed to describe changes in rumen pH and rumen fermentation. Models that relate rumen temperature to rumen pH have also been developed and have the potential to aid in the diagnosis of subacute rumen acidosis. The effect of pH has been studied mechanistically, and in such models, fractional passage rate has a large impact on substrate degradation and microbial efficiency in the rumen and should be an important theme in future studies. The efficiency with which energy is utilized by ruminants has been updated in recent studies. Mechanistic models of N utilization indicate that reducing dietary protein concentration, matching protein degradability to the microbial requirement, and increasing the energy status of the animal will reduce the output of N as waste. Recent mechanistic P models calculate the P requirement by taking into account P recycled through saliva and endogenous losses. Mechanistic P models suggest reducing current P amounts for lactating dairy cattle to at least 0.35% P in the diet, with a potential reduction of up to 1.3 kt/yr. A model that

  2. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  3. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  4. Development of Head-end Pyrochemical Reduction Process for Advanced Oxide Fuels

    International Nuclear Information System (INIS)

    Park, B. H.; Seo, C. S.; Hur, J. M.; Jeong, S. M.; Hong, S. S.; Choi, I. K.; Choung, W. M.; Kwon, K. C.; Lee, I. W.

    2008-12-01

    The development of an electrolytic reduction technology for spent fuels in the form of oxide is of essence to introduce LWR SFs to a pyroprocessing. In this research, the technology was investigated to scale a reactor up, the electrochemical behaviors of FPs were studied to understand the process and a reaction rate data by using U 3 O 8 was obtained with a bench scale reactor. In a scale of 20 kgHM/batch reactor, U 3 O 8 and Simfuel were successfully reduced into metals. Electrochemical characteristics of LiBr, LiI and Li 2 Se were measured in a bench scale reactor and an electrolytic reduction cell was modeled by a computational tool

  5. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydin; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO 2 -PuO 2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  6. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydin, E-mail: karahan@mit.ed [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States); Buongiorno, Jacopo [Center for Advanced Nuclear Energy Systems, Nuclear Science and Engineering Department, Massachusetts Institute of Technology, MA (United States)

    2010-01-31

    An engineering code to model the irradiation behavior of UO{sub 2}-PuO{sub 2} mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  7. Simulating secondary organic aerosol in a regional air quality model using the statistical oxidation model - Part 1: Assessing the influence of constrained multi-generational ageing

    Science.gov (United States)

    Jathar, S. H.; Cappa, C. D.; Wexler, A. S.; Seinfeld, J. H.; Kleeman, M. J.

    2016-02-01

    Multi-generational oxidation of volatile organic compound (VOC) oxidation products can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA) compared to calculations that consider only the first few generations of oxidation reactions. However, the most commonly used state-of-the-science schemes in 3-D regional or global models that account for multi-generational oxidation (1) consider only functionalization reactions but do not consider fragmentation reactions, (2) have not been constrained to experimental data and (3) are added on top of existing parameterizations. The incomplete description of multi-generational oxidation in these models has the potential to bias source apportionment and control calculations for SOA. In this work, we used the statistical oxidation model (SOM) of Cappa and Wilson (2012), constrained by experimental laboratory chamber data, to evaluate the regional implications of multi-generational oxidation considering both functionalization and fragmentation reactions. SOM was implemented into the regional University of California at Davis / California Institute of Technology (UCD/CIT) air quality model and applied to air quality episodes in California and the eastern USA. The mass, composition and properties of SOA predicted using SOM were compared to SOA predictions generated by a traditional two-product model to fully investigate the impact of explicit and self-consistent accounting of multi-generational oxidation.Results show that SOA mass concentrations predicted by the UCD/CIT-SOM model are very similar to those predicted by a two-product model when both models use parameters that are derived from the same chamber data. Since the two-product model does not explicitly resolve multi-generational oxidation reactions, this finding suggests that the chamber data used to parameterize the models captures the majority of the SOA mass formation from multi-generational oxidation under the conditions

  8. Advanced oxidation treatment of high strength bilge and aqueous petroleum waste

    Energy Technology Data Exchange (ETDEWEB)

    Hulsey, R.A.; Kobylinski, E.A. [Black and Veatch, Kansas City, MO (United States); Leach, B. [EEC, Inc., Virginia Beach, VA (United States); Pearce, L. [TRITECH, Greensboro, NC (United States)

    1996-11-01

    The Craney Island Fuel Depot is the largest US Navy fuel terminal in the continental US. Services provided at this facility include fuel storage (current capacity is 1.5 million barrels), fuel reclamation (recovery of oil from oily wastewater), and physical/chemical treatment for the removal of residual oil from bilge water and from aqueous petroleum waste. Current wastewater treatment consists of storage/equalization, oil/water separation, dissolved air flotation, sand filtration, and carbon adsorption. The Navy initiated this study to comply with the State requirement that its existing physical/chemical oily wastewater treatment plant be upgraded to remove soluble organics and produce an effluent which would meet acute toxicity limits. The pilot tests conducted during the study included several variations of chemical and biological wastewater treatment processes. While biological treatment alone was capable of meeting the proposed BOD limit of 26 mg/L, the study showed that the effluent of the biological process contained a high concentration of refractory (nonbiodegradable) organics and could not consistently meet the proposed limits for COD and TOC when treating high-strength wastewater. Additional tests were conducted with advanced oxidation processes (AOPs). AOPs were evaluated for use as independent treatment processes as well as polishing processes following biological treatment. The AOP processes used for this study included combinations of ozone (O{sub 3}) ultraviolet radiation (UV), and hydrogen peroxide (H{sub 2}O{sub 2}).

  9. Optimization of operating conditions in oxidation of dibenzothiophene in the light hydrocarbon model

    Directory of Open Access Journals (Sweden)

    Akbari Azam

    2014-01-01

    Full Text Available In this research, the effects of process variables on the efficiency and mechanism of dibenzothiophene oxidation in formicacid/H2O2 system for deep desulfurization of a light hydrocarbon model were systematically studied by statistical modelling and optimization using response surface methodology and implementing the central composite design. A quadratic regression model was developed to predict the yield of sulfur oxidation as the model response. The model indicated that temperature was the most significant effective factor and suggested an important interaction between temperature and H2O2/sulfur ratio; at temperatures above 56°C, more excess oxidant was necessary because of instability of active peroxo intermediates and loss of H2O2 due to thermal decomposition. In contrast, the water hindrance effect of H2O2 aqueous solution in desulfurization progress was more significant at temperatures bellow 56°C. In the optimization process, minimizing H2O2/sulfur ratio and catalyst consumption for maximum yield of desulfurization was economically considerable. The optimal condition was obtained at temperature of 57 °C, H2O2/sulfur ratio of 2.5 mol/mol and catalyst dosage of 0.82 mL in 50 mL solution of DBT in n-hexane leading to a maximum oxidation yield of 95% after 1 hour reaction. Good agreement between predicted and experimental results (less than 4% error was found.

  10. Advanced oxidation for groundwater remediation and for soil decontamination

    International Nuclear Information System (INIS)

    Gehringer, P.; Eschweiler, H.

    2001-01-01

    The advanced oxidation process (AOP) used in this paper is based on EB irradiation of water in the presence and absence of ozone. The paper describes two distinct sets of experiments, one dealing with groundwater contaminated with perchloroethylene (PCE) and some genotoxic compounds, and the other dealing with soil contaminated with polycyclic aromatic hydrocarbons (PAHs). The combination of ozone and EB irradiation has shown to be able to mineralize trace amounts of PCE contained in groundwater in a single stage process without formation of any by-product to be disposed of. Moreover, experiments performed with real groundwater have demonstrated that the combined ozone/EB irradiation process is also apt for total removal of some genotoxic compounds detected in groundwater contaminated with PCE. The design of an ozone/EB irradiation plant for treating 108 m 3 /h is presented. The issue concerning both the occurrences of genotoxic compounds in oxygen containing groundwater and possible processes for their removal is discussed. In the second part soil contaminated with PAHs has been treated in aqueous suspension using ozone and EB irradiation, respectively. Experiments were performed with low contaminated soil (total PAHs about 332 mg/kg soil). With an ozone consumption of 10 g C) 3 /kg soil a total PAH decomposition of about 21% was recorded. EB irradiation with a reasonable radiation dose of 100 kGy results in about 7% total PAH decomposition at room temperature and about 16%, respectively at 55-60 deg. C. It was recorded that almost no transfer of the PAH takes place from the soil into the water when soil is merely suspended in water. Ozone mainly attacked the high molecular fraction (i.e. consisting of 5 or 6 aromatic rings) of the PAHs investigated while EB irradiation of the aqueous soil suspension mostly decomposed the lower fraction (i.e. consisting up to 4 aromatic rings). (author)

  11. Advanced power plant materials, design and technology

    Energy Technology Data Exchange (ETDEWEB)

    Roddy, D. (ed.) [Newcastle University (United Kingdom). Sir Joseph Swan Institute

    2010-07-01

    The book is a comprehensive reference on the state of the art of gas-fired and coal-fired power plants, their major components and performance improvement options. Selected chapters are: Integrated gasification combined cycle (IGCC) power plant design and technology by Y. Zhu, and H. C. Frey; Improving thermal cycle efficiency in advanced power plants: water and steam chemistry and materials performance by B. Dooley; Advanced carbon dioxide (CO{sub 2}) gas separation membrane development for power plants by A. Basile, F. Gallucci, and P. Morrone; Advanced flue gas cleaning systems for sulphur oxides (SOx), nitrogen oxides (NOx) and mercury emissions control in power plants by S. Miller and B.G. Miller; Advanced flue gas dedusting systems and filters for ash and particulate emissions control in power plants by B.G. Miller; Advanced sensors for combustion monitoring in power plants: towards smart high-density sensor networks by M. Yu and A.K. Gupta; Advanced monitoring and process control technology for coal-fired power plants by Y. Yan; Low-rank coal properties, upgrading and utilisation for improving the fuel flexibility of advanced power plants by T. Dlouhy; Development and integration of underground coal gasification (UCG) for improving the environmental impact of advanced power plants by M. Green; Development and application of carbon dioxide (CO{sub 2}) storage for improving the environmental impact of advanced power plants by B. McPherson; and Advanced technologies for syngas and hydrogen (H{sub 2}) production from fossil-fuel feedstocks in power plants by P. Chiesa.

  12. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Shoucheng, Wen [Yangtze Univ., HuBei Jingzhou (China)

    2014-02-15

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%.

  13. Petroleum Refinery Effluents Treatment by Advanced Oxidation Process with Methanol

    International Nuclear Information System (INIS)

    Shoucheng, Wen

    2014-01-01

    Petroleum refinery effluents are waste originating from industries primarily engaged in refining crude oil. It is a very complex compound of various oily wastes, water, heavy metals and so on. Conventional processes are unable to effectively remove the chemical oxygen demand (COD) of petroleum refinery effluents. Supercritical water oxidation (SCWO) was proposed to treat petroleum refinery effluents. In this paper, methanol was used to investigate co-oxidative effect of methanol on petroleum refinery effluents treatment. The results indicated that supercritical water oxidation is an effective process for petroleum refinery effluents treatment. Adding methanol caused an increase in COD removal. When reaction temperature is 440 .deg. C, residence time is 20 min, OE is 0.5 and initial COD is 40000 mg/L, and COD removal increases 8.5%

  14. A model of pyritic oxidation in waste rock dumps

    International Nuclear Information System (INIS)

    Davis, G.B.; Ritchie, A.I.M.

    1983-01-01

    The oxidation of pyrite can lead to high acid levels and high concentrations of trace metals in the water that runs off and percolates through pyritic material. This is the situation at the abandoned uranium mine at Rum Jungle in the Northern Territory of Australia, where pyritic oxidation in the waste rock dumps resulting from open cut mining of the uranium orebody has led to pollution of the nearby East Branch of the Finniss River, with trace metals such as copper, manganese and zinc. Mathematical equations are formulated which describe a model of pyritic oxidation within a waste rock dump, where it is assumed that oxygen transport is the rate limiting step in the oxidation process and that oxygen is transported by gaseous diffusion through the pore space of the dump, followed by diffusion into oxidation sites within the particles that comprise the dump. The equations have been solved numerically assuming values for such parameters as porosity, sulphur density and oxygen diffusion coefficients which are applicable to the waste rock dumps at Rum Jungle. An approximate solution to the equations is also presented. Calculations of the heat source distribution and the total SO 4 production rate are presented for both single size particles and for a range of particle sizes in the dump. The usefulness of the approximate solution, and of calculations based on single size particles in the dump in assessing the effectiveness of strategies to reduce pollution from such waste rock dumps are discussed

  15. Improved stratospheric atmosphere forecasts in the general circulation model through a methane oxidation parametrization

    Science.gov (United States)

    Wang, S.; Jun, Z.

    2017-12-01

    Climatic characteristics of tropical stratospheric methane have been well researched using various satellite data, and numerical simulations have furtherly conducted using chemical climatic models, while the impact of stratospheric methane oxidation on distribution of water vapor is not paid enough attention in general circulation models. Simulated values of water vapour in the tropical upper stratosphere, and throughout much of the extratropical stratosphere, were too low. Something must be done to remedy this deficiency in order to producing realistic stratospheric water vapor using a general circulation model including the whole stratosphere. Introduction of a simple parametrization of the upper-stratospheric moisture source due to methane oxidation and a sink due to photolysis in the mesosphere was conducted. Numerical simulations and analysis of the influence of stratospheric methane on the prediction of tropical stratospheric moisture and temperature fields were carried out. This study presents the advantages of methane oxidation parametrization in producing a realistic distribution of water vapour in the tropical stratosphere and analyzes the impact of methane chemical process on the general circulation model using two storm cases including a heavy rain in South China and a typhoon caused tropical storm.It is obvious that general circulation model with methane oxidation parametrization succeeds in simulating the water vapor and temperature in stratosphere. The simulating rain center value of contrast experiment is increased up to 10% than that of the control experiment. Introduction of methane oxidation parametrization has modified the distribution of water vapour and then producing a broadly realistic distribution of temperature. Objective weather forecast verifications have been performed using simulating results of one month, which demonstrate somewhat positive effects on the model skill. There is a certain extent impact of methane oxidation

  16. Oxide films at the nanoscale: new structures, new functions, and new materials.

    Science.gov (United States)

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    flexibility, electronic modifications, and nanoporosity) are now largely understood, thus paving the way for the rational design of new catalytic systems based on oxide ultrathin films. Many of the mechanisms involved (electron tunneling, work function changes, defects engineering, and so forth) are typical of semiconductor physics and allow a direct link between the two fields. A related conceptual framework, the "electronic theory of catalysis", was proposed a long time ago but has been largely neglected by the catalytic community. A renewed appreciation of this catalytic framework, together with spectacular advances in modeling and electronic structure methods, now makes it possible to combine theory with advanced experimental setups and meet the challenge of designing new materials with tailored properties. In this Account, we discuss some of the recent advances with nanoscale oxide films, highlighting contributions from our laboratory. Once mastered, ultrathin oxide films on metals will provide vast and unforeseen opportunities in heterogeneous catalysis as well as in other fields of science and technology.

  17. Oxidative stress of crystalline lens in rat menopausal model

    OpenAIRE

    Acer, Semra; Pekel, Gökhan; Küçükatay, Vural; Karabulut, Aysun; Yağcı, Ramazan; Çetin, Ebru Nevin; Akyer, Şahika Pınar; Şahin, Barbaros

    2016-01-01

    ABSTRACT Purpose: To evaluate lenticular oxidative stress in rat menopausal models. Methods: Forty Wistar female albino rats were included in this study. A total of thirty rats underwent oophorectomy to generate a menopausal model. Ten rats that did not undergo oophorectomy formed the control group (Group 1). From the rats that underwent oophorectomy, 10 formed the menopause control group (Group 2), 10 were administered a daily injection of methylprednisolone until the end of the study (Gro...

  18. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    Science.gov (United States)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  19. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: extensions to the general ASM models.

    Science.gov (United States)

    Ni, Bing-Jie; Ruscalleda, Maël; Pellicer-Nàcher, Carles; Smets, Barth F

    2011-09-15

    Nitrous oxide (N(2)O) can be formed during biological nitrogen (N) removal processes. In this work, a mathematical model is developed that describes N(2)O production and consumption during activated sludge nitrification and denitrification. The well-known ASM process models are extended to capture N(2)O dynamics during both nitrification and denitrification in biological N removal. Six additional processes and three additional reactants, all involved in known biochemical reactions, have been added. The validity and applicability of the model is demonstrated by comparing simulations with experimental data on N(2)O production from four different mixed culture nitrification and denitrification reactor study reports. Modeling results confirm that hydroxylamine oxidation by ammonium oxidizers (AOB) occurs 10 times slower when NO(2)(-) participates as final electron acceptor compared to the oxic pathway. Among the four denitrification steps, the last one (N(2)O reduction to N(2)) seems to be inhibited first when O(2) is present. Overall, N(2)O production can account for 0.1-25% of the consumed N in different nitrification and denitrification systems, which can be well simulated by the proposed model. In conclusion, we provide a modeling structure, which adequately captures N(2)O dynamics in autotrophic nitrification and heterotrophic denitrification driven biological N removal processes and which can form the basis for ongoing refinements.

  20. Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model

    OpenAIRE

    T. H. Lee; J. H. Park; S. M. Lee; S. C. Lee

    2010-01-01

    In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of ...

  1. Coupled Inverse Fluidized Bed Bioreactor with Advanced Oxidation Processes for Treatment of Vinasse

    Directory of Open Access Journals (Sweden)

    Karla E. Campos Díaz

    2017-11-01

    Full Text Available Vinasse is the wastewater generated from ethanol distillation; it is characterized by high levels of organic and inorganic matter, high exit temperature, dissolved salts and low pH. In this work the treatment of undiluted vinasse was achieved using sequentially-coupled biological and advanced oxidation processes. The initial characterization of vinasse showed a high Chemical Oxygen Demand (COD, 32 kg m-3, high Total Organic Carbon (TOC, 24.5 kg m-3 and low pH (2.5. The first stage of the biological treatment of the vinasse was carried out in an inverse fluidized bed bioreactor with a microbial consortium using polypropylene as support material. The fluidized bed bioreactor was kept at a constant temperature (37 ± 1ºC and pH (6.0 ± 0.5 for 90 days. After the biological process, the vinasse was continuously fed to the photoreactor using a peristaltic pump 2.8 × 10-3 kg of FeSO4•7H2O were added to the vinasse and allowed to dissolve in the dark for five minutes; after this time, 15.3 m3 of hydrogen peroxide (H2O2 (30% w/w were added, and subsequently, the UV radiation was allowed to reach the photoreactor to treat the effluent for 3600 s at pH = 3. Results showed that the maximum organic matter removed using the biological process, measured as COD, was 80% after 90 days. Additionally, 88% of COD removal was achieved using the photo-assisted Fenton oxidation. The overall COD removal after the sequentially-coupled processes reached a value as low as 0.194 kg m-3, achieving over 99% of COD removal as well as complete TOC removal.

  2. Advanced oxidative processes and membrane separation for micropollutant removal from biotreated domestic wastewater.

    Science.gov (United States)

    Silva, Larissa L S; Sales, Julio C S; Campos, Juacyara C; Bila, Daniele M; Fonseca, Fabiana V

    2017-03-01

    The presence of micropollutants in sewage is already widely known, as well as the effects caused by natural and synthetic hormones. Thus, it is necessary to apply treatments to remove them from water systems, such as advanced oxidation processes (AOPs) and membrane separation processes, which can oxidize and remove high concentrations of organic compounds. This work investigated the removal of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and estriol (E3) from biotreated sewage. Reverse osmosis processes were conducted at three recoveries (50, 60, and 70 %). For E2 and EE2, the removals were affected by the recovery. The best results for RO were as follows: the E2 compound removal was 89 % for 60 % recovery and the EE2 compound removal was 57 % for 50 % recovery. The RO recovery did not impact the E3 removal. It was concluded that the interaction between the evaluated estrogens, and the membrane was the major factor for the hormone separation. The AOP treatment using H 2 O 2 /UV was carried out in two sampling campaigns. First, we evaluated the variation of UV doses (24.48, 73.44, 122.4, and 244.8 kJ m -2 ) with 18.8 mg L -1 of H 2 O 2 in the reaction. EE2 showed considerable removals (around 70 %). In order to optimize the results, an experimental design was applied. The best result was obtained with higher UV dose (122.4 kJ m -2 ) and lower H 2 O 2 concentration (4 mg L -1 ), achieving removal of 91 % for E3 and 100 % for E2 and EE2.

  3. Role of advanced glycation end products (AGEs) and oxidative stress in diabetic retinopathy.

    Science.gov (United States)

    Yamagishi, Sho-ichi; Ueda, Seiji; Matsui, Takanori; Nakamura, Kazuo; Okuda, Seiya

    2008-01-01

    Diabetic retinopathy is a common and potentially devastating microvascular complication in diabetes and is a leading cause of acquired blindness among the people of occupational age. However, current therapeutic options for the treatment of sight-threatening proliferative diabetic retinopathy such as photocoagulation and vitrectomy are limited by considerable side effects and far from satisfactory. Therefore, to develop novel therapeutic strategies that specifically target diabetic retinopathy is actually desired for most of the patients with diabetes. Chronic hyperglycemia is a major initiator of diabetic retinopathy. However, recent clinical study has substantiated the concept of 'hyperglycemic memory' in the pathogenesis of diabetic retinopathy. Indeed, the Diabetes Control and Complications Trial-Epidemiology of Diabetes Interventions and Complications (DCCT-EDIC) Research, has revealed that the reduction in the risk of progressive retinopathy resulting from intensive therapy in patients with type 1 diabetes persisted for at least several years after the DCCT trial, despite increasing hyperglycemia. These findings suggest a long-term beneficial influence of early metabolic control on clinical outcomes in type 1 diabetic patients. Among various biochemical pathways implicated in the pathogenesis of diabetic retinopathy, the process of formation and accumulation of advanced glycation end products (AGEs) and their mode of action are most compatible with the theory 'hyperglycemic memory'. Further, there is a growing body of evidence that AGEs-RAGE (receptor for AGEs) interaction-mediated oxidative stress generation plays an important role in diabetic retinopathy. This article summarizes the role of AGEs and oxidative stress in the development and progression of diabetic retinopathy and the therapeutic interventions that could prevent this devastating disorder. We also discuss here the pathological crosstalk between the AGEs-RAGE and the renin-angiotensin system in

  4. Comparative assessment of PSI air oxidation model implementation in SCDAPSim3.5, MELCOR 1.8.6 and MELCOR 2.1

    International Nuclear Information System (INIS)

    Fernandez-Moguel, Leticia

    2015-01-01

    Highlights: • The PSI air oxidation model has been successfully implemented in MELCOR. • The model treats oxygen as an active species and nitrogen as a catalyst. • The implementation has been assessed against the previous post-test analyses for QUENCH-16. • The pre-oxidation and air phase were consistent when similar modelling options were used. • All code versions were in fair agreement with the experimental data. - Abstract: The PSI air oxidation model has been successfully implemented in the lump parameter code MELCOR. The PSI air oxidation model treats oxygen as an active species and nitrogen as a catalyst that accelerates the oxidation kinetics. The essential feature of the model is the transition from parabolic to linear kinetics. The implementation has been assessed against the previous post-test analyses for the air ingress experiment QUENCH-16 performed with a local version of RELAP5/SCDAPSim3.5. This version contains the PSI air oxidation model. The pre-oxidation and air phase were consistent when similar modelling options were used and all code versions were in fair agreement with the experimental data, showing consistency in the implementation of the model. The PSI air oxidation model will be used in the future for analysis of spent fuel pool uncovery sequences where steam/air mixture is the prototypical environment

  5. Modeling low-dose-rate effects in irradiated bipolar-base oxides

    International Nuclear Information System (INIS)

    Graves, R.J.; Cirba, C.R.; Schrimpf, R.D.; Milanowski, R.J.; Saigne, F.; Michez, A.; Fleetwood, D.M.; Witczak, S.C.

    1997-02-01

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in BJTs. Simulations show that space charge limited transport is partially responsible for the low-dose-rate enhancement

  6. Application of processes of advanced oxidation as phenol treatment in industrial residual waters of refinery

    International Nuclear Information System (INIS)

    Forero, Jorge Enrique; Ortiz, Olga Patricia; Rios, Fabian

    2005-01-01

    Although more efficient and economical processes for the treatment of sewage have been developed in recent years, the challenge they are facing-due to the greater knowledge of the effect that pollutants have on the environment, the greater consumption of water because of the development of human and industrial activity and the reduction of fresh water sources indicate that we are far from attaining the final solution. This affirmation specially applies to the pollutants, which are resistant to biological treatment processes, such as most of the aromatic compounds found in sewage of the petrochemical industries. In this document, the processes known as advanced oxidation will be explored. Theses have been reported as having the greatest potential in the treatment of these pollutants. Likewise the results of the application of these technologies with waters typical of the petroleum industry will be reported. These have previously been evaluated with processes of typical ozonization

  7. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This paper presents recent thermal model results of the Advanced Stirling Radioisotope Generator (ASRG). The three-dimensional (3D) ASRG thermal power model was built using the Thermal Desktop(trademark) thermal analyzer. The model was correlated with ASRG engineering unit test data and ASRG flight unit predictions from Lockheed Martin's (LM's) I-deas(trademark) TMG thermal model. The auxiliary cooling system (ACS) of the ASRG is also included in the ASRG thermal model. The ACS is designed to remove waste heat from the ASRG so that it can be used to heat spacecraft components. The performance of the ACS is reported under nominal conditions and during a Venus flyby scenario. The results for the nominal case are validated with data from Lockheed Martin. Transient thermal analysis results of ASRG for a Venus flyby with a representative trajectory are also presented. In addition, model results of an ASRG mounted on a Cassini-like spacecraft with a sunshade are presented to show a way to mitigate the high temperatures of a Venus flyby. It was predicted that the sunshade can lower the temperature of the ASRG alternator by 20 C for the representative Venus flyby trajectory. The 3D model also was modified to predict generator performance after a single Advanced Stirling Convertor failure. The geometry of the Microtherm HT insulation block on the outboard side was modified to match deformation and shrinkage observed during testing of a prototypic ASRG test fixture by LM. Test conditions and test data were used to correlate the model by adjusting the thermal conductivity of the deformed insulation to match the post-heat-dump steady state temperatures. Results for these conditions showed that the performance of the still-functioning inboard ACS was unaffected.

  8. Comparative kinetic and energetic modelling of phyllosemiquinone oxidation in Photosystem I.

    Science.gov (United States)

    Santabarbara, Stefano; Zucchelli, Giuseppe

    2016-04-14

    The oxidation kinetics of phyllo(semi)quinone (PhQ), which acts as an electron transfer (ET) intermediate in the Photosystem I reaction centre, are described by a minimum of two exponential phases, characterised by lifetimes in the 10-30 ns and 150-300 ns ranges. The fastest phase is considered to be dominated by the oxidation of the PhQ molecule coordinated by the PsaB reaction centre subunit (PhQB), and the slowest phase is dominated by the oxidation of the PsaA coordinated PhQ (PhQA). Testing different energetic schemes within a unified theory-based kinetic modelling approach provides reliable limit-values for some of the physical-chemical parameters controlling these ET reactions: (i) the value of ΔG(0) associated with PhQA oxidation is smaller than ∼+30 meV; (ii) the value of the total reorganisation energy (λt) likely exceeds 0.7 eV; (iii) different mean nuclear modes are coupled to PhQB and PhQA oxidation, the former being larger, and both being ≥100 cm(-1).

  9. Selective cleavage of the C(α)-C(β) linkage in lignin model compounds via Baeyer-Villiger oxidation.

    Science.gov (United States)

    Patil, Nikhil D; Yao, Soledad G; Meier, Mark S; Mobley, Justin K; Crocker, Mark

    2015-03-21

    Lignin is an amorphous aromatic polymer derived from plants and is a potential source of fuels and bulk chemicals. Herein, we present a survey of reagents for selective stepwise oxidation of lignin model compounds. Specifically, we have targeted the oxidative cleavage of Cα-Cβ bonds as a means to depolymerize lignin and obtain useful aromatic compounds. In this work, we prepared several lignin model compounds that possess structures, characteristic reactivity, and linkages closely related to the parent lignin polymer. We observed that selective oxidation of benzylic hydroxyl groups, followed by Baeyer-Villiger oxidation of the resulting ketones, successfully cleaves the Cα-Cβ linkage in these model compounds.

  10. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    Science.gov (United States)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  11. Air oxidation of Zircaloy-4 in the 600-1000 °C temperature range: Modeling for ASTEC code application

    Science.gov (United States)

    Coindreau, O.; Duriez, C.; Ederli, S.

    2010-10-01

    Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.

  12. Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments

    International Nuclear Information System (INIS)

    Scialdone, Onofrio; Guarisco, Chiara; Galia, Alessandro

    2011-01-01

    The electrochemical oxidation of organics in water performed in micro reactors on boron doped diamond (BDD) anode was investigated both theoretically and experimentally in order to find the influence of various operative parameters on the conversion and the current efficiency CE of the process. The electrochemical oxidation of formic acid (FA) was selected as a model case. High conversions for a single passage of the electrolytic solution inside the cell were obtained by operating with proper residence times and low distances between cathode and anode. The effect of initial concentration, flow rate and current density was investigated in detail. Theoretical predictions were in very good agreement with experimental results for both mass transfer control, oxidation reaction control and mixed kinetic regimes in spite of the fact that no adjustable parameters was used. Mass transfer process was successfully modelled by considering for simplicity a constant Sh number (e.g., a constant mass transfer coefficient k m ) for a process performed with no high values of the current intensity to minimize the effect of the gas bubbling on the flowdynamic pattern. For mixed kinetic regimes, two different modelling approaches were used. In the first one, the oxidation of organics at BDD was assumed to be mass transfer controlled and to occur with an intrinsic 100% CE when applied current density is higher than the limiting current density. In the second case, the CE of the process was modelled assuming that the competition between organic and water oxidation depends only on the electrodic material and on the nature and the concentration of the organic. In the latter case a better agreement between experimental data and theoretical predictions was observed.

  13. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity...... on the total nitrogen (TN) removal and the productions of NO and N2O. The model is applied to evaluate how periodic aeration as a control parameter reduces NO and N2O production but maintains high TN removal in MABR. The simulation results show over 3.5% of the removed TN could be attributed to NO and N2O...... production in MABR under the operational conditions optimal for TN removal (72%). An analysis of factors governing the Anammox activity in MABR shows that enhancing Anammox activity not only helps to achieve a high level of nitrogen removal but also reduces NO and N2O productions. Comparison of aeration...

  14. Modeling and parametric simulations of solid oxide fuel cells with methane carbon dioxide reforming

    International Nuclear Information System (INIS)

    Ni, Meng

    2013-01-01

    Highlights: ► A 2D model is developed for solid oxide fuel cells (SOFCs). ► CH 4 reforming by CO 2 (MCDR) is included. ► SOFC with MCDR shows comparable performance with methane steam reforming SOFC. ► Increasing CO electrochemical oxidation greatly enhances the SOFC performance. ► Effects of potential and temperature on SOFC performance are also discussed. - Abstract: A two-dimensional model is developed to simulate the performance of solid oxide fuel cells (SOFCs) fed with CO 2 and CH 4 mixture. The electrochemical oxidations of both CO and H 2 are included. Important chemical reactions are considered in the model, including methane carbon dioxide reforming (MCDR), reversible water gas shift reaction (WGSR), and methane steam reforming (MSR). It’s found that at a CH 4 /CO 2 molar ratio of 50/50, MCDR and reversible WGSR significantly influence the cell performance while MSR is negligibly small. The performance of SOFC fed with CO 2 /CH 4 mixture is comparable to SOFC running on CH 4 /H 2 O mixtures. The electric output of SOFC can be enhanced by operating the cell at a low operating potential or at a high temperature. In addition, the development of anode catalyst with high activity towards CO electrochemical oxidation is important for SOFC performance enhancement. The model can serve as a useful tool for optimization of the SOFC system running on CH 4 /CO 2 mixtures

  15. Workshop on Advanced Modelling in Mathematical Finance : in Honour of Ernst Eberlein

    CERN Document Server

    Papapantoleon, Antonis

    2016-01-01

    This Festschrift resulted from a workshop on “Advanced Modelling in Mathematical Finance” held in honour of Ernst Eberlein’s 70th birthday, from 20 to 22 May 2015 in Kiel, Germany. It includes contributions by several invited speakers at the workshop, including several of Ernst Eberlein’s long-standing collaborators and former students. Advanced mathematical techniques play an ever-increasing role in modern quantitative finance. Written by leading experts from academia and financial practice, this book offers state-of-the-art papers on the application of jump processes in mathematical finance, on term-structure modelling, and on statistical aspects of financial modelling. It is aimed at graduate students and researchers interested in mathematical finance, as well as practitioners wishing to learn about the latest developments.

  16. NATO Advanced Study Institute on Nanotechnological Basis for Advanced Sensors

    CERN Document Server

    Reithmaier, Johann Peter; Kulisch, Wilhelm; Popov, Cyril; Petkov, Plamen

    2011-01-01

    Bringing together experts from 15 countries, this book is based on the lectures and contributions of the NATO Advanced Study Institute on “Nanotechnological Basis for Advanced Sensors” held in Sozopol, Bulgaria, 30 May - 11 June, 2010. It gives a broad overview on this topic, and includes articles on: techniques for preparation and characterization of sensor materials; different types of nanoscaled materials for sensor applications, addressing both their structure (nanoparticles, nanocomposites, nanostructured films, etc.) and chemical nature (carbon-based, oxides, glasses, etc.); and on advanced sensors that exploit nanoscience and nanotechnology. In addition, the volume represents an interdisciplinary approach with authors coming from diverse fields such as physics, chemistry, engineering, materials science and biology. A particular strength of the book is its combination of longer papers, introducing the basic knowledge on a certain topic, and brief contributions highlighting special types of sensors a...

  17. Development of Head-end Pyrochemical Reduction Process for Advanced Oxide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Park, B. H.; Seo, C. S.; Hur, J. M.; Jeong, S. M.; Hong, S. S.; Choi, I. K.; Choung, W. M.; Kwon, K. C.; Lee, I. W. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The development of an electrolytic reduction technology for spent fuels in the form of oxide is of essence to introduce LWR SFs to a pyroprocessing. In this research, the technology was investigated to scale a reactor up, the electrochemical behaviors of FPs were studied to understand the process and a reaction rate data by using U{sub 3}O{sub 8} was obtained with a bench scale reactor. In a scale of 20 kgHM/batch reactor, U{sub 3}O{sub 8} and Simfuel were successfully reduced into metals. Electrochemical characteristics of LiBr, LiI and Li{sub 2}Se were measured in a bench scale reactor and an electrolytic reduction cell was modeled by a computational tool.

  18. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  19. Modeling of a dependence between human operators in advanced main control rooms

    International Nuclear Information System (INIS)

    Lee, Seung Jun; Kim, Jaewhan; Jang, Seung-Cheol; Shin, Yeong Cheol

    2009-01-01

    For the human reliability analysis of main control room (MCR) operations, not only parameters such as the given situation and capability of the operators but also the dependence between the actions of the operators should be considered because MCR operations are team operations. The dependence between operators might be more prevalent in an advanced MCR in which operators share the same information using a computerized monitoring system or a computerized procedure system. Therefore, this work focused on the computerized operation environment of advanced MCRs and proposed a model to consider the dependence representing the recovery possibility of an operator error by another operator. The proposed model estimates human error probability values by considering adjustment values for a situation and dependence values for operators during the same operation using independent event trees. This work can be used to quantitatively calculate a more reliable operation failure probability for an advanced MCR. (author)

  20. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.