WorldWideScience

Sample records for modelled fire season

  1. Anticipating the severity of the fire season in Northern Portugal using statistical models based on meteorological indices of fire danger

    Science.gov (United States)

    Nunes, Sílvia A.; DaCamara, Carlos C.; Turkman, Kamil F.; Ermida, Sofia L.; Calado, Teresa J.

    2017-04-01

    Like in other regions of Mediterranean Europe, climate and weather are major drivers of fire activity in Portugal. The aim of the present study is to assess the role played by meteorological factors on inter-annual variability of burned area over a region of Portugal characterized by large fire activity. Monthly cumulated values of burned area in August are obtained from the fire database of ICNF, the Portuguese authority for forests. The role of meteorological factors is characterized by means of Daily Severity Rating, DSR, an index of meteorological fire danger, which is derived from meteorological fields as obtained from ECMWF Interim Reanalysis. The study area is characterized by the predominance of forest, with high percentages of maritime pine and eucalyptus, two species with high flammability in summer. The time series of recorded burned area in August during 1980-2011 is highly correlated (correlation coefficient of 0.93) with the one for whole Portugal. First, a normal distribution model is fitted to the 32-year sample of decimal logarithms of monthly burned area. The model is improved by introducing two covariates:(1) the top-down meteorological factor (DSRtd) which consists of daily cumulated values of DSR since April 1 to July 31 and may be viewed as the cumulated stress on vegetation due to meteorological conditions during the pre-fire season; (2) the bottom-up factor (DSRbu) which consists of the square root of the mean of the squared daily deviations (restricted to days with positive departures of DSR from the corresponding long term mean) and may be viewed as the contribution of days characterized by extreme weather conditions favoring the onset and spreading of wildfires. Three different statistical models are then developed: the "climate anomaly" model, using DSRtd as covariate, the "weather anomaly", using DSRbu as covariate, and the "combined" model using both variables as covariates. These models are used to define background fire danger, fire

  2. Seasonality of fire weather strongly influences fire regimes in South Florida savanna-grassland landscapes.

    Science.gov (United States)

    Platt, William J; Orzell, Steve L; Slocum, Matthew G

    2015-01-01

    Fire seasonality, an important characteristic of fire regimes, commonly is delineated using seasons based on single weather variables (rainfall or temperature). We used nonparametric cluster analyses of a 17-year (1993-2009) data set of weather variables that influence likelihoods and spread of fires (relative humidity, air temperature, solar radiation, wind speed, soil moisture) to explore seasonality of fire in pine savanna-grassland landscapes at the Avon Park Air Force Range in southern Florida. A four-variable, three-season model explained more variation within fire weather variables than models with more seasons. The three-season model also delineated intra-annual timing of fire more accurately than a conventional rainfall-based two-season model. Two seasons coincided roughly with dry and wet seasons based on rainfall. The third season, which we labeled the fire season, occurred between dry and wet seasons and was characterized by fire-promoting conditions present annually: drought, intense solar radiation, low humidity, and warm air temperatures. Fine fuels consisting of variable combinations of pyrogenic pine needles, abundant C4 grasses, and flammable shrubs, coupled with low soil moisture, and lightning ignitions early in the fire season facilitate natural landscape-scale wildfires that burn uplands and across wetlands. We related our three season model to fires with different ignition sources (lightning, military missions, and prescribed fires) over a 13-year period with fire records (1997-2009). Largest wildfires originate from lightning and military ignitions that occur within the early fire season substantially prior to the peak of lightning strikes in the wet season. Prescribed ignitions, in contrast, largely occur outside the fire season. Our delineation of a pronounced fire season provides insight into the extent to which different human-derived fire regimes mimic lightning fire regimes. Delineation of a fire season associated with timing of

  3. Seasonal forecasting of fire over Kalimantan, Indonesia

    National Research Council Canada - National Science Library

    Spessa, A. C; Field, R. D; Pappenberger, F; Langner, A; Englhart, S; Weber, U; Stockdale, T; Siegert, F; Kaiser, J. W; Moore, J

    2015-01-01

    .... In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model...

  4. Seasonal forecasting of fire over Kalimantan, Indonesia

    Science.gov (United States)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  5. Seasonal forecasting of fire over Kalimantan, Indonesia

    Directory of Open Access Journals (Sweden)

    A. C. Spessa

    2014-08-01

    Full Text Available Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean–atmosphere model. Based on analyses of up-to-date and long series observations on burnt area and rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall, and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss and strong non-linear correlation between observed rainfall and fire and the central region of Kalimantan (low fire activity, low tree cover loss and weak non-linear correlation between observed rainfall and fire. The ECMWF seasonal forecast provides skilled forecasts of burnt area with several months lead time explaining at least 70% of the variance between rainfall and with burnt area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics, rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  6. Seasonal forecasting of fire over Kalimantan, Indonesia

    OpenAIRE

    A. C. Spessa; Field, R. D.; F. Pappenberger; Langner, A.; S. Englhart; Weber, U.; T. Stockdale; F. Siegert; Kaiser, J. W.; Moore, J.

    2014-01-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean–atmosphere model. Ba...

  7. Boreal forest fires in 1997 and 1998: a seasonal comparison using transport model simulations and measurement data

    Directory of Open Access Journals (Sweden)

    N. Spichtinger

    2004-01-01

    Full Text Available Forest fire emissions have a strong impact on the concentrations of trace gases and aerosols in the atmosphere. In order to quantify the influence of boreal forest fire emissions on the atmospheric composition, the fire seasons of 1997 and 1998 are compared in this paper. Fire activity in 1998 was very strong, especially over Canada and Eastern Siberia, whereas it was much weaker in 1997. According to burned area estimates the burning in 1998 was more than six times as intense as in 1997. Based on hot spot locations derived from ATSR (Along Track Scanning Radiometer data and official burned area data, fire emissions were estimated and their transport was simulated with a Lagrangian tracer transport model. Siberian and Canadian forest fire tracers were distinguished to investigate the transport of both separately. The fire emissions were transported even over intercontinental distances. Due to the El Niño induced meteorological situation, transport from Siberia to Canada was enhanced in 1998. Siberian fire emissions were transported towards Canada and contributed concentrations more than twice as high as those due to Canada's own CO emissions by fires. In 1998 both tracers arrive at higher latitudes over Europe, which is due to a higher North Atlantic Oscillation (NAO index in 1998. The simulated emission plumes are compared to CMDL (Climate Monitoring and Diagnostics Laboratory CO2 and CO data, Total Ozone Mapping Spectrometer (TOMS aerosol index (AI data and Global Ozone Monitoring Experiment (GOME tropospheric NO2 and HCHO columns. All the data show clearly enhanced signals during the burning season of 1998 compared to 1997. The results of the model simulation are in good agreement with ground-based as well as satellite-based measurements.

  8. Seasonal fire danger forecasts for the USA

    Science.gov (United States)

    J. Roads; F. Fujioka; S. Chen; R. Burgan

    2005-01-01

    The Scripps Experimental Climate Prediction Center has been making experimental, near-real-time, weekly to seasonal fire danger forecasts for the past 5 years. US fire danger forecasts and validations are based on standard indices from the National Fire Danger Rating System (DFDRS), which include the ignition component (IC), energy release component (ER), burning...

  9. Forest-fire models

    Science.gov (United States)

    Haiganoush Preisler; Alan Ager

    2013-01-01

    For applied mathematicians forest fire models refer mainly to a non-linear dynamic system often used to simulate spread of fire. For forest managers forest fire models may pertain to any of the three phases of fire management: prefire planning (fire risk models), fire suppression (fire behavior models), and postfire evaluation (fire effects and economic models). In...

  10. A statistical model for forecasting hourly ozone levels during fire season

    Science.gov (United States)

    Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Leland Tarnay; Julide Kahyaoglu-Koracin

    2009-01-01

    Concerns about smoke from large high-intensity and managed low intensity fires have been increasing during the past decade. Because smoke from large high-intensity fires are known to contain and generate secondary fine particles (PM2.5) and ozone precursors, the effect of fires on air quality in the southern Sierra Nevada is a serious management...

  11. Seasonal Forecasting of Fires across Southern Borneo, 1997-2010

    Science.gov (United States)

    Spessa, Allan; Field, Robert; Kaiser, Johannes; Langner, Andreas; Moore, Jonathan; Pappenberger, Florian; Siegert, Florian; Weber, Ulrich

    2014-05-01

    Wildfire is a fundamental Earth System process, affecting almost all biogeochemical cycles, and all vegetated biomes. Fires are naturally rare in humid tropical forests, and tropical trees are generally killed by even low-intensity fires. However, fire activity in the tropics has increased markedly over the past 15-20 years, especially in Indonesia, Amazonia, and more recently, central Africa also. Since fire is the prime tool for clearing land in the tropics, it not surprising that the increase in fire activity is strongly associated with increased levels of deforestation, which is driven mainly by world-wide demand for timber and agricultural commodities. The consequences of deforestation fires for biodiversity conservation and emissions of greenhouse gases and aerosols are enormous. For example, carbon emissions from tropical biomass burning are around 20% of annual average global fossil fuel emissions. The destructive fires in Indonesia during the exceptionally strong El Niño-induced drought in late 1997 and early 1998 rank as some of the largest peak emissions events in recorded history. Past studies estimate about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997 (which were mostly concentrated in carbon-rich forested peatlands). This amount is equivalent to about 14% of the average global annual fossil fuel emissions released during the 1990s. While not as large as the 1997-98 events, significant emissions from biomass burning have also been recorded in other (less severe) El Niño years across Indonesia, in particular, 2002, 2004, 2006 and 2009-2010. Recent climate modelling studies indicate that the frequency of El Niño events may increase under future climate change, affecting many tropical countries, including Indonesia. An increased drought frequency plus a projected increase in population and land use pressures in Indonesia, imply there will be even more fires and emissions in future across the region. However, while

  12. Seasonal Forecasting of Fire Weather Based on a New Global Fire Weather Database

    Science.gov (United States)

    Dowdy, Andrew J.; Field, Robert D.; Spessa, Allan C.

    2016-01-01

    Seasonal forecasting of fire weather is examined based on a recently produced global database of the Fire Weather Index (FWI) system beginning in 1980. Seasonal average values of the FWI are examined in relation to measures of the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). The results are used to examine seasonal forecasts of fire weather conditions throughout the world.

  13. Post-fire vegetation behaviour in large burnt scars from 2005 fire season in Spain

    Science.gov (United States)

    Bastos, A.; Gouveia, C. M.; DaCamara, C. C.; Trigo, R. M.

    2012-04-01

    Wildfires have a wide diversity of impacts on landscape which, in turn, depend on the interaction of fire regimes (e.g. intensity, extent, frequency) and the response of vegetation to them in short and long-terms. The increase in erosion rates and the loss of nutrients by runoff in the first months following the fire are among the major impacts of wildfires. A minimum of 30% of vegetation cover is enough to protect soils against erosion but vegetation may require a long period to reach this threshold after severe fires. Since erosion risk is strongly linked to vegetation recovery rates, post-fire vegetation monitoring becomes crucial in land management. Fire regimes in the Mediterranean have been changing in the past decades due to modifications in both socio-economic and climate patterns. Although many vegetation species in Mediterranean ecosystems are adapted to wildfires, changes in fire regime characteristics affect the ability of ecosystems to recover to their previous state. In Spain, fire is an important driver of changes in landscape composition, leading to dominance of shrubland following fire and to a major decrease of pine woodlands (Viedma et al., 2006). Remote sensing is a powerful tool in land management, allowing vegetation monitoring on large spatial scales for relatively long periods of time. In order to assess vegetation dynamics, monthly NDVI data from 1998-2009 from SPOT/VEGETATION at 1km spatial resolution over the Iberian Peninsula were used. This work focuses on 2005 fire season in Spain, which registered the highest amount of burnt area since 1994, with more than 188000 ha burnt. Burnt scars in this fire season were identified by cluster analysis. Post-fire vegetation recovery was assessed based on the monoparametric model developed by Gouveia et al. (2010) that was applied to four large scars located in different geographical settings with different land cover characteristics. While the two northern regions presented fast recovery, in the

  14. Wildland Fire Behaviour Case Studies and Fuel Models for Landscape-Scale Fire Modeling

    Directory of Open Access Journals (Sweden)

    Paul-Antoine Santoni

    2011-01-01

    Full Text Available This work presents the extension of a physical model for the spreading of surface fire at landscape scale. In previous work, the model was validated at laboratory scale for fire spreading across litters. The model was then modified to consider the structure of actual vegetation and was included in the wildland fire calculation system Forefire that allows converting the two-dimensional model of fire spread to three dimensions, taking into account spatial information. Two wildland fire behavior case studies were elaborated and used as a basis to test the simulator. Both fires were reconstructed, paying attention to the vegetation mapping, fire history, and meteorological data. The local calibration of the simulator required the development of appropriate fuel models for shrubland vegetation (maquis for use with the model of fire spread. This study showed the capabilities of the simulator during the typical drought season characterizing the Mediterranean climate when most wildfires occur.

  15. Fire Models and Design Fires

    DEFF Research Database (Denmark)

    Poulsen, Annemarie

    The aim of this project is to perform an experimental study on the influence of the thermal feedback on the burning behavior of well ventilated pre-flashover fires. For the purpose an experimental method has been developed. Here the same identical objects are tested under free burn conditions...... carried out by Carleton University and NRC-IRC performed on seven different types of fire loads representing commercial premises, comprise the tests used for the study. The results show that for some of the room test the heat release rate increased due to thermal feedback compared to free burn for a pre......-flashover fire. Two phenomena were observed, that relate well to theory was found. In an incipient phase the heat release rate rose with the temperature of the smoke layer/enclosure boundaries. This increase was also found to depend on the flammability properties of the burning object. The results also...

  16. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    Science.gov (United States)

    Peers, F.; Bellouin, N.; Waquet, F.; Ducos, F.; Goloub, P.; Mollard, J.; Myhre, G.; Skeie, R. B.; Takemura, T.; Tanré, D.; Thieuleux, F.; Zhang, K.

    2016-04-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550 nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Comparisons between Observations and Models (Goddard Chemistry Aerosol Radiation and Transport (GOCART), Hadley Centre Global Environmental Model 3 (HadGEM3), European Centre Hamburg Model 5-Hamburg Aerosol Module 2 (ECHAM5-HAM2), Oslo-Chemical Transport Model 2 (OsloCTM2), and Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, POLDER ACSSA is best reproduced by models with a high imaginary part of black carbon refractive index, in accordance with recent recommendations.

  17. FIRE CHARACTERISTICS FOR ADVANCED MODELLING OF FIRES

    Directory of Open Access Journals (Sweden)

    Otto Dvořák

    2016-07-01

    Full Text Available This paper summarizes the material and fire properties of solid flammable/combustible materials /substances /products, which are used as inputs for the computer numerical fire models. At the same time it gives the test standards for their determination.

  18. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season

    OpenAIRE

    F. Peers; Bellouin, Nicolas; F. Waquet; F. Ducos; P. Goloub; Mollard, J.; Myhre, G; R. B. Skeie; T. Takemura; Tanré, D.; F. Thieuleux; Zhang, K

    2016-01-01

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550nm. These results have been used to evaluate the simulation of aerosols above clouds in five Aerosol Compariso...

  19. INFORMATION-ANALYTICAL SYSTEM ASSESSMENT OF TENSION FIRE SEASONS

    Directory of Open Access Journals (Sweden)

    R. M. Kogan

    2014-01-01

    Full Text Available The method for calculating the complex index of tension fire seasons on the basis of the analysis of natural conditions and the concentration of natural and anthropogenic sources of vegetation fires using the "desirability» is developed. Geographic information system created for the calculation of indicators and indexes, the analysis of their dynamics, mapping tensions highlight areas of high risk. Verification procedure conducted by the example of the Khabarovsk Krai and the Jewish Autonomous Region.

  20. Predicting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; Jin, Yufang; DeFries, Ruth S.; Collatz, George J.; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. Here we investigated the relationship between year-to-year changes in satellite-derived estimates of fire activity in South America and sea surface temperature (SST) anomalies. We found that the Oceanic Ni o Index (ONI) was correlated with interannual fire activity in the eastern Amazon whereas the Atlantic Multidecadal Oscillation (AMO) index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model that predicted regional annual fire season severity (FSS) with 3-5 month lead times. Our approach provides the foundation for an early warning system for forecasting the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for mitigation of greenhouse gas and air pollutant emissions.

  1. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; DeFries, Ruth S.; Collatz, G. James; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam E.

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.

  2. Forecasting Fire Season Severity in South America Using Sea Surface Temperature Anomalies

    Science.gov (United States)

    Chen, Yang; Randerson, James T.; Morton, Douglas C.; DeFries, Ruth S.; Collatz, G. James; Kasibhatla, Prasad S.; Giglio, Louis; Jin, Yufang; Marlier, Miriam E.

    2011-01-01

    Fires in South America cause forest degradation and contribute to carbon emissions associated with land use change. We investigated the relationship between year-to-year changes in fire activity in South America and sea surface temperatures. We found that the Oceanic Ni o Index was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern Amazon. Combining these two climate indices, we developed an empirical model to forecast regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to the development of an early warning system for anticipating the vulnerability of Amazon forests to fires, thus enabling more effective management with benefits for climate and air quality.

  3. Observations of a seasonal cycle in NOx emissions from fires in the African savanna

    Science.gov (United States)

    Mebust, A. K.; Cohen, R. C.

    2012-12-01

    Nitrogen oxide (NOx) emissions from wildfires account for ~15% of the global total, inducing large fluctuations in the chemical production and loss rates of O3 and CH4 and thereby affecting Earth's radiative balance. NOx emissions from fires depend on fuel N content, combustion stage, and total biomass burned; sparse observations limit current understanding of the variability in these factors across biomes. Here we use satellite-based measurements to study emission coefficients (ECs), a value proportional to emission factors i.e. NOx emitted per unit of biomass burned, from fires in African savannas. NOx ECs decrease steadily across the fire season, rather than remaining constant as is currently assumed. We speculate that this is due to reallocation of nutrients, including N, to plant roots after the growing season. We account for the observed cycle in the GEOS-Chem chemical transport model to show the impacts on monthly tropospheric ozone.

  4. Modelling of fire count data: fire disaster risk in Ghana.

    Science.gov (United States)

    Boadi, Caleb; Harvey, Simon K; Gyeke-Dako, Agyapomaa

    2015-01-01

    Stochastic dynamics involved in ecological count data require distribution fitting procedures to model and make informed judgments. The study provides empirical research, focused on the provision of an early warning system and a spatial graph that can detect societal fire risks. It offers an opportunity for communities, organizations, risk managers, actuaries and governments to be aware of, and understand fire risks, so that they will increase the direct tackling of the threats posed by fire. Statistical distribution fitting method that best helps identify the stochastic dynamics of fire count data is used. The aim is to provide a fire-prediction model and fire spatial graph for observed fire count data. An empirical probability distribution model is fitted to the fire count data and compared to the theoretical probability distribution of the stochastic process of fire count data. The distribution fitted to the fire frequency count data helps identify the class of models that are exhibited by the fire and provides time leading decisions. The research suggests that fire frequency and loss (fire fatalities) count data in Ghana are best modelled with a Negative Binomial Distribution. The spatial map of observed fire frequency and fatality measured over 5 years (2007-2011) offers in this study a first regional assessment of fire frequency and fire fatality in Ghana.

  5. Fire and season of post-fire defoliation effects on biomass, composition and cover in mixed-grass prairie

    Science.gov (United States)

    North American prairies are acknowledged to have evolved with grazing following fire. Given this evolutionary fire-grazing interaction, our objective was to determine whether seasonal timing of defoliation following fire alters subsequent productivity and species composition. Following the April 201...

  6. Effects of fire season on flowering of forbs and shrubs in longleaf pine forests.

    Science.gov (United States)

    Platt, William J; Evans, Gregory W; Davis, Mary M

    1988-08-01

    Effects of variation in fire season on flowering of forbs and shrubs were studied experimentally in two longleaf pine forest habitats in northern Florida, USA. Large, replicated plots were burned at different times of the year, and flowering on each plot was measured over the twelve months following fire. While fire season had little effect on the number of species flowering during the year following fire, fires during the growing season decreased average flowering duration per species and increased synchronization of peak flowering times within species relative to fires between growing seasons. Fires during the growing season also increased the dominance of fall flowering forbs and delayed peak fall flowering. Differences in flowering resulting from variation in fire season were related to seasonal changes in the morphology of clonal forbs, especially fall-flowering composites. Community level differences in flowering phenologies indicated that timing of fire relative to environmental cues that induced flowering was important in determining flowering synchrony among species within the ground cover of longleaf pine forests. Differences in fire season produced qualitatively similar effects on flowering phenologies in both habitats, indicating plant responses to variation in the timing of fires were not habitat specific.

  7. A hydroclimatic model of global fire patterns

    Science.gov (United States)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  8. Fire behavior modeling-a decision tool

    Science.gov (United States)

    Jack Cohen; Bill Bradshaw

    1986-01-01

    The usefulness of an analytical model as a fire management decision tool is determined by the correspondence of its descriptive capability to the specific decision context. Fire managers must determine the usefulness of fire models as a decision tool when applied to varied situations. Because the wildland fire phenomenon is complex, analytical fire spread models will...

  9. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA

    Science.gov (United States)

    Urbieta, Itziar R.; Zavala, Gonzalo; Bedia, Joaquin; Gutierrez, Jose M.; San Miguel-Ayanz, Jesus; Camia, Andrea; Keeley, Jon E.; Moreno, Jose M.

    2015-01-01

    Climate has a strong influence on fire activity, varying across time and space. We analyzed the relationships between fire–weather conditions during the main fire season and antecedent water-balance conditions and fires in two Mediterranean-type regions with contrasted management histories: five southern countries of the European Union (EUMED)(all fires); the Pacific western coast of the USA (California and Oregon, PWUSA)(national forest fires). Total number of fires (≥1 ha), number of large fires (≥100 ha) and area burned were related to mean seasonal fire weather index (FWI), number of days over the 90th percentile of the FWI, and to the standardized precipitation-evapotranspiration index (SPEI) from the preceding 3 (spring) or 8 (autumn through spring) months. Calculations were made at three spatial aggregations in each area, and models related first-difference (year-to-year change) of fires and FWI/climate variables to minimize autocorrelation. An increase in mean seasonal FWI resulted in increases in the three fire variables across spatial scales in both regions. SPEI contributed little to explain fires, with few exceptions. Negative water-balance (dry) conditions from autumn through spring (SPEI8) were generally more important than positive conditions (moist) in spring (SPEI3), both of which contributed positively to fires. The R2 of the models generally improved with increasing area of aggregation. For total number of fires and area burned, the R2 of the models tended to decrease with increasing mean seasonal FWI. Thus, fires were more susceptible to change with climate variability in areas with less amenable conditions for fires (lower FWI) than in areas with higher mean FWI values. The relationships were similar in both regions, albeit weaker in PWUSA, probably due to the wider latitudinal gradient covered in PWUSA than in EUMED. The large variance explained by some of the models indicates that large-scale seasonal forecast could help anticipating

  10. Modelling fire frequency in a Cerrado savanna protected area.

    Science.gov (United States)

    Pereira Júnior, Alfredo C; Oliveira, Sofia L J; Pereira, José M C; Turkman, Maria Antónia Amaral

    2014-01-01

    Covering almost a quarter of Brazil, the Cerrado is the world's most biologically rich tropical savanna. Fire is an integral part of the Cerrado but current land use and agricultural practices have been changing fire regimes, with undesirable consequences for the preservation of biodiversity. In this study, fire frequency and fire return intervals were modelled over a 12-year time series (1997-2008) for the Jalapão State Park, a protected area in the north of the Cerrado, based on burned area maps derived from Landsat imagery. Burned areas were classified using object based image analysis. Fire data were modelled with the discrete lognormal model and the estimated parameters were used to calculate fire interval, fire survival and hazard of burning distributions, for seven major land cover types. Over the study period, an area equivalent to four times the size of Jalapão State Park burned and the mean annual area burned was 34%. Median fire intervals were generally short, ranging from three to six years. Shrub savannas had the shortest fire intervals, and dense woodlands the longest. Because fires in the Cerrado are strongly responsive to fuel age in the first three to four years following a fire, early dry season patch mosaic burning may be used to reduce the extent of area burned and the severity of fire effects.

  11. Model Reduction of Nonlinear Fire Dynamics Models

    OpenAIRE

    Lattimer, Alan Martin

    2016-01-01

    Due to the complexity, multi-scale, and multi-physics nature of the mathematical models for fires, current numerical models require too much computational effort to be useful in design and real-time decision making, especially when dealing with fires over large domains. To reduce the computational time while retaining the complexity of the domain and physics, our research has focused on several reduced-order modeling techniques. Our contributions are improving wildland fire reduced-order mod...

  12. Assessing the value of increased model resolution in forecasting fire danger

    Science.gov (United States)

    Jeanne Hoadley; Miriam Rorig; Ken Westrick; Larry Bradshaw; Sue Ferguson; Scott Goodrick; Paul Werth

    2003-01-01

    The fire season of 2000 was used as a case study to assess the value of increasing mesoscale model resolution for fire weather and fire danger forecasting. With a domain centered on Western Montana and Northern Idaho, MM5 simulations were run at 36, 12, and 4-km resolutions for a 30 day period at the height of the fire season. Verification analyses for meteorological...

  13. WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model

    Science.gov (United States)

    Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak

    2012-01-01

    A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...

  14. NCEP-ECPC monthly to seasonal US fire danger forecasts

    Science.gov (United States)

    J. Roads; P. Tripp; H. Juang; J. Wang; F. Fujioka; S. Chen

    2010-01-01

    Five National Fire Danger Rating System indices (including the Ignition Component, Energy Release Component, Burning Index, Spread Component, and the Keetch–Byram Drought Index) and the Fosberg Fire Weather Index are used to characterise US fire danger. These fire danger indices and input meteorological variables, including temperature, relative humidity, precipitation...

  15. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Science.gov (United States)

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  16. Seasonal Forecasts of Extreme Conditions for Wildland Fire Management in Alaska using NMME

    Science.gov (United States)

    Bhatt, U. S.; Bieniek, P.; Thoman, R.; York, A.; Ziel, R.

    2016-12-01

    The summer of 2015 was the second largest Alaska fire season since 1950 where approximately the land area of Massachusetts burned. The record fire year of 2004 resulted in 6.5 million acres burned and was costly from property loss (> 35M) and emergency personnel (> 17M). In addition to requiring significant resources, wildfire smoke impacts air quality in Alaska and downstream into North America. Fires in Alaska result from lightning strikes coupled with persistent (extreme) dry warm conditions in remote areas with limited fire management and the seasonal climate/weather determine the extent of the fire season in Alaska. Fire managers rely on weather/climate outlooks for allocating staff and resources from days to a season in advance. Though currently few tested products are available at the seasonal scale. Probabilistic forecasts of the expected seasonal climate/weather would aid tremendously in the planning process. Advanced knowledge of both lightning and fuel conditions would assist managers in planning resource allocation for the upcoming season. For fuel conditions, the Canadian Forest Fire Weather Index System (CFFWIS) has been used since 1992 because it better suits the Alaska fire regime than the standard US National Fire Danger Rating System (NFDRS). This CFFWIS is based on early afternoon values of 2-m air temperature, relative humidity, and 10-m winds and daily total precipitation. Extremes of these indices and the variables are used to calculate these indices will be defined in reference to fire weather for the boreal forest. The CFFWIS will be applied and evaluated for the NMME hindcasts. This study will evaluate the quality of the forecasts comparing the hindcast NMME CFFWIS to acres burned in Alaska. Spatial synoptic patterns in the NMME related to fire weather extremes will be constructed using self-organized maps and probabilities of occurrence will be evaluated against acres burned.

  17. Response of Amazon Fires to the 2015/2016 El Niño and Evaluation of a Seasonal Fire Season Severity Forecast

    Science.gov (United States)

    Randerson, J. T.

    2016-12-01

    Recent work has established that year-to-year variability in drought and fire within the Amazon responds to a dual forcing from ocean-atmosphere interactions in the tropical Pacific and North Atlantic. Teleconnections between the Pacific and the Amazon are strongest between October and March, when El Niño contributes to below-average precipitation during the wet season. A reduced build-up of soil moisture during the wet season, in turn, may limit water availability and transpiration in tropical forests during the following dry season, lowering surface humidity, drying fuels, and allowing fires to spread more easily through the understory. The delayed influence of soil moisture through this land - atmosphere coupling provides a means to predict fire season severity 3-6 months before the onset of the dry season. With the aim of creating new opportunities for forest conservation, we have developed an experimental seasonal fire forecasting system for the Amazon. The 2016 fire season severity forecast, released in June by UCI and NASA, predicts unusually high risk across eastern Peru, northern Bolivia, and Brazil. Several surface and satellite data streams confirm that El Niño teleconnections had a significant impact on wet season hydrology within the Amazon. Rainfall observations from the Global Precipitation Climatology Centre provided evidence that cumulative precipitation deficits during August-April were 1 to 2 standard deviations below the long-term mean for most of the basin. These observations were corroborated by strong negative terrestrial water storage anomalies measured by the Gravity Recovery and Climate Experiment, and by fluorescence and vegetation index observations from other sensors that indicated elevated canopy stress. By August 3rd, satellite observations showed above average fire activity in most, but not all, forecast regions. Using additional satellite observations that become available later this year, we plan to describe the full spatial and

  18. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in Portugal.

    Science.gov (United States)

    Martins, V; Miranda, A I; Carvalho, A; Schaap, M; Borrego, C; Sá, E

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical module, which takes into account the most suitable parameters for Portuguese forest fire characteristics and the burnt area by large forest fires. To better evaluate the influence of forest fires on air quality the LOTOS-EUROS system has been applied with and without forest fire emissions. Hourly concentration results have been compared to measure data at several monitoring locations with better modeling quality parameters when forest fire emissions were considered. Moreover, hourly estimates, with and without fire emissions, can reach differences in the order of 20%, showing the importance and the influence of this type of emissions on air quality.

  19. Interfacing materials models with fire field models

    Energy Technology Data Exchange (ETDEWEB)

    Nicolette, V.F.; Tieszen, S.R.; Moya, J.L.

    1995-12-01

    For flame spread over solid materials, there has traditionally been a large technology gap between fundamental combustion research and the somewhat simplistic approaches used for practical, real-world applications. Recent advances in computational hardware and computational fluid dynamics (CFD)-based software have led to the development of fire field models. These models, when used in conjunction with material burning models, have the potential to bridge the gap between research and application by implementing physics-based engineering models in a transient, multi-dimensional tool. This paper discusses the coupling that is necessary between fire field models and burning material models for the simulation of solid material fires. Fire field models are capable of providing detailed information about the local fire environment. This information serves as an input to the solid material combustion submodel, which subsequently calculates the impact of the fire environment on the material. The response of the solid material (in terms of thermal response, decomposition, charring, and off-gassing) is then fed back into the field model as a source of mass, momentum and energy. The critical parameters which must be passed between the field model and the material burning model have been identified. Many computational issues must be addressed when developing such an interface. Some examples include the ability to track multiple fuels and species, local ignition criteria, and the need to use local grid refinement over the burning material of interest.

  20. Comparison of aerosol optical properties above clouds between POLDER and AeroCom models over the South East Atlantic Ocean during the fire season: POLDER/AeroCom Comparison Above Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Peers, F. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Now at College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter UK; Bellouin, N. [Department of Meteorology, University of Reading, Reading UK; Waquet, F. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Ducos, F. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Goloub, P. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Mollard, J. [Department of Meteorology, University of Reading, Reading UK; Myhre, G. [Center for International Climate and Environmental Research - Oslo, Oslo Norway; Skeie, R. B. [Center for International Climate and Environmental Research - Oslo, Oslo Norway; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Tanré, D. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Thieuleux, F. [Laboratoire d' Optique Atmosphérique, Université Lille 1, Villeneuve d' Ascq France; Zhang, K. [Max Planck Institute for Meteorology, Hamburg Germany; Pacific Northwest National Laboratory, Richland Washington USA

    2016-04-21

    Aerosol properties above clouds have been retrieved over the South East Atlantic Ocean during the fire season 2006 using satellite observations from POLDER (Polarization and Directionality of Earth Reflectances). From June to October, POLDER has observed a mean Above-Cloud Aerosol Optical Thickness (ACAOT) of 0.28 and a mean Above-Clouds Single Scattering Albedo (ACSSA) of 0.87 at 550nm. These results have been used to evaluate the simulation of aerosols above clouds in 5 AeroCom (Aerosol Comparisons between Observations and Models) models (GOCART, HadGEM3, ECHAM5-HAM2, OsloCTM2 and SPRINTARS). Most models do not reproduce the observed large aerosol load episodes. The comparison highlights the importance of the injection height and the vertical transport parameterizations to simulate the large ACAOT observed by POLDER. Furthermore, some models overestimate the ACSSA. In accordance with recent recommendations of the black carbon refractive index, a higher prescription of the imaginary part allows a better comparison with POLDER’s ACSSA.

  1. [Prescribed fire in northern mixed grass prairie] 2001 field season progress report, J. Clark Salyer NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Progress report on the 2001 field season for the project titled "Prescribed fire for fuel reduction in northern mixed grass prairie : Influence on habitat and...

  2. Modeling boreal fire and forest dynamics

    Science.gov (United States)

    de Groot, W. J.; McRae, D. J.; Cantin, A.

    2009-04-01

    The circumpolar boreal forest covers about 1.4 billion ha, representing 1/3 of global forest land. Approximately 2/3 of the boreal forest is located in Eurasia and the remainder in North America. Wildland fires annually burn an estimated 12-20 M ha across the entire boreal region, having a major influence on forest structure and composition. However, fire weather, fire behaviour, and fire ecology differ greatly between the boreal forests in eastern and western hemispheres, which have significant impact on tree survival, post-fire regeneration and forest succession. Every year, wildland fires in Canada and Alaska burn an average of 2-3 M ha, primarily by stand-replacing, high intensity crown fires. By comparison, Russian fires burn about 10-15 M ha annually, primarily by low to moderate intensity surface fires that cause minimal tree mortality. Fire weather conditions in the most fire prone regions of Russia are generally more severe than in similar regions of North America. Finally, the species composition of eastern and western boreal forests is also very different. Russian forests are dominated by larch (30%) and pine (28%) with lower components of spruce (14%) and poplar/birch hardwoods (18%) By contrast, Canadian forests are comprised mainly of spruce (35%), pine (22%), poplar/birch (16%), and fir (9%). All of these factors contribute to the variability in vegetation dynamics occurring within the circumpolar boreal region. This modeling study examines the interactions of fire weather, forest composition, fire behaviour, and fire ecology on forest vegetation dynamics within the boreal region. Similar active fire zones in western Canada and eastern Siberia were used as study sites. Historical weather data were collected for both locations and used to calculate fire weather data, which were used as primary driving variables for the Boreal Fire Effects model (BORFIRE). Fire behaviour was calculated in BORFIRE using data for major tree species at both study sites

  3. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Science.gov (United States)

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  4. Fire spatial heterogeneity, fire seasonality and burned area mapping accuracy in the tropical savannas of Northern Australia

    Science.gov (United States)

    Oliveira, Sofia L. J.; Campagnolo, Manuel L.; Pereira, Jose M. C.; Russell-Smith, Jeremy

    2013-04-01

    Accurate burned area mapping from remotely sensed data should be able to identify spatial heterogeneity within a fire perimeter, for an improved representation of fire effects as experienced by plants and animals. In order to derive a very high spatial resolution characterization of fire patterns in the tropical savannas of the Northern Territory, Australia, we walked 38.2km of line transects, sampling the presence/absence of burning evidence at 1m intervals, in 35 different fires that occurred between 2009 and 2011. Transects were sampled in the early and in the late dry season, and in five dominant vegetation classes. We used lacunarity analysis and spatial autocorrelation to assess the dominant scale of burned area patches, which turns out to be approximately 200m. Lacunarity analysis also suggests that burnt areas exhibit a clustered pattern and that fire heterogeneity is more pronounced in the early dry season. This is consistent with our observation that patches in the late dry season tend to be smaller and more randomly distributed. Finally, we used our high resolution data date to simulate remote sensing detection of burnt areas for a range of spatial resolutions. We quantify the omission error for each sensor and conclude that if resolution is lower than the dominant scale, then the error tends to be small. Our results also suggest that sensors with spatial resolution higher than the dominant scale have similar omission errors over a broad range of resolution values. The forthcoming Sentinel-2 satellites, which combine 5-day revisit, and systematic acquisition of all land surfaces at 10-20 m spatial resolution, with a large number of spectral bands, ought to allow for very accurate and timely mapping of fire heterogeneity, for improved assessment of fire impacts on biodiversity and pyrogenic emissions.

  5. Impact of forest fires on particulate matter and ozone levels during the 2003, 2004 and 2005 fire seasons in portugal

    NARCIS (Netherlands)

    Martins, V.; Miranda, A.I.; Carvalho, A.; Schaap, M.; Borrego, C.; Sá, E.

    2012-01-01

    The main purpose of this work is to estimate the impact of forest fires on air pollution applying the LOTOS-EUROS air quality modeling system in Portugal for three consecutive years, 2003-2005. Forest fire emissions have been included in the modeling system through the development of a numerical mod

  6. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  7. Building fire zone model with symbolic mathematics

    Institute of Scientific and Technical Information of China (English)

    武红梅; 郜冶; 周允基

    2009-01-01

    To apply the fire modelling for the fire engineer with symbolic mathematics,the key equations of a zone model were demonstrated. There were thirteen variables with nine constraints,so only four ordinary differential equations (ODEs) were required to solve. A typical fire modelling with two-room structure was studied. Accordingly,the source terms included in the ODEs were simplified and modelled,and the fourth Runge-Kutta method was used to solve the ordinary differential equations (ODEs) with symbolic mathematics. Then a zone model could be used with symbolic mathematics. It is proposed that symbolic mathematics is possible for use by fire engineer.

  8. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  9. Comparison of crown fire modeling systems used in three fire management applications

    OpenAIRE

    Scott, J. H.

    2006-01-01

    The relative behavior of surface-crown fire spread rate modeling systems used in three fire management applications—CFIS (Crown Fire Initiation and Spread), FlamMap and NEXUS— is compared using fire environment characteristics derived from a dataset of destructively measured canopy fuel and associated stand characteristics. Although the surface-crown modeling systems predict the same basic fire behavior characteristics (type of fire, spread rate) using the same basic fire environment characte...

  10. Elevated ozone in boreal fire plumes - the 2013 smoke season

    Science.gov (United States)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-05-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about three weeks. In addition, some of the lower-tropospheric components of these layers were analyzed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America have a much stronger impact on the Central European atmosphere than the multitude of fires in the United States. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions over remote high latitude regions obviously picking up the aerosol on their way across Canada. In one case subsidence from the stratosphere over Siberia over as many as 15 to 20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  11. Linking Satellite-Derived Fire Counts to Satellite-Derived Weather Data in Fire Prediction Models to Forecast Extreme Fires in Siberia

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Stackhouse, P. W.

    2009-12-01

    Fire is the dominant disturbance that precipitates ecosystem change in boreal regions, and fire is largely under the control of weather and climate. Fire frequency, fire severity, area burned and fire season length are predicted to increase in boreal regions under climate change scenarios. Therefore to predict fire weather and ecosystem change, we must understand the factors that influence fire regimes and at what scale these are viable. The Canadian Fire Weather Index (FWI), developed by the Canadian Forestry Service, is used for this comparison, and it is calculated using local noon surface-level air temperature, relative humidity, wind speed, and daily (noon-noon) rainfall. The FWI assesses daily forest fire burning potential. Large-scale FWI are calculated at the NASA Langley Research Center (LaRC) using NASA Goddard Earth Observing System version 4 (GEOS-4) large-scale reanalysis and NASA Global Precipitation Climatology Project (GPCP) data. The GEOS-4 reanalysis weather data are 3-hourly interpolated to 1-hourly data at a 1ox1o resolution and the GPCP precipitation data are also at 1ox1o resolution. In previous work focusing on the fire season in Siberia in 1999 and 2002, we have shown the combination of GEOS-4 weather data and Global Precipitation Climatology Project (GPCP) precipitation data compares well to ground-based weather data when used as inputs for FWI calculation. The density and accuracy of Siberian surface station data can be limited, which leads to results that are not representative of the spatial reality. GEOS-4/GPCP-dervied FWI can serve to spatially enhance current and historic FWI, because these data are spatially and temporally consistency. The surface station and model reanalysis derived fire weather indices compared well spatially, temporally and quantitatively, and increased fire activity compares well with increasing FWI ratings. To continue our previous work, we statistically compare satellite-derived fire counts to FWI categories at

  12. Effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa

    CSIR Research Space (South Africa)

    Govender, N

    2006-08-01

    Full Text Available in the Kruger National Park, South Africa, by documenting fuel loads, fuel moisture contents, rates of fire spread and the heat yields of fuel in 956 experimental plot burns over 21 years. 3. Individual fires were conducted in five different months (February...

  13. Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

    Science.gov (United States)

    Russell A. Parsons; William E. Mell; Peter McCauley

    2011-01-01

    Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...

  14. Seasonal and topographic effects on estimating fire severity from Landsat TM/ETM+data.

    Science.gov (United States)

    D.L. Verbyla; E.S. Kasischke; E.E. Hoy

    2008-01-01

    The maximum solar elevation is typically less than 50 degrees in the Alaskan boreal region and solar elevation varies substantially during the growing season. Because of the relatively low solar elevation at boreal latitudes, the effect of topography on spectral reflectance can influence fire severity indices derived from remotely sensed data. We used Landsat Thematic...

  15. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  16. A Malthusian Model for all Seasons

    DEFF Research Database (Denmark)

    Sharp, Paul Richard; Weisdorf, Jacob Louis

    associated with labour shortages (the high-season bottleneck on production), although there might be labour surplus during the low season. We introduce the concept of seasonality into a stylized Malthusian model, and endogenize the extent of agricultural labour input, which is then used to calculate labour...

  17. Determining Appropriate Seasonal Dislocation Sites of Fire Brigades in the Šibenik-Knin County Based on Road Network Analysis

    Directory of Open Access Journals (Sweden)

    Doroteja Držaić

    2015-07-01

    Full Text Available The majority of wildfires in the Republic of Croatia occur in coastal and island areas, so the Šibenik-Knin County was studied in this research. This research was based upon spatial and temporal analyses of past fires in the Šibenik-Knin County using GIS tools in order to identify potential locations for seasonal dislocation of fire stations. The research resulted in cartographic visualization of areas within reach of existing fire brigades within the standard intervention time and potential locations for seasonal dislocation of fire stations. The results obtained using spatial GIS analysis can be used as a basis for future spatial planning and seasonal dislocation of fire stations in the Šibenik-Knin County, as well as a basis for determining dislocation of fire stations in other Croatian counties.

  18. Modelling the probability of building fires

    Directory of Open Access Journals (Sweden)

    Vojtěch Barták

    2014-12-01

    Full Text Available Systematic spatial risk analysis plays a crucial role in preventing emergencies.In the Czech Republic, risk mapping is currently based on the risk accumulationprinciple, area vulnerability, and preparedness levels of Integrated Rescue Systemcomponents. Expert estimates are used to determine risk levels for individualhazard types, while statistical modelling based on data from actual incidents andtheir possible causes is not used. Our model study, conducted in cooperation withthe Fire Rescue Service of the Czech Republic as a model within the Liberec andHradec Králové regions, presents an analytical procedure leading to the creation ofbuilding fire probability maps based on recent incidents in the studied areas andon building parameters. In order to estimate the probability of building fires, aprediction model based on logistic regression was used. Probability of fire calculatedby means of model parameters and attributes of specific buildings can subsequentlybe visualized in probability maps.

  19. The 1985 Biomass Burning Season in South America: Satellite Remote Sensing of Fires, Smoke, and Regional Radiative Energy Budgets

    Science.gov (United States)

    Christopher, Sundar A.; Wang, Min; Berendes, Todd A.; Welch, Ronald M.; Yang, Shi-Keng

    1998-01-01

    Using satellite imagery, more than five million square kilometers of the forest and cerrado regions over South America are extensively studied to monitor fires and smoke during the 1985 biomass burning season. The results are characterized for four major ecosystems, namely: (1) tropical rain forest, (2) tropical broadleaf seasonal, (3) savannah/grass and seasonal woods (SGW), and (4) mild/warm/hot grass/shrub (MGS). The spatial and temporal distribution of fires are examined from two different methods using the multispectral Advanced Very High Resolution Radiometer Local Area Coverage data. Using collocated measurements from the instantaneous scanner Earth Radiation Budget Experiment data, the direct regional radiative forcing of biomass burning aerosols is computed. The results show that more than 70% of the fires occur in the MGS and SGW ecosystems due to agricultural practices. The smoke generated from biomass burning has negative instantaneous net radiative forcing values for all four major ecosystems within South America. The smoke found directly over the fires has mean net radiative forcing values ranging from -25.6 to -33.9 W m(exp -2). These results confirm that the regional net radiative impact of biomass burning is one of cooling. The spectral and broadband properties for clear-sky and smoke regions are also presented that could be used as input and/or validation for other studies attempting to model the impact of aerosols on the earth-atmosphere system. These results have important applications for future instruments from the Earth Observing System (EOS) program. Specifically, the combination of the Visible Infrared Scanner and Clouds and the Earth's Radiant Energy System (CERES) instruments from the Tropical Rainfall Measuring Mission and the combination of Moderate Resolution Imaging Spectrometer and CERES instruments from the EOS morning crossing mission could provide reliable estimates of the direct radiative forcing of aerosols on a global scale

  20. Geospatial modeling of fire-size distributions in historical low-severity fire regimes

    Science.gov (United States)

    McKenzie, D.; Kellogg, L. B.; Larkin, N. K.

    2006-12-01

    Low-severity fires are recorded by fire-scarred trees. These records can provide temporal depth for reconstructing fire history because one tree may record dozens of separate fires over time, thereby providing adequate sample size for estimating fire frequency. Estimates of actual fire perimeters from these point-based records are uncertain, however, because fire boundaries can only be located approximately. We indirectly estimate fire-size distributions without attempting to establish individual fire perimeters. The slope and intercept of the interval-area function, a power-law relationship between sample area and mean fire-free intervals for that area, provide surrogates for the moments of a fire-size distribution, given a distribution of fire- free intervals. Analogously, by deconstructing variograms that use a binary distance measure (Sorensen's index) for the similarity of the time-series of fires recorded by pairs of recorder trees, we provide estimates of modal fire size. We link both variograms and interval-area functions to fire size distributions by simulating fire size distributions on neutral landscapes with and without right- censoring to represent topographic controls on maximum fire size. From parameters of the two functions produced by simulations we can back-estimate means and variances of fire sizes on real landscapes. This scale-based modeling provides a robust alternative to empirical and heuristic methods and a means to extrapolate estimates of fire-size distributions to unsampled landscapes.

  1. Aids to determining fuel models for estimating fire behavior

    Science.gov (United States)

    Hal E. Anderson

    1982-01-01

    Presents photographs of wildland vegetation appropriate for the 13 fuel models used in mathematical models of fire behavior. Fuel model descriptions include fire behavior associated with each fuel and its physical characteristics. A similarity chart cross-references the 13 fire behavior fuel models to the 20 fuel models used in the National Fire Danger Rating System....

  2. Laboratory Modeling of Aspects of Large Fires,

    Science.gov (United States)

    1984-04-30

    7 -7 g~L AD-A153 152 DNA-TR- 84-18 LABORATORY MODELING OF ASPECTS OF LARGE FIRES G.F. Carrier "URARY F.E. Fendell b DVSO R.D. Fleeter N. Got L.M...I1I TITLE (include Socurty Olassihicarion) LABORATORY MODELING OF ASPECTS OF LARGE FIRES 12. PERSONAL AUrHoR(S G.F. Carrier F.E. Fendell R.D. Fleeter N...Motorbuch Verlag.___ Caidin, M. (1960). A Torch to the Enemy: the Fire Raid on Tokyo. New York, NY: Ballantine. Carrier, G. F., Fendell , F. E., and

  3. A Malthusian Model for all Seasons

    DEFF Research Database (Denmark)

    Sharp, Paul Richard; Weisdorf, Jacob Louis

    economy. Inspired by the work of Boserup (1965) and others, and in contrast to the Lewis (1954) approach, we suggest that the phenomenon of surplus labour is best understood through an acceptance of the importance of seasonality in agriculture. Boserup observed that the harvest season was invariably...... associated with labour shortages (the high-season bottleneck on production), although there might be labour surplus during the low season. We introduce the concept of seasonality into a stylized Malthusian model, and endogenize the extent of agricultural labour input, which is then used to calculate labour...... surplus and the rate of labour productivity. We observe the effects of season-specific technological progress, and find that technological progress in the low-season increases labour surplus and labour productivity whilst, perhaps surprisingly, technological progress in the high-season, by relaxing...

  4. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model

    Directory of Open Access Journals (Sweden)

    K. Thonicke

    2010-01-01

    Full Text Available A process-based fire regime model (SPITFIRE has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore spatial and temporal patterns of fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated. Overall SPITFIRE produces realistic simulations of spatial and temporal patterns of fire under modern conditions and of the current impact of fire on the terrestrial carbon cycle and associated emissions of trace greenhouse gases and aerosols.

  5. Interactive modelling of forest fires and their impacts on atmospheric composition

    Science.gov (United States)

    Mangeon, S.; Voulgarakis, A.; Folberth, G.

    2016-12-01

    Forest and wildland fires are a significant emission source of gases and aerosols to the atmosphere. In particular, biomass burning has been shown to be a significant driver of interannual variability and short-term climate forcings. Fires emit a wide variety of compounds to the atmosphere, from greenhouse gases to aerosols. Conversely, weather and climate also drive fire occurrence, creating potential feedbacks between climate, atmospheric composition, and fire. Here, we will present INFERNO (INteractive Fires and Emissions algoRithm for Natural envirOnments, described in Mangeon et al., 2016), a reduced complexity approach to global fire modelling coupled to interactive atmospheric composition in the UK Met Office's Unified Model. We will first show the coupled model's performance in capturing burnt area and fire emissions. We will then demonstrate how fires impact atmospheric composition in the global model for present-day scenarios: with our interactive scheme but also with reference datasets of global fire emissions, as well as in simulations assuming no fire emissions. In particular, we will investigate the role of fires on the mean present-day state, the seasonal cycle, and the interannual variability of important atmospheric constituents (e.g., CO and aerosols).

  6. A wildland fire modeling and visualization environment

    CERN Document Server

    Mandel, Jan; Kochanski, Adam K; Kondratenko, Volodymyr Y; Zhang, Lin; Anderson, Erik; Daniels, Joel; Silva, Claudio T; Johnson, Christopher R

    2011-01-01

    We present an overview of a modeling environment, consisting of a coupled atmosphere-wildfire model, utilities for visualization, data processing, and diagnostics, open source software repositories, and a community wiki. The fire model, called SFIRE, is based on a fire-spread model, implemented by the level-set method, and it is coupled with the Weather Research Forecasting (WRF) model. A version with a subset of the features is distributed with WRF 3.3 as WRF-Fire. In each time step, the fire module takes the wind as input and returns the latent and sensible heat fluxes. The software architecture uses WRF parallel infrastructure for massively parallel computing. Recent features of the code include interpolation from an ideal logarithmic wind profile for nonhomogeneous fuels and ignition from a fire perimeter with an atmosphere and fire spin-up. Real runs use online sources for fuel maps, fine-scale topography, and meteorological data, and can run faster than real time. Visualization pathways allow generating...

  7. Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest

    Science.gov (United States)

    Knapp, E.E.; Keeley, J.E.; Ballenger, E.A.; Brennan, T.J.

    2005-01-01

    Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed - therefore the number of logs was not significantly changed by fire - but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by

  8. Fire modeling of the Heiss Dampf Reaktor containment

    Energy Technology Data Exchange (ETDEWEB)

    Nicolette, V.F. [Sandia National Labs., Albuquerque, NM (United States); Yang, K.T. [Notre Dame Univ., IN (United States)

    1995-09-01

    This report summarizes Sandia National Laboratories` participation in the fire modeling activities for the German Heiss Dampf Reaktor (HDR) containment building, under the sponsorship of the United States Nuclear Regulatory Commission. The purpose of this report is twofold: (1) to summarize Sandia`s participation in the HDR fire modeling efforts and (2) to summarize the results of the international fire modeling community involved in modeling the HDR fire tests. Additional comments, on the state of fire modeling and trends in the international fire modeling community are also included. It is noted that, although the trend internationally in fire modeling is toward the development of the more complex fire field models, each type of fire model has something to contribute to the understanding of fires in nuclear power plants.

  9. Comparison of Statistical Downscaling Methods for Seasonal Precipitation Prediction: An Application Toward a Fire and Haze Early Warning System for Southeast Asia

    Science.gov (United States)

    Cho, J.; Lee, H.; Lee, E.; Field, R. D.; Hameed, S. N.; Foo, K. K.; Albar, I.; Sopaheluwakan, A.

    2014-12-01

    Smoke haze from forest fires is among Southeast Asia's most serious environmental problems and there is a clear need for a long-lead fire and haze early warning system (EWS) for the regions. The seasonal forecast supplied by the APEC Climate Center (APCC) is one of available information can be used to predict drought conditions triggering forest fires in the region. The objective of this study is to assess the skill of the current and downscaled products of APCC's seasonal forecast of 6-month lead-time for predicting ASO precipitation over the fire-prone regions. First, seasonal forecast skill by six individual models (MSC_CANCM3, MSC_CANCM4, NASA, NCEP, PNU, POAMA) and simple composite model (SCM) ensemble was assessed by considering available each ensemble members. Second, three different statistical downscaling methods including simple bias-correction (SBC), moving window regression (MWReg), and climate index regression (CIReg) were applied and the forecast sill were compared. Both current and downscaled seasonal forecast showed higher predictability over Sumatra regions compared to the Kalimantan regions. Statistical downscaling of forecasts showed the skill improvement over the Kalimantan region where current APCC's forecast shows low predictability. Study also shows that temporal correlation coefficient (TCC) between observed and forecasted ASO precipitation increases as lead-time decrease.

  10. Review of UCN 5,6 Fire PSA Model based on ANS Fire PRA Standard

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Joon Eon; Lee, Yoon Hwan

    2006-12-15

    Recently, under the de-regulation environment, nuclear industry has attempted various approaches to improve the economics of Nuclear Power Plants (NPP). This approach uses the fire risk and performance information to manage the resources effectively and efficiently that are used in the operation of NPP. In fire risk informed/performance-based decision/operation, fire PSA quality is one of the most important things. The nuclear industry and regulatory body of U.S.A have developed a measure to evaluate the quality of fire PSA. ANS (American Nuclear Society) has developed a guidance called 'ANS Fire PRA Methodology Standard'. However, in Korea, there have been no attempts to evaluate the quality of fire PSA model itself. Therefore, we cannot be sure about the quality of fire PSA whether or not the present fire PSA model can be used for the risk-informed applications such as mentioned above. We can say that the evaluation of fire PSA model quality is the basis for the fire risk informed/performance-based decision/operation. In this report, we have evaluated the quality of fire PSA model for Ulchin 5 and 6 units based on the ANS Fire PRA Standard. We, also, have derived what items are to be improved to upgrade the quality of fire PSA model and how it can be improved. This report can be used as the base of the fire risk informed/performance-based decision/operation work in Korea.

  11. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  12. Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs

    Science.gov (United States)

    Yongqiang Liu; Adam Kochanski; Kirk Baker; Ruddy Mell; Rodman Linn; Ronan Paugam; Jan Mandel; Aime Fournier; Mary Ann Jenkins; Scott Goodrick; Gary Achtemeier; Andrew Hudak; Matthew Dickson; Brian Potter; Craig Clements; Shawn Urbanski; Roger Ottmar; Narasimhan Larkin; Timothy Brown; Nancy French; Susan Prichard; Adam Watts; Derek McNamara

    2017-01-01

    Fire and smoke models are numerical tools for simulating fire behavior, smoke dynamics, and air quality impacts of wildland fires. Fire models are developed based on the fundamental chemistry and physics of combustion and fire spread or statistical analysis of experimental data (Sullivan 2009). They provide information on fire spread and fuel consumption for safe and...

  13. Measurement of Fire Radiative Energy from Space and Implications for Fire-Disaster Monitoring and Smoke Emissions Modeling

    Science.gov (United States)

    Ichoku, Charles

    2008-01-01

    Measurement of fire radiative energy (FRE) release rate or power (FRP) from satellite provides a vital mechanism for distinguishing different strengths of fires. Analysis of 1-km resolution fire data, acquired globally by the MODerate-resolution Imaging Spectro-radiometer (MODIS) sensor aboard the Terra and Aqua satellites from 2000 to 2006, showed instantaneous FRP values ranging between 0.02 MW and 1866 MW, to which simple thresholds can be applied to categorize fires by strength, in a similar fashion as the strengths of earthquakes and hurricanes. Analysis of regional mean FRP per unit area of land (FRP flux) shows that at peak fire season in certain regions, fires can be responsible for up to 0.2 W/m2 at peak time of day. When considered as the active fire contribution to the direct surface radiative forcing (RF) in the different fire regions, this order of magnitude of FRF fluxes is non negligible. It has been determined experimentally that the amount of FRE released by a fire over the course of its duration is directly proportional to the amount of biomass consumed by it. Furthermore, at the satellite observation scale, the rate of release of FRE (i.e. FRP) is proportional to the rate of biomass consumption, and that of emission of smoke particulates and eventually also other smoke constituents. Therefore, current research efforts are geared toward deriving simple parameterizations that will facilitate direct input of FRP measurements in models, not only to improve the accuracy of burned-biomass and smoke emissions estimations, but also to reduce the hitherto practiced heavy reliance on multiple indirect parameters with indeterminate uncertainties.

  14. 75 FR 5355 - Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling...

    Science.gov (United States)

    2010-02-02

    ... COMMISSION Notice of Extension of Comment Period for NUREG-1934, Nuclear Power Plant Fire Modeling... notice of opportunity for public comment on ``NUREG-1934 (EPRI 1019195), Nuclear Power Plant Fire...) on December 29, 2009. Issues encountered during the holiday season delayed publication of...

  15. Surface fire effects on conifer and hardwood crowns--applications of an integral plume model

    Science.gov (United States)

    Matthew Dickinson; Anthony Bova; Kathleen Kavanagh; Antoine Randolph; Lawrence Band

    2009-01-01

    An integral plume model was applied to the problems of tree death from canopy injury in dormant-season hardwoods and branch embolism in Douglas fir (Pseudotsuga menziesii) crowns. Our purpose was to generate testable hypotheses. We used the integral plume models to relate crown injury to bole injury and to explore the effects of variation in fire...

  16. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model

    Directory of Open Access Journals (Sweden)

    K. Thonicke

    2010-06-01

    Full Text Available A process-based fire regime model (SPITFIRE has been developed, coupled with ecosystem dynamics in the LPJ Dynamic Global Vegetation Model, and used to explore fire regimes and the current impact of fire on the terrestrial carbon cycle and associated emissions of trace atmospheric constituents. The model estimates an average release of 2.24 Pg C yr−1 as CO2 from biomass burning during the 1980s and 1990s. Comparison with observed active fire counts shows that the model reproduces where fire occurs and can mimic broad geographic patterns in the peak fire season, although the predicted peak is 1–2 months late in some regions. Modelled fire season length is generally overestimated by about one month, but shows a realistic pattern of differences among biomes. Comparisons with remotely sensed burnt-area products indicate that the model reproduces broad geographic patterns of annual fractional burnt area over most regions, including the boreal forest, although interannual variability in the boreal zone is underestimated.

  17. Characteristic Analysis of Fire Modeling Codes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hwan; Yang, Joon Eon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jong Hoon [Kyeongmin College, Ujeongbu (Korea, Republic of)

    2004-04-15

    This report documents and compares key features of four zone models: CFAST, COMPBRN IIIE, MAGIC and the Fire Induced Vulnerability Evaluation (FIVE) methodology. CFAST and MAGIC handle multi-compartment, multi-fire problems, using many equations; COMPBRN and FIVE handle single compartment, single fire source problems, using simpler equation. The increased rigor of the formulation of CFAST and MAGIC does not mean that these codes are more accurate in every domain; for instance, the FIVE methodology uses a single zone approximation with a plume/ceiling jet sublayer, while the other models use a two-zone treatment without a plume/ceiling jet sublayer. Comparisons with enclosure fire data indicate that inclusion of plume/ceiling jet sublayer temperatures is more conservative, and generally more accurate than neglecting them. Adding a plume/ceiling jet sublayer to the two-zone models should be relatively straightforward, but it has not been done yet for any of the two-zone models. Such an improvement is in progress for MAGIC.

  18. Fire disturbance and vegetation dynamics : analysis and models

    Science.gov (United States)

    Thonicke, Kirsten

    2003-04-01

    a particular region are to be reproduced, specific ignition sources, fire-critical climate conditions and vegetation composition become additional determinants. Vegetation composition changes the level of fire occurrence and spread, but has limited impact on the inter-annual variability of fire. The importance to consider the full range of major fire processes and links to vegetation dynamics become apparent under climate change conditions. Increases in climate-dependent length of fire season does not automatically imply increases in biomass burnt, it can be buffered or accelerated by changes in vegetation productivity. Changes in vegetation composition as well as enhanced vegetation productivity can intensify changes in fire and lead to even more fire-related emissions. --- Anmerkung: Die Autorin ist Trägerin des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2002/2003. Untersuchungen zur Rolle natürlicher Störungen in der Vegetation bzw. in Ökosystemen zeigen, dass natürliche Störungen ein essentielles und intrinsisches Element in Ökosystemen darstellen, substanziell zur Vitalität und strukturellen Diversität der Ökosysteme beitragen und Stoffkreisläufe sowohl auf dem lokalen als auch auf dem globalen Niveau beeinflussen. Feuer als Grasland-, Busch- oder Waldbrand ist ein besonderes Störungsagens, da es sowohl durch biotische als auch abiotische Umweltfaktoren verursacht wird. Es beeinflusst biogeochemische Kreisläufe und spielt für die chemische Zusammensetzung der Atmosphäre durch Freisetzung klimarelevanter Spurengase und Aerosole aus der Verbrennung von Biomasse eine bedeutende Rolle. Dies wird auch durch die Emission von ca. 3.9 Gt Kohlenstoff pro Jahr unterstrichen, was einen großen Anteil am globalen Gesamtaufkommen ausmacht. Ein kombiniertes Modell, das die Effekte und Rückkopplungen zwischen Feuer und Vegetation beschreibt, wurde erforderlich

  19. Modeling pyrolysis of charring material in fire

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A modified model of pyrolysis for charring materials in fire has been proposed in this note. In this model some special factors which show the effect on pyrolysis are considered, i.e. heat loss by convection and radiation caused by surface temperature rise and shrinkage of char surface are considered. Experimental device is designed specially for validating the reliability of the model. Effects of density of materials and heat radiation on pyrolysis of materials have also been investigated.

  20. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India

    Energy Technology Data Exchange (ETDEWEB)

    Vadrevu, Krishna Prasad, E-mail: krisvkp@yahoo.com [Department of Geography, University of Maryland, College Park, Maryland (United States); Ellicott, Evan [Department of Geography, University of Maryland, College Park, Maryland (United States); Badarinath, K.V.S. [National Remote Sensing Center, Atmospheric Science Section, Hyderabad (India); Vermote, Eric [Department of Geography, University of Maryland, College Park, Maryland (United States)

    2011-06-15

    Agricultural residue burning is one of the major causes of greenhouse gas emissions and aerosols in the Indo-Ganges region. In this study, we characterize the fire intensity, seasonality, variability, fire radiative energy (FRE) and aerosol optical depth (AOD) variations during the agricultural residue burning season using MODIS data. Fire counts exhibited significant bi-modal activity, with peak occurrences during April-May and October-November corresponding to wheat and rice residue burning episodes. The FRE variations coincided with the amount of residues burnt. The mean AOD (2003-2008) was 0.60 with 0.87 (+1{sigma}) and 0.32 (-1{sigma}). The increased AOD during the winter coincided well with the fire counts during rice residue burning season. In contrast, the AOD-fire signal was weak during the summer wheat residue burning and attributed to dust and fossil fuel combustion. Our results highlight the need for 'full accounting of GHG's and aerosols', for addressing the air quality in the study area. - Highlights: > MODIS data could capture rice and wheat residue burning events. > The total FRP was high during the rice burning season than the wheat. > MODIS AOD variations coincided well with rice burning events than wheat. > AOD values exceeding one suggested intense air pollution. - This research work highlights the satellite derived fire products and their potential in characterizing the agricultural residue burning events and air pollution.

  1. Modelling seasonality in Australian building approvals

    Directory of Open Access Journals (Sweden)

    Harry M Karamujic

    2012-02-01

    Full Text Available The paper examines the impact of seasonal influences on Australian housing approvals, represented by the State of Victoria[1] building approvals for new houses (BANHs. The prime objective of BANHs is to provide timely estimates of future residential building work. Due to the relevance of the residential property sector to the property sector as whole, BANHs are viewed by economic analysts and commentators as a leading indicator of property sector investment and as such the general level of economic activity and employment. The generic objective of the study is to enhance the practice of modelling housing variables. In particular, the study seeks to cast some additional light on modelling the seasonal behaviour of BANHs by: (i establishing the presence, or otherwise, of seasonality in Victorian BANHs; (ii if present, ascertaining is it deterministic or stochastic; (iii determining out of sample forecasting capabilities of the considered modelling specifications; and (iv speculating on possible interpretation of the results. To do so the study utilises a structural time series model of Harwey (1989. The modelling results confirm that the modelling specification allowing for stochastic trend and deterministic seasonality performs best in terms of diagnostic tests and goodness of fit measures. This is corroborated with the analysis of out of sample forecasting capabilities of the considered modelling specifications, which showed that the models with deterministic seasonal specification exhibit superior forecasting capabilities. The paper also demonstrates that if time series are characterized by either stochastic trend or seasonality, the conventional modelling approach[2] is bound to be mis-specified i.e. would not be able to identify statistically significant seasonality in time series.According to the selected modeling specification, factors corresponding to June, April, December and November are found to be significant at five per cent level

  2. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  3. Projected changes in atmospheric heating due to changes in fire disturbance and the snow season in the western Arctic, 2003–2100

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, Anthony; Rupp, T.S.; Chapin, F. S.; Walsh, J.E.

    2009-01-01

    In high latitudes, changes in climate impact fire regimes and snow cover duration, altering the surface albedo and the heating of the regional atmosphere. In the western Arctic, under four scenarios of future climate change and future fire regimes (2003–2100), we examined changes in surface albedo and the related changes in regional atmospheric heating due to: (1) vegetation changes following a changing fire regime, and (2) changes in snow cover duration. We used a spatially explicit dynamic vegetation model (Alaskan Frame-based Ecosystem Code) to simulate changes in successional dynamics associated with fire under the future climate scenarios, and the Terrestrial Ecosystem Model to simulate changes in snow cover. Changes in summer heating due to the changes in the forest stand age distributions under future fire regimes showed a slight cooling effect due to increases in summer albedo (mean across climates of −0.9 W m−2 decade−1). Over this same time period, decreases in snow cover (mean reduction in the snow season of 4.5 d decade−1) caused a reduction in albedo, and a heating effect (mean across climates of 4.3 W m−2 decade−1). Adding both the summer negative change in atmospheric heating due to changes in fire regimes to the positive changes in atmospheric heating due to changes in the length of the snow season resulted in a 3.4 W m−2 decade−1 increase in atmospheric heating. These findings highlight the importance of gaining a better understanding of the influences of changes in surface albedo on atmospheric heating due to both changes in the fire regime and changes in snow cover duration.

  4. Use of numerical modeling in design for co-firing biomass in wall-fired burners

    DEFF Research Database (Denmark)

    Yin, Chungen; Rosendahl, Lasse Aistrup; Kær, Søren Knudsen

    2004-01-01

    Co-firing biomass with coal or gas in the existing units has gained increasing interest in the recent past to increase the production of environmentally friendly, renewable green power. This paper presents design considerations for co-firing biomass with natural gas in wall-fired burners by use...... and reaction of a particle. To better understand biomass combustion and thus improve the design for co-firing biomass in wall-fired burners, non-sphericity of biomass particles is considered. To ease comparison, two cases are numerically studied in a 10m long gas/biomass co-fired burner model. (1) The biomass...... the design for co-firing biomass in wall-fired burners are finally suggested....

  5. Modeling thermal protection outfits for fire exposures

    Science.gov (United States)

    Song, Guowen

    2002-01-01

    A numerical model has been developed that successfully predicts heat transfer through thermally protective clothing materials and garments exposed to intense heat. The model considers the effect of fire exposure to the thermophysical properties of materials as well as the air layers between the clothing material and skin surface. These experiments involved characterizing the flash fire surrounding the manikin by measuring the temperature of the flame above each thermal sensor in the manikin surface. An estimation method is used to calculate the heat transfer coefficient for each thermal sensor in a 4 second exposure to an average heat flux of 2.00cal/cm2sec. A parameter estimation method was used to estimate heat induced change in fabric thermophysical properties. The skin-clothe air gap distribution of different garments was determined using three-dimensional body scanning technology. Multi-layer skin model and a burn prediction method were used to predict second and third degree burns. The integrated generalized model developed was validated using the "Pyroman" Thermal Protective Clothing Analysis System with Kevlar/PBIRTM and NomexRTMIIIA coverall garments with different configuration and exposure time. A parametric study conducted using this numerical model indicated the influencing parameters on garment thermal protective performance in terms of skin burn damage subjected to 4 second flash fire exposure. The importance of these parameters is analyzed and distinguished. These parameters includes fabric thermophysical properties, PyromanRTM chamber flash fire characteristics, garment shrinkage and fit factors, as well as garment initial and test ambient temperature. Different skin models and their influence on burn prediction were also investigated using this model.

  6. Integrating Fire Effects into an Ecohydrologic Model for Simulating Fire Regimes

    Science.gov (United States)

    Bart, R. R.; Tague, C.; Kennedy, M. C.; McKenzie, D.

    2016-12-01

    Ecohydrologic models are used to dynamically simulate vegetation growth/ mortality and their interaction with water and nutrient fluxes. Although disturbances such as wildfire are a natural part of the landscape in environments such as the Western US, wildfire is generally included only as an exogenous variable in ecohydrologic models. An alternative approach is to integrate wildfire directly into ecohydrologic models so that wildfire ignition, spread and effects are driven by simulated landscape conditions within the model. This approach allows for the simulation of natural fire regimes and may provide more robust estimates of long-term ecological variables such as forest health, carbon sequestration and water use. For this study, we detail a fire-effects model that has been developed to couple a fire-spread model, WMFire, with an ecohydrologic model, RHESSys. The fire-effects model is designed for use with a simple two-stratum representation of canopy structure and computes losses following fire spread to a given landscape patch. Losses to a modeled litter layer, coarse woody debris layer and understory vegetation layer are determined based on a patch-level integrated measure of fuel loads, moisture levels, wind speed, and topography. Losses to an overstory vegetation layer are based on understory biomass consumed by the wildfire. The fire effects model was found to replicate the expected impacts of wildfire on vegetation and litter. Further, the fully coupled RHESSys-WMFire model was tested in four Western US watersheds with different vegetation/climate/fire characteristics and preliminary results indicated that the model was able to reproduce the disparate fire regimes. We highlight remaining challenges with simulating fire effects in ecohydrologic models using simplified representations of canopy structures and litter fuels. This study demonstrates the potential for integrating fire into ecohydrologic models for simulating future fire regimes.

  7. The status and challenge of global fire modelling

    Science.gov (United States)

    Hantson, Stijn; Arneth, Almut; Harrison, Sandy P.; Kelley, Douglas I.; Prentice, I. Colin; Rabin, Sam S.; Archibald, Sally; Mouillot, Florent; Arnold, Steve R.; Artaxo, Paulo; Bachelet, Dominique; Ciais, Philippe; Forrest, Matthew; Friedlingstein, Pierre; Hickler, Thomas; Kaplan, Jed O.; Kloster, Silvia; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stephane; Melton, Joe R.; Meyn, Andrea; Sitch, Stephen; Spessa, Allan; van der Werf, Guido R.; Voulgarakis, Apostolos; Yue, Chao

    2016-06-01

    Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.

  8. Modelling Variable Fire Severity in Boreal Forests: Effects of Fire Intensity and Stand Structure.

    Science.gov (United States)

    Miquelajauregui, Yosune; Cumming, Steven G; Gauthier, Sylvie

    2016-01-01

    It is becoming clear that fires in boreal forests are not uniformly stand-replacing. On the contrary, marked variation in fire severity, measured as tree mortality, has been found both within and among individual fires. It is important to understand the conditions under which this variation can arise. We integrated forest sample plot data, tree allometries and historical forest fire records within a diameter class-structured model of 1.0 ha patches of mono-specific black spruce and jack pine stands in northern Québec, Canada. The model accounts for crown fire initiation and vertical spread into the canopy. It uses empirical relations between fire intensity, scorch height, the percent of crown scorched and tree mortality to simulate fire severity, specifically the percent reduction in patch basal area due to fire-caused mortality. A random forest and a regression tree analysis of a large random sample of simulated fires were used to test for an effect of fireline intensity, stand structure, species composition and pyrogeographic regions on resultant severity. Severity increased with intensity and was lower for jack pine stands. The proportion of simulated fires that burned at high severity (e.g. >75% reduction in patch basal area) was 0.80 for black spruce and 0.11 for jack pine. We identified thresholds in intensity below which there was a marked sensitivity of simulated fire severity to stand structure, and to interactions between intensity and structure. We found no evidence for a residual effect of pyrogeographic region on simulated severity, after the effects of stand structure and species composition were accounted for. The model presented here was able to produce variation in fire severity under a range of fire intensity conditions. This suggests that variation in stand structure is one of the factors causing the observed variation in boreal fire severity.

  9. Fire Spread Model for Old Towns Based on Cellular Automaton

    Institute of Scientific and Technical Information of China (English)

    GAO Nan; WENG Wenguo; MA Wei; NI Shunjiang; HUANG Quanyi; YUAN Hongyong

    2008-01-01

    Old towns like Lijiang have enormous historic,artistic,and architectural value.The buildings in such old towns are usually made of highly combustible materials,such as wood and grass.If a fire breaks out,it will spread to multiple buildings,so fire spreading and controlling in old towns need to be studied.This paper presents a fire spread model for old towns based on cellular automaton.The cellular automaton rules were set according to historical fire data in empirical formulas.The model also considered the effects of climate.The simulation results were visualized in a geography information system.An example of a fire spread in Lijiang was investigated with the results showing that this model provides a realistic tool for predicting fire spread in old towns.Fire brigades can use this tool to predict when and how a fire spreads to minimize the losses.

  10. Modeling human-caused forest fire ignition for assessing forest fire danger in Austria

    Directory of Open Access Journals (Sweden)

    Arndt N

    2013-07-01

    Full Text Available Forest fires have not been considered as a significant threat for mountain forests of the European Alpine Space so far. Climate change and its effects on nature, ecology, forest stand structure and composition, global changes according to demands of society and general trends in the provision of ecosystem services are potentially going to have a significant effect on fire ignition in the future. This makes the prediction of forest fire ignition essential for forest managers in order to establish an effective fire prevention system and to allocate fire fighting resources effectively, especially in alpine landscapes. This paper presents a modelling approach for predicting human-caused forest fire ignition by a range of socio-economic factors associated with an increasing forest fire danger in Austria. The relationship between touristic activities, infrastructure, agriculture and forestry and the spatial occurrence of forest fires have been studied over a 17-year period between 1993 and 2009 by means of logistic regression. 59 independent socio-economic variables have been analysed with different models and validated with heterogeneous subsets of forest fire records. The variables included in the final model indicate that railroad, forest road and hiking trail density together with agricultural and forestry developments may contribute significantly to fire danger. The final model explains 60.5% of the causes of the fire events in the validation set and allows a solid prediction. Maps showing the fire danger classification allow identifying the most vulnerable forest areas in Austria and are used to predict the fire danger classes on municipality level.

  11. Modeling seasonal measles transmission in China

    Science.gov (United States)

    Bai, Zhenguo; Liu, Dan

    2015-08-01

    A discrete-time deterministic measles model with periodic transmission rate is formulated and studied. The basic reproduction number R0 is defined and used as the threshold parameter in determining the dynamics of the model. It is shown that the disease will die out if R0 1 . Parameters in the model are estimated on the basis of demographic and epidemiological data. Numerical simulations are presented to describe the seasonal fluctuation of measles infection in China.

  12. 76 FR 46330 - NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft...

    Science.gov (United States)

    2011-08-02

    ... COMMISSION NUREG-1934, Nuclear Power Plant Fire Modeling Application Guide (NPP FIRE MAG); Second Draft... for public comment a document entitled, NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire Modeling... pdr.resource@nrc.gov . NUREG-1934 (EPRI 1023259), ``Nuclear Power Plant Fire Modeling...

  13. The Seasons Explained by Refutational Modeling Activities

    Science.gov (United States)

    Frede, Valerie

    2008-01-01

    This article describes the principles and investigation of a small-group laboratory activity based on refutational modeling to teach the concept of seasons to preservice elementary teachers. The results show that these teachers improved significantly when they had to refute their initial misconceptions practically. (Contains 8 figures and 1 table.)

  14. Modelling of fire spread in car parks

    NARCIS (Netherlands)

    Noordijk, L.M.; Lemaire, A.D.

    2005-01-01

    Currently, design codes assume that in a car park fire at most 3-4 vehicles are on fire at the same time. Recent incidents in car parks have drawn international attention to such assumptions and have raised questions as to the fire spreading mechanism and the resulting fire load on the structure.

  15. Reformulation of Rothermel's wildland fire behaviour model for heterogeneous fuelbeds.

    Science.gov (United States)

    David V. Sandberg; Cynthia L. Riccardi; Mark D. Schaaf

    2007-01-01

    Abstract: The Fuel Characteristic Classification System (FCCS) includes equations that calculate energy release and one-dimensional spread rate in quasi-steady-state fires in heterogeneous but spatially uniform wildland fuelbeds, using a reformulation of the widely used Rothermel fire spread model. This reformulation provides an automated means to predict fire behavior...

  16. Wildland fire probabilities estimated from weather model-deduced monthly mean fire danger indices

    Science.gov (United States)

    Haiganoush K. Preisler; Shyh-Chin Chen; Francis Fujioka; John W. Benoit; Anthony L. Westerling

    2008-01-01

    The National Fire Danger Rating System indices deduced from a regional simulation weather model were used to estimate probabilities and numbers of large fire events on monthly and 1-degree grid scales. The weather model simulations and forecasts are ongoing experimental products from the Experimental Climate Prediction Center at the Scripps Institution of Oceanography...

  17. One thousand years of fires: Integrating proxy and model data

    Directory of Open Access Journals (Sweden)

    Natalie Marie Kehrwald

    2016-04-01

    Full Text Available The current fires raging across Indonesia are emitting more carbon than the annual fossil fuel emissions of Germany or Japan, and the fires are still consuming vast tracts of rainforest and peatlands. The National Interagency Fire Center (www.nifc.gov notes that 2015 is one worst fire years on record in the U.S., where more than 9 million acres burned -- equivalent to the combined size of Massachusetts and New Jersey. The U.S. and Indonesian fires have already displaced tens of thousands of people, and their impacts on ecosystems are still unclear. In the case of Indonesia, the burning peat is destroying much of the existing soil, with unknown implications for the type of vegetation regrowth. Such large fires result from a combination of fire management practices, increasing anthropogenic land use, and a changing climate. The expected increase in fire activity in the upcoming decades has led to a surge in research trying to understand their causes, the factors that may have influenced similar times of fire activity in the past, and the implications of such fire activity in the future. Multiple types of complementary data provide information on the impacts of current fires and the extent of past fires. The wide array of data encompasses different spatial and temporal resolutions (Figure 1 and includes fire proxy information such as charcoal and tree ring fire scars, observational records, satellite products, modern emissions data, fire models within global land cover and vegetation models, and sociodemographic data for modeling past human land use and ignition frequency. Any single data type is more powerful when combined with another source of information. Merging model and proxy data enables analyses of how fire activity modifies vegetation distribution, air and water quality, and proximity to cities; these analyses in turn support land management decisions relating to conservation and development.

  18. Integrating Fire Behavior Models and Geospatial Analysis for Wildland Fire Risk Assessment and Fuel Management Planning

    Directory of Open Access Journals (Sweden)

    Alan A. Ager

    2011-01-01

    Full Text Available Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals and public expectations. A number of fire behavior metrics, including fire spread, intensity, likelihood, and ecological risk must be analyzed for multiple treatment alternatives. The effect of treatments on wildfire impacts must be considered at multiple scales. The process is complicated by the lack of data integration among fire behavior models, and weak linkages to geographic information systems, corporate data, and desktop office software. This paper describes our efforts to build a streamlined fuel management planning and risk assessment framework, and an integrated system of tools for designing and testing fuel treatment programs on fire-prone wildlands.

  19. Calculation of precise firing statistics in a neural network model

    Science.gov (United States)

    Cho, Myoung Won

    2017-08-01

    A precise prediction of neural firing dynamics is requisite to understand the function of and the learning process in a biological neural network which works depending on exact spike timings. Basically, the prediction of firing statistics is a delicate manybody problem because the firing probability of a neuron at a time is determined by the summation over all effects from past firing states. A neural network model with the Feynman path integral formulation is recently introduced. In this paper, we present several methods to calculate firing statistics in the model. We apply the methods to some cases and compare the theoretical predictions with simulation results.

  20. Fuel consumption and fire emissions estimates using Fire Radiative Power, burned area and statistical modelling on the fire event scale

    Science.gov (United States)

    Ruecker, Gernot; Leimbach, David; Guenther, Felix; Barradas, Carol; Hoffmann, Anja

    2016-04-01

    Fire Radiative Power (FRP) retrieved by infrared sensors, such as flown on several polar orbiting and geostationary satellites, has been shown to be proportional to fuel consumption rates in vegetation fires, and hence the total radiative energy released by a fire (Fire Radiative Energy, FRE) is proportional to the total amount of biomass burned. However, due to the sparse temporal coverage of polar orbiting and the coarse spatial resolution of geostationary sensors, it is difficult to estimate fuel consumption for single fire events. Here we explore an approach for estimating FRE through temporal integration of MODIS FRP retrievals over MODIS-derived burned areas. Temporal integration is aided by statistical modelling to estimate missing observations using a generalized additive model (GAM) and taking advantage of additional information such as land cover and a global dataset of the Canadian Fire Weather Index (FWI), as well as diurnal and annual FRP fluctuation patterns. Based on results from study areas located in savannah regions of Southern and Eastern Africa and Brazil, we compare this method to estimates based on simple temporal integration of FRP retrievals over the fire lifetime, and estimate the potential variability of FRP integration results across a range of fire sizes. We compare FRE-based fuel consumption against a database of field experiments in similar landscapes. Results show that for larger fires, this method yields realistic estimates and is more robust when only a small number of observations is available than the simple temporal integration. Finally, we offer an outlook on the integration of data from other satellites, specifically FireBird, S-NPP VIIRS and Sentinel-3, as well as on using higher resolution burned area data sets derived from Landsat and similar sensors.

  1. Predicting streamflow response to fire-induced landcover change: implications of parameter uncertainty in the MIKE SHE model.

    Science.gov (United States)

    McMichael, Christine E; Hope, Allen S

    2007-08-01

    Fire is a primary agent of landcover transformation in California semi-arid shrubland watersheds, however few studies have examined the impacts of fire and post-fire succession on streamflow dynamics in these basins. While it may seem intuitive that larger fires will have a greater impact on streamflow response than smaller fires in these watersheds, the nature of these relationships has not been determined. The effects of fire size on seasonal and annual streamflow responses were investigated for a medium-sized basin in central California using a modified version of the MIKE SHE model which had been previously calibrated and tested for this watershed using the Generalized Likelihood Uncertainty Estimation methodology. Model simulations were made for two contrasting periods, wet and dry, in order to assess whether fire size effects varied with weather regime. Results indicated that seasonal and annual streamflow response increased nearly linearly with fire size in a given year under both regimes. Annual flow response was generally higher in wetter years for both weather regimes, however a clear trend was confounded by the effect of stand age. These results expand our understanding of the effects of fire size on hydrologic response in chaparral watersheds, but it is important to note that the majority of model predictions were largely indistinguishable from the predictive uncertainty associated with the calibrated model - a key finding that highlights the importance of analyzing hydrologic predictions for altered landcover conditions in the context of model uncertainty. Future work is needed to examine how alternative decisions (e.g., different likelihood measures) may influence GLUE-based MIKE SHE streamflow predictions following different size fires, and how the effect of fire size on streamflow varies with other factors such as fire location.

  2. Seasonal radiative modeling of Titan's stratosphere

    Science.gov (United States)

    Bézard, Bruno; Vinatier, Sandrine; Achterberg, Richard

    2016-10-01

    We have developed a seasonal radiative model of Titan's stratosphere to investigate the time variation of stratospheric temperatures in the 10-3 - 5 mbar range as observed by the Cassini/CIRS spectrometer. The model incorporates gas and aerosol vertical profiles derived from Cassini/CIRS spectra to calculate the heating and cooling rate profiles as a function of time and latitude. In the equatorial region, the radiative equilibrium profile is warmer than the observed one. Adding adiabatic cooling in the energy equation, with a vertical velocity profile decreasing with depth and having w ≈ 0.4 mm sec-1 at 1 mbar, allows us to reproduce the observed profile. The model predicts a 5 K decrease at 1 mbar between 2008 and 2016 as a result of orbit eccentricity, in relatively good agreement with the observations. At other latitudes, as expected, the radiative model predicts seasonal variations of temperature larger than observed, pointing to latitudinal redistribution of heat by dynamics. Vertical velocities seasonally varying between -0.4 and 1.2 mm sec-1 at 1 mbar provide adiabatic cooling and heating adequate to reproduce the time variation of 1-mbar temperatures from 2005 to 2016 at 30°N and S. The model is also used to investigate the role of the strong compositional changes observed at high southern latitudes after equinox in the concomitant rapid cooling of the stratosphere.

  3. Statistical Seasonal Sea Surface based Prediction Model

    Science.gov (United States)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  4. Comparing the impacts of the 2003 and 2005 fire seasons and the 2004 drought on NPP in the Iberian Peninsula

    Science.gov (United States)

    Bastos, Ana; Gouveia, Célia M.; Russo, Ana; Trigo, Ricardo M.

    2014-05-01

    Mediterranean ecosystems have evolved together with relatively frequent disturbances such as wildfires and long dry periods. However, in recent decades fire regimes have been changing due to widespread socio-economic factors (e.g. rural abandonment) as well as in response to climatic trends. In particular, drought have become more frequent and intense, a pattern that is expected to increase in future decades. Despite Mediterranean ecosystems being adapted to fire and drought occurrence, changes in the characteristics of disturbances may affect the ability of ecosystems to recover to their previous state. The years 2003, 2004 and 2005 were particularly severe for ecosystems in the Iberia Peninsula, as a devastating fire season (2003, ~574.000ha burnt) was followed by a very intense drought (2004/2005) that affected 2/3 of Iberian vegetation for more than 9 months. In 2005, a very destructive fire season was again registered, with ~727.000ha burnt. These disturbances have been shown to have a severe impact on vegetation phenology, as assessed by remote sensing imagery. One of the more relevant societal impacts of these disturbances is the decrease in net primary production (NPP) of vegetation, both for practical issues such as food production, fiber and fuel and for carbon balance assessments. This work focuses on 2003 and 2005 fire seasons in the Iberia Peninsula and in the 2004/05 drought. Burnt scars in all fire seasons were identified by cluster analysis; the area affected by the drought event of 2004/2005 was selected as the region where vegetative stress was observed for 9 or more months. Remote sensing allows large scale studies of the evolution of vegetation dynamics at relatively fine spatial resolution. We rely on satellite NDVI data from SPOT/VEGETATION (1km) to identify burnt scars and drought-stricken regions. To quantify the impacts in terms of carbon uptake by vegetation, the MOD17A2 (annual NPP) and MOD17A3 (monthly net photosynthesis, PsN) datasets

  5. Modelling Technology for Building Fire Scene with Virtual Geographic Environment

    Science.gov (United States)

    Song, Y.; Zhao, L.; Wei, M.; Zhang, H.; Liu, W.

    2017-09-01

    Building fire is a risky activity that can lead to disaster and massive destruction. The management and disposal of building fire has always attracted much interest from researchers. Integrated Virtual Geographic Environment (VGE) is a good choice for building fire safety management and emergency decisions, in which a more real and rich fire process can be computed and obtained dynamically, and the results of fire simulations and analyses can be much more accurate as well. To modelling building fire scene with VGE, the application requirements and modelling objective of building fire scene were analysed in this paper. Then, the four core elements of modelling building fire scene (the building space environment, the fire event, the indoor Fire Extinguishing System (FES) and the indoor crowd) were implemented, and the relationship between the elements was discussed also. Finally, with the theory and framework of VGE, the technology of building fire scene system with VGE was designed within the data environment, the model environment, the expression environment, and the collaborative environment as well. The functions and key techniques in each environment are also analysed, which may provide a reference for further development and other research on VGE.

  6. Current status and future needs of the BehavePlus Fire Modeling System

    Science.gov (United States)

    Patricia L. Andrews

    2014-01-01

    The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire...

  7. Simulation of a compartment fire using a zone model

    Institute of Scientific and Technical Information of China (English)

    YANG Lizhong; GUO Zaifu; JI Jingwei; FAN Weicheng

    2005-01-01

    This paper presents the zone modeling analysis of a single compartment flashover fire. Two criteria are applied in the model to judge the onset of ignition for different combustibles. By calculating the total received energy through radiation or the surface temperature of the combustible, the fire growth can be quantitatively determined. The improved zone fire model shows the influence of different combustibles upon the fire growth. This model is better than the traditional zone model because the common criteria of flashover, i.e. an upper layer temperature of 600℃ and the heat radiation intensity received by the floor of 20 kW/m2, have not been applied in it.

  8. Integrating fire behavior models and geospatial analysis for wildland fire risk assessment and fuel management planning

    Science.gov (United States)

    Alan A. Ager; Nicole M. Vaillant; Mark A. Finney

    2011-01-01

    Wildland fire risk assessment and fuel management planning on federal lands in the US are complex problems that require state-of-the-art fire behavior modeling and intensive geospatial analyses. Fuel management is a particularly complicated process where the benefits and potential impacts of fuel treatments must be demonstrated in the context of land management goals...

  9. Multi-season climate synchronized forest fires throughout the 20th century, Northern Rockies, USA

    Science.gov (United States)

    Penelope Morgan; Emily K. Heyerdahl; Carly E. Gibson

    2008-01-01

    We inferred climate drivers of 20th-century years with regionally synchronous forest fires in the U.S. northern Rockies. We derived annual fire extent from an existing fire atlas that includes 5038 fire polygons recorded from 12 070 086 ha, or 71% of the forested land in Idaho and Montana west of the Continental Divide. The 11 regional-fire years, those exceeding the...

  10. Modeling the Effect of Climate Change on Large Fire Size, Counts, and Intensities Using the Large Fire Simulator (FSim)

    Science.gov (United States)

    Riley, K. L.; Haas, J. R.; Finney, M.; Abatzoglou, J. T.

    2013-12-01

    Changes in climate can be expected to cause changes in wildfire activity due to a combination of shifts in weather (temperature, precipitation, relative humidity, wind speed and direction) and vegetation. Changes in vegetation could include type conversions, altered forest structure, and shifts in species composition, the effects of which could be mitigated or exacerbated by management activities. Further, changes in suppression response and effectiveness may alter potential wildfire activity, as well as the consequences of wildfire. Feedbacks among these factors are extremely complex and uncertain. The ability to anticipate changes driven by fire weather (largely outside of human control) can lead to development of fire and fuel management strategies aimed at mitigating current and future risk. Therefore, in this study we focus on isolating the effects of climate-induced changes in weather on wildfire activity. Specifically, we investigated the effect of changes in weather on fire activity in the Canadian Rockies ecoregion, which encompasses Glacier National Park and several large wilderness areas to the south. To model the ignition, growth, and containment of wildfires, we used the Large Fire Simulator (FSim), which we coupled with current and projected future climatic conditions. Weather streams were based on data from 14 downscaled Global Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) using the Representative Concentration Pathways (RCP) 45 and 85 for the years 2040-2060. While all GCMs indicate increases in temperature for this area, which would be expected to exacerbate fire activity, precipitation predictions for the summer wildfire season are more variable, ranging from a decrease of approximately 50 mm to an increase of approximately 50 mm. Windspeeds are generally predicted to decrease, which would reduce rates of spread and fire intensity. The net effect of these weather changes on the size, number, and intensity

  11. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J. L.; Perez, L.; Gonzalez, R. M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wild land fire spread and behavior are complex phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-Fire- Chem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  12. Forest fire forecasting tool for air quality modelling systems

    Energy Technology Data Exchange (ETDEWEB)

    San Jose, R.; Perez, J.L.; Perez, L.; Gonzalez, R.M.; Pecci, J.; Palacios, M.

    2015-07-01

    Adverse effects of smoke on air quality are of great concern; however, even today the estimates of atmospheric fire emissions are a key issue. It is necessary to implement systems for predicting smoke into an air quality modelling system, and in this work a first attempt towards creating a system of this type is presented. Wildland fire spread and behavior are complex Phenomena due to both the number of involved physic-chemical factors, and the nonlinear relationship between variables. WRF-Fire was employed to simulate spread and behavior of some real fires occurred in South-East of Spain and North of Portugal. The use of fire behavior models requires the availability of high resolution environmental and fuel data. A new custom fuel moisture content model has been developed. The new module allows each time step to calculate the fuel moisture content of the dead fuels and live fuels. The results confirm that the use of accurate meteorological data and a custom fuel moisture content model is crucial to obtain precise simulations of fire behavior. To simulate air pollution over Europe, we use the regional meteorological-chemistry transport model WRF-Chem. In this contribution, we show the impact of using two different fire emissions inventories (FINN and IS4FIRES) and how the coupled WRF-FireChem model improves the results of the forest fire emissions and smoke concentrations. The impact of the forest fire emissions on concentrations is evident, and it is quite clear from these simulations that the choice of emission inventory is very important. We conclude that using the WRF-fire behavior model produces better results than using forest fire emission inventories although the requested computational power is much higher. (Author)

  13. A comparison of geospatially modeled fire behavior and fire management utility of three data sources in the southeastern United States

    Science.gov (United States)

    LaWen T. Hollingsworth; Laurie L. Kurth; Bernard R. Parresol; Roger D. Ottmar; Susan J. Prichard

    2012-01-01

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation...

  14. A Markov model for measuring artillery fire support effectiveness

    OpenAIRE

    Guzik, Dennis M.

    1988-01-01

    Approved for public release; distribution is unlimited This thesis presents a Markov model, which, given an indirect fire weapon system's parameters, yields measures of the weapon's effectiveness in providing fire support to a maneuver element. These parameters may be determined for a variety of different scenarios. Any indirect fire weapon system may be a candidate for evaluation. This model may be used in comparing alternative weapon systems for the role of direct support of a Marin...

  15. Towards a Real-Time Data Driven Wildland Fire Model

    CERN Document Server

    Mandel, Jan; Chakraborty, Soham; Coen, Janice L; Douglas, Craig C; Vodacek, Anthony; Wang, Zhen

    2008-01-01

    A wildland fire model based on semi-empirical relations for the spread rate of a surface fire and post-frontal heat release is coupled with the Weather Research and Forecasting atmospheric model (WRF). The propagation of the fire front is implemented by a level set method. Data is assimilated by a morphing ensemble Kalman filter, which provides amplitude as well as position corrections. Thermal images of a fire will provide the observations and will be compared to a synthetic image from the model state.

  16. Advanced numerical modelling of a fire. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Heikkilae, L.; Keski-Rahkonen, O. [VTT Building Technology, Espoo (Finland)

    1996-03-01

    Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem `Prediction of effects caused by a cable fire experiment within the HDR-facility`. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.).

  17. Developing a probabilistic fire risk model and its application to fire danger systems

    Science.gov (United States)

    Penman, T.; Bradstock, R.; Caccamo, G.; Price, O.

    2012-04-01

    Wildfires can result in significant economic losses where they encounter human assets. Management agencies have large budgets devoted to both prevention and suppression of fires, but little is known about the extent to which they alter the probability of asset loss. Prediction of the risk of asset loss as a result of wildfire requires an understanding of a number of complex processes from ignition, fire growth and impact on assets. These processes need to account for the additive or multiplicative effects of management, weather and the natural environment. Traditional analytical methods can only examine only a small subset of these. Bayesian Belief Networks (BBNs) provide a methodology to examine complex environmental problems. Outcomes of a BBN are represented as likelihoods, which can then form the basis for risk analysis and management. Here we combine a range of data sources, including simulation models, empirical statistical analyses and expert opinion to form a fire management BBN. Various management actions have been incorporated into the model including landscape and interface prescribed burning, initial attack and fire suppression. Performance of the model has been tested against fire history datasets with strong correlations being found. Adapting the BBN presented here we are capable of developing a spatial and temporal fire danger rating system. Currently Australian fire danger rating systems are based on the weather. Our model accounts for existing fires, as well as the risk of new ignitions combined with probabilistic weather forecasts to identify those areas which are most at risk of asset loss. Fire growth is modelled with consideration given to management prevention efforts, as well as suppression resources that are available in each geographic locality. At a 10km resolution the model will provide a probability of asset loss which represents a significant step forward in the level of information that can be provided to the general public.

  18. Modeling Fire Emissions from Multiple Land Use Transitions in Southern Amazonia

    Science.gov (United States)

    Morton, D. C.; van der Werf, G. R.; Defries, R. S.; Giglio, L.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P. S.

    2008-12-01

    Fires for deforestation and other land cover changes in southern Amazonia are an uncertain but significant source of carbon emissions to the atmosphere. Recent expansion of mechanized cropland in the region has increased the rates, clearing sizes, and combustion completeness of forest and Cerrado conversion compared to previous deforestation for cattle ranching. To more accurately quantify the influence of agricultural intensification on carbon emissions, we developed a high-resolution (250 m) model of DEforestation CArbon Fluxes (DECAF). DECAF estimates variations in forest and Cerrado biomass based on time series of MODIS NDVI and explicitly tracks the duration and combustion completeness of new deforestation as a function of post-clearing vegetation phenology and MODIS-based fire frequency. In our model runs for the Brazilian state of Mato Grosso, we quantified the contribution of fires for deforestation, conversion of pasture and Cerrado to mechanized cropland, and pasture maintenance to total fire emissions under low, middle, and high emissions scenarios. During 2001-2005, carbon losses from all types of deforestation were 48-82 Tg per year (mean = 67 Tg C), representing approximately 74% of annual fire emissions in the study region. Cropland expansion in non-forest areas contributed 19% of estimated fire emissions, while maintenance fires in pasture and Cerrado land cover types averaged 7% of all fire emissions during 2001-2005. Conversion of forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. In total, DECAF-based emissions for Mato Grosso represent 1/3 of estimated fire emissions for all of southern hemisphere South America during this period. Our results demonstrate how DECAF can be used to model

  19. Multi-season climate synchronized historical fires in dry forests (1650-1900), Northern Rockies, USA

    Science.gov (United States)

    Emily K. Heyerdahl; Penelope Morgan; James P. Riser

    2008-01-01

    Our objective was to infer the climate drivers of regionally synchronous fire years in dry forests of the U.S. northern Rockies in Idaho and western Montana. During our analysis period (1650-­1900), we reconstructed fires from 9245 fire scars on 576 trees (mostly ponderosa pine, Pinus ponderosa P. & C. Lawson) at 21 sites and compared them to...

  20. Selection of fire spread model for Russian fire behavior prediction system

    Science.gov (United States)

    Alexandra V. Volokitina; Kevin C. Ryan; Tatiana M. Sofronova; Mark A. Sofronov

    2010-01-01

    Mathematical modeling of fire behavior prediction is only possible if the models are supplied with an information database that provides spatially explicit input parameters for modeled area. Mathematical models can be of three kinds: 1) physical; 2) empirical; and 3) quasi-empirical (Sullivan, 2009). Physical models (Grishin, 1992) are of academic interest only because...

  1. Modeling post-fire hydro-geomorphic recovery in the Waldo Canyon Fire

    Science.gov (United States)

    Kinoshita, Alicia; Nourbakhshbeidokhti, Samira; Chin, Anne

    2016-04-01

    Wildfire can have significant impacts on watershed hydrology and geomorphology by changing soil properties and removing vegetation, often increasing runoff and soil erosion and deposition, debris flows, and flooding. Watershed systems may take several years or longer to recover. During this time, post-fire channel changes have the potential to alter hydraulics that influence characteristics such as time of concentration and increase time to peak flow, flow capacity, and velocity. Using the case of the 2012 Waldo Canyon Fire in Colorado (USA), this research will leverage field-based surveys and terrestrial Light Detection and Ranging (LiDAR) data to parameterize KINEROS2 (KINematic runoff and EROSion), an event oriented, physically-based watershed runoff and erosion model. We will use the Automated Geospatial Watershed Assessment (AGWA) tool, which is a GIS-based hydrologic modeling tool that uses commonly available GIS data layers to parameterize, execute, and spatially visualize runoff and sediment yield for watersheds impacted by the Waldo Canyon Fire. Specifically, two models are developed, an unburned (Bear Creek) and burned (Williams) watershed. The models will simulate burn severity and treatment conditions. Field data will be used to validate the burned watersheds for pre- and post-fire changes in infiltration, runoff, peak flow, sediment yield, and sediment discharge. Spatial modeling will provide insight into post-fire patterns for varying treatment, burn severity, and climate scenarios. Results will also provide post-fire managers with improved hydro-geomorphic modeling and prediction tools for water resources management and mitigation efforts.

  2. Can fire atlas data improve species distribution model projections?

    Science.gov (United States)

    Crimmins, Shawn M; Dobrowski, Solomon Z; Mynsberge, Alison R; Safford, Hugh D

    2014-07-01

    Correlative species distribution models (SDMs) are widely used in studies of climate change impacts, yet are often criticized for failing to incorporate disturbance processes that can influence species distributions. Here we use two temporally independent data sets of vascular plant distributions, climate data, and fire atlas data to examine the influence of disturbance history on SDM projection accuracy through time in the mountain ranges of California, USA. We used hierarchical partitioning to examine the influence of fire occurrence on the distribution of 144 vascular plant species and built a suite of SDMs to examine how the inclusion of fire-related predictors (fire occurrence and departure from historical fire return intervals) affects SDM projection accuracy. Fire occurrence provided the least explanatory power among predictor variables for predicting species' distributions, but provided improved explanatory power for species whose regeneration is tied closely to fire. A measure of the departure from historic fire return interval had greater explanatory power for calibrating modern SDMs than fire occurrence. This variable did not improve internal model accuracy for most species, although it did provide marginal improvement to models for species adapted to high-frequency fire regimes. Fire occurrence and fire return interval departure were strongly related to the climatic covariates used in SDM development, suggesting that improvements in model accuracy may not be expected due to limited additional explanatory power. Our results suggest that the inclusion of coarse-scale measures of disturbance in SDMs may not be necessary to predict species distributions under climate change, particularly for disturbance processes that are largely mediated by climate.

  3. Modeling the spatial distribution of forest crown biomass and effects on fire behavior with FUEL3D and WFDS

    Science.gov (United States)

    Russell A. Parsons; William Mell; Peter McCauley

    2010-01-01

    Crown fire poses challenges to fire managers and can endanger fire fighters. Understanding of how fire interacts with tree crowns is essential to informed decisions about crown fire. Current operational crown fire predictions in the United States assume homogeneous crown fuels. While a new class of research fire models, which model fire behavior with computational...

  4. The Fire Modeling Intercomparison Project (FireMIP), phase 1: experimental and analytical protocols with detailed model descriptions

    Science.gov (United States)

    Rabin, Sam S.; Melton, Joe R.; Lasslop, Gitta; Bachelet, Dominique; Forrest, Matthew; Hantson, Stijn; Kaplan, Jed O.; Li, Fang; Mangeon, Stéphane; Ward, Daniel S.; Yue, Chao; Arora, Vivek K.; Hickler, Thomas; Kloster, Silvia; Knorr, Wolfgang; Nieradzik, Lars; Spessa, Allan; Folberth, Gerd A.; Sheehan, Tim; Voulgarakis, Apostolos; Kelley, Douglas I.; Prentice, I. Colin; Sitch, Stephen; Harrison, Sandy; Arneth, Almut

    2017-03-01

    The important role of fire in regulating vegetation community composition and contributions to emissions of greenhouse gases and aerosols make it a critical component of dynamic global vegetation models and Earth system models. Over 2 decades of development, a wide variety of model structures and mechanisms have been designed and incorporated into global fire models, which have been linked to different vegetation models. However, there has not yet been a systematic examination of how these different strategies contribute to model performance. Here we describe the structure of the first phase of the Fire Model Intercomparison Project (FireMIP), which for the first time seeks to systematically compare a number of models. By combining a standardized set of input data and model experiments with a rigorous comparison of model outputs to each other and to observations, we will improve the understanding of what drives vegetation fire, how it can best be simulated, and what new or improved observational data could allow better constraints on model behavior. In this paper, we introduce the fire models used in the first phase of FireMIP, the simulation protocols applied, and the benchmarking system used to evaluate the models. We have also created supplementary tables that describe, in thorough mathematical detail, the structure of each model.

  5. Fire in the Earth System: Bridging data and modeling research

    Science.gov (United States)

    Hantson, Srijn; Kloster, Silvia; Coughlan, Michael; Daniau, Anne-Laure; Vanniere, Boris; Bruecher, Tim; Kehrwald, Natalie; Magi, Brian I.

    2016-01-01

    Significant changes in wildfire occurrence, extent, and severity in areas such as western North America and Indonesia in 2015 have made the issue of fire increasingly salient in both the public and scientific spheres. Biomass combustion rapidly transforms land cover, smoke pours into the atmosphere, radiative heat from fires initiates dramatic pyrocumulus clouds, and the repeated ecological and atmospheric effects of fire can even impact regional and global climate. Furthermore, fires have a significant impact on human health, livelihoods, and social and economic systems.Modeling and databased methods to understand fire have rapidly coevolved over the past decade. Satellite and ground-based data about present-day fire are widely available for applications in research and fire management. Fire modeling has developed in part because of the evolution in vegetation and Earth system modeling efforts, but parameterizations and validation are largely focused on the present day because of the availability of satellite data. Charcoal deposits in sediment cores have emerged as a powerful method to evaluate trends in biomass burning extending back to the Last Glacial Maximum and beyond, and these records provide a context for present-day fire. The Global Charcoal Database version 3 compiled about 700 charcoal records and more than 1,000 records are expected for the future version 4. Together, these advances offer a pathway to explore how the strengths of fire data and fire modeling could address the weaknesses in the overall understanding of human-climate–fire linkages.A community of researchers studying fire in the Earth system with individual expertise that included paleoecology, paleoclimatology, modern ecology, archaeology, climate, and Earth system modeling, statistics, geography, biogeochemistry, and atmospheric science met at an intensive workshop in Massachusetts to explore new research directions and initiate new collaborations. Research themes, which emerged from

  6. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost V.; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat O.

    2016-11-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of fossil fuel combustion in the southern part of the basin (AAE ˜ 1) but more open fire and dust influence in the northern part (AAE > 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40 % in total absorption, respectively.

  7. Global biogeochemical modeling of contemporary fire emissions

    Science.gov (United States)

    Randerson, J. T.; Depaz, J. M.; van der Werf, G. R.; Giglio, L.; Morton, D. C.; Kasibhatla, P.; Defries, R. S.; Jin, Y.; Mu, M.; Collatz, G. J.

    2008-12-01

    Improved estimates of contemporary fire emissions are needed to better understand the effects of a changing fire regime on climate and air quality. At a global scale, uncertainties in fire emissions arise from several sources, including estimates of burned area, aboveground biomass, combustion completeness, and emission factors. The development of long-term time series requires addressing additional sources of uncertainty related to the integration of different satellite fire products, the representation of organic soils and peatlands, and the use of fire in the deforestation process. Here we describe improvements to a global fire emissions time series (Global Fire Emissions Database version 3) that reduce uncertainties associated with many of the factors described above. We then characterized long-term trends in fire emissions for different continental-scale regions during 1996-2007. Using South America as an example, we show how climate and human activity contribute to interannual variability in emissions and how the spatial pattern of emissions has changed over time. In a final step we use atmospheric observations of carbon monoxide (CO) from Measurements Of Pollution In The Troposphere (MOPITT) and Tropospheric Emission Spectrometer (TES) to refine and validate our bottom-up emissions estimates for South America.

  8. Application of fire and evacuation models in evaluation of fire safety in railway tunnels

    Science.gov (United States)

    Cábová, Kamila; Apeltauer, Tomáš; Okřinová, Petra; Wald, František

    2017-09-01

    The paper describes an application of numerical simulation of fire dynamics and evacuation of people in a tunnel. The software tool Fire Dynamics Simulator is used to simulate temperature resolution and development of smoke in a railway tunnel. Comparing to temperature curves which are usually used in the design stage results of the model show that the numerical model gives lower temperature of hot smoke layer. Outputs of the numerical simulation of fire also enable to improve models of evacuation of people during fires in tunnels. In the presented study the calculated high of smoke layer in the tunnel is in 10 min after the fire ignition lower than the level of 2.2 m which is considered as the maximal limit for safe evacuation. Simulation of the evacuation process in bigger scale together with fire dynamics can provide very valuable information about important security conditions like Available Safe Evacuation Time (ASET) vs Required Safe Evacuation Time (RSET). On given example in software EXODUS the paper summarizes selected results of evacuation model which should be in mind of a designer when preparing an evacuation plan.

  9. Numerical modelling and experimental assessment of concrete spalling in fire

    NARCIS (Netherlands)

    Shamalta, M.; Breunese, A.; Peelen, W.; Fellinger, J.

    2005-01-01

    In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been

  10. Numerical modelling and experimental assessment of concrete spalling in fire

    NARCIS (Netherlands)

    Shamalta, M.; Breunese, A.J.; Peelen, W.H.A.; Fellinger, J.H.H.

    2005-01-01

    In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been

  11. Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model

    Science.gov (United States)

    Patricia L. Andrews

    2012-01-01

    Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...

  12. Development of fire simulation models for radiative heat transfer and probabilistic risk assessment

    OpenAIRE

    Hostikka, Simo

    2008-01-01

    An essential part of fire risk assessment is the analysis of fire hazards and fire propagation. In this work, models and tools for two different aspects of numerical fire simulation have been developed. The primary objectives have been firstly to investigate the possibility of exploiting state-of-the-art fire models within probabilistic fire risk assessments and secondly to develop a computationally efficient solver of thermal radiation for the Fire Dynamics Simulator (FDS) code. In the f...

  13. Log-periodic behavior in a forest-fire model

    Directory of Open Access Journals (Sweden)

    B. D. Malamud

    2005-01-01

    Full Text Available This paper explores log-periodicity in a forest-fire cellular-automata model. At each time step of this model a tree is dropped on a randomly chosen site; if the site is unoccupied, the tree is planted. Then, for a given sparking frequency, matches are dropped on a randomly chosen site; if the site is occupied by a tree, the tree ignites and an 'instantaneous' model fire consumes that tree and all adjacent trees. The resultant frequency-area distribution for the small and medium model fires is a power-law. However, if we consider very small sparking frequencies, the large model fires that span the square grid are dominant, and we find that the peaks in the frequency-area distribution of these large fires satisfy log-periodic scaling to a good approximation. This behavior can be examined using a simple mean-field model, where in time, the density of trees on the grid exponentially approaches unity. This exponential behavior coupled with a periodic or near-periodic sparking frequency also generates a sequence of peaks in the frequency-area distribution of large fires that satisfy log-periodic scaling. We conclude that the forest-fire model might provide a relatively simple explanation for the log-periodic behavior often seen in nature.

  14. Seasonal Predictability in a Model Atmosphere.

    Science.gov (United States)

    Lin, Hai

    2001-07-01

    The predictability of atmospheric mean-seasonal conditions in the absence of externally varying forcing is examined. A perfect-model approach is adopted, in which a global T21 three-level quasigeostrophic atmospheric model is integrated over 21 000 days to obtain a reference atmospheric orbit. The model is driven by a time-independent forcing, so that the only source of time variability is the internal dynamics. The forcing is set to perpetual winter conditions in the Northern Hemisphere (NH) and perpetual summer in the Southern Hemisphere.A significant temporal variability in the NH 90-day mean states is observed. The component of that variability associated with the higher-frequency motions, or climate noise, is estimated using a method developed by Madden. In the polar region, and to a lesser extent in the midlatitudes, the temporal variance of the winter means is significantly greater than the climate noise, suggesting some potential predictability in those regions.Forecast experiments are performed to see whether the presence of variance in the 90-day mean states that is in excess of the climate noise leads to some skill in the prediction of these states. Ensemble forecast experiments with nine members starting from slightly different initial conditions are performed for 200 different 90-day means along the reference atmospheric orbit. The serial correlation between the ensemble means and the reference orbit shows that there is skill in the 90-day mean predictions. The skill is concentrated in those regions of the NH that have the largest variance in excess of the climate noise. An EOF analysis shows that nearly all the predictive skill in the seasonal means is associated with one mode of variability with a strong axisymmetric component.

  15. Gaps in Data and Modeling Tools for Understanding Fire and Fire Effects in Tundra Ecosystems

    Science.gov (United States)

    French, N. H.; Miller, M. E.; Loboda, T. V.; Jenkins, L. K.; Bourgeau-Chavez, L. L.; Suiter, A.; Hawkins, S. M.

    2013-12-01

    As the ecosystem science community learns more about tundra ecosystems and disturbance in tundra, a review of base data sets and ecological field data for the region shows there are many gaps that need to be filled. In this paper we will review efforts to improve our knowledge of the occurrence and impacts of fire in the North American tundra region completed under a NASA Terrestrial Ecology grant. Our main source of information is remote sensing data from satellite sensors and ecological data from past and recent field data collections by our team, collaborators, and others. Past fire occurrence is not well known for this region compared with other North American biomes. In this presentation we review an effort to use a semi-automated detection algorithm to identify past fire occurrence using the Landsat TM/ETM+ archives, pointing out some of the still-unaddressed issues for a full understanding of fire regime for the region. For this task, fires in Landsat scenes were mapped using the Random Forest classifier (Breiman 2001) to automatically detect potential burn scars. Random Forests is an ensemble classifier that employs machine learning to build a large collection of decision trees that are grown from a random selection of user supplied training data. A pixel's classification is then determined by which class receives the most 'votes' from each tree. We also review the use fire location records and existing modeling methods to quantify emissions from these fires. Based on existing maps of vegetation fuels, we used the approach developed for the Wildland Fire Emissions Information System (WFEIS; French et al. 2011) to estimate emissions across the tundra region. WFEIS employs the Consume model (http://www.fs.fed.us/pnw/fera/research/smoke/consume/index.shtml) to estimate emissions by applying empirically developed relationships between fuels, fire conditions (weather-based fire indexes), and emissions. Here again, we will review the gaps in data and modeling

  16. Occupant evacuation model based on cellular automata in fire

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    By applying the rules set in traffic flow and pedestrian flow models, a basic cellular automata model is presented to simulate occupant evacuation in fire. Some extended models are introduced to study the special phenomena of evacuation from the fire room. The key of the models is the introduction of the danger grade which makes the route choice convenient and reasonable. Fire not only influences the emotional and behavioral characteristics of an individual but also affects his physical constitution, which reduces his maximal possible velocity. The models consider these influence factors by applying a set of simple but effective rules. It is needed to emphasize that all rules are established according to the essential phenomenon in fire evacuation, that is, all the occupants would try to move to the safest place as fast as possible. Some simulation examples are also presented to validate the applicability of the models.

  17. Ensemble forecasting of sub-seasonal to seasonal streamflow by a Bayesian joint probability modelling approach

    Science.gov (United States)

    Zhao, Tongtiegang; Schepen, Andrew; Wang, Q. J.

    2016-10-01

    The Bayesian joint probability (BJP) modelling approach is used operationally to produce seasonal (three-month-total) ensemble streamflow forecasts in Australia. However, water resource managers are calling for more informative sub-seasonal forecasts. Taking advantage of BJP's capability of handling multiple predictands, ensemble forecasting of sub-seasonal to seasonal streamflows is investigated for 23 catchments around Australia. Using antecedent streamflow and climate indices as predictors, monthly forecasts are developed for the three-month period ahead. Forecast reliability and skill are evaluated for the period 1982-2011 using a rigorous leave-five-years-out cross validation strategy. BJP ensemble forecasts of monthly streamflow volumes are generally reliable in ensemble spread. Forecast skill, relative to climatology, is positive in 74% of cases in the first month, decreasing to 57% and 46% respectively for streamflow forecasts for the final two months of the season. As forecast skill diminishes with increasing lead time, the monthly forecasts approach climatology. Seasonal forecasts accumulated from monthly forecasts are found to be similarly skilful to forecasts from BJP models based on seasonal totals directly. The BJP modelling approach is demonstrated to be a viable option for producing ensemble time-series sub-seasonal to seasonal streamflow forecasts.

  18. A Lotka-Volterra competition model with seasonal succession.

    Science.gov (United States)

    Hsu, Sze-Bi; Zhao, Xiao-Qiang

    2012-01-01

    A complete classification for the global dynamics of a Lotka-Volterra two species competition model with seasonal succession is obtained via the stability analysis of equilibria and the theory of monotone dynamical systems. The effects of two death rates in the bad season and the proportion of the good season on the competition outcomes are also discussed. © Springer-Verlag 2011

  19. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2009-02-01

    Full Text Available Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001–2005. Our model of DEforestation CArbon Fluxes (DECAF runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the ''arc of deforestation'', the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year−1, mostly stemming from fires associated with deforestation (74% with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19% and pasture fires (7%. In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation

  20. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    Science.gov (United States)

    van der Werf, G. R.; Morton, D. C.; Defries, R. S.; Giglio, L.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P. S.

    2009-02-01

    Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activity, and deforestation rates to estimate emissions for the Brazilian state of Mato Grosso during 2001-2005. Our model of DEforestation CArbon Fluxes (DECAF) runs at 250-m spatial resolution with a monthly time step to capture spatial and temporal heterogeneity in fire dynamics in our study area within the ''arc of deforestation'', the southern and eastern fringe of the Amazon tropical forest where agricultural expansion is most concentrated. Fire emissions estimates from our modelling framework were on average 90 Tg C year-1, mostly stemming from fires associated with deforestation (74%) with smaller contributions from fires from conversions of Cerrado or pastures to cropland (19%) and pasture fires (7%). In terms of carbon dynamics, about 80% of the aboveground living biomass and litter was combusted when forests were converted to pasture, and 89% when converted to cropland because of the highly mechanized nature of the deforestation process in Mato Grosso. The trajectory of land use change from forest to other land uses often takes more than one year, and part of the biomass that was not burned in the dry season following deforestation burned in consecutive years. This led to a partial decoupling of annual deforestation rates and fire emissions, and lowered interannual variability in fire emissions. Interannual variability in the region was somewhat dampened as well because annual emissions from fires following deforestation and from maintenance fires did not covary, although

  1. Modelling Effectiveness of Machine Gun Fire

    OpenAIRE

    Dutta, D.; S. Sabhanval

    2002-01-01

    Machine gun is an effective infantry weapon which can cause heavy damage to enemy targets, if sited in a tactically favourable position. It can be engaged effectively against both static and moving targets. The paper deals with the determination of target vulnerability under effective machine gun fire considering relevant tactical parameters, eg, target aiming point, trajectory of fire, sweep angle, target frontage, posture, direction of attack, etc.

  2. Modelling Effectiveness of Machine Gun Fire

    Directory of Open Access Journals (Sweden)

    D. Dutta

    2002-04-01

    Full Text Available Machine gun is an effective infantry weapon which can cause heavy damage to enemy targets, if sited in a tactically favourable position. It can be engaged effectively against both static and moving targets. The paper deals with the determination of target vulnerability under effective machine gun fire considering relevant tactical parameters, eg, target aiming point, trajectory of fire, sweep angle, target frontage, posture, direction of attack, etc.

  3. Biological soil crust response to late season prescribed fire in a Great Basin juniper woodland

    Science.gov (United States)

    Steven D. Warren; Larry L. St.Clair; Jeffrey R. Johansen; Paul Kugrens; L. Scott Baggett; Benjamin J. Bird

    2015-01-01

    Expansion of juniper on U.S. rangelands is a significant environmental concern. Prescribed fire is often recommended to control juniper. To that end, a prescribed burn was conducted in a Great Basin juniper woodland. Conditions were suboptimal; fire did not encroach into mid- or late-seral stages and was patchy in the early-seral stage. This study evaluated the effects...

  4. Exploring Early Angiosperm Fire Feedbacks using Coupled Experiments and Modelling Approaches to Estimate Cretaceous Palaeofire Behaviour

    Science.gov (United States)

    Belcher, Claire; Hudpsith, Victoria

    2016-04-01

    Using the fossil record we are typically limited to exploring linkages between palaeoecological changes and palaeofire activity by assessing the abundance of charcoals preserved in sediments. However, it is the behaviour of fires that primarily governs their ecological effects. Therefore, the ability to estimate variations in aspects of palaeofire behaviour such as palaeofire intensity and rate of spread would be of key benefit toward understanding the coupled evolutionary history of ecosystems and fire. The Cretaceous Period saw major diversification in land plants. Previously, conifers (gymnosperms) and ferns (pteridophytes) dominated Earth's ecosystems until flowering plants (angiosperms) appear in the fossil record of the Early Cretaceous (~135Ma). We have created surface fire behaviour estimates for a variety of angiosperm invasion scenarios and explored the influence of Cretaceous superambient atmospheric oxygen levels on the fire behaviour occurring in these new Cretaceous ecosystems. These estimates are then used to explore the hypothesis that the early spread of the angiosperms was promoted by the novel fire regimes that they created. In order to achieve this we tested the flammability of Mesozoic analogue fuel types in controlled laboratory experiments using an iCone calorimeter, which measured the ignitability as well as the effective heat of combustion of the fuels. We then used the BehavePlus fire behaviour modelling system to scale up our laboratory results to the ecosystem scale. Our results suggest that fire-angiosperm feedbacks may have occurred in two phases: The first phase being a result of weedy angiosperms providing an additional easily ignitable fuel that enhanced both the seasonality and frequency of surface fires. In the second phase, the addition of shrubby understory fuels likely expanded the number of ecosystems experiencing more intense surface fires, resulting in enhanced mortality and suppressed post-fire recruitment of gymnosperms

  5. Aerosol impact on seasonal prediction using FIM-Chem-iHYCOM coupled model

    Science.gov (United States)

    sun, shan; Grell, Georg; Bleck, Rainer

    2016-04-01

    A coupled model consisting of the weather model FIM and the ocean model iHYCOM, both operating on an icosahedral horizontal grid, is being developed for subseasonal to seasonal prediction. Initial results indicate that the model skill is comparable to that of the operational model CFSv2 used by NCEP. In addition, an online atmospheric chemistry module is coupled to FIM. The purpose of onging experiments with the FIM-Chem-iHYCOM combination is to investigate the aerosol impact on the atmospheric and oceanic circulation at the seasonal scale. We compare the model sensitivity with various chemistry emissions, including aerosols, fire and anthropogenic emissions. Additional emphasis of this work is on the effect of aerosols on cloudiness and precipitation, either directly or indirectly through changes in SST. To isolate the latter effect, we conduct parallel experiments with observed SST.

  6. Spatial fire modeling in Mkuze Game Reserve: A case study*

    Directory of Open Access Journals (Sweden)

    S.G. Berjak

    2014-01-01

    Full Text Available Controlled burning is a necessary and regular activity in Mkuze Game Reserve, South Africa. Predicting the rate and extent of fire spread in controlled burning operations is, therefore, an important management objective. In this paper we evaluate a cellular automaton model for fire spread in terms of this objective using empirical data for two case studies in Mkuze Game Reserve. Incorporating data relating to factors such as temperature reduction in the early evening, subsequent dew formation and increased fuel moisture content, the model was found to closely resemble the observed fire behaviour.

  7. Information for seasonal models of carbon fluxes in agroecosystems

    Energy Technology Data Exchange (ETDEWEB)

    King, A.W.; DeAngelis, D.L.

    1987-04-01

    This report is a compilation of information useful for constructing regionally differentiated models of seasonal carbon fluxes in the terrestrial biosphere. Two classes of information are presented. First, extant agroecosystem models that simulate the flux of carbon in a stand or whole field are reviewed. Second, empirical data on seasonal carbon fluxes are compiled. These reviews and compilations are extensive, but not exhaustive. No attempt is made to evaluate the usefulness of seasonal models and data.

  8. Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management

    Science.gov (United States)

    Bacciu, V. M.; Salis, M.; Spano, D.

    2015-12-01

    Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current

  9. Quantitative Risk Modeling of Fire on the International Space Station

    Science.gov (United States)

    Castillo, Theresa; Haught, Megan

    2014-01-01

    The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.

  10. Simulation models WRF-Fire for wildland fire to purpose of disaster mitigation in Indonesia (Case study: Wildland fire on September, 23th 2015 in South of Sumatera)

    Science.gov (United States)

    Anggoro, Adityo Mega; Putra, Agie Wandala; Hutasoit, Budi Saritua

    2017-07-01

    Indonesia is one of the countries known as a one of the world lungs because it has a large forest and varied species. Besides that Indonesia has frequently hit by wildfires a year, one in 2015 yesterday which was hotly discussed because of the impact of forest fires that disrupt transport activity for flights resulting from interruption of smoke from fires. Therefore, it is important to be able to model the behavior of forest fires to disaster mitigation. In this study simulated forest fires in the region of South Sumatra on September 23, 2015 by the coordinates of fires 3,17°S and 106,03°E, this information is obtained from observation satellite imagery LANDSAT8 and hotspot distribution information from LAPAN. WRF-Fire is a combination model of Weather Research and Forecasting (WRF) with dynamic ARW core with fire semi-empirical models, based on the level set method. Methods of data analysis using descriptive analysis, comparative and spatial. The results showed that the distribution pattern of the fire resulting models have similarities with observation, the fire along with the smoke moving toward the northwest, then from the simulation results of surface winds and the invasion of fire has a correlation value of 0.62. WRF-Fire models able to simulate the extent of wildland fire even though it has few results overestimate is 1.725 ha and observations is 1.709 ha, this shows that the WRF-Fire models able be used to help mitigate the catastrophic wildland fire in Indonesia.

  11. Numerical Modelling by FLAC on Coal Fires in North China

    Science.gov (United States)

    Gusat, D.; Drebenstedt, C.

    2009-04-01

    Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the

  12. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  13. Modeling and Analysis of Realistic Fire Scenarios in Spacecraft

    Science.gov (United States)

    Brooker, J. E.; Dietrich, D. L.; Gokoglu, S. A.; Urban, D. L.; Ruff, G. A.

    2015-01-01

    An accidental fire inside a spacecraft is an unlikely, but very real emergency situation that can easily have dire consequences. While much has been learned over the past 25+ years of dedicated research on flame behavior in microgravity, a quantitative understanding of the initiation, spread, detection and extinguishment of a realistic fire aboard a spacecraft is lacking. Virtually all combustion experiments in microgravity have been small-scale, by necessity (hardware limitations in ground-based facilities and safety concerns in space-based facilities). Large-scale, realistic fire experiments are unlikely for the foreseeable future (unlike in terrestrial situations). Therefore, NASA will have to rely on scale modeling, extrapolation of small-scale experiments and detailed numerical modeling to provide the data necessary for vehicle and safety system design. This paper presents the results of parallel efforts to better model the initiation, spread, detection and extinguishment of fires aboard spacecraft. The first is a detailed numerical model using the freely available Fire Dynamics Simulator (FDS). FDS is a CFD code that numerically solves a large eddy simulation form of the Navier-Stokes equations. FDS provides a detailed treatment of the smoke and energy transport from a fire. The simulations provide a wealth of information, but are computationally intensive and not suitable for parametric studies where the detailed treatment of the mass and energy transport are unnecessary. The second path extends a model previously documented at ICES meetings that attempted to predict maximum survivable fires aboard space-craft. This one-dimensional model implies the heat and mass transfer as well as toxic species production from a fire. These simplifications result in a code that is faster and more suitable for parametric studies (having already been used to help in the hatch design of the Multi-Purpose Crew Vehicle, MPCV).

  14. Modelling Seasonal Carbon Dynamics on Fen Peatlands

    Science.gov (United States)

    Giebels, Michael; Beyer, Madlen; Augustin, Jürgen; Roppel, Mario; Juszczak, Radoszlav; Serba, Tomasz

    2010-05-01

    In Germany more than 99 % of fens have lost their carbon and nutrient sink function due to heavy drainage and agricultural land use especially during the last decades and thus resulted in compression and heavy peat loss (CHARMAN 2002; JOOSTEN & CLARKE 2002; SUCCOW & JOOSTEN 2001; AUGUSTIN et al. 1996; KUNTZE 1993). Therefore fen peatlands play an important part (4-5 %) in the national anthropogenic trace gas budget. But only a small part of drained and agricultural used fens in NE Germany can be restored. Knowledge of the influence of land use to trace gas exchange is important for mitigation of the climate impact of the anthropogenic peatland use. We study carbon exchanges between soil and atmosphere on several fen peatland use areas at different sites in NE-Germany. Our research covers peatlands of supposed strongly climate forcing land use (cornfield and intensive pasture) and of probably less forcing, alternative types (meadow and extensive pasture) as well as rewetted (formerly drained) areas and near-natural sites like a low-degraded fen and a wetted alder woodland. We measured trace gas fluxes with manual and automatic chambers in periodic routines since spring 2007. The used chamber technique bases on DROESLER (2005). In total we now do research at 22 sites situated in 5 different locations covering agricultural, varying states of rewetted and near-natural treatments. We present results of at least 2 years of measurements on our site of varying types of agricultural land use. There we found significant differences in the annual carbon balances depending on the genesis of the observed sites and the seasonal dynamics. Annual balances were constructed by applying single respiration and photosynthesis CO2 models for each measurement campaign. These models were based on LLOYD-TAYLOR (1994) and Michaelis-Menten-Kinetics respectively. Crosswise comparison of different site treatments combined with the seasonal environmental observations give good hints for the

  15. Integration of satellite fire products into MPI Earth System Model

    Science.gov (United States)

    Khlystova, Iryna G.; Kloster, Silvia

    2013-04-01

    Fires are the ubiquitous phenomenon affecting all natural biomes. Since the beginning of the satellite Era, fires are being continuously observed from satellites. The most interesting satellite parameter retrieved from satellite measurements is the burned area. Combined with information on biomass available for burning the burned area can be translated into climate relevant carbon emissions from fires into the atmosphere. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. Global continuous burned area dataset is provided by the Global Fire Emissions Dataset (GFED). GFED products were obtained from MODIS (and pre-MODIS) satellites and are available for the time period of 14 years (1997-2011). This dataset is widely used, well documented and supported by periodical updates containing new features. We integrate the global burned area product into the land model JSBACH, a part of the Earth-System model developed at the Max Plank Institute for Meteorology. The land model JSBACH simulates land biomass in terms of carbon content. Fire is an important disturbance process in the Earth's carbon cycle and affects mainly the carbon stored in vegetation. In the standard JSBACH version fire is represented by process based algorithms. Using the satellite data as an alternative we are targeting better comparability of modeled carbon emissions with independent satellite measurements of atmospheric composition. The structure of burned vegetation inside of a biome can be described as the balance between woody and herbaceous vegetation. GFED provides in addition to the burned area satellite derived information of the tree cover distribution within the burned area. Using this dataset, we can attribute the burned area to the respective simulated herbaceous or woody biomass within the vegetation model. By testing several extreme cases we evaluate the quantitative impact of vegetation balance between woody and herbaceous

  16. Modeling investigation of light-absorbing aerosols in the Amazon Basin during the wet season

    Science.gov (United States)

    Wang, Qiaoqiao; Saturno, Jorge; Chi, Xuguang; Walter, David; Lavric, Jost; Moran-Zuloaga, Daniel; Ditas, Florian; Pöhlker, Christopher; Brito, Joel; Carbone, Samara; Artaxo, Paulo; Andreae, Meinrat

    2017-04-01

    We use a global chemical transport model (GEOS-Chem) to interpret observed light-absorbing aerosols in Amazonia during the wet season. Observed aerosol properties, including black carbon (BC) concentration and light absorption, at the Amazon Tall Tower Observatory (ATTO) site in the central Amazon have relatively low background levels but frequently show high peaks during the study period of January-April 2014. With daily temporal resolution for open fire emissions and modified aerosol optical properties, our model successfully captures the observed variation in fine/coarse aerosol and BC concentrations as well as aerosol light absorption and its wavelength dependence over the Amazon Basin. The source attribution in the model indicates the important influence of open fire on the observed variances of aerosol concentrations and absorption, mainly from regional sources (northern South America) and from northern Africa. The contribution of open fires from these two regions is comparable, with the latter becoming more important in the late wet season. The analysis of correlation and enhancement ratios of BC versus CO suggests transport times of 1.8). Uncertainty analysis shows that accounting for absorption due to secondary organic aerosol (SOA) and primary biogenic aerosol (PBA) particles could result in differences of < 8 and 5-40% in total absorption, respectively.

  17. The Effect of Seasonal Ambient Temperatures on Fire-Stimulated Germination of Species with Physiological Dormancy: A Case Study Using Boronia (Rutaceae.

    Directory of Open Access Journals (Sweden)

    Berin D E Mackenzie

    Full Text Available Dormancy and germination requirements determine the timing and magnitude of seedling emergence, with important consequences for seedling survival and growth. Physiological dormancy is the most widespread form of dormancy in flowering plants, yet the seed ecology of species with this dormancy type is poorly understood in fire-prone vegetation. The role of seasonal temperatures as germination cues in these habitats is often overlooked due to a focus on direct fire cues such as heat shock and smoke, and little is known about the combined effects of multiple fire-related cues and environmental cues as these are seldom assessed in combination. We aimed to improve understanding of the germination requirements of species with physiological dormancy in fire-prone floras by investigating germination responses across members of the Rutaceae from south eastern Australia. We used a fully factorial experimental design to quantify the individual and combined effects of heat shock, smoke and seasonal ambient temperatures on germination of freshly dispersed seeds of seven species of Boronia, a large and difficult-to-germinate genus. Germination syndromes were highly variable but correlated with broad patterns in seed morphology and phylogenetic relationships between species. Seasonal temperatures influenced the rate and/or magnitude of germination responses in six species, and interacted with fire cues in complex ways. The combined effects of heat shock and smoke ranged from neutral to additive, synergistic, unitive or negative and varied with species, seasonal temperatures and duration of incubation. These responses could not be reliably predicted from the effect of the application of single cues. Based on these findings, fire season and fire intensity are predicted to affect both the magnitude and timing of seedling emergence in wild populations of species with physiological dormancy, with important implications for current fire management practices and for

  18. Villaflores: Municipal forest fire management model

    Science.gov (United States)

    Pedro Martínez Muñoz; Carlos Alberto Velázquez Sanabria

    2013-01-01

    As provided for in the General Law on Sustainable Forestry Development, the Municipality of Villaflores has worked on a continuous basis since 2002 to reduce the damage caused by forest fires as part of its working agenda, in conjunction with Federal and State agencies and NGOs. The work plan has the following phases: a) Inter-agency coordination:...

  19. Integrating fire with hydrological projections: model evaluation to identify uncertainties and tradeoffs in model complexity

    Science.gov (United States)

    Kennedy, M.; McKenzie, D.

    2013-12-01

    It is imperative for resource managers to understand how a changing climate might modify future watershed and hydrological processes, and such an understanding is incomplete if disturbances such as fire are not integrated with hydrological projections. Can a robust fire spread model be developed that approximates patterns of fire spread in response to varying topography wind patterns, and fuel loads and moistures, without requiring intensive calibration to each new study area or time frame? We assessed the performance of a stochastic model of fire spread (WMFire), integrated with the Regional Hydro-Ecological Simulation System (RHESSys), for projecting the effects of climatic change on mountain watersheds. We first use Monte Carlo inference to determine that the fire spread model is able to replicate the spatial pattern of fire spread for a contemporary wildfire in Washington State (the Tripod fire), measured by the lacunarity and fractal dimension of the fire. We then integrate a version of WMFire able to replicate the contemporary wildfire with RHESSys and simulate a New Mexico watershed over the calibration period of RHESSys (1941-1997). In comparing the fire spread model to a single contemporary wildfire we found issues in parameter identifiability for several of the nine parameters, due to model input uncertainty and insensitivity of the mathematical function to certain ranges of the parameter values. Model input uncertainty is caused by the inherent difficulty in reconstructing fuel loads and fuel moistures for a fire event after the fire has occurred, as well as by issues in translating variables relevant to hydrological processes produced by the hydrological model to those known to affect fire spread and fire severity. The first stage in the model evaluation aided the improvement of the model in both of these regards. In transporting the model to a new landscape in order to evaluate fire regimes in addition to patterns of fire spread, we find reasonable

  20. A method for ensemble wildland fire simulation

    Science.gov (United States)

    Mark A. Finney; Isaac C. Grenfell; Charles W. McHugh; Robert C. Seli; Diane Trethewey; Richard D. Stratton; Stuart Brittain

    2011-01-01

    An ensemble simulation system that accounts for uncertainty in long-range weather conditions and two-dimensional wildland fire spread is described. Fuel moisture is expressed based on the energy release component, a US fire danger rating index, and its variation throughout the fire season is modeled using time series analysis of historical weather data. This analysis...

  1. A model of backdraft phenomenon in building fires

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to further investigate the physical mechanism of the backdraft phenomenon in building fires, a simplified math ematical model is established based on energy balance equation, and its catastrophe mechanism is analyzed based on catastrophe theory, and the relationship between system control variables and fire conditions is studied. It is indicated that the backdraft phenomenon is a kind of typical catastrophe behavior, and of the common characteristics of catastrophe.

  2. A multivariate approach to modeling univariate seasonal time series

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans)

    1994-01-01

    textabstractA seasonal time series can be represented by a vector autoregressive model for the annual series containing the seasonal observations. This model allows for periodically varying coefficients. When the vector elements are integrated, the maximum likelihood cointegration method can be used

  3. Hybrid grey model to forecast monitoring series with seasonality

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jie; LIAO Xin-hao; ZHOU Yong-hong; ZOU Zheng-rong; ZHU Jian-jun; PENG Yue

    2005-01-01

    The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.

  4. Modelling the spreading of large-scale wildland fires

    CERN Document Server

    Drissi, Mohamed

    2014-01-01

    The objective of the present study is twofold. First, the last developments and validation results of a hybrid model designed to simulate fire patterns in heterogeneous landscapes are presented. The model combines the features of a stochastic small-world network model with those of a deterministic semi-physical model of the interaction between burning and non-burning cells that strongly depends on local conditions of wind, topography, and vegetation. Radiation and convection from the flaming zone, and radiative heat loss to the ambient are considered in the preheating process of unburned cells. Second, the model is applied to an Australian grassland fire experiment as well as to a real fire that took place in Corsica in 2009. Predictions compare favorably to experiments in terms of rate of spread, area and shape of the burn. Finally, the sensitivity of the model outcomes (here the rate of spread) to six input parameters is studied using a two-level full factorial design.

  5. A comparison of geospatially modeled fire behavior and potential application to fire and fuels management for the Savannah River Site.

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Laurie; Hollingsworth, LaWen; Shea, Dan

    2011-12-20

    This study evaluates modeled fire behavior for the Savannah River Site in the Atlantic Coastal Plain of the southeastern U.S. using three data sources: FCCS, LANDFIRE, and SWRA. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the U.S. using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern U.S. using satellite imagery.

  6. Coupling CFAST fire modeling and SAPHIRE probabilistic assessment software for internal fire safety evaluation of a typical TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Safaei Arshi, Saiedeh [School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of); Nematollahi, Mohammadreza, E-mail: nema@shirazu.ac.i [School of Engineering, Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of); Safety Research Center of Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of); Sepanloo, Kamran [Safety Research Center of Shiraz University, 71348-51154 Shiraz (Iran, Islamic Republic of)

    2010-03-15

    Due to the significant threat of internal fires for the safety operation of nuclear reactors, presumed fire scenarios with potential hazards for loss of typical research reactor safety functions are analyzed by coupling CFAST fire modeling and SAPHIRE probabilistic assessment software. The investigations show that fire hazards associated with electrical cable insulation, lubricating oils, diesel, electrical equipment and carbon filters may lead to unsafe situations called core damage states. Using system-specific event trees, the occurrence frequency of core damage states after the occurrence of each possible fire scenario in critical fire compartments is evaluated. Probability that the fire ignited in the given fire compartment will burn long enough to cause the extent of damage defined by each fire scenario is calculated by means of detection-suppression event tree. As a part of detection-suppression event trees quantification, and also for generating the necessary input data for evaluating the frequency of core damage states by SAPHIRE 7.0 software, CFAST fire modeling software is applied. The results provide a probabilistic measure of the quality of existing fire protection systems in order to maintain the reactor at a reasonable safety level.

  7. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.

    Science.gov (United States)

    Sala, Anna; Peters, Gregory D; McIntyre, Lorna R; Harrington, Michael G

    2005-03-01

    Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in

  8. Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-03-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  9. Wild Fire Emissions for the NOAA Operational HYSPLIT Smoke Model

    Science.gov (United States)

    Huang, H. C.; ONeill, S. M.; Ruminski, M.; Shafran, P.; McQueen, J.; DiMego, G.; Kondragunta, S.; Gorline, J.; Huang, J. P.; Stunder, B.; Stein, A. F.; Stajner, I.; Upadhayay, S.; Larkin, N. K.

    2015-12-01

    Particulate Matter (PM) generated from forest fires often lead to degraded visibility and unhealthy air quality in nearby and downstream areas. To provide near-real time PM information to the state and local agencies, the NOAA/National Weather Service (NWS) operational HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) smoke modeling system (NWS/HYSPLIT smoke) provides the forecast of smoke concentration resulting from fire emissions driven by the NWS North American Model 12 km weather predictions. The NWS/HYSPLIT smoke incorporates the U.S. Forest Service BlueSky Smoke Modeling Framework (BlueSky) to provide smoke fire emissions along with the input fire locations from the NOAA National Environmental Satellite, Data, and Information Service (NESDIS)'s Hazard Mapping System fire and smoke detection system. Experienced analysts inspect satellite imagery from multiple sensors onboard geostationary and orbital satellites to identify the location, size and duration of smoke emissions for the model. NWS/HYSPLIT smoke is being updated to use a newer version of USFS BlueSky. The updated BlueSky incorporates the Fuel Characteristic Classification System version 2 (FCCS2) over the continental U.S. and Alaska. FCCS2 includes a more detailed description of fuel loadings with additional plant type categories. The updated BlueSky also utilizes an improved fuel consumption model and fire emission production system. For the period of August 2014 and June 2015, NWS/HYSPLIT smoke simulations show that fire smoke emissions with updated BlueSky are stronger than the current operational BlueSky in the Northwest U.S. For the same comparisons, weaker fire smoke emissions from the updated BlueSky were observed over the middle and eastern part of the U.S. A statistical evaluation of NWS/HYSPLIT smoke predicted total column concentration compared to NOAA NESDIS GOES EAST Aerosol Smoke Product retrievals is underway. Preliminary results show that using the newer version

  10. Investigation of Fire Growth and Spread in a Model-Scale Railcar Using an Applied Approach

    OpenAIRE

    Ali Kazemipour; Mahyar Pourghasemi; Hossein Afshin; Bijan Farhanieh

    2016-01-01

    Fire is a potential hazard in public transportation facilities such as subways or road tunnels due to its contribution to high number of deaths. To provide an insight into fire development behavior in tunnels which can serve as the basis for emergency ventilation design, model-scale railcar fire is explored numerically in this research. Fire growth and its spread are investigated by analyzing the HRR curve as the representative of fire behavior in different stages. Fire developmen...

  11. Effects of seasonal prescribed fires on hardwood advance regeneration in shelterwood stands

    Science.gov (United States)

    Patrick Brose; David Van Lear

    1997-01-01

    Shelterwood harvesting of mature oak (Quercus spp. L.) stands on productive sites often fails because fast-growing intolerant and already established tolerant species outcompete oak reproduction for dominance of the advance regeneration pool. We hypothesized that prescribe fire would improve the competitive position of oak in the advance regeneration...

  12. Stratospheric ozone in boreal fire plumes - the 2013 smoke season over central Europe

    Science.gov (United States)

    Trickl, T.; Vogelmann, H.; Flentje, H.; Ries, L.

    2015-08-01

    In July 2013 very strong boreal fire plumes were observed at the northern rim of the Alps by lidar and ceilometer measurements of aerosol, ozone and water vapour for about 3 weeks. In addition, some of the lower-tropospheric components of these layers were analysed at the Global Atmosphere Watch laboratory at the Schneefernerhaus high-altitude research station (2650 m a.s.l., located a few hundred metres south-west of the Zugspitze summit). The high amount of particles confirms our hypothesis that fires in the Arctic regions of North America lead to much stronger signatures in the central European atmosphere than the multitude of fires in the USA. This has been ascribed to the prevailing anticyclonic advection pattern during favourable periods and subsidence, in contrast to warm-conveyor-belt export, rainout and dilution frequently found for lower latitudes. A high number of the pronounced aerosol structures were positively correlated with elevated ozone. Chemical ozone formation in boreal fire plumes is known to be rather limited. Indeed, these air masses could be attributed to stratospheric air intrusions descending from remote high-latitude regions, obviously picking up the aerosol on their way across Canada. In one case, subsidence from the stratosphere over Siberia over as many as 15-20 days without increase in humidity was observed although a significant amount of Canadian smoke was trapped. These coherent air streams lead to rather straight and rapid transport of the particles to Europe.

  13. Systems and models of fire blight (Erwinia amylovora prediction

    Directory of Open Access Journals (Sweden)

    Krzysztof Kielak

    2013-12-01

    Full Text Available The paper presents fire blight prediction models and systems, developed in Europe (system Billing - versions: BOS, BRS, BIS95 and originated from this system: Firescreen, FEUERBRA and ANLAFBRA and in United States (Californian system, model Maryblyt and system Cougarblight. Use of above models and systems in various climatic-geographic conditions and comparison of obtained prognostic data to real fire blight occurrence is reviewed. The newest trends in research on improvement of prognostic analyses parameters with their adjustment to particular conditions and consideration of infection source occurrence are also presented.

  14. Assessing the outstanding 2003 fire events in Portugal with a Regional Climate Model

    Science.gov (United States)

    Trigo, Ricardo; Jerez, Sonia; Camara, Carlos; Montávez, Juan Pedro

    2013-04-01

    The heatwave that struck western Iberia in the early days of August 2003 was characterized by record high values of both maximum (47.3°C) and minimum (30.6°c) temperatures in Portugal, associated with extremely low humidity levels and relatively intense wind speed (Trigo et al., 2006). These conditions triggered the most devastating sequence of large fires ever registered in Portugal. The estimated total burnt area was about 450.000 ha, including 280.000 ha of forest (Pereira et al., 2011). The outstanding total burnt area value corresponds to roughly 5% of the Portuguese territory, and represents approximately twice the previous maximum observed in 1998 (~220.000 ha), and about four times the long-term average observed between 1980 and 2004. Here we characterise this unusual episode using meteorological fields obtained from both observations and a regional climate model. In this work we use the longest (49-years) high-resolution regional climate simulation available driven by reanalysis data spanning from 1959 to 2007 and covering the entire Iberian Peninsula. This long run was obtained using the MM5 model with a spatial resolution of 10 km. Using this high spatial and temporal resolution we have computed the Canadian Fire Weather Index (FWI) System to produce hourly values of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behaviour (van Wagner, 1987). We show the temporal evolution of high resolution patterns for several fire related variables during the most important days for triggering new fires (the first week of August 2003). Besides the absolute value of Tmax, Tmin, wind (speed and direction), relative humidity and FWI we also evaluate the corresponding anomalies of these fields, obtained after removing the long-term smoothed daily climatology. Pereira M.G., Malamude B.D., Trigo R.M., Alves P.I. (2011) "The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database

  15. A Malthusian Model for All Seasons

    DEFF Research Database (Denmark)

    Weisdorf, Jacob Louis; Sharp, Paul Richard

    2009-01-01

    with agricultural intensification, depending on whether technological progress emerges in relation to cultivation or harvesting activities. Our result rests on evidence reported by Boserup (1965) and others, which suggests that harvest seasons in traditional agriculture are characterized by severe labour shortage....

  16. Modeling the variability of firing rate of retinal ganglion cells.

    Science.gov (United States)

    Levine, M W

    1992-12-01

    Impulse trains simulating the maintained discharges of retinal ganglion cells were generated by digital realizations of the integrate-and-fire model. If the mean rate were set by a "bias" level added to "noise," the variability of firing would be related to the mean firing rate as an inverse square root law; the maintained discharges of retinal ganglion cells deviate systematically from such a relationship. A more realistic relationship can be obtained if the integrate-and-fire mechanism is "leaky"; with this refinement, the integrate-and-fire model captures the essential features of the data. However, the model shows that the distribution of intervals is insensitive to that of the underlying variability. The leakage time constant, threshold, and distribution of the noise are confounded, rendering the model unspecifiable. Another aspect of variability is presented by the variance of responses to repeated discrete stimuli. The variance of response rate increases with the mean response amplitude; the nature of that relationship depends on the duration of the periods in which the response is sampled. These results have defied explanation. But if it is assumed that variability depends on mean rate in the way observed for maintained discharges, the variability of responses to abrupt changes in lighting can be predicted from the observed mean responses. The parameters that provide the best fits for the variability of responses also provide a reasonable fit to the variability of maintained discharges.

  17. Bilinear modulation models for seasonal tables of counts

    NARCIS (Netherlands)

    B.D. Marx (Brian); P.H.C. Eilers (Paul); J. Gampe (Jutta); R. Rau (Roland)

    2010-01-01

    textabstractWe propose generalized linear models for time or age-time tables of seasonal counts, with the goal of better understanding seasonal patterns in the data. The linear predictor contains a smooth component for the trend and the product of a smooth component (the modulation) and a periodic t

  18. Fire risk in San Diego County, California: A weighted Bayesian model approach

    Science.gov (United States)

    Kolden, Crystal A.; Weigel, Timothy J.

    2007-01-01

    Fire risk models are widely utilized to mitigate wildfire hazards, but models are often based on expert opinions of less understood fire-ignition and spread processes. In this study, we used an empirically derived weights-of-evidence model to assess what factors produce fire ignitions east of San Diego, California. We created and validated a dynamic model of fire-ignition risk based on land characteristics and existing fire-ignition history data, and predicted ignition risk for a future urbanization scenario. We then combined our empirical ignition-risk model with a fuzzy fire behavior-risk model developed by wildfire experts to create a hybrid model of overall fire risk. We found that roads influence fire ignitions and that future growth will increase risk in new rural development areas. We conclude that empirically derived risk models and hybrid models offer an alternative method to assess current and future fire risk based on management actions.

  19. Towards the dynamic prediction of wildfire danger. Modeling temporal scenarios of fire-occurrence in Northeast Spain

    Science.gov (United States)

    Martín, Yago; Rodrigues, Marcos

    2017-04-01

    Up to date models of human-caused ignition probability have commonly been developed from a static or structural point of view, regardless of the time cycles that drive human behavior or environmental conditions. However, human drivers mostly have a temporal dimension, and fuel conditions are subjected to temporal changes as well, which is why a historical/temporal perspective is often required. Previous studies in the region suggest that human driving factors of wildfires have undergone significant shifts in inter-annual occurrence probability models, thus varying over time. On the other hand, an increasing role of environmental conditions has also been reported. This research comprehensively analyzes the intra-annual dimension of fire occurrence and fire-triggering factors using NW Spain as a test area, moving one-step forward towards achieving more accurate predictions, to ultimately develop dynamic predictive models. To this end, several intra-annual presence-only models have been calibrated, exploring seasonal variations of environmental conditions and short-term cycles of human activity (working- vs non-working days). Models were developed from accurately geolocated fire data in the 2008-2012 period, and GIS and remote sensing (MOD1A2 and MOD16) information . Specifically, 8 occurrence data subsets (scenarios) were constructed by splitting fire records into 4 seasons (winter, spring, summer and autumn) then separating each season into 2 new categories (working and non-working days). This allows analyzing the temporal variation of socioeconomic (urban- and agricultural-interfaces, transport and road networks, and human settlements) and environmental (fuel conditions) factors associated with occurrence. Models were calibrated applying the Maximum Entropy algorithm (MaxEnt). The MaxEnt algorithm was selected as it is the most widespread approach to deal with presence-only data, as may be the case of fire occurrence. The dependent variable for each scenario was

  20. FireStem2D--a two-dimensional heat transfer model for simulating tree stem injury in fires.

    Directory of Open Access Journals (Sweden)

    Efthalia K Chatziefstratiou

    Full Text Available FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes.

  1. Analysis of rainfall seasonality from observations and climate models

    CERN Document Server

    Pascale, Salvatore; Feng, Xue; Porporato, Amilcare; Hasson, Shabeh-ul

    2014-01-01

    Precipitation seasonality of observational datasets and CMIP5 historical simulations are analyzed using novel quantitative measures based on information theory. Two new indicators, the relative entropy (RE) and the dimensionless seasonality index (DSI), together with the mean annual rainfall, are evaluated on a global scale for recently updated precipitation gridded datasets and for historical simulations from coupled atmosphere-ocean general circulation models. The RE provides a measure of how peaked the shape of the annual rainfall curve is whereas the DSI quantifies the intensity of the rainfall during the wet season. The global monsoon regions feature the largest values of the DSI. For precipitation regimes featuring one maximum in the monthly rain distribution the RE is related to the duration of the wet season. We show that the RE and the DSI are measures of rainfall seasonality fairly independent of the time resolution of the precipitation data, thereby allowing objective metrics for model intercompari...

  2. Fired Models of Air-gun Source and Its Application

    Institute of Scientific and Technical Information of China (English)

    Luo Guichun; Ge Hongkui; Wang Baoshan; Hu Ping; Mu Hongwang; Chen Yong

    2008-01-01

    Air-gun is an important active seismic source. With the development of the theory about air-gun array, the technique for air-gun array design becomes mature and is widely used in petroleum exploration and geophysics. In order to adapt it to different research domains,different combination and fired models are needed. At the present time, there are two firedmodels of air-gun source, namely, reinforced initial pulse and reinforced first bubble pulse.The fired time, space between single guns, frequency and resolution of the two models are different. This comparison can supply the basis for its extensive application.

  3. Hdr reactor containment fire modeling with Br12

    Energy Technology Data Exchange (ETDEWEB)

    Rockett, J.A.; Keski-Rahkonen, O.; Heikkilae, L.

    1992-01-01

    Fire tests at the German test reactor, HDR, were simulated using a Japanese zone model code, BRI2. Eight and ten room models of the containment building were developed. Critical phenomena occurring during simulation were explored. BRI2 can be used for this type of work but care must be exercised where a side wind increases entrainment by the fire plume. Horizontal vents were described by effective vertical vents. The effect of location of the vent to the ambient was found critical during severely oxygen limited burning. (Copyright (c) Valtion teknillinen tutkimuskeskus (VTT) 1992.)

  4. A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    CERN Document Server

    Sullivan, A L

    2007-01-01

    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or ...

  5. Fire severity estimated from remote sensing data to evaluate the Coupled Atmosphere-Wildland Fire-Environment (CAWFE) model

    Science.gov (United States)

    Oliva, P.; Coen, J.; Schroeder, W.

    2013-12-01

    Fire severity defined as the degree of damage originated from fire on soils and vegetation immediately after the fire, is affected by weather conditions (i.e. wind, air humidity), terrain characteristics (i.e. slope, aspect) and fuel properties (i.e. tree density, fuel moisture content). In this study we evaluated the relationships between fire severity estimated from Earth Observing Advance Land Imager (EO-ALI) images and the heat fluxes produced by the Coupled Atmosphere-Wildland Fire-Environment (CAWFE) model (Coen 2013). We present the results for a large fire occurred in New Mexico in June 2012 which burned 44,330 acres. The EO-ALI sensor (30 m spatial resolution) has nine spectral bands, six of them were designed to mimic Landsat bands and the three additional bands cover 443, 867.5 and 1250 nm. We used a physically-based approach to estimate fire severity developed by De Santis et al. (2009). This method classifies the satellite image into Geophysical Composite burned index (GeoCBI) values, which represent the fire severity within the fire-affected area, using radiative transfer model simulated spectra as reference. This method has been used to characterize fire severity levels using Landsat images and validated with field data (R2 > 0.85). Based on those results we expected a better performance of EO-ALI images due to its improved spectral resolution. On the other hand, CAWFE is composed of two parts: a numerical weather prediction model and a fire behavior module that represents the growth of a wildland fire in response to factors such as wind, terrain, and fuels, and includes the fire's impact on the atmosphere. To perform the evaluation we selected a stratified random sample by fire severity level. The values of maximum heat flux (sensible, latent), and total heat flux showed a higher correlation with the higher levels of fire severity (GeoCBI: 2.8-3) than with the medium levels of fire severity (GeoCBI: 2.3-2.8). However, the total heat flux proved to

  6. Modelling for Forest Fire Evolution Based on the Energy Accumulation and Release

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2015-09-01

    Full Text Available Forest fire evolution plays an important role in the decision-making of controlling the forest fire. This paper aims to simulate the dynamics of the forest fire spread using a cellular automaton approach. Having analyzed the characteristics and evolution of forest fires, a simulation model for the forest fire evolution based on the energy accumulation and release is proposed. And, taking Australia's catastrophic forest fire in 2009 as an example, the fire’s evolution closely to the reality is simulated. The results of the experiments are shown that if forest energy is released in a small scale before or during the fire, the fire would be better controlled even if it does not occur. Improving the efficiency of the fire extinguishing procedures and reducing the speed of the fire spread are also effective for controlling the forest fire.

  7. Measurement strategy and analytic model to determine firing pin force

    Science.gov (United States)

    Lesenciuc, Ioan; Suciu, Cornel

    2016-12-01

    As illustrated in literature, ballistics is a branch of theoretical mechanics, which studies the construction and working principles of firearms and ammunition, their effects, as well as the motions of projectiles and bullets1. Criminalistics identification, as part of judiciary identification represents an activity aimed at finding common traits of different objects, objectives, phenomena and beings, but more importantly, traits that differentiate each of them from similar ones2-4. In judicial ballistics, in the case of rifled firearms it is relatively simple for experts to identify the used weapon from traces left on the projectile, as the rifling of the barrel leaves imprints on the bullet, which remain approximately identical even after the respective weapon is fired 100 times with the same barrel. However, in the case of smoothbore firearms, their identification becomes much more complicated. As the firing cap suffers alterations from being hit by the firing pin, determination of the force generated during impact creates the premises for determining the type of firearm used to shoot the respective cartridge. The present paper proposes a simple impact model that can be used to evaluate the force generated by the firing pin during its impact with the firing cap. The present research clearly showed that each rifle, by the combination of the three investigated parameters (impact force maximum value, its variation diagram, and impact time) leave a unique trace. Application of such a method in ballistics can create the perspectives for formulating clear conclusions that eliminate possible judicial errors in this field.

  8. Wildfire, Ecosystems and Climate in Siberia: Developing Weather and Climate Data Sets for Use in Fire Weather and Bioclimatic Models

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Stackhouse, P. W.

    2007-12-01

    A primary driving force of land cover change in boreal regions is fire, and extreme fire seasons are influenced by local weather and ultimately climate. It is predicted that fire frequency, area burned, fire severity, fire season length, and severe fire seasons will increase under current climate change scenarios. Already, there is evidence of an increased number of extreme fire seasons in Siberia that correlate with current warming. Our overall goal is to explore the degree to which current and future climate variability has and will affect wildfire-induced land cover change and to highlight the significance of the interaction between the biosphere and the climate system. Developing reliable weather and climate data provides the backbone of this research, which is to examine the relationships between weather, extreme fire events, and fire-induced land cover change in the changing climate of Siberia. The primary focus in this presentation is the description of the assembled weather and climate data sets and the verification efforts, followed by an example where the data set is used in a fire prediction application. Ground- based weather observations from the National Climatic Data Center (NCDC) for the years 1983-2006, have been used to verify various modeled meteorological parameters from the NASA Goddard Earth Observing System version 4 (GEOS-4) data. Specifically, we have extracted "Summary of the Day" and "Integrated Surface Hourly (ISH)" weather data from the NCDC. The ISH data has been processed to obtain hourly observation times for all stations in Siberia, including Mongolia and parts of northern China. A subset of these stations have been selected for validation purposes if they meet a criteria of having at least 75% of the possible reporting observations per day and 75% of the possible days in each month. GEOS-4 data interpolated to a 1x1 degree grid have compared well with the NCDC station data, covering the burning season from April through September

  9. Combining fire and erosion modeling to target forest management activities

    Science.gov (United States)

    William J. Elliot; Mary Ellen Miller; Nic Enstice

    2015-01-01

    Forests deliver a number of important ecosystem services including clean water. When forests are disturbed by wildfire, the timing, quantity and quality of runoff are altered. A modeling study was carried out in a forested watershed in California to determine the risk of wildfire, and the potential post-fire sediment delivery from approximately 6-ha hillslope polygons...

  10. Modeling the performance of coated LPG tanks engulfes in fires

    NARCIS (Netherlands)

    Cozzani, V.; Landucci, G.; Molag, M. (Menso)

    2009-01-01

    The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fi

  11. Modeling the performance of coated LPG tanks engulfed in fires

    NARCIS (Netherlands)

    Landucci, G.; Molag, M.; Cozzani, V.

    2009-01-01

    The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fi

  12. Façade fire tests – measurements and modeling

    Directory of Open Access Journals (Sweden)

    Anderson Johan

    2013-11-01

    Full Text Available In two recent papers [1, 2] the fire dynamics in a test rig for façade constructions according to the test method SP Brand 105 [3, 4] was investigated both experimentally and numerically. The experimental setup simulates a three-story apartment building (height 6.7 m, width 4 m and depth 1.6 m, with external wall-cladding and a “room fire” at the base. The numerical model was developed in the CFD program Fire Dynamics Simulator (FDS [5] with analogous geometry and instrumentation. The general features of the fire test were well reproduced in the numerical model however temperatures close to the fire source could not be properly accounted for in the model. In this paper the bi-directional probe measurements are elaborated on and the test used in Ref. [1] is revisited using different heat release rates in the numerical model. The velocity of the hot gases along the façade was well reproduced by the simulations although some deviations were found.

  13. Simplified stochastic modeling of concrete spalling due to fire

    NARCIS (Netherlands)

    Straalen, IJ.J. van; Steenbergen, R.D.J.M.; Lentzen, S.S.K.; Vries, R. de

    2013-01-01

    Predicting spalling of concrete due to fire loading is undoubtedly a complex task to come across. Existing numerical models are dealing with the phenomena on different complexity levels of describing the physical/chemical processes and material behavior. But still they do not take the highly stochas

  14. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    Science.gov (United States)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the

  15. Sensitivity Analysis of a Simplified Fire Dynamic Model

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2015-01-01

    This paper discusses a method for performing a sensitivity analysis of parameters used in a simplified fire model for temperature estimates in the upper smoke layer during a fire. The results from the sensitivity analysis can be used when individual parameters affecting fire safety are assessed...... are the most significant in each case. We apply the Sobol method, which is a quantitative method that gives the percentage of the total output variance that each parameter accounts for. The most important parameter is found to be the energy release rate that explains 92% of the uncertainty in the calculated...... results for the period before thermal penetration (tp) has occurred. The analysis is also done for all combinations of two parameters in order to find the combination with the largest effect. The Sobol total for pairs had the highest value for the combination of energy release rate and area of opening...

  16. WRF fire simulation coupled with a fuel moisture model and smoke transport by WRF-Chem

    CERN Document Server

    Kochanski, Adam K; Mandel, Jan; Kim, Minjeong

    2012-01-01

    We describe two recent additions to WRF coupled with a fire spread model. Fire propagation is strongly dependent on fuel moisture, which in turn depends on the history of the atmosphere. We have implemented a equilibrium time-lag model of fuel moisture driven by WRF variables. The code allows the user to specify fuel parameters, with the defaults calibrated to the Canadian fire danger rating system for 10-hour fuel. The moisture model can run coupled with the atmosphere-fire model, or offline from WRF output to equilibrate the moisture over a period of time and to provide initial moisture conditions for a coupled atmosphere-fire-moisture simulation. The fire model also inserts smoke tracers into WRF-Chem to model the transport of fire emissions. The coupled model is available from OpenWFM.org. An earlier version of the fire model coupled with atmosphere is a part of WRF release.

  17. The impact of fires in the UK Met Office's Unified Model and the INFERNO interactive fire scheme

    Science.gov (United States)

    Mangeon, S.

    2015-12-01

    Forest fires are a key interaction between the land and the atmosphere. Yet this interaction is often omitted from Earth System Models. We will present the efforts carried out within the UK Met Office: for both its Unified Model (UM8.4) and land surface model (JULES). These efforts have focused on diagnosing fire occurrence and impact on composition. We will present the schemes used for diagnostic fire weather indices, and INFERNO (INteractive Fires and Emissions algoRithm for Natural envirOnments). INFERNO follows a reduced complexity approach and is intended for decadal to centennial scale climate simulations and assessment models for policy making. The scheme uses temperature, relative humidity, precipitation and soil moisture to simulate fuel flammability; once combined with ignitions, INFERNO diagnoses burnt area. Using JULES' carbon scheme, burnt area leads to fire emissions which are inputs to the model's chemistry and aerosol scheme (UKCA). We will show the coupled model performance in capturing burnt area and fire emissions and investigate the role of fires on atmospheric composition interannual variability (in particular CO, and aerosols).

  18. Investigating and modeling of the effects of condensate storage tank fire in a refinery

    Directory of Open Access Journals (Sweden)

    Mohammad Kamaei

    2015-12-01

    Full Text Available Background & objective: Oil storage tanks are major industrial facilities which always pose risks of toxic substance release, fires and explosions. Fire has been recognized as the most common risk associated with such facilities, while explosion is the most important one in terms of ability to claim human lives and damage property. The current study aimed at investigating and modeling the effects of fires occurring in a gas condensate tank farm, according to which the level of possible emergencies were specified using the guidelines provided by the Center for Chemical Process Safety. Lastly, control measures were recommended. Methods: In the present study, the release and leakage of gas condensate from floating roof tanks were assessed using HAZOP method. Then, using PHAST software, the amount of radiation intensity received by the surrounding environment was determined, safe boundaries were computed, and according to the CCPS standard the emergency levels were determined. Results: modeling was performed based on the maximum capacity of tanks for both cold and hot seasons. The results revealed that safe distance for a maximum amount of irradiation density (4 KW/m2 related to a sudden release were 60 and 140 meters, respectively. Conclusion: according to the current condition of the plants and storage tanks, a plan was recommended for emergency management and practical suggestions were provided to improve the reliability and consistency.

  19. Fires in Amazonia

    Science.gov (United States)

    Aragão, Luiz E. O. C.; Anderson, Liana O.; Lima, André; Arai, Egidio

    2016-11-01

    Fire has been used since the first humans arrived in Amazonia; however, it has recently become a widely used instrument for large-scale forest clearance. Patterns of fire incidence in the region have been exacerbated by recent drought events. Understanding temporal and spatial fire patterns as well as their consequences for forest structure, species composition, and the carbon cycle is critical for minimising global change impacts on Amazonian ecosystems and people. In this chapter, we provide an overview of the state of our knowledge on the spatial and temporal patterns of fire incidence in Amazonia, depicting the historical fire usage in the region, their relationship with land use and land cover, and their responses to climate seasonality and droughts. We subsequently focus on the impacts of fire, by quantifying the extent of burnt forests during major droughts and describing the main impacts on forest structure, composition, and carbon stocks. Finally, we present an overview of modelling initiatives for forecasting fire incidence in the region. We conclude by providing a comprehensive view of the processes that influence fire occurrence, potential feedbacks, and impacts in Amazonia. We also highlight how key areas within fire ecology must be improved for a better understanding of the long-term effect of fire on the Amazon forest 'biome'.

  20. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels;

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  1. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, Kim; Karstensen, Claus; Condra, Thomas Joseph;

    2003-01-01

    A model for a ue gas boiler covering the ue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been dened for the furnace, the convection zone (split in 2: a zone...... submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic- Equation system (DAE). Subsequently MatLab/Simulink has...... been applied for carrying out the simulations. To be able to verify the simulated results an experiments has been carried out on a full scale boiler plant....

  2. Coupled Atmosphere-Fire Simulations of Fireflux: Impacts of Model Resolution on Model Performance

    CERN Document Server

    Kochanski, Adam K; Jenkins, M A; Mandel, J; Beezley, J D

    2011-01-01

    The ability to forecast grass fire spread could be of a great importance for agencies making decisions about prescribed burns. However, the usefulness of the models used for fire-spread predictions is limited by the time required for completing the coupled atmosphere-fire simulations. In this study we analyze the sensitivity of a coupled model with respect to the vertical resolution of the atmospheric grid and the resolution of fire mesh that both affect computational performance of the model. Based on the observations of the plume properties recorded during the FireFlux experiment (Clements et al., 2007), we try to establish the optimal model configuration that provides realistic results for the least computational expense.

  3. Jet fire consequence modeling for high-pressure gas pipelines

    Science.gov (United States)

    Coccorullo, Ivano; Russo, Paola

    2016-12-01

    A simple and reliable approach for sizing the hazard area potentially affected by a jet fire as consequence of the failure of high-pressure pipeline is proposed. A release rate model, taking pipeline operation properties and source release properties into account, is coupled with SLAB dispersion model and point source radiation model to calculate the hazard distance. The hazard distance is set beyond the distance at which a low chance of fatality can occur to people exposed and a wooden structure is not expected to burn due to radiation heat of jet fire. The comparison between three gases with different physico-chemical properties (i.e. natural gas, hydrogen, ethylene) is shown. The influence of pipeline operating parameters, such as: pressure, pipeline diameter and length, hole size, on the hazard area for the three gases is evaluated. Finally, a simple correlation is proposed for calculating the hazard distance as function of these parameters.

  4. Long term effects of fire frequency and season on the woody vegetation dynamics of the Sclerocarya birrea/Acacia nigrescens savanna of the Kruger National Park

    Directory of Open Access Journals (Sweden)

    B.W. Enslin

    2000-07-01

    Full Text Available A lack of knowledge together with vacillating fire management approaches in the Kruger National Park until the mid 1950s, gave rise to a long term fire research experiment aimed at shedding light on savanna responses to various combinations of fire fre- quencies and seasons. This trial was laid out in 1954 in four of the six major vegetation zones of the park. With the future of the experiment now being reconsidered, full scale vegetation surveys have been conducted on all the plots and compared to the surveys done in 1954. This paper examines the woody vegetation responses to fourteen fire treatments in the Knobthorn/Marula savanna. Parameters of interest were woody species composition responses, together with tree & shrub density and structural changes. The results indicate that no significant changes in woody species had occurred for the peri- od 1954 vs 1998, while density decreased on biennial and increased on triennial treatments. The proportion of single stemmed plants increased over the period. Season of burn has a marked effect on structure, with April and August burns giving rise to the largest basal areas but the lowest heights. Environmental parameters such as climate, varying herbivory and differing soils, and their respective interactions on vegetation morphology, together with fire behaviour, further influenced results.

  5. On Fire regime modelling using satellite TM time series

    Science.gov (United States)

    Oddi, F.; . Ghermandi, L.; Lanorte, A.; Lasaponara, R.

    2009-04-01

    Wildfires can cause an environment deterioration modifying vegetation dynamics because they have the capacity of changing vegetation diversity and physiognomy. In semiarid regions, like the northwestern Patagonia, fire disturbance is also important because it could impact on the potential productivity of the ecosystem. There is reduction plant biomass and with that reducing the animal carrying capacity and/or the forest site quality with negative economics implications. Therefore knowledge of the fires regime in a region is of great importance to understand and predict the responses of vegetation and its possible effect on the regional economy. Studies of this type at a landscape level can be addressed using GIS tools. Satellite imagery allows detect burned areas and through a temporary analysis can be determined to fire regime and detecting changes at landscape scale. The study area of work is located on the east of the city of Bariloche including the San Ramon Ranch (22,000 ha) and its environs in the ecotone formed by the sub Antarctic forest and the patagonian steppe. We worked with multiespectral Landsat TM images and Landsat ETM + 30m spatial resolution obtained at different times. For the spatial analysis we used the software Erdas Imagine 9.0 and ArcView 3.3. A discrimination of vegetation types has made and was determined areas affected by fires in different years. We determined the level of change on vegetation induced by fire. In the future the use of high spatial resolution images combined with higher spectral resolution will allows distinguish burned areas with greater precision on study area. Also the use of digital terrain models derived from satellite imagery associated with climatic variables will allows model the relationship between them and the dynamics of vegetation.

  6. Dynamically downscaled multi-model ensemble seasonal forecasts over Ethiopia

    Science.gov (United States)

    Asharaf, Shakeel; Fröhlich, Kristina; Fernandez, Jesus; Cardoso, Rita; Nikulin, Grigory; Früh, Barbara

    2016-04-01

    Truthful and reliable seasonal rainfall predictions have an important social and economic value for the east African countries as their economy is highly dependent on rain-fed agriculture and pastoral systems. Only June to September (JJAS) seasonal rainfall accounts to more than 80% crop production in Ethiopia. Hence, seasonal foresting is a crucial concern for the region. The European Provision of Regional Impact Assessment on a seasonal to decadal timescale (EUPORIAS) project offers a common framework to understand hindcast uncertainties through the use of multi-model and multi-member simulations over east Africa. Under this program, the participating regional climate models (RCMs) were driven by the atmospheric-only version of the ECEARTH global climate model, which provides hindcasts of a five-months period (May to September) from 1991-2012. In this study the RCMs downscaled rainfall is evaluated with respect to the observed JJAS rainfall over Ethiopia. Both deterministic and probabilistic based forecast skills are assessed. Our preliminary results show the potential usefulness of multi-model ensemble simulations in forecasting the seasonal rainfall over the region.

  7. The Morris-Lecar neuron model embeds a leaky integrate-and-fire model

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Greenwood, Priscilla

    2013-01-01

    We showthat the stochastic Morris–Lecar neuron, in a neighborhood of its stable point, can be approximated by a two-dimensional Ornstein Uhlenbeck (OU) modulation of a constant circular motion. The associated radial OU process is an example of a leaky integrate-and-fire (LIF) model prior to firing...

  8. Modeling wildland fire propagation using a semi-physical network model

    Directory of Open Access Journals (Sweden)

    J.K. Adou

    2015-10-01

    Full Text Available In this paper we present a surface wildfire model which can be used to develop and test new firefighting strategies and land use planning practices. This model is simple, easy to implement and can predict the rate of fire spread, the fire contour and both burning and burned areas. It also incorporates weather conditions and land topography. The predictive capability of the model is partially assessed by comparison with data from laboratory-scale and prescribed burning experiments. A sensitivity analysis is conducted to identify the most influential input model parameters controlling fire propagation.

  9. FIRES: Fire Information Retrieval and Evaluation System - A program for fire danger rating analysis

    Science.gov (United States)

    Patricia L. Andrews; Larry S. Bradshaw

    1997-01-01

    A computer program, FIRES: Fire Information Retrieval and Evaluation System, provides methods for evaluating the performance of fire danger rating indexes. The relationship between fire danger indexes and historical fire occurrence and size is examined through logistic regression and percentiles. Historical seasonal trends of fire danger and fire occurrence can be...

  10. First-order fire effects models for land Management: Overview and issues

    Science.gov (United States)

    Elizabeth D. Reinhardt; Matthew B. Dickinson

    2010-01-01

    We give an overview of the science application process at work in supporting fire management. First-order fire effects models, such as those discussed in accompanying papers, are the building blocks of software systems designed for application to landscapes over time scales from days to centuries. Fire effects may be modeled using empirical, rule based, or process...

  11. Considerations in Scale-Modeling of Large Urban Fires

    Science.gov (United States)

    1984-11-15

    is inconsequential and that all molecular transport processes are unimportant). The nondimensional parameters to be preserved between the model and...fuel bed. Parker, Corlett and B. T. Lee [!3] also come to a similar conclusion based * on the following two points. First, in large fires, molecular ...to USDA Forest Service, Prepared by Instituto Nacional "de Tecnica Aeroespacial, Madrid, Spain, (May, 1967). "" 57. S.L. Lee and G.M. Hellman

  12. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    Directory of Open Access Journals (Sweden)

    F. Li

    2012-07-01

    Full Text Available A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM in an Earth System Model (ESM. Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs.

    Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM. Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3 for 1997–2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol

  13. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    Science.gov (United States)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-07-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol emissions due to biomass burning

  14. Improving the representation of fire disturbance in dynamic vegetation models by assimilating satellite data

    Science.gov (United States)

    Kantzas, E. P.; Quegan, S.; Lomas, M.

    2015-03-01

    Fire provides an impulsive and stochastic pathway for carbon from the terrestrial biosphere to enter the atmosphere. Despite fire emissions being of similar magnitude to Net Ecosystem Exchange in many biomes, even the most complex Dynamic Vegetation Models (DVMs) embedded in General Circulation Models contain poor representations of fire behaviour and dynamics such as propagation and distribution of fire sizes. A model-independent methodology is developed which addresses this issue. Its focus is on the Arctic where fire is linked to permafrost dynamics and on occasion can release great amounts of carbon from carbon-rich organic soils. Connected Component Labeling is used to identify individual fire events across Canada and Russia from daily, low-resolution burned area satellite products, and the results are validated against historical data. This allows the creation of a fire database holding information on area burned and temporal evolution of fires in space and time. A method of assimilating the statistical distribution of fire area into a DVM whilst maintaining its Fire Return Interval is then described. The algorithm imposes a regional scale spatially dependent fire regime on a sub-scale spatially independent model (point model); the fire regime is described by large scale statistical distributions of fire intensity and spatial extent, and the temporal dynamics (fire return intervals) are determined locally. This permits DVMs to estimate many aspects of post-fire dynamics that cannot occur under their current representations of fire, as is illustrated by considering the evolution of land cover, biomass and Net Ecosystem Exchange after a fire.

  15. Improving the representation of fire disturbance in dynamic vegetation models by assimilating satellite data

    Directory of Open Access Journals (Sweden)

    E. P. Kantzas

    2015-03-01

    Full Text Available Fire provides an impulsive and stochastic pathway for carbon from the terrestrial biosphere to enter the atmosphere. Despite fire emissions being of similar magnitude to Net Ecosystem Exchange in many biomes, even the most complex Dynamic Vegetation Models (DVMs embedded in General Circulation Models contain poor representations of fire behaviour and dynamics such as propagation and distribution of fire sizes. A model-independent methodology is developed which addresses this issue. Its focus is on the Arctic where fire is linked to permafrost dynamics and on occasion can release great amounts of carbon from carbon-rich organic soils. Connected Component Labeling is used to identify individual fire events across Canada and Russia from daily, low-resolution burned area satellite products, and the results are validated against historical data. This allows the creation of a fire database holding information on area burned and temporal evolution of fires in space and time. A method of assimilating the statistical distribution of fire area into a DVM whilst maintaining its Fire Return Interval is then described. The algorithm imposes a regional scale spatially dependent fire regime on a sub-scale spatially independent model (point model; the fire regime is described by large scale statistical distributions of fire intensity and spatial extent, and the temporal dynamics (fire return intervals are determined locally. This permits DVMs to estimate many aspects of post-fire dynamics that cannot occur under their current representations of fire, as is illustrated by considering the evolution of land cover, biomass and Net Ecosystem Exchange after a fire.

  16. Identification of fire modeling issues based on an analysis of real events from the OECD FIRE database

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, Dominik [Swiss Federal Nuclear Safety Inspectorate ENSI, Brugg (Switzerland)

    2017-03-15

    Precursor analysis is widely used in the nuclear industry to judge the significance of events relevant to safety. However, in case of events that may damage equipment through effects that are not ordinary functional dependencies, the analysis may not always fully appreciate the potential for further evolution of the event. For fires, which are one class of such events, this paper discusses modelling challenges that need to be overcome when performing a probabilistic precursor analysis. The events used to analyze are selected from the Organisation for Economic Cooperation and Development (OECD) Fire Incidents Records Exchange (FIRE) Database.

  17. Modeling Anthropogenic Fire Occurrence in the Boreal Forest of China Using Logistic Regression and Random Forests

    Directory of Open Access Journals (Sweden)

    Futao Guo

    2016-10-01

    Full Text Available Frequent and intense anthropogenic fires present meaningful challenges to forest management in the boreal forest of China. Understanding the underlying drivers of human-caused fire occurrence is crucial for making effective and scientifically-based forest fire management plans. In this study, we applied logistic regression (LR and Random Forests (RF to identify important biophysical and anthropogenic factors that help to explain the likelihood of anthropogenic fires in the Chinese boreal forest. Results showed that the anthropogenic fires were more likely to occur at areas close to railways and were significantly influenced by forest types. In addition, distance to settlement and distance to road were identified as important predictors for anthropogenic fire occurrence. The model comparison indicated that RF had greater ability than LR to predict forest fires caused by human activity in the Chinese boreal forest. High fire risk zones in the study area were identified based on RF, where we recommend increasing allocation of fire management resources.

  18. Modeling seasonal migration of fall armyworm moths

    Science.gov (United States)

    Westbrook, J. K.; Nagoshi, R. N.; Meagher, R. L.; Fleischer, S. J.; Jairam, S.

    2016-02-01

    Fall armyworm, Spodoptera frugiperda (J.E. Smith), is a highly mobile insect pest of a wide range of host crops. However, this pest of tropical origin cannot survive extended periods of freezing temperature but must migrate northward each spring if it is to re-infest cropping areas in temperate regions. The northward limit of the winter-breeding region for North America extends to southern regions of Texas and Florida, but infestations are regularly reported as far north as Québec and Ontario provinces in Canada by the end of summer. Recent genetic analyses have characterized migratory pathways from these winter-breeding regions, but knowledge is lacking on the atmosphere's role in influencing the timing, distance, and direction of migratory flights. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to simulate migratory flight of fall armyworm moths from distinct winter-breeding source areas. Model simulations identified regions of dominant immigration from the Florida and Texas source areas and overlapping immigrant populations in the Alabama-Georgia and Pennsylvania-Mid-Atlantic regions. This simulated migratory pattern corroborates a previous migratory map based on the distribution of fall armyworm haplotype profiles. We found a significant regression between the simulated first week of moth immigration and first week of moth capture (for locations which captured ≥10 moths), which on average indicated that the model simulated first immigration 2 weeks before first captures in pheromone traps. The results contribute to knowledge of fall armyworm population ecology on a continental scale and will aid in the prediction and interpretation of inter-annual variability of insect migration patterns including those in response to climatic change and adoption rates of transgenic cultivars.

  19. Climate change effects on wildland fire risk in the Northeastern and Great Lakes states predicted by a downscaled multi-model ensemble

    Science.gov (United States)

    Kerr, Gaige Hunter; DeGaetano, Arthur T.; Stoof, Cathelijne R.; Ward, Daniel

    2016-11-01

    This study is among the first to investigate wildland fire risk in the Northeastern and the Great Lakes states under a changing climate. We use a multi-model ensemble (MME) of regional climate models from the Coordinated Regional Downscaling Experiment (CORDEX) together with the Canadian Forest Fire Weather Index System (CFFWIS) to understand changes in wildland fire risk through differences between historical simulations and future projections. Our results are relatively homogeneous across the focus region and indicate modest increases in the magnitude of fire weather indices (FWIs) during northern hemisphere summer. The most pronounced changes occur in the date of the initialization of CFFWIS and peak of the wildland fire season, which in the future are trending earlier in the year, and in the significant increases in the length of high-risk episodes, defined by the number of consecutive days with FWIs above the current 95th percentile. Further analyses show that these changes are most closely linked to expected changes in the focus region's temperature and precipitation. These findings relate to the current understanding of particulate matter vis-à-vis wildfires and have implications for human health and local and regional changes in radiative forcings. When considering current fire management strategies which could be challenged by increasing wildland fire risk, fire management agencies could adapt new strategies to improve awareness, prevention, and resilience to mitigate potential impacts to critical infrastructure and population.

  20. [Analysis of seasonal fluctuations in the Lotka-Volterra model].

    Science.gov (United States)

    Lobanov, A I; Sarancha, D A; Starozhilova, T K

    2002-01-01

    A modification of the Lotka-Volterra model was proposed. The modification takes into account the factor of seasonal fluctuations in a "predator-prey" model. In this modification, interactions between species in summer are described by the Lotka-Volterra equations; in winter, individuals of both species extinct. This generalization makes the classic model unrough, which substantially extends the field of its application. The results of numerical simulation illustrate the statement formulated above.

  1. Reconstruction of fire spread within wildland fire events in Northern Eurasia from the MODIS active fire product

    Science.gov (United States)

    Loboda, T. V.; Csiszar, I. A.

    2007-04-01

    fire activity in the area compared to vegetation zones. In addition, fire spread rates do not directly correlate with the intensity of a given fire season. FSR is also used to identify the points of ignition for individual fire events in spatio-temporal domain for fire danger and fire threat modeling. This approach presents another step towards the more complete characterization of fire events from remotely sensed data.

  2. Modeling the performance of coated LPG tanks engulfed in fires

    Energy Technology Data Exchange (ETDEWEB)

    Landucci, Gabriele [CONPRICI - Dipartimento di Ingegneria Chimica, Chimica Industriale e Scienza dei Materiali, Universita di Pisa, via Diotisalvi n.2, 56126 Pisa (Italy); Molag, Menso [Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO, Princetonlaan 6, 3584 CB Utrecht (Netherlands); Cozzani, Valerio, E-mail: valerio.cozzani@unibo.it [CONPRICI - Dipartimento di Ingegneria Chimica, Mineraria e delle Tecnologie Ambientali, Alma Mater Studiorum - Universita di Bologna, Via Terracini 28 - 40131 Bologna (Italy)

    2009-12-15

    The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining specific key performance indicators (KPIs) to assess design safety margins in near-miss simulations. The results confirmed the wide influence of coating application on the expected vessel time to failure due to fire engulfment. A quite different performance of the alternative coating materials was evidenced. General correlations were developed among the vessel time to failure and the effective coating thickness in full engulfment scenarios, providing a preliminary assessment of the coating thickness required to prevent tank rupture for a given time lapse. The KPIs defined allowed the assessment of the available safety margins in the reference scenarios analyzed and of the robustness of thermal protection design.

  3. Modeling the performance of coated LPG tanks engulfed in fires.

    Science.gov (United States)

    Landucci, Gabriele; Molag, Menso; Cozzani, Valerio

    2009-12-15

    The improvement of passive fire protection of storage vessels is a key factor to enhance safety among the LPG distribution chain. A thermal and mechanical model based on finite elements simulations was developed to assess the behaviour of full size tanks used for LPG storage and transportation in fire engulfment scenarios. The model was validated by experimental results. A specific analysis of the performance of four different reference coating materials was then carried out, also defining specific key performance indicators (KPIs) to assess design safety margins in near-miss simulations. The results confirmed the wide influence of coating application on the expected vessel time to failure due to fire engulfment. A quite different performance of the alternative coating materials was evidenced. General correlations were developed among the vessel time to failure and the effective coating thickness in full engulfment scenarios, providing a preliminary assessment of the coating thickness required to prevent tank rupture for a given time lapse. The KPIs defined allowed the assessment of the available safety margins in the reference scenarios analyzed and of the robustness of thermal protection design.

  4. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Directory of Open Access Journals (Sweden)

    H Tyler Pittman

    Full Text Available Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha. This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated and units absent of prescribed fire (untreated. Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%. We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter but did not select for small

  5. Impacts of Short-Rotation Early-Growing Season Prescribed Fire on a Ground Nesting Bird in the Central Hardwoods Region of North America.

    Science.gov (United States)

    Pittman, H Tyler; Krementz, David G

    2016-01-01

    Landscape-scale short-rotation early-growing season prescribed fire, hereafter prescribed fire, in upland hardwood forests represents a recent shift in management strategies across eastern upland forests. Not only does this strategy depart from dormant season to growing season prescriptions, but the strategy also moves from stand-scale to landscape-scale implementation (>1,000 ha). This being so, agencies are making considerable commitments in terms of time and resources to this management strategy, but the effects on wildlife in upland forests, especially those dominated by hardwood canopy species, are relatively unknown. We initiated our study to assess whether this management strategy affects eastern wild turkey reproductive ecology on the Ozark-St. Francis National Forest. We marked 67 wild turkey hens with Global Positioning System (GPS) Platform Transmitting Terminals in 2012 and 2013 to document exposure to prescribed fire, and estimate daily nest survival, nest success, and nest-site selection. We estimated these reproductive parameters in forest units managed with prescribed fire (treated) and units absent of prescribed fire (untreated). Of 60 initial nest attempts monitored, none were destroyed or exposed to prescribed fire because a majority of fires occurred early than a majority of the nesting activity. We found nest success was greater in untreated units than treated units (36.4% versus 14.6%). We did not find any habitat characteristic differences between successful and unsuccessful nest-sites. We found that nest-site selection criteria differed between treated and untreated units. Visual concealment and woody ground cover were common selection criteria in both treated and untreated units. However, in treated units wild turkey selected nest-sites with fewer small shrubs (20 cm DBH) but not in untreated units. In untreated units wild turkey selected nest-sites with more large shrubs (≥5 cm ground diameter) but did not select for small shrubs or

  6. Incorporating anthropogenic influences into fire probability models: Effects of development and climate change on fire activity in California

    Science.gov (United States)

    Mann, M.; Moritz, M.; Batllori, E.; Waller, E.; Krawchuk, M.; Berck, P.

    2014-12-01

    The costly interactions between humans and natural fire regimes throughout California demonstrate the need to understand the uncertainties surrounding wildfire, especially in the face of a changing climate and expanding human communities. Although a number of statistical and process-based wildfire models exist for California, there is enormous uncertainty about the location and number of future fires. Models estimate an increase in fire occurrence between nine and fifty-three percent by the end of the century. Our goal is to assess the role of uncertainty in climate and anthropogenic influences on the state's fire regime from 2000-2050. We develop an empirical model that integrates novel information about the distribution and characteristics of future plant communities without assuming a particular distribution, and improve on previous efforts by integrating dynamic estimates of population density at each forecast time step. Historically, we find that anthropogenic influences account for up to fifty percent of the total fire count, and that further housing development will incite or suppress additional fires according to their intensity. We also find that the total area burned is likely to increase but at a slower than historical rate. Previous findings of substantially increased numbers of fires may be tied to the assumption of static fuel loadings, and the use of proxy variables not relevant to plant community distributions. We also find considerable agreement between GFDL and PCM model A2 runs, with decreasing fire counts expected only in areas of coastal influence below San Francisco and above Los Angeles. Due to potential shifts in rainfall patterns, substantial uncertainty remains for the semiarid deserts of the inland south. The broad shifts of wildfire between California's climatic regions forecast in this study point to dramatic shifts in the pressures plant and human communities will face by midcentury. The information provided by this study reduces the

  7. Effects of Repeated Growing Season Prescribed Fire on the Structure and Composition of Pine–Hardwood Forests in the Southeastern Piedmont, USA

    Directory of Open Access Journals (Sweden)

    Matthew J. Reilly

    2016-12-01

    Full Text Available We examined the effects of repeated growing season prescribed fire on the structure and composition of mixed pine–hardwood forests in the southeastern Piedmont region, Georgia, USA. Plots were burned two to four times over an eight-year period with low intensity surface fires during one of four six-week long periods from early April to mid-September. Density of saplings (0.25–11.6 cm diameter at breast height was significantly reduced after one or two fires during the first four-year period. Sapling density declined with additional burning over the next four years, but density of mesic hardwoods including sweetgum (Liquidambar styraciflua and red maple (Acer rubrum remained relatively high (~865 stems ha−1. Repeated burning had little effect on density or basal area of trees (≥11.7 cm dbh and changes in overstory structure were limited to small increases in the quadratic mean diameter of all trees and pines. We found little evidence to suggest differential effects on structure or composition due to timing of burn within the growing season. Although repeated growing season burning alters midstory structure and composition, burning alone is unlikely to result in immediate shifts in overstory composition or structure in mixed pine–hardwood forests of the southeastern Piedmont region.

  8. Developments in modelling of thermal radiation from pool and jet fires

    NARCIS (Netherlands)

    Boot, H.

    2016-01-01

    In the past decades, the standard approach in the modelling of consequences of pool and jet fires would be to describe these fires as tilted cylindrical shaped radiating flame surfaces, having a specific SEP (Surface Emissive Power). Some fine tuning on pool fires has been done by Rew and Hulbert in

  9. Assessing accuracy of point fire intervals across landscapes with simulation modelling

    Science.gov (United States)

    Russell A. Parsons; Emily K. Heyerdahl; Robert E. Keane; Brigitte Dorner; Joseph Fall

    2007-01-01

    We assessed accuracy in point fire intervals using a simulation model that sampled four spatially explicit simulated fire histories. These histories varied in fire frequency and size and were simulated on a flat landscape with two forest types (dry versus mesic). We used three sampling designs (random, systematic grids, and stratified). We assessed the sensitivity of...

  10. A data model for route planning in the case of forest fires

    NARCIS (Netherlands)

    Wang, Z.; Zlatanova, S.; Moreno, A.; Van Oosterom, P.J.M.; Toro, C.

    2013-01-01

    The ability to guide relief vehicles to safety and quickly pass through environments affected by fires is critical in fighting forest fires. In this paper, we focus on route determination in the case of forest fires, and propose a data model that supports finding paths among moving obstacles. This d

  11. Forecasting seasonal influenza with a state-space SIR model.

    Science.gov (United States)

    Osthus, Dave; Hickmann, Kyle S; Caragea, Petruţa C; Higdon, Dave; Del Valle, Sara Y

    2017-03-01

    Seasonal influenza is a serious public health and societal problem due to its consequences resulting from absenteeism, hospitalizations, and deaths. The overall burden of influenza is captured by the Centers for Disease Control and Prevention's influenza-like illness network, which provides invaluable information about the current incidence. This information is used to provide decision support regarding prevention and response efforts. Despite the relatively rich surveillance data and the recurrent nature of seasonal influenza, forecasting the timing and intensity of seasonal influenza in the U.S. remains challenging because the form of the disease transmission process is uncertain, the disease dynamics are only partially observed, and the public health observations are noisy. Fitting a probabilistic state-space model motivated by a deterministic mathematical model [a susceptible-infectious-recovered (SIR) model] is a promising approach for forecasting seasonal influenza while simultaneously accounting for multiple sources of uncertainty. A significant finding of this work is the importance of thoughtfully specifying the prior, as results critically depend on its specification. Our conditionally specified prior allows us to exploit known relationships between latent SIR initial conditions and parameters and functions of surveillance data. We demonstrate advantages of our approach relative to alternatives via a forecasting comparison using several forecast accuracy metrics.

  12. Using Large-scale Spatially and Temporally Consistent Reanalysis Data to Assess Fire Weather and Fire Regimes in Siberia in Preparation for Future Fire Weather Prediction

    Science.gov (United States)

    Soja, A. J.; Westberg, D. J.; Stackhouse, P. W.; McRae, D.; Jin, J.

    2008-12-01

    A primary driving force of land cover change in boreal regions is fire, where extreme fire seasons are influenced by local weather and ultimately climate. It is predicted that fire frequency, area burned, fire severity, fire season length, and severe fire seasons will increase under current climate change scenarios. The use of local ground based weather data can be used to gauge the local fire potential on a daily, monthly, or seasonal basis. However, the number and distribution of surface observing stations in Siberia have been declining since the early 1990's. A compounding problem is existing observing stations have missing data on various time scales. The density of stations is limited; hence results may not be representative of the spatial reality. One solution is the temporally and spatially consistent NASA Goddard Earth Observing System version 4 (GEOS-4) satellite-derived weather data interpolated to a 1x1 degree grid. In previous work, we showed the Canadian Forest Fire Weather Index (FWI) derived using GEOS-4 weather and Global Precipitation Climatology Project (GPCP) precipitation data compared well to ground based weather data from Jakutsk (Sakha) and Kyzyl (Tuva), Russia. Our primary focus is to expand on this work by spatially comparing the FWI derived from GEOS-4 / GPCP data and ground-based weather observations from the National Climatic Data Center (NCDC). Extreme fires burned in Sakha and Tuva in 2002 and 2004, respectively, while in contrast, normal fire seasons occurred in Sakha and Tuva in 1999 and 2002, respectively. For this reason, we focus on the 1999, 2002, and 2004 fire seasons (April - September). In this investigation, we demonstrate how fire weather models perform on a large scale and investigate the performance of these models relative to input uncertainties. We intend to use this information to build regional-scale fire predictions systems that can be used for future interactive fire-weather-climate assessments.

  13. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    Science.gov (United States)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L. K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2015-03-01

    We investigate Arctic tropospheric composition using ground-based Fourier transform infrared (FTIR) solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°05' N, 86°42' W) and at Thule (Greenland, 76°53' N, -68°74' W) from 2008 to 2012. The target species, carbon monoxide (CO), hydrogen cyanide (HCN), ethane (C2H6), acetylene (C2H2), formic acid (HCOOH), and formaldehyde (H2CO) are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6), ten and eight fire events are identified at Eureka and Thule, respectively, within the 5-year FTIR time series. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS) fire hotspot data, Stochastic Time-Inverted Lagrangian Transport (STILT) model footprints, and Ozone Monitoring Instrument (OMI) UV aerosol index maps, are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR data sets are 0.40 ± 0.21 g kg-1 for HCN, 1.24 ± 0.71 g kg-1 for C2H6, 0.34 ± 0.21 g kg-1 for C2H2, and 2.92 ± 1.30 g kg-1 for HCOOH. The emission factor for CH3OH estimated at Eureka is 3.44 ± 1.68 g kg-1. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for OZone And Related chemical Tracers, version 4 (MOZART-4). Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and

  14. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    Directory of Open Access Journals (Sweden)

    C. Viatte

    2014-10-01

    Full Text Available We investigate Arctic tropospheric composition using ground-based Fourier Transform Infrared (FTIR solar absorption spectra, recorded at the Polar Environment Atmospheric Research Laboratory (PEARL, Eureka, Nunavut, Canada, 80°5' N, 86°42' W and at Thule (Greenland, 76°53' N, −68°74' W from 2008 to 2012. The target species: carbon monoxide (CO, hydrogen cyanide (HCN, ethane (C2H6, acetylene (C2H2, formic acid (HCOOH, and formaldehyde (H2CO are emitted by biomass burning and can be transported from mid-latitudes to the Arctic. By detecting simultaneous enhancements of three biomass burning tracers (HCN, CO, and C2H6, ten and eight fire events are identified at Eureka and Thule, respectively, within the five-year FTIR timeseries. Analyses of Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT back-trajectories coupled with Moderate Resolution Imaging Spectroradiometer (MODIS fire hot spot data, Stochastic Time-Inverted Lagrangian Transport model (STILT footprints, and Ozone Monitoring Instrument (OMI UV aerosol index maps are used to attribute burning source regions and travel time durations of the plumes. By taking into account the effect of aging of the smoke plumes, measured FTIR enhancement ratios were corrected to obtain emission ratios and equivalent emission factors. The means of emission factors for extratropical forest estimated with the two FTIR datasets are 0.39 ± 0.15 g kg−1 for HCN, 1.23 ± 0.49 g kg−1 for C2H6, 0.34 ± 0.16 g kg−1 for C2H2, 2.13 ± 0.92 g kg−1 for HCOOH, and 3.14 ± 1.28 g kg−1 for CH3OH. To improve our knowledge concerning the dynamical and chemical processes associated with Arctic pollution from fires, the two sets of FTIR measurements were compared to the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4. Seasonal cycles and day-to-day variabilities were compared to assess the ability of the model to reproduce emissions from fires and their transport. Good

  15. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  16. Investigation of Fire Growth and Spread in a Model-Scale Railcar Using an Applied Approach

    Directory of Open Access Journals (Sweden)

    Ali Kazemipour

    2016-01-01

    Full Text Available Fire is a potential hazard in public transportation facilities such as subways or road tunnels due to its contribution to high number of deaths. To provide an insight into fire development behavior in tunnels which can serve as the basis for emergency ventilation design, model-scale railcar fire is explored numerically in this research. Fire growth and its spread are investigated by analyzing the HRR curve as the representative of fire behavior in different stages. Fire development has been predicted through a new approach using an Arrhenius-based pyrolysis model, established to predict the decomposition behavior of solid flammable materials exposed to heat flux. Using this approach, model-scale railcar fire curve is obtained and compared with experimental data. Reasonable agreement is achieved in two important stages of flashover and fully developed fire, confirming the accuracy of the presented approach. Moreover, effects of railcar material type, amount of available air, and surrounding are also discussed. Detailed illustrations of physical phenomena and flow structures have been provided and justified with experimental findings for better description of railcar fire behavior. The presented approach can be further used in other applications such as investigation of fire spread in a compartment, studying fire spread from a burning vehicle to another and reconstruction of fire incidents.

  17. Seasonal variance in P system models for metapopulations

    Institute of Scientific and Technical Information of China (English)

    Daniela Besozzi; Paolo Cazzaniga; Dario Pescini; Giancarlo Mauri

    2007-01-01

    Metapopulations are ecological models describing the interactions and the behavior of populations living in fragmented habitats. In this paper, metapopulations are modelled by means of dynamical probabilistic P systems, where additional structural features have been defined (e. g., a weighted graph associated with the membrane structure and the reduction of maximal parallelism). In particular, we investigate the influence of stochastic and periodic resource feeding processes, owing to seasonal variance, on emergent metapopulation dynamics.

  18. A review of wildland fire spread modelling, 1990-present, 1: Physical and quasi-physical models

    CERN Document Server

    Sullivan, A L

    2007-01-01

    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behaviour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a physical or quasi-physical nature. These models are based on the fundamental chemistry and/or physics of combustion and fire spread. Other papers in the series review models of an empirical or quasi-empirical nature, and mathematical analogues and simulation models. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.

  19. Turbulence radiation interaction modeling in hydrocarbon pool fire simulations

    Energy Technology Data Exchange (ETDEWEB)

    BURNS,SHAWN P.

    1999-12-01

    The importance of turbulent fluctuations in temperature and species concentration in thermal radiation transport modeling for combustion applications is well accepted by the radiation transport and combustion communities. A number of experimental and theoretical studies over the last twenty years have shown that fluctuations in the temperature and species concentrations may increase the effective emittance of a turbulent flame by as much as 50% to 300% over the value that would be expected from the mean temperatures and concentrations. With the possibility of such a large effect on the principal mode of heat transfer from a fire, it is extremely important for fire modeling efforts that turbulence radiation interaction be well characterized and possible modeling approaches understood. Toward this end, this report seeks to accomplish three goals. First, the principal turbulence radiation interaction closure terms are defined. Second, an order of magnitude analysis is performed to understand the relative importance of the various closure terms. Finally, the state of the art in turbulence radiation interaction closure modeling is reviewed. Hydrocarbon pool fire applications are of particular interest in this report and this is the perspective from which this review proceeds. Experimental and theoretical analysis suggests that, for this type of heavily sooting flame, the turbulent radiation interaction effect is dominated by the nonlinear dependence of the Planck function on the temperature. Additional effects due to the correlation between turbulent fluctuations in the absorptivity and temperature may be small relative to the Planck function effect for heavily sooting flames. This observation is drawn from a number of experimental and theoretical discussions. Nevertheless, additional analysis and data is needed to validate this observation for heavily sooting buoyancy dominated plumes.

  20. MJO prediction using the sub-seasonal to seasonal forecast model of Beijing Climate Center

    Science.gov (United States)

    Liu, Xiangwen; Wu, Tongwen; Yang, Song; Li, Tim; Jie, Weihua; Zhang, Li; Wang, Zaizhi; Liang, Xiaoyun; Li, Qiaoping; Cheng, Yanjie; Ren, Hongli; Fang, Yongjie; Nie, Suping

    2017-05-01

    By conducting several sets of hindcast experiments using the Beijing Climate Center Climate System Model, which participates in the Sub-seasonal to Seasonal (S2S) Prediction Project, we systematically evaluate the model's capability in forecasting MJO and its main deficiencies. In the original S2S hindcast set, MJO forecast skill is about 16 days. Such a skill shows significant seasonal-to-interannual variations. It is found that the model-dependent MJO forecast skill is more correlated with the Indian Ocean Dipole (IOD) than with the El Niño-Southern Oscillation. The highest skill is achieved in autumn when the IOD attains its maturity. Extended skill is found when the IOD is in its positive phase. MJO forecast skill's close association with the IOD is partially due to the quickly strengthening relationship between MJO amplitude and IOD intensity as lead time increases to about 15 days, beyond which a rapid weakening of the relationship is shown. This relationship transition may cause the forecast skill to decrease quickly with lead time, and is related to the unrealistic amplitude and phase evolutions of predicted MJO over or near the equatorial Indian Ocean during anomalous IOD phases, suggesting a possible influence of exaggerated IOD variability in the model. The results imply that the upper limit of intraseasonal predictability is modulated by large-scale external forcing background state in the tropical Indian Ocean. Two additional sets of hindcast experiments with improved atmosphere and ocean initial conditions (referred to as S2S_IEXP1 and S2S_IEXP2, respectively) are carried out, and the results show that the overall MJO forecast skill is increased to 21-22 days. It is found that the optimization of initial sea surface temperature condition largely accounts for the increase of the overall MJO forecast skill, even though the improved initial atmosphere conditions also play a role. For the DYNAMO/CINDY field campaign period, the forecast skill increases

  1. A seasonal model of the Mediterranean Sea general circulation

    Science.gov (United States)

    Roussenov, Vassil; Stanev, Emil; Artale, Vincenzo; Pinardi, Nadia

    1995-07-01

    This paper describes the seasonal characteristics of the Mediterranean Sea general circulation as simulated by a primitive equation general circulation model. The forcing is composed of climatological monthly mean atmospheric parameters, which are used to compute the heat and momentum budgets at the air-sea interface of the model. This allows heat fluxes to be determined by a realistic air-sea interaction physics. The Strait of Gibraltar is open, and the model resolution is ? in the horizontal and 19 levels in the vertical. The results show the large seasonal cycle of the circulation and its transient characteristics. The heat budget at the surface is characterized by lateral boundary intensifications occurring in downwelling and up welling areas of the basin. The general circulation is composed of subbasin gyres, and cyclonic motion dominates the northern and anticyclonic motion the southern part of the basin. The Atlantic stream which enters from Gibraltar and assumes the form of different boundary current subsystems is a coherent structure at the surface. At depth it appears as current segments and jets around a vigorous gyre system. The seasonal variability is manifested not only by a change in amplitude and location of the gyres but also by the appearance of seasonally recurrent gyres in different parts of the basin. Distinct westward propagation of these gyres occurs, together with amplitude changes. For the first time a Mersa-Matruh Gyre is successfully simulated due to the introduction of our heat fluxes at the air-sea interface. The seasonal thermocline is formed each summer, and a deep winter mixed layer is produced in the region of Levantine intermediate water formation. Deep water renewal does not occur, probably due to the climatological forcing used.

  2. Stochastic effects in a seasonally forced epidemic model

    Science.gov (United States)

    Rozhnova, G.; Nunes, A.

    2010-10-01

    The interplay of seasonality, the system’s nonlinearities and intrinsic stochasticity, is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  3. Stochastic effects in a seasonally forced epidemic model

    CERN Document Server

    Rozhnova, Ganna

    2010-01-01

    The interplay of seasonality, the system's nonlinearities and intrinsic stochasticity is studied for a seasonally forced susceptible-exposed-infective-recovered stochastic model. The model is explored in the parameter region that corresponds to childhood infectious diseases such as measles. The power spectrum of the stochastic fluctuations around the attractors of the deterministic system that describes the model in the thermodynamic limit is computed analytically and validated by stochastic simulations for large system sizes. Size effects are studied through additional simulations. Other effects such as switching between coexisting attractors induced by stochasticity often mentioned in the literature as playing an important role in the dynamics of childhood infectious diseases are also investigated. The main conclusion is that stochastic amplification, rather than these effects, is the key ingredient to understand the observed incidence patterns.

  4. Seasonal forecasting and health impact models: challenges and opportunities.

    Science.gov (United States)

    Ballester, Joan; Lowe, Rachel; Diggle, Peter J; Rodó, Xavier

    2016-10-01

    After several decades of intensive research, steady improvements in understanding and modeling the climate system have led to the development of the first generation of operational health early warning systems in the era of climate services. These schemes are based on collaborations across scientific disciplines, bringing together real-time climate and health data collection, state-of-the-art seasonal climate predictions, epidemiological impact models based on historical data, and an understanding of end user and stakeholder needs. In this review, we discuss the challenges and opportunities of this complex, multidisciplinary collaboration, with a focus on the factors limiting seasonal forecasting as a source of predictability for climate impact models. © 2016 New York Academy of Sciences.

  5. Agent-Based Evacuation Model Incorporating Fire Scene and Building Geometry

    Institute of Scientific and Technical Information of China (English)

    TANG Fangqin; REN Aizhu

    2008-01-01

    A comprehensive description of the key factors affecting evacuations at fire scones is necessary for accurate simulations.An agent-based simulation model which incorporates the fire scene and the building geometry is developed using a fire dynamics simulator (FDS) based on the computational fluid dynamics and geographic information system (GIS) data to model the occupant response.The building entities are generated for FDS simulation while the spatial analysis on GIS data represents the occupant's knowledge of the building.The influence of the fire is based on a hazard assessment of the combustion products.The agent behavior and decisions are affected by environmental features and the fire field.A case study demonstrates that the evacuation model effectively simulates the coexistence and interactions of the major factors including occupants,building geometry,and fire disaster during the evacuation.The results can be used for the assessments of building designs regarding fire safety.

  6. The Cerro Grande Fire - From Wildlife Modeling Through the Fire Aftermath

    Energy Technology Data Exchange (ETDEWEB)

    Rudell, T. M. (Theresa M.); Gille, R. W. (Roland W.)

    2001-01-01

    The Cerro Grande Fire developed from a prescribed burn by the National Park Service at Bandelier National Monument near Los Alamos, New Mexico. When the burn went out of control and became a wildfire, it attracted worldwide attention because it threatened the birthplace of the atomic bomb, Los Alamos National Laboratory (LANL). Was LANL prepared for a fire? What lessons have been learned?

  7. Rapid response tools and datasets for post-fire modeling: Linking Earth Observations and process-based hydrological models to support post-fire remediation

    Science.gov (United States)

    M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud

    2015-01-01

    Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...

  8. EXPERIMENTAL STUDY AND COMPUTATIONAL MODELLING OF GAS FIRED PULSE COMBUSTION

    Directory of Open Access Journals (Sweden)

    I. Smajevic

    2010-06-01

    Full Text Available The paper presents some results of computational modelling of a gas-fired pulse combustor with aerodynamic valves. The development of the model followed experimental investigations during which the combustor geometry and operating conditions were defined. A simple 'tank and tube' approach was adopted by decomposing the combustor into several elements which were modelled separately, together with the interconnecting processes. The solution was obtained by marching integration in time over several cycles. The model reproduced reasonably well the recorded time history and averaged values of all basic parameters and is expected to complement the experiments aiming to develop a pulse combustor as a device for to cleaning the outer sides of power plants’ boiler heating surfaces during operation.

  9. A mathematical model of the temperature in a coalfield fire area

    Institute of Scientific and Technical Information of China (English)

    LU Guo-dong; ZHOU Xin-quan; JIANG Jie

    2008-01-01

    The regular pattern of temperature change in a coalfield fire area while the fire is being extinguished was studied. To determine the extinguishing effect, a series of linear, logarithmic, polynomial or exponential mathematical regression models were constructed using the observed temperature data from the Xinjiang coalfield fire extinguishing project. The quadratic polynomial mathematical model had the best fit. A large coal fire oven was also used to simulate the coal fire extinguishing process. The same mathematical regression experiments were carried out on that observed data. The results verified that the quadratic polynomial ma-thematical model had the best fit. Therefore, a quadratic polynomial mathematical model is proposed to accurately model the tem-perature-time relationship in a coalfield fire area. An application to coalfield fire suppression shows that the deduced mathematical model can be used to predict the temperature conditions and to determine the effect of fire extinguishing, thereby helping to speed up the fire suppression process in the coalfield fire area.

  10. Real Time Fire Reconnaissance Satellite Monitoring System Failure Model

    Science.gov (United States)

    Nino Prieto, Omar Ariosto; Colmenares Guillen, Luis Enrique

    2013-09-01

    In this paper the Real Time Fire Reconnaissance Satellite Monitoring System is presented. This architecture is a legacy of the Detection System for Real-Time Physical Variables which is undergoing a patent process in Mexico. The methodologies for this design are the Structured Analysis for Real Time (SA- RT) [8], and the software is carried out by LACATRE (Langage d'aide à la Conception d'Application multitâche Temps Réel) [9,10] Real Time formal language. The system failures model is analyzed and the proposal is based on the formal language for the design of critical systems and Risk Assessment; AltaRica. This formal architecture uses satellites as input sensors and it was adapted from the original model which is a design pattern for physical variation detection in Real Time. The original design, whose task is to monitor events such as natural disasters and health related applications, or actual sickness monitoring and prevention, as the Real Time Diabetes Monitoring System, among others. Some related work has been presented on the Mexican Space Agency (AEM) Creation and Consultation Forums (2010-2011), and throughout the International Mexican Aerospace Science and Technology Society (SOMECYTA) international congress held in San Luis Potosí, México (2012). This Architecture will allow a Real Time Fire Satellite Monitoring, which will reduce the damage and danger caused by fires which consumes the forests and tropical forests of Mexico. This new proposal, permits having a new system that impacts on disaster prevention, by combining national and international technologies and cooperation for the benefit of humankind.

  11. Mathematical Model of Seasonal Influenza with Treatment in Constant Population

    Science.gov (United States)

    Kharis, M.; Arifudin, R.

    2017-04-01

    Seasonal Influenza is one of disease that outbreaks periodically at least once every year. This disease caused many people hospitalized. Many hospitalized people as employers would infect production quantities, distribution time, and some economic aspects. It will infect economic growth. Infected people need treatments to reduce infection period and cure the infection. In this paper, we discussed about a mathematical model of seasonal influenza with treatment. Factually, the disease was held in short period, less than one year. Hence, we can assume that the population is constant at the disease outbreak time. In this paper, we analyzed the existence of the equilibrium points of the model and their stability. We also give some simulation to give a geometric image about the results of the analysis process.

  12. An Inventory Model for Special Display Goods with Seasonal Demand

    Science.gov (United States)

    Kawakatsu, Hidefumi

    2010-10-01

    The present study discusses the retailer's optimal replenishment policy for seasonal products. The demand rate of seasonal merchandise such as clothes, sporting goods, children's toys and electrical home appearances tends to decrease with time after reaching its maximum value. In this study, we focus on "Special Display Goods", which are heaped up in end displays or special areas at retail stores. They are sold at a fast velocity when their quantity displayed is large, but are sold at a low velocity if the quantity becomes small. We develop the model with a finite time horizon (selling period) to determine the optimal replenishment policy, which maximizes the retailer's total profit. Numerical examples are presented to illustrate the theoretical underpinnings of the proposed model.

  13. Effects of seasonal growth on delayed prey-predator model

    Energy Technology Data Exchange (ETDEWEB)

    Gakkhar, Sunita [Department of Mathematics, IIT Roorkee, Roorkee 247667 (India)], E-mail: sungkfma@iitr.ernet.in; Sahani, Saroj Kumar [Department of Mathematics, IIT Roorkee, Roorkee 247667 (India)], E-mail: sarojdma@iitr.ernet.in; Negi, Kuldeep [Department of Mathematics, IIT Roorkee, Roorkee 247667 (India)], E-mail: negikdma@iitr.ernet.in

    2009-01-15

    The dynamic behavior of a delayed predator-prey system with Holling II functional response is investigated. The stability analysis has been carried out and existence of Hopf bifurcation has been established. The complex dynamic behavior due to time delay has been explored. The effects of seasonal growth on the complex dynamics have been simulated. The model shows a rich variety of behavior, including period doubling, quasi-periodicity, chaos, transient chaos, and windows of periodicity.

  14. Two Strain Dengue Model with Temporary Cross Immunity and Seasonality

    Science.gov (United States)

    Aguiar, Maíra; Ballesteros, Sebastien; Stollenwerk, Nico

    2010-09-01

    Models on dengue fever epidemiology have previously shown critical fluctuations with power law distributions and also deterministic chaos in some parameter regions due to the multi-strain structure of the disease pathogen. In our first model including well known biological features, we found a rich dynamical structure including limit cycles, symmetry breaking bifurcations, torus bifurcations, coexisting attractors including isola solutions and deterministic chaos (as indicated by positive Lyapunov exponents) in a much larger parameter region, which is also biologically more plausible than the previous results of other researches. Based on these findings we will investigate the model structures further including seasonality.

  15. Developing custom fire behavior fuel models from ecologically complex fuel structures for upper Atlantic Coastal Plain forests

    Science.gov (United States)

    Bernard R. Parresol; Joe H. Scott; Anne Andreu; Susan Prichard; Laurie Kurth

    2012-01-01

    Currently geospatial fire behavior analyses are performed with an array of fire behavior modeling systems such as FARSITE, FlamMap, and the Large Fire Simulation System. These systems currently require standard or customized surface fire behavior fuel models as inputs that are often assigned through remote sensing information. The ability to handle hundreds or...

  16. A fire suppression model for forested range of the Beverly and Qamanirjuaq herds of caribou

    Directory of Open Access Journals (Sweden)

    Donald C. Thomas

    1996-01-01

    Full Text Available A fire suppression model was developed for forested winter range of the Beverly and Qamanirjuaq (formerly Kaminuriak herds of barren-ground caribou (Rangifer tarandus groenlandicus in north-central Canada. The model is a balance between total protection, as voiced by some aboriginal people, and a let-burn policy for natural fires advocated by some ecologists. Elements in the model were caribou ecology, lichen recovery after fire, burn history, community priorities for caribou hunting, and fire cycle lengths. The percent ratio of current productive caribou habitat to the goal for that habitat determines whether fire should be suppressed in a specific area. The goals for productive caribou habitat, defined as forests older than 50 years, were scaled by fire cycle length and community priority ranking. Thus, the model is an example of co-management: traditional knowledge combined with science in a joint forum, the Beverly and Qamanirjuaq Caribou Management Board.

  17. Application of computational fluid dynamics modelling in the process of forensic fire investigation: problems and solutions.

    Science.gov (United States)

    Delémont, O; Martin, J-C

    2007-04-11

    Fire modelling has been gaining more and more interest into the community of forensic fire investigation. Despite an attractiveness that is partially justified, the application of fire models in that field of investigation rises some difficulties. Therefore, the understanding of the basic principles of the two main categories of fire models, the knowledge of their effective potential and their limitations are crucial for a valid and reliable application in forensic science. The present article gives an overview of the principle and basics that characterise the two kinds of fire models: zone models and field models. Whereas the first ones are developed on the basis of mathematical relation from empirical observations, such as stratification of fluid zones, and give a relatively broad view of mass and energy exchanges in an enclosure, the latter are based on fundamentals of fluid mechanics and represent the application of Computational Fluid Dynamics (CFD) to fire scenarii. Consequently, the data that are obtained from these two categories of fire models differ in nature, quality and quantity. First used in a fire safety perspective, fire models are not easily applied to assess parts of forensic fire investigation. A suggestion is proposed for the role of fire modelling in this domain of competence: a new tool for the evaluation of alternative hypotheses of origin and cause by considering the dynamic development of the fire. An example of a real case where such an approach was followed is explained and the evaluation of the obtained results comparing to traces revealed during the on-site investigation is enlightened.

  18. Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    OpenAIRE

    Mandel, Jan; Beezley, Jonathan D.; Coen, Janice L.; Kim, Minjeong

    2007-01-01

    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on semi-empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.

  19. Data Assimilation for Wildland Fires: Ensemble Kalman filters in coupled atmosphere-surface models

    CERN Document Server

    Mandel, Jan; Coen, Janice L; Kim, Minjeong

    2007-01-01

    Two wildland fire models are described, one based on reaction-diffusion-convection partial differential equations, and one based on empirical fire spread by the level let method. The level set method model is coupled with the Weather Research and Forecasting (WRF) atmospheric model. The regularized and the morphing ensemble Kalman filter are used for data assimilation.

  20. Development of a Base Model for the New Fire PSA Training

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo; Kang, Daeil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Wee Kyong; Do, Kyu Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-05-15

    US NRC/EPRI issued a new fire PSA method represented by NUREG/CR 6850, and have been training many operators and inspectors to widely spread the new method. However, there is a limitation in time and efficiency for many foreigners, who generally have communication problem, to participate in the EPRI/NRC training to learn the new method. Since it is about time to introduce the new fire PSA method as a regulatory requirement for the fire protection in Korea, a simple and easy-understandable base model for the fire PSA training is required, and KAERI-KINS is jointly preparing the base model for the new fire PSA training. This paper describes how the base model is developed. Using an imaginary simple NPP, a base model of fire PSA following the new fire PSA method was developed in two ways from the internal PSA model. Since we have the base model and know the process of making the fire PSA model, the training for the new fire PSA method can be in detail performed in Korea.

  1. Obtaining a Pragmatic Representation of Fire Disturbance in Dynamic Vegetation Models by Assimilating Earth Observation Data

    Science.gov (United States)

    Kantzas, Euripides; Quegan, Shaun

    2015-04-01

    Fire constitutes a violent and unpredictable pathway of carbon from the terrestrial biosphere into the atmosphere. Despite fire emissions being in many biomes of similar magnitude to that of Net Ecosystem Exchange, even the most complex Dynamic Vegetation Models (DVMs) embedded in IPCC General Circulation Models poorly represent fire behavior and dynamics, a fact which still remains understated. As DVMs operate on a deterministic, grid cell-by-grid cell basis they are unable to describe a host of important fire characteristics such as its propagation, magnitude of area burned and stochastic nature. Here we address these issues by describing a model-independent methodology which assimilates Earth Observation (EO) data by employing image analysis techniques and algorithms to offer a realistic fire disturbance regime in a DVM. This novel approach, with minimum model restructuring, manages to retain the Fire Return Interval produced by the model whilst assigning pragmatic characteristics to its fire outputs thus allowing realistic simulations of fire-related processes such as carbon injection into the atmosphere and permafrost degradation. We focus our simulations in the Arctic and specifically Canada and Russia and we offer a snippet of how this approach permits models to engage in post-fire dynamics hitherto absent from any other model regardless of complexity.

  2. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  3. Atmospheric trace gases and global climate - A seasonal model study

    Science.gov (United States)

    Wang, Wei-Chyung; Molnar, Gyula; Ko, Malcolm K. W.; Goldenberg, Steven; Sze, Nien Dak

    1990-01-01

    Atmospheric models with seasonal cycles are used to study the possible near-future changes in latitudinal and vertical distributions of atmospheric ozone and temperature caused by increases of trace gases. It is found that increases of CFCs, CH4, and N2O may add to the surface warming from increased CO2. Calculations based on projected trends of CO2, N2O, CH4, and CFCs show that the annual mean and global mean surface temperature could warm by as much as 2.5 C by the year 2050, with larger warming at high latitudes. The results suggest that the warming in the lower stratosphere and upper troposphere is much larger than that at the surface, especially during the summer season.

  4. Incorporating Temperature-driven Seasonal Variation in Survival, Growth, and Reproduction Models for Small Fish

    Science.gov (United States)

    Seasonal variation in survival and reproduction can be a large source of prediction uncertainty in models used for conservation and management. A seasonally varying matrix population model is developed that incorporates temperature-driven differences in mortality and reproduction...

  5. The Feasibility of Multiscale Modeling of Tunnel Fires Using FDS 6

    DEFF Research Database (Denmark)

    Vermesi, Izabella; Colella, Francesco; Rein, Guillermo

    2014-01-01

    6. However, the simplifications that are made in this work require further investigation in order to take full advantage of the potential of this computational method. INTRODUCTION Multiscale modeling for tunnel flows and fires has previously been studied using RANS general purpose CFD software......-dimensional quantity. The present study aimed to analyze whether or not the multiscale modeling approach for tunnel fires could be successfully applied in Fire Dynamics Simulator 6 (FDS6), an open source, fire-specific CFD software [4] that is easily accessible to modeling specialists. METHOD The implementation...

  6. Fire safety analysis of the Crystal palace based on optimized BIM model

    OpenAIRE

    Semič, Dejan

    2016-01-01

    This master's thesis comprehensively explores fire safety in high-rise buildings. A fire safety analysis was performed on a model of the Crystal Palace skyscraper, which, at 89 meters, is the tallest building in Slovenia today (2016). A BIM model of the entire building was generated (Archicad) to be used with the software for fire (PyroSim) and evacuation analysis (Pathfinder). The BIM model of the building was optimized in a way it could be directly imported into the software for fire and...

  7. Modeling seasonal influenza outbreak in a closed college campus: impact of pre-season vaccination, in-season vaccination and holidays/breaks.

    Directory of Open Access Journals (Sweden)

    Kristin L Nichol

    Full Text Available BACKGROUND: College and university students experience substantial morbidity from influenza and influenza-like illness, and they can benefit substantially from vaccination. Public health authorities encourage vaccination not only before the influenza season but also into and even throughout the influenza season. We conducted the present study to assess the impact of various vaccination strategies including delayed (i.e., in-season vaccination on influenza outbreaks on a college campus. METHODS/FINDINGS: We used a Susceptible --> Infected --> Recovered (SIR framework for our mathematical models to simulate influenza epidemics in a closed, college campus. We included both students and faculty/staff in the model and derived values for the model parameters from the published literature. The values for key model parameters were varied to assess the impact on the outbreak of various pre-season and delayed vaccination rates; one-way sensitivity analyses were conducted to test the sensitivity of the model outputs to changes in selected parameter values. In the base case, with a pre-season vaccination rate of 20%, no delayed vaccination, and 1 student index case, the total attack rate (total percent infected, TAR was 45%. With higher pre-season vaccination rates TARs were lower. Even if vaccinations were given 30 days after outbreak onset, TARs were still lower than the TAR of 69% in the absence of vaccination. Varying the proportions of vaccinations given pre-season versus delayed until after the onset of the outbreak gave intermediate TAR values. Base case outputs were sensitive to changes in infectious contact rates and infectious periods and a holiday/break schedule. CONCLUSION: Delayed vaccination and holidays/breaks can be important adjunctive measures to complement traditional pre-season influenza vaccination for controlling and preventing influenza in a closed college campus.

  8. A von Bertalanffy growth model with a seasonally varying coefficient

    Science.gov (United States)

    Cloern, James E.; Nichols, Frederic H.

    1978-01-01

    The von Bertalanffy model of body growth is inappropriate for organisms whose growth is restricted to a seasonal period because it assumes that growth rate is invariant with time. Incorporation of a time-varying coefficient significantly improves the capability of the von Bertalanffy equation to describe changing body size of both the bivalve mollusc Macoma balthicain San Francisco Bay and the flathead sole, Hippoglossoides elassodon, in Washington state. This simple modification of the von Bertalanffy model should offer improved predictions of body growth for a variety of other aquatic animals.

  9. Assessment of Fire Occurrence and Future Fire Potential in Arctic Alaska

    Science.gov (United States)

    French, N. H. F.; Jenkins, L. K.; Loboda, T. V.; Bourgeau-Chavez, L. L.; Whitley, M. A.

    2014-12-01

    An analysis of the occurrence of fire in Alaskan tundra was completed using the relatively complete historical record of fire for the region from 1950 to 2013. Spatial fire data for Alaskan tundra regions were obtained from the Alaska Large Fire Database for the region defined from vegetation and ecoregion maps. A detailed presentation of fire records available for assessing the fire regime of the tundra regions of Alaska as well as results evaluating fire size, seasonality, and general geographic and temporal trends is included. Assessment of future fire potential was determined for three future climate scenarios at four locations across the Alaskan tundra using the Canadian Forest Fire Weather Index (FWI). Canadian Earth System Model (CanESM2) weather variables were used for historical (1850-2005) and future (2006-2100) time periods. The database includes 908 fire points and 463 fire polygons within the 482,931 km2 of Alaskan tundra. Based on the polygon database 25,656 km2 (6,340,000 acres) has burned across the six tundra ecoregions since 1950. Approximately 87% of tundra fires start in June and July across all ecoregions. Combining information from the polygon and points data records, the estimated average fire size for fire in the Alaskan Arctic region is 28.1 km2 (7,070 acres), which is much smaller than in the adjacent boreal forest region, averaging 203 km2 for high fire years. The largest fire in the database is the Imuruk Basin Fire which burned 1,680 km2 in 1954 in the Seward Peninsula region (Table 1). Assessment of future fire potential shows that, in comparison with the historical fire record, fire occurrence in Alaskan tundra is expected to increase under all three climate scenarios. Occurrences of high fire weather danger (>10 FWI) are projected to increase in frequency and magnitude in all regions modeled. The changes in fire weather conditions are expected to vary from one region to another in seasonal occurrence as well as severity and frequency

  10. Random Modeling of Daily Rainfall and Runoff Using a Seasonal Model and Wavelet Denoising

    Directory of Open Access Journals (Sweden)

    Chien-ming Chou

    2014-01-01

    Full Text Available Instead of Fourier smoothing, this study applied wavelet denoising to acquire the smooth seasonal mean and corresponding perturbation term from daily rainfall and runoff data in traditional seasonal models, which use seasonal means for hydrological time series forecasting. The denoised rainfall and runoff time series data were regarded as the smooth seasonal mean. The probability distribution of the percentage coefficients can be obtained from calibrated daily rainfall and runoff data. For validated daily rainfall and runoff data, percentage coefficients were randomly generated according to the probability distribution and the law of linear proportion. Multiplying the generated percentage coefficient by the smooth seasonal mean resulted in the corresponding perturbation term. Random modeling of daily rainfall and runoff can be obtained by adding the perturbation term to the smooth seasonal mean. To verify the accuracy of the proposed method, daily rainfall and runoff data for the Wu-Tu watershed were analyzed. The analytical results demonstrate that wavelet denoising enhances the precision of daily rainfall and runoff modeling of the seasonal model. In addition, the wavelet denoising technique proposed in this study can obtain the smooth seasonal mean of rainfall and runoff processes and is suitable for modeling actual daily rainfall and runoff processes.

  11. Externally Fired micro-Gas Turbine: Modelling and experimental performance

    Energy Technology Data Exchange (ETDEWEB)

    Traverso, Alberto; Massardo, Aristide F. [Thermochemical Power Group, Dipartimento di Macchine, Sistemi Energetici e Trasporti, Universita di Genova, Genova (Italy); Scarpellini, Riccardo [Ansaldo Ricerche s.r.l., Genova (Italy)

    2006-11-15

    This work presents the steady-state and transient performance obtained by an Externally Fired micro-Gas Turbine (EFmGT) demonstration plant. The plant was designed by Ansaldo Ricerche (ARI) s.r.l. and the Thermochemical Power Group (TPG) of the Universita di Genova, using the in-house TPG codes TEMP (Thermoeconomic Modular Program) and TRANSEO. The plant was based on a recuperated 80kW micro-gas turbine (Elliott TA-80R), which was integrated with the externally fired cycle at the ARI laboratory. The first goal of the plant construction was the demonstration of the EFmGT control system. The performance obtained in the field can be improved in the near future using high-temperature heat exchangers and apt external combustors, which should allow the system to operate at the actual micro-gas turbine inlet temperature (900-950{sup o}C). This paper presents the plant layout and the control system employed for regulating the microturbine power and rotational speed. The experimental results obtained by the pilot plant in early 2004 are shown: the feasibility of such a plant configuration has been demonstrated, and the control system has successfully regulated the shaft speed in all the tests performed. Finally, the plant model in TRANSEO, which was formerly used to design the control system, is shown to accurately simulate the plant behaviour both at steady-state and transient conditions. (author)

  12. Influence of Fire Mosaics, Habitat Characteristics and Cattle Disturbance on Mammals in Fire-Prone Savanna Landscapes of the Northern Kimberley.

    Science.gov (United States)

    Radford, Ian J; Gibson, Lesley A; Corey, Ben; Carnes, Karin; Fairman, Richard

    2015-01-01

    Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories ('pyrodiversity'), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is

  13. Air pollution forecasting by coupled atmosphere-fire model WRF and SFIRE with WRF-Chem

    CERN Document Server

    Kochanski, Adam K; Mandel, Jan; Clements, Craig B

    2013-01-01

    Atmospheric pollution regulations have emerged as a dominant obstacle to prescribed burns. Thus, forecasting the pollution caused by wildland fires has acquired high importance. WRF and SFIRE model wildland fire spread in a two-way interaction with the atmosphere. The surface heat flux from the fire causes strong updrafts, which in turn change the winds and affect the fire spread. Fire emissions, estimated from the burning organic matter, are inserted in every time step into WRF-Chem tracers at the lowest atmospheric layer. The buoyancy caused by the fire then naturally simulates plume dynamics, and the chemical transport in WRF-Chem provides a forecast of the pollution spread. We discuss the choice of wood burning models and compatible chemical transport models in WRF-Chem, and demonstrate the results on case studies.

  14. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  15. The impact of a 2 X CO2 climate on lightning-caused fires

    Science.gov (United States)

    Price, Colin; Rind, David

    1994-01-01

    Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.

  16. SPITFIRE-2: an improved fire module for Dynamic Global Vegetation Models

    Directory of Open Access Journals (Sweden)

    M. Pfeiffer

    2012-08-01

    Full Text Available Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases, including CO2, CO, CH4, NOx, and aerosols. Assessing the impacts of global wildfire on centennial to multi-millennial timescales requires the linkage of process-based fire modeling with vegetation modeling using Dynamic Global Vegetation Models (DGVMs. Here we present a new fire module, SPITFIRE-2, and an update to the LPJ-DGVM that includes major improvements to the way in which fire occurrence, behavior, and the effect of fire on vegetation is simulated. The new fire module includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires and the calculation of rates of spread in different vegetation types, as well as a simple scheme to model crown fires. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the way in which the relationship between humans and fire are different between hunter-gatherers, obligate pastoralists, and farmers. Where and when available, we evaluate our model simulations against remote-sensing based estimates of burned area. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process, e.g. in remote areas of the boreal forest, our results demonstrate a significant improvement in simulated burned area over previous models. With its unique properties of being able to simulate preindustrial fire, the new module we present here is particularly well suited for the investigation of climate-human-fire relationships on multi-millennial timescales.

  17. SPITFIRE-2: an improved fire module for Dynamic Global Vegetation Models

    Science.gov (United States)

    Pfeiffer, M.; Kaplan, J. O.

    2012-08-01

    Fire is the primary disturbance factor in many terrestrial ecosystems. Wildfire alters vegetation structure and composition, affects carbon storage and biogeochemical cycling, and results in the release of climatically relevant trace gases, including CO2, CO, CH4, NOx, and aerosols. Assessing the impacts of global wildfire on centennial to multi-millennial timescales requires the linkage of process-based fire modeling with vegetation modeling using Dynamic Global Vegetation Models (DGVMs). Here we present a new fire module, SPITFIRE-2, and an update to the LPJ-DGVM that includes major improvements to the way in which fire occurrence, behavior, and the effect of fire on vegetation is simulated. The new fire module includes explicit calculation of natural ignitions, the representation of multi-day burning and coalescence of fires and the calculation of rates of spread in different vegetation types, as well as a simple scheme to model crown fires. We describe a new representation of anthropogenic biomass burning under preindustrial conditions that distinguishes the way in which the relationship between humans and fire are different between hunter-gatherers, obligate pastoralists, and farmers. Where and when available, we evaluate our model simulations against remote-sensing based estimates of burned area. While wildfire in much of the modern world is largely influenced by anthropogenic suppression and ignitions, in those parts of the world where natural fire is still the dominant process, e.g. in remote areas of the boreal forest, our results demonstrate a significant improvement in simulated burned area over previous models. With its unique properties of being able to simulate preindustrial fire, the new module we present here is particularly well suited for the investigation of climate-human-fire relationships on multi-millennial timescales.

  18. Improving statistical forecasts of seasonal streamflows using hydrological model output

    Directory of Open Access Journals (Sweden)

    D. E. Robertson

    2013-02-01

    Full Text Available Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1 when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2 when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3 when the initial catchment condition is near saturation intermittently throughout the historical record.

  19. Improving statistical forecasts of seasonal streamflows using hydrological model output

    Science.gov (United States)

    Robertson, D. E.; Pokhrel, P.; Wang, Q. J.

    2013-02-01

    Statistical methods traditionally applied for seasonal streamflow forecasting use predictors that represent the initial catchment condition and future climate influences on future streamflows. Observations of antecedent streamflows or rainfall commonly used to represent the initial catchment conditions are surrogates for the true source of predictability and can potentially have limitations. This study investigates a hybrid seasonal forecasting system that uses the simulations from a dynamic hydrological model as a predictor to represent the initial catchment condition in a statistical seasonal forecasting method. We compare the skill and reliability of forecasts made using the hybrid forecasting approach to those made using the existing operational practice of the Australian Bureau of Meteorology for 21 catchments in eastern Australia. We investigate the reasons for differences. In general, the hybrid forecasting system produces forecasts that are more skilful than the existing operational practice and as reliable. The greatest increases in forecast skill tend to be (1) when the catchment is wetting up but antecedent streamflows have not responded to antecedent rainfall, (2) when the catchment is drying and the dominant source of antecedent streamflow is in transition between surface runoff and base flow, and (3) when the initial catchment condition is near saturation intermittently throughout the historical record.

  20. Spatial modeling of fires: a predictive tool for La Primavera Forest, Jalisco Mexico

    Directory of Open Access Journals (Sweden)

    Jose Luis Ibarra-Montoya

    2016-03-01

    Full Text Available The interaction of various elements of socioeconomic, political and cultural nature, influenced by landscape and climatic factors, are important aspects of fire regimes. Space models that integrate these elements and factors help to more accurately predict potential fire areas. The Protected Area Wildlife La Primavera (APFFLP is the main regulator of the climate of the Guadalajara metropolitan area, and forest fires frequently occur there. These represent a challenge for science and technology to develop methodologies that help predict forest fires. This study involves the construction of a spatial model that helps identify potential areas of fire in that area. The model integrates meteorological variables, landscape, fuels, anthropogenic and / or causality, and historical occurrences of fires during the period 1998-2012. According to the model, the variables that determine the areas of greatest fire potential are: slope (landscape, relative humidity (weather, vegetation type (causality and land use (anthropogenic. The model predicts a large area with high potential for fire, located in the central and northwest APFFLP polygon; also, there are small, isolated potential zones in the eastern part of the polygon. The information developed by this study could support the generation of local risk maps, thereby optimizing the actions of fire management and restoration of the La Primavera forest.

  1. Numerical modeling of seasonally freezing ground and permafrost

    Science.gov (United States)

    Nicolsky, Dmitry J.

    2007-12-01

    This thesis represents a collection of papers on numerical modeling of permafrost and seasonally freezing ground dynamics. An important problem in numerical modeling of temperature dynamics in permafrost and seasonally freezing ground is related to parametrization of already existing models. In this thesis, a variation data assimilation technique is presented to find soil properties by minimizing the discrepancy between in-situ measured temperatures and those computed by the models. The iterative minimization starts from an initial approximation of the soil properties that are found by solving a sequence of simple subproblems. In order to compute the discrepancy, the temperature dynamics is simulated by a new implementation of the finite element method applied to the heat equation with phase change. Despite simplifications in soil physics, the presented technique was successfully applied to recover soil properties, such as thermal conductivity, soil porosity, and the unfrozen water content, at several sites in Alaska. The recovered properties are used in discussion on soil freezing/thawing and permafrost dynamics in other parts of this thesis. Another part of this thesis concerns development of a numerical thermo-mechanical model of seasonal soil freezing on the lateral scale of several meters. The presented model explains observed differential frost heave occurring in non-sorted circle ecosystems north of the Brooks Range in the Alaskan tundra. The model takes into account conservation principles for energy, linear momentum and mass of three constituents: liquid water, ice and solid particles. The conservation principles are reduced to a computationally convenient system of coupled equations for temperature, liquid water pressure, porosity, and the velocity of soil particles in a three-dimensional domain with cylindrical symmetry. Despite a simplified rheology, the model simulates the ground surface motion, temperature, and water dynamics in soil and explains

  2. A comparative numerical study of turbulence models for the simulation of fire incidents: Application in ventilated tunnel fires

    Directory of Open Access Journals (Sweden)

    Konstantinos G. Stokos

    2015-12-01

    Full Text Available The objective of this paper is to compare the overall performance of two turbulence models used for the simulation of fire scenarios in ventilated tunnels. Two Reynolds Averaged Navier–Stokes turbulence models were used; the low-Re k–ω SST and the standard k–ε model with wall functions treatment. Comparison was conducted on two different fire scenarios. The varied parameters were the heat release rate and the ventilation rate. Results predicted by the two turbulence models were also compared to the results produced from the commercial package Ansys Fluent. Quite faster simulations were performed using the k–ε turbulence model with wall functions and our findings, as to the basic characteristics of smoke movement, were in good agreement with Ansys Fluent ones.

  3. Improved simulation of fire-vegetation interactions in the Land surface Processes and eXchanges dynamic global vegetation model (LPX-Mv1)

    Science.gov (United States)

    Kelley, D. I.; Harrison, S. P.; Prentice, I. C.

    2014-10-01

    The Land surface Processes and eXchanges (LPX) model is a fire-enabled dynamic global vegetation model that performs well globally but has problems representing fire regimes and vegetative mix in savannas. Here we focus on improving the fire module. To improve the representation of ignitions, we introduced a reatment of lightning that allows the fraction of ground strikes to vary spatially and seasonally, realistically partitions strike distribution between wet and dry days, and varies the number of dry days with strikes. Fuel availability and moisture content were improved by implementing decomposition rates specific to individual plant functional types and litter classes, and litter drying rates driven by atmospheric water content. To improve water extraction by grasses, we use realistic plant-specific treatments of deep roots. To improve fire responses, we introduced adaptive bark thickness and post-fire resprouting for tropical and temperate broadleaf trees. All improvements are based on extensive analyses of relevant observational data sets. We test model performance for Australia, first evaluating parameterisations separately and then measuring overall behaviour against standard benchmarks. Changes to the lightning parameterisation produce a more realistic simulation of fires in southeastern and central Australia. Implementation of PFT-specific decomposition rates enhances performance in central Australia. Changes in fuel drying improve fire in northern Australia, while changes in rooting depth produce a more realistic simulation of fuel availability and structure in central and northern Australia. The introduction of adaptive bark thickness and resprouting produces more realistic fire regimes in Australian savannas. We also show that the model simulates biomass recovery rates consistent with observations from several different regions of the world characterised by resprouting vegetation. The new model (LPX-Mv1) produces an improved simulation of observed

  4. First principles modeling of nonlinear incidence rates in seasonal epidemics.

    Directory of Open Access Journals (Sweden)

    José M Ponciano

    2011-02-01

    Full Text Available In this paper we used a general stochastic processes framework to derive from first principles the incidence rate function that characterizes epidemic models. We investigate a particular case, the Liu-Hethcote-van den Driessche's (LHD incidence rate function, which results from modeling the number of successful transmission encounters as a pure birth process. This derivation also takes into account heterogeneity in the population with regard to the per individual transmission probability. We adjusted a deterministic SIRS model with both the classical and the LHD incidence rate functions to time series of the number of children infected with syncytial respiratory virus in Banjul, Gambia and Turku, Finland. We also adjusted a deterministic SEIR model with both incidence rate functions to the famous measles data sets from the UK cities of London and Birmingham. Two lines of evidence supported our conclusion that the model with the LHD incidence rate may very well be a better description of the seasonal epidemic processes studied here. First, our model was repeatedly selected as best according to two different information criteria and two different likelihood formulations. The second line of evidence is qualitative in nature: contrary to what the SIRS model with classical incidence rate predicts, the solution of the deterministic SIRS model with LHD incidence rate will reach either the disease free equilibrium or the endemic equilibrium depending on the initial conditions. These findings along with computer intensive simulations of the models' Poincaré map with environmental stochasticity contributed to attain a clear separation of the roles of the environmental forcing and the mechanics of the disease transmission in shaping seasonal epidemics dynamics.

  5. First principles modeling of nonlinear incidence rates in seasonal epidemics.

    Science.gov (United States)

    Ponciano, José M; Capistrán, Marcos A

    2011-02-01

    In this paper we used a general stochastic processes framework to derive from first principles the incidence rate function that characterizes epidemic models. We investigate a particular case, the Liu-Hethcote-van den Driessche's (LHD) incidence rate function, which results from modeling the number of successful transmission encounters as a pure birth process. This derivation also takes into account heterogeneity in the population with regard to the per individual transmission probability. We adjusted a deterministic SIRS model with both the classical and the LHD incidence rate functions to time series of the number of children infected with syncytial respiratory virus in Banjul, Gambia and Turku, Finland. We also adjusted a deterministic SEIR model with both incidence rate functions to the famous measles data sets from the UK cities of London and Birmingham. Two lines of evidence supported our conclusion that the model with the LHD incidence rate may very well be a better description of the seasonal epidemic processes studied here. First, our model was repeatedly selected as best according to two different information criteria and two different likelihood formulations. The second line of evidence is qualitative in nature: contrary to what the SIRS model with classical incidence rate predicts, the solution of the deterministic SIRS model with LHD incidence rate will reach either the disease free equilibrium or the endemic equilibrium depending on the initial conditions. These findings along with computer intensive simulations of the models' Poincaré map with environmental stochasticity contributed to attain a clear separation of the roles of the environmental forcing and the mechanics of the disease transmission in shaping seasonal epidemics dynamics.

  6. Optimization of Evaporative Demand Models for Seasonal Drought Forecasting

    Science.gov (United States)

    McEvoy, D.; Huntington, J. L.; Hobbins, M.

    2015-12-01

    Providing reliable seasonal drought forecasts continues to pose a major challenge for scientists, end-users, and the water resources and agricultural communities. Precipitation (Prcp) forecasts beyond weather time scales are largely unreliable, so exploring new avenues to improve seasonal drought prediction is necessary to move towards applications and decision-making based on seasonal forecasts. A recent study has shown that evaporative demand (E0) anomaly forecasts from the Climate Forecast System Version 2 (CFSv2) are consistently more skillful than Prcp anomaly forecasts during drought events over CONUS, and E0 drought forecasts may be particularly useful during the growing season in the farming belts of the central and Midwestern CONUS. For this recent study, we used CFSv2 reforecasts to assess the skill of E0 and of its individual drivers (temperature, humidity, wind speed, and solar radiation), using the American Society for Civil Engineers Standardized Reference Evapotranspiration (ET0) Equation. Moderate skill was found in ET0, temperature, and humidity, with lesser skill in solar radiation, and no skill in wind. Therefore, forecasts of E0 based on models with no wind or solar radiation inputs may prove to be more skillful than the ASCE ET0. For this presentation we evaluate CFSv2 E0 reforecasts (1982-2009) from three different E0 models: (1) ASCE ET0; (2) Hargreaves and Samani (ET-HS), which is estimated from maximum and minimum temperature alone; and (3) Valiantzas (ET-V), which is a modified version of the Penman method for use when wind speed data are not available (or of poor quality) and is driven only by temperature, humidity, and solar radiation. The University of Idaho's gridded meteorological data (METDATA) were used as observations to evaluate CFSv2 and also to determine if ET0, ET-HS, and ET-V identify similar historical drought periods. We focus specifically on CFSv2 lead times of one, two, and three months, and season one forecasts; which are

  7. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  8. Tunnel fire testing and modeling the Morgex North tunnel experiment

    CERN Document Server

    Borghetti, Fabio; Gandini, Paolo; Frassoldati, Alessio; Tavelli, Silvia

    2017-01-01

    This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all ...

  9. Computational Modeling of Tangentially Fired Boiler (I) Models, Flow Field and Temperature Profiles

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this work, an Eulerian/Lagrangian approach has been employed to investigate numerically the flow characteristics, heat transfer and combustion in a tangentially fired furnace. The RNG (Re-normalization group) k-e model and a new method for cell face velocity interpolation based on a non-staggered grid system are employed. To avoid pseudo-diffusion that is significant in modeling tangentially fired furnaces, attempts are made at improving the differential volume scheme. Some new developments on turbulent diffusion of particles are also taken into account. Thus, computational accuracy is improved substantially.

  10. Fire, ice, water, and dirt: A simple climate model

    Science.gov (United States)

    Kroll, John

    2017-07-01

    A simple paleoclimate model was developed as a modeling exercise. The model is a lumped parameter system consisting of an ocean (water), land (dirt), glacier, and sea ice (ice) and driven by the sun (fire). In comparison with other such models, its uniqueness lies in its relative simplicity yet yielding good results. For nominal values of parameters, the system is very sensitive to small changes in the parameters, yielding equilibrium, steady oscillations, and catastrophes such as freezing or boiling oceans. However, stable solutions can be found, especially naturally oscillating solutions. For nominally realistic conditions, natural periods of order 100kyrs are obtained, and chaos ensues if the Milankovitch orbital forcing is applied. An analysis of a truncated system shows that the naturally oscillating solution is a limit cycle with the characteristics of a relaxation oscillation in the two major dependent variables, the ocean temperature and the glacier ice extent. The key to getting oscillations is having the effective emissivity decreasing with temperature and, at the same time, the effective ocean albedo decreases with increasing glacier extent. Results of the original model compare favorably to the proxy data for ice mass variation, but not for temperature variation. However, modifications to the effective emissivity and albedo can be made to yield much more realistic results. The primary conclusion is that the opinion of Saltzman [Clim. Dyn. 5, 67-78 (1990)] is plausible that the external Milankovitch orbital forcing is not sufficient to explain the dominant 100kyr period in the data.

  11. INFERNO, a simple approach for interactive fires and their emissions within the Met Office Unified Model

    Science.gov (United States)

    Mangeon, Stephane; Voulgarakis, Apostolos; Folberth, Gerd

    2015-04-01

    Forest fires remain a crucial element of the Earth system, affecting and affected by the biosphere and the atmosphere. In particular emissions of trace gases (CO2, CO, NOx...) from forest fires can affect radiative forcing as well as atmospheric composition, similarly aerosols such as Black Carbon (also a strong sunlight absorber) and Organic Carbon emitted by fires can participate in cloud droplet nucleation, contributing to the aerosol indirect effect. Global estimates of fire emissions have greatly improved over the last decade, mainly through the developments in satellite observations. However, such estimates remain constrained to the recent satellite observational period; to study fires under past and future climates one has to resort to models. We will present the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) scheme for the Met Office's Unified Model, which builds on previous work for the GISS climate model. We start from simulated fire counts using proxies for flammability (meteorology and vegetation), ignitions and fire suppression. We then extend this parameterisation to predict burnt area, burnt biomass and subsequent emissions. This climate-sensitive parameterisation utilises temperature, relative humidity, precipitation and vegetation modelling (biomass and leaf area index) to model flammability. Ignitions depend on population density and lightning strikes. Of all these variables, only population density needs to be prescribed, hence INFERNO can be run interactively within a coupled earth system model. Our approach is also distinct owing to its simplicity and is computationally inexpensive, a necessary characteristic as it is aimed to run interactively over climatological timescales. The performance of this scheme is assessed against the Global Fire Emissions Database (GFED); early analysis shows this new approach effectively captures the spatial and inter-annual variability of burnt area and fire emissions of CO2 and CO

  12. Computational fluid dynamics in fire engineering theory, modelling and practice

    CERN Document Server

    Yuen, Kwok Kit

    2009-01-01

    Fire and combustion presents a significant engineering challenge to mechanical, civil and dedicated fire engineers, as well as specialists in the process and chemical, safety, buildings and structural fields. We are reminded of the tragic outcomes of 'untenable' fire disasters such as at King's Cross underground station or Switzerland's St Gotthard tunnel. In these and many other cases, computational fluid dynamics (CFD) is at the forefront of active research into unravelling the probable causes of fires and helping to design structures and systems to ensure that they are less likely in the f

  13. The validation and analysis of novel stereo-derived smoke plume products from AATSR and their application to fire events from the 2008 Russian fire season

    Science.gov (United States)

    Fisher, D.; Muller, J.-P.; Yershov, V.

    2012-04-01

    Biomass burning events in Boreal forests generate significant amounts of important greenhouse gases; including CO2, CO, NOx [1,2]. When the injection height is above the boundary layer (BL), the lifespan of these chemicals is greatly extended, as is their spatial distribution [2]. Typically, in chemical transport models (CTMs), BL injection heights are simplified and assumed to be constant. This is in part due to poor data availability. This leads to a reduction in the accuracy of the distribution outputs from such models. To generate better smoke-plume injection height (SPIH) inputs into CTMs, measurements need to be made of smoke plume heights, which can be used as a proxy for aerosol injection height into the atmosphere. One method of measuring SPIH is through stereo-photogrammetry [5], originally applied to optically thick clouds [3,4]. Here, we present validation and analysis of the M6 stereo matching method [5] for the determination of SPIHs applied to AATSR. It is referred to as M6 due to a shared heritage with the other M-series matchers [3,4]. M6 utilizes novel normalization and matching techniques to generate improved results, in terms of coverage and accuracy, over these afore-referenced matchers of similar type. Validation is carried out against independent, coincident and higher resolution SPIH measurements obtained from both the CALIOP instrument carried onboard the NASA-CNES CALIPSO satellite and also against measurements from the MISR Smoke Plume Product obtained by manual measurements using the MINX system (http://www.openchannelsoftware.com/projects/MINX) with the MISR instrument onboard the NASA satellite Terra. The results of this inter-comparison show an excellent agreement between AATSR and the CALIOP and MISR measurements. Further an inter-comparison between a heritage M-series matcher, M4 [3], also against MISR data demonstrates the significant improvement in SPIH generated by M6. [1] Crutzen, P. J., L. E. Heidt, et al. (1979). "Biomass

  14. Impacts of Boreal Forest Fires and Post-Fire Succession on Energy Budgets and Climate in the Community Earth System Model

    Science.gov (United States)

    Rogers, B. M.; Randerson, J. T.; Bonan, G. B.

    2011-12-01

    Vegetation compositions of boreal forests are determined largely by recovery patterns after large-scale disturbances, the most notable of which is wildfire. Forest compositions exert large controls on regional energy and greenhouse gas budgets by affecting surface albedo, net radiation, turbulent energy fluxes, and carbon stocks. Impacts of boreal forest fires on climate are therefore products of direct fire effects, including charred surfaces and emitted aerosols and greenhouse gasses, and post-fire vegetation succession, which affects carbon and energy exchange for many decades after the initial disturbance. Climate changes are expected to be greatest at high latitudes, leading many to project increases in boreal forest fires. While numerous studies have documented the effects of post-fire landscape on energy and gas budgets in boreal forests, to date no continental analysis using a coupled model has been performed. In this study we quantified the effects of boreal forest fires and post-fire succession on regional and global climate using model experiments in the Community Earth System Model. We used 20th century climate data and MODIS vegetation continuous fields and land cover classes to identify boreal forests across North America and Eurasia. Historical fire return intervals were derived from a regression approach utilizing the Canadian and Alaskan Large Fire Databases, the Global Fire Emissions Database v3, and land cover and climate data. Succession trajectories were derived from the literature and MODIS land cover over known fire scars. Major improvements in model-data comparisons of long-term energy budgets were observed by prescribing post-fire vegetation succession. Global simulations using historical and future burn area scenarios highlight the potential impacts on climate from changing fire regimes and provide motivation for including vegetation succession in coupled simulations.

  15. Modeling Phosphorous Losses from Seasonal Manure Application Schemes

    Science.gov (United States)

    Menzies, E.; Walter, M. T.

    2015-12-01

    Excess nutrient loading, especially nitrogen and phosphorus, to surface waters is a common and significant problem throughout the United States. While pollution remediation efforts are continuously improving, the most effective treatment remains to limit the source. Appropriate timing of fertilizer application to reduce nutrient losses is currently a hotly debated topic in the Northeastern United States; winter spreading of manure is under special scrutiny. We plan to evaluate the loss of phosphorous to surface waters from agricultural systems under varying seasonal fertilization schemes in an effort to determine the impacts of fertilizers applied throughout the year. The Cayuga Lake basin, located in the Finger Lakes region of New York State, is a watershed dominated by agriculture where a wide array of land management strategies can be found. The evaluation will be conducted on the Fall Creek Watershed, a large sub basin in the Cayuga Lake Watershed. The Fall Creek Watershed covers approximately 33,000 ha in central New York State with approximately 50% of this land being used for agriculture. We plan to use the Soil and Water Assessment Tool (SWAT) to model a number of seasonal fertilization regimes such as summer only spreading and year round spreading (including winter applications), as well as others. We will use the model to quantify the phosphorous load to surface waters from these different fertilization schemes and determine the impacts of manure applied at different times throughout the year. More detailed knowledge about how seasonal fertilization schemes impact phosphorous losses will provide more information to stakeholders concerning the impacts of agriculture on surface water quality. Our results will help farmers and extensionists make more informed decisions about appropriate timing of manure application for reduced phosphorous losses and surface water degradation as well as aid law makers in improving policy surrounding manure application.

  16. STUDY ON FOREST FIRE DANGER MODEL WITHREMOTE SENSING BASED ON GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Forest fire is one of the main natural hazards because of its fierce destructiveness. Various researches on fire real-time monitoring, behavior simulation and loss assessment have been carried out in many countries. As fire prevention is probably the most efficient means for protecting forests, suitable methods should be developed for estimating the fire danger. Fire danger is composed of ecological, human and climatic factors. Therefore, the systematic analysis of the factors including forest characteristics, meteorological status, topographic condition causing forest fire is made in this paper at first. The relationships between biophysical factors and fire danger are paid more attention to. Then the parameters derived from remote sensing data are used to estimate the fire danger variables, According to the analysis, not only PVI (Perpendicular Vegetation Index) can classify different vegetation but also crown density is captured with PVI. Vegetation moisture content has high correlation with the ratio of actual evapotranspiration (LE) to potential ecapotranspiration (LEp). SI (Structural Index), which is the combination of TM band 4 and 5 data, is a good indicator of forest age. Finally, a fire dsnger prediction model, in which relative importance of each fire factor is taken into account, is built based on GIS.

  17. Historical and future fire occurrence (1850 to 2100) simulated in CMIP5 Earth System Models

    Science.gov (United States)

    Kloster, Silvia; Lasslop, Gitta

    2017-03-01

    Earth System Models (ESMs) have recently integrated fire processes in their vegetation model components to account for fire as an important disturbance process for vegetation dynamics and agent in the land carbon cycle. The present study analyses the performance of ESMs that participated in the 5th Coupled Model Intercomparison Project (CMIP5) in simulating historical and future fire occurrence. The global present day (1981 to 2005) burned area simulated in the analysed ESMs ranges between 149 and 208Mha, which is substantially lower than the most recent observation based estimate of 399Mha (GFEDv4s averaged over the time period 1997 to 2015). Simulated global fire carbon emissions, however, are with 2.0PgC/year to 2.7PgC/year on the higher end compared to the GFEDv4s estimate of 2.2PgC/year. Regionally, largest differences are found for Africa. Over the historical period (1850 to 2005) changes in simulated fire carbon emissions range between an increase of +43% and a decrease of -35%. For the future (2005 to 2100) we analysed the CMIP5 simulations following the representative concentration pathways (RCPs) 26, 45, and 85, for which the strongest changes in global fire carbon emissions simulated in the single ESMs amount to +8%, +52% and +58%, respectively. Overall, however, there is little agreement between the single ESMs on how fire occurrence changed over the past or will change in the future. Furthermore, contrasting simulated changes in fire carbon emissions and changes in annual mean precipitation shows no emergent pattern among the different analysed ESMs on the regional or global scale. This indicates differences in the single fire model representations that should be subject of upcoming fire model intercomparison studies. The increasing information derived from observational datasets (charcoal, ice-cores, satellite, inventories) will help to further constrain the trajectories of fire models.

  18. Modelling the effect of fire frequency on runoff and erosion in north-central Portugal using the revised Morgan-Morgan-Finney

    Science.gov (United States)

    Hosseini, Mohammadreza; Nunes, João Pedro; González Pelayo, Oscar; Keizer, Jan Jacob; Ritsema, Coen; Geissen, Violette

    2017-04-01

    Models can be valuable for foreseeing the hydrological effects of fires and to plan and execute post-fire management alternatives. In this study, the revised Morgan-Morgan-Finney (MMF) model was utilized to simulate runoff and soil erosion in recently burned maritime pine plantations with different fire regimes, in a wet Mediterranean area of north-central Portugal. The MMF model was adjusted for burned zones in order to accommodate seasonal patterns in runoff and soil erosion, attributed to changes in soil water repellency and vegetation recovery. The model was then assessed by applying it for a sum of 18 experimental micro-plots (0.25 m2) at 9 1x-burnt and 9 4x-burnt slopes, using both literature-based and calibrated parameters, with the collected data used to assess the robustness of each parameterization. The estimate of erosion was more exact than that of runoff, with a general Nash-Sutcliffe efficiency of 0.54. Slope angle and the soil's effective hydrological depth (which relies on upon vegetation and additionally crop cover) were found to be the primary parameters enhancing model results, and different hydrological depths were expected to separate between the two differentiating fire regimes. This relative analysis demonstrated that most existing benchmark parameters can be utilized to apply MMF in burnt pine regions with moderate severity to support post-fire management; however it also showed that further endeavours ought to concentrate on mapping soil depth and vegetation cover to enhance these simulations.

  19. Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations

    NARCIS (Netherlands)

    Wanders, Niko|info:eu-repo/dai/nl/364253940; Wood, Eric F.

    2016-01-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. Here, we investigate the skill of four sub-seasonal forecast models from phase-2 of the North American Multi-Model Ensemble using reforecasts

  20. The influence of fire disturbance on the biotype structure and seasonal dynamics of ground-dwelling spider on Cangshan Mountain, Yunnan Province

    Directory of Open Access Journals (Sweden)

    Yanyan Ma

    2014-03-01

    Full Text Available In order to demonstrate the influence of fire disturbance on the function, structure and seasonal dynamics of ground-dwelling spider assemblages, we chose a burned site and an unburned control site. Both study sites were in broadleaf-conifer mixed forest on Cangshan Mountain, Yunnan Province. The results showed that (1 Zelotes zhui (relative dominance value (DV' =33.03, Pardosa chionophila (DV'=22.53 and Sibianor sp. 1 (DV'=8.75 were obviously dominant at the burned site and that Draconarius sp. 2 (DV'=63.50 was absolutely dominant at the control site; (2 At the burned site, the relative abundance of web-builders was significantly lower than that of hunters (P<0.001, whereas the relative abundance of web-builders was significantly higher than that of hunters at the control site; and (3 As season changed, the dominant group fluctuated significantly at the burned, with the lowest abundance during the part of the summer with the maximum rainfall and during the coldest winter; the spider assemblages were stable at the control site, with agelenids consistently the dominant group. These results indicated that fire disturbance changes the community function and structure of ground-dwelling spiders in mixed broadleaf-conifer forest in Cangshan Mountain, increases the relative abundance of hunters and reduces the stability of ground-dwelling spider assemblages.

  1. Reevaluation of the spring onset/fire association in the western U.S. using Phenological vs. Hydrological Models

    Science.gov (United States)

    Westerling, A. L.; Betancourt, J. L.; Schwartz, M. D.

    2007-12-01

    An important aspect of climate variability and change is the exact timing of the transition from winter to spring, generally defined here as spring onset. Spring onset can have important hydrological and ecological consequences, including changes in the timing of snowmelt and snowmelt runoff, in timing of plant and animal phenologies and their interactions, in ecosystem fluxes, and in the probabilities of ecological disturbances such as fire and insect outbreaks. Spring onset can be variably defined, which can affect its use as a predictor. To evaluate changing fire probabilities in the western U.S., Westerling et al. (2006) used center of mass of annual streamflow (CT, after Stewart et al 2005) for snowmelt-dominated gauge records as a proxy for spring onset, and compared it with the number of forest wildfires greater than 400 ha annually around the western U.S. This study indicated a strong association between large wildfire occurrence across the West and CT, and a particular sensitivity to the timing of snowmelt in the Northern Rockies. Though the timing of snowmelt can affect fire occurrence in several ways, the use of CT as a proxy for spring onset biased the analysis towards higher elevations and latitudes. To skirt this bias, we undertook a similar analysis using Spring Indices (SI) developed from cloned lilac and honeysuckle phenological data and representing seasonally integrated changes in temperature (Schwartz et al. 2006). The SI models can be generated at any location that has daily maximum-minimum temperature time series, and allowed comparison of large fire occurrence in defined regions with a network of select weather stations across the West for which we computed SI. The SI/fire comparison showed strong associations between SI at weather stations, particularly those in the Central Rockies/Colorado Plateau and large fire frequency in the northern, central and southern Rockies, as well as in the Sierra Nevada, but less so in southern California and

  2. Historic global biomass burning emissions based on merging satellite observations with proxies and fire models (1750–2015)

    OpenAIRE

    Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li,Fang; Mangeon, Stéphane; Yue, Chao

    2017-01-01

    Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data has shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visi...

  3. A review of wildland fire spread modelling, 1990-present 2: Empirical and quasi-empirical models

    CERN Document Server

    Sullivan, A L

    2007-01-01

    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behaviour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of an empirical or quasi-empirical nature. These models are based solely on the statistical analysis of experimentally obtained data with or without some physical framework for the basis of the relations. Other papers in the series review models of a physical or quasi-physical nature, and mathematical analogues and simulation models. The main relations of empirical models are that of wind speed and fuel moisture content with rate of forward spread. Comparisons are made of the different functional relationships selected by various authors for these variables.

  4. Modeling Payload Stowage Impacts on Fire Risks On-Board the International Space Station

    Science.gov (United States)

    Anton, Kellie e.; Brown, Patrick F.

    2010-01-01

    The purpose of this presentation is to determine the risks of fire on-board the ISS due to non-standard stowage. ISS stowage is constantly being reexamined for optimality. Non-standard stowage involves stowing items outside of rack drawers, and fire risk is a key concern and is heavily mitigated. A Methodology is needed to account for fire risk due to non-standard stowage to capture the risk. The contents include: 1) Fire Risk Background; 2) General Assumptions; 3) Modeling Techniques; 4) Event Sequence Diagram (ESD); 5) Qualitative Fire Analysis; 6) Sample Qualitative Results for Fire Risk; 7) Qualitative Stowage Analysis; 8) Sample Qualitative Results for Non-Standard Stowage; and 9) Quantitative Analysis Basic Event Data.

  5. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Science.gov (United States)

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  6. Short-term effects of early-season fire on herbaceous composition, dry matter production and soil fertility in Guinea savanna, Nigeria

    Directory of Open Access Journals (Sweden)

    Oyedeji Stephen

    2016-01-01

    Full Text Available The ecological impact of fire regimes on plant diversity and soil fertility has become a subject of intense discussion, especially in savannas where recurring incidences are common. This study assessed the short-term effects of early-season fire on herbaceous composition, dry matter yield and soil fertility in the Guinea savanna belt of Nigeria. Data on ground cover, dry matter yield (DMY in plants and concentrations of C, N, P, K, Ca and Mg in soil were collected from 10 delineated subplots in the burned and unburned zones of four sites after annual wildfire had occurred. Ground cover was significantly higher in the burned zones, increasing progressively from January to April (dry season. Eleven herbaceous species in addition to 2 tree seedlings occurred and represented families of Asteraceae, Cyperaceae, Fabaceae and Poaceae. Digitaria nuda, Brachiaria lata, Daniellia oliveri and Aeschynomene indica were limited to the burnt zones while Cyperus tuberosus, Mariscus alternifolius and Rottboellia cochinchinensis were restricted to the unburned zones. DMY ranged from 0.32 g m-2 (Desmodium tortuosum to 52.96 g m-2 (Megathyrsus maximus. Average biomass in the burned and unburned sites was 35.86 g m-2 and 28.42 g m-2, respectively. Soil C, N and P concentrations decreased (positive deterioration index - DI, while those of K, Ca and Mg improved (negative DI in the burned sites. Burning altered the growth (ground cover and composition of plant species in the short term, and could significantly influence soil nutrient dynamics in the long term, especially with recurring fire events.

  7. Development of customized fire behavior fuel models for boreal forests of northeastern China.

    Science.gov (United States)

    Wu, Zhi Wei; He, Hong Shi; Chang, Yu; Liu, Zhi Hua; Chen, Hong Wei

    2011-12-01

    Knowledge of forest fuels and their potential fire behavior across a landscape is essential in fire management. Four customized fire behavior fuel models that differed significantly in fuels characteristics and environmental conditions were identified using hierarchical cluster analysis based on fuels data collected across a boreal forest landscape in northeastern China. Fuel model I represented the dense and heavily branched Pinus pumila shrubland which has significant fine live woody fuels. These forests occur mainly at higher mountain elevations. Fuel model II is applicable to forests dominated by Betula platyphylla and Populus davidiana occurring in native forests on hill slopes or at low mountain elevations. This fuel model was differentiated from other fuel models by higher herbaceous cover and lower fine live woody loading. The primary coniferous forests dominated by Larix gmelini and Pinus sylvestris L. var. mongolica were classified as fuel model III and fuel model IV. Those fuel models differed from one another in average cover and height of understory shrub and herbaceous layers as well as in aspect. The potential fire behavior for each fuel model was simulated with the BehavePlus5.0 fire behavior prediction system. The simulation results indicated that the Pinus pumila shrubland fuels had the most severe fire behavior for the 97th percentile weather condition, and had the least severe fire behavior under 90th percentile weather condition. Fuel model II presented the least severe fire potential across weather conditions. Fuel model IV resulted in greater fire severity than Fuel model III across the two weather scenarios that were examined.

  8. Fire emissions simulated by prescribing burned area observations in a global vegetation model

    Science.gov (United States)

    Khlystova, Iryna G.; Wilkenskjeld, Stiig; Kloster, Silvia

    2014-05-01

    The emissions of trace gases and aerosols from large vegetation fires into the atmosphere have an important climate impact. In this study we integrate observed burned area into a global vegetation model to derive global fire emissions. A global continuous burned area products provided by GFED (Global Fire Emissions Dataset) were obtained from MODIS (and pre-MODIS) satellites and are available for the time period 1997-2011. We integrate the global burned area product into the global vegetation model JSBACH, a land part of the Earth-System model developed at the Max Planck Institute for Meteorology. JSBACH simulates land biomass in terms of carbon, which can be combined with the satellite burned area information to derive fire carbon emissions. Some assumptions on fire fuel consumptions have to be made during the integration of satellite burned area into the JSBACH. This includes processes such as tree mortality and combustion completeness, i.e. how much of the vegetation biomass gets combusted during a fire. Partially, this information can be also obtained from measurements. In this study we follow closely the approach of GFED, incorporating also GFED supplemental information, to simulate fuel consumption in JSBACH. And we compare simulated by this approach fire carbon emissions with the fire emissions from GFED. Global vegetation models often use prescribed land cover maps. The simulated in the JSBACH vegetation biomass and thus the simulated fire carbon emissions critically depend on the land cover distribution. In our study we derive fire carbon emissions using two different land cover parameterizations, based on two different satellite datasets. We will present the results obtained from simulations using the JSBACH standard MODIS based vegetation distribution and compare them to the results derived using the recently released ESA CCI land cover satellite product to demonstrate the sensitivity of simulated fire carbon emissions to the underlying land cover

  9. Modeling fire spatial non-stationary in Portugal using GWR and GAMLSS

    Science.gov (United States)

    Sá, Ana C. L.; Amaral Turkman, Maria A.; Bistinas, Ioannis; Pereira, José M. C.

    2014-05-01

    Portuguese wildfires are responsible for large environmental, ecological and socio-economic impacts and, in the last decade, vegetation fires consumed on average 140.000ha/year. Portugal has a unique fires-atlas of burnt scar perimeters covering the 1975-2009 period, which allows the assessment of the fire most affected areas. It's crucial to understand the influence of the main drivers of forest fires and its spatial distribution in order to set new management strategies to reduce its impacts. Thus, this study aims at evaluating the spatial stationarity of the fire-environment relationship using two statistical approaches: Geographically Weighted Regression (GWR) and Generalized Additive Models for Location, Scale and Shape (GAMLSS). Analysis was performed using a regular 2kmx2km cell size grid, a total of 21293 observations overlaying the mainland of Portugal. Fire incidence was determined as the number of times each grid cell burned in the 35 years period. For the GWR analysis the group of environmental variables selected as predictors are: ignition source (population density (PD)); vegetation (proportion of forest and shrubland (FORSHR)); and weather (total precipitation of the coldest quarter (PCQ). Results showed that the fire-environment relationship is non-stationary, thus the coefficient estimates of all the predictors vary spatially, both in magnitude and sign. The most statistically significant predictor is FORSHR, followed by the PCQ. Despite the relationship between fire incidence and PD is non-stationary, only 9% of the observations are statistically significant at a 95% level of confidence. When compared with the Ordinary Least Squares (OLS) global model, 53% of the R2 statistic is above the 26% global estimated value, meaning a better explanation of the fire incidence variance with the local model approach. Using the same environmental variables, fire incidence was also modeled using GAMLSS to characterize nonstationarities in fire incidence. It is

  10. Do you BEHAVE? - Application of the BehavePlus fire modeling system

    Science.gov (United States)

    Pat Andrews

    2010-01-01

    The BehavePlus fire modeling system is the successor to BEHAVE, which was first used in the field in 1984. It is public domain software, available for free use on personal computers. Information on user communities and fire management applications can be useful in designing next generation systems. Several sources of information about BehavePlus are summarized to...

  11. Fuel treatment effects on modeled landscape level fire behavior in the northern Sierra Nevada

    Science.gov (United States)

    J.J. Moghaddas; B.M. Collins; K. Menning; E.E.Y. Moghaddas; S.L. Stephens

    2010-01-01

    Across the western United States, decades of fire exclusion combined with past management history have contributed to the current condition of extensive areas of high-density, shade-tolerant coniferous stands that are increasingly prone to high-severity fires. Here, we report the modeled effects of constructed defensible fuel profile zones and group selection...

  12. Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    Science.gov (United States)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2014-03-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterise the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently subject to wildfire with low dense shrubs. Using lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterised by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycentre technique. The smoke plume displacement was determined using a digital video camera coupled with the lidar. The simulation was performed using a mesoscale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire), taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycentre was systematically below the barycentre derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosol particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  13. Evaluation of vegetation fire smoke plume dynamics and aerosol load using UV scanning lidar and fire-atmosphere modelling during the Mediterranean Letia 2010 experiment

    Science.gov (United States)

    Leroy-Cancellieri, V.; Augustin, P.; Filippi, J. B.; Mari, C.; Fourmentin, M.; Bosseur, F.; Morandini, F.; Delbarre, H.

    2013-08-01

    Vegetation fires emit large amount of gases and aerosols which are detrimental to human health. Smoke exposure near and downwind of fires depends on the fire propagation, the atmospheric circulations and the burnt vegetation. A better knowledge of the interaction between wildfire and atmosphere is a primary requirement to investigate fire smoke and particle transport. The purpose of this paper is to highlight the usefulness of an UV scanning lidar to characterize the fire smoke plume and consequently validate fire-atmosphere model simulations. An instrumented burn was conducted in a Mediterranean area typical of ones frequently concern by wildfire with low dense shrubs. Using Lidar measurements positioned near the experimental site, fire smoke plume was thoroughly characterized by its optical properties, edge and dynamics. These parameters were obtained by combining methods based on lidar inversion technique, wavelet edge detection and a backscatter barycenter technique. The smoke plume displacement was determined using a digital video camera coupled with the Lidar. The simulation was performed using a meso-scale atmospheric model in a large eddy simulation configuration (Meso-NH) coupled to a fire propagation physical model (ForeFire) taking into account the effect of wind, slope and fuel properties. A passive numerical scalar tracer was injected in the model at fire location to mimic the smoke plume. The simulated fire smoke plume width remained within the edge smoke plume obtained from lidar measurements. The maximum smoke injection derived from lidar backscatter coefficients and the simulated passive tracer was around 200 m. The vertical position of the simulated plume barycenter was systematically below the barycenter derived from the lidar backscatter coefficients due to the oversimplified properties of the passive tracer compared to real aerosols particles. Simulated speed and horizontal location of the plume compared well with the observations derived from

  14. [A mathematical model of the seasonal morbidity of shigellosis].

    Science.gov (United States)

    Boev, B V; Bondarenko, V M; Prokop'eva, N V; Raigosa Anaya, M; García de Alba, H; San Román, R T

    1993-01-01

    A new epidemiologically significant mathematical model for the prognosis of seasonal morbidity in dysentery caused by S. flexneri and S. sonnei has been developed. This model may be used for solving problems on the epidemiology of Shigella infections. In this model quantitative ratios are determined by means of the system of nonlinear integral-differential equations in partial derivatives of the first order with edge conditions of the integral type. This model makes it possible to make multiple calculations with a view to obtaining the most probable picture of the development of the epidemic process at individual territories, to ascertain and make prognosis the terms and peaks of morbidity rises year after year in succession. The model permits the evaluation of specific features of the course of dysentery in patients of different ages in different groups of the population, affected by various nosological forms of shigellae. The relationships indicated by the model have been realized in the form of the computer program "SHIGELLA C" permitting multiple calculations of dysentery morbidity by means of an IBM PC/AT.

  15. Rapid Response Tools and Datasets for Post-fire Erosion Modeling: An Online Database to Support Post-fire Erosion Modeling

    Science.gov (United States)

    Miller, M. E.; Russel, A. M.; Billmire, M.; Endsley, K.; Elliot, W. E.; Robichaud, P. R.; MacDonald, L. H.; Renschler, C. S.

    2013-12-01

    Once the danger posed by an active wildfire has passed, land managers must rapidly assess risks posed by post-fire runoff and erosion due to fire-induced changes in soil properties and the loss of surface cover. Post-fire assessments and proposals to mitigate risks to downstream areas due to flooding, erosion, and sedimentation are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. One of the first and most important priorities of a BAER team is the development of a burn severity map that reflects the fire-induced changes in both vegetative cover and soils. Currently these maps are known as BARC (Burned Area Reflectance Classification) maps and they are generated from multi-spectral remote sensing data. BAER teams also have access to many erosion modeling tools and datasets, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and they require the preparation of spatially-explicit data layers such as digital elevation models (DEM), soils, and land cover. We are working to make spatially-explicit modeling easier by preparing large-scale spatial data sets that can be rapidly combined with burn severity maps and then used to quickly run more accurate, process-based models for spatially explicit predictions of post-fire erosion and runoff. A prototype database consisting of 30-m DEM, soil, land cover, and Monitoring Trends in Burn Severity (MTBS) maps for Colorado has been created for use in GeoWEPP (Geo-spatial interface for the Water Erosion Prediction Project) with Disturbed WEPP parameters developed for post-fire conditions. Additional soil data layers have been gathered to support a spatial empirical debris flow model that also utilizes BARC maps. Future plans include developing the dataset to support other models commonly used by BAER teams. The importance of preparing spatial data ahead of time can be illustrated with two

  16. A combined gray neural network model of seasonal heating load forecast

    Institute of Scientific and Technical Information of China (English)

    QIAOXiaozhuang; YANGChangzhi

    2003-01-01

    Seasonal heating load time sequence has the double trends of increasing and fluctuating, so it''s difficult to select a model to forecast it. In this paper, a combined model of gray model and artificial neural network model was presented to forecast seasonal heating load. A concrete model was established and was verified through actual examples.

  17. Pre-fire and post-fire surface fuel and cover measurements collected in the southeastern United States for model evaluation and development - RxCADRE 2008, 2011 and 2012

    Science.gov (United States)

    Roger D. Ottmar; Andrew T. Hudak; Susan J. Prichard; Clinton S. Wright; Joseph C. Restaino; Maureen C. Kennedy; Robert E. Vihnanek

    2016-01-01

    A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the...

  18. Modelling initial mortality of Abies religiosa in a crown fire in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Temiño-Villota, S.; Rodríguez-Trejo, D.A.; Molina Terrén, D.M.; Ryan, K.

    2016-07-01

    Aim of the study: The objectives of this work were to determine which morphological and fire severity variables may help explain the mortality of adult Abies religiosa (Kunth) Schltdl. & Cham., to model the probability of this species after being affected by crown fire, and to obtain more elements to classify the sacred fir in terms of fire resistance. This type of studies are relevant to estimate the impact of crown fires on the climax forests that forms this species. Area of study: The burned forest was located in the southern Mexico City, borough. Material and methods: Morphological variables and fire severity indicators were collected for 335 Abies religiosa trees burned by a mixed severity fire. Logistic regression was used to analyze data and develop models that best explained tree mortality. Main results: Survival was 26.9%. The models for height (p≤0.0001), diameter at breast height (p=0.0082), crown length (p≤0.0001) and crown base height (p≤0.0001) were significant, with a negative relationship between each one of these variables and probability of mortality. The significant severity variables were lethal scorch height (p≤0.0001) and crown kill (p≤ 0.0001), which have a direct relationship with probability of mortality. Highlights: This species is moderately fire-resistant. Crown kill ≥ 70% markedly increases mortality. Silvicultural activities such as pruning, thinning and fuel management can reduce the risk of crown fires. (Author)

  19. Modelling initial mortality of Abies religiosa in a crown fire in Mexico

    Directory of Open Access Journals (Sweden)

    Salomé Temiño-Villota

    2016-04-01

    Full Text Available Aim of study: The objectives of this work were to determine which morphological and fire severity variables may help explain the mortality of adult Abies religiosa (Kunth Schltdl. & Cham., to model the probability of this species after being affected by crown fire, and to obtain more elements to classify the sacred fir in terms of fire resistance. This type of studies are relevant to estimate the impact of crown fires on the climax forests that forms this species.Area of study: The burned forest was located in the southern Mexico City, borough.Material and methods: Morphological variables and fire severity indicators were collected for 335 Abies religiosa trees burned by a mixed severity fire. Logistic regression was used to analyze data and develop models that best explained tree mortality.Main results: Survival was 26.9%. The models for height (p≤0.0001, diameter at breast height (p=0.0082, crown length (p≤0.0001 and crown base height (p≤0.0001 were significant, with a negative relationship between each one of these variables and probability of mortality. The significant severity variables were lethal scorch height (p≤0.0001 and crown kill (p≤ 0.0001, which have a direct relationship with probability of mortality.Highlights: This species is moderately fire-resistant. Crown kill ≥ 70% markedly increases mortality. Silvicultural activities such as pruning, thinning and fuel management can reduce the risk of crown fires.

  20. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  1. Evaluating impacts of fire management strategies on native and invasive plants using an individual-based model

    Science.gov (United States)

    Gangur, Alexander N.; Fill, Jennifer M.; Northfield, Tobin D.; van de Wiel, Marco

    2017-04-01

    The capacity for species to coexist and potentially exclude one another can broadly be attributed to drivers that influence fitness differences (such as competitive ability) and niche differences (such as environmental change). These drivers, and thus the determinants of coexistence they influence, can interact and fluctuate both spatially and temporally. Understanding the spatiotemporal variation in niche and fitness differences in systems prone to fluctuating drivers, such as fire, can help to inform the management of invasive species. In the Cape floristic region of South Africa, invasive Pinus pinaster seedlings are strong competitors in the post-burn environment of the fire-driven Fynbos vegetation. In this, system native Protea spp. are especially vulnerable to unseasonal burns, but seasonal prescribed (Summer) burns are thought to present a high safety risk. Together, these issues have limited the appeal of prescribed burn management as an alternative to costly manual eradication of P. pinaster. Using a spatially-explicit field-of-neighbourhood individual-based model, we represent the drivers of spatiotemporal variation in niche differences (driven by fire regimes) and fitness differences (driven by competitive ability). In doing so, we evaluate optimal fire management strategies to a) control invasive P. pinaster in the Cape floristic region of South Africa, while b) minimizing deleterious effects of management on native Protea spp. The scarcity of appropriate data for model calibration has been problematic for models in invasion biology, but we use recent advances in Approximate Bayesian Computing techniques to overcome this limitation. We present early conclusions on the viability of prescribed burn management to control P. pinaster in South Africa.

  2. Modeling the Emission of CO from Wood Fires using Detailed Chemical Kinetics

    DEFF Research Database (Denmark)

    Dederichs, Anne

    Carbon monoxide is treated as one of the most common and dangerous of gases evolving in fires. Modeling the formation of the toxic gas CO from in fire enclosures using detailed chemical kinetics is the topic of this manuscript. A semi-empirical model is developed to study the formation of CO from......, the model separately treats the process of pyrolysis and combustion. For under ventilated conditions and at high temperatures during pyrolysis it is found that the process of pyrolysation strongly influences the formation of CO in fire. CO2 follows the same trend....

  3. The Design of a Fire Source in Scale-Model Experiments with Smoke Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Brohus, Henrik; la Cour-Harbo, H.

    2004-01-01

    The paper describes the design of a fire and a smoke source for scale-model experiments with smoke ventilation. It is only possible to work with scale-model experiments where the Reynolds number is reduced compared to full scale, and it is demonstrated that special attention to the fire source...... (heat and smoke source) may improve the possibility of obtaining Reynolds number independent solutions with a fully developed flow. The paper shows scale-model experiments for the Ofenegg tunnel case. Design of a fire source for experiments with smoke ventilation in a large room and smoke movement...

  4. Modeling Fire Danger in Galicia and Asturias (Spain from MODIS Images

    Directory of Open Access Journals (Sweden)

    Mar Bisquert

    2014-01-01

    Full Text Available Forest fires are one of the most dangerous natural hazards, especially when they are recurrent. In areas such as Galicia (Spain, forest fires are frequent and devastating. The development of fire risk models becomes a very important prevention task for these regions. Vegetation and moisture indices can be used to monitor vegetation status; however, the different indices may perform differently depending on the vegetation species. Eight different spectral indices were selected to determine the most appropriate index in Galicia. This study was extended to the adjacent region of Asturias. Six years of MODIS (Moderate Resolution Imaging Spectroradiometer images, together with ground fire data in a 10 × 10 km grid basis were used. The percentage of fire events met the variations suffered by some of the spectral indices, following a linear regression in both Galicia and Asturias. The Enhanced Vegetation Index (EVI was the index leading to the best results. Based on these results, a simple fire danger model was established, using logistic regression, by combining the EVI variation with other variables, such as fire history in each cell and period of the year. A seventy percent overall concordance was obtained between estimated and observed fire frequency.

  5. Modeling syngas-fired gas turbine engines with two dilutants

    Science.gov (United States)

    Hawk, Mitchell E.

    2011-12-01

    Prior gas turbine engine modeling work at the University of Wyoming studied cycle performance and turbine design with air and CO2-diluted GTE cycles fired with methane and syngas fuels. Two of the cycles examined were unconventional and innovative. The work presented herein reexamines prior results and expands the modeling by including the impacts of turbine cooling and CO2 sequestration on GTE cycle performance. The simple, conventional regeneration and two alternative regeneration cycle configurations were examined. In contrast to air dilution, CO2 -diluted cycle efficiencies increased by approximately 1.0 percentage point for the three regeneration configurations examined, while the efficiency of the CO2-diluted simple cycle decreased by approximately 5.0 percentage points. For CO2-diluted cycles with a closed-exhaust recycling path, an optimum CO2-recycle pressure was determined for each configuration that was significantly lower than atmospheric pressure. Un-cooled alternative regeneration configurations with CO2 recycling achieved efficiencies near 50%, which was approximately 3.0 percentage points higher than the conventional regeneration cycle and simple cycle configurations that utilized CO2 recycling. Accounting for cooling of the first two turbine stages resulted in a 2--3 percentage point reduction in un-cooled efficiency, with air dilution corresponding to the upper extreme. Additionally, when the work required to sequester CO2 was accounted for, cooled cycle efficiency decreased by 4--6 percentage points, and was more negatively impacted when syngas fuels were used. Finally, turbine design models showed that turbine blades are shorter with CO2 dilution, resulting in fewer design restrictions.

  6. Numerical Simulation of Multistory Building Fire with Zone—Modeling Method

    Institute of Scientific and Technical Information of China (English)

    FuZhuman; FanWeicheng

    1996-01-01

    Based on the basic idea of zone modeling method,a two-layer zone model is developed and programmed to calculate the fire growth and smoke spread in a multi-room buiding subjected to a fire.The related predictive equations,numerical simulation method and sub-models implemented in this model are concisely described.A set of experimental data from Cooper's work at NIST for a two-room compartment fire are chosen for comparison with the model and program,and the numerical results fundamentally agree well with the experimental data,Then,an example of numerical calculation of a two-stoy duilding fire is presented,and the relevant output results are given and analyzed.

  7. Seasonal fluctuations in water repellency and infiltration in a sandy loam soil after a forest fire in Galicia (NW Spain

    Directory of Open Access Journals (Sweden)

    M. Rodríguez-Alleres

    2013-05-01

    Full Text Available The aim of this work was to analyze, after a wildfire of moderate severity, the temporal fluctuations in water repellency and infiltration in a sandy loam soil under a mixed plantation of pine and eucalyptus and the comparison with an adjacent area not affected by the fire. In the burnt area and in a neighboring area not affected by the fire were collected during one year (1, 4, 6, 8 and 12 months after the fire 10 soil samples along a transect of 18 m at four depths: 0-2, 2-5, 5-10 and 10-20 cm. Soil water repellency was determined using the water drop penetration time test (WDPT test and the infiltration was measured with a mini-disc infiltrometer (pressure head h0 = -2 cm.The results show a temporal pattern of soil water repellency in the burnt and unburnt areas. Significant correlations between water repellency and soil moisture were observed, with higher correlation coefficients in the unburned area and in the surface soil layer.Soil water infiltration was significantly lower than would be expected by the coarse texture of the soil in both burnt and unburnt areas. Temporal fluctuations in unburnt soil infiltration seem to be clearly related to the transient nature of the soil water repellency, with no infiltration in samples extremely repellent. In the burned area, the soil infiltration showed much more variability and temporal fluctuations appear to be less dependent on the persistence of water repellency and more dependent on environmental conditions.The unburnt area show significant and negative correlations of soil water repellency with hydraulic conductivity and sorptivity and positive of these two parameters with soil moisture. These relationships were not observed in the burnt area. The temporal fluctuations of soil water repellency have an evident impact on soil infiltration and seem to be more influent than the effects of fire.

  8. Modeling of fire smoke movement in multizone garments building using two open source platforms

    Science.gov (United States)

    Khandoker, Md. Arifur Rahman; Galib, Musanna; Islam, Adnan; Rahman, Md. Ashiqur

    2017-06-01

    Casualty of garment factory workers from factory fire in Bangladesh is a recurring tragedy. Smoke, which is more fatal than fire itself, often propagates through different pathways from lower to upper floors during building fire. Among the toxic gases produced from a building fire, carbon monoxide (CO) can be deadly, even in small amounts. This paper models the propagation and transportation of fire induced smoke (CO) that resulted from the burning of synthetic polyester fibers using two open source platforms, CONTAM and Fire Dynamics Simulator (FDS). Smoke migration in a generic multistoried garment factory building in Bangladesh is modeled using CONTAM where each floor is compartmentalized by different zones. The elevator and stairway shafts are modeled by phantom zones to simulate contaminant (CO) transport from one floor to upper floors. FDS analysis involves burning of two different stacks of polyester jacket of six feet height and with a maximum heat release rate per unit area of 1500kw/m2 over a storage area 50m2 and 150m2, respectively. The resulting CO generation and removal rates from FDS are used in CONTAM to predict fire-borne CO propagation in different zones of the garment building. Findings of the study exhibit that the contaminant flow rate is a strong function of the position of building geometry, location of initiation of fire, amount of burnt material, presence of AHU and contaminant generation and removal rate of CO from the source location etc. The transport of fire-smoke in the building Hallways, stairways and lifts are also investigated in detail to examine the safe egress of the occupants in case of fire.

  9. INFERNO: a fire and emissions scheme for the UK Met Office's Unified Model

    Science.gov (United States)

    Mangeon, Stéphane; Voulgarakis, Apostolos; Gilham, Richard; Harper, Anna; Sitch, Stephen; Folberth, Gerd

    2016-08-01

    Warm and dry climatological conditions favour the occurrence of forest fires. These fires then become a significant emission source to the atmosphere. Despite this global importance, fires are a local phenomenon and are difficult to represent in large-scale Earth system models (ESMs). To address this, the INteractive Fire and Emission algoRithm for Natural envirOnments (INFERNO) was developed. INFERNO follows a reduced complexity approach and is intended for decadal- to centennial-scale climate simulations and assessment models for policy making. Fuel flammability is simulated using temperature, relative humidity (RH) and fuel load as well as precipitation and soil moisture. Combining flammability with ignitions and vegetation, the burnt area is diagnosed. Emissions of carbon and key species are estimated using the carbon scheme in the Joint UK Land Environment Simulator (JULES) land surface model. JULES also possesses fire index diagnostics, which we document and compare with our fire scheme. We found INFERNO captured global burnt area variability better than individual indices, and these performed best for their native regions. Two meteorology data sets and three ignition modes are used to validate the model. INFERNO is shown to effectively diagnose global fire occurrence (R = 0.66) and emissions (R = 0.59) through an approach appropriate to the complexity of an ESM, although regional biases remain.

  10. Forest fire risk assessment in Sweden using climate model data: bias correction and future changes

    Directory of Open Access Journals (Sweden)

    W. Yang

    2015-01-01

    Full Text Available As the risk for a forest fire is largely influenced by weather, evaluating its tendency under a changing climate becomes important for management and decision making. Currently, biases in climate models make it difficult to realistically estimate the future climate and consequent impact on fire risk. A distribution-based scaling (DBS approach was developed as a post-processing tool that intends to correct systematic biases in climate modelling outputs. In this study, we used two projections, one driven by historical reanalysis (ERA40 and one from a global climate model (ECHAM5 for future projection, both having been dynamically downscaled by a regional climate model (RCA3. The effects of the post-processing tool on relative humidity and wind speed were studied in addition to the primary variables precipitation and temperature. Finally, the Canadian Fire Weather Index system was used to evaluate the influence of changing meteorological conditions on the moisture content in fuel layers and the fire-spread risk. The forest fire risk results using DBS are proven to better reflect risk using observations than that using raw climate outputs. For future periods, southern Sweden is likely to have a higher fire risk than today, whereas northern Sweden will have a lower risk of forest fire.

  11. Quantifying soil burn severity for hydrologic modeling to assess post-fire effects on sediment delivery

    Science.gov (United States)

    Dobre, Mariana; Brooks, Erin; Lew, Roger; Kolden, Crystal; Quinn, Dylan; Elliot, William; Robichaud, Pete

    2017-04-01

    Soil erosion is a secondary fire effect with great implications for many ecosystem resources. Depending on the burn severity, topography, and the weather immediately after the fire, soil erosion can impact municipal water supplies, degrade water quality, and reduce reservoirs' storage capacity. Scientists and managers use field and remotely sensed data to quickly assess post-fire burn severity in ecologically-sensitive areas. From these assessments, mitigation activities are implemented to minimize post-fire flood and soil erosion and to facilitate post-fire vegetation recovery. Alternatively, land managers can use fire behavior and spread models (e.g. FlamMap, FARSITE, FOFEM, or CONSUME) to identify sensitive areas a priori, and apply strategies such as fuel reduction treatments to proactively minimize the risk of wildfire spread and increased burn severity. There is a growing interest in linking fire behavior and spread models with hydrology-based soil erosion models to provide site-specific assessment of mitigation treatments on post-fire runoff and erosion. The challenge remains, however, that many burn severity mapping and modeling products quantify vegetation loss rather than measuring soil burn severity. Wildfire burn severity is spatially heterogeneous and depends on the pre-fire vegetation cover, fuel load, topography, and weather. Severities also differ depending on the variable of interest (e.g. soil, vegetation). In the United States, Burned Area Reflectance Classification (BARC) maps, derived from Landsat satellite images, are used as an initial burn severity assessment. BARC maps are classified from either a Normalized Burn Ratio (NBR) or differenced Normalized Burned Ratio (dNBR) scene into four classes (Unburned, Low, Moderate, and High severity). The development of soil burn severity maps requires further manual field validation efforts to transform the BARC maps into a product more applicable for post-fire soil rehabilitation activities

  12. Fire modeling for Building 221-T - T Plant Canyon Deck and Railroad Tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Oar, D.L.

    1994-09-29

    This report was prepared by Hughes Associates, Inc. to document the results of fire models for building 221-T Canyon Deck and Railroad Tunnel. Backup data is contained in document No. WHC-SD-CP-ANAL-010, Rev. 0.

  13. Coupled atmosphere-wildland fire modeling with WRF 3.3 and SFIRE 2011

    Directory of Open Access Journals (Sweden)

    J. Mandel

    2011-07-01

    Full Text Available We describe the physical model, numerical algorithms, and software structure of a model consisting of the Weather Research and Forecasting (WRF model, coupled with the fire-spread model (SFIRE module. In every time step, the fire model inputs the surface wind, which drives the fire, and outputs the heat flux from the fire into the atmosphere, which in turn influences the atmosphere. SFIRE is implemented by the level set method, which allows a submesh representation of the burning region and a flexible implementation of various kinds of ignition. The coupled model is capable of running on a cluster faster than real time even with fine resolution in dekameters. It is available as a part of the Open Wildland Fire Modeling (OpenWFM environment at http://openwfm.org, which contains also utilities for visualization, diagnostics, and data processing, including an extended version of the WRF Preprocessing System (WPS. The SFIRE code with a subset of the features is distributed with WRF 3.3 as WRF-Fire.

  14. Which forcing data errors matter most when modeling seasonal snowpacks?

    Science.gov (United States)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2014-12-01

    High quality forcing data are critical when modeling seasonal snowpacks and snowmelt, but their quality is often compromised due to measurement errors or deficiencies in gridded data products (e.g., spatio-temporal interpolation, empirical parameterizations, or numerical weather model outputs). To assess the relative impact of errors in different meteorological forcings, many studies have conducted sensitivity analyses where errors (e.g., bias) are imposed on one forcing at a time and changes in model output are compared. Although straightforward, this approach only considers simplistic error structures and cannot quantify interactions in different meteorological forcing errors (i.e., it assumes a linear system). Here we employ the Sobol' method of global sensitivity analysis, which allows us to test how co-existing errors in six meteorological forcings (i.e., air temperature, precipitation, wind speed, humidity, incoming shortwave and longwave radiation) impact specific modeled snow variables (i.e., peak snow water equivalent, snowmelt rates, and snow disappearance timing). Using the Sobol' framework across a large number of realizations (>100000 simulations annually at each site), we test how (1) the type (e.g., bias vs. random errors), (2) distribution (e.g., uniform vs. normal), and (3) magnitude (e.g., instrument uncertainty vs. field uncertainty) of forcing errors impact key outputs from a physically based snow model (the Utah Energy Balance). We also assess the role of climate by conducting the analysis at sites in maritime, intermountain, continental, and tundra snow zones. For all outputs considered, results show that (1) biases in forcing data are more important than random errors, (2) the choice of error distribution can enhance the importance of specific forcings, and (3) the level of uncertainty considered dictates the relative importance of forcings. While the relative importance of forcings varied with snow variable and climate, the results broadly

  15. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  16. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Science.gov (United States)

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  17. Phasic firing in vasopressin cells: understanding its functional significance through computational models.

    Directory of Open Access Journals (Sweden)

    Duncan J MacGregor

    Full Text Available Vasopressin neurons, responding to input generated by osmotic pressure, use an intrinsic mechanism to shift from slow irregular firing to a distinct phasic pattern, consisting of long bursts and silences lasting tens of seconds. With increased input, bursts lengthen, eventually shifting to continuous firing. The phasic activity remains asynchronous across the cells and is not reflected in the population output signal. Here we have used a computational vasopressin neuron model to investigate the functional significance of the phasic firing pattern. We generated a concise model of the synaptic input driven spike firing mechanism that gives a close quantitative match to vasopressin neuron spike activity recorded in vivo, tested against endogenous activity and experimental interventions. The integrate-and-fire based model provides a simple physiological explanation of the phasic firing mechanism involving an activity-dependent slow depolarising afterpotential (DAP generated by a calcium-inactivated potassium leak current. This is modulated by the slower, opposing, action of activity-dependent dendritic dynorphin release, which inactivates the DAP, the opposing effects generating successive periods of bursting and silence. Model cells are not spontaneously active, but fire when perturbed by random perturbations mimicking synaptic input. We constructed one population of such phasic neurons, and another population of similar cells but which lacked the ability to fire phasically. We then studied how these two populations differed in the way that they encoded changes in afferent inputs. By comparison with the non-phasic population, the phasic population responds linearly to increases in tonic synaptic input. Non-phasic cells respond to transient elevations in synaptic input in a way that strongly depends on background activity levels, phasic cells in a way that is independent of background levels, and show a similar strong linearization of the response

  18. A new heat transfer model for coupled processes in fire simulations; Ein neues Modell zur Simulation gekoppelter Waermetransportprozesse bei Braenden

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, Volker [Ingenieurteam Trebes GmbH and Co. KG, Kiel (Germany); Hosser, Dietmar [Institut fuer Baustoffe, Massivbau und Brandschutz (iBMB), Technische Universitaet Braunschweig (Germany)

    2011-10-15

    The application of numerical fire simulations to validate and to evaluate the propagation of fire and smoke is already a fundamental part of the preparation of fire protection or safety concepts, especially in the field of performance-based designs. Against this background, the GFPA-guideline [10] has been developed in the recent years, which describes and classifies the available possibilities, approaches and models as well as provides suitable support for their application. Those programs and models respectively have to provide reliable results on the one hand and have to be efficient on the other hand. Hence, a heat transfer model for coupled processes in fire simulations was developed, which is able to represent the process of convective heat transfer between the gas phase and the solid phase for both horizontal and vertical, plane surfaces and in particular pipe and duct flows on the one hand and the process of heat conduction within multidimensional problems on the other hand physically correct. In addition to this the model is able to reproduce corresponding results using numerical simulation. The model was optimized both physically, by considering the specific fire effects and characteristics, and numerically, by selecting adequate numerical methods, for the integrated usage within numerical fire simulations. It has a modular design, so it is suitable for integration into current and future fire simulation codes. Additionally, a basis was established with and within this model for a later expansion with appropriate pyrolysis models. For that, an interface is provided with the embedded source term on the one hand and the required multidimensional temperature fields are determined precisely by the model on the other hand. A for the completion and demonstration concluding necessary integration of the developed model into a state-of-the-art fire simulation code was exemplarily and successfully performed. Finally, the model was successfully applied amongst

  19. Impact of burned areas on the northern African seasonal climate from the perspective of regional modeling

    Science.gov (United States)

    De Sales, Fernando; Xue, Yongkang; Okin, Gregory S.

    2016-12-01

    This study investigates the impact of burned areas on the surface energy balance and monthly precipitation in northern Africa as simulated by a state-of-the-art regional model. Mean burned area fraction derived from MODIS date of burning product was implemented in a set of 1-year long WRF-NMM/SSiB2 model simulations. Vegetation cover fraction and LAI were degraded daily based on mean burned area fraction and on the survival rate for each vegetation land cover type. Additionally, ground darkening associated with wildfire-induced ash and charcoal deposition was imposed through lower ground albedo for a period after burning. In general, wildfire-induced vegetation and ground condition deterioration increased mean surface albedo by exposing the brighter bare ground, which in turn caused a decrease in monthly surface net radiation. On average, the wildfire-season albedo increase was approximately 6.3 % over the Sahel. The associated decrease in surface available energy caused a drop in surface sensible heat flux to the atmosphere during the dry months of winter and early spring, which gradually transitioned to a more substantial decrease in surface evapotranspiration in April and May that lessened throughout the rainy season. Overall, post-fire land condition deterioration resulted in a decrease in precipitation over sub-Saharan Africa, associated with the weakening of the West African monsoon progression through the region. A decrease in atmospheric moisture flux convergence was observed in the burned area simulations, which played a dominant role in reducing precipitation in the area, especially in the months preceding the monsoon onset. The areas with the largest precipitation impact were those covered by savannas and rainforests, where annual precipitation decreased by 3.8 and 3.3 %, respectively. The resulting precipitation decrease and vegetation deterioration caused a drop in gross primary productivity in the region, which was strongest in late winter and early

  20. Cellular automaton modelling of lightning-induced and man made forest fires

    Directory of Open Access Journals (Sweden)

    R. Krenn

    2009-10-01

    Full Text Available The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  1. Cellular automaton modelling of lightning-induced and man made forest fires

    Science.gov (United States)

    Krenn, R.; Hergarten, S.

    2009-10-01

    The impact of forest fires on nature and civilisation is conflicting: on one hand, they play an irreplaceable role in the natural regeneration process, but on the other hand, they come within the major natural hazards in many regions. Their frequency-area distributions show power-law behaviour with scaling exponents α in a quite narrow range, relating wildfire research to the theoretical framework of self-organised criticality. Examples of self-organised critical behaviour can be found in computer simulations of simple cellular automaton models. The established self-organised critical Drossel-Schwabl forest fire model is one of the most widespread models in this context. Despite its qualitative agreement with event-size statistics from nature, its applicability is still questioned. Apart from general concerns that the Drossel-Schwabl model apparently oversimplifies the complex nature of forest dynamics, it significantly overestimates the frequency of large fires. We present a modification of the model rules that distinguishes between lightning-induced and man made forest fires and enables a systematic increase of the scaling exponent α by approximately 1/3. In addition, combined simulations using both the original and the modified model rules predict a dependence of the overall event-size distribution on the ratio of lightning induced and man made fires as well as a splitting of their partial distributions. Lightning is identified as the dominant mechanism in the regime of the largest fires. The results are confirmed by the analysis of the Canadian Large Fire Database and suggest that lightning-induced and man made forest fires cannot be treated separately in wildfire modelling, hazard assessment and forest management.

  2. Linear Modeling and Evaluation of Controls on Flow Response in Western Post-Fire Watersheds

    Science.gov (United States)

    Saxe, S.; Hogue, T. S.; Hay, L.

    2015-12-01

    This research investigates the impact of wildfires on watershed flow regimes throughout the western United States, specifically focusing on evaluation of fire events within specified subregions and determination of the impact of climate and geophysical variables in post-fire flow response. Fire events were collected through federal and state-level databases and streamflow data were collected from U.S. Geological Survey stream gages. 263 watersheds were identified with at least 10 years of continuous pre-fire daily streamflow records and 5 years of continuous post-fire daily flow records. For each watershed, percent changes in runoff ratio (RO), annual seven day low-flows (7Q2) and annual seven day high-flows (7Q10) were calculated from pre- to post-fire. Numerous independent variables were identified for each watershed and fire event, including topographic, land cover, climate, burn severity, and soils data. The national watersheds were divided into five regions through K-clustering and a lasso linear regression model, applying the Leave-One-Out calibration method, was calculated for each region. Nash-Sutcliffe Efficiency (NSE) was used to determine the accuracy of the resulting models. The regions encompassing the United States along and west of the Rocky Mountains, excluding the coastal watersheds, produced the most accurate linear models. The Pacific coast region models produced poor and inconsistent results, indicating that the regions need to be further subdivided. Presently, RO and HF response variables appear to be more easily modeled than LF. Results of linear regression modeling showed varying importance of watershed and fire event variables, with conflicting correlation between land cover types and soil types by region. The addition of further independent variables and constriction of current variables based on correlation indicators is ongoing and should allow for more accurate linear regression modeling.

  3. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change.

    Science.gov (United States)

    Pellegrini, Adam F A; Anderegg, William R L; Paine, C E Timothy; Hoffmann, William A; Kartzinel, Tyler; Rabin, Sam S; Sheil, Douglas; Franco, Augusto C; Pacala, Stephen W

    2017-03-01

    Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.

  4. Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models

    Science.gov (United States)

    Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.

    2016-12-01

    Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.

  5. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests

    Science.gov (United States)

    Linda B. Brubaker; Philip E. Higuera; T. Scott Rupp; Mark A. Olson; Patricia M. Anderson; Feng Sheng. Hu

    2009-01-01

    Interactions between vegetation and fire have the potential to overshadow direct effects of climate change on fire regimes in boreal forests of North America. We develop methods to compare sediment-charcoal records with fire regimes simulated by an ecological model, ALFRESCO (Alaskan Frame-based Ecosystem Code) and apply these methods to evaluate potential causes of a...

  6. A biological plausible Generalized Leaky Integrate-and-Fire neuron model.

    Science.gov (United States)

    Wang, Zhenzhong; Guo, Lilin; Adjouadi, Malek

    2014-01-01

    This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model. Unlike Normal Leaky Integrate-and-Fire (NLIF) models, the leaking resistor in the GLIF model equation is assumed to be variable, and an additional term would have the bias current added to the model equation in order to improve the accuracy. Adjusting the parameters defined for the leaking resistor and bias current, a GLIF model could be accurately matched to any Hodgkin-Huxley (HH) model and be able to reproduce plausible biological neuron behaviors.

  7. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    Science.gov (United States)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in

  8. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model

    Science.gov (United States)

    De Weirdt, M.; Verbeeck, H.; Maignan, F.; Peylin, P.; Poulter, B.; Bonal, D.; Ciais, P.; Steppe, K.

    2012-09-01

    The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet-dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP), resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE) and gross primary productivity (GPP) fluxes for the flux tower sites Guyaflux (French Guiana) and Tapajós (km 67, Brazil). The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the Tapajós site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better simulations of GPP seasonal patterns

  9. Seasonal leaf dynamics for tropical evergreen forests in a process-based global ecosystem model

    Directory of Open Access Journals (Sweden)

    M. De Weirdt

    2012-09-01

    Full Text Available The influence of seasonal phenology on canopy photosynthesis in tropical evergreen forests remains poorly understood, and its representation in global ecosystem models is highly simplified, typically with no seasonal variation of canopy leaf properties taken into account. Including seasonal variation in leaf age and photosynthetic capacity could improve the correspondence of global vegetation model outputs with the wet–dry season CO2 patterns measured at flux tower sites in these forests. We introduced a leaf litterfall dynamics scheme in the global terrestrial ecosystem model ORCHIDEE based on seasonal variations in net primary production (NPP, resulting in higher leaf turnover in periods of high productivity. The modifications in the leaf litterfall scheme induce seasonal variation in leaf age distribution and photosynthetic capacity. We evaluated the results of the modification against seasonal patterns of three long-term in-situ leaf litterfall datasets of evergreen tropical forests in Panama, French Guiana and Brazil. In addition, we evaluated the impact of the model improvements on simulated latent heat (LE and gross primary productivity (GPP fluxes for the flux tower sites Guyaflux (French Guiana and Tapajós (km 67, Brazil. The results show that the introduced seasonal leaf litterfall corresponds well with field inventory leaf litter data and times with its seasonality. Although the simulated litterfall improved substantially by the model modifications, the impact on the modelled fluxes remained limited. The seasonal pattern of GPP improved clearly for the Guyaflux site, but no significant improvement was obtained for the Tapajós site. The seasonal pattern of the modelled latent heat fluxes was hardly changed and remained consistent with the observed fluxes. We conclude that we introduced a realistic and generic litterfall dynamics scheme, but that other processes need to be improved in the model to achieve better

  10. Sediment Transport Dynamics in River Networks: A Model for Higher-Water Seasons

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Zhang, Jin-Feng

    A dynamical model is proposed to study sediment transport in river networks in higher-water seasons. The model emphasizes the difference between the sediment-carrying capability of the stream in higher-water seasons and that in lower-water seasons. The dynamics of sediment transport shows some complexities such as the complex dependence of the sediment-carrying capability on sediment concentration, the response of the channel(via erosion or sedimentation) to the changes of discharge.

  11. Parameterization of a bucket model for soil-vegetation-atmosphere modeling under seasonal climatic regimes

    Directory of Open Access Journals (Sweden)

    N. Romano

    2011-12-01

    Full Text Available We investigate the potential impact of accounting for seasonal variations in the climatic forcing and using different methods to parameterize the soil water content at field capacity on the water balance components computed by a bucket model (BM. The single-layer BM of Guswa et al. (2002 is employed, whereas the Richards equation (RE based Soil Water Atmosphere Plant (SWAP model is used as a benchmark model. The results are analyzed for two differently-textured soils and for some synthetic runs under real-like seasonal weather conditions, using stochastically-generated daily rainfall data for a period of 100 years. Since transient soil-moisture dynamics and climatic seasonality play a key role in certain zones of the World, such as in Mediterranean land areas, a specific feature of this study is to test the prediction capability of the bucket model under a condition where seasonal variations in rainfall are not in phase with the variations in plant transpiration. Reference is made to a hydrologic year in which we have a rainy period (starting 1 November and lasting 151 days where vegetation is basically assumed in a dormant stage, followed by a drier and rainless period with a vegetation regrowth phase. Better agreement between BM and RE-SWAP intercomparison results are obtained when BM is parameterized by a field capacity value determined through the drainage method proposed by Romano and Santini (2002. Depending on the vegetation regrowth or dormant seasons, rainfall variability within a season results in transpiration regimes and soil moisture fluctuations with distinctive features. During the vegetation regrowth season, transpiration exerts a key control on soil water budget with respect to rainfall. During the dormant season of vegetation, the precipitation regime becomes an important climate forcing. Simulations also highlight the occurrence of bimodality in the probability distribution of soil moisture during the season when plants are

  12. Monthly to seasonal low flow prediction: statistical versus dynamical models

    Science.gov (United States)

    Ionita-Scholz, Monica; Klein, Bastian; Meissner, Dennis; Rademacher, Silke

    2016-04-01

    While the societal and economical impacts of floods are well documented and assessable, the impacts of lows flows are less studied and sometimes overlooked. For example, over the western part of Europe, due to intense inland waterway transportation, the economical loses due to low flows are often similar compared to the ones due to floods. In general, the low flow aspect has the tendency to be underestimated by the scientific community. One of the best examples in this respect is the facts that at European level most of the countries have an (early) flood alert system, but in many cases no real information regarding the development, evolution and impacts of droughts. Low flows, occurring during dry periods, may result in several types of problems to society and economy: e.g. lack of water for drinking, irrigation, industrial use and power production, deterioration of water quality, inland waterway transport, agriculture, tourism, issuing and renewing waste disposal permits, and for assessing the impact of prolonged drought on aquatic ecosystems. As such, the ever-increasing demand on water resources calls for better a management, understanding and prediction of the water deficit situation and for more reliable and extended studies regarding the evolution of the low flow situations. In order to find an optimized monthly to seasonal forecast procedure for the German waterways, the Federal Institute of Hydrology (BfG) is exploring multiple approaches at the moment. On the one hand, based on the operational short- to medium-range forecasting chain, existing hydrological models are forced with two different hydro-meteorological inputs: (i) resampled historical meteorology generated by the Ensemble Streamflow Prediction approach and (ii) ensemble (re-) forecasts of ECMWF's global coupled ocean-atmosphere general circulation model, which have to be downscaled and bias corrected before feeding the hydrological models. As a second approach BfG evaluates in cooperation with

  13. Clarifying evacuation options through fire behavior and traffic modeling

    Science.gov (United States)

    Carol L. Rice; Ronny J. Coleman; Mike. Price

    2011-01-01

    Communities are becoming increasingly concerned with the variety of choices related to wildfire evacuation. We used ArcView with Network Analyst to evaluate the different options for evacuations during wildfire in a case study community. We tested overlaying fire growth patterns with the road network and population characteristics to determine recommendations for...

  14. A spatial stochastic programming model for timber and core area management under risk of fires

    Science.gov (United States)

    Yu Wei; Michael Bevers; Dung Nguyen; Erin Belval

    2014-01-01

    Previous stochastic models in harvest scheduling seldom address explicit spatial management concerns under the influence of natural disturbances. We employ multistage stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models...

  15. Consequence modeling of fire on Methane storage tanks in a gas refinery

    Directory of Open Access Journals (Sweden)

    Sara Shahedi ali abadi

    2016-06-01

    Full Text Available Introduction: using fossil fuels, some hazards such as explosion and fire are probable. This study was aimed to consequence modeling of fire on Methane storage tanks in a gas refinery using analyzing the risk, and modeling and evaluating the related consequences. Method: Hazard analysis by PHA was used to choosing the worst-case scenario. Then, causes of the scenario were determined by FTA. After that, consequence modeling by the PHAST software was applied for the consequence analysis. Results: Based on some criteria, the fire of methane gas tank (V-100 was selected as the worst-case scenario at the refinery. The qualitative fault tree showed three factors including mechanical, process, and human failures contribute in gas leakage. The leakage size and weather conditions were effective on the distance of radiation. Using consequence modeling, thermal radiation was considered as the major outcome of the incident. Finally, for outcome evaluating, probit equations were used to quantify losses and the percentage of fatalities due to the methane gas leakage and fire occurrence. The maximum number of fatalities caused by fire was obtained 23 persons. Conclusions: In conclusion, the methane gas vessel in the refinery can be considered as the main center of hazard, therefore the implementation of the safety rules, eliminating mechanical failures, personal protection and education, and Effective measures to prevent and fighting of fire are proposed for decreasing the probable losses and fatalities.

  16. Modeling heat and moisture transport in firefighter protective clothing during flash fire exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chitrphiromsri, Patirop; Kuznetsov, Andrey V. [North Carolina State University, Department of Mechanical and Aerospace Engineering, Raleigh, NC 27695-7910 (United States)

    2005-01-01

    In this paper, a model of heat and moisture transport in firefighter protective clothing during a flash fire exposure is presented. The aim of this study is to investigate the effect of coupled heat and moisture transport on the protective performance of the garment. Computational results show the distribution of temperature and moisture content in the fabric during the exposure to the flash fire as well as during the cool-down period. Moreover, the duration of the exposure during which the garment protects the firefighter from getting second and third degree burns from the flash fire exposure is numerically predicted. A complete model for the fire-fabric-air gap-skin system is presented. (orig.)

  17. Crown Fire Potential

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Crown fire potential was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The...

  18. Influence of different meteorological datasets and emission inventories on modeled fire aerosol abundance

    Science.gov (United States)

    Lee, Hsiang-He; Bar-Or, Rotem; Wang, Chien

    2017-04-01

    Fires including peatland burning in Southeast Asia have become a major concern to the general public as well as governments in the region. This is because aerosols emitted from such fires can cause persistent haze events under certain weather conditions in downwind locations, degrading visibility and causing human health issues. In order to improve our understanding of the spatialtemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used surface visibility and particulate matter concentration observations, supplemented by decadal long (2003 to 2014) simulations using the Weather Research and Forecasting (WRF) model with a fire aerosol module, driven by high-resolution biomass burning emission inventories. We find that in the past decade, fire aerosols are responsible for nearly all the events with very low visibility (aerosols alone are also responsible for a substantial fraction of the low visibility events (visibility aerosol concentration and visibility, especially in Bangkok and Singapore. For instance, the contribution to fire aerosol in Singapore from northern Australia changes from nearly zero in the simulation driven by FINNv1.5 to about 22% in another simulation driven by GFEDv4.1s. Based on these results, we suggest further research is needed to improve the current estimate of the spatiotemporal distribution of fire emissions, in addition to total emitted quantities from the fire hotspots.

  19. A Cold Model Aerodynamical Test of Air-Staged Combustion in a Tangential Firing Utility Boiler

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-juan; HUI Shi-en; ZHOU Qu-lan

    2007-01-01

    The purpose of this paper is to present the flow field in the 300MW tangential firing utility boiler that used the Low NOx Concentric Firing System (LNCFS). Using the method of cold isothermal simulation ensures the geometric and boundary condition similarity. At the same time the condition of self-modeling is met. The experimental results show that the mixture of primary air and secondary air becomes slower, the average turbulence magnitude of the main combustion zone becomes less and the relative diameter of the tangential firing enlarges when the secondary air deflection angle increases. When the velocity pressure ratio of the secondary air to the primary air (p2/p1) enlarges, the mixture of the secondary air and the primary air becomes stronger, the average turbulence magnitude of the main combustion zone increases, and the relative diameter of the tangential firing becomes larger. Because the over fire air (OFA) laid out near the wall has a powerful penetration, the relative diameter of the tangential firing on the section of the OFA is very little, but the average turbulence magnitude is great. When the velocity pressure ratio of the OFA to the primary air pOFA/p1 increases, the relative diameter of the tangential firing on the section of the OFA grows little, the average turbulence magnitude becomes larger and the penetration of the OFA becomes more powerful.

  20. Categorical modeling on electrical anomaly of room-and-pillar coal mine fires and application for field electrical resistivity tomography

    Science.gov (United States)

    Song, Wujun; Wang, Yanming; Shao, Zhenlu

    2017-01-01

    In order to improve the accuracy of fire area delineation in coalfield with electrical prospecting, the categorical geoelectric models of coal fires are established according to geological and mining conditions. The room-and-pillar coal mine fires are divided into three types which are coal seam fire, goaf fire and subsidence area fire, respectively, and forward electrical simulations and inversion analysis of each type of coal fire are implemented. Simulation results show that the resistance anomalies of goaf fires exist around one and a half to two times higher than background field, in contrast, coal seam and subsidence area fires performance low resistivity response which are roughly half to two-third of background field resistivity, respectively. Identification of different fire types and delineation of coal fire areas are further presented. The inversion results which are validated by borehole survey prove that the presented method could eliminate the omission of coal fires with high resistance anomaly and provide a novel reference for fire extinguishing in the future.

  1. A multi-scale conceptual model of fire and disease interactions in North American forests

    Science.gov (United States)

    Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.

    2013-12-01

    One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.

  2. Using modeling and rehearsal to teach fire safety to children with autism.

    Science.gov (United States)

    Garcia, David; Dukes, Charles; Brady, Michael P; Scott, Jack; Wilson, Cynthia L

    2016-09-01

    We evaluated the efficacy of an instructional procedure to teach young children with autism to evacuate settings and notify an adult during a fire alarm. A multiple baseline design across children showed that an intervention that included modeling, rehearsal, and praise was effective in teaching fire safety skills. Safety skills generalized to novel settings and maintained during a 5-week follow-up in both training and generalization settings.

  3. Modeling the Impact of Forest and Peat Fires on Carbon-Isotopic Compositions of Cretaceous Atmosphere and Vegetation

    Science.gov (United States)

    Finkelstein, D. B.; Pratt, L. M.

    2004-12-01

    Prevalence of wildfires or peat fires associated with seasonally dry conditions in the Cretaceous is supported by recent studies documenting the widespread presence of pyrolytic polycyclic aromatic hydrocarbons and fusinite. Potential roles of CO2 emissions from fire have been overlooked in many discussions of Cretaceous carbon-isotope excursions (excluding K-P boundary discussions). Enhanced atmospheric CO2 levels could increase fire frequency through elevated lightning activity. When biomass or peat is combusted, emissions of CO2 are more negative than atmospheric CO2. Five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) were modeled as a closed system. The size of the Cretaceous peat reservoir was estimated by compilation of published early Cretaceous coal resources. Initial pCO2 was assumed to be 2x pre-industrial atmospheric levels (P.A.L.). Critical variables in the model are burning efficiency and post-fire growth rates. Assuming 1% of standing terrestrial biomass is consumed by wildfires each year for ten years (without combustion of peat), an increase of atmospheric CO2 (from 2.0 to 2.2x P.A.L.) and a negative carbon isotope excursion (-1.2 ‰ ) are recorded by both atmosphere and new growth. Net primary productivity linked to the residence time of the vegetation and soil reservoirs results in a negative isotope shift followed by a broad positive isotope excursion. Decreasing the rate of re-growth dampens this trailing positive shift and increases the duration of the excursion. Post-fire pCO2 and new growth returned to initial values after 72 years. Both negative and positive isotope excursions are recorded in the model in surface ocean waters. Exchange of CO2 with the surface- and deep-ocean dampens the isotopic shift of the atmosphere. Excursions are first recorded in the atmosphere (and new growth), followed by

  4. Adding fuel to the fire: the impacts of non-native grass invasion on fire management at a regional scale.

    Directory of Open Access Journals (Sweden)

    Samantha A Setterfield

    Full Text Available BACKGROUND: Widespread invasion by non-native plants has resulted in substantial change in fire-fuel characteristics and fire-behaviour in many of the world's ecosystems, with a subsequent increase in the risk of fire damage to human life, property and the environment. Models used by fire management agencies to assess fire risk are dependent on accurate assessments of fuel characteristics but there is little evidence that they have been modified to reflect landscape-scale invasions. There is also a paucity of information documenting other changes in fire management activities that have occurred to mitigate changed fire regimes. This represents an important limitation in information for both fire and weed risk management. METHODOLOGY/PRINCIPAL FINDINGS: We undertook an aerial survey to estimate changes to landscape fuel loads in northern Australia resulting from invasion by Andropogon gayanus (gamba grass. Fuel load within the most densely invaded area had increased from 6 to 10 t ha(-1 in the past two decades. Assessment of the effect of calculating the Grassland Fire Danger Index (GFDI for the 2008 and 2009 fire seasons demonstrated that an increase from 6 to 10 t ha(-1 resulted in an increase from five to 38 days with fire risk in the 'severe' category in 2008 and from 11 to 67 days in 2009. The season of severe fire weather increased by six weeks. Our assessment of the effect of increased fuel load on fire management practices showed that fire management costs in the region have increased markedly (∼9 times in the past decade due primarily to A. gayanus invasion. CONCLUSIONS/SIGNIFICANCE: This study demonstrated the high economic cost of mitigating fire impacts of an invasive grass. This study demonstrates the need to quantify direct and indirect invasion costs to assess the risk of further invasion and to appropriately fund fire and weed management strategies.

  5. Engineering model for intumescent coating behavior in a pilot-scale gas-fired furnace

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2016-01-01

    In the event of a fire, intumescent fire protective coatings expand and form a thermally insulating char that protects the underlying substrate from heat and subsequent structural failure. The intumescence includes several rate phenomena, which have been investigated and quantified in the literat......In the event of a fire, intumescent fire protective coatings expand and form a thermally insulating char that protects the underlying substrate from heat and subsequent structural failure. The intumescence includes several rate phenomena, which have been investigated and quantified...... and adjustable model parameters for a given coating, thereby providing models for industrial applications. In this work, these two challenges are addressed. Three experimental series, with an intumescent coating inside a 0.65 m3 gas-fired furnace, heating up according to so-called cellulosic fire conditions...... placed behind the substrate. A mathematical model, describing the intumescent coating behavior and temperatures in the furnace using a single overall reaction was developed and validated against experimental data. By including a decomposition front movement through the char, a good qualitative agreement...

  6. Development of a model to generate a risk map in a building fire

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Fire simulations and sensors are widely used in building fires,various data such as temperature,CO and CO2 concentration,visibility can be obtained by sensors and sensor-based simulation. It is important to generate a risk map based on such data so that we can use it to estimate safety of the building. In this paper,we propose a method to generate a dynamical,integrated risk map using sensor readings in a building fire. Such risk evaluation model is developed using similarity comparison between the space state and dangerous state by a likelihood distance calculating and data grouping from a two-step cluster method. The risk evaluation model considers the integrated influence on the occupants in the zone from high temperature,lack of oxygen,toxic and harmful gases and shows the relative fire risk map at certain time. Based on the simulation study,it is proved that multi-factor fire risk analysis would be more objective and accurate than single factor and two-factor risk analysis and the fire risk evaluation model can generate a risk map and provide the classification information and the whole building risk statistic results to support evacuation command and control.

  7. Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem

    Science.gov (United States)

    White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.

    2008-01-01

    Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire

  8. A New Agro/Forestry Residues Co-Firing Model in a Large Pulverized Coal Furnace: Technical and Economic Assessments

    Directory of Open Access Journals (Sweden)

    Shien Hui

    2013-08-01

    Full Text Available Based on the existing biomass co-firing technologies and the known innate drawbacks of dedicated biomass firing, including slagging, corrosion and the dependence on fuel, a new model of agro/forestry residue pellets/shreds and coal co-fired in a large Pulverized Coal (PC furnace was proposed, and the corresponding technical and economic assessments were performed by co-firing testing in a 300 MW PC furnace and discounted cash flow technique. The developed model is more dependent on injection co-firing and combined with co-milling co-firing. Co-firing not only reduces CO2 emission, but also does not significantly affect the fly ash use in cement industry, construction industry and agriculture. Moreover, economic assessments show that in comparison with dedicated firing in grate furnace, agro/forestry residues and coal co-firing in a large PC furnace is highly economic. Otherwise, when the co-firing ratio was below 5 wt%, the boiler co-firing efficiency was 0.05%–0.31% higher than that of dedicated PC combustion, and boiler efficiencies were about 0.2% higher with agro/forestry residues co-firing in the bottom and top burner systems than that in a middle burner system.

  9. Cooperative behavior in periodically driven noisy integrate-fire models of neuronal dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bulsara, A.R. [Naval Command Control and Ocean Surveillance Center, Research, Development, Test, and Evaluation Division, Code 364, San Diego, California 92152-5000 (United States); Elston, T.C. [Center for Nonlinear Studies and Theoretical Division, MS-B258, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Doering, C.R. [Center for Nonlinear Studies and Theoretical Division, MS-B258, Los Alamos National Labortory, Los Alamos, New Mexico 87545 (United States); Lowen, S.B. [Electrical Engineering Department, Columbia University, New York, New York 10027 (United States); Lindenberg, K. [Department of Chemistry and Biochemistry B034, University of California at San Diego, La Jolla, California 92093-0340 (United States)

    1996-04-01

    The dynamics of the standard integrate-fire model and a simpler model (that reproduces the important features of the integrate-fire model under certain conditions) of neural dynamics are studied in the presence of a deterministic external driving force, taken to be time-periodic, and white background noise. Both models possess resonant phenomena in the first passage probability distribution and mean first passage time, arising from the interplay of characteristic time scales in the system. {copyright} {ital 1996 The American Physical Society.}

  10. Projecting climate-driven increases in North American fire activity

    Science.gov (United States)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2013-12-01

    Climate regulates fire activity through controls on vegetation productivity (fuels), lightning ignitions, and conditions governing fire spread. In many regions of the world, human management also influences the timing, duration, and extent of fire activity. These coupled interactions between human and natural systems make fire a complex component of the Earth system. Satellite data provide valuable information on the spatial and temporal dynamics of recent fire activity, as active fires, burned area, and land cover information can be combined to separate wildfires from intentional burning for agriculture and forestry. Here, we combined satellite-derived burned area data with land cover and climate data to assess fire-climate relationships in North America between 2000-2012. We used the latest versions of the Global Fire Emissions Database (GFED) burned area product and Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate data to develop regional relationships between burned area and potential evaporation (PE), an integrated dryness metric. Logistic regression models were developed to link burned area with PE and individual climate variables during and preceding the fire season, and optimal models were selected based on Akaike Information Criterion (AIC). Overall, our model explained 85% of the variance in burned area since 2000 across North America. Fire-climate relationships from the era of satellite observations provide a blueprint for potential changes in fire activity under scenarios of climate change. We used that blueprint to evaluate potential changes in fire activity over the next 50 years based on twenty models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). All models suggest an increase of PE under low and high emissions scenarios (Representative Concentration Pathways (RCP) 4.5 and 8.5, respectively), with largest increases in projected burned area across the western US and central Canada. Overall, near

  11. Reprint of Infinity computations in cellular automaton forest-fire model

    Science.gov (United States)

    Iudin, D. I.; Sergeyev, Ya. D.; Hayakawa, M.

    2015-04-01

    Recently a number of traditional models related to the percolation theory has been considered by means of a new computational methodology that does not use Cantor's ideas and describes infinite and infinitesimal numbers in accordance with the principle 'The whole is greater than the part' (Euclid's Common Notion 5). Here we apply the new arithmetic to a cellular automaton forest-fire model which is connected with the percolation methodology and in some sense combines the dynamic and the static percolation problems and under certain conditions exhibits critical fluctuations. It is well known that there exist two versions of the model: real forest-fire model where fire catches adjacent trees in the forest in the step by step manner and simplified version with instantaneous combustion. Using new approach we observe that in both situations we deal with the same model but with different time resolution. We show that depending on the "microscope" we use the same cellular automaton forest-fire model reveals either instantaneous forest combustion or step by step firing. By means of the new approach it was also observed that as far as we choose an infinitesimal tree growing rate and infinitesimal ratio between the ignition probability and the growth probability we determine the measure or extent of the system size infinity that provides the criticality of the system dynamics. Correspondent inequalities for grosspowers are derived.

  12. A model combining oscillations and attractor dynamics for generation of grid cell firing

    Directory of Open Access Journals (Sweden)

    Michael E Hasselmo

    2012-05-01

    Full Text Available Different models have been able to account for different features of the data on grid cell firing properties, including the relationship of grid cells to cellular properties and network oscillations. This paper describes a model that combines elements of two major classes of models of grid cells: models using interference of oscillations and models using attractor dynamics. This model includes a population of units with oscillatory input representing input from the medial septum. These units are termed heading angle cells because their connectivity depends upon heading angle in the environment as well as the spatial phase coded by the cell. These cells project to a population of grid cells. The sum of the heading angle input results in standing waves of circularly symmetric input to the grid cell population. Feedback from the grid cell population increases the activity of subsets of the heading angle cells, resulting in the network settling into activity patterns that resemble the patterns of firing fields in a population of grid cells. The properties of heading angle cells firing as conjunctive grid-by-head-direction cells can shift the grid cell firing according to movement velocity. The pattern of interaction of oscillations requires use of separate populations that fire on alternate cycles of the net theta rhythmic input to grid cells, similar to recent neurophysiological data on theta cycle skipping in medial entorhinal cortex.

  13. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    Energy Technology Data Exchange (ETDEWEB)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Ingersoll, D.; Bickes, R.W. Jr. [Sandia National Labs., Albuquerque, NM (United States)

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  14. Tree cover bistability in the MPI Earth system model due to fire-vegetation feedback

    Science.gov (United States)

    Lasslop, Gitta; Brovkin, Victor; Kloster, Silvia; Reick, Christian

    2015-04-01

    The global distribution of tree cover is mainly limited by precipitation and temperature. Within tropical ecosystems different tree cover values have been observed in regions with similar climate. Satellite data even revealed a lack of ecosystems with tree coverage around 60% and dominant tree covers of 20% and 80%. Conceptual models have been used to explain this tree cover distribution and base it on a bistability in tree cover caused by fire-vegetation interactions or competition between trees and grasses. Some ecological models also show this property of multiple stable tree covers, but it remains unclear which mechanism is the cause for this behaviour. Vegetation models used in climate simulations usually use simple approaches and were criticised to neglect such ecological theories and misrepresent tropical tree cover distribution and dynamics. Here we show that including the process based fire model SPITFIRE generated a bistability in tree cover in the land surface model JSBACH. Previous model versions showed only one stable tree cover state. Using a conceptual model we can show that a bistability can occur due to a feedback between grasses and fire. Grasses and trees are represented in the model based on plant functional types. With respect to fire the main difference between grasses and trees is the fuel characteristics. Grass fuels are smaller in size, and have a higher surface area to volume ratio. These grass fuels dry faster increasing their flammability which leads to a higher fire rate of spread. Trees are characterized by coarse fuels, which are less likely to ignite and rather suppress fire. Therefore a higher fraction of grasses promotes fire, fire kills trees and following a fire, grasses establish faster. This feedback can stabilize ecosystems with low tree cover in a low tree cover state and systems with high tree cover in a high tree cover state. In previous model versions this feedback was absent. Based on the new JSBACH model driven with

  15. Simulating historical landscape dynamics using the landscape fire succession model LANDSUM version 4.0

    Science.gov (United States)

    Robert E. Keane; Lisa M. Holsinger; Sarah D. Pratt

    2006-01-01

    The range and variation of historical landscape dynamics could provide a useful reference for designing fuel treatments on today's landscapes. Simulation modeling is a vehicle that can be used to estimate the range of conditions experienced on historical landscapes. A landscape fire succession model called LANDSUMv4 (LANDscape SUccession Model version 4.0) is...

  16. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Institute of Scientific and Technical Information of China (English)

    Luc Leroy Ngueyep. Mambou; Joseph Ndop; Jean-Marie Bienvenu Ndjaka

    2015-01-01

    The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton’s second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me-chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ?C to 500 ?C, the internal stress and internal strain are weak; whereas above 500 ?C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  17. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal.

    Digital Repository Service at National Institute of Oceanography (India)

    Akhil, V.P.; Durand, F.; Lengaigne, M.; Vialard, J.; Keerthi, M.G.; Gopalakrishna, V.V.; Deltel, C.; Papa, F.; Montegut, C.deB.

    use an eddy-permitting (~25 km resolution) regional ocean general circulation model simulation to quantify the processes responsible for this SSS seasonal cycle. Despite the absence of relaxation toward observations, the model reproduces the main...

  18. Engineering model for intumescent coating behavior in a pilot-scale gas-fired furnace

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2016-01-01

    In the event of a fire, intumescent fire protective coatings expand and form a thermally insulating char that protects the underlying substrate from heat and subsequent structural failure. The intumescence includes several rate phenomena, which have been investigated and quantified in the literat......In the event of a fire, intumescent fire protective coatings expand and form a thermally insulating char that protects the underlying substrate from heat and subsequent structural failure. The intumescence includes several rate phenomena, which have been investigated and quantified...... and adjustable model parameters for a given coating, thereby providing models for industrial applications. In this work, these two challenges are addressed. Three experimental series, with an intumescent coating inside a 0.65 m3 gas-fired furnace, heating up according to so-called cellulosic fire conditions......, were conducted and a very good repeatability was evident. The experiments were run for almost three hours, reaching a final gas temperature of about 1100 °C. Measurements include transient temperature developments inside the expanding char, at the steel substrate, and in the mineral wool insulation...

  19. WRF-based fire risk modelling and evaluation for years 2010 and 2012 in Poland

    Science.gov (United States)

    Stec, Magdalena; Szymanowski, Mariusz; Kryza, Maciej

    2016-04-01

    Wildfires are one of the main ecosystems' disturbances for forested, seminatural and agricultural areas. They generate significant economic loss, especially in forest management and agriculture. Forest fire risk modeling is therefore essential e.g. for forestry administration. In August 2015 a new method of forest fire risk forecasting entered into force in Poland. The method allows to predict a fire risk level in a 4-degree scale (0 - no risk, 3 - highest risk) and consists of a set of linearized regression equations. Meteorological information is used as predictors in regression equations, with air temperature, relative humidity, average wind speed, cloudiness and rainfall. The equations include also pine litter humidity as a measure of potential fuel characteristics. All these parameters are measured routinely in Poland at 42 basic and 94 auxiliary sites. The fire risk level is estimated for a current (basing on morning measurements) or next day (basing on midday measurements). Entire country is divided into 42 prognostic zones, and fire risk level for each zone is taken from the closest measuring site. The first goal of this work is to assess if the measurements needed for fire risk forecasting may be replaced by the data from mesoscale meteorological model. Additionally, the use of a meteorological model would allow to take into account much more realistic spatial differentiation of weather elements determining the fire risk level instead of discrete point-made measurements. Meteorological data have been calculated using the Weather Research and Forecasting model (WRF). For the purpose of this study the WRF model is run in the reanalysis mode allowing to estimate all required meteorological data in a 5-kilometers grid. The only parameter that cannot be directly calculated using WRF is the litter humidity, which has been estimated using empirical formula developed by Sakowska (2007). The experiments are carried out for two selected years: 2010 and 2012. The

  20. [Forest lighting fire forecasting for Daxing'anling Mountains based on MAXENT model].

    Science.gov (United States)

    Sun, Yu; Shi, Ming-Chang; Peng, Huan; Zhu, Pei-Lin; Liu, Si-Lin; Wu, Shi-Lei; He, Cheng; Chen, Feng

    2014-04-01

    Daxing'anling Mountains is one of the areas with the highest occurrence of forest lighting fire in Heilongjiang Province, and developing a lightning fire forecast model to accurately predict the forest fires in this area is of importance. Based on the data of forest lightning fires and environment variables, the MAXENT model was used to predict the lightning fire in Daxing' anling region. Firstly, we studied the collinear diagnostic of each environment variable, evaluated the importance of the environmental variables using training gain and the Jackknife method, and then evaluated the prediction accuracy of the MAXENT model using the max Kappa value and the AUC value. The results showed that the variance inflation factor (VIF) values of lightning energy and neutralized charge were 5.012 and 6.230, respectively. They were collinear with the other variables, so the model could not be used for training. Daily rainfall, the number of cloud-to-ground lightning, and current intensity of cloud-to-ground lightning were the three most important factors affecting the lightning fires in the forest, while the daily average wind speed and the slope was of less importance. With the increase of the proportion of test data, the max Kappa and AUC values were increased. The max Kappa values were above 0.75 and the average value was 0.772, while all of the AUC values were above 0.5 and the average value was 0. 859. With a moderate level of prediction accuracy being achieved, the MAXENT model could be used to predict forest lightning fire in Daxing'anling Mountains.

  1. Seismic quiescence and b-value decrease before large events in forest-fire model

    CERN Document Server

    Mitsudo, Tetsuya; Kato, Naoyuki

    2015-01-01

    Forest fire models may be interpreted as a simple model for earthquake occurrence by translating trees and fire into stressed segments of a fault and their rupture, respectively. Here we adopt a twodimensional forest-fire model in continuous time, and focus on the temporal changes of seismicity and the b-value. We find the b-value change and seismic quiescence prior to large earthquakes by stacking many sequences towards large earthquakes. As the magnitude-frequency relation in this model is directly related to the cluster-size distribution, decrease of the b-value can be explained in terms of the change in the cluster-size distribution. Decrease of the b-value means that small clusters of stressed sites aggregate into a larger cluster. Seismic quiescence may be attributed to the decrease of stressed sites that do not belong to percolated clusters.

  2. A multi-layer zone model for predicting temperature distribution in a fire room

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaojun; YANG Lizhong; DENG Zhihua; FAN Weicheng

    2004-01-01

    A multi-layer zone fire growth model is developed to predict the vertical distributions of the temperature in a single room. The fire room volume is divided into a number of horizontal layers, in which the temperature and other physical properties are assumed to be uniform. The principal equations for each laminated horizontal layer are derived from the conservation equations of mass and energy. The implemented fire sub-models are introduced, including the combustion, fluid flow and heat transfer models. Combined with these sub-models, the zone equations for the gas temperature of each layer are solved by Runge-Kutta method for each time step. The results of the sample calculations compare well with the results of experiments conducted by Steckler et al.

  3. Application of Different HSI Color Models to Detect Fire-Damaged Mortar

    Directory of Open Access Journals (Sweden)

    H. Luo

    2013-12-01

    Full Text Available To obtain a better understanding of the effect of vehicle fires on rigid pavement, a nondestructive test method utilizing an ordinary digital camera to capture images of mortar at five elevated temperatures was undertaken. These images were then analyzed by “image color-intensity analyzer” software. In image analysis, the RGB color model was the basic system used to represent the color information of images. HSI is a derived-color model that is transformed from an RGB model by formulae. In order to understand more about surface color changes and temperatures after a vehicle fire, various transformation formulae used in different research areas were applied in this study. They were then evaluated to obtain the optimum HSI model for further studies of fire-damaged mortar through the use of image analysis.

  4. Fire science at LLNL: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H.K. (ed.)

    1990-03-01

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  5. 0-1 integer linear programming model for location selection of fire station: A case study in Indonesia

    Science.gov (United States)

    Bahri, Susila

    2016-04-01

    In this research, the minimization of the fire station model is constructed. The maximum time data required by the firefighter is used to construct the minimization model of the fire station in Padang. The model is used to determine the minimum number of the available fire station in Padang town. By using Matlab 2013a, the solution of the model can be found based on the Branch and Bound method. It denotes that the fire station must be built in Lubuk Begalung and Kuranji sub-districts.

  6. Modelling the long term water yield impact of fire in Eucalypt forests

    Science.gov (United States)

    Lane, Patrick; Fiekema, Paul; Sherwin, Chris; Peel, Murray; Freebairn, Andrew

    2010-05-01

    Disturbance of forested catchments by fire, logging, or other natural or human induced events that alter the evapotranspiration regime may be a substantial threat to domestic, environmental and industrial water supplies. This study involves physically-based modelling of the long term changes in water yield from two wild fire affected catchments in north-eastern Victoria, Australia, and of fire and climate change scenarios in Melbourne's principal water supply catchment. The effect of scale, data availability and quality, and of forest species parameterisation are explored. The modelling demonstrates the importance of precipitation inputs, with Nash and Sutcliffe Coefficients of Efficiency of predicted versus observed monthly flows increasing from 0.5 to 0.8 with a higher density of rainfall stations, and where forest types are well parameterised. Total predicted flow volumes for the calibrations were within 1% of the observed for the Mitta Mitta River catchment and wildfire and climate change. For example, for the catchments modelled the moderate climate change impact on water yield was more pronounced than the worst fire scenario. Both modelled cases resulted in long term water yield declines exceeding 20%, with the climate change impact nearing 30%. A simulation using observed data for the first four post-fire years at the Mitta Mitta River catchment showed Macaque was able to accurately predict total flow.

  7. Periodic orbits for seasonal SIRS models with non-linear incidence rates

    Directory of Open Access Journals (Sweden)

    Laura Rocio Gonzalez-Ramirez

    2015-12-01

    Full Text Available In this work, we prove the existence of periodic solutions for a seasonally-dependent SIRS model using Leray-Schauder degree theory. We obtain criteria for the uniqueness and asymptotic stability of the periodic solution of the system. We also present suitable examples of a seasonal epidemiological disease.

  8. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    Science.gov (United States)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  9. Improved sub-seasonal meteorological forecast skill using weighted multi-model ensemble simulations

    Science.gov (United States)

    Wanders, Niko; Wood, Eric F.

    2016-09-01

    Sub-seasonal to seasonal weather and hydrological forecasts have the potential to provide vital information for a variety of water-related decision makers. Here, we investigate the skill of four sub-seasonal forecast models from phase-2 of the North American Multi-Model Ensemble using reforecasts for the period 1982-2012. Two weighted multi-model ensemble means from the models have been developed for predictions of both sub-seasonal precipitation and temperature. By combining models through optimal weights, the multi-model forecast skill is significantly improved compared to a ‘standard’ equally weighted multi-model forecast mean. We show that optimal model weights are robust and the forecast skill is maintained for increased length of time and regions with a low initial forecast skill show significant skill after optimal weighting of the individual model forecast. The sub-seasonal model forecasts models show high skill over the tropics, approximating their skill at monthly resolution. Using the weighted approach, a significant increase is found in the forecast skill for dry, wet, cold and warm extreme events. The weighted mean approach brings significant advances to sub-seasonal forecasting due to its reduced uncertainty in the forecasts with a gain in forecast skill. This significantly improves their value for end-user applications and our ability to use them to prepare for upcoming extreme conditions, like floods and droughts.

  10. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem

    Directory of Open Access Journals (Sweden)

    Onur Satir

    2016-09-01

    Full Text Available Forest fires are one of the most important factors in environmental risk assessment and it is the main cause of forest destruction in the Mediterranean region. Forestlands have a number of known benefits such as decreasing soil erosion, containing wild life habitats, etc. Additionally, forests are also important player in carbon cycle and decreasing the climate change impacts. This paper discusses forest fire probability mapping of a Mediterranean forestland using a multiple data assessment technique. An artificial neural network (ANN method was used to map forest fire probability in Upper Seyhan Basin (USB in Turkey. Multi-layer perceptron (MLP approach based on back propagation algorithm was applied in respect to physical, anthropogenic, climate and fire occurrence datasets. Result was validated using relative operating characteristic (ROC analysis. Coefficient of accuracy of the MLP was 0.83. Landscape features input to the model were assessed statistically to identify the most descriptive factors on forest fire probability mapping using the Pearson correlation coefficient. Landscape features like elevation (R = −0.43, tree cover (R = 0.93 and temperature (R = 0.42 were strongly correlated with forest fire probability in the USB region.

  11. Physical Modeling of Large-Area Fire Plumes

    Science.gov (United States)

    1986-08-31

    in Science and Technology, Winter 1985. Carrier, G. F., F. Fendell and P. S. Feldman (1985). Firestorms. Journal of Heat Transfer, Vol. 107, pp. 19-28...Carrier, G. F., F. Fendell and P. S. Feldman (1984). Big Fires. Combustion Science and Technology, Vol. 39, pp. 135-162. Caughey, S. J. (1981...G ABRAHAMSON Dist- 1 ,.. ,.. DNA-TR85-364 IDL CONTINUED) STAN MARTIN ASSOCIATES ATTN: S MARTIN SWETL, INC ATTN: T PALMER TRW ELECTRONICS & DEFENSE SECTOR ATTN: F FENDELL Dit- ..’ " Dist-2 .V

  12. Numerical modelling of a straw-fired grate boiler

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2004-01-01

    The paper presents a computational fluid dynamics (CFD) analysis of a 33 MW straw-fired grate boiler. Combustion on the grate plays akey-role in the analysis of these boilers and in this work a stand-alone code was used to provide inlet conditions for the CFD analysis. Modelpredictions were...... compared with available gas temperature and species concentration measurements showing good agreement. Combustionof biomass in grate-based boilers is often associated with high emission levels and relatively high amounts of unburnt carbon in the fly ash.Based on the CFD analysis, it is suggested that poor...

  13. Impulsive Control on Seasonally Perturbed General Holling Type Two-Prey One-Predator Model

    Directory of Open Access Journals (Sweden)

    Chandrima Banerjee

    2016-01-01

    Full Text Available We investigate the dynamical behaviors of two-prey one-predator model with general Holling type functional responses. The effect of seasonal perturbation on the model has been discussed analytically as well as numerically. The periodic fluctuation is considered in prey growth rate and the predator mortality rate of the model. The impulsive effects involving biological and chemical control strategy, periodic releasing of natural enemies, and spraying pesticide at different fixed times are introduced in the model with seasonal perturbation. We derive the conditions of stability for impulsive system using Floquet theory, small amplitude perturbation skills. A local asymptotically stable prey (pest eradicated periodic solution is obtained when the impulsive period is less than some critical value. Numerical simulations of the model with and without seasonal disturbances exhibit different dynamics. Also we simulate numerically the model involving seasonal perturbations without impulse and with impulse. Finally, concluding remarks are given.

  14. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the ero

  15. Local buckling of aluminium structures exposed to fire. Part 2: Finite element models

    NARCIS (Netherlands)

    Maljaars, J.; Soetens, F.

    2009-01-01

    A test series was carried out and reported in a corresponding paper on slender aluminium alloy sections, loaded in compression at elevated temperature. This paper gives the results of simulations of these tests with a finite element model. For this purpose, a novel constitutive model for fire expose

  16. Modeling study on the combustion of intumescent fire-retardant polypropylene

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available The heat transfer and burning behavior of the intumescent fire-retardant polypropylene were studied by the cone calorimeter at heat flux levels of 50 kW.m-2 to establish an essential physical model for the intumescence process in fire. A mathematical model for the burning process of fire-retardant intumescent polymer was put forward based on the assumption that an intumescent front existed between the char layer and virgin layer. The model emphasizes the thermodynamic aspect of the intumescence process and a corresponding submodel is presented. Meanwhile the thicknesses and mass loss rates of the intumescent polypropylene during burning were measured for the validation of the modeling results. Thermal conductivity and heat capacity of polymer material were also measured as input parameters of the model. The validation results showed that the intumescent thicknesses and mass loss rates predicted by the model were in good agreement with the experimental results. The model was also used to predict the temperature distribution across the sample thickness during burning. The study shows that the present model can appropriately describe the intumescent behavior of the polymer and numerically predict its mass loss rates and temperature distribution in fire.

  17. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  18. Physical characteristics of shrub and conifer fuels for fire behavior models

    Science.gov (United States)

    Jonathan R. Gallacher; Thomas H. Fletcher; Victoria Lansinger; Sydney Hansen; Taylor Ellsworth; David R. Weise

    2017-01-01

    The physical properties and dimensions of foliage are necessary inputs for some fire spread models. Currently, almost no data exist on these plant characteristics to fill this need. In this report, we measured the physical properties and dimensions of the foliage from 10 live shrub and conifer fuels throughout a 1-year period. We developed models to predict relative...

  19. Modelling dune erosion, overwash and breaching at Fire Island (NY) during hurricane Sandy

    NARCIS (Netherlands)

    De Vet, P.L.M.; McCall, R.T.; Den Bieman, J.P.; Stive, M.J.F.; Van Ormondt, M.

    2015-01-01

    In 2012, Hurricane Sandy caused a breach at Fire Island (NY, USA), near Pelican Island. This paper aims at modelling dune erosion, overwash and breaching processes that occured during the hurricane event at this stretch of coast with the numerical model XBeach. By using the default settings, the

  20. Challenges and needs in fire management: A landscape simulation modeling perspective [chapter 4

    Science.gov (United States)

    Robert E. Keane; Geoffrey J. Cary; Mike D. Flannigan

    2011-01-01

    Fire management will face many challenges in the future from global climate change to protecting people, communities, and values at risk. Simulation modeling will be a vital tool for addressing these challenges but the next generation of simulation models must be spatially explicit to address critical landscape ecology relationships and they must use mechanistic...

  1. Seasonal heat and freshwater cycles in the Arctic Ocean in CMIP5 coupled models

    Science.gov (United States)

    Ding, Yanni; Carton, James A.; Chepurin, Gennady A.; Steele, Michael; Hakkinen, Sirpa

    2016-04-01

    This study examines the processes governing the seasonal response of the Arctic Ocean and sea ice to surface forcings as they appear in historical simulations of 14 Coupled Model Intercomparison Project Phase 5 coupled climate models. In both models and observations, the seasonal heat budget is dominated by a local balance between net surface heating and storage in the heat content of the ocean and in melting/freezing of sea ice. Observations suggest ocean heat storage is more important than sea ice melt, while in most of these models, sea ice melt dominates. Seasonal horizontal heat flux divergence driven by the seasonal cycle of volume transport is only important locally. In models and observations, the dominant terms in the basin-average seasonal freshwater budget are the storages of freshwater between the ocean and sea ice, and the exchange between the two. The largest external source term is continental discharge in early summer, which is an order of magnitude smaller. The appearance of sea ice (extent and volume) and also ocean stratification in both the heat and freshwater budgets provides two links between the budgets and provides two mechanisms for feedback. One consequence of such an interaction is the fact that models with strong/weak seasonal surface heating also have strong/weak seasonal haline and temperature stratification.

  2. Quantifications and Modeling of Human Failure Events in a Fire PSA

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Dae Il; Kim, Kilyoo; Jang, Seung-Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    USNRC and EPRI developed guidance, 'Fire Human Reliability Analysis Guidelines, NUREG-1921', for estimating human error probabilities (HEPs) for HFEs under fire conditions. NUREG-1921 classifies HFEs into four types associated with the following human actions: - Type 1: New and existing Main Control Room (MCR) actions - Type 2: New and existing ex-MCR actions - Type 3: Actions associated with using alternate shutdown means (ASD) - Type 4: Actions relating to the error of commissions (EOCs) or error of omissions (EOOs) as a result of incorrect indications (SPI) In this paper, approaches for the quantifications and modeling of HFEs related to Type 1, 2 and 3 human actions are introduced. This paper introduced the human reliability analysis process for a fire PSA of Hanul Unit 3. A multiplier of 10 was used to re-estimate the HEPs for the preexisting internal human actions. The HEPs for all ex- MCR actions were assumed to be one. New MCR human actions were quantified using the scoping analysis method of NUREG-1921. If the quantified human action were identified to be risk-significant, detailed approaches (modeling and quantification) were used for incorporating fire situations into them. Multiple HFEs for single human action were defined and they were separately and were separately quantified to incorporate the specific fire situations into them. From this study, we can confirm that the modeling as well as quantifications of human actions is very important to appropriately treat them in PSA logic structures.

  3. Using a prescribed fire to test custom and standard fuel models for fire behaviour prediction in a non-native, grass-invaded tropical dry shrubland

    Science.gov (United States)

    Andrew D. Pierce; Sierra McDaniel; Mark Wasser; Alison Ainsworth; Creighton M. Litton; Christian P. Giardina; Susan Cordell; Ralf Ohlemuller

    2014-01-01

    Questions: Do fuel models developed for North American fuel types accurately represent fuel beds found in grass-invaded tropical shrublands? Do standard or custom fuel models for firebehavior models with in situ or RAWS measured fuel moistures affect the accuracy of predicted fire behavior in grass-invaded tropical shrublands? Location: Hawai’i Volcanoes National...

  4. Seasonal climate hindcasts with Eta model nested in CPTEC coupled ocean-atmosphere general circulation model

    Science.gov (United States)

    Pilotto, Isabel L.; Chou, Sin Chan; Nobre, Paulo

    2012-12-01

    This work evaluates the added value of the downscaling technique employed with the Eta model nested in the CPTEC atmospheric general circulation model and in the CPTEC coupled ocean-atmosphere general circulation model (CGCM). The focus is on the austral summer season, December-January-February, with three members each year. Precipitation, latent heat flux, and shortwave radiation flux at the surface hindcast by the models are compared with observational data and model analyses. The global models generally overestimate the precipitation over South America and tropical Atlantic. The CGCM and the nested Eta (Eta + C) both produce a split in the ITCZ precipitation band. The Eta + C produces better precipitation pattern for the studied season. The Eta model reduces the excessive latent heat flux generated by these global models, in particular the Eta + C. Comparison against PIRATA buoys data shows that the Eta + C results in the smallest precipitation and shortwave radiation forecast errors. The Eta + C comparatively best results are though as a consequence of both: the regional model resolution/physics and smaller errors on the lateral boundary conditions provided by the CGCM.

  5. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    Directory of Open Access Journals (Sweden)

    H. M. Mäkelä

    2012-08-01

    Full Text Available Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June–August, the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908–2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  6. One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

    Science.gov (United States)

    Strada, S.; Freitas, S. R.; Mari, C.; Longo, K. M.; Paugam, R.

    2013-02-01

    Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20-30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso-NH/EDMF model. The

  7. One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

    Directory of Open Access Journals (Sweden)

    S. Strada

    2013-02-01

    Full Text Available Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20–30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso

  8. The tariff for fire and theft car insurance: analysis with a Cox model

    Directory of Open Access Journals (Sweden)

    Bruno Scarpa

    2013-05-01

    Full Text Available In this paper we analyze the problem of identification of a tariff for a Fire & Theft Car policy for Insurance Companies. Usually companies obtain this tariff by empirical estimate of the pure rate by evaluating the impact of some personalization variables. In this paper we propose the usage of a semi-parametric Cox model, where the response variable is not the waiting time until an event, but the degree of damage because of theft or fire of a car. The proposed model allows to easily tackle typical problems in data available to the companies, like the presence of franchises, which are treated as censored data.

  9. A Global Classification of Contemporary Fire Regimes

    Science.gov (United States)

    Norman, S. P.; Kumar, J.; Hargrove, W. W.; Hoffman, F. M.

    2014-12-01

    Fire regimes provide a sensitive indicator of changes in climate and human use as the concept includes fire extent, season, frequency, and intensity. Fires that occur outside the distribution of one or more aspects of a fire regime may affect ecosystem resilience. However, global scale data related to these varied aspects of fire regimes are highly inconsistent due to incomplete or inconsistent reporting. In this study, we derive a globally applicable approach to characterizing similar fire regimes using long geophysical time series, namely MODIS hotspots since 2000. K-means non-hierarchical clustering was used to generate empirically based groups that minimized within-cluster variability. Satellite-based fire detections are known to have shortcomings, including under-detection from obscuring smoke, clouds or dense canopy cover and rapid spread rates, as often occurs with flashy fuels or during extreme weather. Such regions are free from preconceptions, and the empirical, data-mining approach used on this relatively uniform data source allows the region structures to emerge from the data themselves. Comparing such an empirical classification to expectations from climate, phenology, land use or development-based models can help us interpret the similarities and differences among places and how they provide different indicators of changes of concern. Classifications can help identify where large infrequent mega-fires are likely to occur ahead of time such as in the boreal forest and portions of the Interior US West, and where fire reports are incomplete such as in less industrial countries.

  10. Advanced char burnout models for the simulation of pulverized coal fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    T. Severin; S. Wirtz; V. Scherer [Ruhr-University, Bochum (Germany). Institute of Energy Plant Technology (LEAT)

    2005-07-01

    The numerical simulation of coal combustion processes is widely used as an efficient means to predict burner or system behaviour. In this paper an approach to improve CFD simulations of pulverized coal fired boilers with advanced coal combustion models is presented. In simple coal combustion models, first order Arrhenius rate equations are used for devolatilization and char burnout. The accuracy of such simple models is sufficient for the basic aspects of heat release. The prediction of carbon-in-ash is one aspect of special interest in the simulation of pulverized coal fired boilers. To determine the carbon-in-ash levels in the fly ash of coal fired furnaces, the char burnout model has to be more detailed. It was tested, in how far changing operating conditions affect the carbon-in-ash prediction of the simulation. To run several test cases in a short time, a simplified cellnet model was applied. To use a cellnet model for simulations of pulverized coal fired boilers, it was coupled with a Lagrangian particle model, used in CFD simulations, too. 18 refs., 5 figs., 5 tabs.

  11. BLAZE, a novel Fire-Model for the CABLE Land-Surface Model applied to a Re-Assessment of the Australian Continental Carbon Budget

    Science.gov (United States)

    Nieradzik, L. P.; Haverd, V. E.; Briggs, P.; Meyer, C. P.; Canadell, J.

    2015-12-01

    Fires play a major role in the carbon-cycle and the development of global vegetation, especially on the continent of Australia, where vegetation is prone to frequent fire occurences and where regional composition and stand-age distribution is regulated by fire. Furthermore, the probable changes of fire behaviour under a changing climate are still poorly understood and require further investigation.In this presentation we introduce the fire-model BLAZE (BLAZe induced land-atmosphere flux Estimator), designed for a novel approach to simulate fire-frequencies, fire-intensities, fire related fluxes and the responses in vegetation. Fire frequencies are prescribed using SIMFIRE (Knorr et al., 2014) or GFED3 (e.g. Giglio et al., 2013). Fire-Line-Intensity (FLI) is computed from meteorological information and fuel loads which are state variables within the C-cycle component of CABLE (Community Atmosphere-Biosphere-Land Exchange model). This FLI is used as an input to the tree-demography model POP(Population-Order-Physiology; Haverd et al., 2014). Within POP the fire-mortality depends on FLI and tree height distribution. Intensity-dependent combustion factors (CF) are then generated for and applied to live and litter carbon pools as well as the transfers from live pools to litter caused by fire. Thus, both fire and stand characteristics are taken into account which has a legacy effect on future events. Gross C-CO2 emissions from Australian wild fires are larger than Australian territorial fossil fuel emissions. However, the net effect of fire on the Australian terrestrial carbon budget is unknown. We address this by applying the newly-developed fire module, integrated within the CABLE land surface model, and optimised for the Australian region, to a reassessment of the Australian Terrestrial Carbon Budget.

  12. Finding simplicity in complexity: modelling post-fire hydrogeomorphic processes and risks

    Science.gov (United States)

    Sheridan, Gary; Langhans, Christoph; Lane, Patrick; Nyman, Petter

    2017-04-01

    Post-fire runoff and erosion can shape landscapes, destroy infrastructure, and result in the loss of human life. However even within seemingly similar geographic regions post-fire hydro-geomorphic responses vary from almost no response through to catastrophic flash floods and debris flows. Why is there so much variability, and how can we predict areas at risk? This presentation describes the research journey taken by the post-fire research group at The University of Melbourne to answer this question for the se Australian uplands. Key steps along the way have included identifying the dominant erosion processes (and their forcings), and the key system properties controlling the rates of these dominant processes. The high degree of complexity in the interactions between the forcings, the system properties, and the erosion processes, necessitated the development of a simplified conceptual representation of post-fire hydrogeomorphic system that was conducive to modelling and simulation. Spatially mappable metrics (and proxies) for key system forcings and properties were then required to parameterize and drive the model. Each step in this journey has depended on new research, as well as ongoing feedback from land and water management agencies tasked with implementing these risk models and interpreting the results. These models are now imbedded within agencies and used for strategic risk assessments, for tactical response during fires, and for post-fire remediation and risk planning. Reflecting on the successes and failures along the way provides for some more general insights into the process of developing research-based models for operational use by land and water management agencies.

  13. Fire and Climate Change in Boreal Forests

    Science.gov (United States)

    Flannigan, M. D.; Logan, K. A.; Stocks, S. J.; Wotton, B. M.; Amiro, B. D.

    2004-12-01

    Fire is the major stand-renewing agent for much of the circumboreal forest, and greatly influences the structure and function of boreal ecosystems from regeneration through mortality. Current estimates are that an average of 5-15 million hectares burn annually in boreal forests, almost exclusively in Siberia, Canada and Alaska. There is a growing global awareness of the importance and vulnerability of the boreal region to projected future climate change. Fire activity is strongly influenced by four factors - weather/climate, vegetation \\(fuels\\), natural ignition agents and humans. Climate and weather are strongly linked to fire activity which suggests that the fire regime will respond rapidly to changes in climate. Recent results suggest that area burned by fire is related to temperature and fuel moisture. The climate of the northern hemisphere has been warming due to an influx of radiatively active gases \\(carbon dioxide, methane etc.\\) as a result of human activities. This altered climate, modelled by General Circulation Models \\(GCMs\\), indicates a profound impact on fire activity in the circumboreal forest. Recent results using GCMs suggest that in many regions fire weather/fire danger conditions will be more severe, area burned will increase, people-caused and lightning-caused ignitions will increase, fire seasons will be longer and the intensity and severity of fires will increase. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. Although a run away scenario is unlikely as changes in vegetation would limit the positive feedback cycle. Changes in fire activity as a result of climate change could have a greater and more immediate impact on vegetation distribution and abundance as compared to the direct impact of climate change.

  14. Urban Fire Risk Clustering Method Based on Fire Statistics

    Institute of Scientific and Technical Information of China (English)

    WU Lizhi; REN Aizhu

    2008-01-01

    Fire statistics and fire analysis have become important ways for us to understand the law of fire,prevent the occurrence of fire, and improve the ability to control fire. According to existing fire statistics, the weighted fire risk calculating method characterized by the number of fire occurrence, direct economic losses,and fire casualties was put forward. On the basis of this method, meanwhile having improved K-mean clus-tering arithmetic, this paper established fire dsk K-mean clustering model, which could better resolve the automatic classifying problems towards fire risk. Fire risk cluster should be classified by the absolute dis-tance of the target instead of the relative distance in the traditional cluster arithmetic. Finally, for applying the established model, this paper carded out fire risk clustering on fire statistics from January 2000 to December 2004 of Shenyang in China. This research would provide technical support for urban fire management.

  15. Future impacts of climate change on forest fire danger in northeastern China

    Institute of Scientific and Technical Information of China (English)

    TIAN Xiao-rui; SHU Li-fu; ZHAO Feng-jun; WANG Ming-yu; Douglas J. McRae

    2011-01-01

    Climate warming has a rapid and far-reaching impact on forest fire management in the boreal forests of China. Regional climate model outputs and the Canadian Forest Fire Weather Index (FWI) Sys- tern were used to analyze changes to fire danger and the fire season for future periods under IPCC Special Report on Emission Scenarios (SRES) A2 and B2, and the data will guide future fire management planning. We used regional climate in China (1961-1990) as our validation data, and the period (1991-2100) was modeled under SRES A2 and B2 through the weather simulated by the regional climate model system (PRECIS). Meteorological data and fire danger were interpolated to 1 km by using ANUSPLIN software. The average FWI value for future spring fire sea-sons under Scenarios A2 and B2 shows an increase over most of the region. Compared with the baseline, FWI averages of spring fire season will increase by -0.40, 0.26 and 1.32 under Scenario A2, and increase by 0.60, 1.54 and 2.56 under Scenario B2 in 2020s, 2050s and 2080s, re-spectively. FWI averages of autumn fire season also show an increase over most of the region. FWI values increase more for Scenario B2 than for Scenario A2 in the same periods, particularly during the 2050s and 2080s. Average future FWI values will increase under both scenarios for autumn fire season. The potential burned areas are expected to increase by 10% and 18% in spring for 2080s under Scenario A2 and B2, respec- tively. Fire season will be prolonged by 21 and 26 days under Scenarios A2 and B2 in 2080s respectively.

  16. Ecological modeling of pollutants in accidental fire at the landfill waste

    Directory of Open Access Journals (Sweden)

    Stefanov Sonja B.

    2013-01-01

    Full Text Available Paper presents tyre as flammable material and some examples of tyre fires in the world. Uncontrolled tyre fires produce a lot of smoke and air pollutants, including benzene and polycyclic aromatic hydrocarbons (PAH. Great heat leads to the generation of pyrolytic oil which, when mixed with the fire extinguishing agent, contaminates the surrounding soil, surface water and underground water. Paper analyzes and presents in particular the emission factors of incomplete burning of waste car tyres. Metal dust emissions have been presented, volatile organic compund (VOC emissions, slightly volatile organic compound (SVOC emissions and emissions of polycyclic aromatic hydrocarbons (PAH. Evaluation of the effect on the air quality has been graphically presented by modelling of uncotrolled tyre burning by using EPA "SCREEN 3 MODEL".

  17. Large, high-intensity fire events in Southern California shrublands: Debunking the fine-grain age patch model

    Science.gov (United States)

    Keeley, J.E.; Zedler, P.H.

    2009-01-01

    We evaluate the fine-grain age patch model of fire regimes in southern California shrublands. Proponents contend that the historical condition was characterized by frequent small to moderate size, slow-moving smoldering fires, and that this regime has been disrupted by fire suppression activities that have caused unnatural fuel accumulation and anomalously large and catastrophic wildfires. A review of more than 100 19th-century newspaper reports reveals that large, high-intensity wildfires predate modern fire suppression policy, and extensive newspaper coverage plus first-hand accounts support the conclusion that the 1889 Santiago Canyon Fire was the largest fire in California history. Proponents of the fine-grain age patch model contend that even the very earliest 20th-century fires were the result of fire suppression disrupting natural fuel structure. We tested that hypothesis and found that, within the fire perimeters of two of the largest early fire events in 1919 and 1932, prior fire suppression activities were insufficient to have altered the natural fuel structure. Over the last 130 years there has been no significant change in the incidence of large fires greater than 10000 ha, consistent with the conclusion that fire suppression activities are not the cause of these fire events. Eight megafires (???50 000 ha) are recorded for the region, and half have occurred in the last five years. These burned through a mosaic of age classes, which raises doubts that accumulation of old age classes explains these events. Extreme drought is a plausible explanation for this recent rash of such events, and it is hypothesized that these are due to droughts that led to increased dead fine fuels that promoted the incidence of firebrands and spot fires. A major shortcoming of the fine-grain age patch model is that it requires age-dependent flammability of shrubland fuels, but seral stage chaparral is dominated by short-lived species that create a dense surface layer of fine

  18. Introducing GFWED: The Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  19. Development of a Global Fire Weather Database

    Science.gov (United States)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  20. Fire exposed facades: Numerical modelling of the LEPIR2 testing facility

    Directory of Open Access Journals (Sweden)

    Dréan Virginie

    2016-01-01

    Full Text Available LEPIR2 testing facility is aimed to evaluate the fire behaviour of construction solutions implemented on facade according with the experimental evaluation required by the French Technical Specification 249 (IT249 of the safety regulation. It aims to limit the risks of fire spreading by facades to upper levels. This facility involves a wood crib fire in the lower compartment of a full scale two levels high structure. Flames are coming outside from the compartment through windows openings and develop in front of the facade. Computational fluids dynamics simulations are carried out with the FDS code (Fire Dynamics Simulator for two full-scale experiments performed by Efectis France laboratory. The first objective of this study is to evaluate the ability of numerical model to reproduce quantitative results in terms of gas temperatures and heat flux on the tested facade for further evaluation of fire performances of an insulation solution. When experimental results are compared with numerical calculations, good agreement is found out for every quantities and each test. The proposed models for wood cribs and geometry give correct thermal loads and flames shape near the tested facade.

  1. Future Projections of Fire Occurrence in Brazil Using EC-Earth Climate Model

    Directory of Open Access Journals (Sweden)

    Patrícia Silva

    Full Text Available Abstract Fire has a fundamental role in the Earth system as it influences global and local ecosystem patterns and processes, such as vegetation distribution and structure, the carbon cycle and climate. Since, in the global context, Brazil is one of the regions with higher fire activity, an assessment is here performed of the sensitivity of the wildfire regime in Brazilian savanna and shrubland areas to changes in regional climate during the 21st Century, for an intermediate scenario (RCP4.5 of climate change. The assessment is based on a spatial and temporal analysis of a meteorological fire danger index specifically developed for Brazilian biomes, which was evaluated based on regional climate simulations of temperature, relative humidity and precipitation using the Rossby Centre Regional Climate Model (RCA4 forced by the EC-Earth earth system model. Results show a systematic increase in the extreme levels of fire danger throughout the 21st Century that mainly results from the increase in maximum daily temperature, which rises by about 2 °C between 2005 and 2100. This study provides new insights about projected fire activity in Brazilian woody savannas associated to climate change and is expected to benefit the user community, from governmental policies to land management and climate researches.

  2. Seasonal drought ensemble predictions based on multiple climate models in the upper Han River Basin, China

    Science.gov (United States)

    Ma, Feng; Ye, Aizhong; Duan, Qingyun

    2017-03-01

    An experimental seasonal drought forecasting system is developed based on 29-year (1982-2010) seasonal meteorological hindcasts generated by the climate models from the North American Multi-Model Ensemble (NMME) project. This system made use of a bias correction and spatial downscaling method, and a distributed time-variant gain model (DTVGM) hydrologic model. DTVGM was calibrated using observed daily hydrological data and its streamflow simulations achieved Nash-Sutcliffe efficiency values of 0.727 and 0.724 during calibration (1978-1995) and validation (1996-2005) periods, respectively, at the Danjiangkou reservoir station. The experimental seasonal drought forecasting system (known as NMME-DTVGM) is used to generate seasonal drought forecasts. The forecasts were evaluated against the reference forecasts (i.e., persistence forecast and climatological forecast). The NMME-DTVGM drought forecasts have higher detectability and accuracy and lower false alarm rate than the reference forecasts at different lead times (from 1 to 4 months) during the cold-dry season. No apparent advantage is shown in drought predictions during spring and summer seasons because of a long memory of the initial conditions in spring and a lower predictive skill for precipitation in summer. Overall, the NMME-based seasonal drought forecasting system has meaningful skill in predicting drought several months in advance, which can provide critical information for drought preparedness and response planning as well as the sustainable practice of water resource conservation over the basin.

  3. Assessing the risk of ignition in the Russian far east within a modeling framework of fire threat.

    Science.gov (United States)

    Loboda, Tatiana V; Csiszar, Ivan A

    2007-04-01

    The forests of high biological importance in the Russian Far East (RFE) have been experiencing increasing pressure from growing demands for natural resources under the changing economy of post-Soviet Russia. This pressure is further amplified by the rising threat of large and catastrophic fire occurrence, which threatens both the resources and the economic potential of the region. In this paper we introduce a conceptual Fire Threat Model (FTM) and use it to provide quantitative assessment of the risk of ignition in the Russian Far East. The remotely sensed data driven FTM is aimed at evaluating potential wildland fire occurrence and its impact and recovery potential for a given resource. This model is intended for use by resource managers to assist in assessing current levels of fire threat to a given resource, projecting the changes in fire threat under changing climate and land use, and evaluating the efficiency of various management approaches aimed at minimizing the fire impact. Risk of ignition (one of the major uncertainties within fire threat modeling) was analyzed using the MODIS active fire product. The risk of ignition in the RFE is shown to be highly variable in spatial and temporal domains. However, the number of ignition points is not directly proportional to the amount of fire occurrence in the area. Fire ignitions in the RFE are strongly linked to anthropogenic activity (transportation routes, settlements, and land use). An increase in the number of fire ignitions during summer months could be attributed to (1) disruption of the summer monsoons and subsequent changes in fire weather and (2) an increase in natural sources of fire ignitions.

  4. Recent advances in operational seasonal forecasting in South Africa: Models, infrastructure and networks

    CSIR Research Space (South Africa)

    Landman, WA

    2011-11-01

    Full Text Available The various institutions involved with seasonal forecast development and production are discussed. New modelling approaches and the establishment of infrastructures to improve forecast dissemination are discussed....

  5. Importance of fuel treatment for limiting moderate-to-high intensity fire: Findings from comparative fire modeling

    Science.gov (United States)

    Geoffrey J. Cary; Ian D. Davies; Ross A. Bradstock; Robert E. Keane; Mike D. Flannigan

    2017-01-01

    Context: Wildland fire intensity influences natural communities, soil properties, erosion, and sequestered carbon. Measuring effectiveness of fuel treatment for reducing area of higher intensity unplanned fire is argued to be more meaningful than determining effect on total unplanned area burned. Objectives...

  6. Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model

    Science.gov (United States)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G.; Bucholtz, Anthony; Rosenlof, Karen H.; Saide, Pablo E.; Da Silva, Arlindo; Ziemba, Luke D.; Thornhill, Kenneth L.; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P.; Perring, Anne E.; Froyd, Karl D.; Wagner, N. L.; Mills, Michael J.; Reid, Jeffrey S.

    2016-06-01

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

  7. ARAC dispersion modeling of the August 1998 Tracy, California tire fire

    Energy Technology Data Exchange (ETDEWEB)

    Aluzzi, F J; Baskett, R L; Bowen, B M; Foster, C S; Pace, J C; Pobanz, B; Vogt, P J

    1998-08-28

    At about 4:30 pm PDT on Friday, August 7, 1998 a fire ignited the large tire disposal pit of Royster Tire Co. on Macarthur Drive about 5 km (3 miles) south of downtown Tracy, California. While providing on-scene mutual aid late Friday night, the LLNL Fire Department called and requested that the Atmospheric Release Advisory Capability (ARAC) make a plume forecast for Saturday. The response team in the field was interested in the forecasted location as well as an estimate of potential health effects on the following day. Not having any previous experience with tire fire source terms, ARAC assessors used a constant unit source rate (1 g/s) of particulate and produced plots showing only the location of the ground-level normalized time-integrated air concentrations from the smoke plume. Very early Saturday morning the assessors faxed plots of ground-level smoke air concentrations forecasted for Saturday from 6 am through 6 pm PDT to the Tracy Fire Emergency Operations Center. (As a part of standard procedure, before delivering the plots, the assessors notified ARAC's DOE sponsor.) Fortunately due to the intense heat from the fire, the dense black smoke immediately lofted into the air preventing high ground-level concentrations close to the tire dump. Later on Saturday morning ARAC forecasted a second set of plume integrated air concentrations for Sunday. By Monday the intensity of the fire lessened, and ARAC's support was no longer requested. Following ARAC's response, we made a third calculation on a large scale of the continuous smoke dispersion for 3 days after the fire. A newspaper photograph showed the plume initially rising toward the northeast and the upper part of the smoke cloud turning counterclockwise toward the north. Winds from ARAC's mesoscale prognostic model reproduced this plume structure, while data from the Friday afternoon sounding from Oakland did not. On the 250 km scale, using gridded wind outputs from our mesoscale forecast

  8. Harvest season, high polluted season in East China

    Science.gov (United States)

    Huang, Xin; Song, Yu; Li, Mengmeng; Li, Jianfeng; Zhu, Tong

    2012-12-01

    East China, a major agricultural zone with a dense population, suffers from severe air pollution during June, the agricultural harvest season, every year. Crop burning emits tremendous amounts of combustion products into the atmosphere, not only rapidly degrading the local air quality but also affecting the tropospheric chemistry, threatening public health and affecting climate change. Recently, in mid-June 2012, crop fires left a thick pall of haze over East China. We evaluated the PM10, PM2.5 (particulates less than 10 and 2.5 μm in aerodynamic diameter) and BC (black carbon) emissions by analyzing detailed census data and moderate resolution imaging spectroradiometer (MODIS) remote sensing images and then simulated the consequent pollution using meteorological and dispersion models. The results show that the crop fires sweeping from the south to the north are responsible for the intensive air pollution during harvest season. It is necessary for scientists and governments to pay more attention to this issue.

  9. Rapid Response Tools and Datasets for Post-fire Erosion Modeling: Lessons Learned from the Rock House and High Park Fires

    Science.gov (United States)

    Miller, Mary Ellen; Elliot, William E.; MacDonald, Lee H.

    2013-04-01

    Once the danger posed by an active wildfire has passed, land managers must rapidly assess the threat from post-fire runoff and erosion due to the loss of surface cover and fire-induced changes in soil properties. Increased runoff and sediment delivery are of great concern to both the pubic and resource managers. Post-fire assessments and proposals to mitigate these threats are typically undertaken by interdisciplinary Burned Area Emergency Response (BAER) teams. These teams are under very tight deadlines, so they often begin their analysis while the fire is still burning and typically must complete their plans within a couple of weeks. Many modeling tools and datasets have been developed over the years to assist BAER teams, but process-based, spatially explicit models are currently under-utilized relative to simpler, lumped models because they are more difficult to set up and require the preparation of spatially-explicit data layers such as digital elevation models, soils, and land cover. The difficulty of acquiring and utilizing these data layers in spatially-explicit models increases with increasing fire size. Spatially-explicit post-fire erosion modeling was attempted for a small watershed in the 1270 km2 Rock House fire in Texas, but the erosion modeling work could not be completed in time. The biggest limitation was the time required to extract the spatially explicit soils data needed to run the preferred post-fire erosion model (GeoWEPP with Disturbed WEPP parameters). The solution is to have the spatial soil, land cover, and DEM data layers prepared ahead of time, and to have a clear methodology for the BAER teams to incorporate these layers in spatially-explicit modeling interfaces like GeoWEPP. After a fire occurs the data layers can quickly be clipped to the fire perimeter. The soil and land cover parameters can then be adjusted according to the burn severity map, which is one of the first products generated for the BAER teams. Under a previous project

  10. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada

    Science.gov (United States)

    Wotton, B. M.; Flannigan, M. D.; Marshall, G. A.

    2017-09-01

    Much research has been carried out on the potential impacts of climate change on forest fire activity in the boreal forest. Indeed, there is a general consensus that, while change will vary regionally across the vast extent of the boreal, in general the fire environment will become more conducive to fire. Land management agencies must consider ways to adapt to these new conditions. This paper examines the impact of that changed fire environment on overall wildfire suppression capability. We use multiple General Circulation Models and carbon emission pathways to generate future fire environment scenarios for Canada’s forested region. We then use these scenarios with the Canadian Forest Fire Behaviour Prediction System and spatial coverages of the current forest fuel composition across the landscape to examine potential variation in key fire behaviour outputs that influence whether fire management resources can effectively suppress fire. Specifically, we evaluate how the potential for crown fire occurrence and active growth of fires changes with the changing climate. We also examine future fire behaviour through the lens of operational fire intensity thresholds used to guide decisions about resources effectiveness. Results indicate that the proportion of days in fire seasons with the potential for unmanageable fire will increase across Canada’s forest, more than doubling in some regions in northern and eastern boreal forest.

  11. Forest-fire model as a supercritical dynamic model in financial systems.

    Science.gov (United States)

    Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B

    2015-02-01

    Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.

  12. Modeling the effects of environmental disturbance on wildlife communities: avian responses to prescribed fire.

    Science.gov (United States)

    Russell, Robin E; Royle, J Andrew; Saab, Victoria A; Lehmkuhl, John F; Block, William M; Sauer, John R

    2009-07-01

    Prescribed fire is a management tool used to reduce fuel loads on public lands in forested areas in the western United States. Identifying the impacts of prescribed fire on bird communities in ponderosa pine (Pinus ponderosa) forests is necessary for providing land management agencies with information regarding the effects of fuel reduction on sensitive, threatened, and migratory bird species. Recent developments in occupancy modeling have established a framework for quantifying the impacts of management practices on wildlife community dynamics. We describe a Bayesian hierarchical model of multi-species occupancy accounting for detection probability, and we demonstrate the model's usefulness for identifying effects of habitat disturbances on wildlife communities. Advantages to using the model include the ability to estimate the effects of environmental impacts on rare or elusive species, the intuitive nature of the modeling, the incorporation of detection probability, the estimation of parameter uncertainty, the flexibility of the model to suit a variety of experimental designs, and the composite estimate of the response that applies to the collection of observed species as opposed to merely a small subset of common species. Our modeling of the impacts of prescribed fire on avian communities in a ponderosa pine forest in Washington indicate that prescribed fire treatments result in increased occupancy rates for several bark-insectivore, cavity-nesting species including a management species of interest, Black-backed Woodpeckers (Picoides arcticus). Three aerial insectivore species, and the ground insectivore, American Robin (Turdus migratorius), also responded positively to prescribed fire, whereas three foliage insectivores and two seed specialists, Clark's Nutcracker (Nucifraga columbiana) and the Pine Siskin (Carduelis pinus), declined following treatments. Land management agencies interested in determining the effects of habitat manipulations on wildlife

  13. Spatio-seasonal modeling of the incidence rate of malaria in Mozambique

    Directory of Open Access Journals (Sweden)

    Nhalungo Delino

    2008-10-01

    Full Text Available Abstract Background The objective was to study the seasonal effect on the spatial distribution of the incidence of malaria in children under 10 years old living in the Manhiça district, Mozambique. Methods The data of the clinical malaria incidence were obtained from a study of two cohorts of children followed from December 1996 to July 1999. The cases were obtained by the active detection method. Hierarchical Bayesian models were used to model the incidence of malaria, including spatial correlation nested to climatic season. The models were compared with the deviance information criterion. The age and gender of the children were also taken into account. Results The incidence of malaria is associated with age, period and climate season. The incidence presents a clear spatial pattern, with a higher incidence in the neighbourhoods situated in the north and northeast of the Manhiça area. The transmission of malaria is highest during the wet season but the spatial pattern of malaria does not differ from that during the dry season. Conclusion The incidence of malaria in Manhiça presents a spatial pattern which is independent of the seasonal climatic conditions. The climate modifies the incidence of malaria in the entire region but does not change the spatial pattern of the incidence of this disease. These findings may be useful for the planning of malaria control activities. These activities can be performed taking account that the neighbourhoods with more incidence of malaria do not change over the annual climate seasons.

  14. Spatio-seasonal modeling of the incidence rate of malaria in Mozambique.

    Science.gov (United States)

    Abellana, Rosa; Ascaso, Carlos; Aponte, John; Saute, Francisco; Nhalungo, Delino; Nhacolo, Ariel; Alonso, Pedro

    2008-10-31

    The objective was to study the seasonal effect on the spatial distribution of the incidence of malaria in children under 10 years old living in the Manhiça district, Mozambique. The data of the clinical malaria incidence were obtained from a study of two cohorts of children followed from December 1996 to July 1999. The cases were obtained by the active detection method. Hierarchical Bayesian models were used to model the incidence of malaria, including spatial correlation nested to climatic season. The models were compared with the deviance information criterion. The age and gender of the children were also taken into account. The incidence of malaria is associated with age, period and climate season. The incidence presents a clear spatial pattern, with a higher incidence in the neighbourhoods situated in the north and northeast of the Manhiça area. The transmission of malaria is highest during the wet season but the spatial pattern of malaria does not differ from that during the dry season. The incidence of malaria in Manhiça presents a spatial pattern which is independent of the seasonal climatic conditions. The climate modifies the incidence of malaria in the entire region but does not change the spatial pattern of the incidence of this disease. These findings may be useful for the planning of malaria control activities. These activities can be performed taking account that the neighbourhoods with more incidence of malaria do not change over the annual climate seasons.

  15. The modeled effects of fire on carbon balance and vegetation abundance in Alaskan tundra

    Science.gov (United States)

    Dietze, M. C.; Davidson, C. D.; Kelly, R.; Higuera, P. E.; Hu, F.

    2012-12-01

    Arctic climate is warming at a rate disproportionately faster than the rest of the world. Changes have been observed within the tundra that are attributed to this trend, including active layer thickening, shrub land expansion, and increases in fire frequency. Whether tundra remains a global net sink of carbon could depend upon the effects of fire on vegetation, specifically concerning the speed at which vegetation reestablishes, the stimulation of growth after fire, and the changes that occur in species composition during succession. While rapid regeneration of graminoid vegetation favors the spread of this functional type in early succession, late succession appears to favor shrub vegetation at abundances greater than those observed before fire. Possible reasons for this latter observation include changes in albedo, soil insulation, and soil moisture regimes. Here we investigate the course of succession after fire disturbance within tundra ecosystems, and the mechanisms involved. A series of simulated burn experiments were conducted on the burn site left by the 2007 Anaktuvuk River fire to access the behavior of the Ecosystem Demography model v2.2 (ED2) in the simulation of fire on the tundra. The land surface sub-model within ED is modified to improve simulate permafrost through the effects of an increased soil-column depth, a peat texture class, and the effects of wind compaction and depth hoar on snow density. Parameterization is conducted through Bayesian techniques used to constrain parameter distributions based upon data from a literature survey, field measurements at Toolik Lake, Alaska, and a data assimilation over three datasets. At each step, priority was assigned to measurements that could constrain parameters that account for the greatest explained variance in model output as determined through sensitivity analysis. Following parameterization, a series of simulations were performed to gauge the suitability of the model in predicting carbon balance and

  16. Statistical modelling of forest fire danger rating based on meteorological, topographical and fuel factors in the Republic of Korea

    Science.gov (United States)

    Won, M.; Yoon, S.; Jang, K.; Lim, J.

    2016-12-01

    Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behavior and its spread. Thus, meteorological factors as well as social factors were considered in the fire danger rating systems. This study aims to develop an advanced Korean Forest Fire Danger Rating System (KFFDRS) using weather data of automatic mountain meteorology observation systems(AMOSs) to support forest fire prevention strategy in South Korea. The KFFDRS consists of three, 10-scale indices: daily weather index (DWI), fuel model index (FMI), and topography model index (TMI). DWI represents the meteorological characteristics, such as humidity (relative and effective), temperature and wind speed, and we integrated nine logistic regression models of the past into one national model. One integrated national model is [1+exp{2.706+(0.088×maximum temperature)-(0.055×relative humidity)-(0.023×effective humidity)-(0.104×mean wind speed)}-1]-1 and all weather variables significantly (pfusion of mountain weather data with 55 random sampling in forest fire event days. One integrated national model showed 10% high accuracy than nine logistic regression models when it is applied fused mountain weather data. These findings would be necessary for the policy makers in the Republic of Korea for the prevention of forest fires.

  17. Estimates of fire emissions from an active deforestation region in the southern Amazon based on satellite data and biogeochemical modelling

    OpenAIRE

    van der Werf, G. R.; D. C. Morton; R. S. DeFries; Giglio, L.; Randerson, J. T.; Collatz, G. J.; Kasibhatla, P. S.

    2009-01-01

    Tropical deforestation contributes to the build-up of atmospheric carbon dioxide in the atmosphere. Within the deforestation process, fire is frequently used to eliminate biomass in preparation for agricultural use. Quantifying these deforestation-induced fire emissions represents a challenge, and current estimates are only available at coarse spatial resolution with large uncertainty. Here we developed a biogeochemical model using remote sensing observations of plant productivity, fire activ...

  18. Fighting Fire with Fire: Modeling the Datacenter-Scale Effects of Targeted Superlattice Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, S; Tiwari, M; Theogarajan, L; Sherwood, T P; Chong, F T

    2010-11-11

    Local thermal hot-spots in microprocessors lead to worst case provisioning of global cooling resources, especially in large-scale systems. However, efficiency of cooling solutions degrade non-linearly with supply temperature, resulting in high power consumption and cost in cooling - 50 {approx} 100% of IT power. Recent advances in active cooling techniques have shown on-chip thermoelectric coolers (TECs) to be very efficient at selectively eliminating small hot-spots, where applying current to a superlattice film deposited between silicon and the heat spreader results in a Peltier effect that spreads the heat and lowers the temperature of the hot-spot significantly to improve chip reliability. In this paper, we propose that hot-spot mitigation using thermoelectric coolers can be used as a power management mechanism to allow global coolers to be provisioned for a better worst case temperature leading to substantial savings in cooling power. In order to quantify the potential power savings from using TECs in data center servers, we present a detailed power model that integrates on-chip dynamic and leakage power sources, heat diffusion through the entire chip, TEC and global cooler efficiencies, and all their mutual interactions. Our multiscale analysis shows that, for a typical data center, TECs allow global coolers to operate at higher temperatures without degrading chip lifetime, and thus save {approx}27% cooling power on average while providing the same processor reliability as a data center running at 288K.

  19. Uncertainties in façade fire tests – measurements and modeling

    Directory of Open Access Journals (Sweden)

    Anderson Johan

    2016-01-01

    Full Text Available In this paper a comparison between test and modelling results are performed for two large-scale façade fire testing methods, namely SP Fire 105 and BS 8414-1. In order to be able to compare tests and modelling the uncertainties have to be quantified both in the test and the modelling. Here we present a methodology based on deterministic sampling to quantify uncertainties in the modelling input. We find, in general good agreement between the models and the test results. Moreover, temperatures estimated by plate thermometers is indicated to be less sensitive to small variations in model input and is thus suitable for these kind of comparisons.

  20. Modeling of the combined heat exchanges in the ceramic firing kilns

    Energy Technology Data Exchange (ETDEWEB)

    El Hayek, M.; Lybaert, P.; Meunier, H. [Faculte Polytechnique de Mons (Belgium)

    1993-12-31

    A new methodology for the simulation of batch ceramic firing kilns is presented. A classical continuum approach is used in the free space and a quasi-continuum one in the load stacking area. This latter is replaced by an homogeneous porous medium with apparent equivalent characteristics. A flux model is used to take radiation heat transfer into account. The conduction in the load pieces is managed by the usual resistance scheme. The whole procedure is applied to a real refractory bricks firing kiln and shows promising features. (Authors). 8 refs., 4 figs.

  1. An evaluation of hardwood fuel models for planning prescribed fires in oak shelterwood stands

    Science.gov (United States)

    Patrick H. Brose

    2017-01-01

    The shelterwood burn technique is becoming more accepted and used as a means of regenerating eastern mixed-oak (Quercus spp.) forests on productive upland sites. Preparation is important to successfully implement this method; part of that preparation is selecting the proper fuel model (FM) for the prescribed fire. Because of the mix of leaf litter...

  2. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Directory of Open Access Journals (Sweden)

    Maxwell R Bennett

    Full Text Available Measurements of blood oxygenation level dependent (BOLD signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular connections.

  3. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model

    NARCIS (Netherlands)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about th

  4. An improved canopy wind model for predicting wind adjustment factors and wildland fire behavior

    Science.gov (United States)

    W. J. Massman; J. M. Forthofer; M. A. Finney

    2017-01-01

    The ability to rapidly estimate wind speed beneath a forest canopy or near the ground surface in any vegetation is critical to practical wildland fire behavior models. The common metric of this wind speed is the "mid-flame" wind speed, UMF. However, the existing approach for estimating UMF has some significant shortcomings. These include the assumptions that...

  5. Cortical Network Models of Firing Rates in the Resting and Active States Predict BOLD Responses.

    Science.gov (United States)

    Bennett, Maxwell R; Farnell, Les; Gibson, William G; Lagopoulos, Jim

    2015-01-01

    Measurements of blood oxygenation level dependent (BOLD) signals have produced some surprising observations. One is that their amplitude is proportional to the entire activity in a region of interest and not just the fluctuations in this activity. Another is that during sleep and anesthesia the average BOLD correlations between regions of interest decline as the activity declines. Mechanistic explanations of these phenomena are described here using a cortical network model consisting of modules with excitatory and inhibitory neurons, taken as regions of cortical interest, each receiving excitatory inputs from outside the network, taken as subcortical driving inputs in addition to extrinsic (intermodular) connections, such as provided by associational fibers. The model shows that the standard deviation of the firing rate is proportional to the mean frequency of the firing when the extrinsic connections are decreased, so that the mean BOLD signal is proportional to both as is observed experimentally. The model also shows that if these extrinsic connections are decreased or the frequency of firing reaching the network from the subcortical driving inputs is decreased, or both decline, there is a decrease in the mean firing rate in the modules accompanied by decreases in the mean BOLD correlations between the modules, consistent with the observed changes during NREM sleep and under anesthesia. Finally, the model explains why a transient increase in the BOLD signal in a cortical area, due to a transient subcortical input, gives rises to responses throughout the cortex as observed, with these responses mediated by the extrinsic (intermodular) connections.

  6. Model fire tests on polyphosphazene rubber and polyvinyl chloride (PVC)/nitrile rubber foams

    Science.gov (United States)

    Widenor, W. M.

    1978-01-01

    A video tape record of model room fire tests was shown, comparing polyphosphazene (P-N) rubber and polyvinyl chloride (PVC)/nitrile rubber closed-cell foams as interior finish thermal insulation under conditions directly translatable to an actual fire situation. Flashover did not occur with the P-N foam and only moderate amounts of low density smoke were formed, whereas with the PVC/nitrile foam, flashover occurred quickly and large volumes of high density smoke were emitted. The P-N foam was produced in a pilot plant under carefully controlled conditions. The PVC/nitrile foam was a commercial product. A major phase of the overall program involved fire tests on P-N open-cell foam cushioning.

  7. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass

    Science.gov (United States)

    Yi Qi; Philip E. Dennison; W. Matt Jolly; Rachael C. Kropp; Simon C. Brewer

    2014-01-01

    Live fuel moisture content (LFMC), the ratio of water mass to dry mass contained in live plant material, is an important fuel property for determining fire danger and for modeling fire behavior. Remote sensing estimation of LFMC often relies on an assumption of changing water and stable dry mass over time. Fundamental understanding of seasonal variation in plant water...

  8. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference

    Science.gov (United States)

    Cuevas Rivera, Dario; Bitzer, Sebastian; Kiebel, Stefan J.

    2015-01-01

    The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an ‘intelligent coincidence detector’, which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena. PMID:26451888

  9. Modelling Odor Decoding in the Antennal Lobe by Combining Sequential Firing Rate Models with Bayesian Inference.

    Directory of Open Access Journals (Sweden)

    Dario Cuevas Rivera

    2015-10-01

    Full Text Available The olfactory information that is received by the insect brain is encoded in the form of spatiotemporal patterns in the projection neurons of the antennal lobe. These dense and overlapping patterns are transformed into a sparse code in Kenyon cells in the mushroom body. Although it is clear that this sparse code is the basis for rapid categorization of odors, it is yet unclear how the sparse code in Kenyon cells is computed and what information it represents. Here we show that this computation can be modeled by sequential firing rate patterns using Lotka-Volterra equations and Bayesian online inference. This new model can be understood as an 'intelligent coincidence detector', which robustly and dynamically encodes the presence of specific odor features. We found that the model is able to qualitatively reproduce experimentally observed activity in both the projection neurons and the Kenyon cells. In particular, the model explains mechanistically how sparse activity in the Kenyon cells arises from the dense code in the projection neurons. The odor classification performance of the model proved to be robust against noise and time jitter in the observed input sequences. As in recent experimental results, we found that recognition of an odor happened very early during stimulus presentation in the model. Critically, by using the model, we found surprising but simple computational explanations for several experimental phenomena.

  10. Monitoring, modelling and forecasting of the pollen season

    DEFF Research Database (Denmark)

    Scheifinger, Helfried; Belmonte, Jordina; Buters, Jeroen

    2013-01-01

    The section about monitoring covers the development of phenological networks, remote sensing of the season cycle of the vegetation, the emergence of the science of aerobiology and, more specifically, aeropalynology, pollen sampling instruments, pollen counting techniques, applications...... of aeropalynology in agriculture and the European Pollen Information System. Three data sources are directly related with aeropalynology: phenological observations, pollen counts and remote sensing of the vegetation activity. The main future challenge is the assimilation of these data streams into numerical pollen...... forecast systems. Over the last decades consistent monitoring efforts of various national networks have created a wealth of pollen concentration time series. These constitute a nearly untouched treasure, which is still to be exploited to investigate questions concerning pollen emission, transport...

  11. Modelling and Simulation of Seasonal Rainfall Using the Principle of Maximum Entropy

    Directory of Open Access Journals (Sweden)

    Jonathan Borwein

    2014-02-01

    Full Text Available We use the principle of maximum entropy to propose a parsimonious model for the generation of simulated rainfall during the wettest three-month season at a typical location on the east coast of Australia. The model uses a checkerboard copula of maximum entropy to model the joint probability distribution for total seasonal rainfall and a set of two-parameter gamma distributions to model each of the marginal monthly rainfall totals. The model allows us to match the grade correlation coefficients for the checkerboard copula to the observed Spearman rank correlation coefficients for the monthly rainfalls and, hence, provides a model that correctly describes the mean and variance for each of the monthly totals and also for the overall seasonal total. Thus, we avoid the need for a posteriori adjustment of simulated monthly totals in order to correctly simulate the observed seasonal statistics. Detailed results are presented for the modelling and simulation of seasonal rainfall in the town of Kempsey on the mid-north coast of New South Wales. Empirical evidence from extensive simulations is used to validate this application of the model. A similar analysis for Sydney is also described.

  12. Combining engineering and data-driven approaches: Development of a generic fire risk model facilitating calibration

    DEFF Research Database (Denmark)

    De Sanctis, G.; Fischer, K.; Kohler, J.

    2014-01-01

    Fire risk models support decision making for engineering problems under the consistent consideration of the associated uncertainties. Empirical approaches can be used for cost-benefit studies when enough data about the decision problem are available. But often the empirical approaches...... a generic risk model that is calibrated to observed fire loss data. Generic risk models assess the risk of buildings based on specific risk indicators and support risk assessment at a portfolio level. After an introduction to the principles of generic risk assessment, the focus of the present paper...... are not detailed enough. Engineering risk models, on the other hand, may be detailed but typically involve assumptions that may result in a biased risk assessment and make a cost-benefit study problematic. In two related papers it is shown how engineering and data-driven modeling can be combined by developing...

  13. Bed models for solid fuel conversion process in grate-fired boilers

    DEFF Research Database (Denmark)

    Costa, M.; Massarotti, N.; Indrizzi, V.

    2013-01-01

    to describe the thermo-chemical conversion process of a solid fuel bed in a grate-fired boiler is presented. In this work both models consider the incoming solid fuel as subjected to drying, pyrolysis, gasification and combustion. In the first approach the biomass bed is treated as a 0D system, but the thermo......Because of the complexity to describe and solve thermo-chemical processes occurring in a fuel bed in grate-fired boiler, it is often necessary to simplify the process and use modeling techniques based on overall mass, energy and species conservation. A comparison between two numerical models......-chemical processes are divided in two successive sections: drying and conversion (which includes pyrolysis, gasification and combustion). The second model is an empirical 1D approach. The two models need input data such as composition, temperature and feeding rate of biomass and primary air. Temperature, species...

  14. Modelling seasonal habitat suitability for wide-ranging species: Invasive wild pigs in northern Australia.

    Science.gov (United States)

    Froese, Jens G; Smith, Carl S; Durr, Peter A; McAlpine, Clive A; van Klinken, Rieks D

    2017-01-01

    Invasive wildlife often causes serious damage to the economy and agriculture as well as environmental, human and animal health. Habitat models can fill knowledge gaps about species distributions and assist planning to mitigate impacts. Yet, model accuracy and utility may be compromised by small study areas and limited integration of species ecology or temporal variability. Here we modelled seasonal habitat suitability for wild pigs, a widespread and harmful invader, in northern Australia. We developed a resource-based, spatially-explicit and regional-scale approach using Bayesian networks and spatial pattern suitability analysis. We integrated important ecological factors such as variability in environmental conditions, breeding requirements and home range movements. The habitat model was parameterized during a structured, iterative expert elicitation process and applied to a wet season and a dry season scenario. Model performance and uncertainty was evaluated against independent distributional data sets. Validation results showed that an expert-averaged model accurately predicted empirical wild pig presences in northern Australia for both seasonal scenarios. Model uncertainty was largely associated with different expert assumptions about wild pigs' resource-seeking home range movements. Habitat suitability varied considerably between seasons, retracting to resource-abundant rainforest, wetland and agricultural refuge areas during the dry season and expanding widely into surrounding grassland floodplains, savanna woodlands and coastal shrubs during the wet season. Overall, our model suggested that suitable wild pig habitat is less widely available in northern Australia than previously thought. Mapped results may be used to quantify impacts, assess risks, justify management investments and target control activities. Our methods are applicable to other wide-ranging species, especially in data-poor situations.

  15. Climate Change and Long-Term Fire Management Impacts on Australian Savanna

    Science.gov (United States)

    Scheiter, S.; Higgins, S. I.; Beringer, J.; Hutley, L. B.

    2014-12-01

    Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is therefore crucial. Due to the complexity of vegetation dynamics, the impacts of climate change and land use on savannas are highly uncertain. Here, we use a dynamic vegetation model, the aDGVM, to project how climate change and fire management influence vegetation in northern Australian savannas in 2100. We show that under future climate conditions, vegetation can store more carbon than under ambient conditions, despite substantial changes in fire regimes. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO2 fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season, influences vegetation dynamics and fire induced carbon and greenhouse gas emissions. Carbon sequestration is maximized with early dry season fires and long fire return intervals, grass productivity is maximized with late dry season fires at an intermediate fire return intervals. The study has implications for management policy across Australian savannas because it can contribute to identifying fire management strategies that optimize grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintain important ecosystem services of Australian savannas.

  16. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  17. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  18. A Spatio-Temporal Model for Forest Fire Detection Using MODIS Data

    Science.gov (United States)

    Li, Jing; Gong, Adu; Chen, Yanling; Wang, Jingmei

    2017-04-01

    Contextual algorithm and Muti-temporal analysis are currently the most widely used in fire detection based on remote sensing technology. However, muti-temporal analysis ignores the correlation between the inspected pixel and its neighboring pixels (spatial heterogeneity) (Equation (1)). Contextual algorithm only focuses on a single scene, and ignores the internal differences of the background pixels, which increases the commission error. Due to the muti-temporal analysis and contextual algorithm are used for different processes of fire detection, the combination between them will increase the accuracy for fire detection. BTti1- BT-it2- BT-it3 BTto1 = αBT ot2= βBT ot3=... (1) Where BTtin is the bright temperature (BT) of the valid neighboring pixel i of the inspected pixel o at time tn ,(i=1,2,…,N), N is the number of the valid neighboring pixels(Which depends on the condition of context), BT otn is the BT of o at time tn . In this paper, We coupled the muti-temporal analysis with contextual algorithm and proposed a region-adaptive spatio-temporal model for forest fire detection: (1) Pre-processing: Cloud, water, potential background fires and bright fire-free targets masking (refer to the context method); (2) Adjust the threshold for identifying potential fire-points for different study areas (Equation 2); (3) The spatial relationship of BT between the inspected pixels and its neighboring pixels in current time is build based on the spatial relationship of BT between them in the multiple previous images, and the BT of the inspected pixels is estimated based on the present spatial relationship and the BT of its neighboring pixels and using inverse distance weighted method (Equation 3). (4) The predicted BT value of the inspected pixel at a certain time is the weighted sum of the value obtained by (3) and the real BT value of the inspected pixel at the previous time (Equation 4); (5) Relative fire pixels judgment(refer to the context method). BT4 > BT4S,DBT > 10k

  19. Modeling seasonal behavior changes and disease transmission with application to chronic wasting disease.

    Science.gov (United States)

    Oraby, Tamer; Vasilyeva, Olga; Krewski, Daniel; Lutscher, Frithjof

    2014-01-07

    Behavior and habitat of wildlife animals change seasonally according to environmental conditions. Mathematical models need to represent this seasonality to be able to make realistic predictions about the future of a population and the effectiveness of human interventions. Managing and modeling disease in wild animal populations requires particular care in that disease transmission dynamics is a critical consideration in the etiology of both human and animal diseases, with different transmission paradigms requiring different disease risk management strategies. Since transmission of infectious diseases among wildlife depends strongly on social behavior, mechanisms of disease transmission could also change seasonally. A specific consideration in this regard confronted by modellers is whether the contact rate between individuals is density-dependent or frequency-dependent. We argue that seasonal behavior changes could lead to a seasonal shift between density and frequency dependence. This hypothesis is explored in the case of chronic wasting disease (CWD), a fatal disease that affects deer, elk and moose in many areas of North America. Specifically, we introduce a strategic CWD risk model based on direct disease transmission that accounts for the seasonal change in the transmission dynamics and habitats occupied, guided by information derived from cervid ecology. The model is composed of summer and winter susceptible-infected (SI) equations, with frequency-dependent and density-dependent transmission dynamics, respectively. The model includes impulsive birth events with density-dependent birth rate. We determine the basic reproduction number as a weighted average of two seasonal reproduction numbers. We parameterize the model from data derived from the scientific literature on CWD and deer ecology, and conduct global and local sensitivity analyses of the basic reproduction number. We explore the effectiveness of different culling strategies for the management of CWD

  20. A SEASONAL INFLUENZA THEORY AND MATHEMATICAL MODEL INCORPORATING METEOROLOGICAL AND SOCIO- BEHAVIORAL FACTORS

    Institute of Scientific and Technical Information of China (English)

    Zhixiang ZHOU

    2009-01-01

    On the basis of a comprehensive literature review and data analysis of global influenza surveillance,a transmission theory based numerical model is developed to understand the causative factors of influenza seasonality and the biodynamical mechanisms of seasonal flu. The model is applied to simulate the seasonality and weekly activity of influenza in different areas across all continents and climate zones around the world. Model solution and the good matches between model output and actual influenza indexes affirm that influenza activity is highly auto-correlative and relies on determinants of a broad spectrum. Internal dynamic resonance; variations of meteorological elements (solar radiation,precipitation and dewpoint); socio-behavioral influences and herd immunity to circulating strains prove to be the critical explanatory thctors of the seasonality and weekly activity of influenza. In all climate regions,influenza activity is proportional to the exponential of the number of days with precipitation and to the negative exponential of quarter power of sunny hours. Influenza activity is a negative exponential function of dewpoint in temperate and arctic regions and an exponential function of the absolute deviation of dewpoint from its annual mean in the tropics. Epidemics of seasonal influenza could be deemed as the consequence of the dynamic resonance and interactions of determinants. Early interventions (such as opportune vaccination,prompt social distancing,and maintaining incidence well below a baseline) are key to the control and prevention of seasonal influenza. Moderate amount of sunlight exposure or Vitamin D supplementation during rainy and short-day photoperiod seasons,more outdoor activities,and appropriate indoor dewpoint deserve great attention in influenza prevention. To a considerable degree,the study reveals the mechanism of inlluenza seasonality,demonstrating a potential for influenza activity projection. The concept and algorithm can be explored

  1. Novel Application of ALMANAC: Modelling a Functional Group, Exotic Warm-season Perennial Grasses

    OpenAIRE

    Kiniry, J. R.; Johnson, M. V. V.; Venuto, B. C. (deceased); Burson, B. L.

    2013-01-01

    Aim: To determine the efficacy of the ALMANAC model in simulating leaf canopy growth and biomass production of a plant functional group, specifically “exotic warm-season perennial grasses,” represented by buffelgrass [Pennisetum ciliare (L.) Link] and “Old World Bluestems” (Bothriochloa Kuntze, Capillipedium Stapf, and Dichanthium Willemet). Study Design: Leaf area index (LAI) over the growing season, the light extinction coefficient (k) for Beer's Law, and the rad...

  2. A model of reverse spike frequency adaptation and repetitive firing of subthalamic nucleus neurons.

    Science.gov (United States)

    Wilson, Charles J; Weyrick, Angela; Terman, David; Hallworth, Nicholas E; Bevan, Mark D

    2004-05-01

    Subthalamic nucleus neurons exhibit reverse spike-frequency adaptation. This occurs only at firing rates of 20-50 spikes/s and higher. Over this same frequency range, there is an increase in the steady-state frequency-intensity (F-I) curve's slope (the secondary range). Specific blockade of high-voltage activated calcium currents reduced the F-I curve slope and reverse adaptation. Blockade of calcium-dependent potassium current enhanced secondary range firing. A simple model that exhibited these properties used spike-triggered conductances similar to those in subthalamic neurons. It showed: 1) Nonaccumulating spike afterhyperpolarizations produce positively accelerating F-I curves and spike-frequency adaptation that is complete after the second spike. 2) Combinations of accumulating aftercurrents result in a linear F-I curve, whose slope depends on the relative contributions of inward and outward currents. Spike-frequency adaptation can be gradual. 3) With both accumulating and nonaccumulating aftercurrents, primary and secondary ranges will be present in the F-I curve. The slope of the primary range is determined by the nonaccumulating conductance; the accumulating conductances govern the secondary range. The transition is determined by the relative strengths of accumulating and nonaccumulating currents. 4) Spike-threshold accommodation contributes to the secondary range, reducing its slope at high firing rates. Threshold accommodation can stabilize firing when inward aftercurrents exceed outward ones. 5) Steady-state reverse adaptation results when accumulated inward aftercurrents exceed outward ones. This requires spike-threshold accommodation. Transient speedup arises when inward currents are smaller than outward ones at steady state, but accumulate more rapidly. 6) The same mechanisms alter firing in response to irregular patterns of synaptic conductances, as cell excitability fluctuates with changes in firing rate.

  3. Seasonal Forecasting of Agriculture Gross Domestic Production in Iran: Application of Periodic Autoregressive Model

    Directory of Open Access Journals (Sweden)

    Mohammad Ghahremanzadeh

    2014-06-01

    Full Text Available Agriculture as one of the major economic sectors of Iran, has an important role in Gross Domestic Production by providing about 14% of GDP. This study attempts to forecast the value of the agriculture GDP using Periodic Autoregressive model (PAR, as the new seasonal time series techniques. To address this aim, the quarterly data were collected from March 1988 to July 1989. The collected data was firstly analyzed using periodic unit root test Franses & Paap (2004. The analysis found non-periodic unit root in the seasonal data. Second, periodic seasonal behavior (Boswijk & Franses, 1996 was examined. The results showed that periodic autoregressive model fits agriculture GDP well. This makes an accurate forecast of agriculture GDP possible. Using the estimated model, the future value of quarter agricultural GDP from March 2011 to July 2012was forecasted. With consideration to the fair fit of this model with agricultural GDP, It is recommended to use periodic autoregressive model for the future studies.

  4. Development of a model to predict ash transport and water pollution risk in fire-affected environments

    Science.gov (United States)

    Neris, Jonay; Elliot, William J.; Doerr, Stefan H.; Robichaud, Peter R.

    2017-04-01

    An estimated that 15% of the world's population lives in volcanic areas. Recent catastrophic erosion events following wildfires in volcanic terrain have highlighted the geomorphological instability of this soil type under disturbed conditions and steep slopes. Predicting the hydrological and erosional response of this soils in the post-fire period is the first step to design and develop adequate actions to minimize risks in the post-fire period. In this work we apply, for the first time, the Water Erosion Prediction Project model for predicting erosion and runoff events in fire-affected volcanic soils in Europe. Two areas affected by wildfires in 2015 were selected in Tenerife (Spain) representative of different fire behaviour (downhill surface fire with long residence time vs uphill crown fire with short residence time), severity (moderate soil burn severity vs light soil burn severity) and climatic conditions (average annual precipitation of 750 and 210 mm respectively). The actual erosion processes were monitored in the field using silt fences. Rainfall and rill simulations were conducted to determine hydrologic, interrill and rill erosion parameters. The soils were sampled and key properties used as model input, evaluated. During the first 18 months after the fire 7 storms produced runoff and erosion in the selected areas. Sediment delivery reached 5.4 and 2.5 Mg ha-1 respectively in the first rainfall event monitored after the fire, figures comparable to those reported for fire-affected areas of the western USA with similar climatic conditions but lower than those showed by wetter environments. The validation of the WEPP model using field data showed reasonable estimates of hillslope sediment delivery in the post-fire period and, therefore, it is suggested that this model can support land managers in volcanic areas in Europe in predicting post-fire hydrological and erosional risks and designing suitable mitigation treatments.

  5. More efficient operation of coal fired power plants using nonlinear models

    Energy Technology Data Exchange (ETDEWEB)

    Bulsari, A.; Wemberg, A.; Anttila, A.; Multas, A. [Nonlinear Solution Oy, Turku (Finland)

    2010-07-15

    Abstract: Coal fired power plants should be operated in such a way that the emissions are kept clearly below desired limits and the combustion efficiency is as high as can be achieved. This requires a lot of quantitative knowledge of the effects of the process variables and fuel characteristics on the emissions and efficiency. Mathematical models can be developed with different approaches. Physical models are too slow to be used for on-line process guidance, and require too many assumptions and simplifications. It is feasible to develop empirical or semi-empirical models from normal production data of the power plant. This technical communication explains with an example of a coal fired power plant how nonlinear models are an effective means of determining the best operating conditions at any given load for a given type of coal.

  6. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  7. Comparison Between Surf and Multi-Shock Forest Fire High Explosive Burn Models

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Nicholas Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-18

    PAGOSA1 has several different burn models used to model high explosive detonation. Two of these, Multi-Shock Forest Fire and Surf, are capable of modeling shock initiation. Accurately calculating shock initiation of a high explosive is important because it is a mechanism for detonation in many accident scenarios (i.e. fragment impact). Comparing the models to pop-plot data give confidence that the models are accurately calculating detonation or lack thereof. To compare the performance of these models, pop-plots2 were created from simulations where one two cm block of PBX 9502 collides with another block of PBX 9502.

  8. A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing

    Directory of Open Access Journals (Sweden)

    William eLennon

    2014-12-01

    Full Text Available While the anatomy of the cerebellar microcircuit is well studied, how it implements cerebellar function is not understood. A number of models have been proposed to describe this mechanism but few emphasize the role of the vast network Purkinje cells (PKJs form with the molecular layer interneurons (MLIs – the stellate and basket cells. We propose a model of the MLI-PKJ network composed of simple spiking neurons incorporating the major anatomical and physiological features. In computer simulations, the model reproduces the irregular firing patterns observed in PKJs and MLIs in vitro and a shift toward faster, more regular firing patterns when inhibitory synaptic currents are blocked. In the model, the time between PKJ spikes is shown to be proportional to the amount of feedforward inhibition from an MLI on average. The two key elements of the model are: (1 spontaneously active PKJs and MLIs due to an endogenous depolarizing current, and (2 adherence to known anatomical connectivity along a parasagittal strip of cerebellar cortex. We propose this model to extend previous spiking network models of the cerebellum and for further computational investigation into the role of irregular firing and MLIs in cerebellar learning and function.

  9. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned

    Science.gov (United States)

    Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster

    2012-01-01

    Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...

  10. An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions

    Science.gov (United States)

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuk; John M. Little; Mike D. Flannigan; Lynn M. Gowman; Max A. Moritz

    2014-01-01

    Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of...

  11. Assessing the Firing Properties of the Electrically Stimulated Auditory Nerve Using a Convolution Model.

    Science.gov (United States)

    Strahl, Stefan B; Ramekers, Dyan; Nagelkerke, Marjolijn M B; Schwarz, Konrad E; Spitzer, Philipp; Klis, Sjaak F L; Grolman, Wilko; Versnel, Huib

    2016-01-01

    The electrically evoked compound action potential (eCAP) is a routinely performed measure of the auditory nerve in cochlear implant users. Using a convolution model of the eCAP, additional information about the neural firing properties can be obtained, which may provide relevant information about the health of the auditory nerve. In this study, guinea pigs with various degrees of nerve degeneration were used to directly relate firing properties to nerve histology. The same convolution model was applied on human eCAPs to examine similarities and ultimately to examine its clinical applicability. For most eCAPs, the estimated nerve firing probability was bimodal and could be parameterised by two Gaussian distributions with an average latency difference of 0.4 ms. The ratio of the scaling factors of the late and early component increased with neural degeneration in the guinea pig. This ratio decreased with stimulation intensity in humans. The latency of the early component decreased with neural degeneration in the guinea pig. Indirectly, this was observed in humans as well, assuming that the cochlear base exhibits more neural degeneration than the apex. Differences between guinea pigs and humans were observed, among other parameters, in the width of the early component: very robust in guinea pig, and dependent on stimulation intensity and cochlear region in humans. We conclude that the deconvolution of the eCAP is a valuable addition to existing analyses, in particular as it reveals two separate firing components in the auditory nerve.

  12. Modelled seasonal forecasts of snow water equivalent and runoff in alpine catchments

    Science.gov (United States)

    Förster, Kristian; Hanzer, Florian; Schöber, Johannes; Huttenlau, Matthias; Achleitner, Stefan; Strasser, Ulrich

    2016-04-01

    Seasonal forecasts of water balance components are becoming increasingly important for hydrological applications. These forecasts are typically derived from coupled atmosphere-ocean climate models, which enable physically based seasonal forecasts. In mountainous regions, however, topography is complex whilst typical spatial resolutions of the climate models are still comparably coarse, i.e in the data, ridges and valleys are not represented with sufficient accuracy. Therefore, seasonal predictions of atmospheric variables require consideration of representative gradients. We present first results of seasonal forecasts and re-forecasts processed by the NCEP (National Centers for Environmental Prediction) Climate Forecast System version 2 (CFSv2). These are prepared for monthly time steps in order to be used for ensemble runs of water balance simulation using the Alpine Water balance And Runoff Estimation model (AWARE). This model has been designed for monthly seasonal predictions in ice- and snowmelt dominated catchments. The study area is the Inn catchment in Tyrol/Austria, including its headwaters in Switzerland. Results are evaluated for both anomalies of meteorological input data (temperature and precipitation), as well as balance components including snow water equivalent and runoff, both simulated with AWARE. Based on model skill evaluations derived from forecasts and observations, the model chain CFSv2 - AWARE proves helpful to analyse possible future hydrological system states of mountainous catchments with emphasis on spatio-temporal snow cover evolution.

  13. Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr

    Directory of Open Access Journals (Sweden)

    Wagner Teigi Igarashi

    2016-10-01

    Full Text Available Predictive models of Asian soybean rust have been described by researchers to estimate favorable responses to epidemics. The prediction strategies are based on weather data obtained during period when initial symptoms of the disease are observed. Therefore, this study will evaluate the app