WorldWideScience

Sample records for modelisation mathematique sciences

  1. La modelisation mathematique dans l'enseignement de la chimie des gaz a des eleves de la cinquieme annee du secondaire

    Science.gov (United States)

    Gauthier, Diane

    Les problemes d'enseignement de la chimie des gaz parfaits sont donc importants. Si plusieurs etudes ont ete realisees dans le but d'identifier et d'interpreter ces problemes, aucune recherche, a notre connaissance, n'a ete realisee sur l'enseignement des lois sur les gaz parfaits. Notre recherche sur l'enseignement est donc pionniere. Elle a pour objectif general de construire et d'analyser une sequence d'enseignement de la chimie des gaz comportant diverses situations de modelisation mathematique des conduites des gaz. Les principaux objectifs specifiques sont les suivants: (1) identifier et caracteriser les situations qui provoquent une evolution des conceptions naives des eleves, evolution vers des connaissances plus adequate sur les gaz; (2) identifier et caractEriser les situations qui provoquent une evolution des connaissances mathematiques des eleves leur permettant d'interpreter convenablement les resultats des experiences, d'eprouver leurs conceptions, de donner un sens aux notions et aux relations impliquees dans les lois des gaz parfaits, lois de Boyle-Mariotte et Gay-Lussac. Une sequence d'enseignement comportant huit situations est d'eleves de secondaire V. La construction de ces situations est orientee par les recherches sur les conceptions naives des eleves, par les etudes sur l'evolution historique des conceptions sur les gaz et des pratiques scientifiques, ainsi que par les etudes theoriques et empiriques realisees en didactique des sciences et des mathematiques. La methodologie de l'ingenierie didactique (Artigue, 1998) qui constitue une application de la theorie des situations didactiques (Brousseau, 1986) est utilisee dans la construction et l'analyse des situations d'enseignement. Une analyse a priori de chacune des situations d'enseignement est effectuee; elle a pour but dexpliquer les choix des taches qui font partie des situations et de preciser la gestion didactique des situations. Diverses situations d'enseignement de la chimie ont ainsi

  2. Le transfert de connaissances entre les mathematiques et les sciences. Une etude exploratoire aupres d'eleves de 4e secondaire

    Science.gov (United States)

    Samson, Ghislain

    2003-06-01

    Au moment ou dans plusieurs pays on travaille a refondre les programmes d'etudes, tant au primaire qu'au secondaire, l'interet pour le transfert renait. Un des concepts fondamentaux en apprentissage consiste en l'habilete a reutiliser de facon consciente et efficace un acquis d'une situation a une autre situation. Cette recherche emane de preoccupations professionnelles au moment ou le chercheur etait enseignant au secondaire. Au cours de ces annees, il lui a ete possible de constater que plusieurs eleves percevaient difficilement les liens presents entre les disciplines mathematiques et scientifiques. Des travaux en psychologie cognitive et plus particulierement selon une perspective du traitement de l'information ont servi de cadre de reference pour evaluer et analyser les capacites de transfert aupres d'eleves de 4e secondaire. Ce cadre de reference permet de formuler le principal objectif qui est de mieux comprendre le processus de transfert chez des eleves en situation de resolution de problemes scientifiques. Cette these s'interesse donc au transfert en tant que phenomene important du processus d'apprentissage au sens de l'integration. La methode de recherche choisie, de nature qualitative, est principalement axee sur l'evaluation de la capacite a transferer des connaissances lors d'une epreuve et d'un entretien. Pour evaluer ce potentiel de transfert, nous avons elabore deux outils: une epreuve en mathematiques et en sciences et un guide d'entretien. Pour la passation de l'epreuve, le chercheur a pu compter sur la collaboration de 130 sujets provenant de deux ecoles. L'entretien complete la prise de donnees avec 13 sujets ayant accepte de poursuivre l'etude. Les donnees recueillies par ces instruments font ensuite l'objet d'une analyse de contenu. En premier lieu, les verbatims de l'epreuve et de l'entretien ont ete transcrits, puis codifies. La correction des reponses fournies pour les problemes resolus s'est faite a partir d'une grille d

  3. Environment modeling and mathematics; Modelisation de l'environnement et mathematiques

    Energy Technology Data Exchange (ETDEWEB)

    Armand, P.; Renard, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Environmental modeling is a permanently expanding field of studies and research, relying on numerous mathematical techniques. Some of them are illustrated here, in the framework of the pollutant transport in the atmosphere and hydro-geosphere, two extensively developed subjects at CEA, both for compliance with regulatory requirements, and for impact assessment of gaseous or liquid accidental releases. Our paper deals with meteorological forecast, hydrogeology, fluid mechanics, multiple space and time scales, data assimilation, optimization, geo-statistics and uncertainties. (authors)

  4. Modelisation de la synthese reactive de poudres ultrafines dans un reacteur a plasma thermique

    Science.gov (United States)

    Desilets, Martin

    La presente these s'inscrit dans le cadre de la modelisation mathematique des ecoulements a plasmas thermiques inertes et reactifs. Elle vise plus precisement a combler les lacunes des modeles existants en portant une attention particuliere aux phenomenes de transport multicomposant et a la prediction des transformations chimiques. Pour repondre a ces attentes et ainsi poursuivre le developpement dans ce domaine, un modele global a ete developpe. Il combine la resolution d'equations conservatives pour la masse, l'energie et le momentum. La generation d'un plasma inductif (h.f ) y est traitee au moyen d'equations representant les champs electromagnetiques. La nucleation et la croissance de poudres ultrafines sont incluses dans le modele via l'analyse des principaux moments de la distribution des tailles de particules. Enfin, tous les phenomenes physico-chimiques d'importance dans un milieu comme les plasmas thermiques, de meme que lem interactions, sont consideres. Le modele est applique ici a l'analyse de trois problematiques differentes et complementaires. La premiere concerne l'etude du melange gazeux d'un jet froid (He, N 2 ou O2), injecte au coeur d'une decharge d'argon/hydrogene ou d'argon/oxygene. La comparaison des predictions du modele avec des mesures experimentales obtenues par une sonde enthalpique permet une validation partielle de ce dernier. La deuxieme problematique a trait a l'etude numerique de la pyrolyse du methane en reacteur a plasma h.f. Elle met en evidence les difficultes de convergence de la methode numerique lorsque appliquee a la resolution d'ecoulements reactifs a haute temperature. Finalement, le dernier sujet aborde dans cette these, soit l'analyse systematique des principales conditions d'operation d'un reacteur h.f utilise pour la synthese reactive de poudres ultrafines de silicium, engage tous les elements theoriques du modele. Il implique en effet la decomposition thermique d'un precurseur gazeux, le tetrachlorure de silicium, la

  5. Modeling and numerical study of two phase flow; Modelisation et etude numerique d'ecoulements diphasiques: 1- Modelisation d'un ecoulement homogene equilibre 2- Modelisation des collisions entre gouttelettes a l'aide d'un modele simplifie de type BGK

    Energy Technology Data Exchange (ETDEWEB)

    Champmartin, A.

    2011-02-28

    suivre une vitesse relative entre les deux phases et de prendre en compte deux vitesses) et sont supposees 'a l'equilibre en temperature et pression. Cette partie du manuscrit est composee de la derivation des equations, de l'ecriture d'un schema numerique associe a ce jeu d'equations, d'une etude d'ordre de ce schema ainsi que de simulations. Une etude mathematique de ce modele (hyperbolicite dans un cadre simplifie, stabilite du systeme lineaire autour d'un etat constant) a ete realisee dans un cadre ou le gaz est suppose barotrope. La seconde partie de ce manuscrit est consacree a la modelisation de l'effet de collisions inelastiques sur les gouttelettes lorsque l'on se place a un temps de simulation beaucoup plus court, pour lequel les gouttelettes ne peuvent plus etre vues comme un fluide. Pour modeliser ces collisions, on construit un modele simplifie (moins couteux en temps) de type BGK permettant de reproduire le comportement en temps de certains moments sur les gouttelettes. Ces moments sont choisis pour etre representatifs de l'effet des collisions sur ces gouttelettes, a savoir une thermalisation en vitesse et energie. Ce modele est discretise avec une methode particulaire et des resultats numeriques sont donnes en comparaison avec ceux obtenus avec un modele resolvant directement l'equation de Boltzmann homogene. (auteur)

  6. Modelisation of the SECMin molten salts environment

    Science.gov (United States)

    Lucas, M.; Slim, C.; Delpech, S.; di Caprio, D.; Stafiej, J.

    2014-06-01

    We develop a cellular automata modelisation of SECM experiments to study corrosion in molten salt media for generation IV nuclear reactors. The electrodes used in these experiments are cylindrical glass tips with a coaxial metal wire inside. As the result of simulations we obtain the current approach curves of the electrodes with geometries characterized by several values of the ratios of glass to metal area at the tip. We compare these results with predictions of the known analytic expressions, solutions of partial differential equations for flat uniform geometry of the substrate. We present the results for other, more complicated substrate surface geometries e. g. regular saw modulated surface, surface obtained by Eden model process, ...

  7. Analyse de la motivation pour les mathematiques d'eleves du secondaire participant a une activite de programmation informatique

    Science.gov (United States)

    Ouellette, Jean-Michel

    Au Quebec, le decrochage scolaire cause par un manque de motivation de la part des eleves est une preoccupation actuelle. Dans une societe de savoirs ou les technologies prennent une place de plus en plus grande, il apparait important d'explorer toutes les pistes de travail quant a l'amelioration de la motivation scolaire des jeunes. Plus precisement, sachant qu'il existe des liens concrets entre la programmation informatique et les mathematiques, nous avons analyse l'apport possible de l'apprentissage de la programmation informatique a la motivation pour l'apprentissage des mathematiques. Trois eleves de troisieme secondaire ont participe a cette etude multicas. Selon les resultats d'analyse, tous les eleves ont vecu une amelioration de leur motivation a apprendre les mathematiques. A la lumiere de l'analyse de ces resultats, nous proposons une explication relativement aux liens possibles entre la participation des eleves a une activite parascolaire de programmation informatique et l'amelioration de leur motivation pour l'apprentissage des mathematiques.

  8. Remarques sur l'expression de la g\\'en\\'eralit\\'e en math\\'ematiques

    CERN Document Server

    Herreman, Alain

    2009-01-01

    This paper gives a condition of the expression of generality in mathematics from the application of L\\"owenheim-Skolem theorem to Zermelo's axioms. It gives an example of an "expression problem" from Gauss's Disquisitiones Arithmeticae and caracterizes the used of sets in it. ----- L'article d\\'egage une condition de l'expression de la g\\'en\\'eralit\\'e en math\\'ematiques \\`a partir de l'application du th\\'eor\\`eme de L\\"owenheim-Skolem aux axiomes de Zermelo. Il donne un exemple de "probl\\`eme d'expression" \\`a partir des Disquisitiones Arithmeticae de Gauss, d\\'egageant ainsi une condition du recours aux ensembles.

  9. Relativit\\'e g\\'en\\'erale (d'apr\\`es M.Vaugon) et quelques probl\\`emes math\\'ematiques qui en sont issus

    CERN Document Server

    Humbert, Emmanuel

    2010-01-01

    This text aims to explain general relativity to geometers who have no knowledge about physics. Using handwritten notes by Michel Vaugon, we first construct the bases of the theory. Then, we describe the physical context of some mathematical problems coming from general relativity. ----- Ce texte s'adresse aux g\\'eom\\`etres, qui veulent comprendre la relativit\\'e g\\'en\\'erale mais qui n'ont aucune connaissance en physique. Nous expliquons d'abord les bases de la th\\'eorie en nous appuyant sur des notes manuscrites de Michel Vaugon et nous abordons ensuite quelques probl\\`emes math\\'ematiques issus de la relativit\\'e et que nous repla\\c{c}ons dans un contexte physique.

  10. Sans distinction de sexe? Les carrieres universitaires en sciences mathematiques (Without Regard to Sex? University Careers in Mathematics).

    Science.gov (United States)

    Mura, Roberta

    1991-01-01

    A study of Canadian college mathematics faculty compared 55 men and 55 women teachers on social background, family status, education, careers, professional difficulties related to sex, and attitudes toward employment equity programs. More similarities than differences were found. Differences were noted in 10 areas of demographics and professional…

  11. Modelisation of leukocyte adhesion on a fibrinogen coated surface in static conditions.

    Science.gov (United States)

    Labrador, V; Legrand, S; Muller, S; Carl, P; Senger, B; Voegel, J C; Latger-Cannard, V; Stoltz, J F

    1999-01-01

    The adhesion of polymorphonuclear leukocytes (PMNs) on the vascular endothelium is a complex process that occurs during biological and pathological events and involves a large family of molecules. This phenomenom could be approached by a modelisation study of the adhesion of PMNs on a biological substrate, fibrinogen. Two different physiological conditions were tested such as the activated state of PMNs with a synthetic pro-inflammatory activator (N-Formyl-Methionyl-Leucyl-Phenylalanine, FMLP). The activated state of PMNs was both quantified by flow cytometry and controlled by fluorescence microscopy. The results suggest that quiescent PMNs deposit in accordance with the ballistic deposition model. The preliminary results obtained with FMLP-stimulated PMNs show a different deposit process compared to quiescent PMNs but do not allow to determine exactly a deposition model.

  12. New modelling method for fast reactor neutronic behaviours analysis; Nouvelles methodes de modelisation neutronique des reacteurs rapides de quatrieme Generation

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, P.

    2011-05-23

    Due to safety rules running on fourth generation reactors' core development, neutronics simulation tools have to be as accurate as never before. First part of this report enumerates every step of fast reactor's neutronics simulation implemented in current reference code: ECCO. Considering the field of fast reactors that meet criteria of fourth generation, ability of models to describe self-shielding phenomenon, to simulate neutrons leakage in a lattice of fuel assemblies and to produce representative macroscopic sections is evaluated. The second part of this thesis is dedicated to the simulation of fast reactors' core with steel reflector. These require the development of advanced methods of condensation and homogenization. Several methods are proposed and compared on a typical case: the ZONA2B core of MASURCA reactor. (author) [French] Les criteres de surete qui regissent le developpement de coeurs de reacteurs de quatrieme generation implique l'usage d'outils de calcul neutronique performants. Une premiere partie de la these reprend toutes les etapes de modelisation neutronique des reacteurs rapides actuellement d'usage dans le code de reference ECCO. La capacite des modeles a decrire le phenomene d'autoprotection, a representer les fuites neutroniques au niveau d'un reseau d'assemblages combustibles et a generer des sections macroscopiques representatives est appreciee sur le domaine des reacteurs rapides innovants respectant les criteres de quatrieme generation. La deuxieme partie de ce memoire se consacre a la modelisation des coeurs rapides avec reflecteur acier. Ces derniers necessitent le developpement de methodes avancees de condensation et d'homogenisation. Plusieurs methodes sont proposees et confrontees sur un probleme de modelisation typique: le coeur ZONA2B du reacteur maquette MASURCA

  13. Modelisation of Nitrification under Inhibited Environment by Moving Bed Bio-Film Reactor Technique

    Directory of Open Access Journals (Sweden)

    Pham T.H. Duc

    2010-01-01

    Full Text Available Problem statement: Nitrification by Moving Bed Biofilm Reactor (MBBR involves physical, chemical and biological processes to remove toxic ammonia for aquaculture that are governed by a variety of parameters, like substrate and dissolved oxygen concentrations, organic matters, temperature, pH, alkalinity and turbulence level, which impact negatively or positively on nitrification kinetics. Approach: The situation becomes more serious as the reaction rate is inhibited by low ammonium concentration and high salinity. That problems usually occur in treatment systems of aquatic breeding hatcheries. Results: In this study, experiments have been conducted to evaluate the impact of salinity on nitrification rate through kinetic constant (k and reaction order (n based on general equation v = kCn. Moving bed biofilm reactor was operated continuously at same initial amounts of nitrogen and Phosphorus very low (oligotrophic conditions. Firstly, over view the impact of salinity on kinetic rate to modeling that effect k and n to modelisation that affects and obtained the impact of salinity content in the reaction medium (X and the acclimatization phase (Y on the kinetic constant (k = 0.097 e (-0.0003Yƒ{0.0346X and on the kinetic order (n = (0.0002Y-0.0195 X-0.009Y + 1.2382. Conclusion/Recommendations: Results from kinetic analysis allowed the prediction of the reaction rate and reaction yield with rather high accuracy, helping the design and operation of a biofilter under practical conditions.

  14. Biological Rhythms Modelisation of Vigilance and Sleep in Microgravity State with COSINOR and Volterra's Kernels Methods

    Science.gov (United States)

    Gaudeua de Gerlicz, C.; Golding, J. G.; Bobola, Ph.; Moutarde, C.; Naji, S.

    2008-06-01

    The spaceflight under microgravity cause basically biological and physiological imbalance in human being. Lot of study has been yet release on this topic especially about sleep disturbances and on the circadian rhythms (alternation vigilance-sleep, body, temperature...). Factors like space motion sickness, noise, or excitement can cause severe sleep disturbances. For a stay of longer than four months in space, gradual increases in the planned duration of sleep were reported. [1] The average sleep in orbit was more than 1.5 hours shorter than the during control periods on earth, where sleep averaged 7.9 hours. [2] Alertness and calmness were unregistered yield clear circadian pattern of 24h but with a phase delay of 4h.The calmness showed a biphasic component (12h) mean sleep duration was 6.4 structured by 3-5 non REM/REM cycles. Modelisations of neurophysiologic mechanisms of stress and interactions between various physiological and psychological variables of rhythms have can be yet release with the COSINOR method. [3

  15. Modelisation of strains measured by X-ray diffraction in composites with spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Durand, L.; Lavelle, B.; Drira-Halouani, R.; Altibelli, A. [CNRS, Toulouse (France). CEMES

    2000-07-01

    In a particle composite, elaboration residual stresses have two main origins : differences between thermal expansion coefficients of particles and matrix on the one hand, and volume changes induced by reactions at particles / matrix interface on the other hand. We have compared calculated thermal stresses, and experimental measures on two composites, one presenting an interface reactivity and the other none. The two composites with a nickel matrix and spherical particles either of silica or of alumina have been sintered at 1400 C and analyzed between room temperature and 240 C by X-ray diffraction (Cu K{alpha} radiation). In the semi-infinite composite model, spherical particles have been distributed at the points of a simple cubic lattice. Modelised thickness is larger in comparison of the thickness analyzed by X-ray diffraction. Calculations are based on elastic theory and the difference of coefficients of thermal expansion between the matrix and the particles. Materials are supposed isotropic. At a given temperature, the strain to be observed by X-ray diffraction in a given directions calculated from the distribution of strains in matrix; absorption phenomena are taken into account. Effects of the free surface and of interfacial reactivity are thus shown off. (orig.)

  16. Programme des examens-Diplome de 12e annee. Mathematiques & Sciences. Annee scolaire 1986-87 (Grade 12 Diploma Examination. Mathematics & Sciences. Academic Year 1986-87).

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Student Evaluation and Data Processing Branch.

    Information about the diploma examinations in Mathematics 30, Biology 30, Chemistry 30, and Physics 30 that will be administered during January, June, and August, 1987, is provided in this bulletin. Topics explained include: (1) general format of the examination (stating the content, emphasis, and time allotments for the examinations); (2)…

  17. Modelisation de l'historique d'operation de groupes turbine-alternateur

    Science.gov (United States)

    Szczota, Mickael

    Because of their ageing fleet, the utility managers are increasingly in needs of tools that can help them to plan efficiently maintenance operations. Hydro-Quebec started a project that aim to foresee the degradation of their hydroelectric runner, and use that information to classify the generating unit. That classification will help to know which generating unit is more at risk to undergo a major failure. Cracks linked to the fatigue phenomenon are a predominant degradation mode and the loading sequences applied to the runner is a parameter impacting the crack growth. So, the aim of this memoir is to create a generator able to generate synthetic loading sequences that are statistically equivalent to the observed history. Those simulated sequences will be used as input in a life assessment model. At first, we describe how the generating units are operated by Hydro-Quebec and analyse the available data, the analysis shows that the data are non-stationnary. Then, we review modelisation and validation methods. In the following chapter a particular attention is given to a precise description of the validation and comparison procedure. Then, we present the comparison of three kind of model : Discrete Time Markov Chains, Discrete Time Semi-Markov Chains and the Moving Block Bootstrap. For the first two models, we describe how to take account for the non-stationnarity. Finally, we show that the Markov Chain is not adapted for our case, and that the Semi-Markov chains are better when they include the non-stationnarity. The final choice between Semi-Markov Chains and the Moving Block Bootstrap depends of the user. But, with a long term vision we recommend the use of Semi-Markov chains for their flexibility. Keywords: Stochastic models, Models validation, Reliability, Semi-Markov Chains, Markov Chains, Bootstrap

  18. Beds Simulator 1.0: a software for the modelisation of the number of beds required for a hospital department.

    Science.gov (United States)

    Nguyen, Jean-Michel; Six, Patrick; Antonioli, Daniel; Lombrail, Pierre; Le Beux, Pierre

    2003-01-01

    The determination of the number of beds needed for a hospital department is a complex problem that try to take into account efficiency, forecasting of needs, appropriateness of stays. Health authority used methods based on ratios that do not take into account local specificities and use rather to support an economic decision. On the other side, the models developed are too specific to be applied to all type of hospital department. Moreover, all the solutions depend on the LoS (Length of Stay). We have developed a non parametric method to solve this problem. This modelisation was successfully tested in teaching and non teaching hospitals, for an Intensive Care Unit, two Internal Medicine and a surgical departments. A software easy to use was developed, working on Windows available on our website www.sante.univ-nantes.fr/med/stat/.

  19. Modelisation of the contribution of the Na/Ca exchanger to cell membrane potential and intracellular ion concentrations.

    Science.gov (United States)

    Bahlouli, S; Hamdache, F; Riane, H

    2008-09-01

    Modelisation plays a significant role in the study of ion transfer through the cell membrane and in the comprehension of cellular excitability. We were interested in the selective ion transfers through the K(Ca), Na(v), Ca(v) channels and the Na/Ca exchanger (NCX). The membrane behaves like an electric circuit because of the existence of ion gradients maintained by the cell. The non-linearity of this circuit gives rise to complex oscillations of the membrane potential. By application of the finite difference method (FDM) and the concept of percolation we studied the role of the NCX in the regulation of the intracellular Ca(2+) concentration and the oscillations of the membrane potential. The fractal representation of the distribution of active channels allows us to follow the diffusion of intracellular Ca(2+) ions. These calculations show that the hyperpolarization and the change in the burst duration of the membrane potential are primarily due to the NCX.

  20. Adsorption de gaz sur les materiaux microporeux modelisation, thermodynamique et applications

    Science.gov (United States)

    Richard, Marc-Andre

    2009-12-01

    Nos travaux sur l'adsorption de gaz dans les materiaux microporeux s'inscrivent dans le cadre des recherches visant a augmenter l'efficacite du stockage de l'hydrogene a bord des vehicules. Notre objectif etait d'etudier la possibilite d'utiliser l'adsorption afin d'ameliorer l'efficacite de la liquefaction de l'hydrogene des systemes a petite echelle. Nous avons egalement evalue les performances d'un systeme de stockage cryogenique de l'hydrogene base sur la physisorption. Comme nous avons affaire a des plages de temperatures particulierement etendues et a de hautes pressions dans la region supercritique du gaz, nous avons du commencer par travailler sur la modelisation et la thermodynamique de l'adsorption. La representation de la quantite de gaz adsorbee en fonction de la temperature et de la pression par un modele semi-empirique est un outil utile pour determiner la masse de gaz adsorbee dans un systeme mais egalement pour calculer les effets thermiques lies a l'adsorption. Nous avons adapte le modele Dubinin-Astakhov (D-A) pour modeliser des isothermes d'adsorption d'hydrogene, d'azote et de methane sur du charbon actif a haute pression et sur une grande plage de temperatures supercritiques en considerant un volume d'adsorption invariant. Avec cinq parametres de regression (incluant le volume d'adsorption Va), le modele que nous avons developpe permet de tres bien representer des isothermes experimentales d'adsorption d'hydrogene (de 30 a 293 K, jusqu'a 6 MPa), d'azote (de 93 a 298 K, jusqu'a 6 MPa) et de methane (de 243 a 333 K, jusqu'a 9 MPa) sur le charbon actif. Nous avons calcule l'energie interne de la phase adsorbee a partir du modele en nous servant de la thermodynamique des solutions sans negliger le volume d'adsorption. Par la suite, nous avons presente les equations de conservation de la niasse et de l'energie pour un systeme d'adsorption et valide notre demarche en comparant des simulations et des tests d'adsorption et de desorption. En plus de l

  1. Composantes Privees et Publiques du Travail de l'Eleve en Situation de Devoir Surveille de Mathematiques.

    Science.gov (United States)

    Coppe, Sylvie

    1998-01-01

    Presents research on writing assessment situations in mathematics classes with high school students who are following a science-oriented curriculum. Emphasizes the importance of taking cognitive and didactic points of view into account for the analysis of students' work in problem solving. Contains 21 references. (Author/ASK)

  2. Regard pluriel sur l'enseignement et l'apprentissage des mathematiques a l'ecole primaire.

    Science.gov (United States)

    Lopez, Lucie Mottier

    The texts gathered in this document come from work done in the framework of two postgraduate courses at the Faculte des Sciences de l'Education, Geneva: (1) "Learning: Meta-cognitive et socio-cognitive dimensions" course; and (2) "Didactical analysis of the interactions in class: Case study of mathematics at school" course. The problematics dealt…

  3. Modelisation de la diffusion sur les surfaces metalliques: De l'adatome aux processus de croissance

    Science.gov (United States)

    Boisvert, Ghyslain

    Cette these est consacree a l'etude des processus de diffusion en surface dans le but ultime de comprendre, et de modeliser, la croissance d'une couche mince. L'importance de bien mai triser la croissance est primordiale compte tenu de son role dans la miniaturisation des circuits electroniques. Nous etudions ici les surface des metaux nobles et de ceux de la fin de la serie de transition. Dans un premier temps, nous nous interessons a la diffusion d'un simple adatome sur une surface metallique. Nous avons, entre autres, mis en evidence l'apparition d'une correlation entre evenements successifs lorsque la temperature est comparable a la barriere de diffusion, i.e., la diffusion ne peut pas etre associee a une marche aleatoire. Nous proposons un modele phenomenologique simple qui reproduit bien les resultats des simulations. Ces calculs nous ont aussi permis de montrer que la diffusion obeit a la loi de Meyer-Neldel. Cette loi stipule que, pour un processus active, le prefacteur augmente exponentiellement avec la barriere. En plus, ce travail permet de clarifier l'origine physique de cette loi. En comparant les resultats dynamiques aux resultats statiques, on se rend compte que la barriere extraite des calculs dynamiques est essentiellement la meme que celle obtenue par une approche statique, beaucoup plus simple. On peut donc obtenir cette barriere a l'aide de methodes plus precises, i.e., ab initio, comme la theorie de la fonctionnelle de la densite, qui sont aussi malheureusement beaucoup plus lourdes. C'est ce que nous avons fait pour plusieurs systemes metalliques. Nos resultats avec cette derniere approche se comparent tres bien aux resultats experimentaux. Nous nous sommes attardes plus longuement a la surface (111) du platine. Cette surface regorge de particularites interessantes, comme la forme d'equilibre non-hexagonale des i lots et deux sites d'adsorption differents pour l'adatome. De plus, des calculs ab initio precedents n'ont pas reussi a confirmer la

  4. Modelisation and Simulation of Heat and Mass Transfers during Solar Drying of Sewage Sludge with Introduction of Real Climatic Conditions

    Directory of Open Access Journals (Sweden)

    N. Ben Hassine

    2017-01-01

    Full Text Available Sewage sludge presents a real problem with the urban and industrial expanding. So, the drying technique is indispensable in the sludge treatment process to minimize its volume and its revalorization. For cost and environmental reasons, the solar drying is becoming increasingly attractive for small and medium wastewater treatment plants. Therefore, the aim of this work is the modelisation of solar dryer of residual sludge. The model studied is a rectangular agricultural greenhouse. In the lower part, the sludge (assimilated to a porous medium, acts as an absorber. It is subjected to a forced laminar flow. The transfers in the greenhouse and the porous medium are described respectively by the classical equations of forced convection and the Darcy-Brinkman-Forchheimer model. The implicit finite difference method is used to discretize the governing differential equation. The algebraic systems obtained are solved using the Gauss, Thomas and Gauss-Seidel algorithms. In order to complete the model and to determine the drying rate we associate a model of the sewage sludge drying kinetics. This work is realized with the meteorological data of the Tataouine region in the south of Tunisia. This data have undergone statistical treatment using the Liu and Jordan method. In order to show the advantages of solar drying, we especially studied the various transfer modes, the drying kinetics and the dryer performance.

  5. Mathematical modeling and numerical study of a spray in a rarefied gas. Application to the simulation of dust particle transport in ITER in case of vacuum loss accident; Modelisation mathematique et etude numerique d'un aerosol dans un gaz rarefie. Application a la simulation du transport de particules de poussiere en cas d'accident de perte de vide dans ITER

    Energy Technology Data Exchange (ETDEWEB)

    Charles, F.

    2009-11-15

    The thesis deals with kinetic models describing a rarefied spray. These models rely on coupling two Partial Differential Equations which describe the spatio-temporal evolution of the distribution of molecules and dust particles. The model presented in the first part is described by two Boltzmann-type equations where collisions between molecules and particles are modeled by two collision operators. We suggest two models of this collision operators. In the first one, collisions between dust particles and molecules are supposed to be elastic. In the second one, we assume those collisions are inelastic and given by a diffuse reflexion mechanism on the surface of dust specks. This leads to establish non classical collision operators. We prove that in the case of elastic collisions, the spatially homogeneous system has weak solutions which preserve mass and energy, and which satisfy an entropy inequality. We then describe the numerical simulation of the inelastic model, which is based on a Direct Simulation Method. This brings to light that the numerical simulation of the system becomes too expensive because the typical size of a dust particle is too large. We therefore introduce in the second part of this work a model constituted of a coupling (by a drag force term) between a Boltzmann equation and a Vlasov equation. To this end, we perform a scaling of the Boltzmann/Boltzmann system and an asymptotic expansion of one of the dimensionless collision operators with respect to the ratio of mass between a molecule of gas and a particle. A rigorous proof of the passage to the limit is given in the spatially homogeneous setting, for the elastic model of collision operators. It includes a new variant of Povzner's inequality in which the vanishing mass ratio is taken into account. Moreover, we numerically compare the Boltzmann/Boltzmann and Vlasov/Boltzmann systems with the inelastic collision operators. The simulation of the Vlasov equation is performed with a Particle-In-Cell method. Starting from these models, we perform some numerical simulations of a loss-of-vacuum event in the framework of safety studies in ITER. (author)

  6. Modelisation de photodetecteurs a base de matrices de diodes avalanche monophotoniques pour tomographie d'emission par positrons

    Science.gov (United States)

    Corbeil Therrien, Audrey

    La tomographie d'emission par positrons (TEP) est un outil precieux en recherche preclinique et pour le diagnostic medical. Cette technique permet d'obtenir une image quantitative de fonctions metaboliques specifiques par la detection de photons d'annihilation. La detection des ces photons se fait a l'aide de deux composantes. D'abord, un scintillateur convertit l'energie du photon 511 keV en photons du spectre visible. Ensuite, un photodetecteur convertit l'energie lumineuse en signal electrique. Recemment, les photodiodes avalanche monophotoniques (PAMP) disposees en matrice suscitent beaucoup d'interet pour la TEP. Ces matrices forment des detecteurs sensibles, robustes, compacts et avec une resolution en temps hors pair. Ces qualites en font un photodetecteur prometteur pour la TEP, mais il faut optimiser les parametres de la matrice et de l'electronique de lecture afin d'atteindre les performances optimales pour la TEP. L'optimisation de la matrice devient rapidement une operation difficile, car les differents parametres interagissent de maniere complexe avec les processus d'avalanche et de generation de bruit. Enfin, l'electronique de lecture pour les matrices de PAMP demeure encore rudimentaire et il serait profitable d'analyser differentes strategies de lecture. Pour repondre a cette question, la solution la plus economique est d'utiliser un simulateur pour converger vers la configuration donnant les meilleures performances. Les travaux de ce memoire presentent le developpement d'un tel simulateur. Celui-ci modelise le comportement d'une matrice de PAMP en se basant sur les equations de physique des semiconducteurs et des modeles probabilistes. Il inclut les trois principales sources de bruit, soit le bruit thermique, les declenchements intempestifs correles et la diaphonie optique. Le simulateur permet aussi de tester et de comparer de nouvelles approches pour l'electronique de lecture plus adaptees a ce type de detecteur. Au final, le simulateur vise a

  7. Modelisation numerique et validation experimentale d'un systeme de protection contre le givre par elements piezoelectriques

    Science.gov (United States)

    Harvey, Derek

    Le degivrage au moyen d'actuateurs piezoelectriques est considere comme une avenue prometteuse pour le developpement de systemes a faible consommation d'energie applicables aux helicopteres legers. Ce type de systeme excite des frequences de resonances d'une structure pour produire des deformations suffisantes pour rompre l'adherence de la glace. Par contre, la conception de tel systeme demeure generalement mal comprise. Ce projet de maitrise etudie l'utilisation de methodes numeriques pour assister la conception des systemes de protection contre le givre a base d'elements piezoelectriques. La methodologie retenue pour ce projet a ete de modeliser differentes structures simples et de simuler l'excitation harmonique des frequences de resonance au moyen d'actuateurs piezoelectriques. Le calcul des frequences de resonances ainsi que la simulation de leur excitation a ensuite ete validee a l'aide de montages experimentaux. La procedure a ete realisee pour une poutre en porte-a-faux et pour une plaque plane a l'aide du logiciel de calcul par elements finis, Abaqus. De plus, le modele de la plaque plane a ete utilise afin de realiser une etude parametrique portant sur le positionnement des actuateurs, l'effet de la rigidite ainsi que de l'epaisseur de la plaque. Finalement, la plaque plane a ete degivree en chambre climatique. Des cas de degivrage ont ete simules numeriquement afin d'etudier la possibilite d'utiliser un critere base sur la deformation pour predire le succes du systeme. La validation experimentale a confirme la capacite du logiciel a calculer precisement a la fois les frequences et les modes de resonance d'une structure et a simuler leur excitation par des actuateurs piezoelectriques. L'etude revele que la definition de l'amortissement dans le modele numerique est essentiel pour l'obtention de resultats precis. Les resultats de l'etude parametrique ont demontre l'importance de minimiser l'epaisseur et la rigidite afin de reduire la valeur des frequences

  8. Symposium on Using Mechanics to Discover New Materials. Annual Technical Meeting of the Society of Engineering Science (45th) held in Urbana-Champaign, Illinois on 12-15 October 2008

    Science.gov (United States)

    2008-12-21

    University of Utah Pierre Seppecher Professor Institut de Mathematiques de Toulon, Universite de Toulon et du Var Guy Bouchitte Professor Institut de... Mathematiques de Toulon, Universite de Toulon et du Var The classical energy minimization principles of Dirichlet and Thompson are extended as

  9. Study of the asymptotic expansion of multiple integrals in mathematical physics; Etudes sur les developpements asymptotiques des integrales multiples de la physique mathematique

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    , provided one interprets in a proper manner the results derived from the two methods, especially the expression of the geometrical wave. (author) [French] Nous avons applique la methode de la phase stationnaire pour evaluer les integrales doubles et multiples du type: (A) U(k) = g(x)e{sup ik{phi}}{sup (x)} d(x), (x)=(x{sub 1},..., x{sub n}) pour les grandes valeurs du parametre k. Dans la premiere partie nous avons etendu d'une maniere rigoureuse la methode de la phase stationnaire aux integrales doubles et multiples de type (A). De plus, nous avons obtenu un developpement asymptotique de (A), lorsque l'amplitude et la phase peuvent se developper sous forme canonique au voisinage de points critiques ou stationnaires de l'integrale (A). Ce developpement contient comme cas particuliers tous les cas importants dans les applications physiques et particulierement en diffraction et diffusion d'ondes electromagnetiques et corpusculaires par des systemes optiques, corps diffractants et potentiels de diffusions. Dans la seconde partie nous avons considere le probleme de la convergence du developpement de la contribution principale a l'integrale, au sens asymptotique de Poincare. La preuve est basee sur la methode des majorantes, utilisee en analyse mathematique. La troisieme partie contient la derivation des series asymptotiques diverses, due aux types varies de points critiques ou stationnaires lies aux fonctions d'amplitude et de phase. Dans la quatrieme partie nous avons generalise la methode aux integrales multiples et au cas ou le parametre k entre implicitement dans la fonction de phase. Ce dernier type d'integrales permet l'extension du premier type a de nombreux problemes physiques, par exemple a la propagation d'ondes en milieux dispersifs et absorbants. Au dernier chapitre, nous faisons l'etude des integrales doubles de diffractions (theorie de Kirchhoff) et nous comparons les resultats par l'application de la methode

  10. Ground observations and remote sensing data for integrated modelisation of water budget in the Merguellil catchment, Tunisia

    Science.gov (United States)

    Mougenot, Bernard

    2016-04-01

    The Mediterranean region is affected by water scarcity. Some countries as Tunisia reached the limit of 550 m3/year/capita due overexploitation of low water resources for irrigation, domestic uses and industry. A lot of programs aim to evaluate strategies to improve water consumption at regional level. In central Tunisia, on the Merguellil catchment, we develop integrated water resources modelisations based on social investigations, ground observations and remote sensing data. The main objective is to close the water budget at regional level and to estimate irrigation and water pumping to test scenarios with endusers. Our works benefit from French, bilateral and European projects (ANR, MISTRALS/SICMed, FP6, FP7…), GMES/GEOLAND-ESA) and also network projects as JECAM and AERONET, where the Merguellil site is a reference. This site has specific characteristics associating irrigated and rainfed crops mixing cereals, market gardening and orchards and will be proposed as a new environmental observing system connected to the OMERE, TENSIFT and OSR systems respectively in Tunisia, Morocco and France. We show here an original and large set of ground and remote sensing data mainly acquired from 2008 to present to be used for calibration/validation of water budget processes and integrated models for present and scenarios: - Ground data: meteorological stations, water budget at local scale: fluxes tower, soil fluxes, soil and surface temperature, soil moisture, drainage, flow, water level in lakes, aquifer, vegetation parameters on selected fieds/month (LAI, height, biomass, yield), land cover: 3 times/year, bare soil roughness, irrigation and pumping estimations, soil texture. - Remote sensing data: remote sensing products from multi-platform (MODIS, SPOT, LANDSAT, ASTER, PLEIADES, ASAR, COSMO-SkyMed, TerraSAR X…), multi-wavelength (solar, micro-wave and thermal) and multi-resolution (0.5 meters to 1 km). Ground observations are used (1) to calibrate soil

  11. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    Science.gov (United States)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological

  12. Human Modelling for Military Application (Applications militaires de la modelisation humaine)

    Science.gov (United States)

    2010-10-01

    Supporting documents are attached to the report as separate files (MS Word, MS PowerPoint, PDF, HTM). HFM-202 addressed progress for advancing the...on the human science base for social -cultural modeling. This dialogue includes specific new guidance on model design and development as well as the...cours de cette première décennie du XXIème siècle, la Commission des Facteurs Humains et de la Médecine (HFM) de l’Organisation pour la Recherche et

  13. Description des Outils (Mathematiques, Linguistiques et Informatiques) Impliques par la Construction d'une Chaine Automatique Integree de Traitement de L'information Textuelle et Graphique

    Science.gov (United States)

    Borillo, A.; And Others

    1973-01-01

    An English summary is provided for the article which gives the opportunity to solve original problems in linguistics, mathematics and computing science as well as to design descriptive and typological methods in archaeology. (6 references) (Author/SJ)

  14. Ageing of palladium tritide: mechanical characterization, helium state and modelling; Vieillissement du tritiure de palladium: caracterisation mecanique, etat de l'helium et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Segard, M.

    2010-11-29

    Palladium is commonly used for the storage of tritium (the hydrogen radioactive isotope), since it forms a low-equilibrium-pressure and reversible tritide. Tritium decay into helium-3 is responsible for the ageing of the tritide, leading to the apparition of helium-3 bubbles for instance. Both experimental and theoretical aspects of this phenomenon are studied here.Previous works on ageing modelling led to two main models, dealing with:- Helium-3 bubbles nucleation (using a cellular automaton), - Bubbles growth (using continuum mechanics).These models were quite efficient, but their use was limited by the lack of input data and fitting experimental parameters.To get through these limitations, this work has consisted in studying the most relevant experimental data to improve the modelling of the palladium tritide ageing.The first part of this work was focused on the assessment of the mechanical properties of the palladium tritide (yield strength, ultimate strength, mechanical behaviour). They were deduced from the in situ tensile tests performed on palladium hydride and deuteride. In the second part, ageing characterization was undertaken, mainly focusing on: - Bubbles observations in palladium tritide using transmission electron microscopy, - Internal bubble pressure measurements using nuclear magnetic resonance, - Macroscopic swelling measurements using pycno-metry.The present work has led to significant progress in ageing understanding and has brought very valuable improvements to the modelling of such a phenomenon. (author) [French] Le palladium est couramment utilise pour le stockage du tritium, isotope radioactif de l'hydrogEne, car il forme un tritiure reversible, A basse pression d'equilibre. La decroissance du tritium en helium-3 provoque un vieillissement du tritiure, caracterise notamment par l'apparition de bulles d'helium-3, qui est etudie ici. De precedents travaux de modelisation du vieillissement avaient abouti a la creation de

  15. Modelisation geometrique par NURBS pour le design aerodynamique des ailes d'avion

    Science.gov (United States)

    Bentamy, Anas

    The constant evolution of the computer science gives rise to many research areas especially in computer aided design. This study is part, of the advancement of the numerical methods in engineering computer aided design, specifically in aerospace science. The geometric modeling based on NURBS has been applied successfully to generate a parametric wing surface for aerodynamic design while satisfying manufacturing constraints. The goal of providing a smooth geometry described with few parameters has been achieved. In that case, a wing design including ruled surfaces at the leading edge slat and at the flap, and, curved central surfaces with intrinsic geometric property coming from conic curves, necessitates 130 control points and 15 geometric design variables. The 3D character of the wing need to be analyzed by techniques of investigation of surfaces in order to judge conveniently the visual aspect and detect any sign inversion in both directions of parametrization u and nu. Color mapping of the Gaussian curvature appears to be a very effective tools in visualization. The automation of the construction has been attained using an heuristic optimization algorithm, simulated annealing. The relative high speed of convergence to the solutions confirms its practical interest in engineering problems nowadays. The robustness of the geometric model has been tested successfully with an academic inverse design problem. The results obtained allow to foresee multiple possible applications from an extension to a complete geometric description of an airplane to the interaction with others disciplines belonging to a preliminary aeronautical design process.

  16. Etude de la transmission sonore a travers un protecteur de type "coquilles" : modelisation numerique et validation experimentale

    Science.gov (United States)

    Boyer, Sylvain

    methode des seuils auditifs REAT (Real Ear Attenuation Threshold) aussi vu comme un "golden standard" est utilise pour quantifier la reduction du bruit mais surestime generalement la performance des protecteurs. Les techniques de mesure terrains, telles que la F-MIRE (Field Measurement in Real Ear) peuvent etre a l'avenir de meilleurs outils pour evaluer l'attenuation individuelle. Si ces techniques existent pour des bouchons d'oreilles, elles doivent etre adaptees et ameliorees pour le cas des coquilles, en determinant l'emplacement optimal des capteurs acoustiques et les facteurs de compensation individuels qui lient la mesure microphonique a la mesure qui aurait ete prise au tympan. La troisieme problematique specifique est l'optimisation de l'attenuation des coquilles pour les adapter a l'individu et a son environnement de travail. En effet, le design des coquilles est generalement base sur des concepts empiriques et des methodes essais/erreurs sur des prototypes. La piste des outils predictifs a ete tres peu etudiee jusqu'a present et meriterait d'etre approfondie. L'utilisation du prototypage virtuel, permettrait a la fois d'optimiser le design avant production, d'accelerer la phase de developpement produit et d'en reduire les couts. L'objectif general de cette these est de repondre a ces differentes problematiques par le developpement d'un modele de l'attenuation sonore d'un protecteur auditif de type coquille. A cause de la complexite de la geometrie de ces protecteurs, la methode principale de modelisation retenue a priori est la methode des elements finis (FEM). Pour atteindre cet objectif general, trois objectifs specifiques ont ete etablis et sont presentes dans les trois paragraphes suivants. (Abstract shortened by ProQuest.).

  17. Conception, instrumentation, modelisation et analyse d'un element de stockage d'energie par chaleur latente

    Science.gov (United States)

    Millette, Jocelyn

    . Cette validation de la methode NTU-epsilon n'avait d'ailleurs jamais ete realisee et constituait, selon la litterature, un obstacle majeur a l'utilisation de cette methode dans un but de conception. L'element a une capacite d'environ 5 kWh. La paraffine P116, avant un point de fusion d'environ 47°C est utilisee comme MCP. Des mesures de temperature de l'air et du MCP a l'interieur de l'ESECL sont presentees afin de tracer un portrait global de l'ESECL lors du stockage et du destockage. La mesure de la puissance thermique lors du destockage est effectuee a l'aide d'un calorimetre construit selon la norme ANSI-ASHRAE 94.2. Des ameliorations et des commentaires sont appliques a cette norme. D'autres mesures auxiliaires sont aussi realisees. Une evolution typique de la temperature peut etre etablie. Les predictions du modele sont en bon accord avec les mesures experimentales. Ce modele est utilise afin de predire le comportement d'un ESECS typique. Ces predictions sont en bon accord avec les donnees experimentales tirees d'une autre etude. Cette modelisation d'un ESECS permet de comparer un ESECS et un ESECL de meme capacite et un ESECS et un ESECL de meme encombrement. Ces comparaisons permettent de suggerer un element de stockage hybride ou le stockage s'effectue a plus haute temperature (130°C), le MCP demeure solide et la capacite est d'environ 18 kWh. Les performances de cet element, tel que predites par le modele sont presentees.

  18. Mathematics & Sciences. Grade 12 Diploma Examinations Program. 1987-88 School Year=Mathematiques & Sciences. Programme des examens--Diplome de 12e annee. Annee scolaire 1987-88.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Student Evaluation and Data Processing Branch.

    Information is presented about the grade 12 diploma examinations for Mathematics 30, Biology 30, Chemistry 30, and Physics 30 to be administered in 1988. Included are both the French and English language versions of the document. Topics explained include: (1) general format of the examinations (stating the content, emphasis, and time allotments);…

  19. Multiple steady state current-voltage characteristics in drift-diffusion modelisation of N type and semi-insulating GaAs Gunn structures

    Science.gov (United States)

    Manifacier, J. C.

    2010-12-01

    Theoretical and numerical investigations of carriers transport in N-Semi-Insulating (SI)-N and P-SI-P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n/ dE) diodes. SI(N -) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current-voltage solutions when numerical modelisation is made using the drift-diffusion model.

  20. Modelisation et commande des redresseurs triphases fonctionnant a haut rendement et a faible taux de distorsion harmonique: Application au redresseur triphase de vienne

    Science.gov (United States)

    Belhadj Youssef, Nesrine

    Les problemes de la qualite de l'onde electrique constituent l'une des preoccupations majeures des fournisseurs de l'energie et des organismes specialises en qualite d'energie. Ce sujet a gagne davantage d'ampleur avec l'utilisation ascendante des convertisseurs de l'energie electrique dans la majorite des applications industrielles et domestiques. Dans le cadre de cette these, on s'interesse plus particulierement au type des convertisseurs alternatif/continu, dont le fonctionnement adequat implique la parfaite regulation du bus DC de tension, l'attenuation des harmoniques de courants, la compensation de l'energie reactive et la maximisation du rendement energetique. Ces differents criteres doivent etre maintenus pour diverses conditions de fonctionnement, c'est-a-dire independamment des variations parametriques auxquelles le systeme peut etre sujet. Il s'avere donc indispensable d'adopter des techniques de commande efficaces, ce qui passe par une modelisation correcte du convertisseur. L'optimisation du nombre de capteurs dans le circuit est egalement un facteur cle a prendre en consideration.

  1. Theophylline: a haemoperfusion modelisation.

    Science.gov (United States)

    Laurent, D; Guenzet, J; Bourin, M

    1985-05-01

    A dynamic study of the kinetics of theophylline adsorption in aqueous medium by two adsorbent resins is proposed. The adsorption process involves Van der Walls pattern physical bonds. An in vitro haemoperfusion apparatus was schematized and data describing the adsorption-desorption process was obtained. A mathematical treatment led to the conclusion that first-order adsorption and desorption rates are involved, results which led to the consideration of a model of in vivo haemoperfusion in the case of first-order adsorption and desorption, with first-order corporeal elimination. The results indicate that one of the resins used, Amberlite XAD4, already known as a haemocompatible resin, is useful in eliminating theophylline.

  2. essai de modelisation

    African Journals Online (AJOL)

    Administrateur

    très importante de l'entreprise, représentée par la gestion des chaines logistiques. Il s'agit aussi de .... déterminent l'image de l'avenir (. ،. 1997. ). ... processus responsable de la gestion et du développement du système logistique total de ...

  3. Science and Science Fiction

    Science.gov (United States)

    Oravetz, David

    2005-01-01

    This article is for teachers looking for new ways to motivate students, increase science comprehension, and understanding without using the old standard expository science textbook. This author suggests reading a science fiction novel in the science classroom as a way to engage students in learning. Using science fiction literature and language…

  4. Methodologie de modelisation aerostructurelle d'une aile utilisant un logiciel de calcul aerodynamique et un logiciel de calcul par elements finis =

    Science.gov (United States)

    Communier, David

    Lors de l'etude structurelle d'une aile d'avion, il est difficile de modeliser fidelement les forces aerodynamiques subies par l'aile de l'avion. Pour faciliter l'analyse, on repartit la portance maximale theorique de l'aile sur son longeron principal ou sur ses nervures. La repartition utilisee implique que l'aile entiere sera plus resistante que necessaire et donc que la structure ne sera pas totalement optimisee. Pour pallier ce probleme, il faudrait s'assurer d'appliquer une repartition aerodynamique de la portance sur la surface complete de l'aile. On serait donc en mesure d'obtenir une repartition des charges sur l'aile beaucoup plus fiable. Pour le realiser, nous aurons besoin de coupler les resultats d'un logiciel calculant les charges aerodynamiques de l'aile avec les resultats d'un logiciel permettant sa conception et son analyse structurelle. Dans ce projet, le logiciel utilise pour calculer les coefficients de pression sur l'aile est XFLR5 et le logiciel permettant la conception et l'analyse structurelle sera CATIA V5. Le logiciel XFLR5 permet une analyse rapide d'une aile en se basant sur l'analyse de ses profils. Ce logiciel calcule les performances des profils de la meme maniere que XFOIL et permet de choisir parmi trois methodes de calcul pour obtenir les performances de l'aile : Lifting Line Theory (LLT), Vortex Lattice Method (VLM) et 3D Panels. Dans notre methodologie, nous utilisons la methode de calcul 3D Panels dont la validite a ete testee en soufflerie pour confirmer les calculs sur XFLR5. En ce qui concerne la conception et l'analyse par des elements finis de la structure, le logiciel CATIA V5 est couramment utilise dans le domaine aerospatial. CATIA V5 permet une automatisation des etapes de conception de l'aile. Ainsi, dans ce memoire, nous allons decrire la methodologie permettant l'etude aerostructurelle d'une aile d'avion.

  5. Science in Science Fiction.

    Science.gov (United States)

    Allday, Jonathan

    2003-01-01

    Offers some suggestions as to how science fiction, especially television science fiction programs such as "Star Trek" and "Star Wars", can be drawn into physics lessons to illuminate some interesting issues. (Author/KHR)

  6. Optimisation de forme et application à l'observation et au contrôle d'équations aux dérivées partielles

    OpenAIRE

    Privat, Yannick

    2014-01-01

    Les travaux pr\\'esent\\'es dans ce m\\'emoire portent sur l'analyse math\\'ematique de probl\\`emes \\`a la charni\\`ere de l'optimisation de forme et du contr\\^ole des \\'equations aux d\\'eriv\\'ees partielles.La premi\\`ere partie du manuscrit est consacr\\'ee \\`a l'\\'etude de deux probl\\`emes d'optimisation de forme en m\\'ecanique des fluides. Le premier trouve sa motivation dans la mod\\'elisation de l'arbre bronchique. On cherche \\`a minimiser l'\\'energie dissip\\'ee par un fluide newtonien incompre...

  7. Science in Computational Sciences

    Directory of Open Access Journals (Sweden)

    Jameson Cerrosen

    2012-12-01

    Full Text Available The existing theory in relation to science presents the physics as an ideal, although many sciences not approach the same, so that the current philosophy of science-Theory of Science- is not much help when it comes to analyze the computer science, an emerging field of knowledge that aims investigation of computers, which are included in the materialization of the ideas that try to structure the knowledge and information about the world. Computer Science is based on logic and mathematics, but both theoretical research methods and experimental follow patterns of classical scientific fields. Modeling and computer simulation, as a method, are specific to the discipline and will be further developed in the near future, not only applied to computers but also to other scientific fields. In this article it is analyze the aspects of science in computer science, is presenting an approach to the definition of science and the scientific method in general and describes the relationships between science, research, development and technology.

  8. Modelisation de l'erosion et des sources de pollution dans le bassin versant Iroquois/Blanchette dans un contexte de changements climatiques

    Science.gov (United States)

    Coulibaly, Issa

    Principale source d'approvisionnement en eau potable de la municipalite d'Edmundston, le bassin versant Iroquois/Blanchette est un enjeu capital pour cette derniere, d'ou les efforts constants deployes pour assurer la preservation de la qualite de son eau. A cet effet, plusieurs etudes y ont ete menees. Les plus recentes ont identifie des menaces de pollution de diverses origines dont celles associees aux changements climatiques (e.g. Maaref 2012). Au regard des impacts des modifications climatiques annonces a l'echelle du Nouveau-Brunswick, le bassin versant Iroquois/Blanchette pourrait etre fortement affecte, et cela de diverses facons. Plusieurs scenarios d'impacts sont envisageables, notamment les risques d'inondation, d'erosion et de pollution a travers une augmentation des precipitations et du ruissellement. Face a toutes ces menaces eventuelles, l'objectif de cette etude est d'evaluer les impacts potentiels des changements climatiques sur les risques d'erosion et de pollution a l'echelle du bassin versant Iroquois/Blanchette. Pour ce faire, la version canadienne de l'equation universelle revisee des pertes en sol RUSLE-CAN et le modele hydrologique SWAT ( Soil and Water Assessment Tool) ont ete utilises pour modeliser les risques d'erosion et de pollution au niveau dans la zone d'etude. Les donnees utilisees pour realiser ce travail proviennent de sources diverses et variees (teledetections, pedologiques, topographiques, meteorologiques, etc.). Les simulations ont ete realisees en deux etapes distinctes, d'abord dans les conditions actuelles ou l'annee 2013 a ete choisie comme annee de reference, ensuite en 2025 et 2050. Les resultats obtenus montrent une tendance a la hausse de la production de sediments dans les prochaines annees. La production maximale annuelle augmente de 8,34 % et 8,08 % respectivement en 2025 et 2050 selon notre scenario le plus optimiste, et de 29,99 % en 2025 et 29,72 % en 2050 selon le scenario le plus pessimiste par rapport a celle

  9. Modelling of the generation phase of an absorption cooling cycle operating intermittently; Modelisation de la phase generation d'un cycle de refrigeration par absorption solaire a fonctionnement intermittent

    Energy Technology Data Exchange (ETDEWEB)

    Boukhchana, Yasmina; Fellah, Ali; Ben Brahim, Ammar [Unite de Recherche, Thermodynamique Appliquee (99/UR/11-21), Universite de Gabes, Ecole Nationale d' ingenieurs, 6072 Gabes (Tunisia)

    2011-01-15

    No abstract prepared. [French] La modelisation en regime dynamique de la phase generation d'une installation frigorifique a absorption solaire a fonctionnement intermittent utilisant le couple ammoniac/eau a ete elaboree. L'etude basee sur l'intermittence du fonctionnement a permis d'elaborer, a travers les bilans matieres et thermiques, un modele thermodynamique reliant les temperatures, les debits et les fractions massiques dans les differents compartiments. Des journees ensoleillees representatives des quatre saisons de l'annee ont ete considerees. Les variations du taux d'ensoleillement, des temperatures et des concentrations ont ete explorees. Les resultats ont montre, moyennant les hypotheses adoptees en particulier a pression de fonctionnement constante, que la demarche proposee a permis d'avoir une temperature de generation autour de 135 C et une temperature de condensation de 60 C. Ces temperatures sont atteinte par l'adaptation de la convection naturelle a l'air pour le fonctionnement du condenseur. (orig.)

  10. Science or Science Fiction?

    DEFF Research Database (Denmark)

    Lefsrud, Lianne M.; Meyer, Renate

    2012-01-01

    This paper examines the framings and identity work associated with professionals’ discursive construction of climate change science, their legitimation of themselves as experts on ‘the truth’, and their attitudes towards regulatory measures. Drawing from survey responses of 1077 professional......, legitimation strategies, and use of emotionality and metaphor. By linking notions of the science or science fiction of climate change to the assessment of the adequacy of global and local policies and of potential organizational responses, we contribute to the understanding of ‘defensive institutional work...

  11. Communicating Science

    Science.gov (United States)

    Russell, Nicholas

    2009-10-01

    Introduction: what this book is about and why you might want to read it; Prologue: three orphans share a common paternity: professional science communication, popular journalism, and literary fiction are not as separate as they seem; Part I. Professional Science Communication: 1. Spreading the word: the endless struggle to publish professional science; 2. Walk like an Egyptian: the alien feeling of professional science writing; 3. The future's bright? Professional science communication in the age of the internet; 4. Counting the horse's teeth: professional standards in science's barter economy; 5. Separating the wheat from the chaff: peer review on trial; Part II. Science for the Public: What Science Do People Need and How Might They Get It?: 6. The Public Understanding of Science (PUS) movement and its problems; 7. Public engagement with science and technology (PEST): fine principle, difficult practice; 8. Citizen scientists? Democratic input into science policy; 9. Teaching and learning science in schools: implications for popular science communication; Part III. Popular Science Communication: The Press and Broadcasting: 10. What every scientist should know about mass media; 11. What every scientist should know about journalists; 12. The influence of new media; 13. How the media represents science; 14. How should science journalists behave?; Part IV. The Origins of Science in Cultural Context: Five Historic Dramas: 15. A terrible storm in Wittenberg: natural knowledge through sorcery and evil; 16. A terrible storm in the Mediterranean: controlling nature with white magic and religion; 17. Thieving magpies: the subtle art of false projecting; 18. Foolish virtuosi: natural philosophy emerges as a distinct discipline but many cannot take it seriously; 19. Is scientific knowledge 'true' or should it just be 'truthfully' deployed?; Part V. Science in Literature: 20. Science and the Gothic: the three big nineteenth-century monster stories; 21. Science fiction: serious

  12. Modeling of acoustic wave propagation and scattering for telemetry of complex structures; Modelisation de la propagation et de l'interaction d'une onde acoustique pour la telemetrie de structures complexes

    Energy Technology Data Exchange (ETDEWEB)

    LU, B.

    2011-11-07

    ) using a procedure similar to the physical theory of diffraction (PTD). The refined KA provides an improvement of the prediction in the near field of a rigid scatterer. The initial (non refined) KA model is then extended to deal with the scattering from a finite impedance target. The obtained model, the so-called 'general' KA model, is a satisfactory solution for the application to telemetry. Finally, the coupling of the stochastic propagation model and the general KA diffraction model has allowed us to build a complete simulation tool for the telemetry in an inhomogeneous medium. (author) [French] Cette etude s'inscrit dans le cadre du developpement d'outils de simulation de la telemetrie qui est une technique possible pour la surveillance et le controle periodique des reacteurs nucleaires a neutrons rapides refroidis par du sodium liquide (RNR-Na). De maniere generale, la telemetrie consiste a positionner au sein du reacteur un transducteur qui genere un faisceau ultrasonore. Ce faisceau se propage a travers un milieu inhomogene et aleatoire car le sodium liquide est le siege de fluctuations de temperature qui impliquent une variation de la celerite des ondes ultrasonores, ce qui modifie la propagation du faisceau. Ce dernier interagit ensuite avec une structure immergee dans le reacteur. La mesure du temps de vol de l'echo recu par le meme transducteur permet de determiner la position precise de la structure. La simulation complete de la telemetrie necessite donc la modelisation a la fois de la propagation d'une onde acoustique en milieu inhomogene aleatoire et de l'interaction de cette onde avec des cibles de formes variees; c'est l'objectif de ce travail. Un modele stochastique base sur un algorithme de type Monte-Carlo est tout d'abord developpe afin de simuler les perturbations aleatoires du champ de propagation. Le champ acoustique en milieu inhomogene est finalement modelise a partir du champ calcule dans un

  13. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  14. Science Fiction and Science Education.

    Science.gov (United States)

    Cavanaugh, Terence

    2002-01-01

    Uses science fiction films such as "Jurassic Park" or "Anaconda" to teach science concepts while fostering student interest. Advocates science fiction as a teaching tool to improve learning and motivation. Describes how to use science fiction in the classroom with the sample activity Twister. (YDS)

  15. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science ... sustainable coastal development in the region, as well as contributing to the global base of marine science. ..... Gössling S (2003) The political ecology of tourism in Zan-.

  16. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  17. Sound Science

    Science.gov (United States)

    Sickel, Aaron J.; Lee, Michele H.; Pareja, Enrique M.

    2010-01-01

    How can a teacher simultaneously teach science concepts through inquiry while helping students learn about the nature of science? After pondering this question in their own teaching, the authors developed a 5E learning cycle lesson (Bybee et al. 2006) that concurrently embeds opportunities for fourth-grade students to (a) learn a science concept,…

  18. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  19. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  20. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  1. Computer science

    CERN Document Server

    Blum, Edward K

    2011-01-01

    Computer Science: The Hardware, Software and Heart of It focuses on the deeper aspects of the two recognized subdivisions of Computer Science, Software and Hardware. These subdivisions are shown to be closely interrelated as a result of the stored-program concept. Computer Science: The Hardware, Software and Heart of It includes certain classical theoretical computer science topics such as Unsolvability (e.g. the halting problem) and Undecidability (e.g. Godel's incompleteness theorem) that treat problems that exist under the Church-Turing thesis of computation. These problem topics explain in

  2. Science Shops

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard

    1999-01-01

    The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented.......The paper prsents the overall concept of science shops as practised in most of the European science shops and present the concept practised and some experience obtained at the Technical University of Denmark. An outline for the planning of new sceince shops is presented....

  3. Soundsational Science

    Science.gov (United States)

    Carrier, Sarah J.; Scott, Catherine Marie; Hall, Debra T.

    2012-01-01

    The science of sound helps students learn that sound is energy traveling in waves as vibrations transfer the energy through various media: solids, liquids, and gases. In addition to learning about the physical science of sound, students can learn about the sounds of different animal species: how sounds contribute to animals' survival, and how…

  4. Life sciences

    Energy Technology Data Exchange (ETDEWEB)

    Day, L. (ed.)

    1991-04-01

    This document is the 1989--1990 Annual Report for the Life Sciences Divisions of the University of California/Lawrence Berkeley Laboratory. Specific progress reports are included for the Cell and Molecular Biology Division, the Research Medicine and Radiation Biophysics Division (including the Advanced Light Source Life Sciences Center), and the Chemical Biodynamics Division. 450 refs., 46 figs. (MHB)

  5. Deconstructing Science

    Science.gov (United States)

    Trifonas, Peter Pericles

    2012-01-01

    In this paper I expand on the premises of Jesse Bazzul's thesis in his paper, "Neoliberal ideology, global capitalism, and science education: engaging the question of subjectivity," exploring the implications of the ideologies within the culturally emerging logic of science exposes the incommensurability of intents and purposes in its methods and…

  6. Dramatic Science

    Science.gov (United States)

    McGregor, Debbie; Precious, Wendy

    2010-01-01

    The setting: the science classroom. The characters: you and your students. The scene: Your students acting out scientific discoveries, modeling a frog's life cycle, mimicking the transition from liquid to solid. This is "dramatic science", a teaching approach that uses acting techniques to explore and develop young children's ideas about…

  7. Marine Science

    African Journals Online (AJOL)

    Chief Editor José Paula | Faculty of Sciences of University of Lisbon, ... Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- .... in the region are some of the poorest in the world,.

  8. [Basic science and applied science].

    Science.gov (United States)

    Pérez-Tamayo, R

    2001-01-01

    A lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico's National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  9. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  10. Revolutionary Science

    Directory of Open Access Journals (Sweden)

    Arturo Casadevall

    2016-05-01

    Full Text Available On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind’s view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn’s formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported.

  11. Revolutionary Science.

    Science.gov (United States)

    Casadevall, Arturo; Fang, Ferric C

    2016-03-01

    On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind's view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn's formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported.

  12. Revolutionary Science

    Science.gov (United States)

    Fang, Ferric C.

    2016-01-01

    ABSTRACT On rare occasions in the history of science, remarkable discoveries transform human society and forever alter mankind’s view of the world. Examples of such discoveries include the heliocentric theory, Newtonian physics, the germ theory of disease, quantum theory, plate tectonics and the discovery that DNA carries genetic information. The science philosopher Thomas Kuhn famously described science as long periods of normality punctuated by times of crisis, when anomalous observations culminate in revolutionary changes that replace one paradigm with another. This essay examines several transformative discoveries in the light of Kuhn’s formulation. We find that each scientific revolution is unique, with disparate origins that may include puzzle solving, serendipity, inspiration, or a convergence of disparate observations. The causes of revolutionary science are varied and lack an obvious common structure. Moreover, it can be difficult to draw a clear distinction between so-called normal and revolutionary science. Revolutionary discoveries often emerge from basic science and are critically dependent on nonrevolutionary research. Revolutionary discoveries may be conceptual or technological in nature, lead to the creation of new fields, and have a lasting impact on many fields in addition to the field from which they emerge. In contrast to political revolutions, scientific revolutions do not necessarily require the destruction of the previous order. For humanity to continue to benefit from revolutionary discoveries, a broad palette of scientific inquiry with a particular emphasis on basic science should be supported. PMID:26933052

  13. Science Instructors' Views of Science and Nature of Science

    Science.gov (United States)

    Karakas, Mehmet

    2011-01-01

    This qualitative study examined how college science faculty who teach introductory level undergraduate science courses including the fields of chemistry, biology, physics, and earth science, understand and define science and nature of science (NOS). Participants were seventeen science instructors from five different institutions in the…

  14. Science Notes.

    Science.gov (United States)

    Thurman, Shirley; And Others

    1988-01-01

    Describes 36 science activities. Topics include: osmosis, fermentation, anhydrobiotic organisms, breathing monitors, trypsin, weeds, amyloplasts, electrolysis, polarimeters, ethene ripening of fruit, colorimetry, diffusion, redox reactions, equilibria, acid-base relationships, electricity, power, resonance, measurement, parallax, amplifiers,…

  15. Science Notes.

    Science.gov (United States)

    School Science Review, 1990

    1990-01-01

    Included are 30 science activities that include computer monitoring, fieldwork, enzyme activity, pH, drugs, calorimeters, Raoult's Law, food content, solubility, electrochemistry, titration, physical properties of materials, gel filtration, energy, concepts in physics, and electricity. (KR)

  16. Marine Science

    African Journals Online (AJOL)

    Science (WIOJMS), as a special issue entitled “Coral reefs of Mauritius in a changing global climate”. This issue is ... ing compounds from Mauritian coral reef and lagoonal seawater. ..... bleaching event at Koh Tao, Gulf of Thailand. Coral.

  17. Marine Science

    African Journals Online (AJOL)

    Science features state-of-the-art review articles and short communications. ... The last couple of years have been a time of change for the Western Indian Ocean Journal of Marine ...... planning under future sea level predictions, coastal sci-.

  18. Forensic Science.

    Science.gov (United States)

    Brettell, T. A.; Saferstein, R.

    1989-01-01

    Presents a review of articles appealing to forensic practitioners. Topics include: drugs and poisons, forensic biochemistry, and trace evidence. Lists noteworthy books published on forensic science topics since 1986. (MVL)

  19. Capitalist Science

    CERN Document Server

    Knuteson, Bruce

    2011-01-01

    The economic structure of basic science is currently socialist, funded by the public at large through taxes for the benefit of the public at large. This socialist system should be augmented by a capitalist system, in which basic science is also funded by private investors who reap financial benefit from the sale of subsequent technologies based on the knowledge obtained from the research funded by their investments. A capitalist system will provide benefits extending from the broad target audience of this paper -- which includes politicians, financiers, economists, and scientists in all fields -- to the average taxpayer and consumer. Capitalist science will better align the incentives of scientists with taxpayer interests, channel more money into basic science, lower your taxes, and generally improve the quality of your life.

  20. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The

  1. Big science

    CERN Multimedia

    Nadis, S

    2003-01-01

    " "Big science" is moving into astronomy, bringing large experimental teams, multi-year research projects, and big budgets. If this is the wave of the future, why are some astronomers bucking the trend?" (2 pages).

  2. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high .... great barracuda (Sphyraena barracuda), and the giant ...... Smale MJ, Watson G, Hecht T (1995) Otolith atlas of.

  3. Marine Science

    African Journals Online (AJOL)

    sustainable coastal development in the region, as well as contributing to the global base of marine science. The journal .... 48% maize flour, 3% cassava flour, 3% vitamins (Premix for broilers) ..... resulting in inappropriate dietary energy utiliza-.

  4. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... dissemination of knowledge generated through research activities at the ... Science (WIOJMS), as a special issue entitled “Coral reefs of Mauritius in a .... tion and damage.

  5. Forensic Science.

    Science.gov (United States)

    Brettell, T. A.; Saferstein, R.

    1989-01-01

    Presents a review of articles appealing to forensic practitioners. Topics include: drugs and poisons, forensic biochemistry, and trace evidence. Lists noteworthy books published on forensic science topics since 1986. (MVL)

  6. Citizen Science

    Science.gov (United States)

    Citizen Science is a fast-growing field in which scientific investigations are conducted by volunteers, which have been successful in expanding scientific knowledge, raising environmental awareness, and leveraging change.

  7. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an ... are not limited to: theoretical studies, oceanography, marine biology and ecology, ... consist of special issues on major events or important thematic issues.

  8. Science Notes.

    Science.gov (United States)

    School Science Review, 1985

    1985-01-01

    Presents 23 experiments, activities, field projects and computer programs in the biological and physical sciences. Instructional procedures, experimental designs, materials, and background information are suggested. Topics include fluid mechanics, electricity, crystals, arthropods, limpets, acid neutralization, and software evaluation. (ML)

  9. Science Topics

    Science.gov (United States)

    EPA is one of the world’s leading environmental and human health research organizations. Science provides the foundation for Agency policies, actions, and decisions made on behalf of the American people.

  10. Managing Science.

    OpenAIRE

    Bert Klandermans

    2011-01-01

    Quality Assessment. Rector manificus , ladies and gentlemen, the answer that is given increasingly within the science system reads, “Let us count.” Let us count how many Euros have been acquired, how many publications are realized, and how many citations are generated. The higher the score, the better the researcher. However, it is not that simple. I showed how different the opportunities are for the three science domains to acquire research funds. A report of the Rathenau Institute about ......

  11. Science Coalition

    Science.gov (United States)

    The National Coalition of Science and Technology (NCST) has elected S. Thomas Moser, of the international accounting firm Peat Marwick, to their board of advisors. Moser is the national director of Marwick's high-technology practice.NCST, based in Washington, D.C., is a broad-based science and technology advocacy organization that seeks to bridge the political interests of the scientific and academic research community with the business community.

  12. Science Fairs for Science Literacy

    Science.gov (United States)

    Mackey, Katherine; Culbertson, Timothy

    2014-03-01

    Scientific discovery, technological revolutions, and complex global challenges are commonplace in the modern era. People are bombarded with news about climate change, pandemics, and genetically modified organisms, and scientific literacy has never been more important than in the present day. Yet only 29% of American adults have sufficient understanding to be able to read science stories reported in the popular press [Miller, 2010], and American students consistently rank below other nations in math and science [National Center for Education Statistics, 2012].

  13. Is normal science good science?

    Directory of Open Access Journals (Sweden)

    Adrianna Kępińska

    2015-09-01

    Full Text Available “Normal science” is a concept introduced by Thomas Kuhn in The Structure of Scientific Revolutions (1962. In Kuhn’s view, normal science means “puzzle solving”, solving problems within the paradigm—framework most successful in solving current major scientific problems—rather than producing major novelties. This paper examines Kuhnian and Popperian accounts of normal science and their criticisms to assess if normal science is good. The advantage of normal science according to Kuhn was “psychological”: subjective satisfaction from successful “puzzle solving”. Popper argues for an “intellectual” science, one that consistently refutes conjectures (hypotheses and offers new ideas rather than focus on personal advantages. His account is criticized as too impersonal and idealistic. Feyerabend’s perspective seems more balanced; he argues for a community that would introduce new ideas, defend old ones, and enable scientists to develop in line with their subjective preferences. The paper concludes that normal science has no one clear-cut set of criteria encompassing its meaning and enabling clear assessment.

  14. Exploring science through science fiction

    CERN Document Server

    Luokkala, Barry B

    2014-01-01

    How does Einstein’s description of space and time compare with Dr. Who? Can James Bond really escape from an armor-plated railroad car by cutting through the floor with a laser concealed in a wristwatch? What would it take to create a fully-intelligent android, such as Star Trek’s Commander Data? How might we discover intelligent civilizations on other planets in the galaxy? Is human teleportation possible? Will our technological society ever reach the point at which it becomes lawful to discriminate on the basis of genetic information, as in the movie GATTACA? Exploring Science Through Science Fiction addresses these and other interesting questions, using science fiction as a springboard for discussing fundamental science concepts and cutting-edge science research. The book is designed as a primary text for a college-level course which should appeal to students in the fine arts and humanities as well as to science and engineering students. It includes references to original research papers, landmark scie...

  15. Network science

    CERN Document Server

    Barabasi, Albert-Laszlo

    2016-01-01

    Networks are everywhere, from the Internet, to social networks, and the genetic networks that determine our biological existence. Illustrated throughout in full colour, this pioneering textbook, spanning a wide range of topics from physics to computer science, engineering, economics and the social sciences, introduces network science to an interdisciplinary audience. From the origins of the six degrees of separation to explaining why networks are robust to random failures, the author explores how viruses like Ebola and H1N1 spread, and why it is that our friends have more friends than we do. Using numerous real-world examples, this innovatively designed text includes clear delineation between undergraduate and graduate level material. The mathematical formulas and derivations are included within Advanced Topics sections, enabling use at a range of levels. Extensive online resources, including films and software for network analysis, make this a multifaceted companion for anyone with an interest in network sci...

  16. Islam and Science

    Science.gov (United States)

    Salam, Abdus

    The following sections are included: * The Holy Quran and Science * Modem Science, A Greco- Islamic Legacy * The Decline of Sciences in Islam * The Limitations of Science * Faith and Science * The Present Picture of Sciences in the Islamic Countries * Renaissance of Sciences in Islam * Steps Needed for Building up Sciences in the Islamic Countries * Science Education * Science Foundations in Islam * Technology in Our Countries * Concluding Remarks * REFERENCES

  17. Literacy, science, and science education

    Science.gov (United States)

    McVittie, Janet Elizabeth

    In examining the connections between literacy, science and science education, I laid out a number of questions. For example, what sorts of literate tools might facilitate writing to learn, and do children who are just becoming literate use these tools? I then examined the writing of children in science class in an attempt to determine if their writing can indeed facilitate their learning. The results of this research could help teachers make decisions about the use of writing in the learning of science. The kinds of literate tools I identified as being potentially helpful were transitionals---those words or grammatical devices which demonstrate how ideas are connected. Also, I suggested that data tables, sentences and paragraphs were also useful for students to learn. I found that grade 5/6 students used a wide range of literate tools, but that they were much more competent with those tools which were both oral and literate than those which could only be used for writing (punctuation, sentences, paragraphs, and data tables). When I attempted to determine if the children used their writing to learn, I found very little evidence that this was certainly so. However, there was some evidence that paragraphs had the potential to create a "dialogue" between student writing and thinking, so the students could make more explicit connections between science ideas. Lastly, I noticed certain gender difference in the classroom. Because of this, I contrasted the writing of the girls with the writing of the boys. I learned the girls were generally much more capable writers than the boys. More interesting, however, was that the girls generally attempted to explain their science concepts in different ways than did the boys. The girls were more likely to rely on their own reasoning, whereas the boys were more likely to persist in using culturally created science explanations. The research findings have important implications for analyzing students' learning and for finding ways to

  18. Experimental measurements and mathematics; Les mesures experimentales et les mathematiques

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, I.; Bruno, S.; Durand, O.; Gaillard, P.; Lagrange, J.M.; Lamy, F.; Peyrat, J.P. [CEA Bruyeres-le-Chatel, 91 (France); Choux, A.; Druoton, L.; Pascal, G.; Sulpice, F. [CEA Valduc, 21 - Is-sur-Tille (France); Busvelle, E.; Garnier, L. [Universite de Bourgogne, Lab. d' Electronique, Informatique et Image, 21 - Dijon (France); Gauthier, J.P. [Laboratoire des Sciences de l' Information et des Systemes, 83 - Toulon (France); Langevin, R. [Institut Mathematique de Bourgogne, 21 - Dijon (France)

    2011-01-15

    Many problems that appear in experimental works can be solved by using mathematical methods, from the conception phase to the interpretation of measurements. We illustrate the use of these methods at CEA-DAM by pointing out some examples in 3 typical domains: treatment of experimental data, geometrical controls of targets, and analysis of a huge quantity of data. (authors)

  19. Identification du modele mathematique d'un helicoptere reduit

    Science.gov (United States)

    Honvo, Japhet

    The remote-controlled helicopter remains an interesting topic for research in flight control. This kind of machine, easy to deploy due to their small size, is an ideal candidate to test multiple flight control algorithms. To better understand the dynamics of flight of this vehicle, it is important to have a mathematical model. This thesis follows the logic of obtaining a mathematical model for a stationary hovering helicopter. This thesis aims to provide a testbench for the identification of a mathematical model of a small helicopter and for the application of different flight control laws. First, a review on the identification theory is introduced. The methods presented are applicable to multivariable systems. A particular focus is on the identification of state models. The theory concludes with the presentation of algorithms used in the Matlab/Simulink software. Second, a mathematical model of the helicopter is developed. As part of our research, hypotheses to reduce the model are presented. This model is the basis for determining the right identification methods. The mathematical model provides a guideline for specifying the various components of the test bench. The thesis continues with the presentation of the avionics used in the project. The instrumentation is presented in two parts: the hardware and the software. The acquisition of real-time flight parameters is also presented. Finally, the use of the test bench is detailed for the ground tests and for the flight tests. These tests are designed to collect the data necessary for the deployment of various identification techniques. The thesis concludes with comments on significants results and suggestions of prospects for improving the test bench.

  20. Mathematics Comparison Study = Etude Comporative Portant Sur les Mathematiques.

    Science.gov (United States)

    Alberta Dept. of Education, Edmonton. Curriculum Standards Branch.

    At the request of the Council of Ministries of Education, Canada (CMEC), Alberta Learning conducted this Mathematics Comparison Study. The focus of this study is from Kindergarten to Grade 12. All provinces and territories were invited to participate, and only the Quebec region declined. Participating regions were invited to send a representative…

  1. Mathematiques 14-24 (Mathematics 14-24).

    Science.gov (United States)

    Alberta Learning, Edmonton.

    To set goals and make informed choices, students need an array of thinking and problem-solving skills. Fundamental to this is an understanding of mathematical techniques and processes that will enable them to apply the basic skills necessary to address everyday mathematical situations, as well as acquire higher order skills in logical analysis and…

  2. Applied mathematics and condensed matter; Mathematiques appliquees et matiere condensee

    Energy Technology Data Exchange (ETDEWEB)

    Bouche, D.; Jollet, F. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    Applied mathematics have always been a key tool in computing the structure of condensed matter. In this paper, we present the most widely used methods, and show the importance of mathematics in their genesis and evolution. After a brief survey of quantum Monte Carlo methods, which try to compute the N electrons wave function, the paper describes the theoretical foundations of N independent particle approximations. We mainly focus on density functional theory (DFT). This theory associated with advanced numerical methods, and high performance computing, has produced significant achievements in the field. This paper presents the foundations of the theory, as well as different numerical methods used to solve DFT equations. (authors)

  3. Mathematics for plasma physics; Mathematiques pour la physique des plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sentis, R. [CEA Bruyeres-le-Chatel, 91 (France)

    2011-01-15

    The plasma physics is in the heart of the research of the CEA-DAM. Using mathematics in this domain is necessary, particularly for a precise statement of the partial differential equations systems which are on the basis of the numerical simulations. Examples are given concerning hydrodynamics, models for the thermal conduction and laser-plasma interaction. For the bi-temperature compressible Euler model, the mathematical study of the problem has allowed us to understand why the role of the energy equations dealing with ions on one hand and electrons on the other hand are not identical despite the symmetrical appearance of the system. The mathematical study is also necessary to be sure of the existence and uniqueness of the solution

  4. Managing Science.

    Directory of Open Access Journals (Sweden)

    Bert Klandermans

    2011-01-01

    Full Text Available Quality Assessment. Rector manificus , ladies and gentlemen, the answer that is given increasingly within the science system reads, “Let us count.” Let us count how many Euros have been acquired, how many publications are realized, and how many citations are generated. The higher the score, the better the researcher. However, it is not that simple. I showed how different the opportunities are for the three science domains to acquire research funds. A report of the Rathenau Institute about ...

  5. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  6. Boundless Science

    Science.gov (United States)

    Spilhaus, F.

    2009-04-01

    Our science is critical to understanding the future prospects for life. The laboratory for natural sciences encompasses our planet and reaches into the solar system. The forces of nature respect no boundaries. But, we who try to understand these forces are handicapped by national, political, language, religious, and other concocted barriers. These barriers limit both our effectiveness as scientists and our ability to reach those outside our community who need to know what we have uncovered about our environment. An unencumbered worldwide scientific community has been an objective with limited successes for too long. Action began in earnest after the first world war with the formation of the various scientific Unions and ICSU. Fifty years later Keith Runcorn initiated another approach, when he proposed what quickly became EGS and which has grown and evolved with the merger with EUG. To be truly effective we need to communicate and share comfortably with colleagues worldwide. Personal relationships and trust are required. We count on a high level of ethical behavior within our community. We individually must also be constantly vigilant for the encroachment of the manmade barriers that have held back science through time immemorial. Our scientific organizations cannot achieve this alone. They will facilitate, however, the onus is on each of us to reach out and form interlocking informal communities, which will bring our whole planet-wide community together at many overlapping levels. When we achieve this community, our science will more bountiful and better address the needs of human society.

  7. Marine Science

    African Journals Online (AJOL)

    Science features state-of-the-art review articles and short communications. The journal will, from time to time, .... dinophytes and cyanophytes, can help in predicting and in quantifying the ...... tions over a three-year period. In the current study,.

  8. Cognitive Science.

    Science.gov (United States)

    Cocking, Rodney R.; Mestre, Jose P.

    The focus of this paper is on cognitive science as a model for understanding the application of human skills toward effective problem-solving. Sections include: (1) "Introduction" (discussing information processing framework, expert-novice distinctions, schema theory, and learning process); (2) "Application: The Expert-Novice…

  9. Science Journalism

    Science.gov (United States)

    Polman, Joseph; Newman, Alan; Farrar, Cathy; Saul, E. Wendy

    2012-01-01

    Much of the National Science Education Standards (NRC 1996), aside from the inquiry and teaching sections, focus on content. The authors' call is instead to build standards that focus on what students need to be scientifically literate in 10 or 15 years. Although a basic understanding of important scientific concepts and an understanding of how…

  10. Actuarial Science.

    Science.gov (United States)

    Warren, Bette

    1982-01-01

    Details are provided of a program on actuarial training developed at the State University of New York (SUNY) at Binghamton through the Department of Mathematical Sciences. An outline of its operation, including a few statistics on students in the program, is included. (MP)

  11. Organizational Science

    Science.gov (United States)

    Beriwal, Madhu; Clegg, Stewart; Collopy, Fred; McDaniel, Reuben, Jr.; Morgan, Gareth; Sutcliffe, Kathleen; Kaufman, Roger; Marker, Anthony; Selwyn, Neil

    2013-01-01

    Scholars representing the field of organizational science, broadly defined as including many fields--organizational behavior and development, management, workplace performance, and so on--were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might…

  12. Marine Science

    African Journals Online (AJOL)

    Aims and scope: The Western Indian Ocean Journal of Marine Science provides an avenue for the wide dissem- ination of high .... tions at global (e.g. sea temperature, hurricanes) and ..... Jameson SC (1976) Early life history of the giant clams.

  13. Marine Science

    African Journals Online (AJOL)

    Sweden. Cover image: Relief model of the WIO surface that integrates land topography and ocean bathymetry. Amante and ... WIO Journal of Marine Science 14 (1 & 2) 2015 1-9 | L. J. Chauka et al. ... bar, from September 2008 to August 2010.

  14. Actuarial Science.

    Science.gov (United States)

    Warren, Bette

    1982-01-01

    Details are provided of a program on actuarial training developed at the State University of New York (SUNY) at Binghamton through the Department of Mathematical Sciences. An outline of its operation, including a few statistics on students in the program, is included. (MP)

  15. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The o

  16. Nuclear Science.

    Science.gov (United States)

    Pennsylvania State Dept. of Education, Harrisburg. Bureau of Curriculum Services.

    This document is a report on a course in nuclear science for the high school curriculum. The course is designed to provide a basic but comprehensive understanding of the atom in the light of modern knowledge, and to show how people attempt to harness the tremendous energy liberated through fission and fusion reactions. The course crosses what are…

  17. Science Notes.

    Science.gov (United States)

    School Science Review, 1986

    1986-01-01

    Describes activities, games, experiments, demonstrations, and computer-oriented exercises in all science areas. Topics include energy flow through a marine ecosystem, using 2,4-dichlorophenoxyethanoic acid to demonstrate translocation in plants, use of the dichotomous key, use of leaf yeasts to monitor atmospheric pollution, and others. (JN)

  18. Skeptical Science.

    Science.gov (United States)

    Scott, Alan J.; Barnhart, Carolyn M.; Parejko, Ken S.; Schultz, Forrest S.; Schultz, Steven E.

    2001-01-01

    Discusses the legitimacy of teaching about astrology, extrasensory perception, UFOs, touch therapy, cloning dinosaurs, or any other unusual claims in the classroom. Suggests that bringing unusual claims to the science classroom is an opportunity to motivate students in the principles of scientific thought. (SAH)

  19. Marine Science

    African Journals Online (AJOL)

    between humans and the coastal and marine environment. ... dissemination of knowledge generated through research activities at the ... Science (WIOJMS), as a special issue entitled “Coral reefs of Mauritius in a changing global climate”. .... C – growth anomaly; D – brown band; E - skeletal eroding band affecting A.

  20. Science Notes.

    Science.gov (United States)

    Shaw, G. W.; And Others

    1989-01-01

    Provides a reading list for A- and S-level biology. Contains several experiments and demonstrations with topics on: the intestine, bullock corneal cells, valences, the science of tea, automated hydrolysis, electronics characteristics, bromine diffusion, enthalpy of vaporization determination, thermometers, pendulums, hovercraft, Bernoulli fluid…

  1. Computational Science

    Institute of Scientific and Technical Information of China (English)

    K. Li

    2007-01-01

    @@ Computer science is the discipline that anchors the computer industry which has been improving processor performance, communication bandwidth and storage capacity on the so called "Moore's law" curve or at the rate of doubling every 18 to 24 months during the past decades.

  2. Environmental sciences

    NARCIS (Netherlands)

    Kwa, C.; Wright, J.D.

    2015-01-01

    The environmental sciences are engaged in a remarkable effort of interdisciplinary cooperation and integration. Some long-running international scientific programs, notably the World Climate Research Programme and the International Geosphere-Biosphere Programme, play an important role therein. The o

  3. Brewing Science

    Science.gov (United States)

    Pelter, Michael

    2006-01-01

    Following the brewing process from grain to glass, this course uses the biological and chemical principles of brewing to teach science to the nonscience major. Discussion of the scientific aspects of malting, mashing, fermentation, and the making of different beer styles is complemented by laboratory exercises that use scientific methods to…

  4. Science Notes.

    Science.gov (United States)

    School Science Review, 1990

    1990-01-01

    Presented are 25 science activities on colorations of prey, evolution, blood, physiology, nutrition, enzyme kinetics, leaf pigments, analytical chemistry, milk, proteins, fermentation, surface effects of liquids, magnetism, drug synthesis, solvents, wintergreen synthesis, chemical reactions, multicore cables, diffraction, air resistance,…

  5. Science and anti-science

    CERN Document Server

    Holton, Gerald

    1997-01-01

    What is good science? What goal--if any--is the proper end of scientific activity? Is there a legitimating authority that scientists mayclaim? Howserious athreat are the anti-science movements? These questions have long been debated but, as Gerald Holton points out, every era must offer its own responses. This book examines these questions not in the abstract but shows their historic roots and the answers emerging from the scientific and political controversies of this century. Employing the case-study method and the concept of scientific thematathat he has pioneered, Holton displays the broad scope of his insight into the workings of science: from the influence of Ernst Mach on twentiethcentury physicists, biologists, psychologists, and other thinkers to the rhetorical strategies used in the work of Albert Einstein, Niels Bohr, and others; from the bickering between Thomas Jefferson and the U.S. Congress over the proper form of federal sponsorship of scientific research to philosophical debates since Oswald...

  6. Analyses des discours non strictement mathematiques accompagnant des cours de mathematiques (Analysis of Not Strictly Mathematical Discourse in Mathematics Classes).

    Science.gov (United States)

    Robert, Aline

    1995-01-01

    Examines discourse, not strictly mathematical, that teachers might adopt in a mathematics class and presents three major functions of such discourse: communication; structuring and labeling; and reflection. Develops lines for further inquiry, notably on the third function, the most likely focus for specific preparation by the teacher. (13…

  7. Science Literacy Circles: Big Ideas about Science

    Science.gov (United States)

    Devick-Fry, Jane; LeSage, Teresa

    2010-01-01

    Science literacy circles incorporate the organization of both science notebooks and literature circles to help K-8 students internalize big ideas about science. Using science literacy circles gives students opportunities to engage in critical thinking as they inductively develop understanding about science concepts. (Contains 1 table and 7…

  8. The Science in Science Fiction.

    Science.gov (United States)

    Nicholls, Peter, Ed.

    This 12-chapter book discusses the scientific facts behind the ideas included in the novels of Robert Heinlein, Isaac Asimov, Frederik Pohl, Arthur C. Clark and other science fiction writers. Areas explored in the first 11 chapters include: exploration of deep space; energy and exotic power sources; likelihood of extra-terrestrial life and the…

  9. Science Centres and Science Learning.

    Science.gov (United States)

    Rennie, Leonie J.; McClafferty, Terence P.

    1996-01-01

    Focuses on the interactive science center and its history over the last four decades. Traces the original idea to Francis Bacon. Recommends the use of cross-site studies to develop a model of learning in this setting. Contains 141 references. (DDR)

  10. The Science in Science Fiction.

    Science.gov (United States)

    Nicholls, Peter, Ed.

    This 12-chapter book discusses the scientific facts behind the ideas included in the novels of Robert Heinlein, Isaac Asimov, Frederik Pohl, Arthur C. Clark and other science fiction writers. Areas explored in the first 11 chapters include: exploration of deep space; energy and exotic power sources; likelihood of extra-terrestrial life and the…

  11. The Science of Filming Science

    Science.gov (United States)

    Harned, D.

    2016-12-01

    Filmmaking is a science. It is observation, data collection, analysis, experimentation, structure, and presentation. Filmmaking is a process that is familiar to scientists. Observation - what we know is gained from observation of the world around us. Film allows us to focus this observation, to pick out details, to understand nuance, to direct seeing. Filmmaking is a tool for learning about the world. Data collection - to study what we observe we must see what it is now, and how it is changing. This element of filmmaking is collecting images, video, documenting events, and gathering information. Analysis - to understand the film data we have collected we must understand connections, correlations, and cause and effect. We ask questions. We discover. Experimentation - film allows us to experiment with different scenarios, to test observations and make models. Structure - what we find or what we want to present must be sorted into a structured format using the tools of writing, filming, and editing. Presentation - the final film is the result of what we observe, what observations we collect, what we learn from those observations, how we test what we've learned, and how we organize and show what we find. Online video is transforming the way we see the world. We now have easy access to lectures by the famous and the obscure; we can observe lab experiments, documentaries of field expeditions, and actually see recent research results. Video is omnipresent in our culture and supplements or even replaces writing in many applications. We can easily present our own scientific results to new and important audiences. Video can do a lot for science and scientists: It can provide an expanded audience for scientific news and information, educate thousands, spread the word about scientific developments, help frame controversial science issues, show real scientists at work in the real world, promote interest in scientific publications, and report on science-agency programs. It can

  12. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  13. Mechanical science

    CERN Document Server

    Bolton, W C

    2013-01-01

    This book gives comprehensive coverage of mechanical science for HNC/HND students taking mechanical engineering courses, including all topics likely to be covered in both years of such courses, as well as for first year undergraduate courses in mechanical engineering. It features 500 problems with answers and 200 worked examples. The third edition includes a new section on power transmission and an appendix on mathematics to help students with the basic notation of calculus and solution of differential equations.

  14. Network science.

    Science.gov (United States)

    Barabási, Albert-László

    2013-03-28

    Professor Barabási's talk described how the tools of network science can help understand the Web's structure, development and weaknesses. The Web is an information network, in which the nodes are documents (at the time of writing over one trillion of them), connected by links. Other well-known network structures include the Internet, a physical network where the nodes are routers and the links are physical connections, and organizations, where the nodes are people and the links represent communications.

  15. Fictitious Science

    Science.gov (United States)

    Foladori, Guillermo

    2016-01-01

    Science and Technology (S&T), like Research and Development (R&D), has become a case of capital investment like any other economic sector. This has distanced R&D from social needs, to the extent that part of R&D ends up actually being fictitious, in the sense that it acquires a price on the market but never becomes part of material…

  16. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  17. Communicating Science

    Science.gov (United States)

    Holland, G. J.; McCaffrey, M. S.; Kiehl, J. T.; Schmidt, C.

    2010-12-01

    We are in an era of rapidly changing communication media, which is driving a major evolution in the modes of communicating science. In the past, a mainstay of scientific communication in popular media was through science “translators”; science journalists and presenters. These have now nearly disappeared and are being replaced by widespread dissemination through, e.g., the internet, blogs, YouTube and journalists who often have little scientific background and sharp deadlines. Thus, scientists are required to assume increasing responsibility for translating their scientific findings and calibrating their communications to non-technical audiences, a task for which they are often ill prepared, especially when it comes to controversial societal issues such as tobacco, evolution, and most recently climate change (Oreskes and Conway 2010). Such issues have been politicized and hi-jacked by ideological belief systems to such an extent that constructive dialogue is often impossible. Many scientists are excellent communicators, to their peers. But this requires careful attention to detail and logical explanation, open acknowledgement of uncertainties, and dispassionate delivery. These qualities become liabilities when communicating to a non-scientific audience where entertainment, attention grabbing, 15 second sound bites, and self assuredness reign (e.g. Olson 2009). Here we report on a program initiated by NCAR and UCAR to develop new approaches to science communication and to equip present and future scientists with the requisite skills. If we start from a sound scientific finding with general scientific consensus, such as the warming of the planet by greenhouse gases, then the primary emphasis moves from the “science” to the “art” of communication. The art cannot have free reign, however, as there remains a strong requirement for objectivity, honesty, consistency, and above all a resistance to advocating particular policy positions. Targeting audience

  18. Planning a Science Fair

    Science.gov (United States)

    Ebert, Jim

    1976-01-01

    Presented are views, on planning science fairs and science fair projects, of a fair coordinator, a science teacher, and students. Also included are 25 questions which might result in science fair projects. (SL)

  19. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER`s mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  20. Life sciences and environmental sciences

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The DOE laboratories play a unique role in bringing multidisciplinary talents -- in biology, physics, chemistry, computer sciences, and engineering -- to bear on major problems in the life and environmental sciences. Specifically, the laboratories utilize these talents to fulfill OHER's mission of exploring and mitigating the health and environmental effects of energy use, and of developing health and medical applications of nuclear energy-related phenomena. At Lawrence Berkeley Laboratory (LBL) support of this mission is evident across the spectrum of OHER-sponsored research, especially in the broad areas of genomics, structural biology, basic cell and molecular biology, carcinogenesis, energy and environment, applications to biotechnology, and molecular, nuclear and radiation medicine. These research areas are briefly described.

  1. Defining Data Science

    OpenAIRE

    Zhu, Yangyong; Xiong, Yun

    2015-01-01

    Data science is gaining more and more and widespread attention, but no consensus viewpoint on what data science is has emerged. As a new science, its objects of study and scientific issues should not be covered by established sciences. Data in cyberspace have formed what we call datanature. In the present paper, data science is defined as the science of exploring datanature.

  2. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  3. Do Gender-Science Stereotypes Predict Science Identification and Science Career Aspirations among Undergraduate Science Majors?

    Science.gov (United States)

    Cundiff, Jessica L.; Vescio, Theresa K.; Loken, Eric; Lo, Lawrence

    2013-01-01

    The present research examined whether gender-science stereotypes were associated with science identification and, in turn, science career aspirations among women and men undergraduate science majors. More than 1,700 students enrolled in introductory science courses completed measures of gender-science stereotypes (implicit associations and…

  4. Science Night

    CERN Document Server

    2004-01-01

    Would it surprise you to know that you can measure the speed of light using chocolate and a microwave oven? If you're interested in this and in finding out much more, come along to the Museum of the History of Science on 3 and 4 July 2004, when dozens of companies, institutions, colleges and organizations will be running exhibits, shows, and displays on the theme of counting and measuring. CERN will be there with a display stand that includes two particle detectors. Full details are available from the Museum website at: http://www.lanuitdelascience.ch/

  5. Science blogging

    CERN Document Server

    Wilcox, Christie

    2016-01-01

    Here is the essential how-to guide for communicating scientific research and discoveries online, ideal for journalists, researchers, and public information officers looking to reach a wide lay audience. Drawing on the cumulative experience of twenty-seven of the greatest minds in scientific communication, this invaluable handbook targets the specific questions and concerns of the scientific community, offering help in a wide range of digital areas, including blogging, creating podcasts, tweeting, and more. With step-by-step guidance and one-stop expertise, this is the book every scientist, science writer, and practitioner needs to approach the Wild West of the Web with knowledge and confidence.

  6. Science commons

    CERN Document Server

    CERN. Geneva

    2007-01-01

    SCP: Creative Commons licensing for open access publishing, Open Access Law journal-author agreements for converting journals to open access, and the Scholar's Copyright Addendum Engine for retaining rights to self-archive in meaningful formats and locations for future re-use. More than 250 science and technology journals already publish under Creative Commons licensing while 35 law journals utilize the Open Access Law agreements. The Addendum Engine is a new tool created in partnership with SPARC and U.S. universities. View John Wilbanks's biography

  7. Science Circus

    Science.gov (United States)

    Thomas, Rhys D.

    2006-12-01

    As a Smithsonian artist in residence Rhys Thomas taught basic Newtonian Physics using circus tricks. As an Oregon Museum of Science and Industry outreach performer he has used his juggling and equilibristic skills to demonstrate gyroscopics, gravity, inertia and other topics in 10 states and three countries. Rhys will share his insights and tips on "performing" rather than just "presenting" physics. He will perform some demos ala Ed Sullivan. He will also discuss how a basic understanding of physics has influenced his artistic expression in non-educational theatrical performances that earned him an Oregon Arts Fellowship in 2005. Sponsored by Stanley Micklavzina of the University of Oregon.

  8. Nanomaterials science

    Directory of Open Access Journals (Sweden)

    Heinrich Rohrer

    2010-01-01

    Full Text Available The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale.The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information

  9. Learning Science with Science Fiction Films.

    Science.gov (United States)

    Cavanaugh, Terence; Cavanaugh, Catherine

    This paper is an excerpt from a book on learning science using science fiction. The focus is on the use of science fiction films to engage students and encourage greater enthusiasm and interest in science. "Jurassic Park" is used as an example that can provide educators with countless lesson opportunities. This approach recommends the use of fun…

  10. Towards a Science of Science Teaching

    Science.gov (United States)

    Yates, Carolyn

    2009-01-01

    This article is a contribution to the search for evidence-based models of learning to improve science education. The author believes that modern teachers should look to the sciences of cognitive psychology and neuroscience to build a science of science teaching. Understanding the relationships between learning and the brain's structure and…

  11. Science Advising

    Science.gov (United States)

    Tannenbaum, Benn

    2004-05-01

    The need for competent physical scientists in public policy is often overlooked. Science and technology play an ever-growing role in our lives, but the people setting the policies governing their use too often lack the skills and knowledge needed to make well-informed decisions. Making the transition from academia to public policy is not as difficult as one might imagine and can lead to a challenging, rewarding career. Dr. Tannenbaum recently completed a 2002-2003 AAAS Science and Technology Fellowship sponsored by the American Physical Society during which he worked in the office of U.S. Representative Edward J. Markey (D-MA) on nuclear nonproliferation issues. His work in Congressman Markey's office focused on issues including US nuclear weapons policy, missile defense, the nuclear program in Iran, prevention of the transfer of U.S. nuclear technology to North Korea, and the security of nuclear sites in Iraq. Dr. Tannenbaum will discuss this experience and observations concerning "underinformed and uninformed" decision-making in Congress and the role of scientists in that process. He will also discuss his current position at the Federation of American Scientists.

  12. Science kitsch and pop science: A reconnaissance.

    Science.gov (United States)

    Kaeser, Eduard

    2013-07-01

    Science kitsch? The combination of these two words rings like an oxymoron. Science - as the common saying has it - exposes, discovers, tells the truth; kitsch conceals, covers, lies. I think, this "shadow" of science deserves a specific scrutiny, not only because it reflects the altered place and role of science in contemporary "knowledge" society but also because it pinpoints the task of relocating science in the "multicultural" context of postmodernism, with its different epistemic claims. The genre of science kitsch may help to regain credit by working as a probe to detect false pretensions, explanatory exuberance and exaggerations in science.

  13. Enacting science

    Science.gov (United States)

    MacDonald, Anthony Leo

    My study examines the development of forms of knowing that arise when students engage in open-ended explorations involving self-directed design and building involving simple materials. It is grounded in an enactivist theoretical perspective on cognition which holds that the creation of action-thought processes for engaging the world is interwoven with the meanings that are constructed for these experiences. A dynamic conception of persons-acting-in-a-setting is fundamental to an enactivist view of cognition. How is understanding enacted in building activity? How does the shape of a problem emerge? How do students enact meaning and understanding when they experience a high degree of physical engagement in building things? What are some characteristics of an enactive learning/teaching environment? My research settings comprise a range of individual, group and classroom engagements of varying lengths over a three and one-half year period. The first research episode involved two grade eight students in an investigation of Paper Towels. The second four month engagement was in a grade nine science class that culminated in the building of a Solar House. The third grade ten episode involved a one month project to build a Mousetrap Powered Car. A fourth Invent a Machine project was conducted in two grade eight science classes taught by the teacher who participated in the Solar House project. Two students were present in three of the four projects. I interviewed one of these students upon completion of his high school physics courses. I found that building is a form of thinking which develops competency in managing complex practical tasks. A triadic relationship of exploration, planning and acting is present. Practical and procedural understandings emerge as students enter and re-enter self-directed problem settings. Thinking patterns depend on the kinds of materials chosen, the ways they are used, and on how students contextualize the problem. Classroom assessment

  14. FOREWORD Nanomaterials science Nanomaterials science

    Science.gov (United States)

    Rohrer, Heinrich

    2010-10-01

    The nanometer regime covers the transition from condensed matter behavior to atomic and molecular properties and thus is a very rich but also very demanding area in materials science. Close to the condensed matter side, properties and functions might still very well be scalable, whereas close to the atomic and molecular side, the scalability is mostly lost. Properties and functions change qualitatively or quantitatively by orders of magnitude when the dimensions become smaller than a critical size in the nanometer range. Examples are the ballistic regime for electron or spin transport at dimensions below the mean free path, near-field effects in scanning near-field optical microscopy and quantum wells when the dimensions are below an appropriate wavelength, novel electronic, mechanical, and chemical properties when the number of bulk atoms becomes smaller than that of surface atoms, quantum conduction, and Coulomb blockade. Thus, by going below a certain size, an abundance of novel properties and functions are at one's disposal, or, in other words, we can functionalize materials simply by reducing their size to the nanoscale. The key to the future lies in the functions that we give to materials, not just in finding 'novel functional materials'. This catch expression in many materials science programs and initiatives of the past two decades sounds great, but it is not what really counts. All materials are functional in one way or another and, therefore, all new materials are 'novel functional materials'. Certainly, finding new materials is always an important part of progress, but we should also focus on the much larger domain of novel functions that we can give to existing or modified materials. A good example is semiconductors: they are fifty or more years old and their properties are very well known, but they were not of widespread interest and use until the transistor changed their destiny into being the central material in the information technology revolution

  15. Supercomputational science

    CERN Document Server

    Wilson, S

    1990-01-01

    In contemporary research, the supercomputer now ranks, along with radio telescopes, particle accelerators and the other apparatus of "big science", as an expensive resource, which is nevertheless essential for state of the art research. Supercomputers are usually provided as shar.ed central facilities. However, unlike, telescopes and accelerators, they are find a wide range of applications which extends across a broad spectrum of research activity. The difference in performance between a "good" and a "bad" computer program on a traditional serial computer may be a factor of two or three, but on a contemporary supercomputer it can easily be a factor of one hundred or even more! Furthermore, this factor is likely to increase with future generations of machines. In keeping with the large capital and recurrent costs of these machines, it is appropriate to devote effort to training and familiarization so that supercomputers are employed to best effect. This volume records the lectures delivered at a Summer School ...

  16. Salvaging Science Literacy

    Science.gov (United States)

    Feinstein, Noah

    2011-01-01

    There is little evidence that the prevailing strategies of science education have an impact on the use and interpretation of science in daily life. Most science educators and science education researchers nonetheless believe that science education is intrinsically useful for students who do not go on to scientific or technical careers. This essay…

  17. Salvaging Science Literacy

    Science.gov (United States)

    Feinstein, Noah

    2011-01-01

    There is little evidence that the prevailing strategies of science education have an impact on the use and interpretation of science in daily life. Most science educators and science education researchers nonetheless believe that science education is intrinsically useful for students who do not go on to scientific or technical careers. This essay…

  18. Inhalation anesthesia. What to learn from modelisation?

    Science.gov (United States)

    Deriaz, H

    1997-01-01

    Models describing pharmacokinetics of inhalational anesthetic agents have been developed, usually on Mapleson's description of the body as a collection of tissues characterised by their volume, local blood flow and anesthetic solubility. Such models are very useful to understand the use of inhalation agents and circle circuit, to compare consumption of different agents in different anesthetic practices, and to prepare the anesthetist to administer new products safely.

  19. Metrology Influence on the Cutting Modelisation

    CERN Document Server

    Cahuc, Olivier

    2009-01-01

    High speed machining has been improved thanks to considerable advancement on the tools (optimum geometry, harder materials), on machined materials (increased workability and machining capacity for harder workpieces) and finally on the machines (higher accuracy and power at the high speeds, performances of the numerical control system). However at such loading velocities, the cutting process generates high strain and high-speed strain which cause complex, various and irreversible phenomena in plasticity. These phenomena are comprehended through the complete measurement of the mechanical actions using a six-component dynamometer and flux and temperatures measurements at the tip of the cutting tool. Balanced energy assessments are the starting points of our reflection on the machining modelling. The modelling of these phenomena and the material behaviour under this type of loading requires a suitable theoretical approach. The main points of the strain gradient theory are developed. A theoretical behaviour law ad...

  20. Modelisation of an unspecialized quadruped walking mammal.

    Science.gov (United States)

    Neveu, P; Villanova, J; Gasc, J P

    2001-12-01

    Kinematics and structural analyses were used as basic data to elaborate a dynamic quadruped model that may represent an unspecialized mammal. Hedgehogs were filmed on a treadmill with a cinefluorographic system providing trajectories of skeletal elements during locomotion. Body parameters such as limb segments mass and length, and segments centre of mass were checked from cadavers. These biological parameters were compiled in order to build a virtual quadruped robot. The robot locomotor behaviour was compared with the actual hedgehog to improve the model and to disclose the necessary changes. Apart from use in robotics, the resulting model may be useful to simulate the locomotion of extinct mammals.

  1. Turbulence modelling; Modelisation de la turbulence isotherme

    Energy Technology Data Exchange (ETDEWEB)

    Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)

    1997-12-31

    This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.

  2. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F.R.); nuclear data for transmutation (Noguere G.). (J.S.)

  3. Voodoo Science

    Science.gov (United States)

    Park, Robert

    2011-03-01

    A remarkable scientific result that appears to violate natural law may portend a revolutionary advance in human knowledge. It is, however, more likely an experimental screw up. Error is normal; it can be reduced by repeating measurements and better design of controls, but the success and credibility of science is anchored in a culture of openness. Ideas and observations are freely exposed to independent testing and evaluation by others. What emerges is the book of nature. On its pages we find, if not a simple world, at least an orderly world, in which everything from the birth of stars to falling in love is governed by the same natural laws. These laws cannot be circumvented by any amount of piety or cleverness, they can be understood - with the possible exception of String Theory. For those who elect to work outside the scientific community, errors may go unrecognized. We will examine examples of this, including claims of perpetual motion and cancer caused by cell-phone radiation.

  4. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1987

    1987-01-01

    Provides perspectives and background information on selected aspects of science instruction. Addresses concerns related to physics teaching, academic assessment, problem-solving, integrated science, readability, college science for pre-nursing students, and a graded assessment scheme. (ML)

  5. Science Education After Dainton

    Science.gov (United States)

    Keohane, Kevin

    1969-01-01

    The Dainton committee indicated that science must not be directed simply at the committed students. Curriculum changes, including those related to teaching science as a unity, could have a profound effect in making science more attractive and relevant. (JK)

  6. Science and Religion: Implications for Science Educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-01-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western…

  7. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics" categories; the most…

  8. Citizen Science: Getting More Involved with Science

    Science.gov (United States)

    Leeder, Poppy

    2014-01-01

    One of the things that this author enjoys most about working at the Natural Environment Research Council (NERC) is the science that she finds out about and the researchers she meets. Having loved science throughout school and then on into university, the author is always keen to learn more. The increase in citizen science projects over the last…

  9. Promoting science through science fiction and pseudoscience.

    Science.gov (United States)

    Roslund, C.

    1986-11-01

    A great deal of physics can be learned from reading good science fiction. Many writers of this genre have shown great talent in explaining the laws of physics in language that is both lucid and accessible. Their writings can readily be used by the science teacher to enhance and to stimulate student understanding of physics and science.

  10. How to Motivate Science Teachers to Use Science Experiments

    OpenAIRE

    Josef Trna

    2012-01-01

    A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include s...

  11. What's science? Where's science? Science journalism in German print media.

    Science.gov (United States)

    Summ, Annika; Volpers, Anna-Maria

    2016-10-01

    This article examines the current state of science coverage in German print media. It deals with the following questions: (1) how the main characteristics of science journalism can be described, (2) whether there is a difference between various scientific fields, and (3) how different definitions of science journalism lead to differing findings. Two forms of science coverage were analyzed in a standardized, two-part content analysis of German newspapers (N = 1730 and N = 1640). The results show a significant difference between a narrow and a broad definition of science journalism. In the classic understanding, science journalism is prompted by scientific events and is rather noncritical. Science coverage in a broad sense is defined by a wider range of journalistic styles, driven by non-scientific events, and with a focus on the statements of scientific experts. Furthermore, the study describes the specific role of the humanities and social sciences in German science coverage. © The Author(s) 2015.

  12. Science, technology and society

    CERN Document Server

    Giacomelli, G

    2005-01-01

    We shall discuss some aspects of science and technology, their increasing role in the society, the fast advances in modern science, the apparent decrease of interest of the young generation in basic sciences, the importance of proper science popularization for better public education and awareness in scientific fields.

  13. Making Science Relevant

    Science.gov (United States)

    Eick, Charles; Deutsch, Bill; Fuller, Jennifer; Scott, Fletcher

    2008-01-01

    Science teachers are always looking for ways to demonstrate the relevance of science to students. By connecting science learning to important societal issues, teachers can motivate students to both enjoy and engage in relevant science (Bennet, Lubben, and Hogarth 2007). To develop that connection, teachers can help students take an active role in…

  14. Pragmaticism, Science and Theology

    DEFF Research Database (Denmark)

    Brier, Søren

    2016-01-01

    This review assesses Ashley and Deely’s claims regarding the relation of science and religion, taking Einstein’s famous statement that “science without religion is lame, religion without science is blind” as its starting point. It argues that Ashley and Deely’s book How Science Enriches Theology...

  15. Science and Scientificity

    Institute of Scientific and Technical Information of China (English)

    Zong-Liang Xu; Xin Zhang

    2005-01-01

    @@ A question about science We are now living in a scientific era, in which the theory and practice of science have penetrated into all aspects of society and science is often a hot topic.However, what on earth is science? This question is largely neglected by many people, even researchers focusing on scientific studies may not have a very clear understanding of it.

  16. Science to the People

    CERN Document Server

    Doswaldbeck, L; Brancati, D; Colombo, U; Coyaud, S; De Semir, V; Dupuy, G; Ellis, Jonathan Richard; Lecourt, D; Llewellyn Smith, Christopher Hubert; Mettan, G; Montagnier, L; Morrison, Douglas Robert Ogston; Rampini, F; Ting, Samuel C C; Ugo, R; Widman, A; CERN. Geneva

    1994-01-01

    Science & society : urgent topics Risk perception : Ringing the alarm bells Basic research : Understanding its relevance Science and Economics : Comparing puplic costs and puplic benefits Language(s) : Translating expert knowledge into common culture Science and ethics : Freedom of research and limits to its applications Science,Media & Society: A confrontation

  17. Science Fiction & Scientific Literacy

    Science.gov (United States)

    Czerneda, Julie E.

    2006-01-01

    The term "science fiction" has become synonymous, in the media at least, for any discovery in science too incredible or unexpected for the nonscientist to imagine. One of the most common classroom uses of science fiction is for students to pick out flaws in science fiction movies or television shows. Unfortunately, this approach can result in…

  18. Has Feminism Changed Science?

    Science.gov (United States)

    Schiebinger, Londa

    2000-01-01

    Discusses whether the presence of feminism in science has changed science, discounting the idea that simply encouraging more women to enter science will necessarily produce change and stressing the need for governmental funding and initiatives on women and gender in science. Argues for multiple arenas for change (research priorities, domestic…

  19. Science and Technology Facilities

    Science.gov (United States)

    Moonen, Jean-Marie; Buono, Nicolas; Handfield, Suzanne

    2004-01-01

    These four articles relate to science and technology infrastructure for secondary and tertiary institutions. The first article presents a view on approaches to teaching science in school and illustrates ideal science facilities for secondary education. The second piece reports on work underway to improve the Science Complex at the "Universite…

  20. A mirror for science.

    Science.gov (United States)

    Jasanoff, Sheila

    2014-01-01

    Early conceptions of the public understanding of science suffered from a narrow framing of what science means and a presumption that science is divided from its publics by walls of ignorance and indifference. Those assumptions amplified misunderstanding and led to faulty policies. It is time to reopen each element in the term "public understanding of science" to renewed reflection. This journal can advance that goal by encouraging research on actual rather than imagined public responses to science, on representations of science in the public sphere, and on interactions between science, technology and society.

  1. Science and Technology Metrics

    Science.gov (United States)

    2005-01-01

    Analysis (1974 1994)", PSICOLOGIA CONDUCTUAL 1996, Vol 4, Iss 1, pp 111 121 Irvine, J.; Martin, B., "The Isaac Newton Telescope", Social Studies of Science...analysing 1000 articles from the Science Citation Index(R) and Social Sciences Citation Index(R) [Ali, 1993]. These articles were selected in ten...occurrences of the same keywords among the shared references. However, there are some unique differences in the science and the social science

  2. The World of Science Fiction.

    Science.gov (United States)

    Schwartz, Sheila

    1971-01-01

    Science fiction is discussed from the following standpoints: What Is Science Fiction?; The History of Science Fiction; and The Themes of Science Fiction. A list of films, books, and records about science fiction is given. (DB)

  3. Science Film: An Aperture into Science Advocacy

    Science.gov (United States)

    2015-04-01

    The current funding environment for scientific research necessitates a change in how we foster support for the endeavor. Federal spending is not likely to grow unless constituents--APS members--help communicate the value of science to members of Congress and the public in a compelling and individual way. The event explores how popular film with science-based plots can help physicists communicate the value of science to members of Congress and an increasingly diverse electorate.

  4. Network science, nonlinear science and infrastructure systems

    CERN Document Server

    2007-01-01

    Network Science, Nonlinear Science and Infrastructure Systems has been written by leading scholars in these areas. Its express purpose is to develop common theoretical underpinnings to better solve modern infrastructural problems. It is felt by many who work in these fields that many modern communication problems, ranging from transportation networks to telecommunications, Internet, supply chains, etc., are fundamentally infrastructure problems. Moreover, these infrastructure problems would benefit greatly from a confluence of theoretical and methodological work done with the areas of Network Science, Dynamical Systems and Nonlinear Science. This book is dedicated to the formulation of infrastructural tools that will better solve these types of infrastructural problems. .

  5. A Science Cloud for Data Intensive Sciences

    Directory of Open Access Journals (Sweden)

    Ken T Murata

    2013-03-01

    Full Text Available It is often discussed that the fourth methodology for science research is "informatics". The first methodology is a theoretic approach, the second one is observation and/or experiment, and the third one is computer simulation. Informatics is a new methodology for data intensive science, which is a new concept based on the fact that most scientific data are digitalized and the amount of data is huge. The facilities to support informatics are cloud systems. Herein we propose a cloud system especially designed for science. The basic concepts, design, resources, implementation, and applications of the NICT science cloud are discussed.

  6. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members...... images of science. Staff members at Nordic STC were therefore asked to consider to what extent they believe they display different aspects of science. The results suggest that it is possible to display different images of science depending on what aspects of science staff members choose to display...

  7. Different images of science

    DEFF Research Database (Denmark)

    Davidsson, Eva

      Within the science and technology centres (STC) movement there exists explicit aims and ambitions to enhance visitors' interest in and knowledge about science. Meanwhile, several researches question the choice of the scientific content in exhibitions when arguing that a too unproblematic view...... of science commonly is presented. But what images and aspects of science are visitors actually confronted with at STCs? How do staff members at STCs consider the scientific content and how do they choose what aspects of science to display in exhibitions? What ideas about visitors' learning do staff members...... images of science. Staff members at Nordic STC were therefore asked to consider to what extent they believe they display different aspects of science. The results suggest that it is possible to display different images of science depending on what aspects of science staff members choose to display...

  8. Attitudes, experiences, et performance en mathematique d'etudiantes et d'etudiants de cinquieme secondeire selon leur choix scolaire. Les cahiers de recherche de GREMF. Cahier 9. (Female and Male Students' Attitudes, Experiences and Performance in Mathematics in Grade ll, According to Their Academic Choices. GREMF Research Reports. Report 9).

    Science.gov (United States)

    Mura, Roberta; And Others

    In order to advance our understanding of the mechanisms through which women come to be underrepresented in mathematics and science, factors associated with the academic choices of students in three grade ll classes were studied. Information was gathered through questionnaires, interviews with students and with their mathematics teachers, classroom…

  9. NX15 science workshop

    CERN Multimedia

    2015-01-01

    Science. For some of us, it's daunting or maybe even terrifying. How to tell a good science story? That's the question we will explore together in this workshop. Conceived and produced by journalist and Scientific News producer Claudio Rosmino of Euronews, and presented by Euronews' Jeremy Wilks, the workshop will look at actual case studies (from Euronews and beyond) where science news proved exciting, inspiring and accessible to audiences around the world. These might include the Rosetta mission and CERN's work on Science for Peace. Together, we'll share ideas and knowledge around how science journalism and science news can increase its visibility in the media and maybe save the planet...!

  10. Towards Data Science

    Directory of Open Access Journals (Sweden)

    Yangyong Zhu

    2015-05-01

    Full Text Available Currently, a huge amount of data is being rapidly generated in cyberspace. Datanature (all data in cyberspace is forming due to a data explosion. Exploring the patterns and rules in datanature is necessary but difficult. A new discipline called Data Science is coming. It provides a type of novel research method (a data-intensive method for natural and social sciences and goes beyond computer science in researching data. This paper presents the challenges presented by data and discusses what differentiates data science from the established sciences, data technologies, and big data. Our goal is to encourage data related researchers to transfer their focus towards this new science.

  11. Environmental Science Projects. LC Science Tracer Bullet.

    Science.gov (United States)

    Carter, Constance, Comp.

    This bibliography cites sources to assist middle, junior, and senior high school students and teachers in planning, preparing, and executing science fair projects in the environmental sciences. In addition, a few books with experiments suitable for elementary grade students are included. The listing includes: (1) 5 introductory texts; (2) 31…

  12. Discovery in Science and in Teaching Science

    Science.gov (United States)

    Kipnis, Nahum

    2007-01-01

    A proper presentation of scientific discoveries may allow science teachers to eliminate certain myths about the nature of science, which originate from an uncertainty among scholars about what constitutes a discovery. It is shown that a disagreement on this matter originates from a confusion of the act of discovery with response to it. It is…

  13. Giant Steps Through Science, Science I.

    Science.gov (United States)

    Bertke, Mary Christopher; Feistritzer, Emily

    This text is designed for use in a first year high school science course and is an attempt to put basic physical science concepts into a logical order. This organization involves an historical approach, beginning with four chapters on astronomy: Modern Astronomy, The Ancient Astronomers, Astronomy - Ptolemy to Kepler, and Galileo and Newton. The…

  14. Advancing the Science of Team Science

    Science.gov (United States)

    Falk‐Krzesinski, Holly J.; Börner, Katy; Contractor, Noshir; Fiore, Stephen M.; Hall, Kara L.; Keyton, Joann; Spring, Bonnie; Stokols, Daniel; Trochim, William; Uzzi, Brian

    2010-01-01

    Abstract The First Annual International Science of Team Science (SciTS) Conference was held in Chicago, IL April 22–24, 2010. This article presents a summary of the Conference proceedings. Clin Trans Sci 2010; Volume 3: 263–266. PMID:20973925

  15. Teaching Science Fact with Science Fiction

    Science.gov (United States)

    Raham, R. Gary

    2004-01-01

    The literature of science fiction packs up the facts and discoveries of science and runs off to futures filled with both wonders and warnings. Kids love to take the journeys it offers for the thrill of the ride, but they can learn as they travel, too. This book will provide the reader with: (1) an overview of the past 500 years of scientific…

  16. Science and religion: implications for science educators

    Science.gov (United States)

    Reiss, Michael J.

    2010-03-01

    A religious perspective on life shapes how and what those with such a perspective learn in science; for some students a religious perspective can hinder learning in science. For such reasons Staver's article is to be welcomed as it proposes a new way of resolving the widely perceived discord between science and religion. Staver notes that Western thinking has traditionally postulated the existence and comprehensibility of a world that is external to and independent of human consciousness. This has led to a conception of truth, truth as correspondence, in which our knowledge corresponds to the facts in this external world. Staver rejects such a conception, preferring the conception of truth as coherence in which the links are between and among independent knowledge claims themselves rather than between a knowledge claim and reality. Staver then proposes constructivism as a vehicle potentially capable of resolving the tension between religion and science. My contention is that the resolution between science and religion that Staver proposes comes at too great a cost—both to science and to religion. Instead I defend a different version of constructivism where humans are seen as capable of generating models of reality that do provide richer and more meaningful understandings of reality, over time and with respect both to science and to religion. I argue that scientific knowledge is a subset of religious knowledge and explore the implications of this for science education in general and when teaching about evolution in particular.

  17. Physical Sciences 2007 Science & Technology Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A U

    2008-04-07

    The Physical Sciences Directorate applies frontier physics and technology to grand challenges in national security. Our highly integrated and multidisciplinary research program involves collaborations throughout Lawrence Livermore National Laboratory, the National Nuclear Security Administration, the Department of Energy, and with academic and industrial partners. The Directorate has a budget of approximately $150 million, and a staff of approximately 350 employees. Our scientists provide expertise in condensed matter and high-pressure physics, plasma physics, high-energy-density science, fusion energy science and technology, nuclear and particle physics, accelerator physics, radiation detection, optical science, biotechnology, and astrophysics. This document highlights the outstanding research and development activities in the Physical Sciences Directorate that made news in 2007. It also summarizes the awards and recognition received by members of the Directorate in 2007.

  18. Science and Shakespeare.

    Science.gov (United States)

    Mah, Steven; Chinnery, Charlene

    2003-01-01

    Describes an assignment in which the preservice teacher must find a connection between science and Shakespeare. Connects the science of the witches in Shakespeare's "Macbeth" to the holistic approach of education. (SG)

  19. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  20. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  1. An Alternative Science Fair.

    Science.gov (United States)

    Romjue, Mary Kalen; Clementson, John J.

    1992-01-01

    Proposes the organization of noncompetitive science fairs to create a more positive learning experience for children in the elementary grades. Describes methods of organizing and judging the fair, and provides a list of suggested resources for science fair projects. (MDH)

  2. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  3. Science Inventory | US EPA

    Science.gov (United States)

    The Science Inventory is a searchable database of research products primarily from EPA's Office of Research and Development. Science Inventory records provide descriptions of the product, contact information, and links to available printed material or websites.

  4. Science in General Education

    Science.gov (United States)

    Read, Andrew F.

    2013-01-01

    General education must develop in students an appreciation of the power of science, how it works, why it is an effective knowledge generation tool, and what it can deliver. Knowing what science has discovered is desirable but less important.

  5. Science and Shakespeare.

    Science.gov (United States)

    Mah, Steven; Chinnery, Charlene

    2003-01-01

    Describes an assignment in which the preservice teacher must find a connection between science and Shakespeare. Connects the science of the witches in Shakespeare's "Macbeth" to the holistic approach of education. (SG)

  6. JSTOR Plant Science

    OpenAIRE

    2010-01-01

    JSTOR Plant Science is an online environment that brings together content, tools, and people interested in plant science. It provides access to foundational content vital to plant science – plant type specimens, taxonomic structures, scientific literature, and related materials, making them widely accessible to the plant science community as well as to researchers in other fields and to the public. It also provides an easy to use interface with powerful functionality that su...

  7. CAREERS IN INFORMATION SCIENCE,

    Science.gov (United States)

    Information Science . Sets forth that Information Science is concerned with the properties, behavior, and flow of information...Describes how it is used, both by individuals and in large systems. Discusses the opportunities in Information Science and outlines three relatively...6or participation in these career areas. Concludes that Information Science is a new but rapidly growing field pushing the frontiers of human knowledge and, thus, 3ontributing to human wellbeing and progress.

  8. Science Fair Art

    Science.gov (United States)

    Sullivan, Kevin

    2004-01-01

    Sciences fair season is a time when seasoned non-science teachers typically give up all hope of cramming any more knowledge into the heads of their students. It's just too much. However, non-science types might be missing out on a pretty good deal. The science department has got these kids in a pretty tight grip as far as the process and the…

  9. Social science that matters

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2006-01-01

    Social science is headed down a dead end toward mere scientism, becoming a second-rate version of the hard sciences. We neeed to recognise and support a different kind of social science research - and so should those who demand accountability from researchers. This paper asks what kind of social...... science we - scholars, policy makers, administrators - should and should not promote in democratic societies, and how we may hold social scientists accountable to deliver what we ask them for....

  10. Inequalities in Science

    Science.gov (United States)

    Xie, Y.

    2014-01-01

    Inequalities in scientists’ contributions to science and their rewards have always been very high. There are good reasons to propose that inequalities in science across research institutions and across individual scientists have increased in recent years. In the meantime, however, globalization and internet technology have narrowed inequalities in science across nations and facilitated the expansion of science and rapid production of scientific discoveries through international collaborative networks. PMID:24855244

  11. Social science that matters

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2006-01-01

    Social science is headed down a dead end toward mere scientism, becoming a second-rate version of the hard sciences. We neeed to recognise and support a different kind of social science research - and so should those who demand accountability from researchers. This paper asks what kind of social...... science we - scholars, policy makers, administrators - should and should not promote in democratic societies, and how we may hold social scientists accountable to deliver what we ask them for....

  12. Artificiality in Social Sciences

    OpenAIRE

    Rennard, Jean-Philippe

    2007-01-01

    This text provides with an introduction to the modern approach of artificiality and simulation in social sciences. It presents the relationship between complexity and artificiality, before introducing the field of artificial societies which greatly benefited from the computer power fast increase, gifting social sciences with formalization and experimentation tools previously owned by "hard" sciences alone. It shows that as "a new way of doing social sciences", artificial societies should undo...

  13. 76 FR 38430 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2011-06-30

    ... TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology... ). SUMMARY: The Subcommittee on Forensic Science (SoFS) of the National Science and Technology Council's... Science can be obtained through the Office of Science and Technology Policy's NSTC Web site at:......

  14. Metabolomics in food science.

    Science.gov (United States)

    Cevallos-Cevallos, Juan Manuel; Reyes-De-Corcuera, José Ignacio

    2012-01-01

    Metabolomics, the newest member of the omics techniques, has become an important tool in agriculture, pharmacy, and environmental sciences. Advances in compound extraction, separation, detection, identification, and data analysis have allowed metabolomics applications in food sciences including food processing, quality, and safety. This chapter discusses recent advances and applications of metabolomics in food science.

  15. Science Education Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents eight separate articles on science education. Topic areas addressed include: an inservice course in primary science; improving physics teaching; reducing chemistry curriculum; textbook readability measures; school-industry link for introductory engineering; local education authority initiatives in primary school science; and "Winnie…

  16. Parental Engagement with Science

    Science.gov (United States)

    Bond, Joanna; Harbinson, Terence

    2010-01-01

    A programme of parental engagement with school science is described, in which parents and their children take part in scientific debate and practical science lessons. Three sessions, in biology, chemistry and physics, of this ongoing programme are described, through which parents have been able to support their children by learning science with…

  17. Remodeling Science Education

    Science.gov (United States)

    Hestenes, David

    2013-01-01

    Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…

  18. Science and Human Experience

    Science.gov (United States)

    Cooper, Leon N.

    2015-01-01

    Part I. Science and Society: 1. Science and human experience; 2. Does science undermine our values?; 3. Can science serve mankind?; 4. Modern science and contemporary discomfort: metaphor and reality; 5. Faith and science; 6. Art and science; 7. Fraud in science; 8. Why study science? The keys to the cathedral; 9. Is evolution a theory? A modest proposal; 10. The silence of the second; 11. Introduction to Copenhagen; 12. The unpaid debt; Part II. Thought and Consciousness: 13. Source and limits of human intellect; 14. Neural networks; 15. Thought and mental experience: the Turing test; 16. Mind as machine: will we rubbish human experience?; 17. Memory and memories: a physicist's approach to the brain; 18. On the problem of consciousness; Part III. On the Nature and Limits of Science: 19. What is a good theory?; 20. Shall we deconstruct science?; 21. Visible and invisible in physical theory; 22. Experience and order; 23. The language of physics; 24. The structure of space; 25. Superconductivity and other insoluble problems; 26. From gravity to light and consciousness: does science have limits?

  19. ALMA science data management

    OpenAIRE

    Stoehr, Felix

    2015-01-01

    ALMA has transitioned now from the construction to the operation phase. We review the Science Data Management of ALMA including the concepts of Data Reduction, Quality Assurance as well as of the Science Archive. We also place the Science Data Management of ALMA into the larger context.

  20. History of Science

    Science.gov (United States)

    Oversby, John

    2010-01-01

    In this article, the author discusses why the history of science should be included in the science curriculum in schools. He also presents some opportunities that can come out of using historical contexts, and findings from a study assessing the place of history of science in readily available textbooks.

  1. Science Comic Strips

    Science.gov (United States)

    Kim, Dae Hyun; Jang, Hae Gwon; Shin, Dong Sun; Kim, Sun-Ja; Yoo, Chang Young; Chung, Min Suk

    2012-01-01

    Science comic strips entitled Dr. Scifun were planned to promote science jobs and studies among professionals (scientists, graduate and undergraduate students) and children. To this end, the authors collected intriguing science stories as the basis of scenarios, and drew four-cut comic strips, first on paper and subsequently as computer files.…

  2. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  3. History of Science

    Science.gov (United States)

    Oversby, John

    2010-01-01

    In this article, the author discusses why the history of science should be included in the science curriculum in schools. He also presents some opportunities that can come out of using historical contexts, and findings from a study assessing the place of history of science in readily available textbooks.

  4. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  5. Forensic Science Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Forensic science technicians, also called crime laboratory technicians or police science technicians, help solve crimes. They examine and identify physical evidence to reconstruct a crime scene. This article discusses everything students need to know about careers for forensic science technicians--wages, responsibilities, skills needed, career…

  6. Super Science Fair Sourcebook.

    Science.gov (United States)

    Iritz, Maxine Haren

    This guide to science fair projects is designed for students and provides clear directions on how to complete a successful science project. Real projects are used as examples and information and advice is provided by teachers, judges, and participants and their families about the process. Topics covered in this book include choosing a science fair…

  7. Science Challenge Day

    Science.gov (United States)

    Siegel, Deborah

    2013-01-01

    Science fairs can be good motivators, but as extracurricular activities, they leave some students behind. However, by staging a Science Challenge Day at school, educators can involve all students in doing everything from choosing activities to judging projects. This article presents a model for running a successful Science Challenge Day. The…

  8. Building Science Process Skills

    Science.gov (United States)

    DeFina, Anthony V.

    2006-01-01

    A well-designed and executed field trip experience serves not only to enrich and supplement course content, but also creates opportunities to build basic science process skills. The National Science Education Standards call for science teachers "to design and manage learning environments that provide students with the time, space, and resources…

  9. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  10. Social Work and Science

    Science.gov (United States)

    Gehlert, Sarah

    2016-01-01

    Interest has grown in the past few years about the place of social work in science. Questions remain, such as whether social work should be considered a science, and if so, where it fits into the constellation of sciences. This article attempts to shed light on these questions. After briefly considering past and present constructions of science…

  11. Sunrise on Science.

    Science.gov (United States)

    Casto, James E.

    1994-01-01

    Sunrise Museum's Science Hall in Charleston, WV, offers 30 hands-on exhibits that introduce children to science. Museum programs use a 9-foot soft-sculptured, unzippable doll to teach children about nutrition and basic anatomy and recruit representatives from local businesses and industry to conduct weekend science workshops. (LP)

  12. Demystifying Nature of Science

    Science.gov (United States)

    Lederman, Judith; Bartels, Selina; Lederman, Norman; Gnanakkan, Dionysius

    2014-01-01

    With the emergence of the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013), it is apparent that teaching and learning about nature of science (NOS) continues to be an important goal of science education for all K-12 students. With this emphasis on NOS, early childhood teachers are asking how to design…

  13. Sci-Fi Science.

    Science.gov (United States)

    Freudenrich, Craig C.

    2000-01-01

    Recommends using science fiction television episodes, novels, and films for teaching science and motivating students. Studies Newton's Law of Motion, principles of relativity, journey to Mars, interplanetary trajectories, artificial gravity, and Martian geology. Discusses science fiction's ability to capture student interest and the advantages of…

  14. Fundamentals of soil science

    Science.gov (United States)

    This study guide provides comments and references for professional soil scientists who are studying for the soil science fundamentals exam needed as the first step for certification. The performance objectives were determined by the Soil Science Society of America's Council of Soil Science Examiners...

  15. But Is It Science?

    Science.gov (United States)

    Watts, Mike; Salehjee, Saima; Essex, Jane

    2017-01-01

    Early years science education is not science, but a curricular construction designed to induct young children into a range of ideas and practices related to the natural world. While inquiry-based learning is an important approach to this, it is not of itself unique to science and there are a range of logico-mathematical constructions that come…

  16. Social Work and Science

    Science.gov (United States)

    Gehlert, Sarah

    2016-01-01

    Interest has grown in the past few years about the place of social work in science. Questions remain, such as whether social work should be considered a science, and if so, where it fits into the constellation of sciences. This article attempts to shed light on these questions. After briefly considering past and present constructions of science…

  17. Newspaper space for science

    OpenAIRE

    2006-01-01

    In recent years, courses, events and incentive programs for scientific journalism and the divulgation of science have proliferated in Brazil. Part of this context is “Sunday is science day, history of a supplement from the post-war years”, a book published this year that is based on the Master’s degree research of Bernardo Esteves, a journalist specialized in science.

  18. Information science in transition

    CERN Document Server

    Gilchrist, Alan

    2013-01-01

    Are we at a turning point in digital information? The expansion of the internet is unprecedented. Will information science become part of computer science and does rise of the term informatics demonstrate convergence of information science and information technology - a convergence that must surely develop? This work reflects on such issues.

  19. Demystifying Nature of Science

    Science.gov (United States)

    Lederman, Judith; Bartels, Selina; Lederman, Norman; Gnanakkan, Dionysius

    2014-01-01

    With the emergence of the "Next Generation Science Standards" ("NGSS"; NGSS Lead States 2013), it is apparent that teaching and learning about nature of science (NOS) continues to be an important goal of science education for all K-12 students. With this emphasis on NOS, early childhood teachers are asking how to design…

  20. But Is It Science?

    Science.gov (United States)

    Watts, Mike; Salehjee, Saima; Essex, Jane

    2017-01-01

    Early years science education is not science, but a curricular construction designed to induct young children into a range of ideas and practices related to the natural world. While inquiry-based learning is an important approach to this, it is not of itself unique to science and there are a range of logico-mathematical constructions that come…

  1. Forensic Science Technician

    Science.gov (United States)

    Tech Directions, 2010

    2010-01-01

    Forensic science technicians, also called crime laboratory technicians or police science technicians, help solve crimes. They examine and identify physical evidence to reconstruct a crime scene. This article discusses everything students need to know about careers for forensic science technicians--wages, responsibilities, skills needed, career…

  2. Science as Golem.

    Science.gov (United States)

    Pinch, Trevor

    1996-01-01

    A new view of science that goes beyond conventional perceptions of science as either good or bad is proposed. The new perspective sees science as process rather than product, bringing together scientific skills and human insight. It is seen as important for the public to understand that expert disagreement is part of the scientific enterprise.…

  3. New Science on the Open Science Grid

    CERN Document Server

    Board, The Open Science Grid Executive; Pordes, Ruth; Altunay, Mine; Avery, Paul; Bejan, Alina; Blackburn, Kent; Blatecky, Alan; Gardner, Rob; Kramer, Bill; Livny, Miron; McGee, John; Potekhin, Maxim; Quick, Rob; Olson, Doug; Roy, Alain; Sehgal, Chander; Wenaus, Torre; Wilde, Mike; Wuerthwein, Frank

    2012-01-01

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: (http://www.opensciencegrid.org).

  4. New science on the Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, R; Altunay, M; Sehgal, C [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Avery, P [University of Florida, Gainesville, FL 32611 (United States); Bejan, A; Gardner, R; Wilde, M [University of Chicago, Chicago, IL 60607 (United States); Blackburn, K [California Institute of Technology, Pasadena, CA 91125 (United States); Blatecky, A; McGee, J [Renaissance Computing Institute, Chapel Hill, NC 27517 (United States); Kramer, B; Olson, D; Roy, A [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Livny, M [University of Wisconsin, Madison, Madison, WI 53706 (United States); Potekhin, M; Quick, R; Wenaus, T [Indiana University, Bloomington, IN 47405 (United States); Wuerthwein, F [University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: ruth@fnal.gov

    2008-07-15

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large-scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement, and the distributed facility. This paper gives both a brief general description and specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org.

  5. New Science on the Open Science Grid

    Energy Technology Data Exchange (ETDEWEB)

    Pordes, Ruth; Altunay, Mine; Avery, Paul; Bejan, Alina; Blackburn, Kent; Blatecky, Alan; Gardner, Rob; Kramer, Bill; Livny, Miron; McGee, John; Potekhin, Maxim; /Fermilab /Florida U. /Chicago U. /Caltech /LBL, Berkeley /Wisconsin U., Madison /Indiana U. /Brookhaven /UC, San Diego

    2008-06-01

    The Open Science Grid (OSG) includes work to enable new science, new scientists, and new modalities in support of computationally based research. There are frequently significant sociological and organizational changes required in transformation from the existing to the new. OSG leverages its deliverables to the large scale physics experiment member communities to benefit new communities at all scales through activities in education, engagement and the distributed facility. As a partner to the poster and tutorial at SciDAC 2008, this paper gives both a brief general description and some specific examples of new science enabled on the OSG. More information is available at the OSG web site: www.opensciencegrid.org.

  6. Pragmaticism, Science and Theology

    DEFF Research Database (Denmark)

    Brier, Søren

    2016-01-01

    This review assesses Ashley and Deely’s claims regarding the relation of science and religion, taking Einstein’s famous statement that “science without religion is lame, religion without science is blind” as its starting point. It argues that Ashley and Deely’s book How Science Enriches Theology...... demonstrates that the actual problem in the contemporary dialogue between the two seem to be whether the link between science and religion shall be based on an impersonal process spirituality arising from a void or on a personalism with a personal god at the source....

  7. Networks in Cognitive Science

    CERN Document Server

    Baronchelli, Andrea; Pastor-Satorras, Romualdo; Chater, Nick; Christiansen, Morten H

    2013-01-01

    Networks of interconnected nodes have long played a key role in cognitive science, from artificial neural networks to spreading activation models of semantic memory. Recently, however, a new Network Science has been developed, providing insights into the emergence of global, system-scale properties in contexts as diverse as the Internet, metabolic reactions or collaborations among scientists. Today, the inclusion of network theory into cognitive sciences, and the expansion of complex systems science, promises to significantly change the way in which the organization and dynamics of cognitive and behavioral processes are understood. In this paper, we review recent contributions of network theory at different levels and domains within the cognitive sciences.

  8. Chemistry and Science Fiction

    Science.gov (United States)

    Stocker, Jack H.

    1998-11-01

    This lively collection looks at science as filtered through literature, film, and television. It discusses classic works in science fiction and provides an in-depth look at the chemistry depicted in popular culture, particularly in Start Trek , Star Wars , and Doctor Who . It includes an examination by Nebula Award winner Connie Willis of how science fiction authors use science, and reprints two tongue-in-cheek short stories by Isaac Asimov. The book also includes suggestions for using science fiction as an educational resource.

  9. BES Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Biocca, Alan; Carlson, Rich; Chen, Jackie; Cotter, Steve; Tierney, Brian; Dattoria, Vince; Davenport, Jim; Gaenko, Alexander; Kent, Paul; Lamm, Monica; Miller, Stephen; Mundy, Chris; Ndousse, Thomas; Pederson, Mark; Perazzo, Amedeo; Popescu, Razvan; Rouson, Damian; Sekine, Yukiko; Sumpter, Bobby; Dart, Eli; Wang, Cai-Zhuang -Z; Whitelam, Steve; Zurawski, Jason

    2011-02-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivityfor the US Department of Energy Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of the Office ofScience programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years.

  10. Science Process Skills in Science Curricula Applied in Turkey

    Science.gov (United States)

    Yumusak, Güngör Keskinkiliç

    2016-01-01

    One of the most important objectives of the science curricula is to bring in science process skills. The science process skills are skills that lie under scientific thinking and decision-making. Thus it is important for a science curricula to be rationalized in such a way that it brings in science process skills. New science curricula were…

  11. WikiScience: Wikipedia for science and technology

    OpenAIRE

    Aibar Puentes, Eduard

    2015-01-01

    Peer-reviewed Presentació de la conferència "WikiScience: Wikipedia for science and technology". Presentación de la conferencia "WikiScience: Wikipedia for science and technology". Presentation of the conference "Science Wiki: Wikipedia for science and technology".

  12. The Double Helix: Why Science Needs Science Fiction.

    Science.gov (United States)

    Andreadis, Athena

    2003-01-01

    Discusses why science needs science fiction, commenting on the author's book about science that draws heavily on the "Star Trek" series. The best science, in spite of popular thinking, comes from leaps of intuition, and science fiction provides a creative spark that encourages participation in science. (SLD)

  13. The science writing tool

    Science.gov (United States)

    Schuhart, Arthur L.

    This is a two-part dissertation. The primary part is the text of a science-based composition rhetoric and reader called The Science Writing Tool. This textbook has seven chapters dealing with topics in Science Rhetoric. Each chapter includes a variety of examples of science writing, discussion questions, writing assignments, and instructional resources. The purpose of this text is to introduce lower-division college science majors to the role that rhetoric and communication plays in the conduct of Science, and how these skills contribute to a successful career in Science. The text is designed as a "tool kit," for use by an instructor constructing a science-based composition course or a writing-intensive Science course. The second part of this part of this dissertation reports on student reactions to draft portions of The Science Writing Tool text. In this report, students of English Composition II at Northern Virginia Community College-Annandale were surveyed about their attitudes toward course materials and topics included. The findings were used to revise and expand The Science Writing Tool.

  14. Media, risk and science

    CERN Document Server

    Allan, Stuart

    2002-01-01

    How is science represented by the media? Who defines what counts as a risk, threat or hazard, and why? In what ways do media images of science shape public perceptions? What can cultural and media studies tell us about current scientific controversies? "Media, Risk and Science" is an exciting exploration into an array of important issues, providing a much needed framework for understanding key debates on how the media represent science and risk. In a highly effective way, Stuart Allan weaves together insights from multiple strands of research across diverse disciplines. Among the themes he examines are: the role of science in science fiction, such as "Star Trek"; the problem of 'pseudo-science' in "The X-Files"; and how science is displayed in science museums. Science journalism receives particular attention, with the processes by which science is made 'newsworthy' unravelled for careful scrutiny. The book also includes individual chapters devoted to how the media portray environmental risks, HIV-AIDS, food s...

  15. Science policy up close

    CERN Document Server

    Marburger, John H

    2015-01-01

    In a career that included tenures as president of Stony Brook University, director of Brookhaven National Laboratory, and science advisor to President George W. Bush, John Marburger (1941 2011) found himself on the front line of battles that pulled science ever deeper into the political arena. From nuclear power to global warming and stem cell research, science controversies, he discovered, are never just about science. Science Policy Up Close" presents Marburger s reflections on the challenges science administrators face in the twenty-first century. In each phase of public service Marburger came into contact with a new dimension of science policy. The Shoreham Commission exposed him to the problem of handling a volatile public controversy over nuclear power. The Superconducting Super Collider episode gave him insights into the collision between government requirements and scientists expectations and feelings of entitlement. The Directorship of Brookhaven taught him how to talk to the public about the risks ...

  16. Games in Science Education

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2014-01-01

    This paper presents a categorisation of science game formats in relation to the educational possibilities or limitations they offer in science education. This includes discussion of new types of science game formats and gamification of science. Teaching with the use of games and simulations...... or representations of knowledge in digital and physical science environments, Use and design of new types of models or tools for scientific inquiry and innovation education....... in science education dates back to the 1970s and early 80s were the potentials of games and simulations was discussed extensively as the new teaching tool ( Ellington et al. , 1981). In the early 90s the first ITC -based games for exploration of science and technical subjects was developed (Egenfeldt...

  17. Empirical philosophy of science

    DEFF Research Database (Denmark)

    2015-01-01

    A growing number of philosophers of science make use of qualitative empirical data, a development that may reconfigure the relations between philosophy and sociology of science and that is reminiscent of efforts to integrate history and philosophy of science. Therefore, the first part...... of this introduction to the volume Empirical Philosophy of Science outlines the history of relations between philosophy and sociology of science on the one hand, and philosophy and history of science on the other. The second part of this introduction offers an overview of the papers in the volume, each of which...... is giving its own answer to questions such as: Why does the use of qualitative empirical methods benefit philosophical accounts of science? And how should these methods be used by the philosopher?...

  18. A guided science

    DEFF Research Database (Denmark)

    Valsiner, Jaan

    That sciences are guided by explicit and implicit ties to their surrounding social world is not new. Jaan Valsiner fills in the wide background of scholarship on the history of science, the recent focus on social studies of sciences, and the cultural and cognitive analyses of knowledge making....... The theoretical scheme that he uses to explain the phenomena of social guidance of science comes from his thinking about processes of development in general—his theory of bounded indeterminacy—and on the relations of human beings with their culturally organized environments. Valsiner examines reasons for the slow...... and nonlinear progress of ideas in psychology as a science at the border of natural and social sciences. Why is that intellectual progress occurs in different countries at different times? Most responses are self-serving blinders for presenting science as a given rather than understanding it as a deeply human...

  19. A guided science

    DEFF Research Database (Denmark)

    Valsiner, Jaan

    That sciences are guided by explicit and implicit ties to their surrounding social world is not new. Jaan Valsiner fills in the wide background of scholarship on the history of science, the recent focus on social studies of sciences, and the cultural and cognitive analyses of knowledge making....... The theoretical scheme that he uses to explain the phenomena of social guidance of science comes from his thinking about processes of development in general—his theory of bounded indeterminacy—and on the relations of human beings with their culturally organized environments. Valsiner examines reasons for the slow...... and nonlinear progress of ideas in psychology as a science at the border of natural and social sciences. Why is that intellectual progress occurs in different countries at different times? Most responses are self-serving blinders for presenting science as a given rather than understanding it as a deeply human...

  20. Philosophy of the social sciences

    OpenAIRE

    J. A. Kimelyev; N. L. Polyakova

    2014-01-01

    Philosophy of social science is a branch of philosophy where relations between philosophy and social sciences are traced and investigated. The main functions of philosophy of social science are: to work out social ontology, methodology and metatheory of social science.

  1. Cassini science planning process

    Science.gov (United States)

    Paczkowski, Brian G.; Ray, Trina L.

    2004-01-01

    The mission design for Cassini-Huygens calls for a four-year orbital survey of the Saturnian system and the descent into the Titan atmosphere and eventual soft-landing of the Huygens probe. The Cassini orbiter tour consists of 76 orbits around Saturn with 44 close Titan flybys and 8 targeted icy satellite flybys. The Cassini orbiter spacecraft carries twelve scientific instruments that will perform a wide range of observations on a multitude of designated targets. The science opportunities, frequency of encounters, the length of the Tour, and the use of distributed operations pose significant challenges for developing the science plan for the orbiter mission. The Cassini Science Planning Process is the process used to develop and integrate the science and engineering plan that incorporates an acceptable level of science required to meet the primary mission objectives far the orbiter. The bulk of the integrated science and engineering plan will be developed prior to Saturn Orbit Insertion (Sol). The Science Planning Process consists of three elements: 1) the creation of the Tour Atlas, which identifies the science opportunities in the tour, 2) the development of the Science Operations Plan (SOP), which is the conflict-free timeline of all science observations and engineering activities, a constraint-checked spacecraft pointing profile, and data volume allocations to the science instruments, and 3) an Aftermarket and SOP Update process, which is used to update the SOP while in tour with the latest information on spacecraft performance, science opportunities, and ephemerides. This paper will discuss the various elements of the Science Planning Process used on the Cassini Mission to integrate, implement, and adapt the science and engineering activity plans for Tour.

  2. Science for Diplomacy, Diplomacy for Science

    Science.gov (United States)

    Colglazier, E. Wiliam

    2015-04-01

    I was a strong proponent of ``science diplomacy'' when I became Science and Technology Adviser to the Secretary of State in 2011. I thought I knew a lot about the subject after being engaged for four decades on international S&T policy issues and having had distinguished scientists as mentors who spent much of their time using science as a tool for building better relations between countries and working to make the world more peaceful, prosperous, and secure. I learned a lot from my three years inside the State Department, including great appreciation and respect for the real diplomats who work to defuse conflicts and avoid wars. But I also learned a lot about science diplomacy, both using science to advance diplomacy and diplomacy to advance science. My talk will focus on the five big things that I learned, and from that the one thing where I am focusing my energies to try to make a difference now that I am a private citizen again.

  3. Exoplanet Science in the National Science Olympiad

    Science.gov (United States)

    Komacek, Thaddeus D.; Young, Donna

    2015-11-01

    The National Science Olympiad is one of the United States' largest science competitions, reaching over 6,000 schools in 48 states. The Olympiad includes a wide variety of events, stretching a full range of potential future STEM careers, from biological sciences to engineering to earth and space sciences. The Astronomy event has been a mainstay at the high school level for well over a decade, and nominally focuses on aspects of stellar evolution. For the 2014-2015 competition season, the event focus was aligned to include exoplanet discovery and characterization along with star formation. Teams studied both the qualitative features of exoplanets and exoplanetary systems and the quantitative aspects behind their discovery and characterization, including basic calculations with the transit and radial velocity methods. Students were also expected to have a qualitative understanding of stellar evolution and understand the differences between classes of young stars including T Tauri and FU Orionis variables, and Herbig Ae/Be stars. Based on the successes of this event topic, we are continuing this event into the 2015-2016 academic year. The key modification is the selection of new exoplanetary systems for students to research. We welcome feedback from the community on how to improve the event and the related educational resources that are created for Science Olympiad students and coaches. We also encourage any interested community members to contact your regional or state Science Olympiad tournament directors and volunteer to organize competitions and supervise events locally.

  4. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  5. How to Motivate Science Teachers to Use Science Experiments

    Directory of Open Access Journals (Sweden)

    Josef Trna

    2012-10-01

    Full Text Available A science experiment is the core tool in science education. This study describes the science teachers' professional competence to implement science experiments in teaching/learning science. The main objective is the motivation of science teachers to use science experiments. The presented research tries to answer questions aimed at the science teachers' skills to use science experiments in teaching/learning science. The research discovered the following facts: science teachers do not include science experiments in teaching/learning in a suitable way; are not able to choose science experiments corresponding to the teaching phase; prefer teachers' demonstration of science experiments; are not able to improvise with the aids; use only a few experiments. The important research result is that an important motivational tool for science teachers is the creation of simple experiments. Examples of motivational simple experiments used into teachers' training for increasing their own creativity and motivation are presented.

  6. The World Science Festival

    Science.gov (United States)

    Pazmino, J.

    2012-06-01

    (Abstract only) New York City in the late 20th century rose to be a planetary capital for the sciences, not just astronomy. This growth was mainly in the academic sector but a parallel growth occurred in the public and home field. With the millennium crossing, scientists in New York agitated for a celebration of the City as a place for a thriving science culture. In 2008 they began World Science Festival. 2011 is the fourth running, on June 1-5, following the AAVSO/AAS meetings. World Science Festival was founded by Dr. Brian Greene, Columbia University, and is operated through the World Science Foundation. The Festival is "saturation science" all over Manhattan in a series of lectures, shows, exhibits, performances. It is staged in "science" venues like colleges and musea, but also in off-science spaces like theaters and galleries. It is a blend from hard science, with lectures like those by us astronomers, to science-themed works of art, dance, music. Events are fitted for the public, either for free or a modest fee. While almost all events are on Manhattan, effort has been made to geographically disperse them, even to the outer boroughs. The grand finale of World Science Festival is a street fair in Washington Square. Science centers in booths, tents, and pavilions highlight their work. In past years this fair drew 100,000 to 150,000 visitors. The entire Festival attracts about a quarter-million attendees. NYSkies is a proud participant at the Washington Square fair. It interprets the "Earth to the Universe" display, debuting during IYA-2009. Attendance at "Earth..." on just the day of the fair plausibly is half of all visitors in America. The presentation shows the scale and scope of World Science Festival, its relation to the City, and how our astronomers work with it.

  7. Bioethics Science: Is it?

    Science.gov (United States)

    Azariah, Jayapaul

    2009-01-01

    Both western and eastern civilizations have linked moral teaching with theology followed by philosophy. New-knowledge-seekers about natural world, were called 'natural philosophers'. There was a paradigm shift during industrial revolution in western world which culminated in modern science. The word "scientist" was coined during the 19th century. The paper examines whether natural philosophers could be called 'scientists'? A short history of philosophical paradigm shift is given. Although written moral and "ethical principles" were in vogue from the time of Hammurabi (1750-1795 BC), the phenomenon of bioethics is very recent. Bioethics is a bridge among different sciences and a bridge to the future. The question is: Is bioethics, by itself, science? The present paper is concerned with the quality of bioethics and about the nature of science during the next 30-50 years. Science is value-free but bioethics is value-loaded. Science does not proclaim any value whereas bioethics underlines the moral life and its value to survive. The paper examines two issues: Can science be bioethics-friendly? and (ii) Can bioethics be science-friendly? It appears that both science and bioethics are incompatible. We need to develop a new system of knowledge to include/infuse the bioethical-notion of values in (into) science. Such a move may necessitate the development of an alternate but new model. Bioethics is not a science-discipline. A new term to replace science is needed. Elevating bioethics as an academic science may create job openings in India.

  8. Science enrichment through informal science. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Katz, P.

    1996-07-01

    Hands On Science Outreach (HOSO) is a program of informal science education. Its mission is to bring to communities the option of out-of-school science explorations to small groups of children from the ages of 4-12. Such experiences encourage children to enjoy science without the fear of the consequences of failure that can occur in a formal school setting. It can start them on a life long pattern of participation, awareness and perhaps career interest, motivated by this kind of pleasurable learning. Since HOSO binds together adult training, materials and written guides, many of those not professionally employed in education, including parents, can and do become involved in {open_quotes}science for the fun of it.{close_quotes} The DOE grant to the HOSO program has funded the delivery of HOSO programming to five selected sites over the 1992-96 school years. It is the intention of both the DOE and HOSO to reach children who might otherwise not be able to afford the programming, with emphasis on underrepresented minorities. HOSO has developed fall, winter and spring theme-oriented informal science sessions on four age/grade levels. One hour classes take place once a week for eight weeks per session. At the original Washington, D.C. site, the program uses a mentoring model named STEPS (Successful Teaming for Educational Partnerships in Science) in partnership with the District of Columbia Schools, as well as HOSO and the DOE. That model continues to work in Washington, D.C. and has been replicated in parts of the Sacramento and Denver sites.

  9. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  10. U-Science (Invited)

    Science.gov (United States)

    Borne, K. D.

    2009-12-01

    The emergence of e-Science over the past decade as a paradigm for Internet-based science was an inevitable evolution of science that built upon the web protocols and access patterns that were prevalent at that time, including Web Services, XML-based information exchange, machine-to-machine communication, service registries, the Grid, and distributed data. We now see a major shift in web behavior patterns to social networks, user-provided content (e.g., tags and annotations), ubiquitous devices, user-centric experiences, and user-led activities. The inevitable accrual of these social networking patterns and protocols by scientists and science projects leads to U-Science as a new paradigm for online scientific research (i.e., ubiquitous, user-led, untethered, You-centered science). U-Science applications include components from semantic e-science (ontologies, taxonomies, folksonomies, tagging, annotations, and classification systems), which is much more than Web 2.0-based science (Wikis, blogs, and online environments like Second Life). Among the best examples of U-Science are Citizen Science projects, including Galaxy Zoo, Stardust@Home, Project Budburst, Volksdata, CoCoRaHS (the Community Collaborative Rain, Hail and Snow network), and projects utilizing Volunteer Geographic Information (VGI). There are also scientist-led projects for scientists that engage a wider community in building knowledge through user-provided content. Among the semantic-based U-Science projects for scientists are those that specifically enable user-based annotation of scientific results in databases. These include the Heliophysics Knowledgebase, BioDAS, WikiProteins, The Entity Describer, and eventually AstroDAS. Such collaborative tagging of scientific data addresses several petascale data challenges for scientists: how to find the most relevant data, how to reuse those data, how to integrate data from multiple sources, how to mine and discover new knowledge in large databases, how to

  11. 75 FR 10845 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-03-09

    ... From the Federal Register Online via the Government Publishing Office OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology... Subcommittee on Forensic Science of the National Science and Technology Council's (NSTC's) Committee on...

  12. 75 FR 4882 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2010-01-29

    ... TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology... ). SUMMARY: The Subcommittee on Forensic Science (SOFS) of the National Science and Technology Council's... the Office of Science and Technology Policy's NSTC Web site at http://www.ostp.gov/cs/nstc or...

  13. 76 FR 6163 - Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council

    Science.gov (United States)

    2011-02-03

    ... No: 2011-2440] OFFICE OF SCIENCE AND TECHNOLOGY POLICY Subcommittee on Forensic Science; Committee on Science; National Science and Technology Council ACTION: Notice of meeting. Public input is requested... National Science and Technology Council's (NSTC's) Committee on Science will host a public forum...

  14. Science, expertise, and democracy.

    Science.gov (United States)

    Weinberg, Justin; Elliott, Kevin C

    2012-06-01

    The combination of government's significant involvement in science, science's significant effects on the public, and public ignorance (of both politics and science) raise important challenges for reconciling scientific expertise with democratic governance. Nevertheless, there have recently been a variety of encouraging efforts to make scientific activity more responsive to social values and to develop citizens' capacity to engage in more effective democratic governance of science. This essay introduces a special issue of the Kennedy Institute of Ethics Journal, "Science, Expertise, and Democracy," consisting of five papers that developed from the inaugural Three Rivers Philosophy conference held at the University of South Carolina in April 2011. The pieces range from a general analysis of the in-principle compatibility of scientific expertise and democracy to much more concrete studies of the intersection between scientific practices and democratic values in areas such as weight-of-evidence analysis, climate science, and studies of locally undesirable land uses.

  15. Science's social responsibility

    DEFF Research Database (Denmark)

    Sandvik, Kjetil

    2014-01-01

    like Science in the City in which the science institutions communicate and discuss science with interested citizens. It can be done in relation to strategic plans: solving medical, environmental, socio-political problems for which the state or commercial actors provide funding. But it can also be what...... solving problems and thus creating a base for science in its strategic mode, in its interplay-with-society mode. So science’s social responsibility may utter itself in various ways but I think it is fair to say that it is all about responsibility for taking part in making society move forward...... in that science address whatever problems there are, whatever conflicts there are, trying to find the deeper meaning of things, and so on which means that science don’t necessarily just solve the problems that kind of spring to you face like curing cancer and stuff like that. It is also about asking deeper...

  16. THE IMPURITY OF SCIENCE

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, Melvin

    1962-04-19

    Science is impure in two ways. There is not a 'pure' science. By this I mean that physics impinges on astronomy, on the one hand, and chemistry on biology on the other. And not only does each support its neighbors but derives sustenance from them. The same can be said of chemistry. Biology is, perhaps, the example par excellence today of an 'impure' science. Beyond this, there is no 'pure' science itself divorced from human values. The importance of science to the humanities and the humanities to science in their complementary contribution to the variety of human life grows daily. The need for men familiar with both is imperative. We are faced today with a social decision resulting from our progress in molecular genetics at least equal to, and probably greater than, that required of us twenty years ago with the maturity of nuclear power.

  17. Animal science in the context of food consumer science:

    OpenAIRE

    Pohar, Jurij

    2012-01-01

    The food consumer science as the science with the ambition to overcome the difference between food science and consumer science is presented. The major stakeholders involved are listed and the role of animal science and animal scientists within the framework of food consumer science is discoursed. The importance of animal scientists to understand the complexity of food consumer science knowledge system and need for them to broaden the scope of interest beyond the traditional area of expertise...

  18. NEWS: Why choose science?

    Science.gov (United States)

    2000-05-01

    National concerns over the uptake of science subjects and an analysis of how school science departments together with careers programmes influence students' subject choices feature in a recent report from the UK's National Institute for Careers Education and Counselling. It points out that decisions on science subjects are taken very early in pupils' education, often well before the implications of those choices can be clearly understood. If pupils are to be encouraged to keep science options open, then both science teachers and careers advisers have important roles to play. Physics is in fact singled out in the report's recommendations as in need of special attention, due to its perceived difficulty both within the double-award science course and also at A-level. The lack of qualified teachers in physics is noted as a problem for schools and the many initiatives to address these issues should be encouraged according to the report, but within an overall high-profile and well funded national strategy for developing science education in schools. The report also notes that science teachers do not feel able to keep up with career information, whilst few careers advisers have a science background and have little opportunity to build up their knowledge of science syllabuses or of science and engineering careers. More contact between both types of specialist is naturally advocated. Copies of the full report, Choosing Science at 16 by Mary Munro and David Elsom, are available from NICEC, Sheraton House, Castle Park, Cambridge CB3 0AX on receipt of an A4 stamped (70p) addressed envelope. A NICEC briefing summary is also available from the same address (20p stamp required).

  19. Data-intensive science

    CERN Document Server

    Critchlow, Terence

    2013-01-01

    Data-intensive science has the potential to transform scientific research and quickly translate scientific progress into complete solutions, policies, and economic success. But this collaborative science is still lacking the effective access and exchange of knowledge among scientists, researchers, and policy makers across a range of disciplines. Bringing together leaders from multiple scientific disciplines, Data-Intensive Science shows how a comprehensive integration of various techniques and technological advances can effectively harness the vast amount of data being generated and significan

  20. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  1. Science and Policy

    Digital Repository Service at National Institute of Oceanography (India)

    Mukhopadhyay, R.

    ) Noting that there is a need to strengthen good science leading to good technology to help solve social and envi- ronmental problems of the country, (b) intending to make science and technology (S&T) a caring, humane, professional working tool.... Quoting Stephan Hawk- ing that ‘the development of full artificial intelligence could spell the end of the human race’, Grover called for unifica- tion of social sciences with the realities of social life. Recognizing that the distinction between big...

  2. Web Science 2015

    OpenAIRE

    Boucher, Andy; Cameron, David; Gaver, William; Hauenstein, Mark; Jarvis, Nadine; Kerridge, Tobie; Michael, Mike; Ovalle, Liliana; Pennington, Sarah; Wilkie, Alex

    2015-01-01

    Web Science 2015 conference exhibition. Web Science is the emergent study of the people and technologies, applications, processes and practices that shape and are shaped by the World Wide Web. Web Science aims to draw together theories, methods and findings from across academic disciplines, and to collaborate with industry, business, government and civil society, to develop knowledge and understanding of the Web: the largest socio-technical infrastructure in human history.

  3. Science and Team Development

    OpenAIRE

    Bryan R. Cole; Ralitsa B. Akins

    2006-01-01

    This paper explores a new idea about the future development of science and teams, and predicts its possible applications in science, education, workforce development and research. The inter-relatedness of science and teamwork developments suggests a growing importance of team facilitators’ quality, as well as the criticality of detailed studies of teamwork processes and team consortiums to address the increasing complexity of exponential knowledge growth and work interdependency. In the fu...

  4. Philosophy of Computer Science

    OpenAIRE

    Aatami Järvinen; Adele Mustonen; Jaana Ihalainen; Kaarle Lajunen

    2014-01-01

    The diversity and interdisciplinary of Computer Sciences, and the multiplicity of its uses in other sciences make it difficult to define them and prescribe how to perform them. Furthermore, also cause friction between computer scientists from different branches. Because of how they are structured, these sciences programs are criticized for not offer an adequate methodological training, or a deep understanding of different research traditions. To collaborate on a solution, some have decided to...

  5. Newspaper space for science

    Directory of Open Access Journals (Sweden)

    Marta M. Kanashiro

    2006-02-01

    Full Text Available In recent years, courses, events and incentive programs for scientific journalism and the divulgation of science have proliferated in Brazil. Part of this context is “Sunday is science day, history of a supplement from the post-war years”, a book published this year that is based on the Master’s degree research of Bernardo Esteves, a journalist specialized in science.

  6. INFORMATION SCIENCES, 1965

    Science.gov (United States)

    identification and classification, (c) transmission of information, (d) adaptive and self-organizing systems, (e) language and linguistics research, and (f) theoretical foundations of information sciences .

  7. Bushy-Tailed Science

    Institute of Scientific and Technical Information of China (English)

    Zheng Yang

    2011-01-01

    Can people actually sleep with their eyes open? What causes red dyes to run in the wash? Why do headphone wires get twisted inside jacket pockets?DON'T bother asking your friends for the answers.Ask the Squirrels.The Science Squirrels Club is a Chinese Internet community founded by a group of science enthusiasts.Over the past three years the club has attracted heaps of young people across China,triggering a kind of scientific renaissance in China.The Squirrels,with their stylish take on science,are watching their slogan of "Making Science Popular" come true.

  8. Great Lakes Science Center

    Data.gov (United States)

    Federal Laboratory Consortium — Since 1927, Great Lakes Science Center (GLSC) research has provided critical information for the sound management of Great Lakes fish populations and other important...

  9. Data science for dummies

    CERN Document Server

    Pierson, Lillian

    2015-01-01

    Discover how data science can help you gain in-depth insight into your business - the easy way! Jobs in data science abound, but few people have the data science skills needed to fill these increasingly important roles in organizations. Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of their organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in report

  10. Data Science Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Data Science is emerging as a critical area of research and technology to advance scientific discovery, knowledge and decision making through systematic...

  11. Practical data science cookbook

    CERN Document Server

    Ojeda, Tony; Bengfort, Benjamin; Dasgupta, Abhijit

    2014-01-01

    If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

  12. Crystal science fundamentals

    OpenAIRE

    Ramachandran, V.; Halfpenny, PJ; Roberts, KJ

    2017-01-01

    The fundamentals of crystal science notably crystallography, crystal chemistry, crystal defects, crystal morphology and the surface chemistry of crystals are introduced with particular emphasis on organic crystals.

  13. Handbook of information science

    CERN Document Server

    Stock, Wolfgang G

    2013-01-01

    Dealing with information is one of the vital skills in thetwenty-first century. It takes a fair degree of information savvy to create, represent and supply information as well as to search for and retrieve relevant knowledge. This Handbook is a basic work of information science, providing a comprehensive overview of the current state of information retrieval and knowledge representation. It addresses readers from all professions and scientific disciplines, but particularly scholars, practitioners and students of Information Science, Library Science, Computer Science, Information Management, an

  14. THE NATURE OF SCIENCE

    Directory of Open Access Journals (Sweden)

    R. Trigg

    2014-11-01

    Full Text Available The study defines social science and its specific in contrast with history, psychology and physical sciences. Also it emphasizes the importance of the idea of a 'value-free' science for the social sciences is clear. Social scientists want to be seen to establish 'facts' about society in the same way that they think that a physicist or a chemist uncovers 'facts'. Using the theories of Hempel, Quine, Feyerabend and Kuhn, it addresses a series of questions concening scientific theories, their roles for the scientific explanation and the scientific progress.

  15. Physical Sciences Laboratory (PSL)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL's Physical Sciences Laboratory (PSL) houses 22 research laboratories for conducting a wide-range of research including catalyst formulation, chemical analysis,...

  16. BER Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Alapaty, Kiran; Allen, Ben; Bell, Greg; Benton, David; Brettin, Tom; Canon, Shane; Dart, Eli; Cotter, Steve; Crivelli, Silvia; Carlson, Rich; Dattoria, Vince; Desai, Narayan; Egan, Richard; Tierney, Brian; Goodwin, Ken; Gregurick, Susan; Hicks, Susan; Johnston, Bill; de Jong, Bert; Kleese van Dam, Kerstin; Livny, Miron; Markowitz, Victor; McGraw, Jim; McCord, Raymond; Oehmen, Chris; Regimbal, Kevin; Shipman, Galen; Strand, Gary; Flick, Jeff; Turnbull, Susan; Williams, Dean; Zurawski, Jason

    2010-11-01

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the US Department of Energy Office of Science, the single largest supporter of basic research in the physical sciences in the United States. In support of the Office of Science programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In April 2010 ESnet and the Office of Biological and Environmental Research, of the DOE Office of Science, organized a workshop to characterize the networking requirements of the science programs funded by BER. The requirements identified at the workshop are summarized and described in more detail in the case studies and the Findings section. A number of common themes emerged from the case studies and workshop discussions. One is that BER science, like many other disciplines, is becoming more and more distributed and collaborative in nature. Another common theme is that data set sizes are exploding. Climate Science in particular is on the verge of needing to manage exabytes of data, and Genomics is on the verge of a huge paradigm shift in the number of sites with sequencers and the amount of sequencer data being generated.

  17. Agricultural science and ethics

    DEFF Research Database (Denmark)

    Gjerris, Mickey; Vaarst, Mette

    2014-01-01

    , about 20 % of the world's coral reefs and 35 % of the mangrove areas were lost (Millennium Ecosystem Assessment 2005). In the following, the development of agricultural science will be sketched out and the role of ethics in agricultural science will be discussed. Then different views of nature that have...... shaped agriculture and the role of science in agriculture will be discussed by analyzing some of the presumptions behind the concept of ecosystem services and the way animals are viewed. Finally, the concepts of animal welfare and sustainability will be explored to show how they make vivid the connection...... between agricultural science and ethics....

  18. [How to distinguish science from non science].

    Science.gov (United States)

    Antiseri, D

    1991-01-01

    The questions discussed in this article concern the demarcation between scientific theories and non scientific theories. The problem is not only an epistemological one, but it implies also ethical and social consequences. For example, is it acceptable for an European country to allow the practice of non-traditional medicines which are not yet considered officially as scientific? According to Karl Popper, the author discusses the following points: 1. Is there a logical asymmetry between the verification and the falsification of a theory? 2. The criterion of falsifiability demarcates science from non-science. 3. There is no automatic method to find new theories. 4. The facts of science are discovered by scientists through theories. 5. The scientific method is only one and it consists of these three steps: problems-theories-refutations. The article's core is that the rational physician is the one who kills (falsifies) his own diagnosis instead of his own patients.

  19. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  20. The Fort Collins Science Center

    Science.gov (United States)

    Wilson, Juliette T.; Banowetz, Michele M.

    2012-01-01

    With a focus on biological research, the U.S. Geological Survey Fort Collins Science Center (FORT) develops and disseminates science-based information and tools to support natural resource decision-making. This brochure succinctly describes the integrated science capabilities, products, and services that the FORT science community offers across the disciplines of aquatic systems, ecosystem dynamics, information science, invasive species science, policy analysis and social science assistance, and trust species and habitats.

  1. [What is sustainability science?].

    Science.gov (United States)

    Wu, Jian-Guo; Guo, Xiao-Chuan; Yang, Jie; Qian, Gui-Xia; Niu, Jian-Ming; Liang, Cun-Zhu; Zhang, Qing; Li, Ang

    2014-01-01

    Sustainability is the theme of our time and also the grandest challenge to humanity. Since the 1970s, the term, sustainable development, has frequently appeared in the scientific literature, governmental documents, media promotions for public goods, and commercial advertisements. However, the science that provides the theoretical foundation and practical guidance for sustainable development--sustainability science--only began to emerge in the beginning of the 21st century. Nevertheless, the field has rapidly developed in depth and expanded in scope during the past decade, with its core concepts and research methods coalescing. China, as the most populous country in the world and home to the philosophical root of sustainability science-the unity of man and nature, is obligated to take upon the challenge of our time, to facilitate global sustainability while pursuing the Chinese Dream, and to play a leading role in the development of sustainability science. Toward this grandiose goal, this paper presents the first Chinese introduction to sustainability science, which discusses its basic concepts, research questions, and future directions. Sustainability science is the study of the dynamic relationship between humans and the environment, particularly focusing on the vulnerability, robustness, resilience, and stability of the coupled human-environment system. It is a transdisciplinary science that integrates natural sciences with humanities and social sciences. It hinges on the environment-economy-society nexus, and merges basic and applied research. The key components of sustainability often change with time, place, and culture, and thus sustainability science needs to emphasize multi-scale studies in space and time, with emphasis on landscapes and regions over a horizon of 50 to 100 years. It needs to focus on the relationship between ecosystem services and human well-being, as influenced by biodiversity and ecosystem processes as well as climate change, land use

  2. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  3. Adapting Practices of Science Journalism to Foster Science Literacy

    Science.gov (United States)

    Polman, Joseph L.; Newman, Alan; Saul, Ellen Wendy; Farrar, Cathy

    2014-01-01

    In this paper, the authors describe how the practices of expert science journalists enable them to act as "competent outsiders" to science. We assert that selected science journalism practices can be used to design reform-based science instruction; these practices not only foster science literacy that is useful in daily life, but also…

  4. Romanticism and Romantic Science: Their Contribution to Science Education

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Schulz, Roland

    2014-01-01

    The unique contributions of romanticism and romantic science have been generally ignored or undervalued in history and philosophy of science studies and science education. Although more recent research in history of science has come to delineate the value of both topics for the development of modern science, their merit for the educational field…

  5. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  6. Citizenship and Science Education.

    Science.gov (United States)

    Bybee, Rodger W.

    1982-01-01

    Discusses purposes and policies of science education, including present growth trends and the resulting problems of human ecological scarcity, global nature of these problems, and the need for a global response to alter current trends. Emphasizes the role of science/technology in the amelioration of global problems. (Author/JN)

  7. The Significance of Science

    Science.gov (United States)

    Pielke, R.

    2002-05-01

    Whether global warming, terrestrial carbon sinks, ecosystem functioning, genetically modified organisms, cloning, vaccination or chemicals in the environment, science is increasingly the battlefield on which political advocates, not least lawyers and commercial interests, manipulate `facts' to their preferred direction, which fosters the politicization of science. Debate putatively over science increasingly relies on tactics such as ad hominem attacks and criticism of process (for example, peer review or sources of funding), through paid advertisements, press releases and other publicity campaigns. As political battles are waged through `science', many scientists are willing to adopt tactics of demagoguery and character assassination as well as, or even instead of, reasoned argument, as in aspects of debate over genetically modified crops or global warming. Science is becoming yet another playing field for power politics, complete with the trappings of media spin and a win-at-all-costs attitude. Sadly, much of what science can offer policymakers, and hence society, is lost. This talk will use cases from the atmospheric sciences as points of departure to explore the politicization of science from several perspectives and address questions such as: Is it a problem? For whom and what outcomes? What are the alternatives to business-as-usual?

  8. Beyond Big Science

    CERN Multimedia

    Boyle, Alan

    2007-01-01

    "Billion-dollar science projects end up being about much more than the science, whether we're talking about particle physics, or fusion research, or the international space station, or missions to the moon and beyond, or the next-generation radio telescope." (3 pages)

  9. Fermentation. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  10. Rudiments of materials science

    CERN Document Server

    Pillai, SO

    2007-01-01

    Writing a comprehensive book on Materials Science for the benefit of undergraduate courses in Science and Engineering was a day dream of the first author, Dr. S.O. Pillai for a long period. However, the dream became true after a lapse of couple of years. Lucid and logical exposition of the subject matter is the special feature of this book.

  11. Women and Computer Science.

    Science.gov (United States)

    Breene, L. Anne

    1992-01-01

    Discusses issues concerning women in computer science education, and in the workplace, and sex bias in the computer science curriculum. Concludes that computing environment has not improved for women over last 20 years. Warns that, although number of white males entering college is declining, need for scientists and engineers is not. (NB)

  12. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  13. Spitting for science

    DEFF Research Database (Denmark)

    Athanasiadis, Georgios; Jørgensen, Frank G.; Cheng, Jade Yu;

    2016-01-01

    Scientific outreach delivers science to the people. But it can also deliver people to the science. In this work, we report our experience from a large-scale public engagement project promoting genomic literacy among Danish high school students with the additional benefit of collecting data...

  14. Strengthening Science Departments

    Science.gov (United States)

    Campbell, Todd; Melville, Wayne; Bartley, Anthony

    2012-01-01

    Teachers do not work in a vacuum. They are, in most cases, part of a science department in which teachers and the chairperson have important roles in science education reform. Current reform is shaped by national standards documents that emphasize the pedagogical and conceptual importance of best practices framed by constructivism and focused on…

  15. Signing in Science

    Science.gov (United States)

    Ashby, Rachael

    2013-01-01

    This article describes British Sign Language (BSL) as a viable option for teaching science. BSL is used by a vast number of people in Britain but is seldom taught in schools or included informally alongside lessons. With its new addition of a large scientific glossary, invented to modernise the way science is taught to deaf children, BSL breaks…

  16. The Nature of Science

    Science.gov (United States)

    Billingsley, Berry

    2013-01-01

    The view that science and religion are conflicting ways of understanding the world is widely and frequently presented in the media and may be the view held by most children. It is not the only view, however, and there are many scientists who have a religious faith. Usefully perhaps, for those who are interested in science education, examining…

  17. Science for All

    Science.gov (United States)

    Bullough, Andrew; Booth, Josephine

    2013-01-01

    There is very little in the way of dedicated subject-specific continuing professional development (CPD) provision for science teachers in special schools, nor for those who work in the mainstream, but have children with special educational needs in their classes. For the last two years, the Centre for Science Education (CSE) has been working with…

  18. Fermentation. Third World Science.

    Science.gov (United States)

    Jones, Natalie; Hughes, Wyn

    This unit, developed by the Third World Science Project, is designed to add a multicultural element to existing science syllabi (for students aged 11-16) in the United Kingdom. The project seeks to develop an appreciation of the: boundless fascination of the natural world; knowledge, skills, and expertise possessed by men/women everywhere;…

  19. Spitting for Science

    DEFF Research Database (Denmark)

    Athanasiadis, Georgios; Jorgensen, Frank G.; Cheng, Jade Y.

    2016-01-01

    Scientific outreach delivers science to the people. But it can also deliver people to the science. In this work, we report our experience from a large-scale public engagement project promoting genomic literacy among Danish high school students with the additional benefit of collecting data...

  20. Science in diplomacy.

    Science.gov (United States)

    Zewail, Ahmed H

    2010-04-16

    Throughout human history, science and technology have been the backbone of innovations that have driven economic development. Yet, rather oddly, they have not been seriously invoked in the pursuit of diplomacy. This Commentary examines the important role of science in diplomacy and its soft-power in world affairs and peace.

  1. Science Enrichment Outreach.

    Science.gov (United States)

    Brownstein, Erica M.; Destino, Thomas

    1995-01-01

    Discusses one approach to addressing lack of exposure to science for African American students, the Saturday Academy of Clark Atlanta University. Areas of interest are laboratory activities, hands-on science, and social engagement. Presents a review of related literature and a study of the program. Contains 16 references. (LZ)

  2. Exploring the Science Framework

    Science.gov (United States)

    Bell, Philip; Bricker, Leah; Tzou, Carrie; Lee, Tiffany; Van Horne, Katie

    2012-01-01

    The National Research Council's recent publication "A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas" (NRC 2011), which is the foundation for the Next Generation Science Standards now being developed, places unprecedented focus on the practices involved in doing scientific and engineering work. In an effort…

  3. Making Science Teams Work

    Science.gov (United States)

    Miller, Roxanne Greitz

    2004-01-01

    Science teachers, likely have more experience with students working together than teachers in any other subject area due to teaming students for hands-on activities. While the importance of teamwork is emphasized in the National Science Education Standards, getting teams to actually work-meaning getting students to share equally in the academic…

  4. The Science of Growth

    Science.gov (United States)

    Fett, Paula

    2010-01-01

    In recent years, "math and science" has been the mantra for many educators and business leaders who warn of an urgent need to encourage the pursuit of these and other technological disciplines or risk losing ground in the global economy. Simply emphasizing the need for "math and science" expertise does not, however, encourage innovation and fuel a…

  5. Encyclopedia of Rose Science

    NARCIS (Netherlands)

    Roberts, A.; Debener, T.; Gudin, S.; Byrne, D.B.; Cairns, T.; Vries, de D.P.; Dubois, L.A.M.; Forkmann, G.; Fruchter, M.; Helsper, J.P.F.G.; Horst, R.K.; Jay, M.; Kwakkenbosch, T.A.M.; Pemberton, B.; Put, H.M.C.; Rajapakse, S.; Reid, M.; Schum, A.; Shorthouse, J.D.; Ueda, Y.; Vainstein, A.; Pol, van de P.A.; Zieslin, N.

    2003-01-01

    The Encyclopedia of Rose Science brings together a wealth of information on the rose, long treasured for its captivating perfumes and splendid colors. Now, more than ever, science plays a central place in the production of this flower at the center of one of the world's biggest floricultural industr

  6. Science: Servant or Master?

    Science.gov (United States)

    Morgenthau, Hans J.

    In this tenth book of a series entitled "Perspectives in Humanism," analyses are included concerning the meaning of science for modern man and its effects on contemporary politics. Natural, social, and humanistic sciences are discussed in connection with religion, philosophy, and politics to indicate the importance of the scholar who fulfills the…

  7. Teaching Science through Story

    Science.gov (United States)

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  8. Tradition in Science

    Science.gov (United States)

    Heisenberg, Werner

    1973-01-01

    Discusses the influence of tradition in science on selection of scientific problems and methods and on the use of concepts as tools for research work. Indicates that future research studies will be directed toward the change of fundamental concepts in such fields as astrophysics, molecular biology, and environmental science. (CC)

  9. The Sound of Science

    Science.gov (United States)

    Merwade, Venkatesh; Eichinger, David; Harriger, Bradley; Doherty, Erin; Habben, Ryan

    2014-01-01

    While the science of sound can be taught by explaining the concept of sound waves and vibrations, the authors of this article focused their efforts on creating a more engaging way to teach the science of sound--through engineering design. In this article they share the experience of teaching sound to third graders through an engineering challenge…

  10. Science without laws.

    Science.gov (United States)

    Schweber, Silvan S

    2009-01-01

    During the 1970s, something deeply consequential happened in the cultural, economic, and social relationships between science and technology. Paul Forman has proposed that the abrupt reversal of the culturally ascribed primacy in the science-technology relationship circa 1980 be taken as a demarcation of postmodernity from modernity. Modernity's most basic cultural presuppositions-the superiority of theory to practice, the elevation of the public over the private and that of the disinterested over the interested, and the belief that the means sanctify the ends-were ascribed to science. In postmodernity, science is subsumed under technology, and the status of technology relative to science reflects our pragmatic-utilitarian subordination of means to ends. These cultural changes have resonated with deep epistemological and ontological changes within the sciences themselves, and all these have manifested themselves in universities becoming entrepreneurial, and the consequences thereof. Science Without Laws insightfully illustrates some of the changes within the life and human sciences by analyzing the role played by model systems and case studies.

  11. What is Science?

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-07-01

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just one more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work.

  12. The Science of Cycling

    Science.gov (United States)

    Crompton, Zoe; Daniels, Shelley

    2014-01-01

    Children are engaged by finding out about science in the real world (Harlen, 2010). Many children will be cyclists or will have seen or heard about the success of British cyclists in the Olympics and the Tour de France. This makes cycling a good hook to draw children into learning science. It is also a good cross-curricular topic, with strong…

  13. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  14. Confronting Ambiguity in Science

    Science.gov (United States)

    Emery, Katherine; Harlow, Danielle; Whitmer, Ali; Gaines, Steven

    2015-01-01

    People are regularly confronted with environmental and science-related issues presented to them in newspapers, on television, or even in their own doctor's office. Often the information they use to inform their decisions on matters of science may be ambiguous and contradictory. This article presents an activity that investigates how students deal…

  15. Science sharpens your mind

    NARCIS (Netherlands)

    Jongman, R.H.G.

    2003-01-01

    Working in research gives the need to define your thinking. Your own field of work determines your scope of thinking. Science means generalisation of personal experiences in generally accepted models and paradigms. The difference between working in a project with stakeholders and science is the

  16. The science of Prometheus

    Science.gov (United States)

    Mauskopf, Seymour

    2012-10-01

    For roughly the last half century, chemistry has perhaps been the most disparaged of the sciences. Among members of the public, the very word "chemical" has come to have opprobrious connotations, and some physicists (and even chemists) have argued that chemistry is reducible to physics, and thus not truly an independent science.

  17. Rethinking the Science Fair

    Science.gov (United States)

    Craven, John; Hogan, Tracy

    2008-01-01

    Spring is the season when thousands of creased cardboard pests can be found lodged under the armpits of students and teachers as they observe the educational rite of spring known as the school science fair. A recent visit to a local school's gymnasium to witness one of these events reminded the authors of why they so dislike science fairs. In this…

  18. Acid Rain: Science Projects.

    Science.gov (United States)

    Hessler, Edward W.; Stubbs, Harriett S.

    Too often science seems to be a matter of studying from books and responding to questions raised by teachers about the information either in the classroom or on examinations. Such a view of science misses its importance as a way of thinking, doing, and preparing for citizenship roles. The problems and activities included in this volume are…

  19. The Nature of Science

    Science.gov (United States)

    Billingsley, Berry

    2013-01-01

    The view that science and religion are conflicting ways of understanding the world is widely and frequently presented in the media and may be the view held by most children. It is not the only view, however, and there are many scientists who have a religious faith. Usefully perhaps, for those who are interested in science education, examining…

  20. Cooperative Science Lesson Plans.

    Science.gov (United States)

    Cooperative Learning, 1991

    1991-01-01

    Offers several elementary level cooperative science lesson plans. The article includes a recipe for cooperative class learning, instructions for making a compost pile, directions for finding evidence of energy, experiments in math and science using oranges to test density, and discussions of buoyancy using eggs. (SM)

  1. Excellence in School Science.

    Science.gov (United States)

    Rakow, Steven J.

    1985-01-01

    Lists objectives for excellence/exemplary programs in middle/junior high school science as perceived by a group of middle/junior high school science teachers. These objectives focus on: (1) goals; (2) curricula; (3) instruction; (4) teachers; and (5) evaluation. (JN)

  2. The Diploma in Science

    Science.gov (United States)

    Lawlor, Hugh

    2010-01-01

    At the heart of the vision for the Diploma in Science is a multidisciplinary approach to learning by tackling scientific challenges and questions in applied work-related contexts. This, together with the innovative delivery model offered by a consortia approach, will bridge a significant gap in the provision of science and mathematics education.…

  3. Building Collections: Science Fiction

    Science.gov (United States)

    Krapp, JoAnn Vergona

    2005-01-01

    Fantasy and science fiction are two genres that are products of imagination. Both present alternate worlds governed by their own laws and values, but it is the plausibility of events in each world that sets the two apart. In fantasy, events happen by magic or inexplicable means. In science fiction, events could happen based on advanced…

  4. K-6 Science Curriculum.

    Science.gov (United States)

    Blueford, J. R.; And Others

    A unified science approach is incorporated in this K-6 curriculum mode. The program is organized into six major cycles. These include: (1) science, math, and technology cycle; (2) universe cycle; (3) life cycle; (4) water cycle; (5) plate tectonics cycle; and (6) rock cycle. An overview is provided of each cycle's major concepts. The topic…

  5. Short-Form Science

    Science.gov (United States)

    Murphy, Beth; Hedwall, Melissa; Dirks, Andrew; Stretch, Elizabeth

    2017-01-01

    Reading provides a unique window into the history and nature of science and the norms of scientific communication and supports students in developing critical-reading skills in engaging ways. Effective use of reading promotes a spirit of inquiry and an understanding of science concepts while also addressing expectations of the Common Core State…

  6. Measuring Adolescent Science Motivation

    Science.gov (United States)

    Schumm, Maximiliane F.; Bogner, Franz X.

    2016-01-01

    To monitor science motivation, 232 tenth graders of the college preparatory level ("Gymnasium") completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one…

  7. Science and Technology Policy

    DEFF Research Database (Denmark)

    Baark, Erik

    1996-01-01

    This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years.......This paper examines the status of science and technology in Mongolia, and discusses the policy issues which have emerged with the transition to market economy in recent years....

  8. Cognitive Science and Education.

    Science.gov (United States)

    Glaser, Robert

    1988-01-01

    States that renewed research on the processes of learning and teaching is necessary if all children are expected to meet high standards of educational performance. Discusses cognitive science, a federation of psychology, linguistics, and computer science which offers a reconceptualization of the nature of the learning process and new approaches to…

  9. Acid Rain: Science Projects.

    Science.gov (United States)

    Hessler, Edward W.; Stubbs, Harriett S.

    Too often science seems to be a matter of studying from books and responding to questions raised by teachers about the information either in the classroom or on examinations. Such a view of science misses its importance as a way of thinking, doing, and preparing for citizenship roles. The problems and activities included in this volume are…

  10. Pakistan boosts science budget

    Science.gov (United States)

    Harris, Margaret

    2009-08-01

    Government spending on science and technology development in Pakistan will jump by about a quarter in 2009-2010 compared with the previous fiscal year, with big increases planned for nuclear physics and higher education. In late June the country's National Assembly approved a budget of 48.2bn Pakistani rupees (Rs), or about £361m, for new science projects.

  11. Science Education and Worldview

    Science.gov (United States)

    Keane, Moyra

    2008-01-01

    Is there a place for Indigenous Knowledge in the science curriculum for a Zulu community in rural Kwa-Zulu Natal, South Africa? This article argues "yes," based on a participative research and development project that discovered relevant science learning in a Zulu community. Among community concerns for relevant factual and performative…

  12. NATO and Science.

    Science.gov (United States)

    Durand, Henry

    1988-01-01

    Outlines the Third Dimension of NATO. Presses for increased efforts to overcome the disparity in the rate of scientific development among the countries of the alliance. Discusses scientific nobility, the rise of European science, science for stability, environmental protection, and the changed scientific climate. (CW)

  13. JPRS Report, Science & Technology, USSR: Materials Science.

    Science.gov (United States)

    1988-04-04

    Producing Kovar-To-Glass Seals by Heating With Light From Xenon^Arc Lamps CM. 1, Oparin , V. B. Redchits; SVAROCHNOYE PROIZVODSTVO, No 11, Nov 87) 28...10-11 iArticle by M, I, Oparin , candidate of technical sciences, and V, B. Redchits, engineer] [Abstract] Hermetic Kovar-to-glass seals were

  14. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-01-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish…

  15. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-01-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish…

  16. History of Science and Science Museums

    Science.gov (United States)

    Faria, Cláudia; Guilherme, Elsa; Gaspar, Raquel; Boaventura, Diana

    2015-10-01

    The activities presented in this paper, which are addressed to elementary school, are focused on the pioneering work of the Portuguese King Carlos I in oceanography and involve the exploration of the exhibits belonging to two different science museums, the Aquarium Vasco da Gama and the Maritime Museum. Students were asked to study fish adaptations to deep sea, through the exploration of a fictional story, based on historical data and based on the work of the King that served as a guiding script for all the subsequent tasks. In both museums, students had access to: historical collections of organisms, oceanographic biological sampling instruments, fish gears and ships. They could also observe the characteristics and adaptations of diverse fish species characteristic of deep sea. The present study aimed to analyse the impact of these activities on students' scientific knowledge, on their understanding of the nature of science and on the development of transversal skills. All students considered the project very popular. The results obtained suggest that the activity promoted not only the understanding of scientific concepts, but also stimulated the development of knowledge about science itself and the construction of scientific knowledge, stressing the relevance of creating activities informed by the history of science. As a final remark we suggest that the partnership between elementary schools and museums should be seen as an educational project, in which the teacher has to assume a key mediating role between the school and the museums.

  17. Science Fair Projects. LC Science Tracer Bullet.

    Science.gov (United States)

    Howland, Joyce, Comp.

    The sources listed in this document are selected to provide guidance to students, parents, and teachers throughout the process of planning, developing, implementing, and competing in science fair activities. While sources range in suitability from elementary to high school levels, the emphasis is on materials for grades 9-12. This guide updates LC…

  18. JPRS Report, Science & Technology, USSR: Life Sciences

    Science.gov (United States)

    2007-11-02

    Melnikov, Laboratory of Bionic Research (Headed by Candidate of Biological Sciences A. A. Kuzmin), Pacific Scientific Research Institute of... architecture have a great deal in common with the arterial systems of whales described earlier. Figures 2, references 14: 6 Russian, 8 Western

  19. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  20. JPRS Report, Science & Technology, USSR: Materials Science

    Science.gov (United States)

    1988-03-15

    of Smelting 12Crl2NiCu Cast Steel for Water-Turbine Blades (I.A. Kuntsevich , V.V. Kobzistyy et al.; LITEYNOYE PROIZVODSTVO, No 4, Apr 87) Alloying...Moscow LITEYNOYE PROIZVODSTVO in Russian No 4, Apr 87 pp 9-10 [Article by I.A. Kuntsevich , candidate of technical sciences, V.V. Kobzistyy, engineer

  1. Science Fair Projects. LC Science Tracer Bullet.

    Science.gov (United States)

    Carter, Constance, Comp.

    This bibliography assists junior and senior high school students and teachers in planning, preparing, executing, and evaluating science fair projects. A few books with experiments suitable for elementary grade students are listed. This publication is not intended to be a comprehensive bibliography but is designed to put the reader "on target."…

  2. Space Science Projects. LC Science Tracer Bullet.

    Science.gov (United States)

    Carter, Constance, Comp.; Howland, Joyce, Comp.

    This document presents sources to assist elementary and secondary school students and teachers in planning, preparing, and executing projects in the space sciences. Bibliographies for the following sections are included: (1) Basic Texts, (2) Specialized Texts, (3) Classroom Experiments and Activities, (4) Background Readings, (5) Related Titles,…

  3. Design science, engineering science and requirements engineering

    NARCIS (Netherlands)

    Wieringa, R.J.; Heerkens, J.M.G.

    2008-01-01

    For several decades there has been a debate in the computing sciences about the relative roles of design and empirical research, and about the contribution of design and research methodology to the relevance of research results. In this minitutorial we review this debate and compare it with evidence

  4. JPRS Report - Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1988-04-22

    conducted in the department of cytophysiology and cellular engineering of the UkSSR Academy of Science Institute of Botany in Kiev. Yuriy Yuryevich... internship under the direct supervision of the institute. 13227 JPRS-ULS-88-008 22 April 1988 Electrical Activity of Human Brain Under Conditions of

  5. Journalism and science

    DEFF Research Database (Denmark)

    Meyer, Gitte

    2006-01-01

    that are likely to occur to journalistic attitudes - mirroring changing attitudes in the wider society - towards science and scientific researchers. Two journalistic conventions - those of science transmission and of investigative journalism - are presented and discussed in relation to the present drive towards...... commercialization within the world of science: how are journalists from these different schools of thought likely to respond to the trend of commercialization? Likely journalistic reactions could, while maintaining the authority of the scientific method, be expected to undermine public trust in scientists....... In the long term, this may lead to an erosion of the idea of knowledge as something that cannot simply be reduced o the outcome of negotiation between stakeholders. It is argued that science is likely to be depicted as a fallen angel. This may be countered, it is posited, by science turning human...

  6. Science education standards

    Energy Technology Data Exchange (ETDEWEB)

    Alberts, B.

    1994-12-31

    This paper describes the National Science Education Standards that are being developed at the National Research Council. The Standards are being developed for the following areas: content, teaching, assessment, program, and system. The national science standards will call for the kind of science that provides both an understanding of the basic concepts needed for success in our high technology society, and the acquisition of process skills, or the ability to proceed step by step to solve a practical problem. Science should become a core subject like reading, writing and math in grades K-12. At all levels, the material taught should be interesting, both to students and to teachers. The profession of science teaching must become an attractive one, which is possible to do well without superhuman effort. The scientific community must accept responsibility for achieving these goals.

  7. Empirical Philosophy of Science

    DEFF Research Database (Denmark)

    Mansnerus, Erika; Wagenknecht, Susann

    2015-01-01

    knowledge takes place through the integration of the empirical or historical research into the philosophical studies, as Chang, Nersessian, Thagard and Schickore argue in their work. Building upon their contributions we will develop a blueprint for an Empirical Philosophy of Science that draws upon......Empirical insights are proven fruitful for the advancement of Philosophy of Science, but the integration of philosophical concepts and empirical data poses considerable methodological challenges. Debates in Integrated History and Philosophy of Science suggest that the advancement of philosophical...... qualitative methods from the social sciences in order to advance our philosophical understanding of science in practice. We will regard the relationship between philosophical conceptualization and empirical data as an iterative dialogue between theory and data, which is guided by a particular ‘feeling with...

  8. Communicating Your Science

    Science.gov (United States)

    Young, C. A.

    2016-12-01

    Effective science communication can open doors, accelerate your career and even make you a better scientist. Part of being an effective and productive scientist means being an effective science communicator. The scientist must communicate their work in talks, posters, peer-reviewed papers, internal reports, proposals as well as to the broader public (including law makers). Despite the importance of communication, it has traditionally not been part of our core training as scientists. Today's science students are beginning to have more opportunities to formally develop their science communication skills. Fortunately, new and even more established scientists have a range of tools and resources at their disposal. In this presentation, we will share some of these resources, share our own experiences utilizing them, and provide some practical tools to improve your own science communication skills.

  9. Public Engagement with Science

    DEFF Research Database (Denmark)

    Irwin, Alan

    2014-01-01

    Based on a recent review and a contribution for the 20 years anniversary edition of the scientific journal Public Understanding of Science, reflections are made about the last twenty years of achievements and failures in the theory, practice and policy of Public Engagement with Science (PES......). The ‘deficit theory’ which still today characterize many scientific activities that address citizen can be criticized for ‘one-way communication’, ‘sanctity of expertise’, and treatment of the publics as ‘homogeneous’. When arguing for the need for public engagement with science it is question about...... not problematising ‘the public’, taking values seriously and instead educating ‘the experts’, and recognising both the ‘legitimacy of wider concerns’ and the ‘democratic imperative’. Public Engagement with Science as strategy is building upon a normative commitment to the idea of democratic science policy...

  10. Philosophy of Computer Science

    Directory of Open Access Journals (Sweden)

    Aatami Järvinen

    2014-06-01

    Full Text Available The diversity and interdisciplinary of Computer Sciences, and the multiplicity of its uses in other sciences make it difficult to define them and prescribe how to perform them. Furthermore, also cause friction between computer scientists from different branches. Because of how they are structured, these sciences programs are criticized for not offer an adequate methodological training, or a deep understanding of different research traditions. To collaborate on a solution, some have decided to include in their curricula courses that enable students to gain awareness about epistemology and methodological issues in Computer Science, as well as give meaning to the practice of computer scientists. In this article the needs and objectives of the courses on the philosophy of Computer Science are analyzed, and its structure and management are explained.

  11. The Logic of Science

    DEFF Research Database (Denmark)

    Jensen, Lars Bang

    The problematic this thesis investigates, through a specific kind of structuralism derived from a reading of Michel Foucault, Pierre Bourdieu and Gilles Deleuze, concerns how the subject becomes a science subject and potentially a scientist, with interest and literacy in science. The Logic...... of Science – a vivisection of monsters is thus an exploration of Being and Becoming in relation to Science and its Education. The investigation has been derived from, in, and connected to the Youth-to-Youth Project, a regional bridge building project in Northern Jutland in Denmark. The Youth-to-Youth Project...... (2011-2015) attempts to facilitate contact and provide a different kind of counselling and guidance between youths and youths who are ‘one step ahead’ in their educational trajectory. The meetings between the youths are both social and science subject oriented, and the intention is to establish...

  12. The Science@NASA Websites

    Science.gov (United States)

    Koczor, Ronald J.; Phillips. Tony; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Science@NASA websites represent a significant stride forward in communicating NASA science to the general public via the Internet. Using a family of websites aimed at science-attentive adults, high school students, middle school students and educators, the Science@NASA activity presents selected stories of on-going NASA science, giving context to otherwise dry press releases and scientific reports.

  13. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.

  14. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  15. History and Philosophy of Science and Science Teaching: A Revisit

    Science.gov (United States)

    Nunan, E.

    1977-01-01

    Assesses interest in history and philosophy of science in the last decade by primary, secondary, and tertiary science educators. Identifies different approaches to science history and discusses the recent increased awareness on values clarification. (CP)

  16. Science Fiction in the Political Science Classroom: A Comment

    Science.gov (United States)

    Landers, Clifford E.

    1977-01-01

    Science fiction can be used for introducing and analyzing political concepts at the undergraduate level for either a specialized theory-oriented course such as Political Science Fiction or an Introduction to Political Science course. (Author/RM)

  17. Science of science and innovation policy: principal investigators' conference summary

    National Research Council Canada - National Science Library

    Fealing, Kaye Husbands; Beatty, Alexandra S; Citro, Constance F

    2014-01-01

    .... The conference highlighted advances in the emerging field of the science of science and innovation policy, in particular, models, frameworks, tools, and datasets comprising the evidentiary basis...

  18. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  19. Science Coursework and Pedagogical Beliefs of Science Teachers: The Case of Science Teachers in the Philippines

    Science.gov (United States)

    Macugay, Eva B.; Bernardo, Allan B. I.

    2013-01-01

    Science coursework is an important element of the pre-service education of science teachers. In this study we test the hypothesis that more science coursework influences pedagogical beliefs of science teachers by studying the pedagogical beliefs of 305 Filipino science teachers. We compared pedagogical beliefs of primary school (less science…

  20. Pre-Service Science Teachers' Cognitive Structures Regarding Science, Technology, Engineering, Mathematics (STEM) and Science Education

    Science.gov (United States)

    Hacioglu, Yasemin; Yamak, Havva; Kavak, Nusret

    2016-01-01

    The aim of this study is to reveal pre-service science teachers' cognitive structures regarding Science, Technology, Engineering, Mathematics (STEM) and science education. The study group of the study consisted of 192 pre-service science teachers. A Free Word Association Test (WAT) consisting of science, technology, engineering, mathematics and…

  1. Globalization and Science Education

    Science.gov (United States)

    Bencze, J. Lawrence; Carter, Lyn; Chiu, Mei-Hung; Duit, Reinders; Martin, Sonya; Siry, Christina; Krajcik, Joseph; Shin, Namsoo; Choi, Kyunghee; Lee, Hyunju; Kim, Sung-Won

    2013-06-01

    Processes of globalization have played a major role in economic and cultural change worldwide. More recently, there is a growing literature on rethinking science education research and development from the perspective of globalization. This paper provides a critical overview of the state and future development of science education research from the perspective of globalization. Two facets are given major attention. First, the further development of science education as an international research domain is critically analyzed. It seems that there is a predominance of researchers stemming from countries in which English is the native language or at least a major working language. Second, the significance of rethinking the currently dominant variants of science instruction from the perspectives of economic and cultural globalization is given major attention. On the one hand, it is argued that processes concerning globalization of science education as a research domain need to take into account the richness of the different cultures of science education around the world. At the same time, it is essential to develop ways of science instruction that make students aware of the various advantages, challenges and problems of international economic and cultural globalization.

  2. Science on stage

    CERN Multimedia

    2005-01-01

    During the opening ceremony, the audience was dazzled by a juggling show involving dramatic light effects. They also took away with them a teacher's sheet explaining some of the scientific concepts involved in juggling. Science teachers can sometimes be quite humorous when it comes to explaining serious matters, as those who took part in the 'Science on Stage' festival held at CERN from 21 to 25 November were able to see for themselves. The 500 or so participants from 27 different countries, mostly science teachers but also some university lecturers, science outreach specialists and students, had the opportunity to share their experience of the teaching of science. They also attended presentations and shows, took part in workshops and visited a fair with stands offering ideas on how to make school science lessons more appealing. The festival, organised by the EIROforum (a partnership between CERN, EFDA, ESA, ESO, EMBL, ESRF and ILL), marked the end of two years of projects for the promotion of science in vir...

  3. Value of Fundamental Science

    Science.gov (United States)

    Burov, Alexey

    Fundamental science is a hard, long-term human adventure that has required high devotion and social support, especially significant in our epoch of Mega-science. The measure of this devotion and this support expresses the real value of the fundamental science in public opinion. Why does fundamental science have value? What determines its strength and what endangers it? The dominant answer is that the value of science arises out of curiosity and is supported by the technological progress. Is this really a good, astute answer? When trying to attract public support, we talk about the ``mystery of the universe''. Why do these words sound so attractive? What is implied by and what is incompatible with them? More than two centuries ago, Immanuel Kant asserted an inseparable entanglement between ethics and metaphysics. Thus, we may ask: which metaphysics supports the value of scientific cognition, and which does not? Should we continue to neglect the dependence of value of pure science on metaphysics? If not, how can this issue be addressed in the public outreach? Is the public alienated by one or another message coming from the face of science? What does it mean to be politically correct in this sort of discussion?

  4. Social Sciences and Sustainability

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2011-09-01

    Full Text Available At the time when the journal Sustainability [1] was launched, as a chemist and a scientist, I started to believe that social sciences may be more important to make humans sustainable. The broad journal title Social Sciences presents the opportunity for all social science scholars to have integrated consideration regarding the sustainability of humanity, because I am sure that science and technology alone cannot help. Science and technology may have in fact been contributing to accelerate the depletion of nonrenewable natural resources and putting human sustainability at risk since the industrial revolution about 150 years ago. I hope all intellectuals studying anthropology, archaeology, administration, communication, criminology, economics, education, government, linguistics, international relations, politics, sociology and, in some contexts, geography, history, law, and psychology publish with us to seek a solution to sustain humanity. Sustainability itself will also be a main topic of the journal Social Sciences. In addition to this integrated forum for social sciences, more topic specific journals, such as the already publishing Societies [2], will be launched. [...

  5. Style in science communication.

    Science.gov (United States)

    Bucchi, Massimiano

    2013-11-01

    There is little doubt that during the past few decades science communication efforts aimed at non-expert audiences have increased in quantity and intensity on a global scale. Public engagement and outreach activities have now become a routine - when not a prominent - feature for several research institutions in Europe. However, it would be difficult for both scholars and those involved in science communication to agree on the impact of these activities, on the long-term implications of the 'science communication movement' and on the indicators we should develop and employ in order to assess impact. The paper argues that quality is a relevant issue and challenge for contemporary science communication. Style is relevant to addressing that challenge, insofar as it relates to discussions about how to strengthen the quality of science communication, suggesting a different perspective other than the traditional normative/prescriptive framework. The notion of style also fruitfully connects the debate on science communication with a rich tradition of studies in the history and sociology of science.

  6. Service Science And Accounting

    Directory of Open Access Journals (Sweden)

    Stephen G. Kerr

    2011-05-01

    Full Text Available The evolution of a new discipline of service science will creatively disturb the relationship between more established business disciplines.  Each discipline is not an independent silo.  As a result the purpose of this paper was to explore, at this early stage, how the new discipline may create opportunities for interdisciplinary scholarship.  The specific purpose of this paper was to explore how service science might interact with the scholarly and professional practice of accounting.  Accounting practice is dominated by a stewardship proposition.  The stewardship proposition is a problem because typical service science investments will receive unfavorable treatment.  Accounting’s other major proposition is valuation.  Areas of opportunity for positive contributions from a service science approach are discussed.  Service science, as viewed through an accounting lens, will have to find ways to overcome measurement and reporting methods that will not afford service science investments the full benefit of their strategic potential.  Several avenues for research into ways service science can improve accounting scholarship are suggested.

  7. Toward a Responsible Social Science

    Science.gov (United States)

    Hilgard, Ernest R.

    1971-01-01

    The social science enterprise, to satisfy the criteria of good science," must cover the whole spectrum of basic and applied science and lend direction to the policy process with respect to applied problems in the social realm. (Author/MB)

  8. Cell Science-02 Payload Overview

    Science.gov (United States)

    Mitchell, Sarah Diane

    2014-01-01

    The presentation provides an general overview of the Cell Science-02 science and payload operations to the NASA Payload Operations Integrated Working Group. The overview includes a description of the science objectives and specific aims, manifest status, and operations concept.

  9. SCIENCE IN CHINA (SCIENTIA SINICA)

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Aims and ScopeScience in China (monthly) is a comprehensive academic journal of natural sciences sponsored by the Chinese Acade-my of Sciences. The primary purpose is to provide regular, rapid and authoritative reviews of current important devel-

  10. African Journals Online: Veterinary Science

    African Journals Online (AJOL)

    Items 1 - 15 of 15 ... African Journals Online: Veterinary Science ... scope and is intended for professionals in animal production and related sciences. ... Animal Physiology, Biochemistry and Molecular Biology, Animal Sciences, Pathology and ...

  11. Where is the Science?

    Directory of Open Access Journals (Sweden)

    Apostol M.

    2008-01-01

    Full Text Available The important role played in society today by scientific research is highlighted, and the related various social, economical and political conditionings of science are discussed. It is suggested that the exclusive emphasis upon the multiple technological applications of science, the use and abuse of scientific research, may lead to the very disappearance of science, transforming scientific research into a routine and almost ritualistic activity, empty of any real content. This may already be seen in the inadequate way present day society tackles the fundamental problems we are confronted with, issues such as the environment, conflict, life and the thinking process.

  12. Speaking Up For Science.

    Science.gov (United States)

    Lee, Connie M

    2016-04-01

    Communicating science and being an advocate for public support of research are critical roles for scientists. However, despite having the most relevant expertise, many of us do not get involved in matters bridging science and policy. Here I discuss the importance of science advocacy by researchers, and present strategies for communicating the relevance of your work to the public and elected officials, including the crafting of a two-minute pitch - a valuable skill for all scientists. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  14. Coping with Science

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    2003-01-01

    Life of Science, edited by Lykke Margot Ricard and Robin Engelhardt. Learning Lab Denmark, Copenhagen, pages 39-45. 2003 Short description: What makes children think about scientific inventions? In this case it was watching the news and listing to parents conversation that made a 12-year old...... schoolboy write an essay on the theme: ?The world would be a better place to live in if?!? Abstract: Science has a long tradition for emphasizing objectivity, but it is the emotional impact of science that makes children interested. Metaphors and personal experiences of the scientist can be a useful...

  15. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  16. Science Communication in Denmark

    DEFF Research Database (Denmark)

    Busch, Henrik

    2005-01-01

    This paper was presented during the author?s visit at the Faculty of Human Development of the University of Kobe . The paper is intended to provide the knowledge about science communication in the Nordic countries (in particular in Denmark). The focus in the paper is on (i) examples of new...... and innovative modes of science communication in Denmark and (ii) educational programs for science communicators. Furthermore, emphasis is on the pedagogical ideas behind the initiatives, rather than on thorough descriptions of structures, curricula and evaluations of the projects....

  17. Defending climate science

    Science.gov (United States)

    Showstack, Randy

    2012-01-01

    The National Center for Science Education (NCSE), which has long been in the lead in defending the teaching of evolution in public schools, has expanded its core mission to include defending climate science, the organization announced in January. “We consider climate change a critical issue in our own mission to protect the integrity of science education,” said NSCE executive director Eugenie Scott. “Climate affects everyone, and the decisions we make today will affect generations to come. We need to teach kids now about the realities of global warming and climate change so that they're prepared to make informed, intelligent decisions in the future.”

  18. Science Communication in Denmark

    DEFF Research Database (Denmark)

    Busch, Henrik

    2005-01-01

    This paper was presented during the author?s visit at the Faculty of Human Development of the University of Kobe . The paper is intended to provide the knowledge about science communication in the Nordic countries (in particular in Denmark). The focus in the paper is on (i) examples of new...... and innovative modes of science communication in Denmark and (ii) educational programs for science communicators. Furthermore, emphasis is on the pedagogical ideas behind the initiatives, rather than on thorough descriptions of structures, curricula and evaluations of the projects....

  19. Science with KRAKENS

    CERN Document Server

    Mazin, Benjamin A; France, Kevin; Fraser, Wesley; Howell, D Andrew; Jones, Tucker; Meeker, Seth; O'Brien, Kieran; Prochaska, Jason X; Siana, Brian; Strader, Matthew; Szypryt, Paul; Tendulkar, Shriharsh P; Treu, Tommaso; Vasisht, Gautam

    2015-01-01

    The Keck science community is entering an era of unprecedented change. Powerful new instrument like ZTF, JWST, LSST, and the ELTs will catalyze this change, and we must be ready to take full advantage to maintain our position of scientific leadership. The best way to do this is to continue the UC and Caltech tradition of technical excellence in instrumentation. In this whitepaper we describe a new instrument called KRAKENS to help meet these challenges. KRAKENS uses a unique detector technology (MKIDs) to enable groundbreaking science across a wide range of astrophysical research topics. This document will lay out the detailed expected science return of KRAKENS.

  20. Titan Science Return Quantification

    Science.gov (United States)

    Weisbin, Charles R.; Lincoln, William

    2014-01-01

    Each proposal for a NASA mission concept includes a Science Traceability Matrix (STM), intended to show that what is being proposed would contribute to satisfying one or more of the agency's top-level science goals. But the information traditionally provided cannot be used directly to quantitatively compare anticipated science return. We added numerical elements to NASA's STM and developed a software tool to process the data. We then applied this methodology to evaluate a group of competing concepts for a proposed mission to Saturn's moon, Titan.

  1. Computational Science and Innovation

    CERN Document Server

    Dean, D J

    2010-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  2. PubSCIENCE

    CERN Document Server

    United States. Department of Energy. Office of Scientific and Technical Information

    PubSCIENCE, a component of EnergyFiles, indexes 1,000 scientific and technical journals. It contains over one million multi-source journal citations dating back over 25 years from DOE's Energy Science and Technology Database. The focus of PubSCIENCE is on those journals where DOE researchers report their scientific discoveries. Frequency of contributions by DOE-sponsored researchers to scientific journals has been analyzed to prioritize data collection efforts. OSTI partners with participating publishers to provide information that is both relevant and useful to the DOE scientific community as well as information that was developed as the result of government sponsored R&D.

  3. Securitization and Science

    DEFF Research Database (Denmark)

    Berling, Trine Villumsen

    2011-01-01

    The interface between science and securitization has not been systematically addressed. This article argues from a Bourdieusian viewpoint that scientific arguments and ‘facts’ are at work in at least three distinct mechanisms within and around securitization. First, science communities....../explanations can come to objectify an issue to the extent where securitization – and even politicization – becomes next to impossible. Second, science co-determines the status of a securitizing actor and thus influences the authority of the speaker in specific fields. Third, scientific facts can be mobilized...

  4. Investigations about Science Misconceptions

    CERN Document Server

    Risch, M

    2010-01-01

    Students entering engineering in universities of applied sciences were tested to see whether they understood easy Science problems within the first week of the first semester. The test comprised of mathematics and physics questions in both linear and diagrammatic form. Science misconceptions are investigated here by comparison to a model of misconception based on the findings of other investigators. The misconceptions demonstrated by the answers confirm this model of misconception. The results are discussed with traditional theories about education as well as with recent psychological research and with neuroscience insights. These comparisons enable further investigation of misconceptions.

  5. Coping with Science

    DEFF Research Database (Denmark)

    Ricard, Lykke Margot

    2003-01-01

    Life of Science, edited by Lykke Margot Ricard and Robin Engelhardt. Learning Lab Denmark, Copenhagen, pages 39-45. 2003 Short description: What makes children think about scientific inventions? In this case it was watching the news and listing to parents conversation that made a 12-year old...... schoolboy write an essay on the theme: ?The world would be a better place to live in if?!? Abstract: Science has a long tradition for emphasizing objectivity, but it is the emotional impact of science that makes children interested. Metaphors and personal experiences of the scientist can be a useful...

  6. Life of Science

    DEFF Research Database (Denmark)

    Engelhardt, Robin; Margot Ricard, Lykke

    Learning Lab Denmark, København. 2003 Short description: In connection to the conference Changes and Challenges the White Book "Life of Science" was published. Member states of the European Union as well as applying countries were invited to contribute to the book with texts in order to present...... inspiring cases of concrete educational strategies for improving learning, teaching and recruitment in the fields of science and technology. Abstract: The aim of this white book is to present some of the most inspiring examples of Science and Technology Education in Europe. In creating the white book, we...

  7. Exploration of Science Parks

    Institute of Scientific and Technical Information of China (English)

    Xiong Huibing; Sun Nengli

    2005-01-01

    Science parks have developed gready in the world, whereas empirical researches have showed that science parks based on linear model cannot guarantee the creation of innovation. Hi-tech innovation is derived from flow and management of information. The commercial and social interactions between in-parks and off-park firms and research institutions act as the key determinant for innovation.Industrial clustering is the rational choice for further developing Chinese science parks and solving some problems such as the lack of dear major industries and strong innovation sense, etc.

  8. Science A history

    CERN Document Server

    Gribbin, John

    2002-01-01

    From award-winning science writer John Gribbin, "Science: A History" is the enthralling story of the men and women who changed the way we see the world, and the turbulent times they lived in. From Galileo, tried by the Inquisition for his ideas, to Newton, who wrote his rivals out of the history books; from Marie Curie, forced to work apart from male students for fear she might excite them, to Louis Agassiz, who marched his colleagues up a mountain to prove that the ice ages had occurred. Filled with pioneers, visionaries, eccentrics and madmen, this is the history of science as it has never been told before.

  9. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  10. [Educational science, 'the hardest science of all'].

    Science.gov (United States)

    van Tartwijk, J; Driessen, E W; van der Vleuten, C P M; Wubbels, T

    2012-06-01

    Educational research not only showed that student characteristics are of major importance for study success, but also that education does make a difference. Essentially, teaching is about stimulating students to invest time in learning and to use that time as effectively as possible. Assessment, goal-orientated work, and feedback have a major effect. The teacher is the key figure. With the aim to better understand teaching and learning, educational researchers usefindingsfrom other disciplines more and more often. A pitfall is to apply the findings of educational research without taking into consideration the context and the specific characteristics of students and teachers. Because of the large number offactors that influence the results ofeducation, educational science is referred as 'the hardest science of all'.

  11. JPRS Report Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1990-07-09

    Traumatology, Orthopedy and Field Surgery (head—professor M. F. Durov) and Chair of VK and LFK (head— docent P. G. Koynosov) of Tyumen Medical...Yu. D., Los, I. P and Popovich, V. M., "Fiziko-matematicheskaya problema deystviya elektro- magnitnykh poley i ionizatsii vozdukha" [The Physico...Article by S. I. Leonovich, docent , and Yu. M. Gain, candidate of medical science, Minsk] [Abstract] An international symposium on lasers in surgery

  12. JPRS Report, Science & Technology USSR: Life Sciences.

    Science.gov (United States)

    1988-07-01

    S. Grigoryan, M. V. Kameneva et ai; DOKLADY AKADEMII NAUK SSSR, No 3, Sep 87] 6 GENETICS Plant Genetics Research in Estonia [O. Priylinn...the hemolysates. Refer- ences 10: 4 Russian, 6 Western. 12126 JPRS-ULS-88-011 1 July 1988 GENETICS Plant Genetics Research in Estonia 18400307...Agriculture"] [Abstract] The department of plant genetics at the Insti- tute of Experimental Biology of the ESSR Academy of Sciences has made a number of

  13. Science Data Infrastructure for Preservation - Earth Science

    OpenAIRE

    Albani, Mirko; Marelli, Fulvio; Giaretta, David; Shaon, Arif

    2012-01-01

    The proper preservation of both current and historical scientific data will underpin a multitude of ecological, economic and political decisions in the future of our society. The SCIDIP-ES project addresses the long-term persistent storage, access and management needs of scientific data by providing preservation infrastructure services. Taking exemplars from the Earth Science domain we highlight the key preservation challenges and barriers to be overcome by the SCIDIP-ES infrastructure. SCIDI...

  14. JPRS Report, Science & Technology, USSR: Materials Science.

    Science.gov (United States)

    2007-11-02

    Semiconductor Physics Institute, Siberian Department, USSR Academy of Sciences] [Abstract] An experimental study was made concerning use of binary Bi...begun at the "round table". We are waiting for letters with your opinions and suggestions which, we hope, will help accelerate the solution of the...received 23 Jun 86) pp 516-520 [Article "by B. I. Kosilo, L. I. Polezhayeva, L. P. Polyakova, Ye. G. Polyakov and A. B. Smirnov, Institute of the

  15. JPRS Report, Science & Technology, USSR: Materials Science

    Science.gov (United States)

    2015-08-20

    JPRS-UPIS-90-Q03 1 MAY 1990 S#J1%\\ ■ ■■in FOREIGN BROADCAST INFORMATION SERVICE .JPRS Report — 19981021 129 Science & Technology USSR... entity , with average temperature of its own, engaged in heat exchange with the two-phase zone according to the convection law. However, such a model...it represents a definite technological complication and requires separate solution. 7. Problems of mechanizing the loading of the initial blank

  16. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    2007-11-02

    This is Japan Report with Science and Technology. It contains the issues with different topics on biotecnology , defense industry, nuclear engineering, Marine technology, science and technology policy.

  17. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  18. Science in Requirements Engineering

    National Research Council Canada - National Science Library

    Suhaimi Jaafar

    2014-01-01

    Based on a review of the articles about methodological principles, and some research classifications, in this work an overview of the nature and status of science in Requirements Engineering is done...

  19. Science via podcast

    Directory of Open Access Journals (Sweden)

    Ilenia Picardi

    2008-06-01

    Full Text Available Internet and the new media have been dramatically affecting the communication scenario. They are changing the role played by traditional media in the information processes, are creating new public spaces for dialogue and participation, and are triggering a short circuit among those producing and those receiving information. Even science communication is not stranger to the changes brought about by the new way of using and populating the web. An epitome of this process of change is the scientific podcast. This article will provide a brief review on the spreading and the purposes of podcasts in science communication, coming from a survey implemented as an activity of the course Science via podcast addressed to the second-year students of the Master in Science Communication of SISSA of Trieste.

  20. NSIUWG: Science networking retreat

    Science.gov (United States)

    Hart, Jim

    1991-01-01

    The purpose of this session was to study and identify alternatives to be recommended for the science networking areas of vision; roles and responsibilities; and technical approach and transition. This presentation is represented by charts and viewgraphs only.

  1. Environmental Health Science

    Science.gov (United States)

    Sherman, Alan; Smith, Robert

    1975-01-01

    Describes an environmental health science technology curriculum designed to provide technicians in the areas of air, water and wastewater analyses, treatment plant operators, public health enforcement officers, and pollution inspectors. (GS)

  2. African Health Sciences: Submissions

    African Journals Online (AJOL)

    Letters to the Editor and Book reviews should be less than 1500 words and do not need an abstract. ... Examples of references: ... African Health Sciences expects authors to declare presence or absence conflict of interest in the manuscript.

  3. A Forgotten Social Science?

    DEFF Research Database (Denmark)

    Martin-Nielsen, Janet

    2011-01-01

    it broadly. I argue that the historiographic lacuna results from two factors: (1) the opt-out of linguists from the wider American social science community, and (2) historical-developmental and -orientational factors that stand linguistics apart from the social science mainstream. The resultant isolation...... of linguistics has led to a parallel isolation in the historical literature. Ultimately, this paper poses a pivotal and timely question: How is the postwar social science space construed within the existing historiographic framework, and how should it be construed in order to maximize understanding? I propose......The post–World War II era was one of great triumph for American linguists—and yet linguistics is all but absent from the historical literature on postwar social science. This paper aims to illuminate this curious situation: to understand its provenance, evaluate its merits, and contextualize...

  4. National Academy of Sciences

    Science.gov (United States)

    ... Programs Arthur M. Sackler Colloquia Distinctive Voices Kavli Frontiers of Science Raymond and Beverly Sackler Forum Keck ... make the process of desalination more productive and efficient in providing clean water. Policy Studies & Reports Access ...

  5. Quantum Social Science

    Science.gov (United States)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  6. Pseudoscience and science fiction

    CERN Document Server

    May, Andrew

    2017-01-01

    Aliens, flying saucers, ESP, the Bermuda Triangle, antigravity … are we talking about science fiction or pseudoscience? Sometimes it is difficult to tell the difference. Both pseudoscience and science fiction (SF) are creative endeavours that have little in common with academic science, beyond the superficial trappings of jargon and subject matter. The most obvious difference between the two is that pseudoscience is presented as fact, not fiction. Yet like SF, and unlike real science, pseudoscience is driven by a desire to please an audience – in this case, people who “want to believe”. This has led to significant cross-fertilization between the two disciplines. SF authors often draw on “real” pseudoscientific theories to add verisimilitude to their stories, while on other occasions pseudoscience takes its cue from SF – the symbiotic relationship between ufology and Hollywood being a prime example of this. This engagingly written, well researched and richly illustrated text explores a wide range...

  7. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  8. Fundamentals of electrochemical science

    CERN Document Server

    Oldham, Keith

    1993-01-01

    Key Features* Deals comprehensively with the basic science of electrochemistry* Treats electrochemistry as a discipline in its own right and not as a branch of physical or analytical chemistry* Provides a thorough and quantitative description of electrochemical fundamentals

  9. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  10. Measuring adolescent science motivation

    Science.gov (United States)

    Schumm, Maximiliane F.; Bogner, Franz X.

    2016-02-01

    To monitor science motivation, 232 tenth graders of the college preparatory level ('Gymnasium') completed the Science Motivation Questionnaire II (SMQ-II). Additionally, personality data were collected using a 10-item version of the Big Five Inventory. A subsequent exploratory factor analysis based on the eigenvalue-greater-than-one criterion, extracted a loading pattern, which in principle, followed the SMQ-II frame. Two items were dropped due to inappropriate loadings. The remaining SMQ-II seems to provide a consistent scale matching the findings in literature. Nevertheless, also possible shortcomings of the scale are discussed. Data showed a higher perceived self-determination in girls which seems compensated by their lower self-efficacy beliefs leading to equality of females and males in overall science motivation scores. Additionally, the Big Five personality traits and science motivation components show little relationship.

  11. Science of landscape restoration

    CSIR Research Space (South Africa)

    De Wet, Benita

    2011-11-01

    Full Text Available Over the last two decades the ecological restoration of industrial land has developed into a specialist science combined with highly sophisticated management activities. A prime example of this approach is a unique partnership between the CSIR...

  12. Language and Science.

    Science.gov (United States)

    Atkinson, Dwight

    1999-01-01

    Reviews recent applied linguistic research on science and language, especially studies conducted during the period between 1990 and 1998. Outlines major changes that have taken place in this area since van Naerssen and Kaplan's 1987 review. (Author/VWL)

  13. Science denial and contradictions

    Science.gov (United States)

    Eldridge, Tom; Mackey, Jonathan

    2016-11-01

    In reply to Robert P Crease's column "Fighting science denial" (Critical Point, September) in which he compared the concealment of evidence about climate change to shouting "Stay put!" in a burning store.

  14. Philosophy of social science

    Directory of Open Access Journals (Sweden)

    Charles Vergeer

    2015-12-01

    Full Text Available Mark Risjord. Philosophy of Social Science. A Contemporary Introduction. Serie: Routledge Contemporary Introductions to Philosophy. New York and London: Routledge, 2014, 288 p., €42,75. ISBN 978 0 415 89825 6

  15. Spring 2017 Announcements: Science

    National Research Council Canada - National Science Library

    2016-01-01

    Pegasus, Mar. 7 Revealing the humanism behind the science of lunar and solar eclipses, Dvorak explains with insightful detail and vivid prose how and why eclipses occur, and provides insight into the total solar...

  16. Energy Sciences Network (ESnet)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Sciences Network is the Department of Energy’s high-speed network that provides the high-bandwidth, reliable connections that link scientists at national...

  17. Physical Sciences Complex

    Data.gov (United States)

    Federal Laboratory Consortium — This 88,000 square foot complex is used to investigate basic physical science in support of missile technology development. It incorporates office space, dedicated...

  18. NP Science Network Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dart, Eli [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Rotman, Lauren [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tierney, Brian [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2011-08-26

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. To support SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 20 years. In August 2011, ESnet and the Office of Nuclear Physics (NP), of the DOE SC, organized a workshop to characterize the networking requirements of the programs funded by NP. The requirements identified at the workshop are summarized in the Findings section, and are described in more detail in the body of the report.

  19. Imaging Sciences Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1996-11-21

    This report contains the proceedings of the Imaging Sciences Workshop sponsored by C.A.S.LS., the Center for Advanced Signal & Image Sciences. The Center, established primarily to provide a forum where researchers can freely exchange ideas on the signal and image sciences in a comfortable intellectual environment, has grown over the last two years with the opening of a Reference Library (located in Building 272). The Technical Program for the 1996 Workshop include a variety of efforts in the Imaging Sciences including applications in the Microwave Imaging, highlighted by the Micro-Impulse Radar (MIR) system invented at LLNL, as well as other applications in this area. Special sessions organized by various individuals in Speech, Acoustic Ocean Imaging, Radar Ocean Imaging, Ultrasonic Imaging, and Optical Imaging discuss various applica- tions of real world problems. For the more theoretical, sessions on Imaging Algorithms and Computed Tomography were organized as well as for the more pragmatic featuring a session on Imaging Systems.

  20. Genetic Science Learning Center

    Science.gov (United States)

    ... Mouse Party on Learn.Genetics.utah.edu Students doing the Tree of Genetic Traits activity Learn.Genetics is one of the most widely used science education websites in the world The Community Genetics ...

  1. Western Nuclear Science Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Steve Reese; George Miller; Stephen Frantz; Denis Beller; Denis Beller; Ed Morse; Melinda Krahenbuhl; Bob Flocchini; Jim Elliston

    2010-12-07

    The primary objective of the INIE program is to strengthen nuclear science and engineering programs at the member institutions and to address the long term goal of the University Reactor Infrastructure and Education Assistance Program.

  2. Science and Humanism

    Science.gov (United States)

    Auger, Pierre

    1971-01-01

    Science and humanism are separated so completely as to bring about the creation of two cultures quite distinct from each other within contemporary civilization. Pragmatic, rational attitudes are needed on both sides to bring them together. (DF)

  3. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. Complementary Social Science?

    DEFF Research Database (Denmark)

    Blok, Anders; Pedersen, Morten Axel

    2014-01-01

    The rise of Big Data in the social realm poses significant questions at the intersection of science, technology, and society, including in terms of how new large-scale social databases are currently changing the methods, epistemologies, and politics of social science. In this commentary, we addre...... but also for the type of societal (self-)knowledge that may be expected from new large-scale social databases....

  5. Foundations of image science

    CERN Document Server

    Barrett, Harrison H

    2013-01-01

    Winner of the 2006 Joseph W. Goodman Book Writing Award! A comprehensive treatment of the principles, mathematics, and statistics of image science In today's visually oriented society, images play an important role in conveying messages. From seismic imaging to satellite images to medical images, our modern society would be lost without images to enhance our understanding of our health, our culture, and our world. Foundations of Image Science presents a comprehensive treatment of the principles, mathematics, and st

  6. Space Sciences Focus Area

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-10

    To advance our understanding of the space environment (from the Sun to the Earth and beyond) and to advance our ability to operate systems in space that protect life and society. Space Science is distinct from other field, such as astrophysics or cosmology, in that Space Science utilizes in-situ measurements from high altitude rockets, balloons and spacecraft or ground-based measurements of objects and conditions in space.

  7. Science information systems: Visualization

    Science.gov (United States)

    Wall, Ray J.

    1991-01-01

    Future programs in earth science, planetary science, and astrophysics will involve complex instruments that produce data at unprecedented rates and volumes. Current methods for data display, exploration, and discovery are inadequate. Visualization technology offers a means for the user to comprehend, explore, and examine complex data sets. The goal of this program is to increase the effectiveness and efficiency of scientists in extracting scientific information from large volumes of instrument data.

  8. Rethinking Empirical Social Sciences

    OpenAIRE

    Ruppert, Evelyn

    2013-01-01

    I consider some arguments of social science and humanities researchers about the challenge that Big Data presents for social science methods. What they suggest is that social scientists need to engage with Big Data rather than retreat into internal debates about its meaning and implications. Instead, understanding Big Data requires and provides an opportunity for the interdisiciplinary development of methods that innovatively, critically and reflexively engage with new forms of data. Unlike d...

  9. Science in montessori kindergarten

    OpenAIRE

    Petač, Urška

    2016-01-01

    The first part of the thesis Science in Montessori kindergarten describes the Curriculum for kindergarten, national document, based on which teachers plan their educational work in kindergarten. It contains presentation of some global aims of primary science, and also descriptions of proposed activities for this area. It includes presentation of a constructivist way of teaching, which helps children to see nature as a place, where they can freely explore on their own initiative. Simultaneousl...

  10. Problem/science/society

    Directory of Open Access Journals (Sweden)

    Dr Jane Gregory

    2016-11-01

    Full Text Available Framing ‘science and society’ as a conflict has diverted us from more important problems. Our economic environment urges the commercialisation and social acceptance of new technologies, and science communicators and their publics contribute work to these ends. These activities neglect existing, uncontroversial technologies that, in a collaboration between responsible scientists and their publics, could be deployed to address global problems.

  11. Evaluation of Science.

    Science.gov (United States)

    Usmani, Adnan Mahmmood; Meo, Sultan Ayoub

    2011-01-01

    Scientific achievement by publishing a scientific manuscript in a peer reviewed biomedical journal is an important ingredient of research along with a career-enhancing advantages and significant amount of personal satisfaction. The road to evaluate science (research, scientific publications) among scientists often seems complicated. Scientist's career is generally summarized by the number of publications / citations, teaching the undergraduate, graduate and post-doctoral students, writing or reviewing grants and papers, preparing for and organizing meetings, participating in collaborations and conferences, advising colleagues, and serving on editorial boards of scientific journals. Scientists have been sizing up their colleagues since science began. Scientometricians have invented a wide variety of algorithms called science metrics to evaluate science. Many of the science metrics are even unknown to the everyday scientist. Unfortunately, there is no all-in-one metric. Each of them has its own strength, limitation and scope. Some of them are mistakenly applied to evaluate individuals, and each is surrounded by a cloud of variants designed to help them apply across different scientific fields or different career stages [1]. A suitable indicator should be chosen by considering the purpose of the evaluation, and how the results will be used. Scientific Evaluation assists us in: computing the research performance, comparison with peers, forecasting the growth, identifying the excellence in research, citation ranking, finding the influence of research, measuring the productivity, making policy decisions, securing funds for research and spotting trends. Key concepts in science metrics are output and impact. Evaluation of science is traditionally expressed in terms of citation counts. Although most of the science metrics are based on citation counts but two most commonly used are impact factor [2] and h-index [3].

  12. Strange science takes time

    CERN Multimedia

    2008-01-01

    The late astronomer Carl Sagan popularized the saying that "extraordinary claims require extraordinary evidence," in reference to reports of alien visitations. Generating low-cost commercial fusion power, isolating antimatter and tracing reverse-time causality aren't as far out there as UFOs, but a similar rule might well apply: Extraordinary science requires extraordinary effort. With that in mind, here's a progress report on three extraordinary science projects that have popped up in the news...

  13. (A)Historical science.

    Science.gov (United States)

    Casadevall, Arturo; Fang, Ferric C

    2015-12-01

    In contrast to many other human endeavors, science pays little attention to its history. Fundamental scientific discoveries are often considered to be timeless and independent of how they were made. Science and the history of science are regarded as independent academic disciplines. Although most scientists are aware of great discoveries in their fields and their association with the names of individual scientists, few know the detailed stories behind the discoveries. Indeed, the history of scientific discovery is sometimes recorded only in informal accounts that may be inaccurate or biased for self-serving reasons. Scientific papers are generally written in a formulaic style that bears no relationship to the actual process of discovery. Here we examine why scientists should care more about the history of science. A better understanding of history can illuminate social influences on the scientific process, allow scientists to learn from previous errors, and provide a greater appreciation for the importance of serendipity in scientific discovery. Moreover, history can help to assign credit where it is due and call attention to evolving ethical standards in science. History can make science better.

  14. Plasma Science Committee (PLSC)

    Science.gov (United States)

    1990-12-01

    The Plasma Science Committee (PLSC) is a standing committee under the auspices of the Board on Physics and Astronomy, Commission on Physical Sciences, Mathematics, and Applications of the National Academy of Sciences - National Research Council. Plasma sciences represent a broad and diverse field. The PLSC has accepted the responsibility of monitoring the continuing development and assessing the general health of the field as whole. Although select advisory bodies have been created to address specific issues that affect plasma science, such as the Fusion Policy Advisory Committee (FPAC), the PLSC provides a focus for the plasma science community that is unique and essential. The membership of the PLSC is drawn from research laboratories in universities, industry, and government. Areas of expertise on the committee include accelerators and beams, space physics, astrophysics, computational physics and applied mathematics, fusion plasmas, fundamental experiments and theory, radiation sources, low temperature plasmas, and plasma-surface interactions. The PLSC is well prepared to respond to requests for studies on specific issues.

  15. A Midsummer Night's Science

    CERN Document Server

    2001-01-01

    Last year, the first Science Night attracted nearly 1500 people. Dipping into history for the space of one night? This is the idea of Geneva's Museum of the History of Science, which is organizing its second Science Night, on 7 and 8 July, on the history of science. The first such event, held last year, was a considerable success with almost 15 000 visitors. The second Science Night, to be held in the magnificent setting of the Perle du Lac Park in Geneva, promises to be a winner too. By making science retell its own history, this major event is intended to show how every scientific and technical breakthrough is the culmination of a long period of growth that began hundreds of years in the past. Dozens of activities and events are included in this programme of time travel: visitors can study the night sky through telescopes and see what Galileo first observed, and then go to see a play on the life of the Italian scientist. Another play, commissioned specially for the occasion, will honour Geneva botanist De ...

  16. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  17. The Presentation of Science in Everyday Life: The Science Show

    Science.gov (United States)

    Watermeyer, Richard

    2013-01-01

    This paper constitutes a case-study of the "science show" model of public engagement employed by a company of science communicators focused on the popularization of science, technology, engineering and mathematics (STEM) subject disciplines with learner constituencies. It examines the potential of the science show to foster the interest…

  18. Information Science Roles in the Emerging Field of Data Science

    Directory of Open Access Journals (Sweden)

    Gary Marchionini

    2016-06-01

    Full Text Available The article discusses how data science emerges from information science,statistics, computer science, and knowledge domain. Schools of information stand as meaningful and substantive entities that are critical to the education of scholars and practitioners who work across a wide range of enterprises. Data science is but one emerging field that will benefit from information school engagement.

  19. Writing in/forms Science and Science Learning.

    Science.gov (United States)

    Hildebrand, Gaell M.

    This paper uses three nuances of "informs." Firstly, it argues that writing forms (or shapes) science and science learning through the textual practices that are available to interpret and allowable to produce. These writing genres shape science discourse and must be challenged because available texts construct science as a rational field that…

  20. NASA Earth Science Update with Information Science Technology

    Science.gov (United States)

    Halem, Milton

    2000-01-01

    This viewgraph presentation gives an overview of NASA earth science updates with information science technology. Details are given on NASA/Earth Science Enterprise (ESE)/Goddard Space Flight Center strategic plans, ESE missions and flight programs, roles of information science, ESE goals related to the Minority University-Space Interdisciplinary Network, and future plans.

  1. Issues in Science Education: Changing Purposes of Science Education.

    Science.gov (United States)

    Williamson, Stan

    This paper addresses the role of science education in today's society and the objectives of instruction in science. Observing that science cannot solve all of the problems of the world, and that science education has had little effect on the willingness of the general public to accept superstitions, the author argues that instructional approaches…

  2. The Next Generation Science Standards: A Focus on Physical Science

    Science.gov (United States)

    Krajcik, Joe

    2013-01-01

    This article describes ways to adapt U.S. science curriculum to the U.S. National Research Council (NRC) "Framework for K-12 Science Education" and "Next Generation of Science Standards" (NGSS), noting their focus on teaching the physical sciences. The overall goal of the Framework and NGSS is to help all learners develop the…

  3. Preservice Science Teachers' Views on Science-Technology-Society

    Science.gov (United States)

    Dikmentepe, Emel; Yakar, Zeha

    2016-01-01

    The aim of this study is to investigate the views of pre-service science teachers on Science-Technology-Society (STS). In the research, a descriptive research method was used and data were collected using the Views on Science-Technology-Society (VOSTS) Questionnaire. In general, the results of this study revealed that pre-service science teachers…

  4. Causal reasoning and models of cognitive tasks for naval nuclear power plant operators; Raisonnement causal et modelisation de l`activite cognitive d`operateurs de chaufferie nucleaire navale

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Ferrer, P.

    1995-06-01

    In complex industrial process control, causal reasoning appears as a major component in operators` cognitive tasks. It is tightly linked to diagnosis, prediction of normal and failure states, and explanation. This work provides a detailed review of literature in causal reasoning. A synthesis is proposed as a model of causal reasoning in process control. This model integrates distinct approaches in Cognitive Science: especially qualitative physics, Bayesian networks, knowledge-based systems, and cognitive psychology. Our model defines a framework for the analysis of causal human errors in simulated naval nuclear power plant fault management. Through the methodological framework of critical incident analysis we define a classification of errors and difficulties linked to causal reasoning. This classification is based on shallow characteristics of causal reasoning. As an origin of these errors, more elementary component activities in causal reasoning are identified. The applications cover the field of functional specification for man-machine interfaces, operators support systems design as well as nuclear safety. In addition of this study, we integrate the model of causal reasoning in a model of cognitive task in process control. (authors). 106 refs., 49 figs., 8 tabs.

  5. The science of unitary human beings and interpretive human science.

    Science.gov (United States)

    Reeder, F

    1993-01-01

    Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated.

  6. Does science education need the history of science?

    Science.gov (United States)

    Gooday, Graeme; Lynch, John M; Wilson, Kenneth G; Barsky, Constance K

    2008-06-01

    This essay argues that science education can gain from close engagement with the history of science both in the training of prospective vocational scientists and in educating the broader public about the nature of science. First it shows how historicizing science in the classroom can improve the pedagogical experience of science students and might even help them turn into more effective professional practitioners of science. Then it examines how historians of science can support the scientific education of the general public at a time when debates over "intelligent design" are raising major questions over the kind of science that ought to be available to children in their school curricula. It concludes by considering further work that might be undertaken to show how history of science could be of more general educational interest and utility, well beyond the closed academic domains in which historians of science typically operate.

  7. Culture and Cognitive Science

    Directory of Open Access Journals (Sweden)

    Michael Cole

    2003-03-01

    Full Text Available The purpose of this paper is to review the way in which cultural contributions to human nature have been treated within the field of  cognitive science. I was initially motivated to write about this topic when invited to give a talk to a Cognitive Science department at a sister university in California a few years ago. My goal, on that occasion, was to convince my audience, none of whom were predisposed to considering culture an integral part of cognitive science, that they would indeed benefit from recognizing some affinities between the ideas of some of the founders of cognitive science and ideas about culture emanating from the Soviet (now Russian cultural-historical school. My task in presenting this argument to the readers of  Outlines is most likely the mirror image of that earlier effort. On the one hand, the ideas of the cultural-historical school are well known to this readership and you do not need to be lectured on the topic by an American whose knowledge of the topic is no greater than your own. At best, the ways in which I have appropriated those ideas and put them to work might provide an opportunity to reflect on the strange fate of ideas when they move between national traditions of thought. On the other hand, owing to a double twist of fate (after all, what was an American doing in Moscow in 1962 doing post-doctoral work in psychology I was also present during the discussions leading to the founding of Cognitive Science in the early 1970’s and subsequently became a member of the Cognitive Science Program at UCSD in the early 1980’s, arguably one of the pioneering efforts to institutionalize this new discipline.My hope is this unusual confluence of experiences, and the ideas that they have generated, will be of some use to those who see value in a dialogue between these different intellectual projects. With this goal in mind, I will begin by providing my own brief history of key ideas associated with the origins of

  8. Public Understanding of Science: Science PR and Popular Culture

    OpenAIRE

    Mircea SAVA

    2011-01-01

    The present social context has imposed on science an active communication behavior with the wide audience. The process of science communication has a strong stake of Public Relations as its foundation. It can be stated that the science communication activities have become instruments of a science promotion platform, and the paradigm of Public Relations and Popular Culture served as its model for development. Creating and maintaining a positive attitude of various audiences towards science and...

  9. Extreme Science (LBNL Science at the Theater)

    Energy Technology Data Exchange (ETDEWEB)

    Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew; Torok, Tamas

    2012-02-27

    On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could help transform sunlight into fuel.

  10. Science for Life and Living.

    Science.gov (United States)

    Bybee, Rodger W.; Landes, Nancy M.

    1990-01-01

    Described is an elementary school science program developed by the Biological Sciences Curriculum Study entitled "Science for Life and Living: Integrating Science, Technology and Health." Discussed are the rationale, unifying themes, organization, teaching model, implementation, development, production, and support for this program. (CW)

  11. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  12. Gender Equity in Science Education

    Science.gov (United States)

    Hall, Johanna R.

    2011-01-01

    The dearth of females in high-level science courses and professions is a well-documented phenomenon in modern society. Inequality in science instruction is a crucial component to the under representation of females in science. This paper provides a review of current literature published concerning gender inequality in K-12 science instruction.…

  13. Work flows in life science

    NARCIS (Netherlands)

    Wassink, Ingo

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  14. Work flows in life science

    NARCIS (Netherlands)

    Wassink, I.

    2010-01-01

    The introduction of computer science technology in the life science domain has resulted in a new life science discipline called bioinformatics. Bioinformaticians are biologists who know how to apply computer science technology to perform computer based experiments, also known as in-silico or dry lab

  15. A Kinder-Science Fair

    Science.gov (United States)

    Torres, Angelica; Vitti, Debbye

    2007-01-01

    A science fair might be the last thing you think of when planning a kindergarten science curriculum, but the authors found it to be the perfect avenue for teaching their students science-process skills. Here they share their steps in teaching science-process skills and assembling student projects in a kindergarten classroom throughout the year.…

  16. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  17. Interacting Science through Web Quests

    Science.gov (United States)

    Unal, Ahmet; Karakus, Melek Altiparmak

    2016-01-01

    The purpose of this paper is to examine the effects of WebQuests on elementary students' science achievement, attitude towards science and attitude towards web supported education in teaching 7th grade subjects (Ecosystems, Solar System). With regard to this research, "Science Achievement Test," "Attitude towards Science Scale"…

  18. Defending Science Denial in Cyberspace

    Science.gov (United States)

    Rosenau, J.

    2013-12-01

    Blogs, Facebook, Twitter, and other social media have proven themselves powerful vectors for science denial. Left unchecked, these attacks on foundational sciences like evolution and climate change undermine public confidence in science and spawn attacks on science-based policy and science education. Scientists can blunt such attacks by being vigorous advocates for their own research and their discipline's core findings, by seeking wide and unexpected audiences for discussions of their science, and by understanding and addressing the social, political, and cultural roots of science denial.

  19. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  20. Humanizing science education

    Science.gov (United States)

    Donnelly, James F.

    2004-09-01

    This paper argues that the diverse curriculum reform agendas associated with science education are strongly and critically associated with the educational characteristics of the humanities. The article begins with a survey of interpretations of the distinctive contribution which the humanities make to educational purposes. From this survey four general characteristics of the humanities are identified: an appeal to an autonomous self with the right and capacity to make independent judgements and interpretations; indeterminacy in the subject matter of these judgements and interpretations; a focus on meaning, in the context of human responses, actions, and relationships, and especially on the ethical, aesthetic, and purposive; and finally, the possibility of commonality in standards of judgement and interpretation, under conditions of indeterminacy. Inquiry and science technology and society (STS) orientated curriculum development agendas within science education are explored in the light of this analysis. It is argued that the four characteristics identified are central to the educational purposes of these and other less prominent modes of curriculum development in science, though not unproblematically so. In the light of this discussion the prognosis and challenges for science curriculum development are explored.

  1. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-08-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of each lesson were analysed to identify individual student's emotions. Results from two representative students are presented as case studies. Using a theoretical perspective drawn from theories of emotions founded in sociology, two assertions emerged. First, during the demonstration activity, students experienced the emotions of wonder and surprise; second, during a laboratory activity, students experienced the intense positive emotions of happiness/joy. Characteristics of these activities that contributed to students' positive experiences are highlighted. The study found that choosing activities that evoked strong positive emotional experiences, focused students' attention on the phenomenon they were learning, and the activities were recalled positively. Furthermore, such positive experiences may contribute to students' interest and engagement in science and longer term memorability. Finally, implications for science teachers and pre-service teacher education are suggested.

  2. Xplora: making science fun!

    CERN Multimedia

    2006-01-01

    Remember those humdrum lectures in science class? Static textbook lessons have not done much to ignite excitement and interest in young children. Now the tables are turned and it is the teachers who are learning, but this time it is all about how to make science classes fun and spark the imaginations of the next generation. Xplora conference participants observing a working cloud experiment. The Xplora Conference, held at CERN from 15 to 18 June, was attended by more than 80 teachers and educators from across Europe ready to share and acquire some creative ways of teaching science. Xplora is an online reference project providing inventive techniques for teaching science in the classroom and beyond. Xplora is part of the Permanent European Resource Centre for Informal Learning (PENCIL) sponsored by the European Commission. PENCIL is comprised of 13 science centres, museums and aquariums, is partners with the University of Naples, Italy and King's College London, UK and is involved with 14 pilot projects thro...

  3. Science In Trauma

    CERN Document Server

    Chauhan, B C

    2002-01-01

    Quantum theory has been proved as an outstanding {\\it mystery} in modern science. The predictions of science have turned out to be {\\it probabilistic}. The principle of determinism has {\\it failed}. For systems like weather, earthquakes, rolling dices etc... and of course human behaviour it has proved {\\it impossible}, for science, to describe a state of the system accurately for a long time into the future. Moreover, modern cosmology has to rely on {\\it philosophical} assumptions. In the present work, it is argued --by taking into account of the views of learned scientists and philosophers-- that modern science can never explain everything and it is totally impossible to discover the {\\it ``Theory Of Everything''}. All these facts and results put a big question-mark (?) on the grass-root level working of science. All scientific researches are based upon ordinary sense perception, which keeps the outer physical universe as a separate entity, that is something quite independent of the observer. Basically, it i...

  4. Facets of systems science

    CERN Document Server

    Klir, George J

    1991-01-01

    This book has a rather strange history. It began in Spring 1989, thirteen years after our Systems Science Department at SUNY -Binghamton was established, when I was asked by a group of students in our doctoral program to have a meeting with them. The spokesman of the group, Cliff Joslyn, opened our meeting by stating its purpose. I can closely paraphrase what he said: "We called this meeting to discuss with you, as Chairman of the Department, a fundamental problem with our systems science curriculum. In general, we consider it a good curriculum: we learn a lot of concepts, principles, and methodological tools, mathematical, computational, heuristic, which are fundamental to understanding and dealing with systems. And, yet, we learn virtually nothing about systems science itself. What is systems science? What are its historical roots? What are its aims? Where does it stand and where is it likely to go? These are pressing questions to us. After all, aren't we supposed to carry the systems science flag after we ...

  5. Using materials science.

    Science.gov (United States)

    Baker, W O

    1981-01-23

    The science of the solid state has joined nuclear science and molecular biology as a field of major importance in the latter half of the 20th century. It took particular shape during the genesis of solid-state electronics and the post-transistor era of integrated circuits for telecommunications, computers, and digital signal machines. However, these developments were soon joined by techniques from the ancient fields of metallurgy and ceramics and contributions from the more current fields of synthetic polymers, rubbers, plastics, and modified bioorganic substances. This vast realm was characterized by a National Academy of Sciences study of the 1970's as "materials science and engineering." The public, as well as the scientific and engineering community, are currently concerned about the uses of research and development and the applications of knowledge for national progress. Consideration is given here to how well we are using the science of materials for industrial strength and such governmental objectives as national security and energy economy.

  6. Rural Science Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Intress, C. [New Mexico Museum of Natural History and Science, Albuquerque, NM (United States)

    1994-12-31

    The Rural Science Education Project is an outreach program of the New Mexico Museum of Natural History and Science with the goal of helping rural elementary schools improve science teaching and learning by using local natural environmental resources. This program is based on the assumption that rural schools, so often described as disadvantaged in terms of curricular resources, actually provide a science teaching advantage because of their locale. The natural environment of mountains, forests, ponds, desert, or fields offers a context for the study of scientific concepts and skills that appeals to many youngsters. To tap these resources, teachers need access to knowledge about the rural school locality`s natural history. Through a process of active participation in school-based workshops and field site studies, teachers observe and learn about the native flora, fauna, geology, and paleontology of their community. In addition, they are exposed to instructional strategies, activities, and provided with materials which foster experimential learning. This school-museum partnership, now in its fifth year, has aided more than 800 rural teachers` on-going professional development. These educators have, in turn, enhanced science education throughout New Mexico for more than 25,000 students.

  7. The science of rumors

    Directory of Open Access Journals (Sweden)

    Massimo Crescimbene

    2012-07-01

    Full Text Available This study takes a soft scientific cut to talks about rumors, hoaxes and urban legends. Social psychology, more elegantly, uses the latin word rumor (rumour in British English, which means sound, voice, or gossip. In social, economical, political, cultural and scientific communication, rumors indicate news that is presumed true, that circulates without being confirmed or made evident. The scientific history of rumors is briefly described starting from the period of ancient Rome, throughout the Second World War and the Internet era, up to today. We will try to answer some questions that can be useful to scientists today. What are rumors? How are they born? How do they spread? By which laws are they regulated? How do we need to fight them? A final question regards the collocation of rumors into modern science. Science today is divided into ‘hard’ and ‘soft’ science (the latter of which generally lacks a basic mathematical structure; these terms, respectively, indicate the natural sciences, which investigate Nature, and the social/human sciences, which investigate man in all his facets. Maybe rumors can be thought of as a bridge suspended between two banks: those of ‘scientific truth’ and ‘human truth’.

  8. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  9. Understanding and Engagement in Places of Science Experience: Science Museums, Science Centers, Zoos, and Aquariums

    Science.gov (United States)

    Schwan, Stephan; Grajal, Alejandro; Lewalter, Doris

    2014-01-01

    Science museums, science centers, zoos, and aquariums (MCZAs) constitute major settings of science learning with unique characteristics of informal science education. Emphasis will be given to the analysis of four specific characteristics of MCZAs that seem relevant for educational research and practice, namely, conditions of mixed motives and…

  10. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  11. Beyond Nature of Science: The Case for Reconceptualising "Science" for Science Education

    Science.gov (United States)

    Erduran, Sibel

    2014-01-01

    In this paper, I argue that contemporary accounts of nature of science (NoS) are limited in their depiction of "science" and that new perspectives are needed to broaden their characterisation and appeal for science education. In particular, I refer to the role of interdisciplinary characterisations of science in informing the theory and…

  12. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  13. Teaching Science with the Social Studies of Science for Equity

    Science.gov (United States)

    Lederman, Muriel

    Integrating the social studies of science into science education would make explicit the cultures of science, which have been revealed by historians, philosophers, sociologists, and feminist science scholars. These cultures include the institutions of science, the interaction of science and the society in which it is practiced, and the internal culture of science. This pedagogy may be a route to increasing equity in science, by giving women and members of other under-represented groups an appreciation of the factors causing their alienation from the enterprise and the tools to change science for social justice. In this article, I present the theoretical basis of this position, along with the implementation strategies and preliminary assessment for a sophomore level biology course based on this perspective.

  14. "Eye Science" in 2011

    Institute of Scientific and Technical Information of China (English)

    Jian Ge

    2011-01-01

    @@ 2011 is an opportune time for Yanke Xuebao (Eye Science) to launch its bilingual edition as a platform for cooperation between Chinese and international vision researchers.The yearly research output of Chinese investigators in all fields of science, but particularly biomedicine, has been growing recently by leaps and bounds.As an example, the American Journal of Ophthalmology (AJO), one of the most prestigious clinical journals in our field,received more submissions from East Asian authors (Japan, China and Korea alone)than they did from the United States in 2010.Chinese investigators ranked third on the list, climbing rapidly, only after the US and Japan.Top vision research centers in China, such as Zhongshan Ophthalmic Center, where Eye Science is published, now rank alongside Moorfields and Johns Hopkins as among the most prolific institutions in the world, measured by articles appearing annually in peer-reviewed SCI journals.

  15. The Ascent of Science

    Science.gov (United States)

    Silver, Brian L.

    2000-04-01

    From the revolutionary discoveries of Galileo and Newton to the mind-bending theories of Einstein and Heisenberg, from plate tectonics to particle physics, from the origin of life to universal entropy, and from biology to cosmology, here is a sweeping, readable, and dynamic account of the whole of Western science.In the approachable manner and method of Stephen Jay Gould and Carl Sagan, the late Brian L. Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls "the scientific campaign up to now", The Ascent of Science will be fresh, vivid, and fascinating reading.

  16. SOHO Mission Science Briefing

    Science.gov (United States)

    1995-01-01

    Footage shows the SOHO Mission Pre-Launch Science Briefing. The moderator of the conference is Fred Brown, NASA/GSFC Public Affairs, introduces the panel members. Included are Professor Roger Bonnet, Director ESA Science Program, Dr. Wesley Huntress, Jr., NASA Associate Administrator for Space Science and Dr. Vicente Domingo, ESA SOHO Project Scientist. Also present are several members from the SOHO Team: Dr. Richard Harrison, Art Poland, and Phillip Scherrer. The discussions include understanding the phenomena of the sun, eruption of gas clouds into the atmosphere, the polishing of the mirrors for the SOHO satellite, artificial intelligence in the telescopes, and the launch and operating costs. The panel members are also seen answering questions from various NASA Centers and Paris.

  17. Play or science?

    DEFF Research Database (Denmark)

    Lieberoth, Andreas; Pedersen, Mads Kock; Sherson, Jacob

    2015-01-01

    Crowdscience games may hold unique potentials as learning opportunities compared to games made for fun or education. They are part of an actual science problem solving process: By playing, players help scientists, and thereby interact with real continuous research processes. This mixes the two...... worlds of play and science in new ways. During usability testing we discovered that users of the crowdscience game Quantum Dreams tended to answer questions in game terms, even when directed explicitly to give science explanations. We then examined these competing frames of understanding though a mixed...... correlational and grounded theory analysis. This essay presents the core ideas of crowdscience games as learning opportunities, and reports how a group of players used “game”, “science” and “conceptual” frames to interpret their experience. Our results suggest that oscillating between the frames instead...

  18. Transnational science guanxi

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2016-01-01

    Genetics is observed as a particularly active field of Sino-Danish science collaboration, brain circulation and funding. Explaining the level of activity of this scientific field is therefore valuable for understanding the conditions allowing such activity. This paper identifies Danish scientific...... excellence as a necessary, but insufficient, condition. This condition becomes sufficient together with another necessary, but insufficient, condition, which is Sino-Danish transnational science guanxi, or networks and acquaintanceship. This guanxi is based on the previous graduate studies of Chinese...... in Denmark, or brain circulation. The paper finds that brain circulation in the form of graduate students can have revolutionary long-term effects on Sino-Danish science collaboration and investments, exemplified in the location of Beijing Genomics Institute Europe in Copenhagen....

  19. Science and Diplomacy

    Science.gov (United States)

    Colglazier, E. William

    2013-04-01

    Because of the accelerating pace of technological change--due in part to the information and computer revolution and the global spread of expertise and knowledge--and its unquestioned impact on economic development, science and technology have become even more important assets for diplomacy. Nearly every country has been convinced that it must engage on a world-class level in science and technology and become more innovative in this highly competitive and interconnected world. As a consequence, science diplomacy becomes an important mechanism to help build more knowledge- and innovation-based societies and to help spread scientific values, including meritocracy and transparency, that support democracy. Making progress will require energetic international engagement by scientists and engineers everywhere, which can help to ensure a more peaceful, secure, prosperous world.

  20. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...