Lamb wave propagation modeling for structure health monitoring
Institute of Scientific and Technical Information of China (English)
Xiaoyue ZHANG; Shenfang YUAN; Tong HAO
2009-01-01
This study aims to model the propagation of Lamb waves used in structure health monitoring. A number of different numerical computational techniques have been developed for wave propagation studies. The local interaction simulation approach, used for modeling sharp interfaces and discontinuities in complex media (LISA/SIM theory), has been effectively applied to numerical simulations of elastic wave interaction. This modeling is based on the local interaction simulation approach theory and is finally accomplished through the finite elements software Ansys11. In this paper, the Lamb waves propagating characteristics and the LISA/SIM theory are introduced. The finite difference equations describing wave propagation used in the LISA/SIM theory are obtained. Then, an anisotropic metallic plate model is modeled and a simulating Lamb waves signal is loaded on. Finally, the Lamb waves propagation modeling is implemented.
Nijhof, Marten Jozef Johannes
2010-01-01
In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a
Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis
Borkowski, Luke; Chattopadhyay, Aditi
2013-01-01
Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...
Millimeter Wave Radio Frequency Propagation Model Development
2014-08-28
assume that no excess attenuation or obstacles are present, and the signal propagates along a clear signal path directly between the transmitter and...performed by simple trigonometry . The angle is determined by: θ sin | |, (103) where CL is the channel length, hTX is the height of the
Ferrarese, Giorgio
2011-01-01
Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics
TWO-DIMENSIONAL MODELLING OF ACCIDENTAL FLOOD WAVES PROPAGATION
Directory of Open Access Journals (Sweden)
Lorand Catalin STOENESCU
2011-05-01
Full Text Available The study presented in this article describes a modern modeling methodology of the propagation of accidental flood waves in case a dam break; this methodology is applied in Romania for the first time for the pilot project „Breaking scenarios of Poiana Uzului dam”. The calculation programs used help us obtain a bidimensional calculation (2D of the propagation of flood waves, taking into consideration the diminishing of the flood wave on a normal direction to the main direction; this diminishing of the flood wave is important in the case of sinuous courses of water or with urban settlements very close to the minor river bed. In the case of Poiana Uzului dam, 2 scenarios were simulated with the help of Ph.D. Eng. Dan Stematiu, plausible scenarios but with very little chances of actually producing. The results were presented as animations with flooded surfaces at certain time steps successively.
Modelling Acoustic Wave Propagation in Axisymmetric Varying-Radius Waveguides
DEFF Research Database (Denmark)
Bæk, David; Willatzen, Morten
2008-01-01
A computationally fast and accurate model (a set of coupled ordinary differential equations) for fluid sound-wave propagation in infinite axisymmetric waveguides of varying radius is proposed. The model accounts for fluid heat conduction and fluid irrotational viscosity. The model problem is solved...... by expanding solutions in terms of cross-sectional eigenfunctions following Stevenson’s method. A transfer matrix can be easily constructed from simple model responses of a given waveguide and later used in computing the response to any complex wave input. Energy losses due to heat conduction and viscous...
Modeling anomalous surface - wave propagation across the Southern Caspian basin
Energy Technology Data Exchange (ETDEWEB)
Priestly, K.F.; Patton, H.J.; Schultz, C.A.
1998-01-09
The crust of the south Caspian basin consists of 15-25 km of low velocity, highly attenuating sediment overlying high velocity crystalline crust. The Moho depth beneath the basin is about 30 km as compared to about 50 km in the surrounding region. Preliminary modeling of the phase velocity curves shows that this thick sediments of the south Caspian basin are also under-lain by a 30-35 km thick crystalline crust and not by typical oceanic crust. This analysis also suggest that if the effect of the over-pressuring of the sediments is to reduce Poissons` ratio, the over-pressured sediments observed to approximately 5 km do not persist to great depths. It has been shown since 1960`s that the south Caspian basin blocks the regional phase Lg. Intermediate frequency (0.02-0.04 Hz) fundamental mode Raleigh waves propagating across the basin are also severely attenuated, but the low frequency surface waves are largely unaffected. This attenuation is observed along the both east-to-west and west-to-east great circle paths across the basin, and therefore it cannot be related to a seismograph site effect. We have modeled the response of surface waves in an idealized rendition of the south Caspian basin model using a hybrid normal mode / 2-D finite difference approach. To gain insight into the features of the basin which cause the anomalous surface wave propagation, we have varied parameters of the basin model and computed synthetic record sections to compare with the observed seismograms. We varied the amount of mantel up-warp, the shape of the boundaries, the thickness and shear wave Q of the sediments and mantle, and the depth of the water layer. Of these parameters, the intermediate frequency surface waves are most severely affected by the sediments thickness and shear wave attenuation. fundamental mode Raleigh wave phase velocities measure for paths crossing the basin are extremely low.
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Sobczyk, K
1985-01-01
This is a concise, unified exposition of the existing methods of analysis of linear stochastic waves with particular reference to the most recent results. Both scalar and vector waves are considered. Principal attention is concentrated on wave propagation in stochastic media and wave scattering at stochastic surfaces. However, discussion extends also to various mathematical aspects of stochastic wave equations and problems of modelling stochastic media.
Pressure wave model for action potential propagation in excitable cells
Rvachev, M M
2003-01-01
Speed of propagation of small-amplitude pressure waves through the cytoplasmic interior of myelinated and unmyelinated axons of different diameters is theoretically estimated and is found to generally agree with the action potential (AP) conduction velocities. This remarkable coincidence allows to surmise a model in which AP spread along axon is propelled not by straggling ionic currents as in the widely accepted local circuit theory, but by mechanoactivation of the membrane ion channels by a traveling pressure pulse. Hydraulic pulses propagating in the viscous axoplasm are calculated to decay over ~1 mm distances, and it is further hypothesized that it is the role of influxing during the AP calcium ions to activate membrane skeletal protein network attached to the membrane cytoplasmic side for a brief radial contraction amplifying the pressure pulse and preventing its decay. The model correctly predicts that the AP conduction velocity should vary as the one-half power of axon diameter for large unmyelinated ...
Matda, Y.; Crawford, F. W.
1974-01-01
An economical low noise plasma simulation model is applied to a series of problems associated with electrostatic wave propagation in a one-dimensional, collisionless, Maxwellian plasma, in the absence of magnetic field. The model is described and tested, first in the absence of an applied signal, and then with a small amplitude perturbation, to establish the low noise features and to verify the theoretical linear dispersion relation at wave energy levels as low as 0.000,001 of the plasma thermal energy. The method is then used to study propagation of an essentially monochromatic plane wave. Results on amplitude oscillation and nonlinear frequency shift are compared with available theories. The additional phenomena of sideband instability and satellite growth, stimulated by large amplitude wave propagation and the resulting particle trapping, are described.
Wave Propagation in Fluids Models and Numerical Techniques
Guinot, Vincent
2007-01-01
This book presents the physical principles of wave propagation in fluid mechanics and hydraulics. The mathematical techniques that allow the behavior of the waves to be analyzed are presented, along with existing numerical methods for the simulation of wave propagation. Particular attention is paid to discontinuous flows, such as steep fronts and shock waves, and their mathematical treatment. A number of practical examples are taken from various areas fluid mechanics and hydraulics, such as contaminant transport, the motion of immiscible hydrocarbons in aquifers, river flow, pipe transients an
A nonlinear RDF model for waves propagating in shallow water
Institute of Scientific and Technical Information of China (English)
王厚杰; 杨作升; 李瑞杰; 张军
2001-01-01
In this paper, a composite explicit nonlinear dispersion relation is presented with reference to Stokes 2nd order dispersion relation and the empirical relation of Hedges. The explicit dispersion relation has such advantages that it can smoothly match the Stokes relation in deep and intermediate water and Hedgs’s relation in shallow water. As an explicit formula, it separates the nonlinear term from the linear dispersion relation. Therefore it is convenient to obtain the numerical solution of nonlinear dispersion relation. The present formula is combined with the modified mild-slope equation including nonlinear effect to make a Refraction-Diffraction (RDF) model for wave propagating in shallow water. This nonlinear model is verified over a complicated topography with two submerged elliptical shoals resting on a slope beach. The computation results compared with those obtained from linear model show that at present the nonlinear RDF model can predict the nonlinear characteristics and the combined refracti
Frequency Domain Modelling of Electromagnetic Wave Propagation in Layered Media
Schmidt, Felix; Lünenschloss, Peter; Mai, Juliane; Wagner, Norman; Töpfer, Hannes; Bumberger, Jan
2016-04-01
The amount of water in porous media such as soils and rocks is a key parameter when water resources are under investigation. Especially the quantitative spatial distribution and temporal evolution of water contents in soil formations are needed. In high frequency electromagnetic applications soil water content is quantitatively derived from the propagation behavior of electromagnetic waves along waveguides embedded in soil formations. The spatial distribution of the dielectric material properties along the waveguide can be estimated by numerical solving of the inverse problem based on the full wave forward model in time or frequency domain. However, current approaches mostly neglect or approximate the frequency dependence of the electromagnetic material properties of transfer function of the waveguide. As a first prove of concept a full two port broadband frequency domain forward model for propagation of transverse electromagnetic (TEM) waves in coaxial waveguide has been implemented. It is based on the propagation matrix approach for layered transmission line sections. Depending on the complexity of the material different models for the frequency dependent complex permittivity were applied. For the validation of the model a broadband frequency domain measurement with network analyzer technique was used. The measurement is based on a 20 cm long 50 Ohm 20/46 coaxial transmission line cell considering inhomogeneous material distributions. This approach allows (i) an increase of the waveguide calibration accuracy in comparison to conventional TDR based technique and (ii) the consideration of the broadband permittivity spectrum of the porous material. In order to systematic analyze the model, theoretical results were compared with measurements as well as 3D broadband finite element modeling of homogeneous and layered media in the coaxial transmission line cell. Defined standards (Teflon, dry glass beads, de-ionized water) were placed inside the line as the dielectric
Two models of anisotropic propagation of a cardiac excitation wave
Erofeev, I. S.; Agladze, K. I.
2014-11-01
Propagation of the action potential in the real heart is direction-dependent (anisotropic). We propose two general physical models explaining this anisotropy on the cellular level. The first, "delay" model takes into account the frequency of the cell-cell transitions in different directions of propagation, assuming each transition requires some small time interval. The second model relies on the assumption that the action potential transmits to the next cell only from the area at the pole of the previous cell. We estimated parameters of both models by doing optical mapping and fluorescent staining of cardiac cell samples grown on polymer fiber substrate. Both models gave reasonable estimations, but predicted different behaviors of the anisotropy ratio (ratio of the highest and lowest wave velocities) after addition of the suppressor of sodium channels such as lidocaine. The results of the experiment on lidocaine effect on anisotropy ratio were in favor of the first, "delay" model. Estimated average cell-cell transition delay was 240 ± 80 μs, which is close to the characteristic values of synaptic delay.
Mathematical modelling of generation and forward propagation of dispersive waves
Lie She Liam, L.S.L.
2013-01-01
This dissertation concerns the mathematical theory of forward propagation and generation of dispersive waves. We derive the AB2-equation which describes forward traveling waves in two horizontal dimension. It is the generalization of the Kadomtsev-Petviashvilli (KP) equation. The derivation is based
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; Slot, van der P.J.M.; Volokhine, I.V.; Verschuur, J.W.J.; Boller, K.J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for exam
Energy Technology Data Exchange (ETDEWEB)
Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
A propagating heat wave model of skin electroporation.
Pliquett, Uwe; Gusbeth, Ch; Nuccitelli, Richard
2008-03-21
The main barrier to transdermal drug delivery in human skin is the stratum corneum. Pulsed electric fields (PEFs) of sufficient amplitude can create new aqueous pathways across this barrier and enhance drug delivery through the skin. Here, we describe a model of pore formation between adjacent corneocytes that predicts the following sequence of events: (1) the PEF rapidly charges the stratum corneum near the electrode until the transepidermal potential difference is large enough to drive water into a small region of the stratum corneum, creating new aqueous pathways. (2) PEFs then drive a high current density through this newly created electropore to generate Joule heating that warms the pore perimeter. (3) This temperature rise at the perimeter increases the probability of further electroporation there as the local sphingolipids reach their phase transition temperature. (4) This heat-generated wave of further electroporation propagates outward until the surface area of the pore becomes so large that the reduced current density no longer generates sufficient heat to reach the phase transition temperature of the sphingolipids. (5) Cooling and partial recovery occurs after the field pulse. This process yields large, high permeability regions in the stratum corneum at which molecules can more readily cross this skin barrier. We present a model for this process that predicts that the initial radius of the first aqueous pathway is approximately 5nm for a transdermal voltage of 60V at room temperature.
Wave propagation in fluids models and numerical techniques
Guinot, Vincent
2012-01-01
This second edition with four additional chapters presents the physical principles and solution techniques for transient propagation in fluid mechanics and hydraulics. The application domains vary including contaminant transport with or without sorption, the motion of immiscible hydrocarbons in aquifers, pipe transients, open channel and shallow water flow, and compressible gas dynamics. The mathematical formulation is covered from the angle of conservation laws, with an emphasis on multidimensional problems and discontinuous flows, such as steep fronts and shock waves. Finite
Theoretical Model of Acoustic Wave Propagation in Shallow Water
Directory of Open Access Journals (Sweden)
Kozaczka Eugeniusz
2017-06-01
Full Text Available The work is devoted to the propagation of low frequency waves in a shallow sea. As a source of acoustic waves, underwater disturbances generated by ships were adopted. A specific feature of the propagation of acoustic waves in shallow water is the proximity of boundaries of the limiting media characterised by different impedance properties, which affects the acoustic field coming from a source situated in the water layer “deformed” by different phenomena. The acoustic field distribution in the real shallow sea is affected not only by multiple reflections, but also by stochastic changes in the free surface shape, and statistical changes in the seabed shape and impedance. The paper discusses fundamental problems of modal sound propagation in the water layer over different types of bottom sediments. The basic task in this case was to determine the acoustic pressure level as a function of distance and depth. The results of the conducted investigation can be useful in indirect determination of the type of bottom.
Modeling the propagation of electromagnetic waves over the surface of the human body
Vendik, I. B.; Vendik, O. G.; Kirillov, V. V.; Pleskachev, V. V.; Tural'chuk, P. A.
2016-12-01
The results of modeling and an experimental study of electromagnetic (EM) waves in microwave range propagating along the surface of the human body have been presented. The parameters of wave propagation, such as the attenuation and phase velocity, have also been investigated. The calculation of the propagation of EM waves by the numerical method FDTD (finite difference time domain), as well as the use of the analytical model of the propagation of the EM wave along flat and curved surfaces has been fulfilled. An experimental study on a human body has been conducted. It has been shown that creeping waves are slow and exhibit a noticeable dispersion, while the surface waves are dispersionless and propagate at the speed of light in free space. A comparison of the results of numerical simulation, analytical calculation, and experimental investigations at a frequency of 2.55 GHz has been carried out.
Nurhandoko, Bagus Endar B.; Wardaya, Pongga Dikdya; Adler, John; Siahaan, Kisko R.
2012-06-01
Seismic wave parameter plays very important role to characterize reservoir properties whereas pore parameter is one of the most important parameter of reservoir. Therefore, wave propagation phenomena in pore media is important to be studied. By referring this study, in-direct pore measurement method based on seismic wave propagation can be developed. Porosity play important role in reservoir, because the porosity can be as compartment of fluid. Many type of porosity like primary as well as secondary porosity. Carbonate rock consist many type of porosity, i.e.: inter granular porosity, moldic porosity and also fracture porosity. The complexity of pore type in carbonate rocks make the wave propagation in these rocks is more complex than sand reservoir. We have studied numerically wave propagation in carbonate rock by finite difference modeling in time-space domain. The medium of wave propagation was modeled by base on the result of pattern recognition using artificial neural network. The image of thin slice of carbonate rock is then translated into the velocity matrix. Each mineral contents including pore of thin slice image are translated to velocity since mineral has unique velocity. After matrix velocity model has been developed, the seismic wave is propagated numerically in this model. The phenomena diffraction is clearly shown while wave propagates in this complex carbonate medium. The seismic wave is modeled in various frequencies. The result shows dispersive phenomena where high frequency wave tends to propagate in matrix instead pores. In the other hand, the low frequency waves tend to propagate through pore space even though the velocity of pore is very low. Therefore, this dispersive phenomena of seismic wave propagation can be the future indirect measurement technology for predicting the existence or intensity of pore space in reservoir rock. It will be very useful for the future reservoir characterization.
TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES
Directory of Open Access Journals (Sweden)
Andrei G. Marchuk
2009-01-01
Full Text Available This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat sloping sides, using the wave rays method. During propagation along such waveguide the single tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which have various model profiles, is investigated numerically with the help of finite difference method. Results of numerical experiments show that the highest waves are detected above a ridge with flat sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are presented.
Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R
2013-11-15
Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.
Coupling model for waves propagating over a porous seabed
Directory of Open Access Journals (Sweden)
C.C. Liao
2015-03-01
Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
Computational Modeling of Wave Propagation in a Geophysical Domain
2008-10-01
form and finite element solution, the forcing function is described as ⎟ ⎠ ⎞ ⎜ ⎝ ⎛= t T htf π2cos)( for 22 TtT ≤≤− . For the finite element... htf π2cos 22 TtT ≤≤− , 2D Model R = 200 m NDOF = 23,000 R Short Duration Loading Surface Wave Problem – Vertical Velocity Analysis FEA Rayleigh P wave R
Directory of Open Access Journals (Sweden)
L. Sun
2007-10-01
Full Text Available In order to study the filter effect of the background winds on the propagation of gravity waves, a three-dimensional transfer function model is developed on the basis of the complex dispersion relation of internal gravity waves in a stratified dissipative atmosphere with background winds. Our model has successfully represented the main results of the ray tracing method, e.g. the trend of the gravity waves to travel in the anti-windward direction. Furthermore, some interesting characteristics are manifest as follows: (1 The method provides the distribution characteristic of whole wave fields which propagate in the way of the distorted concentric circles at the same altitude under the control of the winds. (2 Through analyzing the frequency and wave number response curve of the transfer function, we find that the gravity waves in a wave band of about 15–30 min periods and of about 200–400 km horizontal wave lengths are most likely to propagate to the 300-km ionospheric height. Furthermore, there is an obvious frequency deviation for gravity waves propagating with winds in the frequency domain. The maximum power of the transfer function with background winds is smaller than that without background winds. (3 The atmospheric winds may act as a directional filter that will permit gravity wave packets propagating against the winds to reach the ionospheric height with minimum energy loss.
TFIT Modeling of Wave Propagation for Flow Excursion
Grubbs, Brachston; Chetty, Krishna; Bertodano, Martin
2016-01-01
In the nuclear power industry, the Two-Fluid Model (TFM) is mainly used in the simulation of Loss of Coolant Accident (LOCA). The Two-Fluid Model is a wave mechanics formulation that may also be used to analytically perform stability analysis, which requires numerous assumptions and simplifications. This project aimed to advance the TFIT-TFM simulations in the modeling of the flow excursion instability. By using the TFIT computational code, simulation results can be obtained without the need ...
3DEC modeling on effect of joints and interlayer on wave propagation
Institute of Scientific and Technical Information of China (English)
WANG Wei-hua; LI Xi-bing; ZUO Yu-jun; ZHOU Zi-long; ZHANG Yi-ping
2006-01-01
Firstly, studies on propagation of one-dimensional normally incident wave in rock mass containing no joint, a single joint and two parallel joints were conducted by Three Dimensional Distinct Element Codes(3DEC). By comparison of the modeling results with the theoretical solutions, it has been found that a good agreement between them has been achieved. It is verified that the 3DEC is capable of modeling wave propagation in rock masses. Secondly, propagation of normally incident P-wave across two parallel joints was studied. The modeling results show that transmission coefficient increases with the increasing ratio of joint spacing to wavelength at first, then decreases with the increasing ratio of joint spacing to wavelength, lastly keeps constant. Finally,effect of interlayer on wave propagation is investigated. It is shown that interlayer results in marked attenuation and leading phase,and that attenuation increases with the increasing frequency and the increasing thickness of interlayer.
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation...
An Improved Split-Step Wavelet Transform Method for Anomalous Radio Wave Propagation Modelling
Directory of Open Access Journals (Sweden)
A. Iqbal
2014-12-01
Full Text Available Anomalous tropospheric propagation caused by ducting phenomenon is a major problem in wireless communication. Thus, it is important to study the behavior of radio wave propagation in tropospheric ducts. The Parabolic Wave Equation (PWE method is considered most reliable to model anomalous radio wave propagation. In this work, an improved Split Step Wavelet transform Method (SSWM is presented to solve PWE for the modeling of tropospheric propagation over finite and infinite conductive surfaces. A large number of numerical experiments are carried out to validate the performance of the proposed algorithm. Developed algorithm is compared with previously published techniques; Wavelet Galerkin Method (WGM and Split-Step Fourier transform Method (SSFM. A very good agreement is found between SSWM and published techniques. It is also observed that the proposed algorithm is about 18 times faster than WGM and provide more details of propagation effects as compared to SSFM.
Hussein Rappel; Aghil Yousefi-Koma; Jalil Jamali; Ako Bahari
2014-01-01
This paper presents a numerical model of lamb wave propagation in a homogenous steel plate using elastodynamic finite integration technique (EFIT) as well as its validation with analytical results. Lamb wave method is a long range inspection technique which is considered to have unique future in the field of structural health monitoring. One of the main problems facing the lamb wave method is how to choose the most appropriate frequency to generate the waves for adequate transmission capab...
Time domain numerical modeling of wave propagation in 2D heterogeneous porous media
Chiavassa, Guillaume
2010-01-01
This paper deals with the numerical modeling of wave propagation in porous media described by Biot's theory. The viscous efforts between the fluid and the elastic skeleton are assumed to be a linear function of the relative velocity, which is valid in the low-frequency range. The coexistence of propagating fast compressional wave and shear wave, and of a diffusive slow compressional wave, makes numerical modeling tricky. To avoid restrictions on the time step, the Biot's system is splitted into two parts: the propagative part is discretized by a fourth-order ADER scheme, while the diffusive part is solved analytically. Near the material interfaces, a space-time mesh refinement is implemented to capture the small spatial scales related to the slow compressional wave. The jump conditions along the interfaces are discretized by an immersed interface method. Numerical experiments and comparisons with exact solutions confirm the accuracy of the numerical modeling. The efficiency of the approach is illustrated by s...
Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.
2014-12-01
Low-frequency events such as tsunamis generate acoustic and gravity waves which quickly propagate in the atmosphere. Since the atmospheric density decreases exponentially as the altitude increases and from the conservation of the kinetic energy, those waves see their amplitude raise (to the order of 105 at 200km of altitude), allowing their detection in the upper atmosphere. Various tools have been developed through years to model this propagation, such as normal modes modeling or to a greater extent time-reversal techniques, but none offer a low-frequency multi-dimensional atmospheric wave modelling.A modeling tool is worthy interest since there are many different phenomena, from quakes to atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool.Starting from the SPECFEM program that already propagate waves in solid, porous or fluid media using a spectral element method, this work offers a tool with the ability to model acoustic and gravity waves propagation in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source.Atmospheric attenuation is required in a proper modeling framework since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals. The bottom forcing feature has been implemented due to its ability to easily model the coupling with the Earth's or ocean's surface (that vibrates when a surface wave go through it) but also huge atmospheric events.
Martin, Roland; Brissaud, Quentin; Garcia, Raphael; Komatitsch, Dimitri
2015-04-01
During low-frequency events such as tsunamis, acoustic and gravity waves are generated and quickly propagate in the atmosphere. Due to the exponential decrease of the atmospheric density with the altitude, the conservation of the kinetic energy imposes that the amplitude of those waves increases (to the order of 105 at 200km of altitude), which allows their detection in the upper atmosphere. This propagation bas been modelled for years with different tools, such as normal modes modeling or to a greater extent time-reversal techniques, but a low-frequency multi-dimensional atmospheric wave modelling is still crucially needed. A modeling tool is worth of interest since there are many different sources, as earthquakes or atmospheric explosions, able to propagate acoustic and gravity waves. In order to provide a fine modeling of the precise observations of these waves by GOCE satellite data, we developed a new numerical modeling tool. By adding some developments to the SPECFEM package that already models wave propagation in solid, porous or fluid media using a spectral element method, we show here that acoustic and gravity waves propagation can now be modelled in a stratified attenuating atmosphere with a bottom forcing or an atmospheric source. The bottom forcing feature has been implemented to easily model the coupling with the Earth's or ocean's vibrating surfaces but also huge atmospheric events. Atmospheric attenuation is also introduced since it has a crucial impact on acoustic wave propagation. Indeed, it plays the role of a frequency filter that damps high-frequency signals.
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
Institute of Scientific and Technical Information of China (English)
BAI Yefei; SONG Jinbao
2006-01-01
A two-dimensional, depth-integrated model proposed by Lynett and Liu (2002) was checked carefully, and several misprints in the model were corrected after detailed examination on both the theory and the numerical program. Several comparisons were made on wave profile, system energy and maximum wave amplitude. It is noted that the modified model can simulate the propagation of the internal solitary waves over variable bathymetry more reasonably to a certain degree, and the wave profiles obtained based on the modified model can better fit the experiment data reported by Helfrich (1992)than those from original model.
Directory of Open Access Journals (Sweden)
Z. Hashemiyan
2016-01-01
Full Text Available Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort.
Packo, P.; Staszewski, W. J.; Uhl, T.
2016-01-01
Properties of soft biological tissues are increasingly used in medical diagnosis to detect various abnormalities, for example, in liver fibrosis or breast tumors. It is well known that mechanical stiffness of human organs can be obtained from organ responses to shear stress waves through Magnetic Resonance Elastography. The Local Interaction Simulation Approach is proposed for effective modelling of shear wave propagation in soft tissues. The results are validated using experimental data from Magnetic Resonance Elastography. These results show the potential of the method for shear wave propagation modelling in soft tissues. The major advantage of the proposed approach is a significant reduction of computational effort. PMID:26884808
Modeling seismic wave propagation in heterogeneous medium using overlap domain pseudospectral method
Institute of Scientific and Technical Information of China (English)
YAN Jiu-peng; WANG Yan-bin
2008-01-01
Pseudospectral method is an efficient and high accuracy numerical method for simulating seismic wave propagation in heterogeneous earth medium. Since its derivative operator is global, this method is commonly considered not suitable for parallel computation. In this paper, we introduce the parallel overlap domain decomposition scheme and give a parallel pseudospectral method implemented on distributed memory PC cluster system for modeling seismic wave propagation in heterogeneous medium. In this parallel method, the medium is decomposed into several subdomains and the wave equations are solved in each subdomain simultaneously. The solutions in each subdomain are connected through the transferring at the overlapped region. Using 2D models, we compared the parallel and traditional pseudospectral method, analyzed the accuracy of the parallel method. The results show that the parallel method can efficiently reduce computation time for the same accuracy as the traditional method. This method could be applied to large scale modeling of seismic wave propagation in 3D heterogeneous medium.
Modeling of Propagation and Transformation of Transient Nonlinear Waves on A Current
Institute of Scientific and Technical Information of China (English)
Wojciech Sulisz; Maciej Paprota
2013-01-01
A novel theoretical approach is applied to predict the propagation and transformation of transient nonlinear waves on a current. The problem was solved by applying an eigenfunction expansion method and the derived semi-analytical solution was employed to study the transformation of wave profile and the evolution of wave spectrum arising from the nonlinear interactions of wave components in a wave train which may lead to the formation of very large waves. The results show that the propagation of wave trains is significantly affected by a current. A relatively small current may substantially affect wave train components and the wave train shape. This is observed for both opposing and following current. The results demonstrate that the application of the nonlinear model has a substantial effect on the shape of a wave spectrum. A train of originally linear and very narrow-banded waves changes its one-peak spectrum to a multi-peak one in a fairly short distance from an initial position. The discrepancies between the wave trains predicted by applying the linear and nonlinear models increase with the increasing wavelength and become significant in shallow water even for waves with low steepness. Laboratory experiments were conducted in a wave flume to verify theoretical results. The free-surface elevations recorded by a system of wave gauges are compared with the results provided by the nonlinear model. Additional verification was achieved by applying a Fourier analysis and comparing wave amplitude spectra obtained from theoretical results with experimental data. A reasonable agreement between theoretical results and experimental data is observed for both amplitudes and phases. The model predicts fairly well multi-peak spectra, including wave spectra with significant nonlinear wave components.
Model for small arms fire muzzle blast wave propagation in air
Aguilar, Juan R.; Desai, Sachi V.
2011-11-01
Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
Barthélémy, S.; Ricci, S.; Pannekoucke, O.; Thual, O.; Malaterre, P.O.
2013-01-01
This study describes the emulation of an Ensemble Kalman Filter (EnKF) algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically wit...
Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort
Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.
1982-12-01
Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.
A primitive kinetic-fluid model for quasi-parallel propagating magnetohydrodynamic waves
Energy Technology Data Exchange (ETDEWEB)
Nariyuki, Y. [Faculty of Human Development, University of Toyama, 3190 Toyama City, Toyama 930-8555 (Japan); Saito, S. [Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Umeda, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)
2013-07-15
The extension and limitation of the existing one-dimensional kinetic-fluid model (Vlasov-MHD (magnetohydrodynamic) model), which has been used to analyze parametric instabilities of parallel propagating Alfvén waves, are discussed. The inconsistency among the given velocity distribution functions in the past studies is resolved through the systematic derivation of the multi-dimensional Vlasov-MHD model. The linear dispersion analysis of the present model indicates that the collisionless damping of the slow modes is adequately evaluated in low beta plasmas, although the deviation between the present model and the full-Vlasov theory increases with increasing plasma beta and increasing propagation angle. This is because the transit-time damping is not correctly evaluated in the present model. It is also shown that the ponderomotive density fluctuations associated with the envelope-modulated quasi-parallel propagating Alfvén waves derived from the present model is not consistent with those derived from the other models such as the Landau-fluid model, except for low beta plasmas. The result indicates the present model would be useful to understand the linear and nonlinear development of the Alfvénic turbulence in the inner heliosphere, whose condition is relatively low beta, while the existing model and the present model are insufficient to discuss the parametric instabilities of Alfvén waves in high beta plasmas and the obliquely propagating waves.
An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation
Directory of Open Access Journals (Sweden)
D. Soares
2014-01-01
Full Text Available Wave propagation problems can be solved using a variety of methods. However, in many cases, the joint use of different numerical procedures to model different parts of the problem may be advisable and strategies to perform the coupling between them must be developed. Many works have been published on this subject, addressing the case of electromagnetic, acoustic, or elastic waves and making use of different strategies to perform this coupling. Both direct and iterative approaches can be used, and they may exhibit specific advantages and disadvantages. This work focuses on the use of iterative coupling schemes for the analysis of wave propagation problems, presenting an overview of the application of iterative procedures to perform the coupling between different methods. Both frequency- and time-domain analyses are addressed, and problems involving acoustic, mechanical, and electromagnetic wave propagation problems are illustrated.
Stojadinović, Bojana; Nestorović, Zorica; Djurić, Biljana; Tenne, Tamar; Zikich, Dragoslav; Žikić, Dejan
2017-03-01
The velocity by which a disturbance moves through the medium is the wave velocity. Pulse wave velocity is among the key parameters in hemodynamics. Investigation of wave propagation through the fluid-filled elastic tube has a great importance for the proper biophysical understanding of the nature of blood flow through the cardiovascular system. Here, we present a laboratory model of the cardiovascular system. We have designed an experimental setup which can help medical and nursing students to properly learn and understand basic fluid hemodynamic principles, pulse wave and the phenomenon of wave propagation in blood vessels. Demonstration of wave propagation allowed a real time observation of the formation of compression and expansion waves by students, thus enabling them to better understand the difference between the two waves, and also to measure the pulse wave velocity for different fluid viscosities. The laboratory model of the cardiovascular system could be useful as an active learning methodology and a complementary tool for understanding basic principles of hemodynamics.
A HIGHER-ORDER NON-HYDROSTATIC MODEL FOR SIMULATING WAVE PROPAGATION OVER IRREGULAR BOTTOMS
Institute of Scientific and Technical Information of China (English)
AI Cong-fang; XING Yah; JIN Sheng
2011-01-01
A higher-order non-hydrostatic model is developed to simulate the wave propagation over irregular bottoms based on a vertical boundary-fitted coordinate system.In the model,an explicit projection method is adopted to solve the unsteady Euler equations.Advection terms are integrated explicitly with the MacCormack's scheme,with a second-order accuracy in both space and time.Two classical examples of surface wave propagation are used to demonstrate the capability of the model.It is found that the model with only two vertical layers could accurately simulate the motion of waves,including wave shoaling,nonlinearity,dispersion,refraction,and diffraction phenomena.
Wave propagation in ballistic gelatine.
Naarayan, Srinivasan S; Subhash, Ghatu
2017-01-23
Wave propagation characteristics in long cylindrical specimens of ballistic gelatine have been investigated using a high speed digital camera and hyper elastic constitutive models. The induced transient deformation is modelled with strain rate dependent Mooney-Rivlin parameters which are determined by modelling the stress-strain response of gelatine at a range of strain rates. The varying velocity of wave propagation through the gelatine cylinder is derived as a function of prestress or stretch in the gelatine specimen. A finite element analysis is conducted using the above constitutive model by suitably defining the impulse imparted by the polymer bar into the gelatine specimen. The model results are found to capture the experimentally observed wave propagation characteristics in gelatine effectively.
Modeling of spontaneous zero-lag synchronization and wave propagation in cat spinal cord
Kato, H.; Cuellar, C. A.; Delgado-Lezama, R.; Rudomin, P.; Jiménez, I.; Manjarrez, E.; Mirasso, C. R.
2013-01-01
In this study, we proposed a simple but physiologically plausible network model that can reproduce both the sinusoidal electrical wave propagation and the spontaneous zero-lag synchronization experimentally observed in the cat spinal cord. Our model enhances the hypothesis of the coexistence of two alternative assemblies in the cat spinal cord.
FORWARD MODELING OF PROPAGATING SLOW WAVES IN CORONAL LOOPS AND THEIR FREQUENCY-DEPENDENT DAMPING
Energy Technology Data Exchange (ETDEWEB)
Mandal, Sudip; Banerjee, Dipankar [Indian Institute of Astrophysics, Koramangala, Bangalore 560034 (India); Magyar, Norbert; Yuan, Ding; Doorsselaere, Tom Van, E-mail: sudip@iiap.res.in [Center for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, bus 2400, B-3001, Leuven (Belgium)
2016-03-20
Propagating slow waves in coronal loops exhibit a damping that depends upon the frequency of the waves. In this study we aim to investigate the relationship of the damping length (L{sub d}) with the frequency of the propagating wave. We present a 3D coronal loop model with uniform density and temperature and investigate the frequency-dependent damping mechanism for the four chosen wave periods. We include the thermal conduction to damp the waves as they propagate through the loop. The numerical model output has been forward modeled to generate synthetic images of SDO/AIA 171 and 193 Å channels. The use of forward modeling, which incorporates the atomic emission properties into the intensity images, allows us to directly compare our results with the real observations. The results show that the damping lengths vary linearly with the periods. We also measure the contributions of the emission properties on the damping lengths by using density values from the simulation. In addition to that we have also calculated the theoretical dependence of L{sub d} with wave periods and showed that it is consistent with the results we obtained from the numerical modeling and earlier observations.
Microscopic Models for Electromagnetic Wave Propagation in Highly Dispersive Media
1990-06-18
rotations, the effects of pressure and temperature and to show the classes of density fluctuations in I which give spatial dispersion, ie, the k- dependance ...complex plane the response e (co, Q) lives on some Riemann surface which is determined by the k- dependance . 2. Talks and Publications Three talks were...sources of 1- dependance (k- dependance in Fourier transform variables) have been identified. One is bubbles or cavitation which scatter the propagating
Two layer asymptotic model for the wave propagation in the presence of vorticity
Kazakova, M. Yu; Noble, P.
2016-06-01
In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.
Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models
Ma, Li-Hong; Ke, Liao-Liang; Wang, Yi-Ze; Wang, Yue-Sheng
2017-02-01
This paper makes the first attempt to investigate the dispersion behavior of waves in magneto-electro-elastic (MEE) nanobeams. The Euler nanobeam model and Timoshenko nanobeam model are developed in the formulation based on the nonlocal theory. By using the Hamilton's principle, we derive the governing equations which are then solved analytically to obtain the dispersion relations of MEE nanobeams. Results are presented to highlight the influences of the thermo-electro-magnetic loadings and nonlocal parameter on the wave propagation characteristics of MEE nanobeams. It is found that the thermo-electro-magnetic loadings can lead to the occurrence of the cut-off wave number below which the wave can't propagate in MEE nanobeams.
Gjorgjieva, Julijana; Berni, Jimena; Evers, Jan Felix; Eglen, Stephen J
2013-01-01
Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG). We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory (EI) neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via "stretch-sensitive" neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E), and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E). To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.
Directory of Open Access Journals (Sweden)
Julijana eGjorgjieva
2013-04-01
Full Text Available Drosophila larvae crawl by peristaltic waves of muscle contractions, which propagate along the animal body and involve the simultaneous contraction of the left and right side of each segment. Coordinated propagation of contraction does not require sensory input, suggesting that movement is generated by a central pattern generator (CPG. We characterized crawling behavior of newly hatched Drosophila larvae by quantifying timing and duration of segmental boundary contractions. We developed a CPG network model that recapitulates these patterns based on segmentally repeated units of excitatory and inhibitory neuronal populations coupled with immediate neighboring segments. A single network with symmetric coupling between neighboring segments succeeded in generating both forward and backward propagation of activity. The CPG network was robust to changes in amplitude and variability of connectivity strength. Introducing sensory feedback via `stretch-sensitive' neurons improved wave propagation properties such as speed of propagation and segmental contraction duration as observed experimentally. Sensory feedback also restored propagating activity patterns when an inappropriately tuned CPG network failed to generate waves. Finally, in a two-sided CPG model we demonstrated that two types of connectivity could synchronize the activity of two independent networks: connections from excitatory neurons on one side to excitatory contralateral neurons (E to E, and connections from inhibitory neurons on one side to excitatory contralateral neurons (I to E. To our knowledge, such I to E connectivity has not yet been found in any experimental system; however, it provides the most robust mechanism to synchronize activity between contralateral CPGs in our model. Our model provides a general framework for studying the conditions under which a single locally coupled network generates bilaterally synchronized and longitudinally propagating waves in either direction.
Modeling and measurement of angle-beam wave propagation in a scatterer-free plate
Dawson, Alexander J.; Michaels, Jennifer E.; Michaels, Thomas E.
2017-02-01
Wavefield imaging has been shown to be a powerful tool for improving the understanding and characterization of wave propagation and scattering in plates. The complete measurement of surface displacement over a 2-D grid provided by wavefield imaging has the potential to serve as a useful means of validating ultrasonic models. Here, a preliminary study of ultrasonic angle-beam wave propagation in a scatterer-free plate using a combination of wavefield measurements and 2-D finite element models is described. Both wavefield imaging and finite element analysis are used to study the propagation of waves at a refracted angle of 56.8° propagating in a 6.35 mm thick aluminum plate. Wavefield imaging is performed using a laser vibrometer mounted on an XYZ scanning stage, which is programmed to move point-to-point on a rectilinear grid to acquire waveform data. The commercial finite element software package, PZFlex, which is specifically designed to handle large, complex ultrasonic problems, is used to create a 2-D cross-sectional model of the transducer and plate. For model validation, vertical surface displacements from both the wavefield measurements and the PZFlex finite element model are compared and found to be in excellent agreement. The validated PZFlex model is then used to explain the mechanism of Rayleigh wave generation by the angle-beam wedge. Since the wavefield measurements are restricted to the specimen surface, the cross-sectional PZFlex model is able to provide insights the wavefield data cannot. This study illustrates how information obtained from ultrasonic experiments and modeling results can be combined to improve understanding of angle-beam wave generation and propagation.
Nonlinear wave propagation studies, dispersion modeling, and signal parameters correction
Czech Academy of Sciences Publication Activity Database
Převorovský, Zdeněk
..: ..., 2004, 00. [European Workshop on FP6-AERONEWS /1./. Naples (IT), 13.09.2004-16.09.2004] EU Projects: European Commission(XE) 502927 - AERO-NEWS Institutional research plan: CEZ:AV0Z2076919 Keywords : nodestructive testing * nonlinear elastic wave spectroscopy Subject RIV: BI - Acoustics
A model for wave propagation in a porous solid saturated by a three-phase fluid.
Santos, Juan E; Savioli, Gabriela B
2016-02-01
This paper presents a model to describe the propagation of waves in a poroelastic medium saturated by a three-phase viscous, compressible fluid. Two capillary relations between the three fluid phases are included in the model by introducing Lagrange multipliers in the principle of virtual complementary work. This approach generalizes that of Biot for single-phase fluids and allows to determine the strain energy density, identify the generalized strains and stresses, and derive the constitutive relations of the system. The kinetic and dissipative energy density functions are obtained assuming that the relative flow within the pore space is of laminar type and obeys Darcy's law for three-phase flow in porous media. After deriving the equations of motion, a plane wave analysis predicts the existence of four compressional waves, denoted as type I, II, III, and IV waves, and one shear wave. Numerical examples showing the behavior of all waves as function of saturation and frequency are presented.
On the Conventionality of Simultaneity and the Huygens-Fresnel-Miller Model of Wave Propagation
Bock, Robert D
2016-01-01
We identify a fundamental space-time invariance principle by combining the thesis of the conventionality of simultaneity with the Hugyens-Fresnel-Miller model of wave propagation. By following the standard gauge prescription, we show that the classical electromagnetic potentials influence the one-way speed of light.
A Temporal Millimeter Wave Propagation Model for Tunnels Using Ray Frustum Techniques and FFT
Directory of Open Access Journals (Sweden)
Choonghyen Kwon
2014-01-01
Full Text Available A temporal millimeter wave propagation model for tunnels is presented using ray frustum techniques and fast Fourier transform (FFT. To directly estimate or simulate effects of millimeter wave channel properties on the performance of communication services, time domain impulse responses of demodulated signals should be obtained, which needs rather large computation time. To mitigate the computational burden, ray frustum techniques are used to obtain frequency domain transfer function of millimeter wave propagation environment and FFT of equivalent low pass signals are used to retrieve demodulated waveforms. This approach is numerically efficient and helps to directly estimate impact of tunnel structures and surfaces roughness on the performance of millimeter wave communication services.
A propagation model for the internal solitary waves in the northern South China Sea
Cai, Shuqun; Xie, Jieshuo
2010-12-01
A two-dimensional, regularized long-wave equation model is developed to study the dynamic mechanisms of the propagation and evolution of the internal solitary waves (ISWs) in the northern South China Sea (SCS). It is shown that the bottom topography would cause the polarity reversal of ISWs, the change of the local wave crestline shape, and some diminution in wave amplitude; even if the ISWs are induced at the small sill channel along the Luzon Strait, they could propagate westward with their crestlines covering a large area in the latitudinal direction in the northern SCS. When there are two trains of ISWs propagating from the same source site with a time lag but different amplitudes of initial solitons, the latter train of ISWs with a larger amplitude may catch then swallow the former one with a smaller amplitude, and the wave amplitude of the merged ISW train decreases while the wave number increases. When there are two trains of ISWs propagating from the different source sites at the same time with the same amplitude of initial solitons, the crestlines of the two ISW trains may meet and a new leading soliton is induced at the connection point. Once the ISW trains collide with the island, before the island, a weak ISW train is reflected; behind the island, the former crestlines of the ISW train are torn by the island into two new trains, which may reconnect after passing around the island. The propagation direction, the wave amplitude, and the reconnection point of the new merged ISW train behind the island depend on the relative orientation of the original soliton source site to the island.
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation
DEFF Research Database (Denmark)
Yang, Zhiwen; Liu, Shu-xue; Li, Jin-xuan
2014-01-01
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used fo...... that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.......An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used...... for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and...
Near-surface attenuation estimation using wave-propagation modeling
El Yadari, N.; Ernst, F.; Mulder, W.
2008-01-01
The effect of the near surface on seismic land data can be so severe that static corrections are insufficient. Full-waveform inversion followed by redatuming may be an alternative, but inversion will work only if the starting model is sufficiently close to the true model. As a first step toward dete
Effective poroelastic model for one-dimensional wave propagation
Kudarova, A.; Van Dalen, K.N.; Drijkoningen, G.G.
2013-01-01
An effective poroelastic model is proposed that describes seismic attenuation and dispersion in periodically layeredmedia. In this model, the layers represent mesoscopic-scale heterogeneities (larger than the grain and pore sizes but smaller than the wavelength) that can occur both in fluid and soli
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
MODELING OF REFLECTIVE PROPAGATING SLOW-MODE WAVE IN A FLARING LOOP
Energy Technology Data Exchange (ETDEWEB)
Fang, X.; Yuan, D.; Van Doorsselaere, T.; Keppens, R.; Xia, C. [Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven (Belgium)
2015-11-01
Quasi-periodic propagating intensity disturbances have been observed in large coronal loops in extreme ultraviolet images over a decade, and are widely accepted to be slow magnetosonic waves. However, spectroscopic observations from Hinode/EIS revealed their association with persistent coronal upflows, making this interpretation debatable. We perform a 2.5D magnetohydrodynamic simulation to imitate the chromospheric evaporation and the following reflected patterns in a flare loop. Our model encompasses the corona, transition region, and chromosphere. We demonstrate that the quasi periodic propagating intensity variations captured by the synthesized Solar Dynamics Observatory/Atmospheric Imaging Assembly 131, 94 Å emission images match the previous observations well. With particle tracers in the simulation, we confirm that these quasi periodic propagating intensity variations consist of reflected slow mode waves and mass flows with an average speed of 310 km s{sup −1} in an 80 Mm length loop with an average temperature of 9 MK. With the synthesized Doppler shift velocity and intensity maps of the Solar and Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation Fe xix line emission, we confirm that these reflected slow mode waves are propagating waves.
Abortive and propagating intracellular calcium waves: analysis from a hybrid model.
Directory of Open Access Journals (Sweden)
Nara Guisoni
Full Text Available The functional properties of inositol(1,4,5-triphosphate (IP3 receptors allow a variety of intracellular Ca(2+ phenomena. In this way, global phenomena, such as propagating and abortive Ca(2+ waves, as well as local events such as puffs, have been observed. Several experimental studies suggest that many features of global phenomena (e.g., frequency, amplitude, speed wave depend on the interplay of biophysical processes such as diffusion, buffering, efflux and influx rates, which in turn depend on parameters such as buffer concentration, Ca(2+ pump density, cytosolic IP3 level, and intercluster distance. Besides, it is known that cells are able to modify some of these parameters in order to regulate the Ca(2+ signaling. By using a hybrid model, we analyzed different features of the hierarchy of calcium events as a function of two relevant parameters for the calcium signaling, the intercluster distance and the pump strength or intensity. In the space spanned by these two parameters, we found two modes of calcium dynamics, one dominated by abortive calcium waves and the other by propagating waves. Smaller distances between the release sites promote propagating calcium waves, while the increase of the efflux rate makes the transition from propagating to abortive waves occur at lower values of intercluster distance. We determined the frontier between these two modes, in the parameter space defined by the intercluster distance and the pump strength. Furthermore, we found that the velocity of simulated calcium waves accomplishes Luther's law, and that an effective rate constant for autocatalytic calcium production decays linearly with both the intercluster distance and the pump strength.
Time domain numerical modeling of wave propagation in 2D acoustic / porous media
Chiavassa, Guillaume
2011-01-01
Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...
Analysis of S Wave Propagation Through a Nonlinear Joint with the Continuously Yielding Model
Cui, Zhen; Sheng, Qian; Leng, Xianlun
2017-01-01
Seismic wave propagation through joints that are embedded in a rock mass is a critical issue for aseismic issues of underground rock engineering. Few studies have investigated nonlinear joints with a continuously yielding model. In this paper, a time-domain recursive method (TDRM) for an S wave across a nonlinear Mohr-Coulomb (MC) slip model is extended to a continuously yielding (CY) model. Verification of the TDRM-based results is conducted by comparison with the simulated results via a built-in model of 3DEC code. Using parametric studies, the effect of normal stress level, amplitude of incident wave, initial joint shear stiffness, and joint spacing is discussed and interpreted for engineering applications because a proper in situ stress level (overburden depth) and acceptable quality of surrounding rock mass are beneficial for seismic stability issues of underground rock excavation. Comparison between the results from the MC model and the CY model is presented both for an idealized impulse excitation and a real ground motion record. Compared with the MC model, complex joint behaviors, such as tangential stiffness degradation, normal stress dependence, and the hysteresis effect, that occurred in the wave propagation can be described with the CY model. The MC model seems to underestimate the joint shear displacement in a high normal stress state and in a real ground motion excitation case.
Evaluation of approaches for modeling temperature wave propagation in district heating pipelines
DEFF Research Database (Denmark)
Gabrielaitiene, I.; Bøhm, Benny; Sunden, B.
2008-01-01
The limitations of a pseudo-transient approach for modeling temperature wave propagation in district heating pipes were investigated by comparing numerical predictions with experimental data. The performance of two approaches, namely a pseudo-transient approach implemented in the finite element...... code ANSYS and a node method, was examined for a low turbulent Reynolds number regime and small velocity fluctuations. Both approaches are found to have limitations in predicting the temperature response time and predicting the peak values of the temperature wave, which is further hampered by the fact...... to be given to the detailed modeling of the turbulent flow characteristics....
Fazio, Claudio; Guastella, Ivan; Sperandeo-Mineo, Rosa Maria; Tarantino, Giovanni
2008-01-01
The present paper reports the design process and the experimentation of a teaching-learning sequence about the concept of mechanical wave propagation and the role played by media where waves are propagating. The sequence focuses on the central issue of the relationships between observable phenomena, like macroscopic behaviours of waves, and their…
Impedance Matching for Discrete, Periodic Media and Application to Two-Scale Wave Propagation Models
Thirunavukkarasu, Senganal
This dissertation introduces the idea of an equivalent continuous medium (ECM) that has the same impedance as that of an unbounded discrete periodic medium. Contrary to existing knowledge, we constructively show that it is indeed possible to achieve perfect matching for periodic and discrete media. We present analytical results relating the propagation characteristics of periodic media and the corresponding ECM, leading to the development of numerical methods for wave propagation in these media. In this dissertation, we present the main idea of ECM and apply it, with mixed results, to seemingly different problems requiring effective numerical methods for modeling wave propagation in unbounded media. An immediate application of ECM is in developing absorbing boundary conditions (ABCs) for wave propagation in unbounded discrete media. Using the idea of ECM, and building on class of continuous ABCs called perfectly matched discrete layers (PMDL), we propose a new class of discrete ABCs called discrete PMDL and develop frequency domain formulations that are shown to be superior to continuous ABCs. Another application that is explored in this dissertation is the design of interface conditions for concurrent coupling of two-scale wave propagation models, e.g. Atomistic-to-Continuum (AtC) coupling. We propose a domain-decomposition (DD) approach and develop accurate interface conditions that are critical for the concurrent coupling of the two-scale models. It turns out that time-domain discrete ABCs are key to the the accuracy of these interface conditions. Since discrete PMDL is well-posed and accurate for the model problem, we build on it to propose an efficient and accurate interface condition for two-scale wave propagation models. Although many open problems remain with respect to implementation, we believe that the proposed DD based approach is a good first step towards achieving efficient coupling of two-scale wave propagation models. Time-domain discrete PMDL can
Lohmeyer, Manfred; Honsa, R.; Richter, L.
2003-01-01
Superpositions of two perpendicularly oriented bidirectional eigenmode propagation (BEP) fields, composed of basis modes that satisfy Dirichlet boundary conditions, can establish rigorous semianalytical solutions for problems of 2-D fixed-frequency wave propagation on unbounded, cross-shaped domains
Two-fluid modeling of magnetosonic wave propagation in the partially ionized solar chromosphere
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2016-04-01
We perform 2D two-fluid simulations to study the effects of ion-neutral interactions on the propagation of magnetosonic waves in the partially ionized solar chromosphere, where the number density of neutrals significantly exceeds the number density of protons at low heights. Thus modeling the neutral-ion interactions and studying the effect of neutrals on the ambient plasma properties becomes important for better understanding the observed emission lines and the propagation of disturbances from the photosphere to the transition region and the corona. The role of charged particles (electrons and ions) is combined within resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations, allowing for propagation of higher frequency waves neglected by the standard MHD approximation. Separate mass, momentum and energy conservation equations are considered for the neutrals and the interaction between the different fluids is determined by the chemical reactions, such as impact ionization, radiative recombination and charge exchange, provided as additional source terms. To initialize the system we consider an ideal gas equation of state with equal initial temperatures for the electrons, ions and the neutrals and different density profiles. The initial temperature and density profiles are height-dependent and follow VAL C atmospheric model for the solar chromosphere. We have searched for a chemical and collisional equilibrium between the ions and the neutrals to minimize any unphysical outflows and artificial heating induced by initial pressure imbalances. Including different magnetic field profiles brings new source of plasma heating through Ohmic dissipation. The excitation and propagation of the magnetosonic waves depends on the type of the external velocity driver. As the waves propagate through the gravitationally stratified media
Modeling of the Propagation of Seismic Waves in Non-Classical Media: Reduced Cosserat Continuum
Grekova, E.; Kulesh, M.; Herman, G.; Shardakov, I.
2006-12-01
In rock mechanics, elastic wave propagation is usually modeled in terms of classical elasticity. There are situations, however, when rock behaviour is still elastic but cannot be described by the classical model. In particular, current effective medium theories, based on classical elasticity, do not properly describe strong dispersive or attenuative behaviour of wave propagation observed sometimes. The approach we have taken to address this problem is to introduce supplementary and independent degrees of freedom of material particles, in our case rotational ones. Various models of this kind are widely used in continuum mechanics: Cosserat theory, micropolar model of Eringen, Cosserat pseudocontinuum, reduced Cosserat continuum etc. We have considered the reduced Cosserat medium where the couple stress is zero, while the rotation vector is independent of the translational displacement. In this model, the stress depends on the rotation of a particle relatively to the background continuum of mass centers, but it does not depend on the relative rotation of two neighboring particles. This model seems to be adequate for the description of granular media, consolidated soils, and rocks with inhomogeneous microstructure. A real inhomogeneous medium is considered as effective homogeneous enriched continuum, where proper rotational dynamics of inhomogeneities are taken into account by means of rotation of a particle of the enriched continuum. We have obtained and analyzed theoretical solutions for this model describing the propagation of body waves and surface waves. We have shown both the dispersive character of these waves in elastic space and half space, and the existence of forbidden frequency zones. These results can be used for the preparation, execution, and interpretation of seismic experiments, which would allow one to determine whether (and in which situations) polar theories are important in rock mechanics, and to help with the identification of material parameters
Wave propagation in thermoelastic saturated porous medium
Indian Academy of Sciences (India)
M D Sharma
2008-12-01
Biot ’s theory for wave propagation in saturated porous solid is modiﬁed to study the propagation of thermoelastic waves in poroelastic medium. Propagation of plane harmonic waves is considered in isotropic poroelastic medium. Relations are derived among the wave-induced temperature in the medium and the displacements of ﬂuid and solid particles. Christoffel equations obtained are modiﬁed with the thermal as well as thermoelastic coupling parameters. These equations explain the existence and propagation of four waves in the medium. Three of the waves are attenuating longitudinal waves and one is a non-attenuating transverse wave. Thermal properties of the medium have no effect on the transverse wave. The velocities and attenuation of the longitudinal waves are computed for a numerical model of liquid-saturated sandstone. Their variations with thermal as well as poroelastic parameters are exhibited through numerical examples.
Shen, Yanfeng; Cesnik, Carlos E. S.
2016-09-01
This paper presents a new hybrid modeling technique for the efficient simulation of guided wave generation, propagation, and interaction with damage in complex composite structures. A local finite element model is deployed to capture the piezoelectric effects and actuation dynamics of the transmitter, while the global domain wave propagation and interaction with structural complexity (structure features and damage) are solved utilizing a local interaction simulation approach (LISA). This hybrid approach allows the accurate modeling of the local dynamics of the transducers and keeping the LISA formulation in an explicit format, which facilitates its readiness for parallel computing. The global LISA framework was extended through the 3D Kelvin-Voigt viscoelasticity theory to include anisotropic damping effects for composite structures, as an improvement over the existing LISA formulation. The global LISA framework was implemented using the compute unified device architecture running on graphic processing units. A commercial preprocessor is integrated seamlessly with the computational framework for grid generation and material property allocation to handle complex structures. The excitability and damping effects are successfully captured by this hybrid model, with experimental validation using the scanning laser doppler vibrometry. To demonstrate the capability of our hybrid approach for complex structures, guided wave propagation and interaction with a delamination in a composite panel with stiffeners is presented.
Directory of Open Access Journals (Sweden)
Hussein Rappel
2014-01-01
integration technique (EFIT as well as its validation with analytical results. Lamb wave method is a long range inspection technique which is considered to have unique future in the field of structural health monitoring. One of the main problems facing the lamb wave method is how to choose the most appropriate frequency to generate the waves for adequate transmission capable of properly propagating in the material, interfering with defects/damages, and being received in good conditions. Modern simulation tools based on numerical methods such as finite integration technique (FIT, finite element method (FEM, and boundary element method (BEM may be used for modeling. In this paper, two sets of simulation are performed. In the first set, group velocities of lamb wave in a steel plate are obtained numerically. Results are then compared with analytical results to validate the simulation. In the second set, EFIT is employed to study fundamental symmetric mode interaction with a surface braking defect.
DEFF Research Database (Denmark)
Bjelland, C; Bjarnø, Leif
1992-01-01
A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid....... The dispersion and attenuation is shown to be strongly dependent on the viscoelastic properties of the tube wall. The complex, frequency-dependent moduli of relevant tube materials have been measured in stress wave transfer function experiments. The moduli are used in the model to produce realistic dispersion...... relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...
Parchevsky, K; Khomenko, E; Olshevsky, V; Collados, M
2010-01-01
We present comparison of numerical simulations of propagation of MHD waves,excited by subphotospheric perturbations, in two different ("deep" and "shallow") magnetostatic models of the sunspots. The "deep" sunspot model distorts both the shape of the wavefront and its amplitude stronger than the "shallow" model. For both sunspot models, the surface gravity waves (f-mode) are affected by the sunspots stronger than the acoustic p-modes. The wave amplitude inside the sunspot depends on the photospheric strength of the magnetic field and the distance of the source from the sunspot axis. For the source located at 9 Mm from the center of the sunspot, the wave amplitude increases when the wavefront passes through the central part of the sunspot. For the source distance of 12 Mm, the wave amplitude inside the sunspot is always smaller than outside. For the same source distance from the sunspot center but for the models with different strength of the magnetic field, the wave amplitude inside the sunspot increases with...
Kishoni, Doron; Taasan, Shlomo
1994-01-01
Solution of the wave equation using techniques such as finite difference or finite element methods can model elastic wave propagation in solids. This requires mapping the physical geometry into a computational domain whose size is governed by the size of the physical domain of interest and by the required resolution. This computational domain, in turn, dictates the computer memory requirements as well as the calculation time. Quite often, the physical region of interest is only a part of the whole physical body, and does not necessarily include all the physical boundaries. Reduction of the calculation domain requires positioning an artificial boundary or region where a physical boundary does not exist. It is important however that such a boundary, or region, will not affect the internal domain, i.e., it should not cause reflections that propagate back into the material. This paper concentrates on the issue of constructing such a boundary region.
Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-09-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q into 2-D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second order in time and fourth order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Regulatory effects on the population dynamics and wave propagation in a cell lineage model.
Wang, Mao-Xiang; Ma, Yu-Qiang; Lai, Pik-Yin
2016-03-21
We consider the interplay of cell proliferation, cell differentiation (and de-differentiation), cell movement, and the effect of feedback regulations on the population and propagation dynamics of different cell types in a cell lineage model. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the cell lineage. The cell densities are described by coupled reaction-diffusion partial differential equations, and the propagating wave front solutions in one dimension are investigated analytically and by numerical solutions. In particular, wavefront propagation speeds are obtained analytically and verified by numerical solutions of the equations. The emphasis is on the effects of the feedback regulations on different stages in the cell lineage. It is found that when the progenitor cell is negatively regulated, the populations of the cell lineage are strongly down-regulated with the steady growth rate of the progenitor cell being driven to zero beyond a critical regulatory strength. An analytic expression for the critical regulation strength in terms of the model parameters is derived and verified by numerical solutions. On the other hand, if the inhibition is acting on the differentiated cells, the change in the population dynamics and wave propagation speed is small. In addition, it is found that only the propagating speed of the progenitor cells is affected by the regulation when the diffusion of the differentiated cells is large. In the presence of de-differentiation, the effect on down-regulating the progenitor population is weakened and there is no effect on the propagation speed due to regulation, suggesting that the effect of regulatory control is diminished by de-differentiation pathways.
Fast and accurate analytical model to solve inverse problem in SHM using Lamb wave propagation
Poddar, Banibrata; Giurgiutiu, Victor
2016-04-01
Lamb wave propagation is at the center of attention of researchers for structural health monitoring of thin walled structures. This is due to the fact that Lamb wave modes are natural modes of wave propagation in these structures with long travel distances and without much attenuation. This brings the prospect of monitoring large structure with few sensors/actuators. However the problem of damage detection and identification is an "inverse problem" where we do not have the luxury to know the exact mathematical model of the system. On top of that the problem is more challenging due to the confounding factors of statistical variation of the material and geometric properties. Typically this problem may also be ill posed. Due to all these complexities the direct solution of the problem of damage detection and identification in SHM is impossible. Therefore an indirect method using the solution of the "forward problem" is popular for solving the "inverse problem". This requires a fast forward problem solver. Due to the complexities involved with the forward problem of scattering of Lamb waves from damages researchers rely primarily on numerical techniques such as FEM, BEM, etc. But these methods are slow and practically impossible to be used in structural health monitoring. We have developed a fast and accurate analytical forward problem solver for this purpose. This solver, CMEP (complex modes expansion and vector projection), can simulate scattering of Lamb waves from all types of damages in thin walled structures fast and accurately to assist the inverse problem solver.
Analysis of wave propagation in micro/nanobeam-like structures: A size-dependent model
Institute of Scientific and Technical Information of China (English)
Bing-Lei Wang; Jun-Feng Zhao; Shen-Jie Zhou; Xi Chen
2012-01-01
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models,the size-dependent characteristics of wave propagation in micro/nanobeams is studied.The formulations of dispersion relation are explicitly derived for both strain gradient beam models,and presented for different material length scale parameters (MLSPs).For both phenomenological size-dependent beam models,the angular frequency,phase velocity and group velocity increase with increasing wave number.However,the velocity ratios approach different values for different beam models,indicating an interesting behavior of the asymptotic velocity ratio.The present theory is also compared with the nonlocal continuum beam models.
Im, Uk Bin; Kwon, Soon Sung; Kim, Kiwoong; Lee, Yong Ho; Park, Yong Ki; Youn, Chan Hyun; Shim, Eun Bo
2008-01-01
We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.
Wave propagation in elastic solids
Achenbach, Jan
1984-01-01
The propagation of mechanical disturbances in solids is of interest in many branches of the physical scienses and engineering. This book aims to present an account of the theory of wave propagation in elastic solids. The material is arranged to present an exposition of the basic concepts of mechanical wave propagation within a one-dimensional setting and a discussion of formal aspects of elastodynamic theory in three dimensions, followed by chapters expounding on typical wave propagation phenomena, such as radiation, reflection, refraction, propagation in waveguides, and diffraction. The treat
An Improved Coupling of Numerical and Physical Models for Simulating Wave Propagation
Institute of Scientific and Technical Information of China (English)
阳志文; 柳淑学; 李金宣
2014-01-01
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Brissaud, Quentin; Martin, Roland; Garcia, Raphaël F.; Komatitsch, Dimitri
2016-07-01
Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3-D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale, we introduce a finite difference in the time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with a background flow (wind). One significant benefit of such a method is its versatility because it handles both acoustic and gravity waves in the same simulation, which enables one to observe interactions between them. Simulations can be performed for 2-D or 3-D realistic cases such as tsunamis in a full MSISE-00 atmosphere or gravity-wave generation by atmospheric explosions. We validate the computations by comparing them to analytical solutions based on dispersion relations in specific benchmark cases: an atmospheric explosion, and a ground displacement forcing.
Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.
2015-12-01
The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).
Propagating Linear Waves in Convectively Unstable Stellar Models: a Perturbative Approach
Papini, Emanuele; Birch, Aaron C
2013-01-01
Linear time-domain simulations of acoustic oscillations are unstable in the stellar convection zone. To overcome this problem it is customary to compute the oscillations of a stabilized background stellar model. The stabilization, however, affects the result. Here we propose to use a perturbative approach (running the simulation twice) to approximately recover the acoustic wave field, while preserving seismic reciprocity. To test the method we considered a 1D standard solar model. We found that the mode frequencies of the (unstable) standard solar model are well approximated by the perturbative approach within $1~\\mu$Hz for low-degree modes with frequencies near $3~\\mu$Hz. We also show that the perturbative approach is appropriate for correcting rotational-frequency kernels. Finally, we comment that the method can be generalized to wave propagation in 3D magnetized stellar interiors because the magnetic fields have stabilizing effects on convection.
Numerical simulation of wave propagation in a realistic model of the human external ear.
Fadaei, Mohaddeseh; Abouali, Omid; Emdad, Homayoun; Faramarzi, Mohammad; Ahmadi, Goodarz
2015-01-01
In this study, a numerical investigation is performed to evaluate the effects of high-pressure sinusoidal and blast wave's propagation around and inside of a human external ear. A series of computed tomography images are used to reconstruct a realistic three-dimensional (3D) model of a human ear canal and the auricle. The airflow field is then computed by solving the governing differential equations in the time domain using a computational fluid dynamics software. An unsteady algorithm is used to obtain the high-pressure wave propagation throughout the ear canal which is validated against the available analytical and numerical data in literature. The effects of frequency, wave shape, and the auricle on pressure distribution are then evaluated and discussed. The results clearly indicate that the frequency plays a key role on pressure distribution within the ear canal. At 4 kHz frequency, the pressure magnitude is much more amplified within the ear canal than the frequencies of 2 and 6 kHz, for the incident wave angle of 90° investigated in this study, attributable to the '4-kHz notch' in patients with noise-induced hearing loss. According to the results, the pressure distribution patterns at the ear canal are very similar for both sinusoidal pressure waveform with the frequency of 2 kHz and blast wave. The ratio of the peak pressure value at the eardrum to that at the canal entrance increases from about 8% to 30% as the peak pressure value of the blast wave increases from 5 to 100 kPa for the incident wave angle of 90° investigated in this study. Furthermore, incorporation of the auricle to the ear canal model is associated with centerline pressure magnitudes of about 50% and 7% more than those of the ear canal model without the auricle throughout the ear canal for sinusoidal and blast waves, respectively, without any significant effect on pressure distribution pattern along the ear canal for the incident wave angle of 90° investigated in this study.
Rahman, S; Barnes, C H W
2005-01-01
We describe and evaluate a numerical solution strategy for simulating surface acoustic waves through semiconductor devices with complex geometries. This multi-physics problem is of particular relevance to the design of quantum electronic devices. The mathematical model consists of two coupled partial differential equations for the elastic wave propagation and the electric field, respectively, in anisotropic piezoelectric media. These equations are discretized by the finite element method in space and by a finite difference method in time. The latter method yields a convenient numerical decoupling of the governing equations. We describe how a computer implementation can utilize the decoupling and via object-oriented programming techniques reuse independent codes for the Poisson equation and the linear time-dependent elasticity equation. First we apply the simulator to a simplified model problem for verifying the implementation, and thereafter we show that the methodology is capable of simulating a real-world c...
Directory of Open Access Journals (Sweden)
Paul C. Rivera
2006-01-01
Full Text Available A common approach in modeling the generation and propagation of tsunami is based on the assumption of a kinematic vertical displacement of ocean water that is analogous to the ocean bottom displacement during a submarine earthquake and the use of a non-dispersive long-wave model to simulate its physical transformation as it radiates outward from the source region. In this study, a new generation mechanism and the use of a highly-dispersive wave model to simulate tsunami inception, propagation and transformation are proposed. The new generation model assumes that transient ground motion during the earthquake can accelerate horizontal currents with opposing directions near the fault line whose successive convergence and divergence generate a series of potentially destructive oceanic waves. The new dynamic model incorporates the effects of earthquake moment magnitude, ocean compressibility through the buoyancy frequency, the effects of focal and water depths, and the orientation of ruptured fault line in the tsunami magnitude and directivity.For tsunami wave simulation, the nonlinear momentum-based wave model includes important wave propagation and transformation mechanisms such as refraction, diffraction, shoaling, partial reflection and transmission, back-scattering, frequency dispersion, and resonant wave-wave interaction. Using this model and a coarse-resolution bathymetry, the new mechanism is tested for the Indian Ocean tsunami of December 26, 2004. A new flooding and drying algorithm that consider waves coming from every direction is also proposed for simulation of inundation of low-lying coastal regions.It is shown in the present study that with the proposed generation model, the observed features of the Asian tsunami such as the initial drying of areas east of the source region and the initial flooding of western coasts are correctly simulated. The formation of a series of tsunami waves with periods and lengths comparable to observations
2016-01-01
in press; International audience; Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena such as tectonic events or explosions or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modelled in a 3D attenuating and windy atmosphere extending from the ground to the upper thermosphere. Thus, in order to pro...
Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method
Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi
2015-06-01
We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.
Lohmeyer, Manfred
2004-01-01
The propagation of guided and nonconfined optical waves at fixed frequency through dielectric structures with piecewise constant, rectangular permittivity is considered in two spatial dimensions. Bidirectional versions of eigenmodes, computed for sequences of multilayer slab waveguides, constitute t
Jazia, Abderrahmin Ben; Bellis, Cédric
2013-01-01
This study focuses on the numerical modeling of wave propagation in fractionally-dissipative media. These viscoelastic models are such that the attenuation is frequency dependent and follows a power law with non-integer exponent. As a prototypical example, the Andrade model is chosen for its simplicity and its satisfactory fits of experimental flow laws in rocks and metals. The corresponding constitutive equation features a fractional derivative in time, a non-local term that can be expressed as a convolution product which direct implementation bears substantial memory cost. To circumvent this limitation, a diffusive representation approach is deployed, replacing the convolution product by an integral of a function satisfying a local time-domain ordinary differential equation. An associated quadrature formula yields a local-in-time system of partial differential equations, which is then proven to be well-posed. The properties of the resulting model are also compared to those of the original Andrade model. The...
Institute of Scientific and Technical Information of China (English)
Yi-kai FAN; Zu-yu CHEN; Xiang-qian LIANG; Xue-dong ZHANG; Xin HUANG
2012-01-01
This paper presents the explosion cratering effects and their propagation laws of blast waves in dry standard sands using a 450 g-t geotechnical centrifuge apparatus.Ten centrifuge model tests were completed with various ranges of explosive mass,burial depth and centrifuge accelerations.Eleven accelerometers were installed to record the acceleration response in sand.The dimensions of the explosion craters were measured after the tests.The results demonstrated that the relationship between the dimensionless parameters of cratering efficiency and gravity scaled yield is a power regression function.Three specific function equations were obtained.The results are in general agreement with those obtained by other studies.A scaling law based on the combination of the r terms was used to fit the results of the ten model tests with a correlation coefficient of 0.931.The relationship can be conveniently used to predict the cratering effects in sand.The results also showed that the peak acceleration is a power increasing function of the acceleration level.An empirical exponent relation between the proportional peak acceleration and distance is proposed.The propagation velocity of blast waves is found to be ranged between 200 and 714 m/s.
Wang, Z. B.; Nie, Q. Y.; Li, B. W.; Kong, F. R.
2017-01-01
Sub-atmospheric pressure plasma slabs exhibit the feature of relatively high plasma number density and high collisional frequency between electrons and neutral gases, as well as similar thickness to the electromagnetic (EM) wavelength in communication bands. The propagation characteristics of EM waves in sub-atmospheric pressure plasma slabs are attracting much attention of the researchers due to their applications in the plasma antenna, the blackout effect during reentry, wave energy injection in the plasma, etc. In this paper, a numerical model with a one-dimensional assumption has been established and therefore, it is used for the investigations of the propagation characteristics of the EM waves in plasma slabs. In this model, the EM waves propagating in both sub-wavelength plasma slabs and plasmas with thicker slabs can be studied simultaneously, which is superior to the model with geometrical optics approximation. The influence of EM wave frequencies and collisional frequencies on the amplitude of the transmitted EM waves is discussed in typical plasma profiles. The results will be significant for deep understanding of the propagation behaviors of the EM waves in sub-atmospheric pressure nonuniform plasma slabs, as well as the applications of the interactions between EM waves and the sub-atmospheric pressure plasmas.
Comparison of geometrical shock dynamics and kinematic models for shock-wave propagation
Ridoux, J.; Lardjane, N.; Monasse, L.; Coulouvrat, F.
2017-09-01
Geometrical shock dynamics (GSD) is a simplified model for nonlinear shock-wave propagation, based on the decomposition of the shock front into elementary ray tubes. Assuming small changes in the ray tube area, and neglecting the effect of the post-shock flow, a simple relation linking the local curvature and velocity of the front, known as the A{-}M rule, is obtained. More recently, a new simplified model, referred to as the kinematic model, was proposed. This model is obtained by combining the three-dimensional Euler equations and the Rankine-Hugoniot relations at the front, which leads to an equation for the normal variation of the shock Mach number at the wave front. In the same way as GSD, the kinematic model is closed by neglecting the post-shock flow effects. Although each model's approach is different, we prove their structural equivalence: the kinematic model can be rewritten under the form of GSD with a specific A{-}M relation. Both models are then compared through a wide variety of examples including experimental data or Eulerian simulation results when available. Attention is drawn to the simple cases of compression ramps and diffraction over convex corners. The analysis is completed by the more complex cases of the diffraction over a cylinder, a sphere, a mound, and a trough.
Modeling of wave propagation in drill strings using vibration transfer matrix methods.
Han, Je-Heon; Kim, Yong-Joe; Karkoub, Mansour
2013-09-01
In order to understand critical vibration of a drill bit such as stick-slip and bit-bounce and their wave propagation characteristics through a drill string system, it is critical to model the torsional, longitudinal, and flexural waves generated by the drill bit vibration. Here, a modeling method based on a vibration transfer matrix between two sets of structural wave variables at the ends of a constant cross-sectional, hollow, circular pipe is proposed. For a drill string system with multiple pipe sections, the total vibration transfer matrix is calculated by multiplying all individual matrices, each is obtained for an individual pipe section. Since drill string systems are typically extremely long, conventional numerical analysis methods such as a finite element method (FEM) require a large number of meshes, which makes it computationally inefficient to analyze these drill string systems numerically. The proposed "analytical" vibration transfer matrix method requires significantly low computational resources. For the validation of the proposed method, experimental and numerical data are obtained from laboratory experiments and FEM analyses conducted by using a commercial FEM package, ANSYS. It is shown that the modeling results obtained by using the proposed method are well matched with the experimental and numerical results.
A model of slow wave propagation and entrainment along the stomach.
Buist, Martin L; Corrias, Alberto; Poh, Yong Cheng
2010-09-01
Interstitial cells of Cajal (ICC) isolated from different regions of the stomach generate spontaneous electrical slow wave activity at different frequencies, with cells from the proximal stomach pacing faster than their distal counterparts. However, in vivo there exists a uniform pacing frequency; slow waves propagate aborally from the proximal stomach and subsequently entrain distal tissues. Significant resting membrane potential (RMP) gradients also exist within the stomach whereby membrane polarization generally increases from the fundus to the antrum. Both of these factors play a major role in the macroscopic electrical behavior of the stomach and as such, any tissue or organ level model of gastric electrophysiology should ensure that these phenomena are properly described. This study details a dual-cable model of gastric electrical activity that incorporates biophysically detailed single-cell models of the two predominant cell types, the ICC and smooth muscle cells. Mechanisms for the entrainment of the intrinsic pacing frequency gradient and for the establishment of the RMP gradient are presented. The resulting construct is able to reproduce experimentally recorded slow wave activity and provides a platform on which our understanding of gastric electrical activity can advance.
Tie, B.; Tian, B. Y.; Aubry, D.
2016-11-01
Elastic wave propagation in honeycomb thin layers and sandwiches is investigated theoretically and numerically by using the Bloch wave transform, so the modeling of a unique primitive cell is sufficient to understand the wave propagation phenomena through the whole periodic structure. Both in-plane (with respect to the plane of the honeycomb layer) and out-of-plane waves are analyzed by developing finite element models formulated within the framework of the Mindlin-Reissner theory of plates. The dispersion relations and the phase and group velocities as function of frequency and of direction of propagation are calculated. The anisotropic behaviors and the dispersive characteristics of the studied periodic media with respect to the wave propagation are then analyzed. According to our numerical investigation, it is believed that the existence of bandgaps is probably not possible in the frequency domain considered in the present work. However, as an important and original result, the existence of the "backward-propagating" frequency bands, within which Bloch wave modes propagate backwards with a negative group velocity, is highlighted. As another important result, the comparison is made between the first Bloch wave modes and the membrane and bending/transverse shear wave modes of the classical equivalent homogenized orthotropic plate model of the honeycomb media. A good comparison is obtained for honeycomb thin layers while a more important difference is observed in the case of honeycomb sandwiches, for which the pertinence of finite element models is discussed. Finally, the important role played by the honeycomb core in the flexural dynamic behaviors of the honeycomb sandwiches is confirmed.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Shen, Yanfeng; Cesnik, Carlos E. S.
2015-03-01
This paper presents a hybrid modeling technique for the efficient simulation of guided wave propagation and interaction with damage in composite structures. This hybrid approach uses a local finite element model (FEM) to compute the excitability of guided waves generated by piezoelectric transducers, while the global domain wave propagation, wave-damage interaction, and boundary reflections are modeled with the local interaction simulation approach (LISA). A small-size multi-physics FEM with non-reflective boundaries (NRB) was built to obtain the excitability information of guided waves generated by the transmitter. Frequency-domain harmonic analysis was carried out to obtain the solution for all the frequencies of interest. Fourier and inverse Fourier transform and frequency domain convolution techniques are used to obtain the time domain 3-D displacement field underneath the transmitter under an arbitrary excitation. This 3-D displacement field is then fed into the highly efficient time domain LISA simulation module to compute guided wave propagation, interaction with damage, and reflections at structural boundaries. The damping effect of composite materials was considered in the modified LISA formulation. The grids for complex structures were generated using commercial FEM preprocessors and converted to LISA connectivity format. Parallelization of the global LISA solution was achieved through Compute Unified Design Architecture (CUDA) running on Graphical Processing Unit (GPU). The multi-physics local FEM can reliably capture the detailed dimensions and local dynamics of the piezoelectric transducers. The global domain LISA can accurately solve the 3-D elastodynamic wave equations in a highly efficient manner. By combining the local FEM with global LISA, the efficient and accurate simulation of guided wave structural health monitoring procedure is achieved. Two numerical case studies are presented: (1) wave propagation in a unidirectional CFRP composite plate
A 2D Time Domain DRBEM Computer Model for MagnetoThermoelastic Coupled Wave Propagation Problems
Directory of Open Access Journals (Sweden)
Mohamed Abdelsabour Fahmy
2014-07-01
Full Text Available A numerical computer model based on the dual reciprocity boundary element method (DRBEM is extended to study magneto-thermoelastic coupled wave propagation problems with relaxation times involving anisotropic functionally graded solids. The model formulation is tested through its application to the problem of a solid placed in a constant primary magnetic field acting in the direction of the z-axis and rotating about this axis with a constant angular velocity. In the case of two-dimensional deformation, an implicit-explicit time domain DRBEM was presented and implemented to obtain the solution for the displacement and temperature fields. A comparison of the results is presented graphically in the context of Lord and Shulman (LS and Green and Lindsay (GL theories. Numerical results that demonstrate the validity of the proposed method are also presented graphically.
A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.
Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M
2006-07-01
A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2017-06-20
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.
Molero, Miguel; Iturrarán-Viveros, Ursula
2013-03-01
We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. Copyright © 2012 Elsevier B.V. All rights reserved.
Nakahata, K; Sugahara, H; Barth, M; Köhler, B; Schubert, F
2016-04-01
When modeling ultrasonic wave propagation in metals, it is important to introduce mesoscopic crystalline structures because the anisotropy of the crystal structure and the heterogeneity of grains disturb ultrasonic waves. In this paper, a three-dimensional (3D) polycrystalline structure generated by multiphase-field modeling was introduced to ultrasonic simulation for nondestructive testing. 3D finite-element simulations of ultrasonic waves were validated and compared with visualization results obtained from laser Doppler vibrometer measurements. The simulation results and measurements showed good agreement with respect to the velocity and front shape of the pressure wave, as well as multiple scattering due to grains. This paper discussed the applicability of a transversely isotropic approach to ultrasonic wave propagation in a polycrystalline metal with columnar structures.
2D spectral element modeling of GPR wave propagation in inhomogeneous media
Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi
2016-10-01
We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.
Longitudinal nonlinear wave propagation through soft tissue.
Valdez, M; Balachandran, B
2013-04-01
In this paper, wave propagation through soft tissue is investigated. A primary aim of this investigation is to gain a fundamental understanding of the influence of soft tissue nonlinear material properties on the propagation characteristics of stress waves generated by transient loadings. Here, for computational modeling purposes, the soft tissue is modeled as a nonlinear visco-hyperelastic material, the geometry is assumed to be one-dimensional rod geometry, and uniaxial propagation of longitudinal waves is considered. By using the linearized model, a basic understanding of the characteristics of wave propagation is developed through the dispersion relation and in terms of the propagation speed and attenuation. In addition, it is illustrated as to how the linear system can be used to predict brain tissue material parameters through the use of available experimental ultrasonic attenuation curves. Furthermore, frequency thresholds for wave propagation along internal structures, such as axons in the white matter of the brain, are obtained through the linear analysis. With the nonlinear material model, the authors analyze cases in which one of the ends of the rods is fixed and the other end is subjected to a loading. Two variants of the nonlinear model are analyzed and the associated predictions are compared with the predictions of the corresponding linear model. The numerical results illustrate that one of the imprints of the nonlinearity on the wave propagation phenomenon is the steepening of the wave front, leading to jump-like variations in the stress wave profiles. This phenomenon is a consequence of the dependence of the local wave speed on the local deformation of the material. As per the predictions of the nonlinear material model, compressive waves in the structure travel faster than tensile waves. Furthermore, it is found that wave pulses with large amplitudes and small elapsed times are attenuated over shorter spans. This feature is due to the elevated
Accuracy of semi-analytical finite elements for modelling wave propagation in rails
CSIR Research Space (South Africa)
Andhavarapu, EV
2010-01-01
Full Text Available technique, Journal of Sound and Vibration, 185(3):531-543,c 1995. [2] V. Damljanovic? and R.L. Weaver, Propagating and evanescent elastic waves in cylindrical waveguides of arbitrary cross section, J. Acoust. Soc. Am., 115(4):1572-1581, 2004. [3] T..., and Frequency Control, 55(9):2038-2045, 2008. [6] J. Ryue, D.J. Thompson, P.R. White, D.R. Thompson, Decay rates of propagating waves in railway tracks at high frequencies, Journal of Sound and Vibration, 320:955-976, 2009. [7] P.W. Loveday, Analysis...
Stress Wave Propagation in Soils Modelled by the Boundary Element Method
DEFF Research Database (Denmark)
Rasmussen, K. M.
This thesis deals with different aspects of the boundary element method (BEM) applied to stress wave propagation problems in soils. Among other things BEM formulations for coupled FEM and BEM, moving loads, direct BEM and indirect BEM are presented. For all the formulations both analytical expres...
Lee, Kang Il; Roh, Heui-Seol; Yoon, Suk Wang
2003-10-01
Acoustic wave propagation in bovine cancellous bone is experimentally and theoretically investigated in the frequency range of 0.5-1 MHz. The phase velocity, attenuation coefficient, and broadband ultrasonic attenuation (BUA) of bovine cancellous bone are measured as functions of frequency and porosity. For theoretical estimation, the Modified Biot-Attenborough (MBA) model is employed with three new phenomenological parameters: the boundary condition, phase velocity, and impedance parameters. The MBA model is based on the idealization of cancellous bone as a nonrigid porous medium with circular cylindrical pores oriented normal to the surface. It is experimentally observed that the phase velocity is approximately nondispersive and the attenuation coefficient linearly increases with frequency. The MBA model predicts a slightly negative dispersion of phase velocity linearly with frequency and the nonlinear relationships of attenuation and BUA with porosity. The experimental results are in good agreement with the theoretical results estimated with the MBA model. It is expected that the MBA model can be usefully employed in the field of clinical bone assessment for the diagnosis of osteoporosis.
Inward propagating chemical waves in Taylor vortices.
Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F
2010-04-01
Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
Barthélémy, S.; Ricci, S.; Pannekoucke, O.; Thual, O.; Malaterre, P. O.
2013-06-01
This study describes the emulation of an Ensemble Kalman Filter (EnKF) algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically with an ensemble method. In the case with assimilation with one observation point, where synthetical observations are generated by adding an error to a true state, the dynamic of the background error covariance functions is not straightforward and a numerical approach using an EnKF algorithm is prefered. First, those numerical experiments show that both background error variance and correlation length scale are reduced at the observation point. This reduction of variance and correlation length scale is propagated downstream by the dynamics of the model. Then, it is shown that the application of a Best Linear Unbiased Estimator (BLUE) algorithm using the background error covariance matrix converged from the EnKF algorithm, provides the same results as the EnKF but with a cheaper computational cost, thus allowing for the use of data assimilation in the context of real time flood forecasting. Moreover it was demonstrated that the reduction of background error correlation length scale and variance at the observation point depends on the error observation statistics. This feature is quantified by abacus built from linear regressions over a limited set of EnKF experiments. These abacus that describe the background error variance and the correlation length scale in the neighboring of the observation point combined with analytical expressions that describe the background error variance and the correlation length scale away from the observation point provide parametrized models for the variance and the correlation length scale. Using this
Emulation of an ensemble Kalman filter algorithm on a flood wave propagation model
Directory of Open Access Journals (Sweden)
S. Barthélémy
2013-06-01
Full Text Available This study describes the emulation of an Ensemble Kalman Filter (EnKF algorithm on a 1-D flood wave propagation model. This model is forced at the upstream boundary with a random variable with gaussian statistics and a correlation function in time with gaussian shape. This allows for, in the case without assimilation, the analytical study of the covariance functions of the propagated signal anomaly. This study is validated numerically with an ensemble method. In the case with assimilation with one observation point, where synthetical observations are generated by adding an error to a true state, the dynamic of the background error covariance functions is not straightforward and a numerical approach using an EnKF algorithm is prefered. First, those numerical experiments show that both background error variance and correlation length scale are reduced at the observation point. This reduction of variance and correlation length scale is propagated downstream by the dynamics of the model. Then, it is shown that the application of a Best Linear Unbiased Estimator (BLUE algorithm using the background error covariance matrix converged from the EnKF algorithm, provides the same results as the EnKF but with a cheaper computational cost, thus allowing for the use of data assimilation in the context of real time flood forecasting. Moreover it was demonstrated that the reduction of background error correlation length scale and variance at the observation point depends on the error observation statistics. This feature is quantified by abacus built from linear regressions over a limited set of EnKF experiments. These abacus that describe the background error variance and the correlation length scale in the neighboring of the observation point combined with analytical expressions that describe the background error variance and the correlation length scale away from the observation point provide parametrized models for the variance and the correlation length
Reconstruction of nonlinear wave propagation
Fleischer, Jason W; Barsi, Christopher; Wan, Wenjie
2013-04-23
Disclosed are systems and methods for characterizing a nonlinear propagation environment by numerically propagating a measured output waveform resulting from a known input waveform. The numerical propagation reconstructs the input waveform, and in the process, the nonlinear environment is characterized. In certain embodiments, knowledge of the characterized nonlinear environment facilitates determination of an unknown input based on a measured output. Similarly, knowledge of the characterized nonlinear environment also facilitates formation of a desired output based on a configurable input. In both situations, the input thus characterized and the output thus obtained include features that would normally be lost in linear propagations. Such features can include evanescent waves and peripheral waves, such that an image thus obtained are inherently wide-angle, farfield form of microscopy.
Sparrow, Victor Ward
1990-01-01
This study has concerned the propagation of finite amplitude, i.e. weakly non-linear, acoustical blast waves from explosions over hard and porous media models of outdoor ground surfaces. The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency domain exhibits a finite impedance, the linear phenomenological porous model of Morse and Ingard was used. The phenomenological equations are solved in the time domain for coupling with the time domain propagation solution in the air. The numerical solution is found through the method of finite differences. The second-order in time and fourth -order in space MacCormack method was used in the air, and the second-order in time and space MacCormack method was used in the porous medium modeling the ground. Two kinds of numerical absorbing boundary conditions were developed for the air propagation equations to truncate the physical domain for solution on a computer. Radiation conditions first were used on those sides of the domain where there were outgoing waves. Characteristic boundary conditions secondly are employed near the acoustic source. The numerical model agreed well with the Pestorius algorithm for the propagation of electric spark pulses in the free field, and with a result of Pfriem for normal plane reflection off a hard surface. In addition, curves of pressure amplification versus incident angle for waves obliquely incident on the hard and porous surfaces were produced which are similar to those in the literature. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance over hard surfaces as r to the power -1.2. This result is consistent with the work of Reed. For propagation over the porous ground surface, the model predicted that this surface decreased the decay rate with distance for the larger blasts compared to the rate expected in the linear acoustics limit.
FDTD Analysis of ELF Wave Propagation for Realistic Subionospheric Waveguide Models
Otsuyama, Takuya; Hayakawa, Masashi
The space formed by the ground and ionosphere is known to act as a resonator for extremely low frequency (ELF) waves. Lightning discharges trigger this global resonance, which is known as Schumann resonance. Even though the inhomogeneity (like day-night asymmetry, local perturbation etc.) is important for such a subionospheric ELF propagation, the previous analyses have been always made by some approximations because the problem is too complicated to be analyzed by any exact full-wave analysis. This paper presents the application of the conventional numerical FDTD (finite difference time domain) method to such a subionospheric ELF wave propagation, in which any kinds of inhomogeneities can be included in this analysis. The present paper is intended to demonstrate the workability of this method for a realistic waveguide (with day-night asymmetry), by comparing the results from this method with those by the corresponding analytical method.
FDTD analysis of ELF wave propagation and Schumann resonances for a subionospheric waveguide model
Otsuyama, T.; Sakuma, D.; Hayakawa, M.
2003-12-01
The space formed by the ground and ionosphere is known to act as a resonator for extremely low frequency (ELF) waves. Lightning discharges trigger this global resonance, which is known as Schumann resonance. Even though the inhomogeneity (like day-night asymmetry, local perturbation, etc.) is important for such a subionospheric ELF propagation, the previous analyses have been always made by some approximations because the problem is too complicated to be analyzed by any exact full-wave analysis. This paper presents the first application of the conventional numerical FDTD method to such a subionospheric ELF wave propagation, in which any kind of inhomogeneity can be included in this analysis. However, the present paper is intended to demonstrate the workability of this method only for a uniform waveguide (without day-night asymmetry), by comparing the results from this method with those by the corresponding analytical method.
Faraday Pilot-Waves: Generation and Propagation
Galeano-Rios, Carlos; Milewski, Paul; Nachbin, André; Bush, John
2015-11-01
We examine the dynamics of drops bouncing on a fluid bath subjected to vertical vibration. We solve a system of linear PDEs to compute the surface wave generation and propagation. Waves are triggered at each bounce, giving rise to the Faraday pilot-wave field. The model captures several of the behaviors observed in the laboratory, including transitions between a variety of bouncing and walking states, the Doppler effect, and droplet-droplet interactions. Thanks to the NSF.
EXACT ANALYSIS OF WAVE PROPAGATION IN AN INFINITE RECTANGULAR BEAM
Institute of Scientific and Technical Information of China (English)
孙卫明; 杨光松; 李东旭
2004-01-01
The Fourier series method was extended for the exact analysis of wave propagation in an infinite rectangular beam. Initially, by solving the three-dimensional elastodynamic equations a general analytic solution was derived for wave motion within the beam. And then for the beam with stress-free boundaries, the propagation characteristics of elastic waves were presented. This accurate wave propagation model lays a solid foundation of simultaneous control of coupled waves in the beam.
Ducted propagation of chorus waves: Cluster observations
Directory of Open Access Journals (Sweden)
K. H. Yearby
2011-09-01
Full Text Available Ducted propagation of whistler waves in the terrestrial magnetosphere-ionosphere system was discussed and studied long before the first in-situ spacecraft measurements. While a number of implicit examples of the existence of ducted propagation have been found, direct observation of ducts has been hampered by the low sampling rates of measurements of the plasma density. The present paper is based on Cluster observations of chorus waves. The ability to use measurements of the spacecraft potential as a proxy for high time resolution electron density measurements is exploited to identify a number of cases when increased chorus wave power, observed within the radiation belts, is observed simultaneously with density enchantments. It is argued that the observation of ducted propagation of chorus implies modification of numerical models for plasma-wave interactions within the radiation belts.
Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.
2015-12-01
We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.
Energy Technology Data Exchange (ETDEWEB)
Kim, K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Petersson, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-25
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examples and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.
Institute of Scientific and Technical Information of China (English)
Jiang Rui; Jin Wen-Long; Wu Qing-Song
2008-01-01
Recently, a number of efforts are underway to investigate inter-vehicle communications (IVC). This paper studies the instantaneous information propagation behaviours based on IVC in three different traffic situations (free flow,synchronized flow and stop-and-go waves) in a cellular automaton model. It is shown that different behaviours appear in stop-and-go waves from those in free flow and synchronized flow. While the distribution of Multi-hop Communication Distance (MhCD) is either exponential or uniform in free flow and synchronized flow, the distribution of MhCD is either exponential or with a single peak in stop-and-go waves.
GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage
Iturrarán-Viveros, Ursula; Molero-Armenta, Miguel
2015-01-01
Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.
Chacko, Nikhil; Liebling, Michael; Blu, Thierry
2013-10-01
Discretization of continuous (analog) convolution operators by direct sampling of the convolution kernel and use of fast Fourier transforms is highly efficient. However, it assumes the input and output signals are band-limited, a condition rarely met in practice, where signals have finite support or abrupt edges and sampling is nonideal. Here, we propose to approximate signals in analog, shift-invariant function spaces, which do not need to be band-limited, resulting in discrete coefficients for which we derive discrete convolution kernels that accurately model the analog convolution operator while taking into account nonideal sampling devices (such as finite fill-factor cameras). This approach retains the efficiency of direct sampling but not its limiting assumption. We propose fast forward and inverse algorithms that handle finite-length, periodic, and mirror-symmetric signals with rational sampling rates. We provide explicit convolution kernels for computing coherent wave propagation in the context of digital holography. When compared to band-limited methods in simulations, our method leads to fewer reconstruction artifacts when signals have sharp edges or when using nonideal sampling devices.
Modelling of acoustic waves propagating in nesting Fibonacci super-lattice phononic crystal
Zhao, Min; Qi, Hai-Feng; Xu, Jia-Hui; Xie, Ya-Zhuo; Zhang, Xing-Gan; Gao, Jian
2014-07-01
Herein, we report construction of one kind of nesting-Fibonacci-super-lattice phononic crystal, in which the super-lattice cell is a well-defined Fibonacci generation sequence. We present a comparative study on band-gap structures of acoustic waves propagating in one-dimensional, nesting Fibonacci-periodic structure and simple-periodic structure. We find that there are more band gaps in nesting Fibonacci super-lattice models, and that they present behavior different from the split-up of band gaps with different generation numbers. With the increase of generation number, more band gaps split and occur. Additionally, when generation number becomes larger, Bragg scattering becomes more significant: the characteristic curves become flatter and band gaps become wider. Furthermore, we study the effect of various parameters such as density, thickness and defects on band-gap structures. Our work is significant both for understanding the intrinsic physical properties of nesting Fibonacci sequences and for providing flexible choices to meet real engineering requirements.
Toyokuni, Genti; Takenaka, Hiroshi
2012-06-01
We propose a method for modeling global seismic wave propagation through an attenuative Earth model including the center. This method enables accurate and efficient computations since it is based on the 2.5-D approach, which solves wave equations only on a 2-D cross section of the whole Earth and can correctly model 3-D geometrical spreading. We extend a numerical scheme for the elastic waves in spherical coordinates using the finite-difference method (FDM), to solve the viscoelastodynamic equation. For computation of realistic seismic wave propagation, incorporation of anelastic attenuation is crucial. Since the nature of Earth material is both elastic solid and viscous fluid, we should solve stress-strain relations of viscoelastic material, including attenuative structures. These relations represent the stress as a convolution integral in time, which has had difficulty treating viscoelasticity in time-domain computation such as the FDM. However, we now have a method using so-called memory variables, invented in the 1980s, followed by improvements in Cartesian coordinates. Arbitrary values of the quality factor (Q) can be incorporated into the wave equation via an array of Zener bodies. We also introduce the multi-domain, an FD grid of several layers with different grid spacings, into our FDM scheme. This allows wider lateral grid spacings with depth, so as not to perturb the FD stability criterion around the Earth center. In addition, we propose a technique to avoid the singularity problem of the wave equation in spherical coordinates at the Earth center. We develop a scheme to calculate wavefield variables on this point, based on linear interpolation for the velocity-stress, staggered-grid FDM. This scheme is validated through a comparison of synthetic seismograms with those obtained by the Direct Solution Method for a spherically symmetric Earth model, showing excellent accuracy for our FDM scheme. As a numerical example, we apply the method to simulate seismic
Investigation into stress wave propagation in metal foams
Directory of Open Access Journals (Sweden)
Li Lang
2015-01-01
Full Text Available The aim of this study is to investigate stress wave propagation in metal foams under high-speed impact loading. Three-dimensional Voronoi model is established to represent real closed-cell foam. Based on the one-dimensional stress wave theory and Voronoi model, a numerical model is developed to calculate the velocity of elastic wave and shock wave in metal foam. The effects of impact velocity and relative density of metal foam on the stress wave propagation in metal foams are explored respectively. The results show that both elastic wave and shock wave propagate faster in metal foams with larger relative density; with increasing the impact velocity, the shock wave propagation velocity increase, but the elastic wave propagation is not sensitive to the impact velocity.
Cai, H.; Wang, X.
2006-01-01
Based on Timoshenko laminated beam models, this paper investigates the influence of initial stress on the vibration and transverse wave propagation in individual multi-wall carbon nanotubes (MWNTs) under ultrahigh frequency (above 1 THz), in which the initial stress in the MWNTs can occur due to thermal or lattice mismatch between different materials. Considering van der Waals force interaction between two adjacent tubes and effects of rotary inertia and shear deformation, results show that the initial stress in individual multi-wall carbon nanotubes not only affects the number of transverse wave speeds and the magnitude of transverse wave speeds, but also terahertz critical frequencies at which the number of wave speeds changes. When the initial stress in individual multi-wall carbon nanotubes is the compressive stress, transverse wave speeds decrease and the vibration amplitude ratio of two adjacent tubes increases. When the initial stress in individual multi-wall carbon nanotubes is the tensile stress, transverse wave speeds increase and the vibration amplitude ratio of two adjacent tubes decreases. The investigation of the effects of initial stress on transverse wave propagation in carbon nanotubes may be used as a useful reference for the application and the design of nanoelectronic and nanodrive devices, nano-oscillators, and nanosensors, in which carbon nanotubes act as basic elements.
Bilbao, Stefan; Harrison, Reginald
2016-07-01
Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results.
Yu, Ting; Chaix, Jean-François; Komatitsch, Dimitri; Garnier, Vincent; Audibert, Lorenzo; Henault, Jean-Marie
2017-02-01
Multiple scattering is important when ultrasounds propagate in a heterogeneous medium such as concrete, the scatterer size of which is in the order of the wavelength. The aim of this work is to build a 2D numerical model of ultrasonic wave propagation integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering could be obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. After the creation of numerical model under several assumptions, its validation is completed in a case of scattering by one cylinder through the comparison with analytical solution. Two cases of multiple scattering by a set of cylinders at different concentrations are simulated to perform a parametric study (of frequency, scatterer concentration, scatterer size). The effective properties are compared with the predictions of Waterman-Truell model as well, to verify its validity.
Morelli, Andrea; Danecek, Peter; Molinari, Irene; Postpischl, Luca; Schivardi, Renata; Serretti, Paola; Tondi, Maria Rosaria
2010-05-01
Together with the building and maintenance of observational and data banking infrastructures - i.e. an integrated organization of coordinated sensor networks, in conjunction with connected data banks and efficient data retrieval tools - a strategic vision for bolstering the future development of geophysics in Europe should also address the essential issue of improving our current ability to model coherently the propagation of seismic waves across the European plate. This impacts on fundamental matters, such as correctly locating earthquakes, imaging detailed earthquake source properties, modeling ground shaking, inferring geodynamic processes. To this extent, we both need detailed imaging of shallow and deep earth structure, and accurate modeling of seismic waves by numerical methods. Our current abilities appear somewhat limited, but emerging technologies may enable soon a significant leap towards better accuracy and reliability. To contribute to this debate, we present here the state-of-the-art of knowledge of earth structure and numerical wave modeling in the European plate, as the result of a comprehensive study towards the definition of a continental-scale reference model. Our model includes a description of crustal structure (EPcrust) merging information deriving from previous studies - large-scale compilations, seismic prospection, receiver functions, inversion of surface wave dispersion measurements and Green functions from noise correlation. We use a simple description of crustal structure, with laterally-varying sediment and cristalline layers thickness, density, and seismic parameters. This a priori crustal model improves the overall fit to observed Bouguer anomaly maps over CRUST2.0. The new crustal model is then used as a constraint in the inversion for mantle shear wave speed, based on fitting Love and Rayleigh surface wave dispersion. The new mantle model sensibly improves over global S models in the imaging of shallow asthenospheric (slow) anomalies
Topology Optimization for Transient Wave Propagation Problems
DEFF Research Database (Denmark)
Matzen, René
as for vectorial elastic wave propagation problems using finite element analysis [P2], [P4]. The concept is implemented in a parallel computing code that includes efficient techniques for performing gradient based topology optimization. Using the developed computational framework the thesis considers four...... new technology, by designing new materials and their layout. The thesis presents a general framework for applying topology optimization in the design of material layouts for transient wave propagation problems. In contrast to the high level of modeling in the frequency domain, time domain topology...
Stochastic model in microwave propagation
Energy Technology Data Exchange (ETDEWEB)
Ranfagni, A. [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Mugnai, D., E-mail: d.mugnai@ifac.cnr.it [“Nello Carrara” Institute of Applied Physics, CNR Florence Research Area, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy)
2011-11-28
Further experimental results of delay time in microwave propagation are reported in the presence of a lossy medium (wood). The measurements show that the presence of a lossy medium makes the propagation slightly superluminal. The results are interpreted on the basis of a stochastic (or path integral) model, showing how this model is able to describe each kind of physical system in which multi-path trajectories are present. -- Highlights: ► We present new experimental results on electromagnetic “anomalous” propagation. ► We apply a path integral theoretical model to wave propagation. ► Stochastic processes and multi-path trajectories in propagation are considered.
Yang, Yang; Zhang, Lixiang; Lim, C. W.
2011-04-01
This paper is concerned with the characteristics of wave propagation in double-walled carbon nanotubes (DWCNTs). The DWCNTs is simulated with a Timoshenko beam model based on the nonlocal continuum elasticity theory, referred to as an analytically nonlocal Timoshenko-beam (ANT) model. The governing equations of the DWCNTs beam consist of a set of four equations that are derived from the variational principle of the beam with high-order boundary conditions at the both ends, in which the effects of the nano-scale nonlocality and the van der Waals interaction between inner and outer tubes are inclusive. The characteristics of the wave propagation in the DWCNTs beam were analyzed with the new ANT model proposed and the comparisons with the partially nonlocal Timoshenko-beam (PNT) models in publication were made in details. The results show that the nonlocal effects of the ANT model proposed in the present study on the wave propagations are more significant because it is in stronger stiffness enhancement to the DWCNTs beam.
Wave propagation and group velocity
Brillouin, Léon
1960-01-01
Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter
Wave equations for pulse propagation
Energy Technology Data Exchange (ETDEWEB)
Shore, B.W.
1987-06-24
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity. The memo discusses various ways of characterizing the polarization characteristics of plane waves, that is, of parameterizing a transverse unit vector, such as the Jones vector, the Stokes vector, and the Poincare sphere. It discusses the connection between macroscopically defined quantities, such as the intensity or, more generally, the Stokes parameters, and microscopic field amplitudes. The material presented here is a portion of a more extensive treatment of propagation to be presented separately. The equations presented here have been described in various books and articles. They are collected here as a summary and review of theory needed when treating pulse propagation.
Optimized Variational 1D Boussinesq modelling of coastal waves propagating over a slope
Adytia, D.; van Groesen, Embrecht W.C.
2012-01-01
The Variational Boussinesq Model (VBM) for waves is based on the essential property that wave phenomena can be exactly described as a Hamiltonian system. In the VBM, the fluid potential in the expression of the kinetic energy is approximated by its value at the free surface plus a linear combination
A Model for the Propagation of Nonlinear Surface Waves over Viscous Muds
2007-07-05
grained, cohesive sedimentary 1993; Foda et al., 1993). With the exception of fluidization environments is well known. Extreme dissipation rates have...processes ( Foda et al., 1993; DeWit, 1995), these models focus on a single, well-defined mud phase. Although the models Corresponding author. Tel.: +1...However, surface-interface wave interactions ( Foda , 1989; Hill and Foda , our focus at the present is on a wave model which can be 1998; Jamali et al
Wave propagation of the traffic flow dynamic model based on wavefront expansion
Institute of Scientific and Technical Information of China (English)
李莉; 施鹏飞
2004-01-01
This paper discusses propagation of perturbations along traffic flow modeled by a modified second-order macroscopic model through the wavefront expansion technique. The coefficients in this expansion satisfy a sequence of transport equations that can be solved analytically. One of these analytic solutions yields information about wavefront shock. Numerical simulations based on a Padé approximation of this expansion were done at the end of this paper and results showed that propagation of perturbations at traffic flow speed conforms to the theoretical analysis results.
Wave propagation in axially moving periodic strings
DEFF Research Database (Denmark)
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-01-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drive...
Ba, Jing; Xu, Wenhao; Fu, Li-Yun; Carcione, José M.; Zhang, Lin
2017-03-01
Heterogeneity of rock's fabric can induce heterogeneous distribution of immiscible fluids in natural reservoirs, since the lithological variations (mainly permeability) may affect fluid migration in geological time scales, resulting in patchy saturation of fluids. Therefore, fabric and saturation inhomogeneities both affect wave propagation. To model the wave effects (attenuation and velocity dispersion), we introduce a double double-porosity model, where pores saturated with two different fluids overlap with pores having dissimilar compressibilities. The governing equations are derived by using Hamilton's principle based on the potential energy, kinetic energy, and dissipation functions, and the stiffness coefficients are determined by gedanken experiments, yielding one fast P wave and four slow Biot waves. Three examples are given, namely, muddy siltstones, clean dolomites, and tight sandstones, where fabric heterogeneities at three different spatial scales are analyzed in comparison with experimental data. In muddy siltstones, where intrapore clay and intergranular pores constitute a submicroscopic double-porosity structure, wave anelasticity mainly occurs in the frequency range (104-107 Hz), while in pure dolomites with microscopic heterogeneity of grain contacts and tight sandstones with mesoscopic heterogeneity of less consolidated sands, it occurs at 103-107 Hz and 101-103 Hz (seismic band), respectively. The predicted maximum quality factor of the fast compressional wave for the sandstone is the lowest (approximately 8), and that of the dolomite is the highest. The results of the diffusive slow waves are affected by the strong friction effects between solids and fluids. The model describes wave propagation in patchy-saturated rocks with fabric heterogeneity at different scales, and the relevant theoretical predictions agree well with the experimental data in fully and partially saturated rocks.
Survey of propagation Model in wireless Network
Directory of Open Access Journals (Sweden)
Hemant Kumar Sharma
2011-05-01
Full Text Available To implementation of mobile ad hoc network wave propagation models are necessary to determine propagation characteristic through a medium. Wireless mobile ad hoc networks are self creating and self organizing entity. Propagation study provides an estimation of signal characteristics. Accurate prediction of radio propagation behaviour for MANET is becoming a difficult task. This paper presents investigation of propagation model. Radio wave propagation mechanisms are absorption, reflection, refraction, diffraction and scattering. This paper discuss free space model, two rays model, and cost 231 hata and its variants and fading model, and summarized the advantages and disadvantages of these model. This study would be helpful in choosing the correct propagation model.
A model experiment to assess the effects of inclusions on wave propagation in soil media
Energy Technology Data Exchange (ETDEWEB)
Houston, Thomas W [Los Alamos National Laboratory; Ray, Richard P [UNIV OS SOUTH CAROLINA
2009-01-01
A data acquisition system has been assembled using Micro-Electro-Mechanical Systems (MEMS) technology which provides a flexible data gathering capability to support recording accelerations at various locations within a sand filled 5 meter square test pit that has a depth extending into underlying gravelly soils. Dual-axis accelerometers weighing less than 1 gram each, made possible by advances in MEMS technology, are connected to up to 5 data acquisition (PXI modules) boards, each capable of controlling and recording data from 16 separate dual axis accelerometers. This data acquisition system is used to measure and record acceleration data from wave propagations that are generated by the impact of a hammer on a striker plate and are modified by an inclusion or occlusion buried in the soil media. Thirty-four two-axis accelerometers were placed at surface and embedded locations on either side of various inclusions buried in the test pit. This large number of accelerometers permits experimentally obtaining high quality spatial and temporal data that can describe the character of the generated wave-forms and the modification of those wave-forms caused by the inclusion. A number of differing materials and geometric forms are used to create inclusions in order to provide sufficient data to permit ascertaining the ability of the measurements to describe the character of the inclusion. Continuous Wavelet Transforms are used to remove background noise and to aid interpretation of the character of the generated wave-form.
Wave Propagation in Modified Gravity
Lindroos, Jan Ø; Mota, David F
2015-01-01
We investigate the propagation of scalar waves induced by matter sources in the context of scalar-tensor theories of gravity which include screening mechanisms for the scalar degree of freedom. The usual approach when studying these theories in the non-linear regime of cosmological perturbations is based on the assumption that scalar waves travel at the speed of light. Within General Relativity such approximation is good and leads to no loss of accuracy in the estimation of observables. We find, however, that mass terms and non-linearities in the equations of motion lead to propagation and dispersion velocities significantly different from the speed of light. As the group velocity is the one associated to the propagation of signals, a reduction of its value has direct impact on the behavior and dynamics of nonlinear structures within modified gravity theories with screening. For instance, the internal dynamics of galaxies and satellites submerged in large dark matter halos could be affected by the fact that t...
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...... for alternative excitation cases. The differences between two regimes, the low frequency one, when a waveguide supports only one propagating wave, and the high frequency one, when several waves are supported, are demonstrated and explained....
Wave equations for pulse propagation
Shore, B. W.
1987-06-01
Theoretical discussions of the propagation of pulses of laser radiation through atomic or molecular vapor rely on a number of traditional approximations for idealizing the radiation and the molecules, and for quantifying their mutual interaction by various equations of propagation (for the radiation) and excitation (for the molecules). In treating short-pulse phenomena it is essential to consider coherent excitation phenomena of the sort that is manifest in Rabi oscillations of atomic or molecular populations. Such processes are not adequately treated by rate equations for excitation nor by rate equations for radiation. As part of a more comprehensive treatment of the coupled equations that describe propagation of short pulses, this memo presents background discussion of the equations that describe the field. This memo discusses the origin, in Maxwell's equations, of the wave equation used in the description of pulse propagation. It notes the separation into lamellar and solenoidal (or longitudinal and transverse) and positive and negative frequency parts. It mentions the possibility of separating the polarization field into linear and nonlinear parts, in order to define a susceptibility or index of refraction and, from these, a phase and group velocity.
Propagation of sound waves in ducts
DEFF Research Database (Denmark)
Jacobsen, Finn
2000-01-01
Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described.......Plane wave propagation in ducts with rigid walls, radiation from ducts, classical four-pole theory for composite duct systems, and three-dimentional waves in wave guides of various cross-sectional shape are described....
A hybrid scheme for absorbing edge reflections in numerical modeling of wave propagation
Liu, Yang
2010-03-01
We propose an efficient scheme to absorb reflections from the model boundaries in numerical solutions of wave equations. This scheme divides the computational domain into boundary, transition, and inner areas. The wavefields within the inner and boundary areas are computed by the wave equation and the one-way wave equation, respectively. The wavefields within the transition area are determined by a weighted combination of the wavefields computed by the wave equation and the one-way wave equation to obtain a smooth variation from the inner area to the boundary via the transition zone. The results from our finite-difference numerical modeling tests of the 2D acoustic wave equation show that the absorption enforced by this scheme gradually increases with increasing width of the transition area. We obtain equally good performance using pseudospectral and finite-element modeling with the same scheme. Our numerical experiments demonstrate that use of 10 grid points for absorbing edge reflections attains nearly perfect absorption. © 2010 Society of Exploration Geophysicists.
Theory of wave propagation in partially saturated double-porosity rocks: a triple-layer patchy model
Sun, Weitao; Ba, Jing; Carcione, José M.
2016-04-01
Wave-induced local fluid flow is known as a key mechanism to explain the intrinsic wave dissipation in fluid-saturated rocks. Understanding the relationship between the acoustic properties of rocks and fluid patch distributions is important to interpret the observed seismic wave phenomena. A triple-layer patchy (TLP) model is proposed to describe the P-wave dissipation process in a double-porosity media saturated with two immiscible fluids. The double-porosity rock consists of a solid matrix with unique host porosity and inclusions which contain the second type of pores. Two immiscible fluids are considered in concentric spherical patches, where the inner pocket and the outer sphere are saturated with different fluids. The kinetic and dissipation energy functions of local fluid flow (LFF) in the inner pocket are formulated through oscillations in spherical coordinates. The wave propagation equations of the TLP model are based on Biot's theory and the corresponding Lagrangian equations. The P-wave dispersion and attenuation caused by the Biot friction mechanism and the local fluid flow (related to the pore structure and the fluid distribution) are obtained by a plane-wave analysis from the Christoffel equations. Numerical examples and laboratory measurements indicate that P-wave dispersion and attenuation are significantly influenced by the spatial distributions of both, the solid heterogeneity and the fluid saturation distribution. The TLP model is in reasonably good agreement with White's and Johnson's models. However, differences in phase velocity suggest that the heterogeneities associated with double-porosity and dual-fluid distribution should be taken into account when describing the P-wave dispersion and attenuation in partially saturated rocks.
Le Blanc, J.-L.; Wells, N. C.
2003-04-01
A reduced-gravity 21/2 layer model was used to investigate the influence of friction and model resolution on the propagation of a single Kelvin wave through the Indonesian Seas. A set of experiments with different eddy viscosities, ranging from 50 m2/s to 10 000 m2/s, and different grid resolutions, ranging from 1/4th of a degree to 1/12th of a degree, has been performed. Application was made on the propagation of a single Indian Ocean equatorial Kelvin wave through the Indonesian Seas. Results using no-slip boundary condition and a 1/4th of a degree grid size show that for a eddy viscosity higher than 1000 m2/s, more than 70% of the initial Kelvin wave's energy is dissipated namely along the coasts. The use of a 1/12th of a degree model resolution does not change these results significantly. Consequently, one may conclude that the major Indonesian straits, namely the Lombok Strait, the Ombai Strait and the Timor Passage, are well resolved with a 1/4th of a degree model resolution. The choice of the eddy viscosity remains mainly arbitrary. Depending on the eddy viscosity that is used, the amount of energy that propagates through the numerous Indonesian islands and that reaches the Pacific Ocean varies from 6% of the initial Kelvin wave's energy, down to 0.5%, for eddy viscosities s ranging from 50 m2/s to 10 000 m2/s respectively.
Obliquely propagating dust-density waves
Piel, A.; Arp, O.; Klindworth, M.; Melzer, A.
2008-02-01
Self-excited dust-density waves are experimentally studied in a dusty plasma under microgravity. Two types of waves are observed: a mode inside the dust volume propagating in the direction of the ion flow and another mode propagating obliquely at the boundary between the dusty plasma and the space charge sheath. The dominance of oblique modes can be described in the frame of a fluid model. It is shown that the results fom the fluid model agree remarkably well with a kinetic electrostatic model of Rosenberg [J. Vac. Sci. Technol. A 14, 631 (1996)]. In the experiment, the instability is quenched by increasing the gas pressure or decreasing the dust density. The critical pressure and dust density are well described by the models.
Liang, C.; Dunham, E. M.; OReilly, O. J.; Karlstrom, L.
2015-12-01
Both the oscillation of magma in volcanic conduits and resonance of fluid-filled cracks (dikes and sills) are appealing explanations for very long period signals recorded at many active volcanoes. While these processes have been studied in isolation, real volcanic systems involve interconnected networks of conduits and cracks. The overall objective of our work is to develop a model of wave propagation and ultimately eruptive fluid dynamics through this coupled system. Here, we present a linearized model for wave propagation through a conduit with multiple cracks branching off of it. The fluid is compressible and viscous, and is comprised of a mixture of liquid melt and gas bubbles. Nonequilibrium bubble growth and resorption (BGR) is quantified by introducing a time scale for mass exchange between phases, following the treatment in Karlstrom and Dunham (2015). We start by deriving the dispersion relation for crack waves travelling along the multiphase-magma-filled crack embedded in an elastic solid. Dissipation arises from magma viscosity, nonequilibrium BGR, and radiation of seismic waves into the solid. We next introduce coupling conditions between the conduit and crack, expressing conservation of mass and the balance of forces across the junction. Waves in the conduit, like those in the crack, are influenced by nonequilibrium BGR, but the deformability of the surrounding solid is far less important than for cracks. Solution of the coupled system of equations provides the evolution of pressure and fluid velocity within the conduit-crack system. The system has various resonant modes that are sensitive to fluid properties and to the geometry of the conduit and cracks. Numerical modeling of seismic waves in the solid allows us to generate synthetic seismograms.
Maneva, Yana G.; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2017-02-01
In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magnetic field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.
Institute of Scientific and Technical Information of China (English)
Chen Bao-Xin
2006-01-01
An elliptical Gaussian wave formalism model of a charged-particle beam is proposed by analogy with an elliptical Gaussian light beam.In the paraxial approximation.the charged-particle beam can be described as a whole by a complex radius of curvature in the real space domains.Therefore,the propagation and transform of charged-particle beam passing through a first-order optical system is represented by the ABCD-like law.As an example of the application of this model,the relation between the beam waist and the minimum beam spot at a fixed target is discussed.The result.well matches that from conventional phase space model,and proves that the Gaussian wave formalism model is highly effective and reasonable.
Garcia, Raphael F.; Brissaud, Quentin; Rolland, Lucie; Martin, Roland; Komatitsch, Dimitri; Spiga, Aymeric; Lognonné, Philippe; Banerdt, Bruce
2016-12-01
The propagation of acoustic and gravity waves in planetary atmospheres is strongly dependent on both wind conditions and attenuation properties. This study presents a finite-difference modeling tool tailored for acoustic-gravity wave applications that takes into account the effect of background winds, attenuation phenomena (including relaxation effects specific to carbon dioxide atmospheres) and wave amplification by exponential density decrease with height. The simulation tool is implemented in 2D Cartesian coordinates and first validated by comparison with analytical solutions for benchmark problems. It is then applied to surface explosions simulating meteor impacts on Mars in various Martian atmospheric conditions inferred from global climate models. The acoustic wave travel times are validated by comparison with 2D ray tracing in a windy atmosphere. Our simulations predict that acoustic waves generated by impacts can refract back to the surface on wind ducts at high altitude. In addition, due to the strong nighttime near-surface temperature gradient on Mars, the acoustic waves are trapped in a waveguide close to the surface, which allows a night-side detection of impacts at large distances in Mars plains. Such theoretical predictions are directly applicable to future measurements by the INSIGHT NASA Discovery mission.
Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob
2016-06-01
In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.
Wave propagation in sandwich panels with a poroelastic core.
Liu, Hao; Finnveden, Svante; Barbagallo, Mathias; Arteaga, Ines Lopez
2014-05-01
Wave propagation in sandwich panels with a poroelastic core, which is modeled by Biot's theory, is investigated using the waveguide finite element method. A waveguide poroelastic element is developed based on a displacement-pressure weak form. The dispersion curves of the sandwich panel are first identified as propagating or evanescent waves by varying the damping in the panel, and wave characteristics are analyzed by examining their motions. The energy distributions are calculated to identify the dominant motions. Simplified analytical models are also devised to show the main physics of the corresponding waves. This wave propagation analysis provides insight into the vibro-acoustic behavior of sandwich panels lined with elastic porous materials.
Solitary Wave Propagation Influenced by Submerged Breakwater
Institute of Scientific and Technical Information of China (English)
王锦; 左其华; 王登婷
2013-01-01
The form of Boussinesq equation derived by Nwogu (1993) using velocity at an arbitrary distance and surface elevation as variables is used to simulate wave surface elevation changes. In the numerical experiment, water depth was divided into five layers with six layer interfaces to simulate velocity at each layer interface. Besides, a physical experiment was carried out to validate numerical model and study solitary wave propagation.“Water column collapsing”method (WCCM) was used to generate solitary wave. A series of wave gauges around an impervious breakwater were set-up in the flume to measure the solitary wave shoaling, run-up, and breaking processes. The results show that the measured data and simulated data are in good agreement. Moreover, simulated and measured surface elevations were analyzed by the wavelet transform method. It shows that different wave frequencies stratified in the wavelet amplitude spectrum. Finally, horizontal and vertical velocities of each layer interface were analyzed in the process of solitary wave propagation through submerged breakwater.
Rigorous 2D Model for Study of Pulsed and Monochromatic Waves Propagation Near the Earth’s Surface
Directory of Open Access Journals (Sweden)
Seil S. Sautbekov
2014-01-01
Full Text Available A model problem considered in the paper allows solving rather complex 2D problems of the electromagnetic wave propagation with a required accuracy using conventional personal computers. The problems are of great importance for the theory and practical applications. The association of FDTD schemes with exact absorbing conditions makes up the basis for constructing models of the kind. This approach reduces the original open initial boundary value problems to the equivalent closed problems which can be solved numerically using the standard grid methods.
Berjamin, Harold; Vergez, Christophe; Cottanceau, Emmanuel
2015-01-01
A time-domain numerical modeling of brass instruments is proposed. On one hand, outgoing and incoming waves in the resonator are described by the Menguy-Gilbert model, which incorporates three key issues: nonlinear wave propagation, viscothermal losses, and a variable section. The non-linear propagation is simulated by a TVD scheme well-suited to non-smooth waves. The fractional derivatives induced by the viscothermal losses are replaced by a set of local-in-time memory variables. A splitting strategy is followed to couple optimally these dedicated methods. On the other hand, the exciter is described by a one-mass model for the lips. The Newmark method is used to integrate the nonlinear ordinary differential equation so-obtained. At each time step, a coupling is performed between the pressure in the tube and the displacement of the lips. Finally, an extensive set of validation tests is successfully completed. In particular, self-sustained oscillations of the lips are simulated by taking into account the nonli...
Pal, Sujay
2015-01-01
In this thesis, we theoretically predict the normal characteristics of Very Low Frequency (3~30 kHz) radio wave propagation through Earth-ionosphere waveguide corresponding to normal behavior of the D-region ionosphere. We took the VLF narrow band data from the receivers of Indian Centre for Space Physics (ICSP) to validate our models. Detection of sudden ionospheric disturbances (SIDs) are common to all the measurements. We apply our theoretical models to infer the D-region characteristics and to reproduce the observed VLF signal behavior corresponding to such SIDs. We develop a code based on ray theory to simulate the diurnal behavior of VLF signals over short propagation paths (2000~3000 km). The diurnal variation from this code are comparable to the variation obtained from a more general Long Wave Propagation Capability (LWPC) code which is based on mode theory approach. We simulate the observational results obtained during the Total Solar Eclipse of July 22, 2009 in India. We also report and simulate a h...
The Applicability of Acoustic Wave Propagation Models to Silica Sols and Gels.
Holmes; Challis
1999-08-01
Acoustic attenuation and phase velocity in the frequency range 2-50 MHz have been measured in a series of silica sols and gels with particle sizes in the range 12-30 nm, and concentrations in the range 5-40% (w/w). Results have been compared with both scattering and hydrodynamic models of acoustic propagation in colloids. Differences between measured and simulated results indicate that present models are inadequate for very small particle sizes and small particle separations (<50 nm), where very high number concentrations of scatterers are present. Copyright 1999 Academic Press.
Modelling of wave propagation over a submerged sand bar using SWASH
Digital Repository Service at National Institute of Oceanography (India)
Jishad, M.; Vu, T.T.T.; JayaKumar, S.
for the case of a moderately high wave energy, due to significant variations in the bed morphology, the model under-performed towards the later part of the simulation However, incorporating a modified bathymetry considering the variation in the bed morphology...
Large-scale Globally Propagating Coronal Waves
Directory of Open Access Journals (Sweden)
Alexander Warmuth
2015-09-01
Full Text Available Large-scale, globally propagating wave-like disturbances have been observed in the solar chromosphere and by inference in the corona since the 1960s. However, detailed analysis of these phenomena has only been conducted since the late 1990s. This was prompted by the availability of high-cadence coronal imaging data from numerous spaced-based instruments, which routinely show spectacular globally propagating bright fronts. Coronal waves, as these perturbations are usually referred to, have now been observed in a wide range of spectral channels, yielding a wealth of information. Many findings have supported the “classical” interpretation of the disturbances: fast-mode MHD waves or shocks that are propagating in the solar corona. However, observations that seemed inconsistent with this picture have stimulated the development of alternative models in which “pseudo waves” are generated by magnetic reconfiguration in the framework of an expanding coronal mass ejection. This has resulted in a vigorous debate on the physical nature of these disturbances. This review focuses on demonstrating how the numerous observational findings of the last one and a half decades can be used to constrain our models of large-scale coronal waves, and how a coherent physical understanding of these disturbances is finally emerging.
Propagating wave correlations in complex systems
Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor
2017-01-01
We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.
Boussinesq Modeling of Wave Propagation and Runup over Fringing Coral Reefs, Model Evaluation Report
2007-12-01
61 Figure 59. Water level variation recorded at Pago Bay tide gauge in October 2005 ........................ 61 Figure 60...predominant wave direction during the storm was 70° (ENE). Information on water level changes was obtained from a NOAA tide gauge located in Pago Bay...W at er Le ve l( m ) 0.2 0.4 0.6 10/24 00:00 10/16 00:00 10/18 00:00 10/20 00:00 10/22 00:00 Figure 59. Water level variation recorded at Pago Bay
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2013-01-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the “classical” models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior. PMID:24376285
Sisto, Renata; Shera, Christopher A.; Moleti, Arturo; Botti, Teresa
2011-11-01
Recent basilar-membrane (BM) vibration experiments show that the phase slope of the distortion product (DP) in the cochlear region in which a backward-traveling wave is expected is negative, which is typical of a forward-traveling wave, according to the predictions of quasi-linear approximate solutions of classical 1-D transmission-line cochlear models. This phase behavior has been interpreted as suggesting a strong deviation from the "classical" models of the otoacoustic emission (OAE) generation and transmission. In this paper, the DP phase inversion phenomenon is approached from a conservative point of view. The DP phase is calculated in a classical cochlear model. The main conclusion is that deviations from the classical model are not necessary to account for the observed phase behavior.
Wave Propagation in Jointed Geologic Media
Energy Technology Data Exchange (ETDEWEB)
Antoun, T
2009-12-17
Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.
Simioni, Stephan; Sidler, Rolf; Dual, Jürg; Schweizer, Jürg
2015-04-01
Avalanche control by explosives is among the key temporary preventive measures. Yet, little is known about the mechanism involved in releasing avalanches by the effect of an explosion. Here, we test the hypothesis that the stress induced by acoustic waves exceeds the strength of weak snow layers. Consequently the snow fails and the onset of rapid crack propagation might finally lead to the release of a snow slab avalanche. We performed experiments with explosive charges over a snowpack. We installed microphones above the snowpack to measure near-surface air pressure and accelerometers within three snow pits. We also recorded pit walls of each pit with high speed cameras to detect weak layer failure. Empirical relationships and a priori information from ice and air were used to characterize a porous layered model from density measurements of snow profiles in the snow pits. This model was used to perform two-dimensional numerical simulations of wave propagation in Biot-type porous material. Locations of snow failure were identified in the simulation by comparing the axial and deviatoric stress field of the simulation to the corresponding snow strength. The identified snow failure locations corresponded well with the observed failure locations in the experiment. The acceleration measured in the snowpack best correlated with the modeled acceleration of the fluid relative to the ice frame. Even though the near field of the explosion is expected to be governed by non-linear effects as for example the observed supersonic wave propagation in the air above the snow surface, the results of the linear poroelastic simulation fit well with the measured air pressure and snowpack accelerations. The results of this comparison are an important step towards quantifying the effectiveness of avalanche control by explosives.
A new global model for the ionospheric F2 peak height for radio wave propagation
Directory of Open Access Journals (Sweden)
M. M. Hoque
2012-05-01
Full Text Available The F2-layer peak density height hmF2 is one of the most important ionospheric parameters characterizing HF propagation conditions. Therefore, the ability to model and predict the spatial and temporal variations of the peak electron density height is of great use for both ionospheric research and radio frequency planning and operation. For global hmF2 modelling we present a nonlinear model approach with 13 model coefficients and a few empirically fixed parameters. The model approach describes the temporal and spatial dependencies of hmF2 on global scale. For determining the 13 model coefficients, we apply this model approach to a large quantity of global hmF2 observational data obtained from GNSS radio occultation measurements onboard CHAMP, GRACE and COSMIC satellites and data from 69 worldwide ionosonde stations. We have found that the model fits to these input data with the same root mean squared (RMS and standard deviations of 10%. In comparison with the electron density NeQuick model, the proposed Neustrelitz global hmF2 model (Neustrelitz Peak Height Model – NPHM shows percentage RMS deviations of about 13% and 12% from the observational data during high and low solar activity conditions, respectively, whereas the corresponding deviations for the NeQuick model are found 18% and 16%, respectively.
Theoretical modeling of propagation of magneto-acoustic waves in magnetic regions below sunspots
Khomenko, E; Collados, M; Parchevsky, K; Olshevsky, V
2008-01-01
We use 2D numerical simulations and eikonal approximation to study properties of magneto-acoustic gravity waves traveling below the solar surface through the magnetic structure of sunspots. We consider a series of magnetostatic models of sunspots of different magnetic field strengths, from the deep interior to the chromosphere. The purpose of these studies is to quantify the effect of the magnetic field on local helioseismology measurements. Waves are excited by a sub-photospheric source located in the region beta slightly larger than 1. Time-distance diagrams and travel times are calculated for various frequency intervals and compared to the non-magnetic case. The results confirm that the observed time-distance helioseismology signals in sunspot regions correspond to fast MHD waves. The slow MHD waves form a distinctly different pattern in the time-distance diagram, which has not been detected in observations. The numerical results are in good agreement with the solution in the short-wavelength (eikonal) app...
Observations of Obliquely Propagating Electron Bernstein Waves
DEFF Research Database (Denmark)
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media
Semblat, Jean-François
2011-01-01
To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the B...
Ozevin, Didem; Fazel, Hossein; Cox, Justin; Hardman, William; Kessler, Seth S.; Timmons, Alan
2014-04-01
Gearbox components of aerospace structures are typically made of brittle materials with high fracture toughness, but susceptible to fatigue failure due to continuous cyclic loading. Structural Health Monitoring (SHM) methods are used to monitor the crack growth in gearbox components. Damage detection methodologies developed in laboratory-scale experiments may not represent the actual gearbox structural configuration, and are usually not applicable to real application as the vibration and wave properties depend on the material, structural layers and thicknesses. Also, the sensor types and locations are key factors for frequency content of ultrasonic waves, which are essential features for pattern recognition algorithm development in noisy environments. Therefore, a deterministic damage detection methodology that considers all the variables influencing the waveform signature should be considered in the preliminary computation before any experimental test matrix. In order to achieve this goal, we developed two dimensional finite element models of a gearbox cross section from front view and shaft section. The cross section model consists of steel revolving teeth, a thin layer of oil, and retention plate. An ultrasonic wave up to 1 MHz frequency is generated, and waveform histories along the gearbox are recorded. The received waveforms under pristine and cracked conditions are compared in order to analyze the crack influence on the wave propagation in gearbox, which can be utilized by both active and passive SHM methods.
Lamb Wave Propagation in Laminated Composite Structures
Gopalakrishnan, S.
2013-01-01
Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.
Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang
2016-05-01
For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.
Liu, Xiaotong; Zhou, Li; Ouyang, Qinghua
2016-04-01
This paper presents a novel two-layer spectral finite element model, consisting of PZT wafer and host structure, to simulate PZT-induced Lamb wave propagation in beam-like and plate-like structures. Based on the idea of equal displacement on the interface between PZT wafer and host structure, the one-dimensional spectral beam element of PZT-host beam and two-dimensional spectral plate element of PZT-host plate are considered as one hybrid element, respectively. A novel approach is proposed by taking the coupling effect of piezoelectric transducers in the thickness direction into account. The dynamic equation of the two-layer spectral element is derived from Hamilton's principle. Validity of the developed spectral finite element is verified through numerical simulation. The result indicates that, compared with the conventional finite element method (FEM) based on elasticity, the proposed spectral finite element is proved to have a high accuracy in modeling Lamb wave propagation, meanwhile, significantly improve the calculation efficiency.
Luo, Cong; Friederich, Wolfgang
2016-04-01
Realistic shallow seismic wave propagation simulation is an important tool for studying induced seismicity (e.g., during geothermal energy development). However over a long time, there is a significant problem which constrains computational seismologists from performing a successful simulation conveniently: pre-processing. Conventional pre-processing has often turned out to be inefficient and unrobust because of the miscellaneous operations, considerable complexity and insufficiency of available tools. An integrated web-based platform for shallow seismic wave propagation simulation has been built. It is aiming at providing a user-friendly pre-processing solution, and cloud-based simulation abilities. The main features of the platform for the user include: revised digital elevation model (DEM) retrieving and processing mechanism; generation of multi-layered 3D shallow Earth model geometry (the computational domain) with user specified surface topography based on the DEM; visualization of the geometry before the simulation; a pipeline from geometry to fully customizable hexahedral element mesh generation; customization and running the simulation on our HPC; post-processing and retrieval of the results over cloud. Regarding the computational aspect, currently the widely accepted specfem3D is chosen as the computational package; packages using different types of elements can be integrated as well in the future. According to our trial simulation experiments, this web-based platform has produced accurate waveforms while significantly simplifying and enhancing the pre-processing and improving the simulation success rate.
High-Resolution Finite Volume Modeling of Wave Propagation in Orthotropic Poroelastic Media
Lemoine, Grady I; LeVeque, Randall J
2012-01-01
Poroelasticity theory models the dynamics of porous, fluid-saturated media. It was pioneered by Maurice Biot in the 1930s through 1960s, and has applications in several fields, including geophysics and modeling of in vivo bone. A wide variety of methods have been used to model poroelasticity, including finite difference, finite element, pseudospectral, and discontinuous Galerkin methods. In this work we use a Cartesian-grid high-resolution finite volume method to numerically solve Biot's equations in the time domain for orthotropic materials, with the stiff relaxation source term in the equations incorporated using operator splitting. This class of finite volume method has several useful properties, including the ability to use wave limiters to reduce numerical artifacts in the solution, ease of incorporating material inhomogeneities, low memory overhead, and an explicit time-stepping approach. To the authors' knowledge, this is the first use of high-resolution finite volume methods to model poroelasticity. T...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
When there exists anisotropy in underground media, elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media, four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
Maneva, Yana G; Lani, Andrea; Poedts, Stefaan
2016-01-01
In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion-neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model, accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskii's transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magnetic field is enforced with a hyperbolic divergence cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artif...
Topology optimization of wave-propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard; Sigmund, Ole
2006-01-01
Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures.......Topology optimization is demonstrated as a useful tool for systematic design of wave-propagation problems. We illustrate the applicability of the method for optical, acoustic and elastic devices and structures....
Terrestrial propagation of long electromagnetic waves
Galejs, Janis; Fock, V A
2013-01-01
Terrestrial Propagation of Long Electromagnetic Waves deals with the propagation of long electromagnetic waves confined principally to the shell between the earth and the ionosphere, known as the terrestrial waveguide. The discussion is limited to steady-state solutions in a waveguide that is uniform in the direction of propagation. Wave propagation is characterized almost exclusively by mode theory. The mathematics are developed only for sources at the ground surface or within the waveguide, including artificial sources as well as lightning discharges. This volume is comprised of nine chapte
Voigt-wave propagation in active materials
Mackay, Tom G
2015-01-01
If a dissipative anisotropic dielectric material, characterized by the permittivity matrix $\\underline{\\underline{\\epsilon}}$, supports Voigt-wave propagation, then so too does the analogous active material characterized by the permittivity matrix $\\underline{\\underline{{\\tilde{\\epsilon}}}}$, where $\\underline{\\underline{{\\tilde{\\epsilon}}}}$ is the hermitian conjugate of $\\underline{\\underline{\\epsilon}}$. Consequently, a dissipative material that supports Voigt-wave propagation can give rise to a material that supports the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by infiltration with an active dye.
Institute of Scientific and Technical Information of China (English)
Peng Li; Feng Jin; Tian-Jian Lu
2012-01-01
A three-layer structure model is proposed for investigating the effect of a soft elastic middle layer on the propagation behavior of Love waves in piezoelectric layered systems,with "soft" implying that the bulk-shear-wave velocity of the middle layer is smaller than that of the upper sensitive layer.Dispersion equations are obtained for unelectroded and traction-free upper surfaces which,in the limit,can be reduced to those for classical Love waves.Systematic parametric studies are subsequently carried out to quantify the effects of the soft middle layer upon Love wave propagation,including its thickness,mass density,dielectric constant and elastic coefficient.It is demonstrated that whilst the thickness and elastic coefficient of the middle layer affect significantly Love wave propagation,its mass density and dielectric constant have negligible influence.On condition that both the thickness and elastic coefficient of the middle layer are vanishingly small so that it degenerates into an imperfectly bonded interface,the three-layer model is also employed to investigate the influence of imperfect interfaces on Love waves propagating in piezoelectric layer/elastic substrate systems.Upon comparing with the predictions obtained by employing the traditional shear-lag model,the present three-layer structure model is found to be more accurate as it avoids the unrealistic displacement discontinuity across imperfectly bonded interfaces assumed by the shearlag model,especially for long waves when the piezoelectric layer is relatively thin.
Wave propagation in nanostructures nonlocal continuum mechanics formulations
Gopalakrishnan, Srinivasan
2013-01-01
Wave Propagation in Nanostructures describes the fundamental and advanced concepts of waves propagating in structures that have dimensions of the order of nanometers. The book is fundamentally based on non-local elasticity theory, which includes scale effects in the continuum model. The book predominantly addresses wave behavior in carbon nanotubes and graphene structures, although the methods of analysis provided in this text are equally applicable to other nanostructures. The book takes the reader from the fundamentals of wave propagation in nanotubes to more advanced topics such as rotating nanotubes, coupled nanotubes, and nanotubes with magnetic field and surface effects. The first few chapters cover the basics of wave propagation, different modeling schemes for nanostructures and introduce non-local elasticity theories, which form the building blocks for understanding the material provided in later chapters. A number of interesting examples are provided to illustrate the important features of wave behav...
Assi, Hisham
2016-01-01
Numerical simulation of wave propagation in an infinite medium is made possible by surrounding a finite region by a perfectly matched layer (PML). Using this approach a generalized three-dimensional (3D) formulation is proposed for time-domain modeling of elastic wave propagation in an unbounded lossless anisotropic medium. The formulation is based on a second-order approach that has the advantages of, physical relationship to the underlying equations, and amenability to be implemented in common numerical schemes. Specifically, our formulation uses three second-order equations of the displacement field and nine auxiliary equations, along with the three time histories of the displacement field. The properties of the PML, which are controlled by a complex two-parameter stretch function, are such that it acts as near perfect absorber. Using finite element method (FEM) 3D numerical results are presented for a highly anisotropic medium. An extension of the formulation to the particular case of a Kelvin-Vogit visco...
McCrystall, M.; Hosking, J. S.; Maycock, A.; Pyle, J. A.
2016-12-01
Identifying the key drivers of Arctic climate is essential for understanding the recent changes in local climate and the mechanisms for these changes. Remote sea-surface temperatures (SSTs) have been identified by Ding et al. (2014) as a driver of these recent changes by inducing surface and mid-tropospheric warming and increase in 200 hPa geopotential heights (Z200), particularly over northern Canada and Greenland. This work further investigates the robustness of the Tropical-Arctic teleconnection by assessing the role of tropical SSTs in exciting planetary scale Rossby waves, and determining their effect on Arctic climate. We analyse a series of sensitivity experiments, using the Met Office HadGEM3 atmospheric model, forced by observed changes in SSTs between the periods 1979-1988 and 2003-2012 imposed for; [i] the entire tropics, [ii] the tropical Pacific Ocean and [iii] the tropical Atlantic Ocean. The spatial patterns of Z200 anomalies in the experiments are quantitatively compared to the 27-year Z200 trends from ERA-Interim reanalysis data and the model results of Ding et al. (2014). In contrast to their results, we found negative Z200 anomalies over northern Canada and Greenland in boreal winter in response to recent changes in tropical SSTs. We capture, however, an increase in Z200 of around 20 m over Scandinavia and the Aleutian Islands. To understand the direct influence of the tropical SST forcing on high latitudes, we analyse 3D wave activity flux anomalies, based on Plumb (1985). There is large variability in northern hemisphere wave flux anomalies but we do identify a Rossby wave train from the tropical Atlantic projecting onto the anomalous Z200 over Scandinavia. The results suggest changes in tropical SSTs can affect regional Arctic climate through their effect on poleward propagating Rossby waves, however from these experiments, it appears that this process has not contributed to the recent observed Z200 trends over northern Canada and Greenland
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Katsaounis, Theodoros; Mitsotakis, Dimitrios
2011-04-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Finite volume schemes for dispersive wave propagation and runup
Dutykh, Denys; Mitsotakis, Dimitrios
2010-01-01
Finite volume schemes are commonly used to construct approximate solutions to conservation laws. In this study we extend the framework of the finite volume methods to dispersive water wave models, in particular to Boussinesq type systems. We focus mainly on the application of the method to bidirectional nonlinear, dispersive wave propagation in one space dimension. Special emphasis is given to important nonlinear phenomena such as solitary waves interactions, dispersive shock wave formation and the runup of breaking and non-breaking long waves.
Slow wave propagation in soft adhesive interfaces.
Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan
2016-11-16
Stick-slip in sliding of soft adhesive surfaces has long been associated with the propagation of Schallamach waves, a type of slow surface wave. Recently it was demonstrated using in situ experiments that two other kinds of slow waves-separation pulses and slip pulses-also mediate stick-slip (Viswanathan et al., Soft Matter, 2016, 12, 5265-5275). While separation pulses, like Schallamach waves, involve local interface detachment, slip pulses are moving stress fronts with no detachment. Here, we present a theoretical analysis of the propagation of these three waves in a linear elastodynamics framework. Different boundary conditions apply depending on whether or not local interface detachment occurs. It is shown that the interface dynamics accompanying slow waves is governed by a system of integral equations. Closed-form analytical expressions are obtained for the interfacial pressure, shear stress, displacements and velocities. Separation pulses and Schallamach waves emerge naturally as wave solutions of the integral equations, with oppositely oriented directions of propagation. Wave propagation is found to be stable in the stress regime where linearized elasticity is a physically valid approximation. Interestingly, the analysis reveals that slow traveling wave solutions are not possible in a Coulomb friction framework for slip pulses. The theory provides a unified picture of stick-slip dynamics and slow wave propagation in adhesive contacts, consistent with experimental observations.
Wave envelopes method for description of nonlinear acoustic wave propagation.
Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L
2006-07-01
A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach
Kristek, Jozef; Moczo, Peter; Chaljub, Emmanuel; Kristekova, Miriam
2017-02-01
The possibility of applying one explicit finite-difference (FD) scheme to all interior grid points (points not lying on a grid border) no matter what their positions are with respect to the material interface is one of the key factors of the computational efficiency of the FD modelling. Smooth or discontinuous heterogeneity of the medium is accounted for only by values of the effective grid moduli and densities. Accuracy of modelling thus very much depends on how these effective grid parameters are evaluated. We present an orthorhombic representation of a heterogeneous medium for the FD modelling. We numerically demonstrate its superior accuracy. Compared to the harmonic-averaging representation the orthorhombic representation is more accurate mainly in the case of strong surface waves that are especially important in local surface sedimentary basins. The orthorhombic representation is applicable to modelling seismic wave propagation and earthquake motion in isotropic models with material interfaces and smooth heterogeneities using velocity-stress, displacement-stress and displacement FD schemes on staggered, partly staggered, Lebedev and collocated grids.
Wave propagation in axially moving periodic strings
Sorokin, Vladislav S.; Thomsen, Jon Juel
2017-04-01
The paper deals with analytically studying transverse waves propagation in an axially moving string with periodically modulated cross section. The structure effectively models various relevant technological systems, e.g. belts, thread lines, band saws, etc., and, in particular, roller chain drives for diesel engines by capturing both their spatial periodicity and axial motion. The Method of Varying Amplitudes is employed in the analysis. It is shown that the compound wave traveling in the axially moving periodic string comprises many components with different frequencies and wavenumbers. This is in contrast to non-moving periodic structures, for which all components of the corresponding compound wave feature the same frequency. Due to this "multi-frequency" character of the wave motion, the conventional notion of frequency band-gaps appears to be not applicable for the moving periodic strings. Thus, for such structures, by frequency band-gaps it is proposed to understand frequency ranges in which the primary component of the compound wave attenuates. Such frequency band-gaps can be present for a moving periodic string, but only if its axial velocity is lower than the transverse wave speed, and, the higher the axial velocity, the narrower the frequency band-gaps. The revealed effects could be of potential importance for applications, e.g. they indicate that due to spatial inhomogeneity, oscillations of axially moving periodic chains always involve a multitude of frequencies.
ANALYSE OF PULSE WAVE PROPAGATION IN ARTERIES
Institute of Scientific and Technical Information of China (English)
PAN Yi-shan; JIA Xiao-bo; CUI Chang-kui; XIAO Xiao-chun
2006-01-01
Based upon the blood vessel of being regarded as the elasticity tube, and that the tissue restricts the blood vessel wall, the rule of pulse wave propagation in blood vessel was studied. The viscosity of blood, the elastic modulus of blood vessel, the radius of tube that influenced the pulse wave propagation were analyzed. Comparing the result that considered the viscosity of blood with another result that did not consider the viscosity of blood, we finally discover that the viscosity of blood that influences the pulse wave propagation can not be neglected; and with the accretion of the elastic modulus the speed of propagation augments and the press value of blood stream heightens; when diameter of blood vessel reduces, the press of blood stream also heightens and the speed of pulse wave also augments. These results will contribute to making use of the information of pulse wave to analyse and auxiliarily diagnose some causes of human disease.
Propagating magnetohydrodynamics waves in coronal loops.
De Moortel, I
2006-02-15
High cadence Transition Region and Coronal Explorer (TRACE) observations show that outward propagating intensity disturbances are a common feature in large, quiescent coronal loops, close to active regions. An overview is given of measured parameters of such longitudinal oscillations in coronal loops. The observed oscillations are interpreted as propagating slow magnetoacoustic waves and are unlikely to be flare-driven. A strong correlation, between the loop position and the periodicity of the oscillations, provides evidence that the underlying oscillations can propagate through the transition region and into the corona. Both a one- and a two-dimensional theoretical model of slow magnetoacoustic waves are presented to explain the very short observed damping lengths. The results of these numerical simulations are compared with the TRACE observations and show that a combination of the area divergence and thermal conduction agrees well with the observed amplitude decay. Additionally, the usefulness of wavelet analysis is discussed, showing that care has to be taken when interpreting the results of wavelet analysis, and a good knowledge of all possible factors that might influence or distort the results is a necessity.
Institute of Scientific and Technical Information of China (English)
Yang Yang; Theodore A Endreny; David J Nowak
2016-01-01
Flood wave propagation modeling is of critical importance to advancing water re-sources management and protecting human life and property. In this study, we investigated how the advection-diffusion routing model performed in flood wave propagation on a 16 km long down-stream section of the Big Piney River, MO. Model performance was based on gaging station data at the upstream and downstream cross sections. We demonstrated with advection-diffusion theory that for small differences in watershed drainage area between the two river cross sections, inflow along the reach mainly contributes to the downstream hydrograph’s rising limb and not to the falling limb. The downstream hydrograph’s falling limb is primarily determined by the propagated flood wave originating at the upstream cross section. This research suggests the parameter for the advection-diffusion routing model can be calibrated by fitting the hydrograph falling limb. Application of the advection diffusion model to the flood wave of January 29, 2013 supports our theoretical finding that the propagated flood wave determines the downstream cross section falling limb, and the model has good performance in our test examples.
Stationary Rossby wave propagation through easterly layers
Schneider, E. K.; Watterson, I. G.
1984-01-01
The zonal mean basic state sensitivity of the steady response to midlatitude mountain forcing is examined through the numerical solution of linearized shallow water equations on a sphere. The zonal mean basic state consists of meridionally varying zonal winds and meridional winds. Attention is given to cases in which the former are westerly everywhere, except within a tropical region in which they are easterly. A zonal wavenumber three mountain confined to the Northern Hemisphere midlatitudes provides the forcing. It is concluded that critical latitude effects on wave propagation are sensitive to mean meridional circulation structure in the critical latitude region of the model.
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-01-01
Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\\omega_{\\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\\omega$ much lower than $\\omega_{\\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping ...
Torsional wave propagation in solar tornadoes
Vasheghani Farahani, S.; Ghanbari, E.; Ghaffari, G.; Safari, H.
2017-03-01
Aims: We investigate the propagation of torsional waves in coronal structures together with their collimation effects in the context of magnetohydrodynamic (MHD) theory. The interplay of the equilibrium twist and rotation of the structure, e.g. jet or tornado, together with the density contrast of its internal and external media is studied to shed light on the nature of torsional waves. Methods: We consider a rotating magnetic cylinder embedded in a plasma with a straight magnetic field. This resembles a solar tornado. In order to express the dispersion relations and phase speeds of the axisymmetric magnetohydrodynamic waves, the second-order thin flux tube approximation is implemented for the internal medium and the ideal MHD equations are implemented for the external medium. Results: The explicit expressions for the phase speed of the torsional wave show the modification of the torsional wave speed due to the equilibrium twist, rotation, and density contrast of the tornado. The speeds could be either sub-Alfvénic or ultra-Alfvénic depending on whether the equilibrium twist or rotation is dominant. The equilibrium twist increases the phase speed while the equilibrium rotation decreases it. The good agreement between the explicit versions for the phase speed and that obtained numerically proves adequate for the robustness of the model and method. The density ratio of the internal and external media also play a significant role in the speed and dispersion. Conclusions: The dispersion of the torsional wave is an indication of the compressibility of the oscillations. When the cylinder is rotating or twisted, in contrast to when it only possesses a straight magnetic field, the torsional wave is a collective mode. In this case its phase speed is determined by the Alfvén waves inside and outside the tornado.
Propagation of SLF/ELF electromagnetic waves
Pan, Weiyan
2014-01-01
This book deals with the SLF/ELF wave propagation, an important branch of electromagnetic theory. The SLF/ELF wave propagation theory is well applied in earthquake electromagnetic radiation, submarine communication, thunderstorm detection, and geophysical prospecting and diagnostics. The propagation of SLF/ELF electromagnetic waves is introduced in various media like the earth-ionospheric waveguide, ionospheric plasma, sea water, earth, and the boundary between two different media or the stratified media. Applications in the earthquake electromagnetic radiation and the submarine communications are also addressed. This book is intended for scientists and engineers in the fields of radio propagation and EM theory and applications. Prof. Pan is a professor at China Research Institute of Radiowave Propagation in Qingdao (China). Dr. Li is a professor at Zhejiang University in Hangzhou (China).
Bayly, P V; Dutcher, S K
2016-10-01
Cilia and flagella are highly conserved organelles that beat rhythmically with propulsive, oscillatory waveforms. The mechanism that produces these autonomous oscillations remains a mystery. It is widely believed that dynein activity must be dynamically regulated (switched on and off, or modulated) on opposite sides of the axoneme to produce oscillations. A variety of regulation mechanisms have been proposed based on feedback from mechanical deformation to dynein force. In this paper, we show that a much simpler interaction between dynein and the passive components of the axoneme can produce coordinated, propulsive oscillations. Steady, distributed axial forces, acting in opposite directions on coupled beams in viscous fluid, lead to dynamic structural instability and oscillatory, wave-like motion. This 'flutter' instability is a dynamic analogue to the well-known static instability, buckling. Flutter also occurs in slender beams subjected to tangential axial loads, in aircraft wings exposed to steady air flow and in flexible pipes conveying fluid. By analysis of the flagellar equations of motion and simulation of structural models of flagella, we demonstrate that dynein does not need to switch direction or inactivate to produce autonomous, propulsive oscillations, but must simply pull steadily above a critical threshold force.
Wave propagation and scattering in random media
Ishimaru, Akira
1978-01-01
Wave Propagation and Scattering in Random Media, Volume 2, presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner. The topics covered in this book may be grouped into three categories: waves in random scatterers, waves in random continua, and rough surface scattering. Random scatterers are random distributions of many particles. Examples are rain, fog, smog, hail, ocean particles, red blood cells, polymers, and other particles in a state of Brownian motion. Random continua are the media whose characteristics vary randomly an
PROPAGATION OF CYLINDRICAL WAVES IN POROELASTIC MEDIA
Directory of Open Access Journals (Sweden)
Vorona Yu.V.
2014-12-01
Full Text Available The paper investigates the harmonic axisymmetric wave propagation in poroelastic media. The computational formulas for the study of displacements and stresses that occur during vibrations in a wide frequency range are proposed.
Simulation of guided wave propagation near numerical Brillouin zones
Kijanka, Piotr; Staszewski, Wieslaw J.; Packo, Pawel
2016-04-01
Attractive properties of guided waves provides very unique potential for characterization of incipient damage, particularly in plate-like structures. Among other properties, guided waves can propagate over long distances and can be used to monitor hidden structural features and components. On the other hand, guided propagation brings substantial challenges for data analysis. Signal processing techniques are frequently supported by numerical simulations in order to facilitate problem solution. When employing numerical models additional sources of errors are introduced. These can play significant role for design and development of a wave-based monitoring strategy. Hence, the paper presents an investigation of numerical models for guided waves generation, propagation and sensing. Numerical dispersion analysis, for guided waves in plates, based on the LISA approach is presented and discussed in the paper. Both dispersion and modal amplitudes characteristics are analysed. It is shown that wave propagation in a numerical model resembles propagation in a periodic medium. Consequently, Lamb wave propagation close to numerical Brillouin zone is investigated and characterized.
Wave Beam Propagation Through Density Fluctuations
Balakin, A. A.; Bertelli, N.; Westerhof, E.
2011-01-01
Perturbations induced by edge density fluctuations on electron cyclotron wave beams propagating in fusion plasmas are studied by means of a quasi-optical code. The effects of such fluctuations are illustrated here by showing the beam propagation in the case of single harmonic perturbations to the wa
Modeling of three-dimensional Lamb wave propagation excited by laser pulses.
Liu, Wenyang; Hong, Jung-Wuk
2015-01-01
As a type of broadband source of ultrasonic guided waves, laser pulses can be used to launch all modes of interests. In this paper, Lamb waves are excited by imposing heat flux mimicking the supply of the heat from laser pulses, and effects by defects on the received Lamb waves in a plate are investigated by means of the finite element method. In order to alleviate the heavy computational cost in solving the coupled finite element equations, a sub-regioning scheme is employed, and it reduces the computational cost significantly. A comparison of Lamb waves generated by unfocused and line-focused laser sources is conducted. To validate numerical simulations, the group velocity of A0 mode is calculated based on the received signal by using the wavelet transform. The result of A0 mode group velocity is compared with the solution of Rayleigh-Lamb equations, and close agreement is observed. Lamb waves in a plate with defects of different lengths are examined next. The out-of-plane displacement in the plate with a defect is compared with the displacement in the plate without defects, and the wavelet transform is used to determine the arrival times of Lamb waves traveling at the A0 mode group velocity. A strong correlation is observed between the extent of defects and the magnitude of wavelet coefficients.
Supersaturation of vertically propagating internal gravity waves
Lindzen, Richard S.
1988-01-01
The usual assumption that vertically propagating internal gravity waves will cease growing with height once their amplitudes are such as to permit convective instability anywhere within the wave is reexamined. Two factors lead to amplitude limitation: (1) wave clipping associated with convective mixing, and (2) energetic constraints associated with the rate at which the wave can supply energy to the convection. It is found that these two factors limit supersaturation to about 50 percent for waves with short horizontal wavelengths and high relative phase speeds. Usually the degree of supersaturation will be much less. These factors also lead to a gradual, rather than sudden, cessation of wave growth with height.
Wave propagation in random granular chains.
Manjunath, Mohith; Awasthi, Amnaya P; Geubelle, Philippe H
2012-03-01
The influence of randomness on wave propagation in one-dimensional chains of spherical granular media is investigated. The interaction between the elastic spheres is modeled using the classical Hertzian contact law. Randomness is introduced in the discrete model using random distributions of particle mass, Young's modulus, or radius. Of particular interest in this study is the quantification of the attenuation in the amplitude of the impulse associated with various levels of randomness: two distinct regimes of decay are observed, characterized by an exponential or a power law, respectively. The responses are normalized to represent a vast array of material parameters and impact conditions. The virial theorem is applied to investigate the transfer from potential to kinetic energy components in the system for different levels of randomness. The level of attenuation in the two decay regimes is compared for the three different sources of randomness and it is found that randomness in radius leads to the maximum rate of decay in the exponential regime of wave propagation.
Seismic wave propagation in granular media
Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion
2016-10-01
Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in
Afanasyev, A. N.; Uralov, A. M.
2012-10-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Afanasyev, Andrey N
2012-01-01
We present the results of analytical modelling of fast-mode magnetohydrodynamic wave propagation near a 2D magnetic null point. We consider both a linear wave and a weak shock and analyse their behaviour in cold and warm plasmas. We apply the nonlinear geometrical acoustics method based on the Wentzel-Kramers-Brillouin approximation. We calculate the wave amplitude, using the ray approximation and the laws of solitary shock wave damping. We find that a complex caustic is formed around the null point. Plasma heating is distributed in space and occurs at a caustic as well as near the null point due to substantial nonlinear damping of the shock wave. The shock wave passes through the null point even in a cold plasma. The complex shape of the wave front can be explained by the caustic pattern.
Bou Matar, Olivier; Gasmi, Noura; Zhou, Huan; Goueygou, Marc; Talbi, Abdelkrim
2013-03-01
A numerical method to compute propagation constants and mode shapes of elastic waves in layered piezoelectric-piezomagnetic composites, potentially deposited on a substrate, is described. The basic feature of the method is the expansion of particle displacement, stress fields, electric and magnetic potentials in each layer on different polynomial bases: Legendre for a layer of finite thickness and Laguerre for the semi-infinite substrate. The exponential convergence rate of the method for propagation of Love waves is numerically verified. The main advantage of the method is to directly determine complex wave numbers for a given frequency via a matricial eigenvalue problem, in a way that no transcendental equation has to be solved. Results are presented and the method is discussed.
地震正演模拟复杂构造中的地震波传播%Modeling seismic wave propagation within complex structures
Institute of Scientific and Technical Information of China (English)
杨金华; 刘韬; 唐跟阳; 胡天跃
2009-01-01
Seismic modeling is a useful tool for studying the propagation of seismic waves within complex structures. However, traditional methods of seismic simulation cannot meet the needs for studying seismic wavefields in the complex geological .structures found in seismic exploration of the mountainous area in Northwestern China. More powerful techniques of seismic modeling are demanded for this purpose. In this paper, two methods of finite element-finite difference method (FE-FDM) and arbitrary difference precise integration ADPI) for seismic forward modeling have been developed and implemented to understand the behavior of seismic waves in complex geological subsurface structures and reservoirs, Two case studies show that the FE-FDM and ADPI techniques are well suited to modeling seismic wave propagation in complex geology.
Analysis of Blast Wave Propagation Inside Tunnel
Institute of Scientific and Technical Information of China (English)
LIU Jingbo; YAN Qiushi; WU Jun
2008-01-01
The explosion inside tunnel would generate blast wave which transmits through the longi tudinal tunnel.Because of the close-in effects of the tunnel and the reflection by the confining tunnel structure,blast wave propagation inside tunnel is distinguished from that in air.When the explosion happens inside tunnel,the overpressure peak is higher than that of explosion happening in air.The continuance time of the biast wave also becomes longer.With the help of the numerical simu lation finite element software LS-DYNA.a three-dimensional nonlinear dynamic simulation analysis for an explosion experiment inside tunnel was carried out.LS-DYNA is a fully integrated analysis program specifically designed for nonlinear dynamics and large strain problems.Compared with the experimental results.the simulation results have made the material parameters of numerical simulation model available.By using the model and the same material parameters,many results were adopted by calculating the model under different TNT explosion dynamites.Then the method of dimensional analysis was Used for the Simulation resufts.AS Overpressures of the explosion biast wave are the governing factor in fhe tunnel responses.a formula for the explosion biast wave overpressure at a certain distance from the detonation center point inside the tunnel was de rived by using the dimensional analysis theory.By cornparing the results computed by the fromula with experimental results which were obtained before.the formula was proved to be very applicable at some instance.The research may be helpful to estimate rapidly the effect of internal explosion of tunnel on the structure.
FLEXURAL WAVE PROPAGATION IN NARROW MINDLIN'S PLATE
Institute of Scientific and Technical Information of China (English)
HU Chao; HAN Gang; FANG Xue-qian; HUANG Wen-hu
2006-01-01
Appling Mindlin's theory of thick plates and Hamilton system to propagation of elastic waves under free boundary condition, a solution of the problem was given.Dispersion equations of propagation mode of strip plates were deduced from eigenfunction expansion method. It was compared with the dispersion relation that was gained through solution of thick plate theory proposed by Mindlin. Based on the two kinds of theories,the dispersion curves show great difference in the region of short waves, and the cutoff frequencies are higher in Hamiltonian systems. However, the dispersion curves are almost the same in the region of long waves.
Wave propagation in spatially modulated tubes
Ziepke, A; Engel, H
2016-01-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we can observe finite intervals of propagation failure of waves induced by the tube's modulation. In addition, using the Fick-Jacobs approach for the highly diffusive limit we show that wave velocities within tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pul...
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Unidirectional propagation of designer surface acoustic waves
Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou
2014-01-01
We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.
Turbulent Transitions in Optical Wave Propagation.
Pierangeli, D; Di Mei, F; Di Domenico, G; Agranat, A J; Conti, C; DelRe, E
2016-10-28
We report the direct observation of the onset of turbulence in propagating one-dimensional optical waves. The transition occurs as the disordered hosting material passes from being linear to one with extreme nonlinearity. As the response grows, increased wave interaction causes a modulational unstable quasihomogeneous flow to be superseded by a chaotic and spatially incoherent one. Statistical analysis of high-resolution wave behavior in the turbulent regime unveils the emergence of concomitant rogue waves. The transition, observed in a photorefractive ferroelectric crystal, introduces a new and rich experimental setting for the study of optical wave turbulence and information transport in conditions dominated by large fluctuations and extreme nonlinearity.
Wang, Aichen; Lu, Renfu; Xie, Lijuan
2016-01-01
Spatially resolved spectroscopy provides a means for measuring the optical properties of biological tissues, based on analytical solutions to diffusion approximation for semi-infinite media under the normal illumination of an infinitely small light beam. The method is, however, prone to error in measurement because the actual boundary condition and light beam often deviate from that used in deriving the analytical solutions. It is therefore important to quantify the effect of different boundary conditions and light beams on spatially resolved diffuse reflectance in order to improve the measurement accuracy of the technique. This research was aimed at using finite element method (FEM) to model light propagation in turbid media, subjected to normal illumination by a continuous-wave beam of infinitely small or finite size. Three types of boundary conditions [i.e., partial current (PCBC), extrapolated (EBC), and zero (ZBC)] were evaluated and compared against Monte Carlo (MC) simulations, since MC could provide accurate fluence rate and diffuse reflectance. The effect of beam size was also investigated. Overall results showed that FEM provided results as accurate as those of the analytical method when an appropriate boundary condition was applied. ZBC did not give satisfactory results in most cases. FEM-PCBC yielded a better fluence rate at the boundary than did FEM-EBC, while they were almost identical in predicting diffuse reflectance. Results further showed that FEM coupled with EBC effectively simulated spatially resolved diffuse reflectance under the illumination of a finite size beam. A large beam introduced more error, especially within the region of illumination. Research also confirmed an earlier finding that a light beam of less than 1 mm diameter should be used for estimation of optical parameters. FEM is effective for modeling light propagation in biological tissues and can be used for improving the optical property measurement by the spatially resolved
Miles, R N
2016-03-01
A mathematical model is presented to examine the propagation of bending waves on a plant stem that are induced by vibratory excitation from an attached insect. This idealized model represents the insect body as a mass and the legs as a linear spring along with a general time-varying force that is assumed to act in parallel with the spring. The spring connects the mass to a stem modeled as a beam having uniform geometric and material properties. The linearly elastic beam is assumed to undergo pure vibratory bending and to be infinitely long in each direction. The equations that govern the insect-induced, coupled motions of both the beam and the mass are solved for arbitrary time varying forces produced by the insect's legs. Solutions for the frequency response indicate that the response is dominated by frequency components near the natural resonant frequency of the attached insect while at higher frequencies the amplitude of the response is strongly influenced only by the properties of the stem.
Tropical response to extratropical eastward propagating waves
Directory of Open Access Journals (Sweden)
S. Sridharan
2015-06-01
Full Text Available Space–time spectral analysis of ERA-interim winds and temperature at 200 hPa for December 2012–February 2013 shows the presence of eastward propagating waves with period near 18 days in mid-latitude meridional winds at 200 hPa. The 18 day waves of k = 1–2 are dominantly present at latitudes greater than 80°, whereas the waves of k = 3–4 are dominant at 60° of both Northern and Southern Hemispheres. Though the 18 day wave of smaller zonal wavenumbers (k = 1–2 are confined to high latitudes, there is an equatorward propagation of the 18 day wave of k = 4 and 5. The wave amplitude of k = 5 is dominant than that of k = 4 at tropical latitudes. In the Northern Hemisphere (NH, there is a poleward tilt in the phase of the wave of k = 5 at mid-latitudes, as height increases indicating the baroclinic nature of the wave, whereas in the Southern Hemisphere (SH, the wave has barotropic structure as there is no significant phase variation with height. At the NH subtropics, the wave activity is confined to 500–70 hPa with moderate amplitudes. It is reported for the first time that the wave of similar periodicity (18 day and zonal structure (k = 5 as that of extratropical wave disturbance has been observed in tropical OLR, a proxy for tropical convection. We suggest that the selective response of the tropical wave forcing may be due to the lateral forcing of the eastward propagating extratropical wave of similar periodicity and zonal structure.
Stress Wave Propagation in Larch Plantation Trees-Numerical Simulation
Fenglu Liu; Fang Jiang; Xiping Wang; Houjiang Zhang; Wenhua Yu
2015-01-01
In this paper, we attempted to simulate stress wave propagation in virtual tree trunks and construct two dimensional (2D) wave-front maps in the longitudinal-radial section of the trunk. A tree trunk was modeled as an orthotropic cylinder in which wood properties along the fiber and in each of the two perpendicular directions were different. We used the COMSOL...
Tsiklauri, David
2002-09-01
It is known that a boundary slip velocity starts to play an important role when the length scale over which the fluid velocity changes approaches the slip length, i.e., when the fluid is highly confined, for example, fluid flow through porous rock or blood vessel capillaries. Zhu and Granick [Phys. Rev. Lett. 87, 096105 (2001)] have recently experimentally established the existence of a boundary slip in a Newtonian liquid. They reported typical values of the slip length of the order of few micrometers. In this light, the effect of introduction of the boundary slip into the theory of propagation of elastic waves in a fluid-saturated porous medium formulated by Biot [J. Acoust. Soc. Am. 28, 179-191 (1956)] is investigated. Namely, the effect of introduction of boundary slip upon the function F(kappa) that measures the deviation from Poiseuille flow friction as a function of frequency parameter kappa is studied. By postulating phenomenological dependence of the slip velocity upon frequency, notable deviations in the domain of intermediate frequencies in the behavior of F(kappa) are introduced with the incorporation of the boundary slip into the model. It is known that F(kappa) crucially enters Biot's equations, which describe dynamics of fluid-saturated porous solid. Thus, consequences of the nonzero boundary slip by calculating the phase velocities and attenuation coefficients of both rotational and dilatational waves with the variation of frequency are investigated. The new model should allow one to fit the experimental seismic data in circumstances when Biot's theory fails, as the introduction of phenomenological dependence of the slip velocity upon frequency, which is based on robust physical arguments, adds an additional degree of freedom to the model. In fact, it predicts higher than the Biot's theory values of attenuation coefficients of the both rotational and dilatational waves in the intermediate frequency domain, which is in qualitative agreement with the
Wave propagation on microstate geometries
Keir, Joseph
2016-01-01
Supersymmetric microstate geometries were recently conjectured to be nonlinearly unstable due to numerical and heuristic evidence, based on the existence of very slowly decaying solutions to the linear wave equation on these backgrounds. In this paper, we give a thorough mathematical treatment of the linear wave equation on both two and three charge supersymmetric microstate geometries, finding a number of surprising results. In both cases we prove that solutions to the wave equation have uniformly bounded local energy, despite the fact that three charge microstates possess an ergoregion; these geometries therefore avoid Friedman's "ergosphere instability". In fact, in the three charge case we are able to construct solutions to the wave equation with local energy that neither grows nor decays, although this data must have nontrivial dependence on the Kaluza-Klein coordinate. In the two charge case we construct quasimodes and use these to bound the uniform decay rate, showing that the only possible uniform dec...
Radio Channel Modelling Using Stochastic Propagation Graphs
DEFF Research Database (Denmark)
Pedersen, Troels; Fleury, Bernard Henri
2007-01-01
In this contribution the radio channel model proposed in [1] is extended to include multiple transmitters and receivers. The propagation environment is modelled using random graphs where vertices of a graph represent scatterers and edges model the wave propagation between scatterers. Furthermore...
Wave propagation of spectral energy content in a granular chain
Shrivastava, Rohit Kumar; Luding, Stefan
2017-06-01
A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting) or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Wave propagation of spectral energy content in a granular chain
Directory of Open Access Journals (Sweden)
Shrivastava Rohit Kumar
2017-01-01
Full Text Available A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like soil. The study of these properties is aimed at modeling wave propagation for oil, mineral or gas exploration (seismic prospecting or non-destructive testing of the internal structure of solids. The focus is on the total energy content of a pulse propagating through an idealized one-dimensional discrete particle system like a mass disordered granular chain, which allows understanding the energy attenuation due to disorder since it isolates the longitudinal P-wave from shear or rotational modes. It is observed from the signal that stronger disorder leads to faster attenuation of the signal. An ordered granular chain exhibits ballistic propagation of energy whereas, a disordered granular chain exhibits more diffusive like propagation, which eventually becomes localized at long time periods. For obtaining mean-field macroscopic/continuum properties, ensemble averaging has been used, however, such an ensemble averaged spectral energy response does not resolve multiple scattering, leading to loss of information, indicating the need for a different framework for micro-macro averaging.
Wave propagation in predator-prey systems
Fu, Sheng-Chen; Tsai, Je-Chiang
2015-12-01
In this paper, we study a class of predator-prey systems of reaction-diffusion type. Specifically, we are interested in the dynamical behaviour for the solution with the initial distribution where the prey species is at the level of the carrying capacity, and the density of the predator species has compact support, or exponentially small tails near x=+/- ∞ . Numerical evidence suggests that this will lead to the formation of a pair of diverging waves propagating outwards from the initial zone. Motivated by this phenomenon, we establish the existence of a family of travelling waves with the minimum speed. Unlike the previous studies, we do not use the shooting argument to show this. Instead, we apply an iteration process based on Berestycki et al 2005 (Math Comput. Modelling 50 1385-93) to construct a set of super/sub-solutions. Since the underlying system does not enjoy the comparison principle, such a set of super/sub-solutions is not based on travelling waves, and in fact the super/sub-solutions depend on each other. With the aid of the set of super/sub-solutions, we can construct the solution of the truncated problem on the finite interval, which, via the limiting argument, can in turn generate the wave solution. There are several advantages to this approach. First, it can remove the technical assumptions on the diffusivities of the species in the existing literature. Second, this approach is of PDE type, and hence it can shed some light on the spreading phenomenon indicated by numerical simulation. In fact, we can compute the spreading speed of the predator species for a class of biologically acceptable initial distributions. Third, this approach might be applied to the study of waves in non-cooperative systems (i.e. a system without a comparison principle).
Wave propagation in complex coordinates
Horsley, S A R; Philbin, T G
2015-01-01
We investigate the analytic continuation of wave equations into the complex position plane. For the particular case of electromagnetic waves we provide a physical meaning for such an analytic continuation in terms of a family of closely related inhomogeneous media. For bounded permittivity profiles we find the phenomenon of reflection can be related to branch cuts in the wave that originate from poles of the permittivity at complex positions. Demanding that these branch cuts disappear, we derive a large family of inhomogeneous media that are reflectionless for a single angle of incidence. Extending this property to all angles of incidence leads us to a generalized form of the Poschl Teller potentials. We conclude by analyzing our findings within the phase integral (WKB) method.
Energy Technology Data Exchange (ETDEWEB)
Shafirstein, Gal [Department of Otolaryngology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, 543, Little Rock, AR 72205 (United States); Moros, Eduardo G, E-mail: shafirsteingal@uams.edu [Division of Radiation Physics and Informatics, Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham, 771, Little Rock, AR 72205 (United States)
2011-03-07
The aim of this work was to investigate the potential effect of sweat gland ducts (SGD) on specific absorption rate (SAR) and temperature distributions during mm-wave irradiation. High resolution electromagnetic and bio-heat transfer models of human skin with SGD were developed using a commercially available simulation software package (SEMCAD X(TM)). The skin model consisted of a 30 {mu}m stratum corneum, 350 {mu}m epidermis and papillary dermis (EPD) and 1000 {mu}m dermis. Five SGD of 60 {mu}m radius and 300 {mu}m height were embedded linearly with 370 {mu}m separation. A WR-10 waveguide positioned 20 {mu}m from the skin surface and delivering 94 GHz electromagnetic radiation was included in the model. Saline conductivity was assigned inside SGD. SAR and temperatures were computed with and without SGD. Despite their small scale, SAR was significantly higher within SGD than in the EPD without SGD. Without SGD, SAR and temperature maxima were in the dermis near EPD. With SGD, SAR maximum was inside SGD while temperature maximum moved to the EPD/stratum-corneum junction. Since the EPD participates actively in perception, the effect of SGD should be taken into account in nociceptive studies involving mm-waves. This research represents a significant step towards higher spatial resolution numerical modelling of the skin and shows that microstructures can play a significant role in mm-wave absorption and induced temperature distributions.
Shafirstein, Gal; Moros, Eduardo G.
2011-03-01
The aim of this work was to investigate the potential effect of sweat gland ducts (SGD) on specific absorption rate (SAR) and temperature distributions during mm-wave irradiation. High resolution electromagnetic and bio-heat transfer models of human skin with SGD were developed using a commercially available simulation software package (SEMCAD X™). The skin model consisted of a 30 µm stratum corneum, 350 µm epidermis and papillary dermis (EPD) and 1000 µm dermis. Five SGD of 60 µm radius and 300 µm height were embedded linearly with 370 µm separation. A WR-10 waveguide positioned 20 µm from the skin surface and delivering 94 GHz electromagnetic radiation was included in the model. Saline conductivity was assigned inside SGD. SAR and temperatures were computed with and without SGD. Despite their small scale, SAR was significantly higher within SGD than in the EPD without SGD. Without SGD, SAR and temperature maxima were in the dermis near EPD. With SGD, SAR maximum was inside SGD while temperature maximum moved to the EPD/stratum-corneum junction. Since the EPD participates actively in perception, the effect of SGD should be taken into account in nociceptive studies involving mm-waves. This research represents a significant step towards higher spatial resolution numerical modelling of the skin and shows that microstructures can play a significant role in mm-wave absorption and induced temperature distributions.
Wave Propagation in Smart Materials
DEFF Research Database (Denmark)
Pedersen, Michael
1999-01-01
In this paper we deal with the behavior of solutions to hyperbolicequations such as the wave equation:\\begin{equation}\\label{waveeq1}\\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f,\\end{equation}or the equations of linear elasticity for an isotropic medium:\\begin{equation}\\label{elasteq1}\\frac{\\parti...
Wave Propagation in Smart Materials
DEFF Research Database (Denmark)
Pedersen, Michael
1999-01-01
In this paper we deal with the behavior of solutions to hyperbolic equations such as the wave equation: \\begin{equation}\\label{waveeq1} \\frac{\\partial^2}{\\partial t^2}u-\\Delta u=f, \\end{equation} or the equations of linear elasticity for an isotropic medium: \\begin{equation}\\label{elasteq1} \\frac...
PROPAGATION OF ELECTROMAGNETIC WAVE IN THE THREE PHASES SOIL MEDIA
Institute of Scientific and Technical Information of China (English)
陈云敏; 边学成; 陈仁朋; 梁志刚
2003-01-01
The fundamental parameters such as dielectric permittivity and magnetic permeability are required to solve the propagation of electromagnetic wave (EM Wave) in the soil. Based on Maxwell equations, the equivalent model is proposed to calculate the dielectric permittivity of mixed soil. The results of calculation fit. the test data well and will provide solid foundation for the application of EM wave in the soil moisture testing, CT analyzing of soil and the inspecting of geoenvironment.
Directory of Open Access Journals (Sweden)
G. Borgese
2015-01-01
Full Text Available We present an innovative approach to study the interaction between oblique solitons, using nonlinear transmission lines, based on Cellular Neural Network (CNN paradigm. A single transmission line consists of a 1D array of cells that interact with neighboring cells, through both linear and nonlinear connections. Each cell is controlled by a nonlinear Ordinary Differential Equation, in particular the Korteweg de Vries equation, which defines the cell status and behavior. Two typologies of CNN transmission lines are modelled: crisscross and ring lines. In order to solve KdV equations two different methods are used: 4th-order Runge-Kutta and Forward Euler methods. This is done to evaluate their accuracy and stability with the purpose of implementing CNN transmission lines on embedded systems such as FPGA and microcontrollers. Simulation/analysis Graphic User Interface platforms are designed to conduct numerical simulations and to display elaboration results. From this analysis it is possible both to identify the presence and the propagation of soliton waves on the transmission lines and to highlight the interaction between solitons and rich nonlinear dynamics. With this approach it is possible to simulate and develop the transmission and processing of information within large brain networks and high density sensor systems.
Propagation of Iamb waves in adhesively bonded multilayered media
Institute of Scientific and Technical Information of China (English)
ZHANG Haiyan; XIE Yuanxia; LIU Zhenqing
2003-01-01
The effect of introducing attenuation on Lamb wave dispersion curves is studied in this paper. Attenuation is introduced to a three-layered composite plate by an adhesive bond layer with viscous behavior. No changes are required to the transfer matrix formulation for the propagation of elastic waves. By introduction of a complex wavenumber, the model can be used to the propagation of attenuative Lamb waves. Numerical examples for a three-layered aluminium-epoxy-aluminium plate show that attenuation values of each mode in plates are related not only to attenuation, but also to the thickness of the bonded layer, which is in agreement with practical situations.
Propagation of shock waves through clouds
Zhou, Xin Xin
1990-10-01
The behavior of a shock wave propagating into a cloud consisting of an inert gas, water vapor and water droplets was investigated. This has particular application to sonic bangs propagating in the atmosphere. The finite different method of MacCormack is extended to solve the one and two dimensional, two phase flow problems in which mass, momentum and energy transfers are included. The FCT (Fluid Corrected Transport) technique developed by Boris and Book was used in the basic numerical scheme as a powerful corrective procedure. The results for the transmitted shock waves propagating in a one dimensional, semi infinite cloud obtained by the finite difference approach are in good agreement with previous results by Kao using the method characteristics. The advantage of the finite difference method is its adaptability to two and three dimensional problems. Shock wave propagation through a finite cloud and into an expansion with a 90 degree corner was investigated. It was found that the transfer processes between the two phases in two dimensional flow are much more complicated than in the one dimensional flow cases. This is mainly due to the vortex and expansion wave generated at the corner. In the case considered, further complications were generated by the reflected shock wave from the floor. Good agreement with experiment was found for one phase flow but experimental data for the two phase case is not yet available to validate the two phase calculations.
Mandal, Sudip; Fang, Xia; Banerjee, Dipankar; Pant, Vaibhav; Van Doorsselaere, Tom
2016-01-01
Slow MHD waves are important tools for understanding the coronal structures and dynamics. In this paper, we report a number of observations, from X-Ray Telescope (XRT) on board HINODE and SDO/AIA of reflecting longitudinal waves in hot coronal loops. To our knowledge, this is the first report of this kind as seen from the XRT and simultaneously with the AIA. The wave appears after a micro-flare occurs at one of the footpoints. We estimate the density and the temperature of the loop plasma by performing DEM analysis on the AIA image sequence. The estimated speed of propagation is comparable or lower than the local sound speed suggesting it to be a propagating slow wave. The intensity perturbation amplitudes, in every case, falls very rapidly as the perturbation moves along the loop and eventually vanishes after one or more reflections. To check the consistency of such reflection signatures with the obtained loop parameters, we perform a 2.5D MHD simulation, which uses the parameters obtained from our observati...
Effect of Resolution on Propagating Detonation Wave
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-07-10
Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.
A new numerical model for simulating the propagation of and inundation by tsunami waves
Cui, H.
2013-01-01
This thesis has involved the development of an unstructured grid ocean model, H2Ocean, with accurate flooding and drying algorithms for tsunami studies. The research is co-funded by the Alfred Wegener Institute (AWI) in Bremerhaven, Germany, as part of their contribution to the German-Indonesian Tsu
A new numerical model for simulating the propagation of and inundation by tsunami waves
Cui, H.
2013-01-01
This thesis has involved the development of an unstructured grid ocean model, H2Ocean, with accurate flooding and drying algorithms for tsunami studies. The research is co-funded by the Alfred Wegener Institute (AWI) in Bremerhaven, Germany, as part of their contribution to the German-Indonesian
Shear horizontal (SH) ultrasound wave propagation around smooth corners.
Petcher, P A; Burrows, S E; Dixon, S
2014-04-01
Shear horizontal (SH) ultrasound guided waves are being used in an increasing number of non-destructive testing (NDT) applications. One advantage SH waves have over some wave types, is their ability to propagate around curved surfaces with little energy loss; to understand the geometries around which they could propagate, the wave reflection must be quantified. A 0.83mm thick aluminium sheet was placed in a bending machine, and a shallow bend was introduced. Periodically-poled magnet (PPM) electromagnetic acoustic transducers (EMATs), for emission and reception of SH waves, were placed on the same side of the bend, so that reflected waves were received. Additional bending of the sheet demonstrated a clear relationship between bend angles and the reflected signal. Models suggest that the reflection is a linear superposition of the reflections from each bend segment, such that sharp turns lead to a larger peak-to-peak amplitude, in part due to increased phase coherence.
Louisnard, Olivier
2013-01-01
The bubbles involved in sonochemistry and other applications of cavitation oscillate inertially. A correct estimation of the wave attenuation in such bubbly media requires a realistic estimation of the power dissipated by the oscillation of each bubble, by thermal diffusion in the gas and viscous friction in the liquid. Both quantities and calculated numerically for a single inertial bubble driven at 20 kHz, and are found to be several orders of magnitude larger than the linear prediction. Viscous dissipation is found to be the predominant cause of energy loss for bubbles small enough. Then, the classical nonlinear Caflish equations describing the propagation of acoustic waves in a bubbly liquid are recast and simplified conveniently. The main harmonic part of the sound field is found to fulfill a nonlinear Helmholtz equation, where the imaginary part of the squared wave number is directly correlated with the energy lost by a single bubble. For low acoustic driving, linear theory is recovered, but for larger ...
Free Propagation of Wave in Viscoelastic Cables with Small Curvature
Institute of Scientific and Technical Information of China (English)
邹宗兰
2003-01-01
The coupled longitudinal-transverse waves propagating freely along a viscoelastic cable was studied. The frequency-spectrum equation governing propagating waves and the formulations of the phase velocities and the group velocities characterizing propagating waves were derived. The effects of viscosity parameters on the phase velocities and the group velocities were investigated with numerical simulation. The analyses show that viscosity has a strong influence on the phase velocity and the group velocity of propagating waves and attenuation waves for longitudinal-dominant waves, but the phase velocities of propagating waves of transverse-dominant waves do not change with viscosity.
Coupled seismic and electromagnetic wave propagation
Schakel, M.D.
2011-01-01
Coupled seismic and electromagnetic wave propagation is studied theoretically and experimentally. This coupling arises because of the electrochemical double layer, which exists along the solid-grain/fluid-electrolyte boundaries of porous media. Within the double layer, charge is redistributed, creat
Electromagnetic Wave Propagation in Random Media
DEFF Research Database (Denmark)
Pécseli, Hans
1984-01-01
The propagation of a narrow frequency band beam of electromagnetic waves in a medium with randomly varying index of refraction is considered. A novel formulation of the governing equation is proposed. An equation for the average Green function (or transition probability) can then be derived...
Domain Wall Propagation through Spin Wave Emission
Wang, X.S.; Yan, P.; Shen, Y.H.; Bauer, G.E.W.; Wang, X.R.
2012-01-01
We theoretically study field-induced domain wall motion in an electrically insulating ferromagnet with hard- and easy-axis anisotropies. Domain walls can propagate along a dissipationless wire through spin wave emission locked into the known soliton velocity at low fields. In the presence of damping
Electromagnetic wave propagations in conjugate metamaterials.
Xu, Yadong; Fu, Yangyang; Chen, Huanyang
2017-03-06
In this work, by employing field transformation optics, we deduce a special kind of materials called conjugate metamaterials, which can support intriguing electromagnetic wave propagations, such as negative refractions and lasing phenomena. These materials could also serve as substrates for making a subwavelength-resolution lens, and the so-called "perfect lens" is demonstrated to be a limiting case.
Antenna Construction and Propagation of Radio Waves.
Marine Corps Inst., Washington, DC.
Developed as part of the Marine Corps Institute (MCI) correspondence training program, this course on antenna construction and propagation of radio waves is designed to provide communicators with instructions in the selection and/or construction of the proper antenna(s) for use with current field radio equipment. Introductory materials include…
Thermoelastic wave propagation in laminated composites plates
Directory of Open Access Journals (Sweden)
Verma K. L.
2012-12-01
Full Text Available The dispersion of thermoelastic waves propagation in an arbitrary direction in laminated composites plates is studied in the framework of generalized thermoelasticity in this article. Three dimensional field equations of thermoelasticity with relaxation times are considered. Characteristic equation is obtained on employing the continuity of displacements, temperature, stresses and thermal gradient at the layers’ interfaces. Some important particular cases such as of free waves on reducing plates to single layer and the surface waves when thickness tends to infinity are also discussed. Uncoupled and coupled thermoelasticity are the particular cases of the obtained results. Numerical results are also obtained and represented graphically.
Love Wave Propagation in Poro elasticity
Directory of Open Access Journals (Sweden)
Y.V. Rama Rao
1978-10-01
Full Text Available It is observed that on similar reasons as in classical theory of elasticity, SH wave propagation in a semi infinite poroelastic body is not possible and is possible when there is a layer of another poro elastic medium over it i.e., Love waves. Two particular cases are considered in one of which phase velocity can be determined for a given wave length. In the same case, equation for phase velocity is of the same form as that of the classical theory of Elasticity.
Study on the electromagnetic waves propagation characteristics in partially ionized plasma slabs
Directory of Open Access Journals (Sweden)
Zhi-Bin Wang
2016-05-01
Full Text Available Propagation characteristics of electromagnetic (EM waves in partially ionized plasma slabs are studied in this paper. Such features are significant to applications in plasma antennas, blackout of re-entry flying vehicles, wave energy injection to plasmas, and etc. We in this paper developed a theoretical model of EM wave propagation perpendicular to a plasma slab with a one-dimensional density inhomogeneity along propagation direction to investigate essential characteristics of EM wave propagation in nonuniform plasmas. Particularly, the EM wave propagation in sub-wavelength plasma slabs, where the geometric optics approximation fails, is studied and in comparison with thicker slabs where the geometric optics approximation applies. The influences of both plasma and collisional frequencies, as well as the width of the plasma slab, on the EM wave propagation characteristics are discussed. The results can help the further understanding of propagation behaviours of EM waves in nonuniform plasma, and applications of the interactions between EM waves and plasmas.
Propagation behavior of acoustic wave in wood
Institute of Scientific and Technical Information of China (English)
Huadong Xu; Guoqi Xu; Lihai Wang; Lei Yu
2014-01-01
We used acoustic tests on a quarter-sawn poplar timbers to study the effects of wood anisotropy and cavity defects on acoustic wave velocity and travel path, and we investigated acoustic wave propagation behavior in wood. The timber specimens were first tested in unmodified condition and then tested after introduction of cavity defects of varying sizes to quantify the transmitting time of acoustic waves in laboratory conditions. Two-dimensional acoustic wave contour maps on the radial section of specimens were then simulated and analyzed based on the experimental data. We tested the relationship between wood grain and acoustic wave velocity as waves passed in various directions through wood. Wood anisotropy has significant effects on both velocity and travel path of acoustic waves, and the velocity of waves passing longitudinally through timbers exceeded the radial velocity. Moreover, cavity defects altered acoustic wave time contours on radial sections of timbers. Acous-tic wave transits from an excitation point to the region behind a cavity in defective wood more slowly than in intact wood.
Rogers, P D; Sirenko, A A
2011-01-01
Using 4x4 matrix formalism we analyzed electromagnetic wave propagation and Jones matrix components for reflectivity and transmittivity in bi-anisotropic materials. Analytic formulas for complex reflection and transmission coefficients for bi-anisotropic materials in both semi-infinite and thin-film configurations have been derived. The obtained results are applicable for analysis of the optical spectra of multiferroic crystals and metamaterials. The Adjusted Oscillator Strength Matching Condition (AOSM) for hybrid magnetic- and electric-dipole excitations in anisotropic multiferroics is derived for oblique angles of incidence. Mueller Matrices are used to simulate spectra of magneto-electric and chiral excitations and methods to distinguish them are discussed.
Seismic wave propagation in fractured media: A discontinuous Galerkin approach
De Basabe, Jonás D.
2011-01-01
We formulate and implement a discontinuous Galekin method for elastic wave propagation that allows for discontinuities in the displacement field to simulate fractures or faults using the linear- slip model. We show numerical results using a 2D model with one linear- slip discontinuity and different frequencies. The results show a good agreement with analytic solutions. © 2011 Society of Exploration Geophysicists.
Detection of Electromechanical Wave Propagation Using Synchronized Phasor Measurements
Suryawanshi, Prakash; Dambhare, Sanjay; Pramanik, Ashutosh
2014-01-01
Considering electrical network as a continuum has become popular for electromechanical wave analysis. This paper reviews the concept of electromechanical wave propagation. Analysis of large number of generator ring system will be an easy way to illustrate wave propagation. The property of traveling waves is that the maximum and minimum values do not occur at the same time instants and hence the difference between these time delays can be easily calculated. The homogeneous, isotropic 10 generator ring system is modeled using electromagnetic transient simulation programs. The purpose of this study is to investigate the time delays and wave velocities using Power System Computer Aided Design (PSCAD)/Electromagnetic Transient Program (EMTP). The disturbances considered here are generator disconnections and line trips.
Impact of mountain gravity waves on infrasound propagation
Damiens, Florentin; Lott, François; Millet, Christophe
2016-04-01
Linear theory of acoustic propagation is used to analyze how mountain waves can change the characteristics of infrasound signals. The mountain wave model is based on the integration of the linear inviscid Taylor-Goldstein equation forced by a nonlinear surface boundary condition. For the acoustic propagation we solve the wave equation using the normal mode method together with the effective sound speed approximation. For large-amplitude mountain waves we use direct numerical simulations to compute the interactions between the mountain waves and the infrasound component. It is shown that the mountain waves perturb the low level waveguide, which leads to significant acoustic dispersion. The mountain waves also impact the arrival time and spread of the signals substantially and can produce a strong absorption of the wave signal. To interpret our results we follow each acoustic mode separately and show which mode is impacted and how. We also show that the phase shift between the acoustic modes over the horizontal length of the mountain wave field may yield to destructive interferences in the lee side of the mountain, resulting in a new form of infrasound absorption. The statistical relevance of those results is tested using a stochastic version of the mountain wave model and large enough sample sizes.
Surface acoustic wave propagation in graphene film
Energy Technology Data Exchange (ETDEWEB)
Roshchupkin, Dmitry, E-mail: rochtch@iptm.ru; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry [Institute of Microelectronics Technology and High-Purity Materials Russian Academy of Sciences, Chernogolovka 142432 (Russian Federation); Ortega, Luc [Laboratoire de Physique des Solides, Univ. Paris-Sud, CNRS, UMR 8502, 91405 Orsay Cedex (France); Zizak, Ivo; Erko, Alexei [Institute for Nanometre Optics and Technology, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin (Germany); Tynyshtykbayev, Kurbangali; Insepov, Zinetula [Nazarbayev University Research and Innovation System, 53 Kabanbay Batyr St., Astana 010000 (Kazakhstan)
2015-09-14
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Surface acoustic wave propagation in graphene film
Roshchupkin, Dmitry; Ortega, Luc; Zizak, Ivo; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Erko, Alexei; Tynyshtykbayev, Kurbangali; Irzhak, Dmitry; Insepov, Zinetula
2015-09-01
Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.
Wave propagation in spatially modulated tubes.
Ziepke, A; Martens, S; Engel, H
2016-09-07
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Wave propagation in spatially modulated tubes
Ziepke, A.; Martens, S.; Engel, H.
2016-09-01
We investigate wave propagation in rotationally symmetric tubes with a periodic spatial modulation of cross section. Using an asymptotic perturbation analysis, the governing quasi-two-dimensional reaction-diffusion equation can be reduced into a one-dimensional reaction-diffusion-advection equation. Assuming a weak perturbation by the advection term and using projection method, in a second step, an equation of motion for traveling waves within such tubes can be derived. Both methods predict properly the nonlinear dependence of the propagation velocity on the ratio of the modulation period of the geometry to the intrinsic width of the front, or pulse. As a main feature, we observe finite intervals of propagation failure of waves induced by the tube's modulation and derive an analytically tractable condition for their occurrence. For the highly diffusive limit, using the Fick-Jacobs approach, we show that wave velocities within modulated tubes are governed by an effective diffusion coefficient. Furthermore, we discuss the effects of a single bottleneck on the period of pulse trains. We observe period changes by integer fractions dependent on the bottleneck width and the period of the entering pulse train.
Transient Aspects of Wave Propagation Connected with Spatial Coherence
Directory of Open Access Journals (Sweden)
Ezzat G. Bakhoum
2013-01-01
Full Text Available This study presents transient aspects of light wave propagation connected with spatial coherence. It is shown that reflection and refraction phenomena involve spatial patterns which are created within a certain transient time interval. After this transient time interval, these patterns act like a memory, determining the wave vector for subsequent sets of reflected/refracted waves. The validity of this model is based on intuitive aspects regarding phase conservation of energy for waves reflected/refracted by multiple centers in a certain material medium.
Energy Technology Data Exchange (ETDEWEB)
Hou Zhilin [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)], E-mail: zhilin.hou@lpmi.uhp-nancy.fr; Assouar, Badreddine M. [Laboratoire de Physique des Milieux Ionises et Applications (LPMIA), Nancy University, CNRS Boulevard des Aiguillettes, BP 239 F-54506, Vandoeuvre-les-Nancy (France)
2008-03-17
We show that the conversional three-dimensional plane wave expansion method can be revised to investigate the lamb wave propagation in the plate with two-dimensional phononic crystal layer coated on uniform substrate. We find that an imaginary three-dimensional periodic system can be constructed by stacking the studied plates and vacuum layers alternately, and then the Fourier series expansion can be performed. The difference between our imaginary periodic system and the true three-dimensional one is that, in our system, the Bloch feature of the wave along the thickness direction is broken. Three different systems are investigated by the proposed method as examples. The principle and reliability of the method are also discussed.
Directory of Open Access Journals (Sweden)
Muzamal Hussain
2017-04-01
Full Text Available The vibration analysis, based on the Donnell thin shell theory, of single-walled carbon nanotubes (SWCNTs has been investigated. The wave propagation approach in standard eigenvalue form has been employed in order to derive the characteristic frequency equation describing the natural frequencies of vibration in SWCNTs. The complex exponential functions, with the axial modal numbers that depend on the boundary conditions stated at edges of a carbon nanotube, have been used to compute the axial modal dependence. In our new investigations, the vibration frequency spectra are obtained and calculated for various physical parameters like length-to-diameter ratios for armchair and zigzag SWCNTs for different modes and in-plane rigidity and mass density per unit lateral area for armchair and zigzag SWCNTs on the vibration frequencies. The computer software MATLAB is used in order to compute these frequencies of the SWCNTs. The results obtained from wave propagation method are found to be in satisfactory agreement with that obtained through the previously known numerical molecular dynamics simulations.
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Long-range interaction effects on calcium-wave propagation
Kepseu, W. D.; Woafo, P.
2008-07-01
In this paper, numerical simulation of calcium waves in a network of cells coupled together by a paracrine signaling is investigated. The model takes into account the long-range interaction between cells due to the action of extracellular messengers, which provide links between first-neighbor cells, but also on cells located far away from the excited cell. When considering bidirectional coupling, the long-range interaction influences neither the frequency nor the amplitude of oscillations, contrary to one-directional coupling. The long-range interaction influences the speed of propagation of Ca2+ waves in the network and induces enlargement of the transition zone before the steady regime of propagation is attained. We also investigate the long-range effects on the colonization of a given niche by a pathogenic microorganism signal on calcium wave propagation in the network.
Propagation of shock waves in a magneto viscous medium
Anand, R K; Mishra, Manoj K
2012-01-01
Recently the authors [Phys. Scr. 83 (2011) 065402] have studied the entropy production in a viscous medium due to the propagation of shock waves. In the present paper, a theoretical model has been developed for a more realistic problem that deals with the study of entropy production due to propagation of shock waves in a viscous medium under the effect of a static magnetic field, for the cases of plane, cylindrical and spherical symmetry of the shock. Exact solutions for the flow variables have been discovered and their numerical estimations in the shock transition region have been analyzed with respect to static magnetic field, shock symmetry, shock strength, and specific heat ratio.
Propagation of shock waves in a viscous medium
Energy Technology Data Exchange (ETDEWEB)
Yadav, Harish C; Anand, R K, E-mail: harish0chandra@gmail.com, E-mail: anand.rajkumar@rediffmail.com [Department of Physics, University of Allahabad, Allahabad-211002 (India)
2011-06-01
A theoretical model for entropy production in a viscous medium due to the propagation of shock waves has been developed. An exact general solution is achieved for plane, cylindrical and spherical symmetries of shock waves in viscous flow, which on numerical substitutions gives variations in the entropy production, temperature ratio and particle velocity in the shock transition region with the coefficient of viscosity, specific heat ratio, shock strength, initial density and initial pressure.
Fractional Calculus in Wave Propagation Problems
Mainardi, Francesco
2012-01-01
Fractional calculus, in allowing integrals and derivatives of any positive order (the term "fractional" kept only for historical reasons), can be considered a branch of mathematical physics which mainly deals with integro-differential equations, where integrals are of convolution form with weakly singular kernels of power law type. In recent decades fractional calculus has won more and more interest in applications in several fields of applied sciences. In this lecture we devote our attention to wave propagation problems in linear viscoelastic media. Our purpose is to outline the role of fractional calculus in providing simplest evolution processes which are intermediate between diffusion and wave propagation. The present treatment mainly reflects the research activity and style of the author in the related scientific areas during the last decades.
Vertical propagation of baroclinic Kelvin waves along the west coast of India
Digital Repository Service at National Institute of Oceanography (India)
Nethery, D.; Shankar, D.
A linear, continuously stratified ocean model is used to investigate vertical propagation of remotely forced, baroclinic Kelvin waves along the Indian west coast. The extent of vertical propagation over the length of the coast is found...
Directory of Open Access Journals (Sweden)
S. Popinet
2012-04-01
Full Text Available The 11 March 2011 Tohoku tsunami is simulated using the quadtree-adaptive Saint-Venant solver implemented within the Gerris Flow Solver. The spatial resolution is adapted dynamically from 250 m in flooded areas up to 250 km for the areas at rest. Wave fronts are tracked at a resolution of 1.8 km in deep water. The simulation domain extends over 73° of both latitude and longitude and covers a significant part of the north-west Pacific. The initial wave elevation is obtained from a source model derived using seismic data only. Accurate long-distance wave prediction is demonstrated through comparison with DART buoys timeseries and GLOSS tide gauges records. The model also accurately predicts fine-scale flooding compared to both satellite and survey data. Adaptive mesh refinement leads to orders-of-magnitude gains in computational efficiency compared to non-adaptive methods. The study confirms that consistent source models for tsunami initiation can be obtained from seismic data only. However, while the observed extreme wave elevations are reproduced by the model, they are located further south than in the surveyed data. Comparisons with inshore wave buoys data indicate that this may be due to an incomplete understanding of the local wave generation mechanisms.
Multi-layer Study of Wave Propagation in Sunspots
Felipe, T.; Khomenko, E.; Collados, M.; Beck, C.
2010-10-01
We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I λ10,827 and the He I λ10,830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line of sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed nonlinearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I λ10,830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified atmosphere with radiative losses according to Newton's cooling law to the phase spectra and derive the difference in the formation height of the spectral lines. We show that the linear model describes well the wave propagation up to the formation height of Ca II H, where nonlinearities start to become very important.
Propagation of sound waves in tubes of noncircular cross section
Richards, W. B.
1986-01-01
Plane-acoustic-wave propagation in small tubes with a cross section in the shape of a flattened oval is described. Theoretical descriptions of a plane wave propagating in a tube with circular cross section and between a pair of infinite parallel plates, including viscous and thermal damping, are expressed in similar form. For a wide range of useful duct sizes, the propagation constant (whose real and imaginary parts are the amplitude attenuation rate and the wave number, respectively) is very nearly the same function of frequency for both cases if the radius of the circular tube is the same as the distance between the parallel plates. This suggests that either a circular-cross-section model or a flat-plate model can be used to calculate wave propagation in flat-oval tubing, or any other shape tubing, if its size is expressed in terms of an equivalent radius, given by g = 2 x (cross-sectional area)/(length of perimeter). Measurements of the frequency response of two sections of flat-oval tubing agree with calculations based on this idea. Flat-plate formulas are derived, the use of transmission-line matrices for calculations of plane waves in compound systems of ducts is described, and examples of computer programs written to carry out the calculations are shown.
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...... of artificial branches of the refractive index and simplicity in implementation. We prove the validity of the method on three case studies of homogeneous magnetized plasma, bi-cross and U-shaped metamaterials....
Frozen Gaussian approximation for three-dimensional seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2016-09-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in three-dimensional earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a three-dimensional (3D) seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3D waveguide model and smoothed Marmousi model respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3D crust-over-mantle model.
Frozen Gaussian approximation for 3-D seismic wave propagation
Chai, Lihui; Tong, Ping; Yang, Xu
2017-01-01
We present a systematic introduction on applying frozen Gaussian approximation (FGA) to compute synthetic seismograms in 3-D earth models. In this method, seismic wavefield is decomposed into frozen (fixed-width) Gaussian functions, which propagate along ray paths. Rather than the coherent state solution to the wave equation, this method is rigorously derived by asymptotic expansion on phase plane, with analysis of its accuracy determined by the ratio of short wavelength over large domain size. Similar to other ray-based beam methods (e.g. Gaussian beam methods), one can use relatively small number of Gaussians to get accurate approximations of high-frequency wavefield. The algorithm is embarrassingly parallel, which can drastically speed up the computation with a multicore-processor computer station. We illustrate the accuracy and efficiency of the method by comparing it to the spectral element method for a 3-D seismic wave propagation in homogeneous media, where one has the analytical solution as a benchmark. As another proof of methodology, simulations of high-frequency seismic wave propagation in heterogeneous media are performed for 3-D waveguide model and smoothed Marmousi model, respectively. The second contribution of this paper is that, we incorporate the Snell's law into the FGA formulation, and asymptotically derive reflection, transmission and free surface conditions for FGA to compute high-frequency seismic wave propagation in high contrast media. We numerically test these conditions by computing traveltime kernels of different phases in the 3-D crust-over-mantle model.
Directional bending wave propagation in periodically perforated plates
DEFF Research Database (Denmark)
Andreassen, Erik; Manktelow, Kevin; Ruzzene, Massimo
2015-01-01
We report on the investigation of wave propagation in a periodically perforated plate. A unit cell with double-C perforations is selected as a test article suitable to investigate two-dimensional dispersion characteristics, group velocities, and internal resonances. A numerical model, formulated ...
Linear propagation of pulsatile waves in viscoelastic tubes.
Horsten, J B; Van Steenhoven, A A; Van Dongen, M E
1989-01-01
An experimental and theoretical analysis is made of pulsatile wave propagation in deformable latex tubes as a model of the propagation of pressure pulses in arteries. A quasi one-dimensional linear model is used in which, in particular, attention is paid to the viscous phenomena in fluid and tube wall. The agreement between experimental and theoretical results is satisfactory. It appeared that the viscoelastic behaviour of the tube wall dominates the damping of the pressure pulse. Several linear models are used to describe the wall behaviour. No significant differences between the results of these models were found.
d'Avila, Maria Paola Santisi
2016-01-01
In this paper, a model of one-directional propagation of three-component seismic waves in a nonlinear multilayered soil profile is coupled with a multi-story multi-span frame model to consider, in a simple way, the soil-structure interaction modelled in a finite element scheme. Modeling the three-component wave propagation enables the effects of a soil multiaxial stress state to be taken into account. These reduce soil strength and increase nonlinear effects, compared with the axial stress state. The simultaneous propagation of three components allows the prediction of the incident direction of seismic loading at the ground surface and the analysis of the behavior of a frame structure shaken by a three-component earthquake. A parametric study is carried out to characterize the changes in the ground motion due to dynamic features of the structure, for different incident wavefield properties and soil nonlinear effects. A seismic response depending on parameters such as the frequency content of soil and structur...
Internal solitary waves propagating through variable background hydrology and currents
Liu, Z.; Grimshaw, R.; Johnson, E.
2017-08-01
Large-amplitude, horizontally-propagating internal wave trains are commonly observed in the coastal ocean, fjords and straits. They are long nonlinear waves and hence can be modelled by equations of the Korteweg-de Vries type. However, typically they propagate through regions of variable background hydrology and currents, and over variable bottom topography. Hence a variable-coefficient Korteweg-de Vries equation is needed to model these waves. Although this equation is now well-known and heavily used, a term representing non-conservative effects, arising from dissipative or forcing terms in the underlying basic state, has usually been omitted. In particular this term arises when the hydrology varies in the horizontal direction. Our purpose in this paper is to examine the possible significance of this term. This is achieved through analysis and numerical simulations, using both a two-layer fluid model and a re-examination of previous studies of some specific ocean cases.
Numerical Analysis of a Blocking Mass Attenuating Wave Propagation
Institute of Scientific and Technical Information of China (English)
Xianzhong Wang; Xiongliang Yao; Qiangyong Wang; Shuai Lv
2011-01-01
Based on wave theory,blocking mass impeding propagation of flexural waves was analyzed with force excitation applied on a ship pedestal.The analysis model of a complex structure was developed by combining statistical energy analysis and the finite element method.Based on the hybrid FE-SEA method,the vibro-acoustic response of a complex structure was solved.Then,the sound radiation of a cylindrical shell model influenced by blocking mass was calculated in mid/high frequency.The result shows that blocking mass has an obvious effect on impeding propagation.The study provides a theoretical and experimental basis for application of the blocking mass to structure-borne sound propagation control.
Propagation of plane waves in poroviscoelastic anisotropic media
Institute of Scientific and Technical Information of China (English)
A.K.Vashishth,M.D.Sharma
2008-01-01
This study discusses wave propagation in perhaps the most general model of a poroelastic medium.The medium is considered as a viscoelastic,anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid.The anisotropy considered is of general type,and the attenuating waves in the medium are treated as the inhomogeneous waves.The complex slowness vector is resolved to define the phase velocity,homogeneous attenuation,inhomogeneous attenuation,and angle of attenuation for each of the four attenuating waves in the medium.A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version.An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction,inhomogeneity parameter,frequency regime,anisotropy symmetry,anelasticity of the frame,and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.
Numerical simulation for explosion wave propagation of combustible mixture gas
Institute of Scientific and Technical Information of China (English)
WANG Cheng; NING Jian-guo; MA Tian-bao
2008-01-01
A two-dimensional multi-material code was indigenously developed to investigate the effects of duct boundary conditions and ignition positions on the propagation law of explosion wave for hydrogen and methane-based combustible mixture gas. In the code, Young's technique was employed to track the interface between the explosion products and air, and combustible function model was adopted to simulate ignition process. The code was employed to study explosion flow field inside and outside the duct and to obtain peak pressures in different boundary conditions and ignition positions. Numerical results suggest that during the propagation in a duct, for point initiation, the curvature of spherical wave front gradually decreases and evolves into plane wave. Due to the multiple reflections on the duct wall, multi-peak values appear on pressure-time curve, and peak pressure strongly relies on the duct boundary conditions and ignition position. When explosive wave reaches the exit of the duct, explosion products expand outward and forms shock wave in air. Multiple rarefaction waves also occur and propagate upstream along the duct to decrease the pressure in the duct. The results are in agreement with one-dimensional isentropic gas flow theory of the explosion products, and indicate that the ignition model and multi-material interface treatment method are feasible.
Propagation of gravity wave packet near critical level
Institute of Scientific and Technical Information of China (English)
YUE Xianchang; YI Fan
2005-01-01
A couple of two-dimensional linear and fully nonlinear numerical models for compressible atmosphere are used to numerically study the propagation of the gravity wave packet into a mean wind shear. For a linear propagation wave packet, the critical level interactions are in good agreement with the linear critical level theory. The dynamically and convectively unstable regions are formed due to the critical level interaction of a finite-amplitude wave packet, but they would not break. The free exchange of potential energy with kinetic energy in the background atmosphere at rest ceases after entering the mean wind shear. However, it still goes on in the nonlinear propagation. It is shown that the nonlinear effects modify the mean flow markedly, reduce the momentum and energy propagation velocity and drop the elevation of the critical level.The gravity wave packet becomes unstable and breaks down into smaller scales in some regions. It expends much more kinetic energy than potential energy in the early phase of the breakdown. This means that the wave breakdown sets up due to the action of the shear instability rather than a convective one.
Seismic Wave Propagation on the Tablet Computer
Emoto, K.
2015-12-01
Tablet computers widely used in recent years. The performance of the tablet computer is improving year by year. Some of them have performance comparable to the personal computer of a few years ago with respect to the calculation speed and the memory size. The convenience and the intuitive operation are the advantage of the tablet computer compared to the desktop PC. I developed the iPad application of the numerical simulation of the seismic wave propagation. The numerical simulation is based on the 2D finite difference method with the staggered-grid scheme. The number of the grid points is 512 x 384 = 196,608. The grid space is 200m in both horizontal and vertical directions. That is the calculation area is 102km x 77km. The time step is 0.01s. In order to reduce the user waiting time, the image of the wave field is drawn simultaneously with the calculation rather than playing the movie after the whole calculation. P and S wave energies are plotted on the screen every 20 steps (0.2s). There is the trade-off between the smooth simulation and the resolution of the wave field image. In the current setting, it takes about 30s to calculate the 10s wave propagation (50 times image updates). The seismogram at the receiver is displayed below of the wave field updated in real time. The default medium structure consists of 3 layers. The layer boundary is defined by 10 movable points with linear interpolation. Users can intuitively change to the arbitrary boundary shape by moving the point. Also users can easily change the source and the receiver positions. The favorite structure can be saved and loaded. For the advance simulation, users can introduce the random velocity fluctuation whose spectrum can be changed to the arbitrary shape. By using this application, everyone can simulate the seismic wave propagation without the special knowledge of the elastic wave equation. So far, the Japanese version of the application is released on the App Store. Now I am preparing the
Generation and propagation of nonlinear internal waves in Massachusetts Bay
Scotti, A.; Beardsley, R.C.; Butman, B.
2007-01-01
During the summer, nonlinear internal waves (NLIWs) are commonly observed propagating in Massachusetts Bay. The topography of the area is unique in the sense that the generation area (over Stellwagen Bank) is only 25 km away from the shoaling area, and thus it represents an excellent natural laboratory to study the life cycle of NLIWs. To assist in the interpretation of the data collected during the 1998 Massachusetts Bay Internal Wave Experiment (MBIWE98), a fully nonlinear and nonhydrostatic model covering the generation/shoaling region was developed, to investigate the response of the system to the range of background and driving conditions observed. Simplified models were also used to elucidate the role of nonlinearity and dispersion in shaping the NLIW field. This paper concentrates on the generation process and the subsequent evolution in the basin. The model was found to reproduce well the range of propagation characteristics observed (arrival time, propagation speed, amplitude), and provided a coherent framework to interpret the observations. Comparison with a fully nonlinear hydrostatic model shows that during the generation and initial evolution of the waves as they move away from Stellwagen Bank, dispersive effects play a negligible role. Thus the problem can be well understood considering the geometry of the characteristics along which the Riemann invariants of the hydrostatic problem propagate. Dispersion plays a role only during the evolution of the undular bore in the middle of Stellwagen Basin. The consequences for modeling NLIWs within hydrostatic models are briefly discussed at the end.
Jazayeri Shoushtari, Seyed Mohammad Hossein; Cartwright, Nick
2016-11-01
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards' equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412-440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards' equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young's modulus (E) and Poisson's ratio (ν). For a short oscillation period (T = 16.4 s), the phase lag increase rate (k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate (k r), however, were negligible. For a longer oscillation period (T = 908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412-440.
Jazayeri Shoushtari, Seyed Mohammad Hossein; Cartwright, Nick
2017-03-01
This paper examines the influence of porous media deformation on water-table wave dispersion in an unconfined aquifer using a numerical model which couples Richards' equation to the poro-elastic model. The study was motivated by the findings of Shoushtari et al. (J Hydrol 533:412-440, 2016) who were unable to reproduce the observed wave dispersion in their sand flume data with either numerical Richards' equation models (assuming rigid porous media) or existing analytic solutions. The water-table wave dispersion is quantified via the complex wave number extracted from the predicted amplitude and phase profiles. A sensitivity analysis was performed to establish the influence of the main parameters in the poro-elastic model, namely Young's modulus ( E) and Poisson's ratio ( ν). For a short oscillation period ( T = 16.4 s), the phase lag increase rate ( k i) is sensitive to the chosen values of E and ν, demonstrating an inverse relationship with both parameters. Changes in the amplitude decay rate ( k r), however, were negligible. For a longer oscillation period ( T = 908.6 s), variations in the values of E and ν resulted in only small changes in both k r and k i. In both the short and long period cases, the poro-elastic model is unable to reproduce the observed wave dispersion in the existing laboratory data. Hence porous media deformation cannot explain the additional energy dissipation in the laboratory data. Shoushtari SMH, Cartwright N, Perrochet P, Nielsen P (2016) The effects of oscillation period on groundwater wave dispersion in a sandy unconfined aquifer: sand flume experiments and modelling. J Hydrol 533:412-440.
Propagation of a constant velocity fission wave
Deinert, Mark
2011-10-01
The ideal nuclear fuel cycle would require no enrichment, minimize the need fresh uranium, and produce few, if any, transuranic elements. Importantly, the latter goal would be met without the reprocessing. For purely physical reasons, no reactor system or fuel cycle can meet all of these objectives. However, a traveling-wave reactor, if feasible, could come remarkably close. The concept is simple: a large cylinder of natural (or depleted) uranium is subjected to a fast neutron source at one end, the neutrons would transmute the uranium downstream and produce plutonium. If the conditions were right, a self-sustaining fission wave would form, producing yet more neutrons which would breed more plutonium and leave behind little more than short-lived fission products. Numerical studies have shown that fission waves of this type are also possible. We have derived an exact solution for the propagation velocity of a fission wave through fertile material. The results show that these waves fall into a class of traveling wave phenomena that have been encountered in other systems. The solution places a strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist. The results are confirmed numerically.
Stress Wave Propagation in Two-dimensional Buckyball Lattice
Xu, Jun; Zheng, Bowen
2016-11-01
Orderly arrayed granular crystals exhibit extraordinary capability to tune stress wave propagation. Granular system of higher dimension renders many more stress wave patterns, showing its great potential for physical and engineering applications. At nanoscale, one-dimensionally arranged buckyball (C60) system has shown the ability to support solitary wave. In this paper, stress wave behaviors of two-dimensional buckyball (C60) lattice are investigated based on square close packing and hexagonal close packing. We show that the square close packed system supports highly directional Nesterenko solitary waves along initially excited chains and hexagonal close packed system tends to distribute the impulse and dissipates impact exponentially. Results of numerical calculations based on a two-dimensional nonlinear spring model are in a good agreement with the results of molecular dynamics simulations. This work enhances the understanding of wave properties and allows manipulations of nanoscale lattice and novel design of shock mitigation and nanoscale energy harvesting devices.
Wave propagation in a chiral fluid an undergraduate study
Garel, T
2003-01-01
We study the propagation of electromagnetic waves in a chiral fluid, where the molecules are described by a simplified version of the Kuhn coupled oscillator model. The eigenmodes of Maxwell's equations are circularly polarized waves. The application of a static magnetic field further leads to a magnetochiral term in the index of refraction of the fluid, which is independent of the wave polarization. A similar result holds when absorption is taken into account. Interference experiments and photochemical reactions have recently demonstrated the existence of the magnetochiral term. The comparison with Faraday rotation in an achiral fluid emphasizes the different symmetry properties of the two effects.
Wave propagation simulation of radio occultations based on ECMWF refractivity profiles
DEFF Research Database (Denmark)
von Benzon, Hans-Henrik; Høeg, Per
2015-01-01
This paper describes a complete radio occultation simulation environment, including realistic refractivity profiles, wave propagation modeling, instrument modeling, and bending angle retrieval. The wave propagator is used to simulate radio occultation measurements. The radio waves are propagated...... of radio occultations. The output from the wave propagator simulator is used as input to a Full Spectrum Inversion retrieval module which calculates geophysical parameters. These parameters can be compared to the ECMWF atmospheric profiles. The comparison can be used to reveal system errors and get...... a better understanding of the physics. The wave propagation simulations will in this paper also be compared to real measurements. These radio occultations have been exposed to the same atmospheric conditions as the radio occultations simulated by the wave propagator. This comparison reveals that precise...
Beams Propagation Modelled by Bi-filters
Lacaze, Bernard
2010-01-01
In acoustic, ultrasonic or electromagnetic propagation, crossed media are often modelled by linear filters with complex gains in accordance with the Beer-Lambert law. This paper addresses the problem of propagation in media where polarization has to be taken into account. Because waves are now bi-dimensional, an unique filter is not sufficient to represent the effects of the medium. We propose a model which uses four linear invariant filters, which allows to take into account exchanges betwee...
Wave propagation and shock formation in different magnetic structures
Centeno, Rebecca; Bueno, Javier Trujillo
2008-01-01
Velocity oscillations "measured" simultaneously at the photosphere and the chromosphere -from time series of spectropolarimetric data in the 10830 A region- of different solar magnetic features allow us to study the properties of wave propagation as a function of the magnetic flux of the structure (i.e. two different-sized sunspots, a tiny pore and a facular region). While photospheric oscillations have similar characteristics everywhere, oscillations measured at chromospheric heights show different amplitudes, frequencies and stages of shock development depending on the observed magnetic feature. The analysis of the power and the phase spectra, together with simple theoretical modeling, lead to a series of results concerning wave propagation within the range of heights of this study. We find that, while the atmospheric cut-off frequency and the propagation properties of the different oscillating modes depend on the magnetic feature, in all the cases the power that reaches the high chromosphere above the atmo...
Nonlinear wave propagation in constrained solids subjected to thermal loads
Nucera, Claudio; Lanza di Scalea, Francesco
2014-01-01
The classical mathematical treatment governing nonlinear wave propagation in solids relies on finite strain theory. In this scenario, a system of nonlinear partial differential equations can be derived to mathematically describe nonlinear phenomena such as acoustoelasticity (wave speed dependency on quasi-static stress), wave interaction, wave distortion, and higher-harmonic generation. The present work expands the topic of nonlinear wave propagation to the case of a constrained solid subjected to thermal loads. The origin of nonlinear effects in this case is explained on the basis of the anharmonicity of interatomic potentials, and the absorption of the potential energy corresponding to the (prevented) thermal expansion. Such "residual" energy is, at least, cubic as a function of strain, hence leading to a nonlinear wave equation and higher-harmonic generation. Closed-form solutions are given for the longitudinal wave speed and the second-harmonic nonlinear parameter as a function of interatomic potential parameters and temperature increase. The model predicts a decrease in longitudinal wave speed and a corresponding increase in nonlinear parameter with increasing temperature, as a result of the thermal stresses caused by the prevented thermal expansion of the solid. Experimental measurements of the ultrasonic nonlinear parameter on a steel block under constrained thermal expansion confirm this trend. These results suggest the potential of a nonlinear ultrasonic measurement to quantify thermal stresses from prevented thermal expansion. This knowledge can be extremely useful to prevent thermal buckling of various structures, such as continuous-welded rails in hot weather.
Lipatov, A. S.; Sibeck, D. G.
2016-09-01
We use a new hybrid kinetic model to simulate the response of ring current, outer radiation belt, and plasmaspheric particle populations to impulsive interplanetary shocks. Since particle distributions attending the interplanetary shock waves and in the ring current and radiation belts are non-Maxwellian, wave-particle interactions play a crucial role in energy transport within the inner magnetosphere. Finite gyroradius effects become important in mass loading the shock waves with the background plasma in the presence of higher energy ring current and radiation belt ions and electrons. Initial results show that shocks cause strong deformations in the global structure of the ring current, radiation belt, and plasmasphere. The ion velocity distribution functions at the shock front, in the ring current, and in the radiation belt help us determine energy transport through the Earth's inner magnetosphere.
Al-Jabr, Ahmad Ali
2013-01-01
This paper presents methods of simulating gain media in the finite difference time-domain (FDTD) algorithm utilizing a generalized polarization formulation. The gain can be static or dynamic. For static gain, Lorentzian and non-Lorentzian models are presented and tested. For the dynamic gain, rate equations for two-level and four-level models are incorporated in the FDTD scheme. The simulation results conform with the expected behavior of wave amplification and dynamic population inversion.
Enhancing propagation characteristics of truncated localized waves in silica
Salem, Mohamed
2011-07-01
The spectral characteristics of truncated Localized Waves propagating in dispersive silica are analyzed. Numerical experiments show that the immunity of the truncated Localized Waves propagating in dispersive silica to decay and distortion is enhanced as the non-linearity of the relation between the transverse spatial spectral components and the wave vector gets stronger, in contrast to free-space propagating waves, which suffer from early decay and distortion. © 2011 IEEE.
Nonlinear evolution of parallel propagating Alfven waves: Vlasov - MHD simulation
Nariyuki, Y; Kumashiro, T; Hada, T
2009-01-01
Nonlinear evolution of circularly polarized Alfv\\'en waves are discussed by using the recently developed Vlasov-MHD code, which is a generalized Landau-fluid model. The numerical results indicate that as far as the nonlinearity in the system is not so large, the Vlasov-MHD model can validly solve time evolution of the Alfv\\'enic turbulence both in the linear and nonlinear stages. The present Vlasov-MHD model is proper to discuss the solar coronal heating and solar wind acceleration by Alfve\\'n waves propagating from the photosphere.
An optimal design problem in wave propagation
DEFF Research Database (Denmark)
Bellido, J.C.; Donoso, Alberto
2007-01-01
We consider an optimal design problem in wave propagation proposed in Sigmund and Jensen (Roy. Soc. Lond. Philos. Trans. Ser. A 361:1001-1019, 2003) in the one-dimensional situation: Given two materials at our disposal with different elastic Young modulus and different density, the problem consists...... of finding the best distributions of the two initial materials in a rod in order to minimize the vibration energy in the structure under periodic loading of driving frequency Omega. We comment on relaxation and optimality conditions, and perform numerical simulations of the optimal configurations. We prove...
Energy Technology Data Exchange (ETDEWEB)
Tusscher, K H W J Ten; Panfilov, A V [Department of Theoretical Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands)
2006-12-07
In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.
Ten Tusscher, K. H. W. J.; Panfilov, A. V.
2006-12-01
In this paper, we formulate a model for human ventricular cells that is efficient enough for whole organ arrhythmia simulations yet detailed enough to capture the effects of cell level processes such as current blocks and channelopathies. The model is obtained from our detailed human ventricular cell model by using mathematical techniques to reduce the number of variables from 19 to nine. We carefully compare our full and reduced model at the single cell, cable and 2D tissue level and show that the reduced model has a very similar behaviour. Importantly, the new model correctly produces the effects of current blocks and channelopathies on AP and spiral wave behaviour, processes at the core of current day arrhythmia research. The new model is well over four times more efficient than the full model. We conclude that the new model can be used for efficient simulations of the effects of current changes on arrhythmias in the human heart.
Energy Technology Data Exchange (ETDEWEB)
LU, B.
2011-11-07
This study takes place in the framework of tools development for the telemetry simulation. Telemetry is a possible technology applied to monitoring the sodium-cooled fast reactors (SFR) and consists in positioning in the reactor core a transducer to generate an ultrasonic beam. This beam propagates through an inhomogeneous random medium since temperature fluctuations occur in the liquid sodium and consequently the sound velocity fluctuates as well, which modifies the bream propagation. Then the beam interacts with a reactor structure immersed in sodium. By measuring the time of flight of the backscattered echo received by the same transducer, one can determine the precise location of the structure. The telemetry simulation therefore requires modeling of both the acoustic wave propagation in an inhomogeneous random medium and the interaction of this wave with structures of various shapes; this is the objective of this work. A stochastic model based on a Monte Carlo algorithm is developed in order to take into account the random fluctuations of the acoustic field. The acoustic field through an inhomogeneous random medium is finally modeled from the field calculated in a mean homogeneous medium by modifying the travel times of rays in the homogeneous medium, using a correction provided by the stochastic model. This stochastic propagation model has been validated by comparison with a deterministic model and is much simpler to integrate in the CIVA software platform for non destructive evaluation simulation and less time consuming than the deterministic model. In order to model the interaction between the acoustic wave and the immersed structures, classical diffraction models have been evaluated for rigid structures, including the geometrical theory of diffraction (GTD) and the Kirchhoff approximation (KA). These two approaches appear to be complementary. Combining them so as to retain only their advantages, we have developed a hybrid model (the so-called refined KA
CONDITIONS FOR TRANSVERSE WAVES PROPAGATION ALONG THIN MAGNETIC FLUX TUBES ON THE SUN
Energy Technology Data Exchange (ETDEWEB)
Lopin, Igor [Ussuriisk Astrophysical Observatory, Russian Academy of Sciences, Ussuriisk (Russian Federation); Nagorny, Ivan, E-mail: lopin78@mail.ru [Institute of Automation and Control Processes FEB RAS, Vladivostok (Russian Federation)
2013-09-10
The propagation of kink waves in the thin gravity stratified flux tubes with a generalized magnetic field distribution model is considered in cylindrical geometry. The new kink wave equations for both wave variables are obtained. It is shown that the inclusion of the radial component of an unperturbed tube magnetic field sufficiently transforms the conditions for the propagation of transverse waves. It is demonstrated that, for the models of isothermal and polytropic atmosphere in the tube and its environment, the propagation of kink waves along thin magnetic flux tubes is cutoff-free.
Experimental and theoretical study of Rayleigh-Lamb wave propagation
Rogers, Wayne P.; Datta, Subhendu K.; Ju, T. H.
1990-01-01
Many space structures, such as the Space Station Freedom, contain critical thin-walled components. The structural integrity of thin-walled plates and shells can be monitored effectively using acoustic emission and ultrasonic testing in the Rayleigh-Lamb wave frequency range. A new PVDF piezoelectric sensor has been developed that is well suited to remote, inservice nondestructive evaluation of space structures. In the present study the new sensor was used to investigate Rayleigh-Lamb wave propagation in a plate. The experimental apparatus consisted of a glass plate (2.3 m x 25.4 mm x 5.6 mm) with PVDF sensor (3 mm diam.) mounted at various positions along its length. A steel ball impact served as a simulated acoustic emission source, producing surface waves, shear waves and longitudinal waves with dominant frequencies between 1 kHz and 200 kHz. The experimental time domain wave-forms were compared with theoretical predictions of the wave propagation in the plate. The model uses an analytical solution for the Green's function and the measured response at a single position to predict response at any other position in the plate. Close agreement was found between the experimental and theoretical results.
Radio propagation measurement and channel modelling
Salous, Sana
2013-01-01
While there are numerous books describing modern wireless communication systems that contain overviews of radio propagation and radio channel modelling, there are none that contain detailed information on the design, implementation and calibration of radio channel measurement equipment, the planning of experiments and the in depth analysis of measured data. The book would begin with an explanation of the fundamentals of radio wave propagation and progress through a series of topics, including the measurement of radio channel characteristics, radio channel sounders, measurement strategies
The physical theory and propagation model of THz atmospheric propagation
Energy Technology Data Exchange (ETDEWEB)
Wang, R; Yao, J Q; Xu, D G; Wang, J L; Wang, P, E-mail: wangran19861014@163.com [College of Precision Instrument and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin 300072 (China)
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
The physical theory and propagation model of THz atmospheric propagation
Wang, R.; Yao, J. Q.; Xu, D. G.; Wang, J. L.; Wang, P.
2011-02-01
Terahertz (THz) radiation is extensively applied in diverse fields, such as space communication, Earth environment observation, atmosphere science, remote sensing and so on. And the research on propagation features of THz wave in the atmosphere becomes more and more important. This paper firstly illuminates the advantages and outlook of THz in space technology. Then it introduces the theoretical framework of THz atmospheric propagation, including some fundamental physical concepts and processes. The attenuation effect (especially the absorption of water vapor), the scattering of aerosol particles and the effect of turbulent flow mainly influence THz atmosphere propagation. Fundamental physical laws are illuminated as well, such as Lamber-beer law, Mie scattering theory and radiative transfer equation. The last part comprises the demonstration and comparison of THz atmosphere propagation models like Moliere(V5), SARTre and AMATERASU. The essential problems are the deep analysis of physical mechanism of this process, the construction of atmospheric propagation model and databases of every kind of material in the atmosphere, and the standardization of measurement procedures.
Viscothermal wave propagation including acousto-elastic interaction
Beltman, Willem Martinus
1998-01-01
This research deals with pressure waves in a gas trapped in thin layers or narrow tubes. In these cases viscous and thermal effects can have a significant effect on the propagation of waves. This so-called viscothermal wave propagation is governed by a number of dimensionless parameters. The two mos
WAVE: Interactive Wave-based Sound Propagation for Virtual Environments.
Mehra, Ravish; Rungta, Atul; Golas, Abhinav; Ming Lin; Manocha, Dinesh
2015-04-01
We present an interactive wave-based sound propagation system that generates accurate, realistic sound in virtual environments for dynamic (moving) sources and listeners. We propose a novel algorithm to accurately solve the wave equation for dynamic sources and listeners using a combination of precomputation techniques and GPU-based runtime evaluation. Our system can handle large environments typically used in VR applications, compute spatial sound corresponding to listener's motion (including head tracking) and handle both omnidirectional and directional sources, all at interactive rates. As compared to prior wave-based techniques applied to large scenes with moving sources, we observe significant improvement in runtime memory. The overall sound-propagation and rendering system has been integrated with the Half-Life 2 game engine, Oculus-Rift head-mounted display, and the Xbox game controller to enable users to experience high-quality acoustic effects (e.g., amplification, diffraction low-passing, high-order scattering) and spatial audio, based on their interactions in the VR application. We provide the results of preliminary user evaluations, conducted to study the impact of wave-based acoustic effects and spatial audio on users' navigation performance in virtual environments.
Light Front Boson Model Propagation
Institute of Scientific and Technical Information of China (English)
Jorge Henrique Sales; Alfredo Takashi Suzuki
2011-01-01
stract The scope and aim of this work is to describe the two-body interaction mediated by a particle (either the scalar or the gauge boson) within the light-front formulation. To do this, first of all we point out the importance of propagators and Green functions in Quantum Mechanics. Then we project the covariant quantum propagator onto the light front time to get the propagator for scalar particles in these coordinates. This operator propagates the wave function from x+ = 0 to x+ ＞ O. It corresponds to the definition of the time ordering operation in the light front time x+. We calculate the light-front Green's function for 2 interacting bosons propagating forward in x+. We also show how to write down the light front Green's function from the Feynman propagator and finally make a generalization to N bosons.
Directory of Open Access Journals (Sweden)
H. Ekhlas
2014-05-01
.Conclusion: The presented model is easy and practical and allows managers to model scenarios of noise pollution reduction in indoor environments, before huge expenses of actual control measures. This method is faster comparing to numerical modeling methods. Furthermore, its accuracy is also acceptable.
Institute of Scientific and Technical Information of China (English)
2008-01-01
In a homogeneous plate, Rayleigh waves will have a symmetric and anti-symmetric mode regarding to the mid-plane with different phase velocities. If plate properties vary along the thickness, or the plate is of functionally graded material (FGM), the symmetry of modes and frequency behavior will be modified, thus producing dif-ferent features for engineering applications such as amplifying or reducing the velocity and deformation. This kind of effect can also be easily realized by utilizing a layered structure with desired material properties that can produce these effects in terms of velocity and displacements, since Rayleigh waves in a solid with gen-eral material property grading schemes are difficult to analyze with known methods. Solutions from layered structures with exponential and polynomial property grad-ing schemes are obtained from the layered model and comparisons with known analytical results are made to validate the method and examine possible applica-tions of such structures in engineering.
The effect of source's shape for seismic wave propagation
Tanaka, S.; Mikada, H.; Goto, T.; Takekawa, J.; Onishi, K.; Kasahara, J.; Kuroda, T.
2009-12-01
In conventional simulation of seismic wave propagation, the source which generates signals is usually given by a point force or by a particle velocity at a point. In practice, seismic wave is generated by signal generators with finite volume and width. Since seismic lines span a distance up to hundreds meter to several kilometers, many people conducted seismic survey and data processing with the assumption that the size of signal generator is negligible compared with survey scale. However, there are no studies that tells how the size of baseplate influences generated seismic waves. Such estimations, therefore, are meaningful to consider the scale of generator. In this sense, current seismic processing might require a theoretical background about the seismic source for further detailed analysis. The main purpose of this study is to investigate the impact of seismic source’s shape to resultant wave properties, and then estimate how effective the consideration about the scale of signal generator is for analyzing the seismic data. To evaluate source’s scale effect, we performed finite element analysis with the 3D model including the baseplate of source and the heterogeneous ground medium. We adopted a finite element method (FEM) and chose the code named “MD Nastran” (MSC Software Ver.2008) to calculate seismic wave propagation. To verify the reliability of calculation, we compared the result of FEM and that of finite-difference method (FDM) with wave propagating simulation of isotropic and homogeneous model with a point source. The amplitude and phase of those two were nearly equal each other. We considered the calculation of FEM is accurate enough and can be performed in the following calculations. As the first step, we developed a simple point source model and a baseplate model. The point source model contains only the ground represented by an elastic medium. The force generating the signal is given at the nodal point of the surface in this case. On the other
Waves of DNA: Propagating Excitations in Extended Nanoconfined Polymers
Klotz, Alexander R; Reisner, Walter W
2016-01-01
We use a nanofluidic system to investigate the emergence of thermally driven collective phenomena along a single polymer chain. In our approach, a single DNA molecule is confined in a nanofluidic slit etched with arrays of embedded nanocavities; the cavity lattice is designed so that a single chain occupies multiple cavities. Fluorescent video-microscopy data shows that waves of excess fluorescence propagate across the cavity-straddling molecule, corresponding to propagating fluctuations of contour overdensity in the cavities. The waves are quantified by examining the correlation in intensity fluctuations between neighbouring cavities. Correlations grow from an anti-correlated minimum to a correlated maximum before decaying, corresponding to a transfer of contour between neighbouring cavities at a fixed transfer time-scale. The observed dynamics can be modelled using Langevin dynamics simulations and a minimal lattice model of coupled diffusion. This study shows how confinement-based sculpting of the polymer ...
Nonlinear wave propagation in a rapidly-spun fiber.
McKinstrie, C J; Kogelnik, H
2006-09-04
Multiple-scale analysis is used to study linear wave propagation in a rapidly-spun fiber and its predictions are shown to be consistent with results obtained by other methods. Subsequently, multiple-scale analysis is used to derive a generalized Schroedinger equation for nonlinear wave propagation in a rapidly-spun fiber. The consequences of this equation for pulse propagation and four-wave mixing are discussed briefly.
Institute of Scientific and Technical Information of China (English)
Zou Guangui; Peng Suping; Yin Caiyun; Deng Xiaojuan; Chen Fengying; Xu Yanyong
2011-01-01
A staggered-grid finite difference method is used to model seismic wave records in a coal bearing,porous medium.The variables analyzed include the order of the difference calculations,the use of a perfect match layer to provide absorbing boundary conditions,the source location,the stability conditions,and dispersion in the medium.The results show that the location of the first derivative of the dynamic variable with respect to space is coincident with the location of the first derivative of the kinematic variable with respect to time.Outgoing waves are effectively absorbed and reflection at the boundary is very weak when more than 20 perfect match layer cells are used.Biot theory considers the liquid phase to be homogeneous so the ratio of liquid to solid exposure of the seismic source depends upon the medium porosity.Numerical dispersion and generation of false frequencies is reduced by increasing the accuracy of the difference calculations and by reducing the grid size and time step.Temporal second order accuracy,a tenth order spatial accuracy,and a wavelength over more than ten grid points gave acceptable numerical results.Larger grid step sizes in the lateral direction and smaller grid sizes in the vertical direction allow control of dispersion when the medium is a low speed body.This provides a useful way to simulate seismic waves in a porous coal bearing medium.
Wave propagation of coupled modes in the DNA double helix
Energy Technology Data Exchange (ETDEWEB)
Tabi, C B; Ekobena Fouda, H P [Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde (Cameroon); Mohamadou, A [Condensed Matter Laboratory, Department of Physics, Faculty of Science, University of Douala, PO Box 24157, Douala (Cameroon); Kofane, T C, E-mail: contab408@hotmail.com [Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde (Cameroon)
2011-03-15
The remarkable dynamics of waves propagating along the DNA molecule is described by the coupled nonlinear Schroedinger equations. We consider both the single and the coupled nonlinear excitation modes and, under numerical simulations of the Peyrard-Bishop model, with the use of realistic values of parameters, their biological implications are studied. Furthermore, the characteristics of the coupled mode solution are discussed and we show that such a solution can describe the local opening observed within the transcription and the replication phenomena.
Wave propagation in layered anisotropic media with application to composites
Nayfeh, AH
1995-01-01
Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.
Effect of spatial discretization of energy on detonation wave propagation
Mi, XiaoCheng; Higgins, Andrew J
2016-01-01
Detonation propagation in the limit of highly spatially discretized energy sources is investigated. The model of this problem begins with a medium consisting of a calorically perfect gas with a prescribed energy release per unit mass. The energy release is collected into sheet-like sources that are now embedded in an inert gas that fills the spaces between them. The release of energy in the first sheet results in a planar blast wave that propagates to the next source, which is triggered after a prescribed delay, generating a new blast, and so forth. The resulting wave dynamics as the front passes through hundreds of such sources is computationally simulated by numerically solving the governing one-dimensional Euler equations in the lab-fixed reference frame. The average wave speed for each simulation is measured once the wave propagation has reached a quasi-periodic solution. Velocities in excess of the CJ speed are found as the sources are made increasingly discrete, with the deviation above CJ being as grea...
Multi-layer study of wave propagation in sunspots
Felipe, T; Collados, M; Beck, C
2010-01-01
We analyze the propagation of waves in sunspots from the photosphere to the chromosphere using time series of co-spatial Ca II H intensity spectra (including its line blends) and polarimetric spectra of Si I 10827 and the He I 10830 multiplet. From the Doppler shifts of these lines we retrieve the variation of the velocity along the line-of-sight at several heights. Phase spectra are used to obtain the relation between the oscillatory signals. Our analysis reveals standing waves at frequencies lower than 4 mHz and a continuous propagation of waves at higher frequencies, which steepen into shocks in the chromosphere when approaching the formation height of the Ca II H core. The observed non-linearities are weaker in Ca II H than in He I lines. Our analysis suggests that the Ca II H core forms at a lower height than the He I 10830 line: a time delay of about 20 s is measured between the Doppler signal detected at both wavelengths. We fit a model of linear slow magnetoacoustic wave propagation in a stratified at...
Annual report 1992/93, FOA 38. Radio systems and wave propagation
Mildh, I. M.
1994-01-01
The main objective of the division of Radio Systems and Wave Propagation is to carry out research and development in the field of secure and robust radio communications for Sweden's national defense. This is the Annual Report for fiscal year 1992/93 of the Division of Radio Systems and Wave Propagation. The division is responsible for research and development of secure radio communication for information transmission. We are also responsible for wave propagation research within a frequency range from LF to SHF. We carry out applied research in fields like antijamming systems, modulation, error correcting codes, wave propagation and digital signal processing. The wave propagation research is carried out by basic research so the demands from new techniques and new radio systems for accurate propagation models can be achieved.
Simulations of shock wave propagation in heterogeneous solids
Hertzsch, Jan-Martin; Ivanov, Boris A.; Kenkmann, Thomas
2002-11-01
Studies of shock wave propagation in heterogeneous materials are important for the interpretation of impact deformation and impact metamorphism of natural rocks. Reflection, refraction, and interference of shock waves caused by inhomogeneities lead to localised concentrations of pressure, temperature, and deformation rate, and in some cases to phase transitions. We have simulated numerically the shock compression of complex media in selected geometries with the aim of modelling shock recovery experiments and have observed reversible phase transitions in the target, shock heating alone may not be sufficient for the formation of impact melt, but localised shear at material boundaries results in considerable temperature increase which makes partial melting possible.
Kim, J.; Kim, B.
2013-12-01
The breaking of upward-propagating planetary (typically characterized by the combination of zonal wave number 1 and 2) waves in the stratosphere is regarded as one of the factors that provoke the sudden stratospheric warming (SSW) and the accompanying collapse of stratospheric polar vortex during winter. It is also known that if the anomalous stationary wave pattern is in phase with that of the climatology during a certain period, this period is dynamically favorable for the upward propagation and amplification of planetary waves. This kind of phenomenon that amplitude of resultant wave increases by combining two or more waves in phase is called the constructive interference. Our research evaluates whether and to what degree the Coupled Model Intercomparison Project Phase 5 (CMIP5) models simulate such a relation between tropospheric wave interference and Northern polar stratosphere temperature anomaly during winter. Here the 500-hPa wave interference index (WII500) is defined as the coefficient that is obtained by projecting the anomaly of wave number 1 and 2 components of 500-hPa geopotential height onto its climatology. Using monthly outputs of the CMIP5 historical runs currently available to us, we examine the lagged relationship (R-square) between the WII500 during November-December-January (NDJ) and the polar-cap temperature anomaly at 50 hPa (PCT50) during December-January-February (DJF) on an interannual timescale. By sampling uncertainty in R-squares of 33-yr samples (chosen fit with the modern reanalysis period, 1980-2012) with bootstrap resampling, we obtain the sampled medians for all models. The observed relations are then calculated using six reanalyses (ERA-40, ERA-Interim, JRA-25, MERRA, NCEP-R1, and NCEP-R2), and the 5-95% confidence interval of their observed R-square is obtained again with bootstrap resampling of all six reanalyses blended. Then we evaluate which CMIP5 model simulates the WII500-PCT50 relation within the probable range of
Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales
2015-08-31
ABSTRACT 16. SECURITY CLASSIFICATION OF: Shock wave response of heterogeneous materials like cement and concrete is greatly influenced by the...2015 Approved for public release; distribution is unlimited. Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales The views...Box 12211 Research Triangle Park, NC 27709-2211 shock propagation, micro and macro scales, finite element modeling REPORT DOCUMENTATION PAGE 11
Similarity solution of the shock wave propagation in water
Directory of Open Access Journals (Sweden)
Muller M.
2007-11-01
Full Text Available This paper presents the possibility of calculation of propagation of a shock wave generated during the bubble collapse in water including the dissipation effect. The used semi-empirical model is based on an assumption of similarity between the shock pressure time profiles in different shock wave positions. This assumption leads to a system of two ordinary differential equations for pressure jump and energy at the shock front. The NIST data are used for the compilation of the equation of state, which is applied to the calculation of the shock wave energy dissipation. The initial conditions for the system of equations are obtained from the modified method of characteristics in the combination with the differential equations of cavitation bubble dynamics, which considers viscous compressible liquid with the influence of surface tension. The initial energy of the shock wave is estimated from the energy between the energies of the bubble growth to the first and second maximum bubble radii.
Fundamentals of Seismic Wave Propagation by Chris Chapman
Aster, Richard
2005-03-01
The analytic characterization and modeling of seismic wave propagation using ray theory based formulations is a core aspect of seismology with a distinguished and very important history. Fundamentals of Seismic Wave Propagation, by Chris Chapman, provides a mathematically rigorous and substantially complete summary of theory and techniques, with exercises, written at an accessible level for intermediate-to-advanced seismology graduate students and for the general research community. I was particularly pleased to see that much relevant mathematics is well summarized in a valuable ``preliminaries'' section containing mathematical and physics background material, coupled with four focused mathematical Appendices covering relevant integrals, Fourier transforms, ordinary differential equations, and saddle-point methods. This bodes well for the text as a teaching resource.
Numerical study of the propagation of small-amplitude atmospheric gravity wave
Institute of Scientific and Technical Information of China (English)
YUE Xianchang; YI Fan; LIU Yingjie; LI Fang
2005-01-01
By using a two-dimensional fully nonlinear compressible atmospheric dynamic numerical model, the propagation of a small amplitude gravity wave packet is simulated. A corresponding linear model is also developed for comparison. In an isothermal atmosphere, the simulations show that the nonlinear effects impacting on the propagation of a small amplitude gravity wave are negligible. In the nonisothermal atmosphere, however, the nonlinear effects are remarkable. They act to slow markedly down the propagation velocity of wave energy and therefore reduce the growth ratio of the wave amplitude with time. But the energy is still conserved. A proof of this is provided by the observations in the middle atmosphere.
Mathematical problems in wave propagation theory
1970-01-01
The papers comprising this collection are directly or indirectly related to an important branch of mathematical physics - the mathematical theory of wave propagation and diffraction. The paper by V. M. Babich is concerned with the application of the parabolic-equation method (of Academician V. A. Fok and M. A, Leontovich) to the problem of the asymptotic behavior of eigenfunc tions concentrated in a neighborhood of a closed geodesie in a Riemannian space. The techniques used in this paper have been föund useful in solving certain problems in the theory of open resonators. The topic of G. P. Astrakhantsev's paper is similar to that of the paper by V. M. Babich. Here also the parabolic-equation method is used to find the asymptotic solution of the elasticity equations which describes Love waves concentrated in a neighborhood of some surface ray. The paper of T. F. Pankratova is concerned with finding the asymptotic behavior of th~ eigenfunc tions of the Laplace operator from the exact solution for the surf...
DEFF Research Database (Denmark)
Benzon, Hans-Henrik; Bovith, Thomas
2008-01-01
for prediction of this type of weather radar clutter is presented. The method uses a wave propagator to identify areas of potential non-standard propagation. The wave propagator uses a three dimensional refractivity field derived from the geophysical parameters: temperature, humidity, and pressure obtained from...... a high-resolution Numerical Weather Prediction (NWP) model. The wave propagator is based on the parabolic equation approximation to the electromagnetic wave equation. The parabolic equation is solved using the well-known Fourier split-step method. Finally, the radar clutter prediction technique is used......Weather radars are essential sensors for observation of precipitation in the troposphere and play a major part in weather forecasting and hydrological modelling. Clutter caused by non-standard wave propagation is a common problem in weather radar applications, and in this paper a method...
Energy Technology Data Exchange (ETDEWEB)
Nishizawa, O.; Sato, T. [Geological Survey of Japan, Tsukuba (Japan); Lei, X. [Dia Consultants Company, Tokyo (Japan)
1996-05-01
In the study of seismic wave propagation, a model experimenting technique has been developed using a laser Doppler velocimeter (LDV) as the sensor. This technique, not dependent on conventional piezoelectric devices, only irradiates the specimen with laser to measure the velocity amplitude on the target surface, eliminating the need for close contact between the specimen and sensor. In the experiment, elastic penetration waves with their noise levels approximately 0.05mm/s were observed upon application of vibration of 10{sup 6}-10{sup 5}Hz. The specimen was stainless steel or rock, and waveforms caught by the LDV and piezoelectric device were compared. As the result, it was found that the LDV is a powerful tool for effectively explaining elastic wave propagation in inhomogeneous media. The piezoelectric device fails to reproduce accurately the waves to follow the initial one while the LDV detect the velocity amplitude on the specimen surface in a wide frequency range encouraging the discussion over the quantification of observed waveforms. 10 refs., 7 figs.
Wave propagation in elastic layers with damping
DEFF Research Database (Denmark)
Sorokin, Sergey; Darula, Radoslav
2016-01-01
The conventional concepts of a loss factor and complex-valued elastic moduli are used to study wave attenuation in a visco-elastic layer. The hierarchy of reduced-order models is employed to assess attenuation levels in various situations. For the forcing problem, the attenuation levels are found...
Berreman approach to electromagnetic wave and beam propagation in anisotropic metamaterials
Gnawali, Rudra; Banerjee, Partha
2016-09-01
The Berreman matrix method is used to analyze the polarization and propagation of electromagnetic waves and beams in anisotropic metamaterials. The metamaterial, comprising a multilayer structure of alternating metal and dielectric layers, is modeled as an effective anisotropic medium. The Maxwell's equations for electromagnetic propagation are then represented as a set of coupled differential equations using the Berreman matrix. These coupled equations are then solved analytically and cross checked numerically using MATLAB® for plane wave propagation. The analysis can be extended to Gaussian beam propagation through such anisotropic metamaterials using the angular plane wave spectral approach.
Radio Wave Propagation Handbook for Communication on and Around Mars
Ho, Christian; Golshan, Nasser; Kliore, Arvydas
2002-01-01
This handbook examines the effects of the Martian environment on radio wave propagation on Mars and in the space near the planet. The environmental effects include these from the Martian atmosphere, ionosphere, global dust storms, aerosols, clouds, and geomorphologic features. Relevant Martian environmental parameters were extracted from the measurements of Mars missions during the past 30 years, especially from Mars Pathfinder and Mars Global Surveyor. The results derived from measurements and analyses have been reviewed through an extensive literature search. The updated parameters have been theoretically analyzed to study their effects on radio propagation. This handbook also provides basic information about the entire telecommunications environment on and around Mars for propagation researchers, system engineers, and link analysts. Based on these original analyses, some important recommendations have been made, including the use of the Martian ionosphere as a reflector for Mars global or trans-horizon communication between future Martian colonies, reducing dust storm scattering effects, etc. These results have extended our wave propagation knowledge to a planet other than Earth; and the tables, models, and graphics included in this handbook will benefit telecommunication system engineers and scientific researchers.
Topology optimization for transient wave propagation problems in one dimension
DEFF Research Database (Denmark)
Dahl, Jonas; Jensen, Jakob Søndergaard; Sigmund, Ole
2008-01-01
Structures exhibiting band gap properties, i.e., having frequency ranges for which the structure attenuates propagating waves, have applications in damping of acoustic and elastic wave propagation and in optical communication. A topology optimization method for synthesis of such structures, emplo...
Khazanov, G. V.; Gamayunov, K. V.; Gallagher, D. L.; Kozyra, J. W.
2007-01-01
It is well-known that the effects of electromagnetic ion cyclotron (EMIC) waves on ring current (RC) ion and radiation belt (RB) electron dynamics strongly depend on such particle/wave characteristics as the phase-space distribution function, frequency, wavenormal angle, wave energy, and the form of wave spectral energy density. The consequence is that accurate modeling of EMIC waves and RC particles requires robust inclusion of the interdependent dynamics of wave growth/damping, wave propagation, and[ particles. Such a self-consistent model is being progressively developed by Khazanov et al. [2002, 2006, 2007]. This model is based on a system of coupled kinetic equations for the RC and EMIC wave power spectral density along with the ray tracing equations. Thome and Home [2007] (hereafter referred to as TH2007) call the Khazanov et al. [2002, 2006] results into question in their Comment. The points in contention can be summarized as follows. TH2007 claim that: (1) "the important damping of waves by thermal heavy ions is completely ignored", and Landau damping during resonant interaction with thermal electrons is not included in our model; (2) EMIC wave damping due to RC O + is not included in our simulation; (3) non-linear processes limiting EMIC wave amplitude are not included in our model; (4) growth of the background fluctuations to a physically significantamplitude"must occur during a single transit of the unstable region" with subsequent damping below bi-ion latitudes,and consequently"the bounce averaged wave kinetic equation employed in the code contains a physically erroneous 'assumption". Our reply will address each of these points as well as other criticisms mentioned in the Comment. TH2007 are focused on two of our papers that are separated by four years. Significant progress in the self-consistent treatment of the RC-EMIC wave system has been achieved during those years. The paper by Khazanov et al. [2006] presents the latest version of our model, and in
Zhang, Jichun; Coffey, Victoria N.; Chandler, Michael O.; Boardsen, Scott A.; Saikin, Anthony A.; Mello, Emily M.; Russell, Christopher T.; Torbert, Roy B.; Fuselier, Stephen A.; Giles, Barbara L.;
2017-01-01
Electromagnetic ion cyclotron (EMIC) waves (0.1-5 Hz) play an important role in particle dynamics in the Earth's magnetosphere. EMIC waves are preferentially excited in regions where hot anisotropic ions and cold dense plasma populations spatially overlap. While the generation region of EMIC waves is usually on or near the magnetic equatorial plane in the inner magnetosphere, EMIC waves have both equatorial and off-equator source regions on the dayside in the compressed outer magnetosphere. Using field and plasma measurements from the Magnetospheric Multiscale (MMS) mission, we perform a case study of EMIC waves and associated local plasma conditions observed on 19 October 2015. From 0315 to 0810 UT, before crossing the magnetopause into the magnetosheath, all four MMS spacecraft detected long-lasting He(exp +)-band EMIC wave emissions around local noon (MLT = 12.7 - 14.0) at high L-shells (L = 8.8 - 15.2) and low magnetic latitudes (MLAT = -21.8deg - -30.3deg). Energetic (greater than 1 keV) and anisotropic ions were present throughout this event that was in the recovery phase of a weak geomagnetic storm (min. Dst = -48 nT at 1000 UT on 18 October 2015). The testing of linear theory suggests that the EMIC waves were excited locally. Although the wave event is dominated by small normal angles, its polarization is mixed with right- and left-handedness and its propagation is bi-directional with regard to the background magnetic field. The short inter-spacecraft distances (as low as 15 km) of the MMS mission make it possible to accurately determine the k vector of the waves using the phase difference technique. Preliminary analysis finds that the k vector magnitude, phase speed, and wavelength of the 0.3-Hz wave packet at 0453:55 UT are 0.005 km(exp -1), 372.9 km/s, and 1242.9 km, respectively.
Higher order acoustoelastic Lamb wave propagation in stressed plates.
Pei, Ning; Bond, Leonard J
2016-11-01
Modeling and experiments are used to investigate Lamb wave propagation in the direction perpendicular to an applied stress. Sensitivity, in terms of changes in velocity, for both symmetrical and anti-symmetrical modes was determined. Codes were developed based on analytical expressions for waves in loaded plates and they were used to give wave dispersion curves. The experimental system used a pair of compression wave transducers on variable angle wedges, with set separation, and variable frequency tone burst excitation, on an aluminum plate 0.16 cm thick with uniaxial applied loads. The loads, which were up to 600 με, were measured using strain gages. Model results and experimental data are in good agreement. It was found that the change in Lamb wave velocity, due to the acoustoelastic effect, for the S1 mode exhibits about ten times more sensitive, in terms of velocity change, than the traditional bulk wave measurements, and those performed using the fundamental Lamb modes. The data presented demonstrate the potential for the use of higher order Lamb modes for online industrial stress measurement in plate, and that the higher sensitivity seen offers potential for improved measurement systems.
A database for propagation models
Kantak, Anil V.; Suwitra, Krisjani; Le, Choung
1993-08-01
The NASA Propagation Program supports academic research that models various propagation phenomena in the space research frequency bands. NASA supports such research via school and institutions prominent in the field. The products of such efforts are particularly useful for researchers in the field of propagation phenomena and telecommunications systems engineers. The systems engineer usually needs a few propagation parameter values for a system design. Published literature on the subject, such as the Cunsultative Committee for International Radio (CCIR) publications, may help somewhat, but often times, the parameter values given in such publications use a particular set of conditions which may not quite include the requirements of the system design. The systems engineer must resort to programming the propagation phenomena model of interest and to obtain the parameter values to be used in the project. Furthermore, the researcher in the propagation field must then program the propagation models either to substantiate the model or to generate a new model. The researcher or the systems engineer must either be a skillful computer programmer or hire a programmer, which of course increases the cost of the effort. An increase in cost due to the inevitable programming effort may seem particularly inappropriate if the data generated by the experiment is to be used to substantiate the already well-established models, or a slight variation thereof. To help researchers and the systems engineers, it was recommended by the participants of NASA Propagation Experimenters (NAPEX) 15 held in London, Ontario, Canada on 28-29 June 1991, that propagation software should be constructed which will contain models and prediction methods of most propagation phenomenon. Moreover, the software should be flexible enough for the user to make slight changes to the models without expending a substantial effort in programming.
The Green-function transform and wave propagation
Directory of Open Access Journals (Sweden)
Colin eSheppard
2014-11-01
Full Text Available Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogeneous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.
The Green-function transform and wave propagation
Sheppard, Colin J R; Lin, Jiao
2014-01-01
Fourier methods well known in signal processing are applied to three-dimensional wave propagation problems. The Fourier transform of the Green function, when written explicitly in terms of a real-valued spatial frequency, consists of homogeneous and inhomogeneous components. Both parts are necessary to result in a pure out-going wave that satisfies causality. The homogeneous component consists only of propagating waves, but the inhomogeneous component contains both evanescent and propagating terms. Thus we make a distinction between inhomogenous waves and evanescent waves. The evanescent component is completely contained in the region of the inhomogeneous component outside the k-space sphere. Further, propagating waves in the Weyl expansion contain both homogeneous and inhomogeneous components. The connection between the Whittaker and Weyl expansions is discussed. A list of relevant spherically symmetric Fourier transforms is given.
Wave propagation and radiation in gyrotropic and anisotropic media
Eroglu, Abdullah
2010-01-01
""Wave Propagation and Radiation in Gyrotropic and Anisotropic Media"" fills the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using composite structures where gyrotropic, anisotropic materials are used. The book provides engineers with the information on theory and practical skills they need to understand wave propagation and radiation characteristics of materials and the ability to design devices at higher frequencies with optimum device performance.
Voltage modulation of propagating spin waves in Fe
Energy Technology Data Exchange (ETDEWEB)
Nawaoka, Kohei; Shiota, Yoichi; Miwa, Shinji; Tamura, Eiiti [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Tomita, Hiroyuki; Mizuochi, Norikazu; Shinjo, Teruya [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Suzuki, Yoshishige, E-mail: suzuki-y@mp.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); CREST, Japan Science Technology, Kawaguchi, Saitama 332-0012 (Japan); Display and Semiconductor Physics Department, Korea University, Sejong 339-700 (Korea, Republic of)
2015-05-07
The effect of a voltage application on propagating spin waves in single-crystalline 5 nm-Fe layer was investigated. Two micro-sized antennas were employed to excite and detect the propagating spin waves. The voltage effect was characterized using AC lock-in technique. As a result, the resonant field of the magnetostatic surface wave in the Fe was clearly modulated by the voltage application. The modulation is attributed to the voltage induced magnetic anisotropy change in ferromagnetic metals.
Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma
Institute of Scientific and Technical Information of China (English)
DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui
2008-01-01
Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.
Propagation of Transverse Waves in Elastic-Micropolar Porous Semispaces
Hsia, Shao-Yi; Chiu, Shih-Ming; Su, Chih-Chun; Chen, Teng-Hui
2007-11-01
Porous materials are widely used in the passive noise control field as sound absorbers. Conventional models of porous materials are assumed to have a rigid frame and show finite bulk elasticity. However, in the case of acoustical waves — characterized by high frequencies and small wavelengths — the effect of microstructure becomes significant. This effect of microstructure has resulted in the development of new types of waves, not found in the classical theory of elasticity. Generalized continuum theories include the construction of the linear theory of micropolar elasticity that consists of deformation and microrotation with six degrees of freedom, and hence can be used to study the acoustical characteristics of composites with a granular structure. In this study, we investigated transverse wave propagation and its reflection and transmission from a plane interface between two different elastic-micropolar porous interfaces in perfect contact. The micropolar porous composite was constructed using hollow glass microbubbles embedded in an epoxy matrix with six material constants that can be used as the acoustical absorbers. It was found that there are different wave types in a micropolar porous material for the incident \\mathit{SV} (vertical transverse) or \\mathit{SH} (horizontal transverse) wave. It was also found that these two coupled sets of transverse waves, when traveling with different velocities, are dominated by the critical value of microinertia, showing the influence of the micropolar porous characteristics.
Propagation law of impact elastic wave based on specific materials
Directory of Open Access Journals (Sweden)
Chunmin CHEN
2017-02-01
Full Text Available In order to explore the propagation law of the impact elastic wave on the platform, the experimental platform is built by using the specific isotropic materials and anisotropic materials. The glass cloth epoxy laminated plate is used for anisotropic material, and an organic glass plate is used for isotropic material. The PVDF sensors adhered on the specific materials are utilized to collect data, and the elastic wave propagation law of different thick plates and laminated plates under impact conditions is analyzed. The Experimental results show that in anisotropic material, transverse wave propagation speed along the fiber arrangement direction is the fastest, while longitudinal wave propagation speed is the slowest. The longitudinal wave propagation speed in anisotropic laminates is much slower than that in the laminated thick plates. In the test channel arranged along a particular angle away from the central region of the material, transverse wave propagation speed is larger. Based on the experimental results, this paper proposes a material combination mode which is advantageous to elastic wave propagation and diffusion in shock-isolating materials. It is proposed to design a composite material with high acoustic velocity by adding regularly arranged fibrous materials. The overall design of the barrier material is a layered structure and a certain number of 90°zigzag structure.
A study on compressive shock wave propagation in metallic foams
Wang, Zhihua; Zhang, Yifen; Ren, Huilan; Zhao, Longmao
2010-02-01
Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau, which makes it widely applicable in the design of structural crashworthiness. However, in some experimental studies, stress enhancement has been observed when the specimens are subjected to intense impact loads, leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model, a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived, where an explicit integration algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses, considerable energy is dissipated during the progressive collapse of foam cells, which then reduces the crush of objects. When the pulse is sufficiently high, on the other hand, stress enhancement may take place, especially in the heterogeneous foams, where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material, amplitude and period of the pulse, as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.
Does the Decay Wave Propagate Forwards in Dusty Plasmas?
Institute of Scientific and Technical Information of China (English)
谢柏松
2002-01-01
The decay interaction of the ion acoustic wave in a dusty plasma with variable-charge dust grains is studied.Even if strong charging relaxation for dust grains and the short wavelength regime for ion waves are included, it is found that the decay wave must be backward propagating.
Propagation of Weak Pressure Waves against Two Parallel Subsonic Streams
Institute of Scientific and Technical Information of China (English)
Makiko YONAMINE; Takanori USHIJIMA; Yoshiaki MIYAZATO; Mitsuharu MASUDA; Hiroshi KATANODA; Kazuyasu MATSUO
2006-01-01
In this paper, the characteristics of a pressure wave propagating against two parallel subsonic streams in a constant-area straight duct are investigated by one-dimensional analysis, two-dimensional numerical simulation,and experiments. Computations have been carried out by the two-dimensional Euler Equations using the Chakravarthy-Osher-type TVD scheme. Optical observations by the schlieren method as well as wall pressure measurements have been performed to clarify both the structure and the propagation velocity of pressure waves.The results show that the pressure wave propagating against the streams changes into a bifurcated pressure wave and the bifurcation occurs in the low speed streams. It is also found that the propagation velocity of the pressure wave obtained by the analysis and computation agrees well with the present experimental data.
ON THE SOURCE OF PROPAGATING SLOW MAGNETOACOUSTIC WAVES IN SUNSPOTS
Energy Technology Data Exchange (ETDEWEB)
Prasad, S. Krishna; Jess, D. B. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Khomenko, Elena, E-mail: krishna.prasad@qub.ac.uk [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain)
2015-10-10
Recent high-resolution observations of sunspot oscillations using simultaneously operated ground- and space-based telescopes reveal the intrinsic connection between different layers of the solar atmosphere. However, it is not clear whether these oscillations are externally driven or generated in situ. We address this question by using observations of propagating slow magnetoacoustic waves along a coronal fan loop system. In addition to the generally observed decreases in oscillation amplitudes with distance, the observed wave amplitudes are also found to be modulated with time, with similar variations observed throughout the propagation path of the wave train. Employing multi-wavelength and multi-instrument data, we study the amplitude variations with time as the waves propagate through different layers of the solar atmosphere. By comparing the amplitude modulation period in different layers, we find that slow magnetoacoustic waves observed in sunspots are externally driven by photospheric p-modes, which propagate upward into the corona before becoming dissipated.
Laboratory measurements of the effect of internal waves on sound propagation
Zhang, Likun; Swinney, Harry L.; Lin, Ying-Tsong
2016-11-01
The fidelity of acoustic signals used in communication and imaging in the oceans is limited by density fluctuations arising from many sources, particularly from internal waves. We present results from laboratory experiments on sound propagation through an internal wave field produced by a wave generator consisting of multiple oscillating plates. The fluid density as a function of height is measured and used to determine the sound speed as a function of the height. Sound pulses from a transducer propagate through the fluctuating stratified density field and are detected to determine sound refraction, pulse arrival time, and sound signal distortion. The results are compared with sound ray model and numerical models of underwater sound propagation. The laboratory experiments can explore the parameter dependence by varying the fluid density profile, the sound pulse signal, and the internal wave amplitude and frequency. The results lead to a better understanding of sound propagation through and scattered by internal waves.
On the propagation of truncated localized waves in dispersive silica
Salem, Mohamed
2010-01-01
Propagation characteristics of truncated Localized Waves propagating in dispersive silica and free space are numerically analyzed. It is shown that those characteristics are affected by the changes in the relation between the transverse spatial spectral components and the wave vector. Numerical experiments demonstrate that as the non-linearity of this relation gets stronger, the pulses propagating in silica become more immune to decay and distortion whereas the pulses propagating in free-space suffer from early decay and distortion. © 2010 Optical Society of America.
Studies of Gravity Wave Propagation in the Middle Atmosphere.
2014-09-26
34 . . . . . • * * . , . • :’ . . . , ",.,,- -. ’’’ " . ’-- o p - %"""" * " AFOSR.TR. 85-0505 physical dynamics,inc. PD-NW-85-330R L n STUDIES OF GRAVITY WAVE PROPAGATION IN...8217.. , .,- - -. ( %’. , .;: :..............,....... .-... . ~.b .. .. - ..... ,......... ..-. ....-.. PD-NW-85-330R STUDIES OF GRAVITY WAVE PROPAGATION...Include SewftY CsuiclUon STUDIES OF GRAVITY WAVE PROPAGATION IN THE MIDD E 12. PERSONAL AUTHORE) TMOPHU. r Timothy J. Dunkerton a13a. TYPE OF REPORT I3k
Micromechanics of Seismic Wave Propagation in Granular Rocks
Nihei, Kurt Toshimi
1992-09-01
This thesis investigates the details of seismic wave propagation in granular rocks by examining the micromechanical processes which take place at the grain level. Grain contacts are identified as the primary sites of attenuation in dry and fluid-saturated rocks. In many sedimentary rocks such as sandstones and limestones, the process of diagenesis leaves the grains only partially cemented together. When viewed at the micron scale, grain contacts are non-welded interfaces similar in nature to large scale joints and faults. Using a lumped properties approximation, the macroscopic properties of partially cemented grain contacts are modeled using a displacement-discontinuity boundary condition. This model is used to estimate the magnitude and the frequency dependence of the grain contact scattering attenuation for an idealized grain packing geometry. Ultrasonic P- and S-wave group velocity and attenuation measurements on sintered glass beads, alundum, and Berea sandstones were performed to determine the effects of stress, frequency, and pore fluid properties in granular materials with sintered and partially sintered grain contacts. P - and S-wave attenuation displayed the same overall trends for tests with n-decane, water, silicone oil, and glycerol. The magnitudes of the attenuation coefficients were, in general, higher for S-waves. The experimental measurements reveal that viscosity-dependent attenuation dominates in material with sintered grain contacts. Viscosity-dependent attenuation is also observed in Berea sandstone but only at hydrostatic stresses in excess of 15 MPa where the grain contacts are highly stiffened. Fluid surface chemistry-related attenuation was observed in Berea sandstone loaded uniaxially. These measurements suggest that attenuation in fluid-saturated rocks with partially cemented grain contacts is dependent on both the fluid properties and the state of stress at the grain contacts. A numerical method for simulating seismic wave propagation in
Particle velocity non-uniformity and steady-wave propagation
Meshcheryakov, Yu. I.
2017-03-01
A constitutive equation grounded in dislocation dynamics is shown to be incapable of describing the propagation of shock fronts in solids. Shock wave experiments and theoretical investigations motivate an additional collective mechanism of stress relaxation that should be incorporated into the model through the standard deviation of the particle velocity, which is found to be proportional to the strain rate. In this case, the governing equation system results in a second-order differential equation of square non-linearity. Solution to this equation and calculations for D16 aluminum alloy show a more precise coincidence of the theoretical and experimental velocity profiles.
Wave propagation, scattering and emission in complex media
Jin, Ya-Qiu
I. Polarimetric scattering and SAR imagery. EM wave propagation and scattering in polarimetric SAR interferometry / S. R. Cloude. Terrain topographic inversion from single-pass polarimetric SAR image data by using polarimetric stokes parameters and morphological algorithm / Y. Q. Jin, L. Luo. Road detection in forested area using polarimetric SAR / G. W. Dong ... [et al.]. Research on some problems about SAR radiometric resolution / G. Dong ... [et al.]. A fast image matching algorithm for remote sensing applications / Z. Q. Hou ... [et al.]. A new algorithm of noised remote sensing image fusion based on steerable filters / X. Kang ... [et al.]. Adaptive noise reduction of InSAR data based on anisotropic diffusion models and their applications to phase unwrapping / C. Wang, X. Gao, H. Zhang -- II. Scattering from randomly rough surfaces. Modeling tools for backscattering from rough surfaces / A. K. Fung, K. S. Chen. Pseudo-nondiffracting beams from rough surface scattering / E. R. Méndez, T. A. Leskova, A. A. Maradudin. Surface roughness clutter effects in GPR modeling and detection / C. Rappaport. Scattering from rough surfaces with small slopes / M. Saillard, G. Soriano. Polarization and spectral characteristics of radar signals reflected by sea-surface / V. A. Butko, V. A. Khlusov, L. I. Sharygina. Simulation of microwave scattering from wind-driven ocean surfaces / M. Y. Xia ... [et al.]. HF surface wave radar tests at the Eastern China Sea / X. B. Wu ... [et al.] -- III. Electromagnetics of complex materials. Wave propagation in plane-parallel metamaterial and constitutive relations / A. Ishimaru ... [et al.]. Two dimensional periodic approach for the study of left-handed metamaterials / T. M. Grzegorczyk ... [et al.]. Numerical analysis of the effective constitutive parameters of a random medium containing small chiral spheres / Y. Nanbu, T. Matsuoka, M. Tateiba. Wave propagation in inhomogeneous media: from the Helmholtz to the Ginzburg -Landau equation / M
Acoustic Propagation Modeling Using MATLAB
1993-09-01
Acoustic propagation, transient waves, transfer function, linear systems theory 16. PRICE CODE 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 1...method of diffraction prediction. This report describes an ap- proach based on linear systems theory and the Fourier transform. The goal was to achieve a...differed by the use of linear systems theory . Linear systems theory revealed the importance of the total impulse response and its equivalence to the
Analysis of guided wave propagation in a tapered composite panel
Wandowski, Tomasz; Malinowski, Pawel; Moll, Jochen; Radzienski, Maciej; Ostachowicz, Wieslaw
2015-03-01
Many studies have been published in recent years on Lamb wave propagation in isotropic and (multi-layered) anisotropic structures. In this paper, adiabatic wave propagation phenomenon in a tapered composite panel made out of glass fiber reinforced polymers (GFRP) will be considered. Such structural elements are often used e.g. in wind turbine blades and aerospace structures. Here, the wave velocity of each wave mode does not only change with frequency and the direction of wave propagation. It further changes locally due to the varying cross-section of the GFRP panel. Elastic waves were excited using a piezoelectric transducer. Full wave-field measurements using scanning Laser Doppler vibrometry have been performed. This approach allows the detailed analysis of elastic wave propagation in composite specimen with linearly changing thickness. It will be demonstrated here experimentally, that the wave velocity changes significantly due to the tapered geometry of the structure. Hence, this work motivates the theoretical and experimental analysis of adiabatic mode propagation for the purpose of Non-Destructive Testing and Structural Health Monitoring.
Wave propagation in a magneto-electro- elastic plate
Institute of Scientific and Technical Information of China (English)
2008-01-01
The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.
An effective absorbing boundary algorithm for acoustical wave propagator
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, Berenger's perfectly matched layer (PML) absorbing boundary condition for electromagnetic waves is introduced as the truncation area of the computational domain to absorb one-dimensional acoustic wave for the scheme of acoustical wave propagator (AWP). To guarantee the efficiency of the AWP algorithm, a regulated propagator matrix is derived in the PML medium.Numerical simulations of a Gaussian wave packet propagating in one-dimensional duct are carried out to illustraze the efficiency of the combination of PML and AWP. Compared with the traditional smoothing truncation windows technique of AWP, this scheme shows high computational accuracy in absorbing acoustic wave when the acoustical wave arrives at the computational edges. Optimal coefficients of the PML configurations are also discussed.
Synthetic observations of wave propagation in a sunspot umbra
Energy Technology Data Exchange (ETDEWEB)
Felipe, T. [NorthWest Research Associates, Colorado Research Associates, Boulder, CO 80301 (United States); Socas-Navarro, H.; Khomenko, E. [Instituto de Astrofísica de Canarias, C/Vía Láctea, s/n, E-38205 La Laguna, Tenerife (Spain)
2014-11-01
Spectropolarimetric temporal series from Fe I λ6301.5 Å and Ca II infrared triplet lines are obtained by applying the Stokes synthesis code NICOLE to a numerical simulation of wave propagation in a sunspot umbra from MANCHA code. The analysis of the phase difference between Doppler velocity and intensity core oscillations of the Fe I λ6301.5 Å line reveals that variations in the intensity are produced by opacity fluctuations rather than intrinsic temperature oscillations, except for frequencies between 5 and 6.5 mHz. On the other hand, the photospheric magnetic field retrieved from the weak field approximation provides the intrinsic magnetic field oscillations associated to wave propagation. Our results suggest that this is due to the low magnetic field gradient of our sunspot model. The Stokes parameters of the chromospheric Ca II infrared triplet lines show striking variations as shock waves travel through the formation height of the lines, including emission self-reversals in the line core and highly abnormal Stokes V profiles. Magnetic field oscillations inferred from the Ca II infrared lines using the weak field approximation appear to be related with the magnetic field strength variation between the photosphere and the chromosphere.
Miah, Khalid; Bellefleur, Gilles
2014-05-01
The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to
Energy Technology Data Exchange (ETDEWEB)
Melchor Garcia, Nicolas Ageo
2005-02-15
This work presents the state of art of the behavior of buried pipelines facing the effect of the propagation of seismic waves. Special attention has been given to the modeling of the soil-piping system. Some analytical models are presented and discussed in great detail. The purpose of this is to contribute, in particular, to the following aspects: First, it attempts to be a reference work for the geotechnical engineers facing problems related to the seismic wave propagation phenomenon in buried structures, since within the consulted literature there are many of the principles presented in here, that are related with the seismic engineering, the reaction module, as well as expressions or investigations performed in piles. Second, a cuasi-static numerical model is presented that analyzes the continuous piping through a stress vector of sinusoidal type. The analysis of the stresses and deformations that the ground transmits to the pipe is made using a ground-to-pipe interaction model. For a low level of deformations an elastic behavior of transference in the interface is considered in the inter-phase ground-piping. In the case of greater deformations it is assumed that sliding is presented because the surrounding ground presents fault by shearing stress in the surrounding ground. The analysis covers solely the case with axial deformations in straight sections. Finally, it intends to give a series of recommendations for future research works on the modeling of buried pipelines. In this work, the influence of several aspects on the response of the pipelines to the propagation of seismic waves is analyzed and discussed; such as the conditions of topography, geology, ground stratigraphy and the rigidity changes in the surrounding ground of the pipe. [Spanish] Este trabajo presenta el estado del arte sobre el comportamiento de tuberias enterradas ante efecto de programacion de ondas sismicas. Una especial atencion ha sido dada a la modelacion del sistema suelo
Investigation of guided waves propagation in pipe buried in sand
Energy Technology Data Exchange (ETDEWEB)
Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)
2014-02-18
The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.
Wave propagation in chiral media: composite Fresnel equations
Chern, Ruey-Lin
2013-07-01
In this paper, the author studies the features of wave propagation in chiral media. A general form of wave equations in biisotropic media is employed to derive concise formulas for the reflection and transmission coefficients. These coefficients are represented as a composite form of Fresnel equations for ordinary dielectrics, which reveal the circularly polarized nature of chiral media. The important features of negative refraction and a backward wave associated with left-handed waves are analyzed.
Acoustoelastic Lamb Wave Propagation in Biaxially Stressed Plates (Preprint)
2012-03-01
particularly as compared to most bulk wave NDE methods, Lamb wave are particularly sensitive to changes in the propagation environment, such as... Wilcox , and J. E. Michaels, “Efficient temperature compensation strategies for guided wave structural health monitoring,” Ultrasonics, 50, pp. 517...Liu, “Effects of residual stress on guided waves in layered media,” Rev. Prog. Quant. NDE , 17, D. O. Thompson and D. E. Chimenti (Eds.), Plenum Press
Regional wave propagation using the discontinuous Galerkin method
Directory of Open Access Journals (Sweden)
S. Wenk
2013-01-01
Full Text Available We present an application of the discontinuous Galerkin (DG method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER Riemann problem. This ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy. We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.
Regional wave propagation using the discontinuous Galerkin method
Directory of Open Access Journals (Sweden)
S. Wenk
2012-08-01
Full Text Available We present an application of the discontinuous Galerkin (DG method to regional wave propagation. The method makes use of unstructured tetrahedral meshes, combined with a time integration scheme solving the arbitrary high-order derivative (ADER Riemann problem. The ADER-DG method is high-order accurate in space and time, beneficial for reliable simulations of high-frequency wavefields over long propagation distances. Due to the ease with which tetrahedral grids can be adapted to complex geometries, undulating topography of the Earth's surface and interior interfaces can be readily implemented in the computational domain. The ADER-DG method is benchmarked for the accurate radiation of elastic waves excited by an explosive and a shear dislocation source. We compare real data measurements with synthetics of the 2009 L'Aquila event (central Italy. We take advantage of the geometrical flexibility of the approach to generate a European model composed of the 3-D EPcrust model, combined with the depth-dependent ak135 velocity model in the upper-mantle. The results confirm the applicability of the ADER-DG method for regional scale earthquake simulations, which provides an alternative to existing methodologies.
Directory of Open Access Journals (Sweden)
M. Caputo
1998-06-01
Full Text Available Since the dispersion and attenuation properties of dielectric and anelastic media, in the frequency domain, are expressed by similar formulae, as shown experimentally by Cole and Cole (1941 and Bagley and Torvik (1983, 1986 respectively, we note that the same properties may be represented in the time domain by means of an equation of the same form; this is obtained by introducing derivatives of fractional order into the system functions of the media. The Laplace Transforms (LT of such system functions contain fractional powers of the imaginary frequency and are, therefore, multivalued functions defined in the Riemann Sheets (RS of the function. We determine the response of the medium (dielectric o anelastic to a generic signal summing the time domain representation due to the branches of the solutions in the RSs of the LT. It is found that, if the initial conditions are equal in all the RSs, the solution is a sum of two exponentials with complex exponents, if the initial conditions are different in some of the RSs, then a transient for each of those RSs is added to the exponentials. In all cases a monochromatic wave is split into a set of waves with the same frequency and slightly different wavelengths which interfere and disperse. As a consequence a monochromatic electromagnetic wave with frequency around 1 MHz in water has a relevant dispersion and beats generating a tunnel effect. In the atmosphere of the Earth the dispersion of a monochromatic wave with frequency around 1 GHz, like those used in tracking artificial satellites, has a negligible effect on the accuracy of the determination of the position of the satellites and the positioning of the bench marks on the Earth. We also find the split eigenfunctions of the free modes of infinite plates and shells made of dielectric and anelastic media.
Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets
Shao, S.; Pyrak-Nolte, L. J.
2016-10-01
Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.
Measuring Gravitational-Wave Propagation Speed with Multimessenger Observations
Nishizawa, Atsushi; Nakamura, Takashi
2016-01-01
A measurement of gravitational wave (GW) propagation speed is one of important tests of gravity in a dynamical regime. We report a method to measure the GW propagation speed by directly comparing arrival times of GWs, neutrinos from supernovae (SN), and photons from short gamma-ray bursts (SGRB). We found that the future multimessenger observations can test the GW propagation speed with the precision of ~ 10^(-16)-10^(-15), improving the previous suggestions by 9 — 10 orders of magnitude. We ...
Topology optimization of vibration and wave propagation problems
DEFF Research Database (Denmark)
Jensen, Jakob Søndergaard
2007-01-01
The method of topology optimization is a versatile method to determine optimal material layouts in mechanical structures. The method relies on, in principle, unlimited design freedom that can be used to design materials, structures and devices with significantly improved performance and sometimes...... novel functionality. This paper addresses basic issues in simulation and topology design of vibration and wave propagation problems. Steady-state and transient wave propagation problems are addressed and application examples for both cases are presented....
Characteristic wave diversity in near vertical incidence skywave propagation
Witvliet, Ben A.; Maanen, van Erik; Petersen, George J.; Westenberg, Albert J.; Bentum, Mark J.; Slump, Cornelis H.; Schiphorst, Roel
2015-01-01
In Near Vertical Incidence Skywave (NVIS) propagation, effective diversity reception can be realized using a dual channel receiver and a dual polarization antenna with polarization matched to the (left hand and right hand) circular polarization of the characteristic waves propagating in the ionosphe
Time-domain Wave Propagation in Dispersive Media①
Institute of Scientific and Technical Information of China (English)
无
1997-01-01
The equation of time-domain wave propagation in dispersive media and the explicit beam propagation method are presented in this paper.This method is demonstrated by the short optical pulses in a directional coupler with second order dispersive effect and shows to be in full agreement with former references.This method is simple,easy and practical.
Time reversal techniques in electromagnetic wave propagation
Yi, Jiang
The time reversal method is a novel scheme utilizing the scattering components in a highly cluttered environment to achieve super-resolution focusing beyond Rayleigh criteria. In acoustics, time reversal effects are comprehensively analyzed and utilized in underwater target detection and communication. Successful demonstrations of the time reversal method using low frequency waveform in acoustics have generated wide interest in utilizing time reversal method by radio frequency electromagnetic waves. However, applications of the time reversal method in electromagnetics are considered to be emerging research topics and lack extensive analyses and studies. In this thesis, we present a systematic study in which a series of novel time reversal techniques have been developed for target detection and imaging in highly cluttered environments where higher order scattering is substantial. This thesis also contributes to insightful understanding of basic time reversal properties in electromagnetic (EM) wave propagation in such environment. EM time reversal focusing and nulling effects using both single and multiple antennas are first demonstrated by FDTD simulations. Based on these properties, single antenna time reversal detection indicates significant enhancement in detection capability over traditional change detection scheme. A frequency selection scheme utilizing the frequencies with strong constructive interference between the target and background environment is developed to further improve the performance of the time reversal detector. Moreover, a novel time reversal adaptive interference cancellation (TRAIC) detection scheme developed based on TR properties can obtain null of the background through the time reversal nulling effect and achieve automatic focusing on the target through the time reversal focusing effect. Therefore, the detection ability, dynamic range and signal to noise ratio of a radar system can be significantly enhanced by the time reversal method
Chu, Chunlei
2009-01-01
We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.
Propagation of high frequency waves in the quiet solar atmosphere
Directory of Open Access Journals (Sweden)
Andić A.
2008-01-01
Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analyzed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.
Propagation of High Frequency Waves in the Quiet Solar Atmosphere
Directory of Open Access Journals (Sweden)
Andić, A.
2008-12-01
Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analysed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.
Propagation of High Frequency Waves in the Quiet Solar Atmosphere
AndiÄ, Aleksandra
2008-01-01
High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.
Time dependent wave envelope finite difference analysis of sound propagation
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Stress wave propagation in a composite beam subjected to transverse impact.
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Yang; Song, Bo; Jin, Huiqing
2010-08-01
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate
Propagation of gravitational waves in the nonperturbative spinor vacuum
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [Al-Farabi Kazakh National University, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); Al-Farabi Kazakh National University, Institute of Experimental and Theoretical Physics, Almaty (Kazakhstan); Eurasian National University, Institute for Basic Research, Astana (Kazakhstan); Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan); Folomeev, Vladimir [Institute of Physicotechnical Problems and Material Science of the NAS of the Kyrgyz Republic, Bishkek (Kyrgyzstan)
2014-09-15
The propagation of gravitational waves on the background of a nonperturbative vacuum of a spinor field is considered. It is shown that there are several distinctive features in comparison with the propagation of plane gravitational waves through empty space: there exists a fixed phase difference between the h{sub yy,zz} and h{sub yz} components of the wave; the phase and group velocities of gravitational waves are not equal to the velocity of light; the group velocity is always less than the velocity of light; under some conditions the gravitational waves are either damped or absent; for given frequency, there exist two waves with different wave vectors. We also discuss the possibility of an experimental verification of the obtained effects as a tool to investigate nonperturbative quantum field theories. (orig.)
The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave.
Muller, Lyle; Reynaud, Alexandre; Chavane, Frédéric; Destexhe, Alain
2014-04-28
Propagating waves occur in many excitable media and were recently found in neural systems from retina to neocortex. While propagating waves are clearly present under anaesthesia, whether they also appear during awake and conscious states remains unclear. One possibility is that these waves are systematically missed in trial-averaged data, due to variability. Here we present a method for detecting propagating waves in noisy multichannel recordings. Applying this method to single-trial voltage-sensitive dye imaging data, we show that the stimulus-evoked population response in primary visual cortex of the awake monkey propagates as a travelling wave, with consistent dynamics across trials. A network model suggests that this reliability is the hallmark of the horizontal fibre network of superficial cortical layers. Propagating waves with similar properties occur independently in secondary visual cortex, but maintain precise phase relations with the waves in primary visual cortex. These results show that, in response to a visual stimulus, propagating waves are systematically evoked in several visual areas, generating a consistent spatiotemporal frame for further neuronal interactions.
Computational simulation of wave propagation problems in infinite domains
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This paper deals with the computational simulation of both scalar wave and vector wave propagation problems in infinite domains. Due to its advantages in simulating complicated geometry and complex material properties, the finite element method is used to simulate the near field of a wave propagation problem involving an infinite domain. To avoid wave reflection and refraction at the common boundary between the near field and the far field of an infinite domain, we have to use some special treatments to this boundary. For a wave radiation problem, a wave absorbing boundary can be applied to the common boundary between the near field and the far field of an infinite domain, while for a wave scattering problem, the dynamic infinite element can be used to propagate the incident wave from the near field to the far field of the infinite domain. For the sake of illustrating how these two different approaches are used to simulate the effect of the far field, a mathematical expression for a wave absorbing boundary of high-order accuracy is derived from a two-dimensional scalar wave radiation problem in an infinite domain, while the detailed mathematical formulation of the dynamic infinite element is derived from a two-dimensional vector wave scattering problem in an infinite domain. Finally, the coupled method of finite elements and dynamic infinite elements is used to investigate the effects of topographical conditions on the free field motion along the surface of a canyon.
Special Course on Acoustic Wave Propagation
1979-08-01
exesiple) et cules se propagent 41 is surface du liquido . WW.JF~q W - , -- r -w w 144 Dens ce cax Von (10) 4 =/.+ Sane entrer dans le ddtail des...543-546. 57. STUFF, R., Analytic solution for the sound propagation through the atmospheric wind boundary layer. Proc. Noise Control Conf., Warszawa...between nodal surfaces of one-half wavelength. Evidently this property, like the energy conservation one, is available for use as a " control " on any
Effects of pore fluids in the subsurface on ultrasonic wave propagation
Energy Technology Data Exchange (ETDEWEB)
Seifert, Patricia Katharina [Univ. of California, Berkeley, CA (United States)
1998-05-01
This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.
Perfectly Matched Layer (PML) for Transient Wave Propagation in a Moving Frame of Reference
Madsen, Stine Skov; Krenk, Steen; Hededal, Ole
2013-01-01
In relation to the development of a Rolling Wheel Deflectometer (RWD), which is a non-destructive testing device for measuring pavement deflections, a finite element model for obtaining the soil/pavement response is developed. Absorbing boundary conditions are necessary in order to prevent reflections of the waves propagating through the soil due to the dynamic loading. The Perfectly Matched Layer (PML) has proven to be highly efficient when solving transient wave propagation problems in a fi...
Directory of Open Access Journals (Sweden)
Vojkan M. Radonjić
2011-01-01
Full Text Available Quality transmission of digital signals from a transmitting radio-relay device to a receiving one depends on the impact of environmental effects on the propagation of electromagnetic waves. In this paper some of the most important effects are explained and modeled, especially those characteristic for the frequency range within which the GRC 408E operates. The modeling resulted in the conclusions about the quality of transmission of digital signals in the GRC 408E radio-relay equipment. Propagation of electromagnetic waves A radio-relay link is achieved by direct electromagnetic waves, provided there is a line of sight between the transmitting and receiving antenna of a radio-relay device. Electromagnetic waves on the road are exposed to various environmental influences causing phenomena such as bending, reflection, refraction, absorption and multiple propagation. Due to these environmental effects, the quality of information transmission is not satisfactory and a radio-relay link is not reliable. The approach to the analysis of the quality of links in digital radiorelay devices is different from the one in analog radio-relay devices. Therefore, the quality is seen through errors in the received bit ( BER , the propagation conditions are taken into account, a reservation for the fading is determined by other means, etc.. Phenomena which accompany the propagation of electromagnetic waves in digital radio-relay links The propagation of direct EM waves is followed by the following phenomena: - attenuation due to propagation, - diffraction (changing table, - refraction (refraction, - reflection (refusing, - absorption (absorption and - multiple wave propagation. Each of these has a negative effect on the quality of the received signal at the receiving antenna of the radio-relay device. Attenuation due to propagation of electromagnetic waves The main parameter for evaluating the quality of radio-relay links is the level of the field at the reception
Propagation characteristics of ultrasonic guided waves in continuously welded rail
Yao, Wenqing; Sheng, Fuwei; Wei, Xiaoyuan; Zhang, Lei; Yang, Yuan
2017-07-01
Rail defects cause numerous railway accidents. Trains are derailed and serious consequences often occur. Compared to traditional bulk wave testing, ultrasonic guided waves (UGWs) can provide larger monitoring ranges and complete coverage of the waveguide cross-section. These advantages are of significant importance for the non-destructive testing (NDT) of the continuously welded rail, and the technique is therefore widely used in high-speed railways. UGWs in continuous welded rail (CWR) and their propagation characteristics have been discussed in this paper. Finite element methods (FEMs) were used to accomplish a vibration modal analysis, which is extended by a subsequent dispersion analysis. Wave structure features were illustrated by displacement profiles. It was concluded that guided waves have the ability to detect defects in the rail via choice of proper mode and frequency. Additionally, thermal conduction that is caused by temperature variation in the rail is added into modeling and simulation. The results indicated that unbalanced thermal distribution may lead to the attenuation of UGWs in the rail.
Automated classification of spatiotemporal characteristics of gastric slow wave propagation.
Paskaranandavadivel, Niranchan; Gao, Jerry; Du, Peng; O'Grady, Gregory; Cheng, Leo K
2013-01-01
Gastric contractions are underpinned by an electrical event called slow wave activity. High-resolution electrical mapping has recently been adapted to study gastric slow waves at a high spatiotemporal detail. As more slow wave data becomes available, it is becoming evident that the spatial organization of slow wave plays a key role in the initiation and maintenance of gastric dsyrhythmias in major gastric motility disorders. All of the existing slow wave signal processing techniques deal with the identification and partitioning of recorded wave events, but not the analysis of the slow wave spatial organization, which is currently performed visually. This manual analysis is time consuming and is prone to observer bias and error. We present an automated approach to classify spatial slow wave propagation patterns via the use of Pearson cross correlations. Slow wave propagations were grouped into classes based on their similarity to each other. The method was applied to high-resolution gastric slow wave recordings from four pigs. There were significant changes in the velocity of the gastric slow wave wavefront and the amplitude of the slow wave event when there was a change in direction to the slow wave wavefront during dsyrhythmias, which could be detected with the automated approach.
Stress Wave Propagation in a Gradient Elastic Medium
Institute of Scientific and Technical Information of China (English)
赵亚溥; 赵涵; 胡宇群
2002-01-01
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determinethe monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equationof motion, together with the internal material length, has been derived. Various dispersion relations have beendetermined. We present explicit expressions for the relationship between various wave speeds, wavenumber andinternal material length.
Nonlinear propagation of short wavelength drift-Alfven waves
DEFF Research Database (Denmark)
Shukla, P. K.; Pecseli, H. L.; Juul Rasmussen, Jens
1986-01-01
Making use of a kinetic ion and a hydrodynamic electron description together with the Maxwell equation, the authors derive a set of nonlinear equations which governs the dynamics of short wavelength ion drift-Alfven waves. It is shown that the nonlinear drift-Alfven waves can propagate as two...
Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments
Yucel, Abdulkadir C.
2013-01-01
A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.
In-plane propagation of electromagnetic waves in planar metamaterials
Yi, Changhyun; Rhee, Joo Yull; Kim, Ki Won; Lee, YoungPak
2016-08-01
Some planar metamaterials (MMs) or subwavelength antenna/hole arrays have a considerable amount of in-plane propagation when certain conditions are met. In this paper, the in-plane propagation caused by a wave incident on a MM absorber was studied by using a finite-difference time-domain (FDTD) technique. By using a FDTD simulation, we were able to observe a nonnegligible amount of in-plane propagation after the incident wave had arrived at the surface of the planar structure and gradually decreased propagation of the electromagnetic wave in the planar direction gradually decreased. We performed the FDTD simulation carefully to reproduce valid results and to verify the existence of in-plane propagation. For verification of the in-plane propagation explicitly, Poynting vectors were calculated and visualized inside the dielectric substrate between the metallic back-plate and an array of square patches. We also investigated several different structures with resonators of various shapes and found that the amount of facing edges of adjacent metallic patches critically determined the strength of the in-plane propagation. Through this study, we could establish the basis for the existence of in-plane propagation in MMs.
Institute of Scientific and Technical Information of China (English)
U.GÜVEN
2015-01-01
In this paper, the propagation of longitudinal stress waves under a longitu-dinal magnetic field is addressed using a unified nonlocal elasticity model with two scale coeﬃcients. The analysis of wave motion is mainly based on the Love rod model. The effect of shear is also taken into account in the framework of Bishop’s correction. This analysis shows that the classical theory is not suﬃcient for this subject. However, this unified nonlocal elasticity model solely used in the present study reflects in a manner fairly realistic for the effect of the longitudinal magnetic field on the longitudinal wave propagation.
Numerical Homogenization of Jointed Rock Masses Using Wave Propagation Simulation
Gasmi, Hatem; Hamdi, Essaïeb; Bouden Romdhane, Nejla
2014-07-01
Homogenization in fractured rock analyses is essentially based on the calculation of equivalent elastic parameters. In this paper, a new numerical homogenization method that was programmed by means of a MATLAB code, called HLA-Dissim, is presented. The developed approach simulates a discontinuity network of real rock masses based on the International Society of Rock Mechanics (ISRM) scanline field mapping methodology. Then, it evaluates a series of classic joint parameters to characterize density (RQD, specific length of discontinuities). A pulse wave, characterized by its amplitude, central frequency, and duration, is propagated from a source point to a receiver point of the simulated jointed rock mass using a complex recursive method for evaluating the transmission and reflection coefficient for each simulated discontinuity. The seismic parameters, such as delay, velocity, and attenuation, are then calculated. Finally, the equivalent medium model parameters of the rock mass are computed numerically while taking into account the natural discontinuity distribution. This methodology was applied to 17 bench fronts from six aggregate quarries located in Tunisia, Spain, Austria, and Sweden. It allowed characterizing the rock mass discontinuity network, the resulting seismic performance, and the equivalent medium stiffness. The relationship between the equivalent Young's modulus and rock discontinuity parameters was also analyzed. For these different bench fronts, the proposed numerical approach was also compared to several empirical formulas, based on RQD and fracture density values, published in previous research studies, showing its usefulness and efficiency in estimating rapidly the Young's modulus of equivalent medium for wave propagation analysis.
Propagation of internal waves up continental slope and shelf
Institute of Scientific and Technical Information of China (English)
DAI Dejun; WANG Wei; QIAO Fangli; YUAN Yeli; XIANG Wenxi
2008-01-01
In a two-dimensional and linear framework, a transformation was developed to derive eigensolutions of internal waves over a subcriticai hyperbolic slope and to approximate the continental slope and shelf. The transformation converts a hyperbolic slope in physical space into a fiat bottom in transform space while the governing equations of internal waves remain hyperbolic. The eigensolutions are further used to study the evolution of linear internal waves as it propagates to subcritical continental slope and shelf. The stream function, velocity, and vertical shear of velocity induced by internal wave at the hyperbolic slope are analytically expressed by superposition of the obtained eigensolutions. The velocity and velocity shear increase as the internal wave propagates to a hyperbolic slope. They become very large especially when the slope of internal wave rays approaches the topographic slope, which is consistent with the previous studies.
Wave propagation in reconfigurable magneto-elastic kagome lattice structures
Schaeffer, Marshall; Ruzzene, Massimo
2015-05-01
The paper discusses the wave propagation characteristics of two-dimensional magneto-elastic kagome lattices. Mechanical instabilities caused by magnetic interactions are exploited in combination with particle contact to bring about changes in the topology and stiffness of the lattices. The analysis uses a lumped mass system of particles, which interact through axial and torsional elastic forces as well as magnetic forces. The propagation of in-plane waves is predicted by applying Bloch theorem to lattice unit cells with linearized interactions. Elastic wave dispersion in these lattices before and after topological changes is compared, and large differences are highlighted.
Electron acceleration in the ionosphere by obliquely propagating electromagnetic waves
Burke, William J.; Ginet, Gregory P.; Heinemann, Michael A.; Villalon, Elena
The paper presents an analysis of the relativistic equations of motion for electrons in magnetized plasma and externally imposed electromagnetic fields that propagate at arbitrary angles to the background magnetic field. The relativistic Lorentz equation for a test electron moving under the influence of an electromagnetic wave in a cold magnetized plasma and wave propagation through the ionospheric 'radio window' are examined. It is found that at wave energy fluxes greater than 10 to the 8th mW/sq m, initially cold electrons can be accelerated to energies of several MeV in less than a millisecond. Plans to test the theoretical results with rocket flights are discussed.
Wave propagation across sea-ice thickness changes
Squire, V. A.; Williams, T. D.
Williams and Squire (Williams, T.D., Squire, V.A., in press. The effect of submergence on wave scattering across a transition between two floating flexible plates. Wave Motion) present a mathematical theory that properly incorporates freeboard and draft, i.e. submergence, in a description of how ocean surface waves propagate across an abrupt change of properties in a continuous sea-ice cover. Typically the abrupt feature is an ice floe of different thickness from the surrounding plate, a trapped iceberg, a pressure ridge, or an open or refrozen lead. Here, we investigate how the assimilation of this floe submergence into theory alters the transmission of the wave trains, allowing the approximation and consequent limitations inherent in the majority of previous models that apply the under-ice boundary conditions at the mean open water surface to be assessed. This is done for isolated features and, using the wide-spacing approximation, for heterogeneous ice sheets made up of many such irregularities drawn from appropriate probability density distributions. It is found that the contribution associated with the underwater draft of ice floes is modest and can invariably be neglected, aside from at short periods and in heavily deformed sea-ice. While its amassed effect across the many irregular features that habitually characterize sea-ice will be significant, it is offset because of the tendency of ice covers to discourage the passage of short wavelengths preferentially by creating a background wave spectrum composed only of long period wave energy in the ice interior. More general geophysical implications are discussed, particularly in relation to global climate change and the value of ice-covered regions as a proxy for observing a warmer Earth.
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2013-01-01
With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements
Zhebel, E.; Minisini, S.; Kononov, A.; Mulder, W.A.
2013-01-01
With the rapid developments in parallel compute architectures, algorithms for seismic modeling and imaging need to be reconsidered in terms of parallelization. The aim of this paper is to compare scalability of seismic modeling algorithms: finite differences, continuous mass-lumped finite elements a
Spetzler, J.
2001-01-01
Small-scale heterogeneity alters the arrival time of waves in a way that cannot be explained by ray theory. It is because ray theory is a high-frequency approximation that does not take the finite-frequency of wavefields into account. A theory based on the first Rytov approximation is develope
Effect of material parameters on stress wave propagation during fast upsetting
Institute of Scientific and Technical Information of China (English)
WANG Zhong-jin; CHENG Li-dong
2008-01-01
Based'on a dynamic analysis method and an explicit algorithm, a dynamic explicit finite element code was developed for modeling the fast upsetting process of block under drop hammer impact, in which the hammer velocity during the deformation was calculated by energy conservation law according to the operating principle of hammer equipment. The stress wave propagation and its effect on the deformation were analyzed by the stress and strain distributions. Industrial pure lead, oxygen-free high-conductivity (OFHC) copper and 7039 aluminum alloy were chosen to investigate the effect of material parameters on the stress wave propagation. The results show that the stress wave propagates from top to bottom of block, and then reflects back when it reaches the bottom surface. After that, stress wave propagates and reflects repeatedly between the upper surface and bottom surface. The stress wave propagation has a significant effect on the deformation at the initial stage, and then becomes weak at the middle-final stage. When the ratio of elastic modulus or the slope of stress-strain curve to mass density becomes larger, the velocity of stress wave propagation increases, and the influence of stress wave on the deformation becomes small.
Nonlinear propagation and control of acoustic waves in phononic superlattices
Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J
2015-01-01
The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
Propagation of Electromagnetic Waves in Extremely Dense Media
Masood, Samina
2016-01-01
We study the propagation of electromagnetic (EM) waves in extremely dense exotic systems with very unique properties. These EM waves develop a longitudinal component due to its interaction with the medium. Renormalization scheme of QED is used to understand the propagation of EM waves in both longitudinal and transverse directions. The propagation of EM waves in a quantum statistically treatable medium affects the properties of the medium itself. The electric permittivity and the magnetic permeability of the medium are modified and influence the related behavior of the medium. All the electromagnetic properties of a medium become a function of temperature and chemical potential of the medium. We study in detail the modifications of electric permittivity and magnetic permeability and other related properties of a medium in the superdense stellar objects.
A study on compressive shock wave propagation in metallic foams
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Metallic foam can dissipate a large amount of energy due to its relatively long stress plateau,which makes it widely applicable in the design of structural crashworthiness. However,in some experimental studies,stress enhancement has been observed when the specimens are subjected to intense impact loads,leading to severe damage to the objects being protected. This paper studies this phenomenon on a 2D mass-spring-bar model. With the model,a constitutive relationship of metal foam and corresponding loading and unloading criteria are presented; a nonlinear kinematics equilibrium equation is derived,where an explicit integra-tion algorithm is used to calculate the characteristic of the compressive shock wave propagation within the metallic foam; the effect of heterogeneous distribution of foam microstructures on the shock wave features is also included. The results reveal that under low impact pulses,considerable energy is dissipated during the progressive collapse of foam cells,which then reduces the crush of objects. When the pulse is sufficiently high,on the other hand,stress enhancement may take place,especially in the heterogeneous foams,where high peak stresses usually occur. The characteristics of compressive shock wave propagation in the foam and the magnitude and location of the peak stress produced are strongly dependent on the mechanical properties of the foam material,amplitude and period of the pulse,as well as the homogeneity of the microstructures. This research provides valuable insight into the reliability of the metallic foams used as a protective structure.
Nonlinear propagation of planet-generated tidal waves
Rafikov, Roman
2001-01-01
The propagation and evolution of planet-generated density waves in protoplanetary disks is considered. The evolution of waves, leading to the shock formation and wake dissipation, is followed in the weakly nonlinear regime. The local approach of Goodman & Rafikov (2001) is extended to include the effects of surface density and temperature variations in the disk as well as the disk cylindrical geometry and nonuniform shear. Wave damping due to shocks is demonstrated to be a nonlocal process sp...
Wave Numerical Model for Shallow Water
Institute of Scientific and Technical Information of China (English)
徐福敏; 严以新; 张长宽; 宋志尧; 茅丽华
2000-01-01
The history of forecasting wind waves by wave energy conservation equation is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
Zilberman, Arkadi; Golbraikh, Ephim; Kopeika, Norman S
2008-12-01
Turbulence properties of communication links (optical and microwave) in terms of log-amplitude variance are studied on the basis of a three-layer model of refractive index fluctuation spectrum in the free atmosphere. We suggest a model of turbulence spectra (Kolmogorov and non-Kolmogorov) changing with altitude on the basis of obtained experimental and theoretical data for turbulence profile in the troposphere and lower stratosphere.
The effects of nonlinear wave propagation on the stability of inertial cavitation
2009-01-01
In the context of forecasting temperature and pressure fields in high-intensity focussed ultrasound, the accuracy of predictive models is critical for the safety and efficacy of treatment. In such fields inertial cavitation is often observed. Classically, estimations of cavitation thresholds have been based on the assumption that the incident wave at the surface of a bubble was the same as in the far-field, neglecting the effect of nonlinear wave propagation. By modelling the incident wave as...
Longitudinally propagating traveling waves of the mammalian tectorial membrane.
Ghaffari, Roozbeh; Aranyosi, Alexander J; Freeman, Dennis M
2007-10-16
Sound-evoked vibrations transmitted into the mammalian cochlea produce traveling waves that provide the mechanical tuning necessary for spectral decomposition of sound. These traveling waves of motion that have been observed to propagate longitudinally along the basilar membrane (BM) ultimately stimulate the mechano-sensory receptors. The tectorial membrane (TM) plays a key role in this process, but its mechanical function remains unclear. Here we show that the TM supports traveling waves that are an intrinsic feature of its visco-elastic structure. Radial forces applied at audio frequencies (2-20 kHz) to isolated TM segments generate longitudinally propagating waves on the TM with velocities similar to those of the BM traveling wave near its best frequency place. We compute the dynamic shear storage modulus and shear viscosity of the TM from the propagation velocity of the waves and show that segments of the TM from the basal turn are stiffer than apical segments are. Analysis of loading effects of hair bundle stiffness, the limbal attachment of the TM, and viscous damping in the subtectorial space suggests that TM traveling waves can occur in vivo. Our results show the presence of a traveling wave mechanism through the TM that can functionally couple a significant longitudinal extent of the cochlea and may interact with the BM wave to greatly enhance cochlear sensitivity and tuning.
Indian Academy of Sciences (India)
M D Sharma
2007-08-01
Anisotropic wave propagation is studied in a fluid-saturated porous medium, using two different approaches. One is the dynamic approach of Biot’s theories. The other approach known as homogenisation theory, is based on the averaging process to derive macroscopic equations from the microscopic equations of motion. The medium considered is a general anisotropic poroelastic (APE) solid with a viscous fluid saturating its pores of anisotropic permeability. The wave propagation phenomenon in a saturated porous medium is explained through two relations. One defines modified Christoffel equations for the propagation of plane harmonic waves in the medium. The other defines a matrix to relate the relative displacement of fluid particles to the displacement of solid particles. The modified Christoffel equations are solved further to get a quartic equation whose roots represent complex velocities of the four attenuating quasi-waves in the medium. These complex velocities define the phase velocities of propagation and quality factors for attenuation of all the quasi-waves propagating along a given phase direction in three-dimensional space. The derivations in the mathematical models from different theories are compared in order to work out the equivalence between them. The variations of phase velocities and attenuation factors with the direction of phase propagation are computed, for a realistic numerical model. Differences between the velocities and attenuations of quasi-waves from the two approaches are exhibited numerically.
Propagation of waves in shear flows
Fabrikant, A L
1998-01-01
The state of the art in a theory of oscillatory and wave phenomena in hydrodynamical flows is presented in this book. A unified approach is used for waves of different physical origins. A characteristic feature of this approach is that hydrodynamical phenomena are considered in terms of physics; that is, the complement of the conventionally employed formal mathematical approach. Some physical concepts such as wave energy and momentum in a moving fluid are analysed, taking into account induced mean flow. The physical mechanisms responsible for hydrodynamic instability of shear flows are conside
Frank, Scott D; Collis, Jon M; Odom, Robert I
2015-06-01
Oceanic T-waves are earthquake signals that originate when elastic waves interact with the fluid-elastic interface at the ocean bottom and are converted to acoustic waves in the ocean. These waves propagate long distances in the Sound Fixing and Ranging (SOFAR) channel and tend to be the largest observed arrivals from seismic events. Thus, an understanding of their generation is important for event detection, localization, and source-type discrimination. Recently benchmarked seismic self-starting fields are used to generate elastic parabolic equation solutions that demonstrate generation and propagation of oceanic T-waves in range-dependent underwater acoustic environments. Both downward sloping and abyssal ocean range-dependent environments are considered, and results demonstrate conversion of elastic waves into water-borne oceanic T-waves. Examples demonstrating long-range broadband T-wave propagation in range-dependent environments are shown. These results confirm that elastic parabolic equation solutions are valuable for characterization of the relationships between T-wave propagation and variations in range-dependent bathymetry or elastic material parameters, as well as for modeling T-wave receptions at hydrophone arrays or coastal receiving stations.
Numerical and experimental investigation on broadband wave propagation features in perforated plates
Zhou, C. W.; Lainé, J. P.; Ichchou, M. N.; Zine, A. M.
2016-06-01
Perforated plates are widely used in various engineering applications. Their mechanical and dynamical behaviours need to be investigated for the design and optimization purpose. In this work, the wave propagation features on broadband in perforated plates are predicted by a Condensed Wave Finite Element Method (CWFEM). Based on the wave dispersion relation identified by CWFEM, wave-based homogenization methods are proposed to define equivalent solid plates. Three perforated plates with different penetration patterns and hole shapes are considered and the accuracy of the equivalent homogenized model is illustrated by comparing it with finite element method. Experimental validation of the computed wave propagation characteristics on the two models is provided as well. A good correlation is observed not only at low frequency where homogenized model can be found, but also at mid and high frequency, where the wave beaming effect phenomenon occurs.
Surface wave propagation effects on buried segmented pipelines
Directory of Open Access Journals (Sweden)
Peixin Shi
2015-08-01
Full Text Available This paper deals with surface wave propagation (WP effects on buried segmented pipelines. Both simplified analytical model and finite element (FE model are developed for estimating the axial joint pullout movement of jointed concrete cylinder pipelines (JCCPs of which the joints have a brittle tensile failure mode under the surface WP effects. The models account for the effects of peak ground velocity (PGV, WP velocity, predominant period of seismic excitation, shear transfer between soil and pipelines, axial stiffness of pipelines, joint characteristics, and cracking strain of concrete mortar. FE simulation of the JCCP interaction with surface waves recorded during the 1985 Michoacan earthquake results in joint pullout movement, which is consistent with the field observations. The models are expanded to estimate the joint axial pullout movement of cast iron (CI pipelines of which the joints have a ductile tensile failure mode. Simplified analytical equation and FE model are developed for estimating the joint pullout movement of CI pipelines. The joint pullout movement of the CI pipelines is mainly affected by the variability of the joint tensile capacity and accumulates at local weak joints in the pipeline.
Viola, Cristina N A; Grifoll, Manel; Palalane, Jaime; Oliveira, Tiago C A
2014-01-01
This study aims to characterize the wave climate near the coastal region of Maputo (Mozambique), and to provide a first assessment of the sediment transport load in this area. A time-series of 13 years' worth of offshore wave data, obtained from reanalysis products, was propagated to the coast. Wave propagation was performed using Linear Wave theory and the numerical model, Simulating WAves Nearshore (SWAN). Propagations with SWAN were carried out considering different scenarios in order to evaluate the influence of parameters such as wind, tidal level, frequency spectrum and numerical mesh resolution on wave characteristics along the coast. The prevalent waves propagated came from between east and southwest directions. Results from linear propagation were used to estimate the potential longshore sediment transport. The Coastal Engineering Research Center formula was applied for a stretch of beach in the Machangulo Peninsula. A net potential rate of longitudinal sediment transport (of the order of 10(5) m(3)/year, along an extension of the coast of 21 km) was directed northwards, and was consistent with the frequent wave directions.
Solitary wave propagation through two-dimensional treelike structures.
Falls, William J; Sen, Surajit
2014-02-01
It is well known that a velocity perturbation can travel through a mass spring chain with strongly nonlinear interactions as a solitary and antisolitary wave pair. In recent years, nonlinear wave propagation in 2D structures have also been explored. Here we first consider the propagation of such a velocity perturbation for cases where the system has a 2D "Y"-shaped structure. Here each of the three pieces that make up the "Y" are made of a small mass spring chain. In addition, we consider a case where multiple "Y"-shaped structures are used to generate a "tree." We explore the early time dynamical behavior associated with the propagation of a velocity perturbation initiated at the trunk and at the extremities for both cases. We are looking for the energy transmission properties from one branch to another of these "Y"-shaped structures. Our dynamical simulations suggest the following broad observations: (i) for strongly nonlinear interactions, mechanical energy propagation resembles pulse propagation with the energy propagation being dispersive in the linear case; (ii) for strong nonlinear interactions, the tree-like structure acts as an energy gate showing preference for large perturbations in the system while the behavior of the linear case shows no such preference, thereby suggesting that such structures can possibly act as switches that activate at sufficiently high energies. The study aspires to develop insights into the nature of nonlinear wave propagation through a network of linear chains.
Energy Technology Data Exchange (ETDEWEB)
Hou, Wei; Qu, Zhi-ming; Pian, Long-jiang [University of Science and Technology Beijing, Beijing (China). School of Civil Engineering and Environment
2009-04-15
On the basis of a hypothesis, a physical and mathematical model of the propagation of shock waves in turn roadway was set up. The results of numerical simulation show that the pressure, velocity and temperature of shock wave will be attenuated during propagation. At the beginning of gas explosion, the quantity of parameters of shock wave front is increased gradually because of methane reaction. However, the pressure, velocity and temperature will be attenuated to a small extent after the chemical reaction. By comparison of the experiment, simulation and practice, the highly identical data shows that the numerical model is practicable. 9 refs., 7 figs.
Supersonic propagation of ionization waves in an under-dense, laser-produced plasma
Energy Technology Data Exchange (ETDEWEB)
Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C
2004-10-22
We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.
Guided wave propagation in multilayered piezoelectric structures
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
A general formulation of the method of the reverberation-ray matrix (MRRM) based on the state space formalism and plane wave expansion technique is presented for the analysis of guided waves in multilayered piezoelectric structures. Each layer of the structure is made of an arbitrarily anisotropic piezoelectric material. Since the state equation of each layer is derived from the three-dimensional theory of linear piezoelectricity, all wave modes are included in the formulation. Within the framework of the MRRM, the phase relation is properly established by excluding exponentially growing functions, while the scattering relation is also appropriately set up by avoiding matrix inversion operation. Consequently, the present MRRM is unconditionally numerically stable and free from computational limitations to the total number of layers, the thickness of individual layers, and the frequency range. Numerical examples are given to illustrate the good performance of the proposed formulation for the analysis of the dispersion characteristic of waves in layered piezoelectric structures.
Wave propagation and energy dissipation in viscoelastic granular media
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In terms of viscoelasticity, the relevant theory of wave in granular media is analyzed in this paper.Under the conditions of slight deformation of granules, wave equation, complex number expressions of propagation vector and attenuation vector, attenuation coefficient expressions of longitudinal wave and transverse wave,etc, are analyzed and deduced. The expressions of attenuation coefficients of viscoelastic longitudinal wave and transverse wave show that the attenuation of wave is related to frequency. The higher the frequency is, the more the attenuation is, which is tested by the laboratory experiment. In addition, the energy dissipation is related to the higher frequency wave that is absorbed by granular media. The friction amongst granular media also increase the energy dissipation. During the flowing situation the expression of transmission factor of energy shows that the granular density difference is the key factor which leads to the attenuation of vibrating energy.This has been proved by the experiment results.
Lattice Boltzmann method for multimode wave propagation in viscoelastic media and in elastic solids.
Frantziskonis, George N
2011-06-01
This paper reports the lattice Boltzmann method (LBM) based formulation for viscoelastic fluids with both volumetric and shear viscoelasticity. The relaxation limit of the viscoelastic fluid formulation yields the LBM for elastic solids with both volumetric or pressure (p) and shear (s) wave propagation modes. The reflection of a two-dimensional p wave from an obstacle (wedge) inclined to the propagation direction of the p wave is studied together with the convergence and stability behavior of the LBM as the lattice size and lattice time step decrease. The model is capable of accurately predicting the mode change (p to s) due to the reflection. The model provides a unique unified approach capable of simulating fluids, viscoelastic fluids, and solids within a single LBM framework, thus avoiding interface problems between different simulation methods. The paper concentrates on the wave propagation part of the model, in the quasielastic regime.
Etemadsaeed, Leila; Moczo, Peter; Kristek, Jozef; Ansari, Anooshiravan; Kristekova, Miriam
2016-10-01
We investigate the problem of finite-difference approximations of the velocity-stress formulation of the equation of motion and constitutive law on the staggered grid (SG) and collocated grid (CG). For approximating the first spatial and temporal derivatives, we use three approaches: Taylor expansion (TE), dispersion-relation preserving (DRP), and combined TE-DRP. The TE and DRP approaches represent two fundamental extremes. We derive useful formulae for DRP and TE-DRP approximations. We compare accuracy of the numerical wavenumbers and numerical frequencies of the basic TE, DRP and TE-DRP approximations. Based on the developed approximations, we construct and numerically investigate 14 basic TE, DRP and TE-DRP finite-difference schemes on SG and CG. We find that (1) the TE second-order in time, TE fourth-order in space, 2-point in time, 4-point in space SG scheme (that is the standard (2,4) VS SG scheme, say TE-2-4-2-4-SG) is the best scheme (of the 14 investigated) for large fractions of the maximum possible time step, or, in other words, in a homogeneous medium; (2) the TE second-order in time, combined TE-DRP second-order in space, 2-point in time, 4-point in space SG scheme (say TE-DRP-2-2-2-4-SG) is the best scheme for small fractions of the maximum possible time step, or, in other words, in models with large velocity contrasts if uniform spatial grid spacing and time step are used. The practical conclusion is that in computer codes based on standard TE-2-4-2-4-SG, it is enough to redefine the values of the approximation coefficients by those of TE-DRP-2-2-2-4-SG for increasing accuracy of modelling in models with large velocity contrast between rock and sediments.
Fourier Transform Ultrasound Spectroscopy for the determination of wave propagation parameters.
Pal, Barnana
2017-01-01
The reported results for ultrasonic wave attenuation constant (α) in pure water show noticeable inconsistency in magnitude. A "Propagating-Wave" model analysis of the most popular pulse-echo technique indicates that this is a consequence of the inherent wave propagation characteristics in a bounded medium. In the present work Fourier Transform Ultrasound Spectroscopy (FTUS) is adopted to determine ultrasonic wave propagation parameters, the wave number (k) and attenuation constant (α) at 1MHz frequency in tri-distilled water at room temperature (25°C). Pulse-echo signals obtained under same experimental conditions regarding the exciting input signal and reflecting boundary wall of the water container for various lengths of water columns are captured. The Fast Fourier Transform (FFT) components of the echo signals are taken to compute k, α and r, the reflection constant at the boundary, using Oak Ridge and Oxford method. The results are compared with existing literature values.
Institute of Scientific and Technical Information of China (English)
ZHAO Tong-bin; LI Jian-gong; XIAO Ya-xun; CHENG Guo-qiang
2007-01-01
The energy caused by the dynamic impact in mining engineering forth release and spread by the way of seismic waves, monitoring is an effective way for forecasting mine dynamical disasters, such as rockburst and coal and gas outburst. Three-dimensional dynamic model was built to simulate the propagating progress of seismic waves in the elastoplastic tunnel rock and analyzed the propagating law of perturbation acceleration around tunnel, based on the finite element dynamic analysis software ANSYS/LS-DYNA.The simulation results indicate that: (1) The propagation attenuation of seismic wave is a negative index relationship; (2) The acceleration amplitude of seismic wave decays rapidly in near-field and decays slowly in far-field; (3) When the perturbation is generated in the dead ahead of tunnel, the acceleration of seismic wave become smaller and smaller away from the roadway-rib;(4) The elastic and plastic stress state of tunnel rock is also an important factor for propagation process of wave, the energy of seismic wave is mainly consumed for geometric spreading and plastic deformation in propagation in the elastoplastic medium model.
Discrete Element Simulation of Elastoplastic Shock Wave Propagation in Spherical Particles
Directory of Open Access Journals (Sweden)
M. Shoaib
2011-01-01
Full Text Available Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical applications including the high-velocity compaction of particulate material.
Chemical-reaction model for Mexican wave
Nagatani, Takashi
2003-05-01
We present a chemical-reaction model to describe the Mexican wave ( La Ola) in football stadia. The spectator's action is described in terms of chemical reactions. The model is governed by three reaction rates k 1, k 2, and k3. We study the nonlinear waves on one- and two-dimensional lattices. The Mexican wave is formulated as a clockwise forwardly propagating wave. Waves are growing or disappear, depending on the values of reaction rates. In the specific case of k1= k2= k3=1, the nonlinear-wave equation produces a propagating pulse like soliton.
Wave dispersion and propagation in state-based peridynamics
Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther
2017-07-01
Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.
A Wave Expansion Method for Aeroacoustic Propagation
Hammar, Johan
2016-01-01
Although it is possible to directly solve an entire flow-acoustics problem in one computation, this approach remains prohibitively large in terms of the computational resource required for most practical applications. Aeroacoustic problems are therefore usually split into two parts; one consisting of the source computation and one of the source propagation. Although both these parts entail great challenges on the computational method, in terms of accuracy and efficiency, it is still better th...
Carcione, José M
2014-01-01
Authored by the internationally renowned José M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media examines the differences between an ideal and a real description of wave propagation, starting with the introduction of relevant stress-strain relations. The combination of this relation and the equations of momentum conservation lead to the equation of motion. The differential formulation is written in terms of memory variables, and Biot's theory is used to describe wave propagation in porous media. For each rheology, a plane-wave analysis is performed in order to understand the physics of wave propagation. This book contains a review of the main direct numerical methods for solving the equation of motion in the time and space domains. The emphasis is on geophysical applications for seismic exploration, but researchers in the fields of earthquake seismology, rock acoustics, and material science - including many branches of acoustics of fluids and ...
Analyses of Tsunami Events using Simple Propagation Models
Chilvery, Ashwith Kumar; Tan, Arjun; Aggarwal, Mohan
2012-03-01
Tsunamis exhibit the characteristics of ``canal waves'' or ``gravity waves'' which belong to the class of ``long ocean waves on shallow water.'' The memorable tsunami events including the 2004 Indian Ocean tsunami and the 2011 Pacific Ocean tsunami off the coast of Japan are analyzed by constructing simple tsunami propagation models including the following: (1) One-dimensional propagation model; (2) Two-dimensional propagation model on flat surface; (3) Two-dimensional propagation model on spherical surface; and (4) A finite line-source model on two-dimensional surface. It is shown that Model 1 explains the basic features of the tsunami including the propagation speed, depth of the ocean, dispersion-less propagation and bending of tsunamis around obstacles. Models 2 and 3 explain the observed amplitude variations for long-distance tsunami propagation across the Pacific Ocean, including the effect of the equatorial ocean current on the arrival times. Model 3 further explains the enhancement effect on the amplitude due to the curvature of the Earth past the equatorial distance. Finally, Model 4 explains the devastating effect of superposition of tsunamis from two subduction event, which struck the Phuket region during the 2004 Indian Ocean tsunami.
Sjoberg, Daniel
2008-01-01
This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…
Sjoberg, Daniel
2008-01-01
This paper presents an overview of how circuit models can be used for analysing wave propagation in stratified structures. Relatively complex structures can be analysed using models which are accessible to undergraduate students. Homogeneous slabs are modelled as transmission lines, and thin sheets between the slabs are modelled as lumped…
Propagation of Vortex Electron Wave Functions in a Magnetic Field
Gallatin, Gregg M
2012-01-01
The physics of coherent beams of photons carrying axial orbital angular momentum (OAM) is well understood and such beams, sometimes known as vortex beams, have found applications in optics and microscopy. Recently electron beams carrying very large values of axial OAM have been generated. In the absence of coupling to an external electromagnetic field the propagation of such vortex electron beams is virtually identical mathematically to that of vortex photon beams propagating in a medium with a homogeneous index of refraction. But when coupled to an external electromagnetic field the propagation of vortex electron beams is distinctly different from photons. Here we use the exact path integral solution to Schrodingers equation to examine the time evolution of an electron wave function carrying axial OAM. Interestingly we find that the nonzero OAM wave function can be obtained from the zero OAM wave function, in the case considered here, simply by multipling it by an appropriate time and position dependent pref...
Localization of angular momentum in optical waves propagating through turbulence.
Sanchez, Darryl J; Oesch, Denis W
2011-12-01
This is the first in a series of papers demonstrating that photons with orbital angular momentum can be created in optical waves propagating through distributed turbulence. The scope of this first paper is much narrower. Here, we demonstrate that atmospheric turbulence can impart non-trivial angular momentum to beams and that this non-trivial angular momentum is highly localized. Furthermore, creation of this angular momentum is a normal part of propagation through atmospheric turbulence.
Detecting electromagnetic cloaks using backward-propagating waves
Salem, Mohamed
2011-08-01
A novel approach for detecting transformation-optics invisibility cloaks is proposed. The detection method takes advantage of the unusual backward-propagation characteristics of recently reported beams and pulses to induce electromagnetic scattering from the cloak. Even though waves with backward-propagating energy flux cannot penetrate the cloaking shell and interact with the cloaked objects (i.e., they do not make the cloaked object visible), they provide a mechanism for detecting the presence of cloaks. © 2011 IEEE.
Efficient counter-propagating wave acoustic micro-particle manipulation
Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.
2012-12-01
A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.
Variational principle for nonlinear wave propagation in dissipative systems.
Dierckx, Hans; Verschelde, Henri
2016-02-01
The dynamics of many natural systems is dominated by nonlinear waves propagating through the medium. We show that in any extended system that supports nonlinear wave fronts with positive surface tension, the asymptotic wave-front dynamics can be formulated as a gradient system, even when the underlying evolution equations for the field variables cannot be written as a gradient system. The variational potential is simply given by a linear combination of the occupied volume and surface area of the wave front and changes monotonically over time.
Vibration and wave propagation characteristics of multisegmented elastic beams
Nayfeh, Adnan H.; Hawwa, Muhammad A.
1990-01-01
Closed form analytical solutions are derived for the vibration and wave propagation of multisegmented elastic beams. Each segment is modeled as a Timoshenko beam with possible inclusion of material viscosity, elastic foundation and axial forces. Solutions are obtained by using transfer matrix methods. According to these methods formal solutions are first constructed which relate the deflection, slope, moment and shear force of one end of the individual segment to those of the other. By satisfying appropriate continuity conditions at segment junctions, a global 4x4 matrix results which relates the deflection, slope, moment and shear force of one end of the beam to those of the other. If any boundary conditions are subsequently invoked on the ends of the beam one gets the appropriate characteristic equation for the natural frequencies. Furthermore, by invoking appropriate periodicity conditions the dispersion relation for a periodic system is obtained. A variety of numerical examples are included.
Electromagnetic wave propagation through a slab of a dispersive medium
Ismail, Mohamed
2016-01-01
A method is proposed for the analysis of the propagation of electromagnetic waves through a homogeneous slab of a medium with Drude-Lorentz dispersion behavior, and excited by a causal sinusoidal source. An expression of the time dependent field, free from branch-cuts in the plane of complex frequencies, is established. This method provides the complete temporal response in both the steady-state and transient regimes in terms of discrete poles contributions. The Sommerfeld and Brillouin precursors are retrieved and the corresponding set of poles are identified. In addition, the contribution in the transient field of the resonance frequency in the Drude-Lorentz model is exhybited, and the effect of reflections resulting from the refractive index mismatch at the interfaces of the slab are analyzed.
Huba, J. D.; Rowland, H. L.
1993-01-01
The propagation of electromagnetic waves parallel to the magnetic field in the nightside Venus ionosphere is presented in a theoretical and numerical analysis. The model assumes a source of electromagnetic radiation in the Venus atmosphere, such as that produced by lightning. Specifically addressed is wave propagation in the altitude range z = 130-160 km at the four frequencies detectable by the Pioneer Venus Orbiter Electric Field Detector: 100 Hz, 730 Hz, 5.4 kHz, and 30 kHz. Parameterizations of the wave intensities, peak electron density, and Poynting flux as a function of magnetic field are presented. The waves are found to propagate most easily in conditions of low electron density and high magnetic field. The results of the model are consistent with observational data.
On the propagation of Voigt waves in energetically active materials
Mackay, Tom G.; Lakhtakia, Akhlesh
2016-11-01
If Voigt-wave propagation is possible in a dissipative anisotropic dielectric material characterised by the permittivity dyadic \\mathop{\\varepsilon }\\limits\\raise{2pt=}, then it is also possible in the analogous energetically active material characterised by the permittivity dyadic \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=}, where \\mathop{\\tilde{\\varepsilon }}\\limits\\raise{2pt=} is the hermitian conjugate of \\mathop{\\varepsilon }\\limits\\raise{2pt=}. This symmetry follows directly from a theoretical analysis of the necessary and sufficient conditions for Voigt-wave propagation in anisotropic materials. As a consequence of this symmetry, a porous dissipative material that exhibits Voigt-wave propagation can be used to construct a material that allows the propagation of Voigt waves with attendant linear gain in amplitude with propagation distance, by means of infiltration with an electrically or optically activated dye, for example. This phenomenon is captured by the Bruggeman formalism for homogenised composite materials based on isotropic dielectric component materials that are randomly distributed as oriented spheroidal particles.
APPARENT CROSS-FIELD SUPERSLOW PROPAGATION OF MAGNETOHYDRODYNAMIC WAVES IN SOLAR PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Kaneko, T.; Yokoyama, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Goossens, M.; Doorsselaere, T. Van [Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, Bus 2400, B-3001 Herverlee (Belgium); Soler, R.; Terradas, J. [Departament de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Wright, A. N., E-mail: kaneko@eps.s.u-tokyo.ac.jp [School of Mathematics and Statistics, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)
2015-10-20
In this paper we show that the phase-mixing of continuum Alfvén waves and/or continuum slow waves in the magnetic structures of the solar atmosphere as, e.g., coronal arcades, can create the illusion of wave propagation across the magnetic field. This phenomenon could be erroneously interpreted as fast magnetosonic waves. The cross-field propagation due to the phase-mixing of continuum waves is apparent because there is no real propagation of energy across the magnetic surfaces. We investigate the continuous Alfvén and slow spectra in two-dimensional (2D) Cartesian equilibrium models with a purely poloidal magnetic field. We show that apparent superslow propagation across the magnetic surfaces in solar coronal structures is a consequence of the existence of continuum Alfvén waves and continuum slow waves that naturally live on those structures and phase-mix as time evolves. The apparent cross-field phase velocity is related to the spatial variation of the local Alfvén/slow frequency across the magnetic surfaces and is slower than the Alfvén/sound velocities for typical coronal conditions. Understanding the nature of the apparent cross-field propagation is important for the correct analysis of numerical simulations and the correct interpretation of observations.
Wave Propagation in Origami-inspired Foldable Metamaterials
Wang, Pai; Sun, Sijie; Bertoldi, Katia
2015-03-01
We study the propagation of elastic waves in foldable thin-plate structures. Both 1D systems of periodic folds and 2D Miura-Ori patterns are investigated. The dispersion relations are calculated by finite element simulations on the unit cell of spatial periodicity. Experimental efforts and considerations are also discussed. The characteristic propagating bands and bandgaps are found to be very sensitive to the folding angles. The existence of highly tunable bandgap makes the system suitable for potential applications including adaptive filters in vibration-reduction devices, wave guides and acoustic imaging equipment.
Polarization controlled directional propagation of Bloch surface wave.
Kovalevich, Tatiana; Boyer, Philippe; Suarez, Miguel; Salut, Roland; Kim, Myun-Sik; Herzig, Hans Peter; Bernal, Maria-Pilar; Grosjean, Thierry
2017-03-06
Bloch surface waves (BSWs) are recently developing alternative to surface plasmon polaritons (SPPs). Due to dramatically enhanced propagation distance and strong field confinement these surface states can be successfully used in on-chip all-optical integrated devices of increased complexity. In this work we propose a highly miniaturized grating based BSW coupler which is gathering launching and directional switching functionalities in a single element. This device allows to control with polarization the propagation direction of Bloch surface waves at subwavelength scale, thus impacting a large panel of domains such as optical circuitry, function design, quantum optics, etc.
24 GHz cmWave Radio Propagation Through Vegetation
DEFF Research Database (Denmark)
Rodriguez, Ignacio; Abreu, Renato; Portela Lopes de Almeida, Erika;
2016-01-01
This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth was exam......This paper presents a measurement-based analysis of cm-wave radio propagation through vegetation at 24 GHz. A set of dedicated directional measurements were performed with horn antennas located close to street level inside a densely-vegetated area illuminated from above. The full azimuth...
High frequency guided wave propagation in monocrystalline silicon wafers
Pizzolato, Marco; Masserey, Bernard; Robyr, Jean-Luc; Fromme, Paul
2017-04-01
Monocrystalline silicon wafers are widely used in the photovoltaic industry for solar panels with high conversion efficiency. The cutting process can introduce micro-cracks in the thin wafers and lead to varying thickness. High frequency guided ultrasonic waves are considered for the structural monitoring of the wafers. The anisotropy of the monocrystalline silicon leads to variations of the wave characteristics, depending on the propagation direction relative to the crystal orientation. Full three-dimensional Finite Element simulations of the guided wave propagation were conducted to visualize and quantify these effects for a line source. The phase velocity (slowness) and skew angle of the two fundamental Lamb wave modes (first anti-symmetric mode A0 and first symmetric mode S0) for varying propagation directions relative to the crystal orientation were measured experimentally. Selective mode excitation was achieved using a contact piezoelectric transducer with a custom-made wedge and holder to achieve a controlled contact pressure. The out-of-plane component of the guided wave propagation was measured using a noncontact laser interferometer. Good agreement was found with the simulation results and theoretical predictions based on nominal material properties of the silicon wafer.
Propagation of elastic waves through textured polycrystals: application to ice.
Maurel, Agnès; Lund, Fernando; Montagnat, Maurine
2015-05-08
The propagation of elastic waves in polycrystals is revisited, with an emphasis on configurations relevant to the study of ice. Randomly oriented hexagonal single crystals are considered with specific, non-uniform, probability distributions for their major axis. Three typical textures or fabrics (i.e. preferred grain orientations) are studied in detail: one cluster fabric and two girdle fabrics, as found in ice recovered from deep ice cores. After computing the averaged elasticity tensor for the considered textures, wave propagation is studied using a wave equation with elastic constants c=〈c〉+δc that are equal to an average plus deviations, presumed small, from that average. This allows for the use of the Voigt average in the wave equation, and velocities are obtained solving the appropriate Christoffel equation. The velocity for vertical propagation, as appropriate to interpret sonic logging measurements, is analysed in more details. Our formulae are shown to be accurate at the 0.5% level and they provide a rationale for previous empirical fits to wave propagation velocities with a quantitative agreement at the 0.07-0.7% level. We conclude that, within the formalism presented here, it is appropriate to use, with confidence, velocity measurements to characterize ice fabrics.
Pandey, Vikash
2015-01-01
An analogy is drawn between the diffusion-wave equations derived from the fractional Kelvin-Voigt model and those obtained from Buckingham's grain-shearing (GS) model [J. Acoust. Soc. Am. 108, 2796-2815 (2000)] of wave propagation in saturated, unconsolidated granular materials. The material impulse response function from the GS model is found to be similar to the power-law memory kernel which is inherent in the framework of fractional calculus. The compressional wave equation and shear wave equation derived from the GS model turn out to be the Kelvin-Voigt fractional-derivative wave equation and the fractional diffusion-wave equation respectively. Also, a physical interpretation of the characteristic fractional-order present in the Kelvin-Voigt fractional derivative wave equation and time-fractional diffusion-wave equation is inferred from the GS model. The shear wave equation from the GS model predicts both diffusion and wave propagation in the fractional framework. The overall goal is intended to show that...
Propagation regimes and populations of internal waves in the Mediterranean Sea basin
Kurkina, Oxana; Rouvinskaya, Ekaterina; Talipova, Tatiana; Soomere, Tarmo
2017-02-01
The geographical and seasonal distributions of kinematic and nonlinear parameters of long internal waves are derived from the Generalized Digital Environmental Model (GDEM) climatology for the Mediterranean Sea region, including the Black Sea. The considered parameters are phase speed of long internal waves and the coefficients at the dispersion, quadratic and cubic terms of the weakly-nonlinear Korteweg-de Vries-type models (in particular, the Gardner model). These parameters govern the possible polarities and shapes of solitary internal waves, their limiting amplitudes and propagation speeds. The key outcome is an express estimate of the expected parameters of internal waves for different regions of the Mediterranean basin.
Signatures of thermal hysteresis in Tamm-wave propagation
Chiadini, Francesco; Fiumara, Vincenzo; Mackay, Tom G.; Scaglione, Antonio; Lakhtakia, Akhlesh
2017-10-01
We numerically solved the boundary-value problem for Tamm waves (which may also be classified as Uller-Zenneck waves here) guided by the planar interface of a homogeneous isotropic dissipative dielectric (HIDD) material and a periodically multilayered isotropic dielectric material. The HIDD material was chosen to be VO${}_2$ which, at optical wavelengths, has a temperature-dependent refractive index with a hysteresis feature, i.e., the temperature-dependence of its refractive index varies depending upon whether the temperature is increasing or decreasing. A numerical code was implemented to extract solutions of the dispersion equation at a fixed wavelength for both $p$- and $s$-polarization states over the temperature range [50,80] degrees. A multitude of Tamm waves of both linear polarization states were found, demonstrating a clear demarcation of the heating and cooling phases in terms of wavenumbers and propagation distances. Thereby, the signatures of thermal hysteresis in Tamm-wave propagation were revealed.
Propagation of Acoustic Waves in Troposphere and Stratosphere
Kashyap, J M
2016-01-01
Acoustic waves are those waves which travel with the speed of sound through a medium. H. Lamb has derived a cutoff frequency for stratified and isothermal medium for the propagation of acoustic waves. In order to find the cutoff frequency many methods were introduced after Lamb's work. In this paper, we have chosen the method to determine cutoff frequencies for acoustic waves propagating in non-isothermal media. This turning point frequency method can be applied to various atmospheres like solar atmosphere, stellar atmosphere, earth's atmosphere etc. Here, we have analytically derived the cutoff frequency and have graphically analyzed and compared with the Lamb's cut-off frequencyfor earth's troposphere, lower and upper stratosphere.
Propagation of elastic waves in DNA
Directory of Open Access Journals (Sweden)
Sunil Mukherjee
1983-01-01
Full Text Available The mathematical analyses of longitudinal and torsional elastic waves transmitted along DNA molecule undergoing Brownian motion in solution are presented. Longitudinal vibrations in DNA are shown to be responsible for drug intercalation and breathing. The near neighbor exclusion mode of drug intercalation is explained. Torsional oscillations in DNA are shown to be responsible for conformation transitions from a right handed to a left handed form, depending on sequence specificity in high salt concentration.
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R
2008-01-01
The properties of linear Alfv\\'en, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions co...
The rarefaction wave propagation in transparent windows
Glam, B.; Porat, E.; Horovitz, Y.; Yosef-Hai, A.
2017-01-01
The radial (lateral) rarefaction wave velocity of polymethyl methacrylate (PMMA) and Lithium Fluoride (LiF) windows were studied by plate impact experiments that were carried out at Soreq NRC up to a pressure of 146 kbar in the PMMA and 334 kbar in the LiF. The windows were glued to Lead targets that were impacted by a copper impactor. The VISAR measurement was done in the window interface with the target. This information was utilized to identify the radial rarefaction arrival time at the center of different diameter windows after the shock event, and served as a measurement to the radial wave velocity in the shocked material. It was found that for both windows, LiF or PMMA, the measured radial wave velocity increases with the pressure. Furthermore, this velocity is significantly higher compared to the expected longitudinal sound velocity at the same pressure, calculated by the Steinberg EOS in the PMMA and by ab initio calculation in the LiF. Here we present the experimental results and a comparison with analytical calculation of the sound velocity using the Steinberg EOS.
Wave propagation in photonic crystals and metamaterials: Surface waves, nonlinearity and chirality
Energy Technology Data Exchange (ETDEWEB)
Wang, Bingnan [Iowa State Univ., Ames, IA (United States)
2009-01-01
Photonic crystals and metamaterials, both composed of artificial structures, are two interesting areas in electromagnetism and optics. New phenomena in photonic crystals and metamaterials are being discovered, including some not found in natural materials. This thesis presents my research work in the two areas. Photonic crystals are periodically arranged artificial structures, mostly made from dielectric materials, with period on the same order of the wavelength of the working electromagnetic wave. The wave propagation in photonic crystals is determined by the Bragg scattering of the periodic structure. Photonic band-gaps can be present for a properly designed photonic crystal. Electromagnetic waves with frequency within the range of the band-gap are suppressed from propagating in the photonic crystal. With surface defects, a photonic crystal could support surface modes that are localized on the surface of the crystal, with mode frequencies within the band-gap. With line defects, a photonic crystal could allow the propagation of electromagnetic waves along the channels. The study of surface modes and waveguiding properties of a 2D photonic crystal will be presented in Chapter 1. Metamaterials are generally composed of artificial structures with sizes one order smaller than the wavelength and can be approximated as effective media. Effective macroscopic parameters such as electric permittivity ϵ, magnetic permeability μ are used to characterize the wave propagation in metamaterials. The fundamental structures of the metamaterials affect strongly their macroscopic properties. By designing the fundamental structures of the metamaterials, the effective parameters can be tuned and different electromagnetic properties can be achieved. One important aspect of metamaterial research is to get artificial magnetism. Metallic split-ring resonators (SRRs) and variants are widely used to build magnetic metamaterials with effective μ < 1 or even μ < 0. Varactor based
Radio-wave propagation for space communications systems
Ippolito, L. J.
1981-01-01
The most recent information on the effects of Earth's atmosphere on space communications systems is reviewed. The design and reliable operation of satellite systems that provide the many applications in space which rely on the transmission of radio waves for communications and scientific purposes are dependent on the propagation characteristics of the transmission path. The presence of atmospheric gases, clouds, fog, precipitation, and turbulence causes uncontrolled variations in the signal characteristics. These variations can result in a reduction of the quality and reliability of the transmitted information. Models and other techniques are used in the prediction of atmospheric effects as influenced by frequency, geography, elevation angle, and type of transmission. Recent data on performance characteristics obtained from direct measurements on satellite links operating to above 30 GHz have been reviewed. Particular emphasis has been placed on the effects of precipitation on the Earth/space path, including rain attenuation, and ice particle depolarization. Other factors are sky noise, antenna gain degradation, scintillations, and bandwidth coherence. Each of the various propagation factors has an effect on design criteria for communications systems. These criteria include link reliability, power margins, noise contribution, modulation and polarization factors, channel cross talk, error rate, and bandwidth limitations.
Analysis of wave propagation in periodic 3D waveguides
Schaal, Christoph; Bischoff, Stefan; Gaul, Lothar
2013-11-01
Structural Health Monitoring (SHM) is a growing research field in the realm of civil engineering. SHM concepts are implemented using integrated sensors and actuators to evaluate the state of a structure. Within this work, wave-based techniques are addressed. Dispersion effects for propagating waves in waveguides of different materials are analyzed for various different cross-sections. Since analytical theory is limited, a general approach based on the Waveguide Finite Element Method is applied. Numerical results are verified experimentally.
Estimating propagation velocity through a surface acoustic wave sensor
Energy Technology Data Exchange (ETDEWEB)
Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Elastic Wave Propagation Mechanisms in Underwater Acoustic Environments
2015-09-30
excited flexural mode that propagates in the ice layer at certain acoustic frequencies in ice-covered environments.[3] • Previously implemented EPE self...and ks,3, corresponding to the water layer sound speed, bottom compressional and shear wave speed, and ice layer compressional and shear wave speed... excitation of the Scholte interface mode. Dashed curve shows spectra for a source at 1 m depth and receiver at 25 m, showing the excitation of the
Electromagnetic wave propagation in alternating material-metamaterial layered structures
Carrera-Escobedo, V H
2016-01-01
Using the transfer matrix method, we examine the parametric behavior of the transmittance of an electromagnetic plane wave propagating in the lossless regime through a periodic multilayered system as a function of the frequency and angle of incidence of the electromagnetic wave for the case in which the periodic structure comprises alternating material-metamaterial layers. A specific example of high transmittance at any angle of incidence in the visible region of the spectrum is identified
Wave Propagation in Accretion Disks with Self-Gravity
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Ci; YANG Lan-Tian; WU Shao-Ping; DING Shi-Xue
2001-01-01
We extend the research by Lubow and Pringle of axisymmetric waves in accretion disks to the case where self gravity of disks should be considered. We derive and analyse the dispersion relations with the effect of self-gravity. Results show that self-gravity extends the forbidden region of the wave propagation: for high frequency p-modes, self-gravity makes the wavelength shorter and the group velocity larger; for low frequency g-modes, the effect is opposite.
Estimating propagation velocity through a surface acoustic wave sensor
Xu, Wenyuan; Huizinga, John S.
2010-03-16
Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.
Love wave propagation in piezoelectric layered structure with dissipation.
Du, Jianke; Xian, Kai; Wang, Ji; Yong, Yook-Kong
2009-02-01
We investigate analytically the effect of the viscous dissipation of piezoelectric material on the dispersive and attenuated characteristics of Love wave propagation in a layered structure, which involves a thin piezoelectric layer bonded perfectly to an unbounded elastic substrate. The effects of the viscous coefficient on the phase velocity of Love waves and attenuation are presented and discussed in detail. The analytical method and the results can be useful for the design of the resonators and sensors.
Unified interpretation of superluminal behaviors in wave propagation
Energy Technology Data Exchange (ETDEWEB)
Ranfagni, A. [Istituto di Fisica Applicata ' Nello Carrara' , Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Viliani, G. [Dipartimento di Fisica, Universita di Trento, 38050 Povo, Trento (Italy); Ranfagni, C. [Facolta di Scienze Matematiche Fisiche e Naturali, Corso di Laurea in Fisica dell' Universita di Firenze, Firenze (Italy); Mignani, R. [Dipartimento di Fisica ' Edoardo Amaldi' , Universita degli Studi di Roma ' Roma Tre' , Via della Vasca Navale 84, 00146 Roma (Italy); Ruggeri, R. [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Sezione di Firenze, Firenze (Italy)], E-mail: rocco.ruggeri@isc.cnr.it; Ricci, A.M. [Istituto per le Telecomunicazioni e l' Elettronica della Marina Militare ' Giancarlo Vallauri' (Mariteleradar), Viale Italia 72, 57100 Livorno (Italy)
2007-10-29
By using two approaches, we demonstrate that superluminal behaviors in wave propagation can be attributed to mechanisms acting in the near-field limit. One approach is based on complex waves, while the other relies on a path-integral treatment of stochastic motion. The results of the two approaches are comparable, and suitable for interpreting the data obtained in microwave experiments; these experiments, over a wide range of distances, show a time advance which, in any case, is limited to nanoseconds.
Tsunami Propagation Models Based on First Principles
2012-11-21
obstacle and strike land in the shadow regions. Since v h according to Eq. (9), the velocity decreases nearer the coast as the depth decreases. The wave...Earth by the two locations is, from spherical trigonometry , 1cos sin sin cos cos coss d s d d sθ λ λ λ λ φ φ (37) The linear...speed of propagation, bending of tsunamis around obstacles and depth of the ocean, among others. Two-dimensional models on flat and spherical ocean
Noise induced intercellular propagation of calcium waves
Nchange, A. K.; Kepseu, W. D.; Woafo, P.
2008-04-01
In this paper, we investigate the spatiotemporal dynamics of a bidirectional coupled chain of cells, in which a cell is subjected to an external noise. Noisy oscillations of calcium (Ca 2+), that is, a bursting-like phenomenon induced by noise with fluctuations in the baseline values of calcium, are induced in the first cell and propagated along the chain with noise suppression. This phenomenon of noise suppression is further investigated by computing the normalized fluctuation of pulse durations. It is therefore found that the noise induced coherence resonance phenomenon occurs at the cellular level. Coherence biresonance behaviour appears in the transmission of noise induced oscillations at appropriate noise intensity or noise coupling (for low noise intensity) and the information flow in each cell can be simultaneously optimized at the optimal value of noise or coupling.
Impact of Fog on Electromagnetic Wave Propagation
Morris, Jonathon; Fleisch, Daniel
2002-04-01
This experiment was designed to explore the impact of fog on electromagnetic radiation, in particular microwaves and infrared light. For years law enforcement agencies have used microwave radiation (radar guns) to measure the speed of vehicles, and the last ten years has seen increased use of LIDAR, which uses 905-nm infrared radiation rather than microwaves. To evaulate the effect of fog on the operation of these devices, we have constructed a fog chamber with microwave and optical portals to allow light from a HeNe laser and 10.6-GHz microwaves to propagate through various densities of fog. Data is acquired using Vernier Logger Pro and analyzed using MATLAB and Mathematica. Using the attenuation of the laser light to determine fog density, the impact of fog on the signal-to-noise ratio of both microwave and IR devices may be quantified, and the maximum useful range may be calculated.
Plasma Instability and Wave Propagation in Gate-Controlled GaN Conduction Channels
Rudin, Sergey; Rupper, Greg
2013-08-01
The plasma wave in the conduction channel of a semiconductor heterostructure high electron mobility transistor (HEMT) can be excited at frequencies significantly higher than the cut-off frequency in a short channel device. The hydrodynamic model predicts a resonance response to applied harmonic signal at the plasma oscillation frequency. When either the ac voltage induced in the channel by the signal at the gate or the current applied at the drain or source contact are not very small, the plasma waves in the semiconductor channel will propagate as a shock wave. The device can be used either as a detector or a tunable source of terahertz range radiation. Using the parameters appropriate for the GaN channel we show that in both configurations the charge flow develops shock waves due to hydrodynamic nonlinearities. In a sufficiently wide channel the wave propagation separates into two or more different bands giving a two-dimensional structure to the waves.
Effect of fuel stratification on detonation wave propagation
Masselot, Damien; Fievet, Romain; Raman, Venkat
2016-11-01
Rotating detonation engines (RDEs) form a class of pressure-gain combustion systems of higher efficiency compared to conventional gas turbine engines. One of the key features of the design is the injection system, as reactants need to be continuously provided to the detonation wave to sustain its propagation speed. As inhomogeneities in the reactant mixture can perturb the detonation wave front, premixed fuel jet injectors might seem like the most stable solution. However, this introduces the risk of the detonation wave propagating through the injector, causing catastrophic failure. On the other hand, non-premixed fuel injection will tend to quench the detonation wave near the injectors, reducing the likelihood of such failure. Still, the effects of such non-premixing and flow inhomogeneities ahead of a detonation wave have yet to be fully understood and are the object of this study. A 3D channel filled with O2 diluted in an inert gas with circular H2 injectors is simulated as a detonation wave propagates through the system. The impact of key parameters such as injector spacing, injector size, mixture composition and time variations will be discussed. PhD Candidate.
Linear and nonlinear propagation of water wave groups
Pierson, W. J., Jr.; Donelan, M. A.; Hui, W. H.
1992-01-01
Results are presented from a study of the evolution of waveforms with known analytical group shapes, in the form of both transient wave groups and the cloidal (cn) and dnoidal (dn) wave trains as derived from the nonlinear Schroedinger equation. The waveforms were generated in a long wind-wave tank of the Canada Centre for Inland Waters. It was found that the low-amplitude transients behaved as predicted by the linear theory and that the cn and dn wave trains of moderate steepness behaved almost as predicted by the nonlinear Schroedinger equation. Some of the results did not fit into any of the available theories for waves on water, but they provide important insight on how actual groups of waves propagate and on higher-order effects for a transient waveform.
Acoustoelastic Lamb wave propagation in biaxially stressed plates.
Gandhi, Navneet; Michaels, Jennifer E; Lee, Sang Jun
2012-09-01
Acoustoelasticity, or the change in elastic wave speeds with stress, is a well-studied phenomenon for bulk waves. The effect of stress on Lamb waves is not as well understood, although it is clear that anisotropic stresses will produce anisotropy in the Lamb wave dispersion curves. Here the theory of acoustoelastic Lamb wave propagation is developed for isotropic media subjected to a biaxial, homogeneous stress field. It is shown that, as expected, dispersion curves change anisotropically for most stresses, modes, and frequencies. Interestingly, for some mode-frequency combinations, changes in phase velocity are isotropic even for a biaxial stress field. Theoretical predictions are compared to experimental results for several Lamb wave modes and frequencies for uniaxial loads applied to an aluminum plate, and the agreement is reasonably good.
Wave Propagation through Axially Symmetric Dielectric Shells.
1981-06-01
1-8 2..2 Sc lr .o en i.. . . . . ..........eo oe e .eoe. o. eeeeo. oo....... 2 1 1.2 Baekground: Analytical Methods Based on Flat Sheet Appr oatei...Fields Near a Radome Consist of Constituent Waves. 1-2 - -t . -__-_-_-_-_-_-_..._._._._._._. 1.2 BACKGROUND: ANALYTICAL METHODS BASED ON FLAT SHEET...2.4.2. So A2 ikR x (4 ) = (K-1) E feik Cos2 dado dz (2-100) x 2 R2 o where = (aa - ap cos - zz’) R - 1 (2-101) and -11 = [6 (a+6p)-6 (a-6p)-a 1. (2
Seismic wave propagation on heterogeneous systems with CHAPEL
Gokhberg, Alexey; Fichtner, Andreas
2014-05-01
Simulations of seismic wave propagation play a key role in the exploration of the Earth's internal structure, the prediction of earthquake-induced ground motion, and numerous other applications. In order to harness modern heterogeneous HPC systems, we implement a spectral-element discretization of the seismic wave equation using the emerging parallel programming language Chapel. High-performance massively parallel computing systems are widely used for solving seismological problems. A recent trend in the evolution of such systems is a transition from homogeneous architectures based on the conventional CPU to faster and more energy-efficient heterogeneous architectures that combine CPU with the special purpose GPU accelerators. These new heterogeneous architectures have much higher hardware complexity and are thus more difficult to program. Therefore transition to heterogeneous computing systems widens the well known gap between the performance of the new hardware and the programmers' productivity. In particular, programming heterogeneous systems typically involves a mix of various programming technologies like MPI, CUDA, or OpenACC. This conventional approach increases complexity of application code, limits its portability and reduces the programmers' productivity. We are approaching this problem by introducing a unified high-level programming model suitable for both conventional and hybrid architectures. Our model is based on the Partitioned Global Address Space (PGAS) paradigm used by several modern parallel programming languages. We implemented this model by extending Chapel, the emerging parallel programming language created at Cray Inc. In particular, we introduced the language abstractions for GPU-based domain mapping and extended the open source Chapel compiler (version 1.8.0) with facilities designed to translate Chapel high-level parallel programming constructs into CUDA kernels. We used this extended Chapel implementation to re-program the package for the
Local Wave Propagation in the Kachchh Basin, India: Synergy With the New Madrid Seismic Zone
Langston, C. A.; Kang, D.; Bodin, P.; Horton, S.
2002-12-01
Aftershocks of the Mw7.6 Bhuj earthquake are used to infer velocity structure and the nature of wave propagation within the Kachchh Basin, India. The data were collected from a joint MAEC/ISTAR deployment of seismographs within 3 weeks of the main event and from existing broadband stations in the region under the India Meteorological Department. Waveforms are available from events that span the entire thickness of the crust and display a variety of wave propagation effects due to low-velocity near-surface site structure and larger structure of the Mesozoic Kachchh basin. These effects include near-site, high frequency reverberations in P and S waves, Sp and Ps mode conversions, PL waves within the Mesozoic basin, basin S multiples, and surface waves. Surface wave group velocity dispersion yields estimates of basin shear wave velocity, and when coupled to analysis of large observed Sp conversions, give a migrated image of stratigraphy within the Banni plains that agrees favorably with published stratigraphy. Identification of basin structure effects allows constraints to be placed on aftershock source depths that are needed in evaluating standard earthquake locations. Structure models are used to construct Green's functions for determining source parameters through waveform modeling. Although stations of the aftershock network were situated on a variety of sites that varied from consolidated Mesozoic bedrock to unconsolidated recent sediments, all stations show major wave propagation effects due to basin fill that must be included in source parameter estimation. These effects seen in India have many similarities to wave propagation effects observed within the Mississippi embayment from microearthquakes in the New Madrid Seismic Zone (NMSZ) of the central U.S. Joint waveform studies are motivating new ways of understanding wave propagation and source processes within both areas.
Propagation of combustion waves in the shell-core energetic materials with external heat losses.
Gubernov, V V; Kudryumov, V N; Kolobov, A V; Polezhaev, A A
2017-03-01
In this paper, the properties and stability of combustion waves propagating in the composite solid energetic material of the shell-core type are numerically investigated within the one-dimensional diffusive-thermal model with heat losses to the surroundings. The flame speed is calculated as a function of the parameters of the model. The boundaries of stability are determined in the space of parameters by solving the linear stability problem and direct integration of the governing non-stationary equations. The results are compared with the characteristics of the combustion waves in pure solid fuel. It is demonstrated that a stable travelling combustion wave solution can exist for the parameters of the model for which the flame front propagation is unstable in pure solid fuel and it can propagate several times faster even in the presence of significant heat losses.
Normal Wave Propagation Velocity in a Static Web.
1986-12-01
34 " " ’ . " . " . " " . " , " " . " -" " " " . " " . " " " " . " * . - " " " , 4 . " . " . " " " . " " "." "-" "." " . . . . . " " " " -w A- INah . . . . . . - - 1 NORMAL WAVE PROPAGATION VELOCITY IN A STATIC WEB By
Chiral metamaterials characterisation using the wave propagation retrieval method
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu
2010-01-01
In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...
Transient Topology Optimization of Two-Dimensional Elastic Wave Propagation
DEFF Research Database (Denmark)
Matzen, René; Jensen, Jakob Søndergaard; Sigmund, Ole
2008-01-01
A tapering device coupling two monomodal waveguides is designed with the topology optimization method based on transient wave propagation. The gradient-based optimization technique is applied to predict the material distribution in the tapering area such that the squared output displacement (a...
Late time tail of wave propagation on curved spacetime
Ching, E S C; Suen, W M; Young, K; Ching, E S C; Leung, P T; Suen, W M; Young, K
1994-01-01
The late time behavior of waves propagating on a general curved spacetime is studied. The late time tail is not necessarily an inverse power of time. Our work extends, places in context, and provides understanding for the known results for the Schwarzschild spacetime. Analytic and numerical results are in excellent agreement.
Chiral metamaterials characterisation using the wave propagation retrieval method
DEFF Research Database (Denmark)
Andryieuski, Andrei; Lavrinenko, Andrei; Malureanu, Radu
2010-01-01
In this presentation we extend the wave propagation method for the retrieval of the effective properties to the case of chiral metamaterials with circularly polarised eigenwaves. The method is unambiguous, simple and provides bulk effective parameters. Advantages and constraints are discussed...
Plane-Wave Propagation in Extreme Magnetoelectric (EME) Media
Lindell, I V; Favaro, A
2016-01-01
The extreme magnetoelectric medium (EME medium) is defined in terms of two medium dyadics, $\\alpha$, producing electric polarization by the magnetic field and $\\beta$, producing magnetic polarization by the electric field. Plane-wave propagation of time-harmonic fields of fixed finite frequency in the EME medium is studied. It is shown that (if $\\omega\