WorldWideScience

Sample records for modeling vortical flows

  1. Vortical flows

    CERN Document Server

    Wu, Jie-Zhi; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers.  Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific ap...

  2. Stability of model flocks in a vortical flow

    Science.gov (United States)

    Baggaley, A. W.

    2016-06-01

    We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model in which particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes: If alignment with orientation is dominant, the particles tend to be expelled from regions of high vorticity. In contrast, if anticipation is dominant, the particles accumulate in areas of large vorticity. In both regimes, the relative order of the flock is reduced. However, we show that there can be a critical balance of the two effects that stabilizes the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and it may also have applications in the design of flocking autonomous drones and artificial microswimmers.

  3. Fighting the flow: the stability of model flocks in a vortical flow

    CERN Document Server

    Baggaley, Andrew W

    2016-01-01

    We investigate the stability of self-propelled particle flocks in the Taylor-Green vortex, a steady vortical flow. We consider a model where particles align themselves to a combination of the orientation and the acceleration of particles within a critical radius. We identify two distinct regimes, if alignment with orientation is dominant the particles tend to be expelled from regions of high vorticity. In contrast if anticipation is dominant the particles accumulate in areas of large vorticity. In both regimes the relative order of the flock is reduced. However we show that there can be a critical balance of the two effects which stabilises the flock in the presence of external fluid forcing. This strategy could provide a mechanism for animal flocks to remain globally ordered in the presence of fluid forcing, and may also have applications in the design of flocking autonomous drones and artificial microswimmers.

  4. Three-dimensional flow and vorticity transport in idealized airway model from laminar to turbulent regimes

    Science.gov (United States)

    Jalal, Sahar; van de Moortele, Tristan; Nemes, Andras; Eslam Panah, Azar; Coletti, Filippo

    2015-11-01

    The presence and intensity of secondary flows formed by the inhaled air during respiration has important consequences for gas exchange and particle transport in the lungs. Here we focus on the formation and persistence of such secondary flows by experimentally studying the steady inspiration in an idealized airway model. The geometry consists of a symmetric planar double bifurcation that respects the geometrical proportions of the human bronchial tree. Physiologically relevant Reynolds numbers from 100 to 5000 are investigated, ranging from laminar to turbulent regimes. The time-averaged, three-dimensional velocity fields are obtained from Magnetic Resonance Imaging (MRI), providing detailed distributions of vorticity, circulation, and secondary flow strength. Information on the velocity fluctuations are obtained by Particle Image Velocimetry (PIV). The measurements highlight the effect of the Reynolds number on the momentum transport, flow partitioning at the bifurcations, strength and sense of rotation of the longitudinal vortices. A marked change in topology is found at a specific Reynolds number, above which the influence of the upstream flow prevails over the effect of the local geometry. Finally, turbulence and its role in the mean vorticity transport are also discussed.

  5. Vorticity from irrotationally forced flow

    CERN Document Server

    Del Sordo, Fabio

    2010-01-01

    In the interstellar medium the turbulence is believed to be forced mostly through supernova explosions. In a first approximation these flows can be written as a gradient of a potential being thus devoid of vorticity. There are several mechanisms that could lead to vorticity generation, like viscosity and baroclinic terms, rotation, shear and magnetic fields, but it is not clear how effective they are, neither is it clear whether the vorticity is essential in determining the turbulent diffusion acting in the ISM. Here we present a study of the role of rotation, shear and baroclinicity in the generation of vorticity in the ISM.

  6. Zonal Flow and Vortices in Anelastic Deep Convection Models of Jupiter and Saturn With Shallow Stable Stratification

    Science.gov (United States)

    Heimpel, M. H.; Wicht, J.; Gastine, T.

    2015-12-01

    Planetary jet streams and vortices have been studied for over 350 years, yet their origin and dynamics are still vigorously debated. On both Jupiter and Saturn zonal flow consists of equatorial superrotation and alternating East-West jets at higher latitude. On Jupiter, numerous vortices, the vast majority anticyclones, occur with various sizes and lifetimes, interacting strongly with the zonal flow. Saturn's vortices and jets are also clearly coupled, and its North and South polar vortices are cyclonic. Models of giant planet atmospheres have generally been of two classes. Shallow flow models produce jets and vortices from 2D turbulence in a very thin spherical layer, but require special conditions to reproduce observed equatorial superrotation. In contrast, deep convection models generically reproduce equatorial superrotation, but typically lack coherent vortices, which do not survive the formation of jets. Here, we combine elements of both approaches using a 3D spherical shell compressible fluid numerical model, driven by convection at depth, but grading to a stably stratified shallow layer. In typical model simulations convective plumes rising from the deep interior impinge on the stably stratified layer, diverge near the outer spherical surface, and efficiently create the dominant anticyclones, which are shielded by downwelling cyclonic rings and filaments. These results may explain the dominance of anticyclones and the flow structure of small and medium sized anticyclonic ovals on Jupiter. The largest of our model vortices form in westward anticyclonic shear nearest the equatorial jet, similar to Saturn's "storm alley" and Jupiter's Great Red Spot. We also explore conditions under which cyclones, including polar cyclones like those on Saturn, may form.

  7. Formation of spanwise vorticity in oblique turbulent bands of transitional plane Couette flow, part 2: modelling and stability analysis

    CERN Document Server

    Rolland, Joran

    2016-01-01

    This article presents a modelling of the formation of spanwise vorticity in the turbulent streaks of the oblique bands and spots of transitional plane Couette flow. A functional model is designed to mimic the coherent flow in the streaks. The control parameters of the model are extracted from Direct Numerical Simulations (DNS) statistical data. A Reynolds stress is proposed to study the effect on the instability of this additional force maintaining the baseflow. Local (quasi-parallel) temporal stability analysis is performed on that model to investigate the linear development of the spanwise vorticity. Results show that average profiles, even if they have an inflection, are stable: the shear layers inside the velocity streaks are responsible for the vorticity formation. Emphasis is put on the convective or absolute nature of the instability, depending on the location in the band. This shows that a transition from a convective to an absolute instability occurs in the zone in between fully turbulent and laminar...

  8. Vortical flow past a sphere

    Science.gov (United States)

    Mattner, Trent; Chong, Min; Joubert, Peter

    2000-11-01

    Vortical flow past a sphere in a constant diameter pipe was studied experimentally in a guide vane apparatus similar to those used in fundamental experimental studies of vortex breakdown. The initial effect of swirl was to shorten the downstream separation bubble. For a small range of the swirl intensity, an almost stagnant upstream separation bubble formed. As the swirl intensity was increased, the bubble became unstable and an unsteady spiral formed. At high swirl intensity there was a mean recirculation region which penetrated far upstream while the flow on the downstream hemisphere was attached. Measurements of the velocity field were obtained using laser Doppler velocimetry. Analysis of these results suggests that the onset of upstream separation is associated with the formation of a negative azimuthal vorticity component which slows the axial flow near the axis of symmetry. This is consistent with inviscid distortion of the vortex filaments in the diverging flow approaching the sphere.

  9. Superconducting vortices in semilocal models.

    Science.gov (United States)

    Forgács, Péter; Reuillon, Sébastien; Volkov, Mikhail S

    2006-02-01

    It is shown that the SU(2) semilocal model--the Abelian Higgs model with two complex scalars--admits a new class of stationary, straight string solutions carrying a persistent current and having finite energy per unit length. In the plane orthogonal to their direction they correspond to a nontrivial deformation of the embedded Abrikosov-Nielsen-Olesen (ANO) vortices by the current flowing through them. The new solutions bifurcate with the ANO vortices in the limit of vanishing current. They can be either static or stationary. In the stationary case, the relative phase of the two scalars rotates at constant velocity, giving rise to an electric field and angular momentum, while the energy remains finite. The new static vortex solutions have lower energy than the ANO vortices and could be of considerable importance in various physical systems (from condensed matter to cosmic strings).

  10. Transient cavitating vortical flows around a hydrofoil using k-ω partially averaged Navier-Stokes model

    Science.gov (United States)

    Luo, Xianwu; Huang, Renfang; Ji, Bin

    2016-01-01

    For accurate simulations of wall-bounded turbulent cavitating flows, the present paper proposed a partially averaged Navier-Stokes (PANS) method derived from the k-ω turbulence model. Transient cavitating vortical flows around a NACA66 hydrofoil were simulated by using the k-ω PANS model with various filter parameters (fk = 0.2, 0.5 and 1, while fω = 1/fk) and a mass transfer cavitation model based on the Rayleigh-Plesset equation. Compared with the available experimental data, the k-ω PANS model with fk = 0.2 can accurately reproduce the cavitation evolution with more complicated structures due to the reduction in the predicted eddy viscosity. Further analyses, using the vorticity transport equation, indicate that the transition of cavitation structure from two dimension to three dimension is associated with strong vortex-cavitation interaction, where vortex stretching and dilation may play a major role. Therefore, the k-ω PANS model with the filter parameter of fk = 0.2 is an effective method to numerically predict the transient cavitating vortical flows around hydrofoils. The results obtained in this paper are helpful to provide a physical insight into the mechanisms of cavitation shedding dynamics.

  11. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    Science.gov (United States)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  12. Regional eddy vorticity transport and the equilibrium vorticity budgets of a numerical model ocean circulation

    Science.gov (United States)

    Harrison, D. E.; Holland, W. R.

    1981-01-01

    A mean vorticity budget analysis is presented of Holland's (1978) numerical ocean general circulation experiment. The stable budgets are compared with classical circulation theory to emphasize the ways in which the mesoscale motions of the model alter (or leave unaltered) classical vorticity balances. The basinwide meridional transports of vorticity by the mean flow and by the mesoscale flow in the mean are evaluated to establish the role(s) of the mesoscale in the larger scale equilibrium vorticity transports. The vorticity equation for this model fluid system is presented and the budget analysis method is described. Vorticity budgets over the selected regions and on a larger scale are given, and a summary of budget results is provided along with remarks about the utility of this type of analysis.

  13. Rapid expulsion of microswimmers by a vortical flow.

    Science.gov (United States)

    Sokolov, Andrey; Aranson, Igor S

    2016-03-23

    Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria-flow interactions.

  14. Rapid expulsion of microswimmers by a vortical flow

    Science.gov (United States)

    Sokolov, Andrey; Aranson, Igor S.

    2016-01-01

    Interactions of microswimmers with their fluid environment are exceptionally complex. Macroscopic shear flow alters swimming trajectories in a highly nontrivial way and results in dramatic reduction of viscosity and heterogeneous bacterial distributions. Here we report on experimental and theoretical studies of rapid expulsion of microswimmers, such as motile bacteria, by a vortical flow created by a rotating microparticle. We observe a formation of a macroscopic depletion area in a high-shear region, in the vicinity of a microparticle. The rapid migration of bacteria from the shear-rich area is caused by a vortical structure of the flow rather than intrinsic random fluctuations of bacteria orientations, in stark contrast to planar shear flow. Our mathematical model reveals that expulsion is a combined effect of motility and alignment by a vortical flow. Our findings offer a novel approach for manipulation of motile microorganisms and shed light on bacteria–flow interactions. PMID:27005581

  15. Flow model of conical vortices on large-span fiat roof%大跨平屋盖表面锥形涡流动模型研究

    Institute of Scientific and Technical Information of China (English)

    董欣; 叶继红

    2013-01-01

    基于大跨平屋盖表面旋涡流动显示试验,对兰金涡模型进行改进,在其涡核区与势流区之间添加过渡区,建立简化的二维锥形涡流动模型,给出旋涡上部流速、旋涡内部流线曲率以及屋面涡核吸力之间的定量关系.据此流动模型分析表明,旋涡内部流线曲率越大,旋涡转速越快,旋涡强度越高,且后者的影响更为显著.根据流动显示试验结果,量化各风向下大跨平屋盖表面锥形涡强度.通过考虑旋涡效应对准定常理论进行修正,给出旋涡涡核吸力的计算式,并将计算值与大跨平屋盖刚性模型风洞测压试验数据进行对比,验证锥形涡流动模型对于预测旋涡涡核吸力的有效性.%Based on measured velocities in conical vortices by flow visualization,a simplified two-dimensional vortex model was established by adding transitional region between the vortex core and the potential flow region of the Rankine vortex.Through this flow model,a relationship between the flow above the vortices,the curvature radius of flow streamlines in the vortices and the suctions beneath vortex cores was given.The flow model indicats that the larger the curvature of flow streamlines and the faster the vortex spins,the greater the intensity of vortex is.The effect of rational velocity on intensity of vortices is more obvious.Through measured velocities by flow visualization and parameters of vortices,the intensities of conical vortices on a large-span fiat roof under different wind directions were provided.The quasi-steady theory was corrected by including the effect of vortices.With this two-dimensional vortex model and the corrected quasi-steady theory,mean and peak suctions beneath cores of conical vortices can be predicted,which were verified by measured pressures on a larger-scale model of the large-span flat roof.

  16. Interactions of point vortices in the Zabusky-McWilliams model with a background flow

    CERN Document Server

    Connaughton, Colm

    2011-01-01

    We combine a simple quasi-geostrophic flow model with the Zabusky-McWilliams theory of atmospheric vortex dynamics to address a hurricane-tracking problem of interest to the insurance industry. This enables us to make predictions about the "follow-my-leader" phenomenon.

  17. Chaotic vortical flows and their manifestations

    Science.gov (United States)

    Baznat, M.; Gudima, K.; Sorin, A.; Teryaev, O.

    2016-11-01

    We study vorticity and hydrodynamic helicity in semi-peripheral heavy-ion collisions using the kinetic model of Quark-Gluon Strings. The angular momentum, which is a source of P-odd observables, is preserved with a good accuracy. We observe formation of the specific toroidal structures of the vorticity field. Their existence, accompanied by the strange chemical potential, is mirrored in the polarization of hyperons of the percent order.

  18. Confined vortices in flow machinery

    Science.gov (United States)

    Escudier, Marcel

    After noting such basic aspects of vortex flows as the concepts of supercritical and subcritical flow and vortex breakdown, swirling flow behavior in various practical devices is discussed. The devices in question encompass swirl-stabilized combustion in industrial combustion chambers, fluidic vortex amplifiers that may be used as large scale valves, turbomachine outlets that can efficiently divert axial throughflow in a tangential direction, 'cyclone' separators, turbine draft tube surge phenomena, and the Ranque-Hilsch refrigeration tube.

  19. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space - a pilot study.

    Science.gov (United States)

    Roth, Christian J; Haeussner, Eva; Ruebelmann, Tanja; Koch, Franz V; Schmitz, Christoph; Frank, Hans-Georg; Wall, Wolfgang A

    2017-01-19

    Ischemic placental disease is a concept that links intrauterine growth retardation (IUGR) and preeclampsia (PE) back to insufficient remodeling of uterine spiral arteries. The rheological consequences of insufficient remodeling of uterine spiral arteries were hypothesized to mediate the considerably later manifestation of obstetric disease. However, the micro-rheology in the intervillous space (IVS) cannot be examined clinically and rheological animal models of the human IVS do not exist. Thus, an in silico approach was implemented to provide in vivo inaccessible data. The morphology of a spiral artery and the inflow region of the IVS were three-dimensionally reconstructed to provide a morphological stage for the simulations. Advanced high-end supercomputing resources were used to provide blood flow simulations at high spatial resolution. Our simulations revealed turbulent blood flow (high-velocity jets and vortices) combined with elevated blood pressure in the IVS and increased wall shear stress at the villous surface in conjunction with insufficient spiral artery remodeling only. Post-hoc histological analysis of uterine veins showed evidence of increased trophoblast shedding in an IUGR placenta. Our data support that rheological alteration in the IVS is a relevant mechanism linking ischemic placental disease to altered structural integrity and function of the placenta.

  20. Baroclinic Vortices in Rotating Stratified Shearing Flows: Cyclones, Anticyclones, and Zombie Vortices

    Science.gov (United States)

    Hassanzadeh, Pedram

    Large coherent vortices are abundant in geophysical and astrophysical flows. They play significant roles in the Earth's oceans and atmosphere, the atmosphere of gas giants, such as Jupiter, and the protoplanetary disks around forming stars. These vortices are essentially three-dimensional (3D) and baroclinic, and their dynamics are strongly influenced by the rotation and density stratification of their environments. This work focuses on improving our understanding of the physics of 3D baroclinic vortices in rotating and continuously stratified flows using 3D spectral simulations of the Boussinesq equations, as well as simplified mathematical models. The first chapter discusses the big picture and summarizes the results of this work. In Chapter 2, we derive a relationship for the aspect ratio (i.e., vertical half-thickness over horizontal length scale) of steady and slowly-evolving baroclinic vortices in rotating stratified fluids. We show that the aspect ratio is a function of the Brunt-Vaisala frequencies within the vortex and outside the vortex, the Coriolis parameter, and the Rossby number of the vortex. This equation is basically the gradient-wind equation integrated over the vortex, and is significantly different from the previously proposed scaling laws that find the aspect ratio to be only a function of the properties of the background flow, and independent of the dynamics of the vortex. Our relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and non-uniform background density gradient. The relation for the aspect ratio has many consequences for quasi-equilibrium vortices in rotating stratified flows. For example, cyclones must have interiors more stratified than the background flow (i.e., super-stratified), and weak anticyclones must have interiors less stratified than the background (i.e., sub-stratified). In addition, this equation is useful to

  1. ASYMMETRIC VORTICES FLOW OVER SLENDER BODY AND ITS ACTIVE CONTROL AT HIGH ANGLE OF ATTACK

    Institute of Scientific and Technical Information of China (English)

    DENG Xueying; WANG Yankui

    2004-01-01

    The studies of asymmetric vortices flow over slender body and its active control at high angles of attack have significant importance for both academic field and engineering area. This paper attempts to provide an update state of art to the investigations on the fields of forebody asymmetric vortices. This review emphasizes the correlation between micro-perturbation on the model nose and its response and evolution behaviors of the asymmetric vortices. The critical issues are discussed,which include the formation and evolution mechanism of asymmetric multi-vortices; main behaviors of asymmetric vortices flow including its deterministic feature and vortices flow structure; the evolution and development of asymmetric vortices under the perturbation on the model nose; forebody vortex active control especially discussed micro-perturbation active control concept and technique in more detail. However present understanding in this area is still very limited and this paper tries to identify the key unknown problems in the concluding remarks.

  2. APPLICATION OF A SURFACE-RENEWAL MODEL TO PERMEATE-FLUX DATA FOR CONSTANTPRESSURE CROSS-FLOW MICROFILTRATION WITH DEAN VORTICES

    Directory of Open Access Journals (Sweden)

    G. Idan

    2015-06-01

    Full Text Available AbstractThe introduction of flow instabilities into a microfiltration process can dramatically change several elements such as the surface-renewal rate, permeate flux, specific cake resistance, and cake buildup on the membrane in a positive way. A recently developed surface-renewal model for constant-pressure, cross-flow microfiltration (Hasan et al., 2013 is applied to the permeate-flux data reported by Mallubhotla and Belfort (1997, one set of which included flow instabilities (Dean vortices while the other set did not. The surface-renewal model has two forms - the complete model and an approximate model. For the complete model, the introduction of vortices leads to a 53% increase in the surface-renewal rate, which increases the limiting (i.e., steady-state permeate flux by 30%, decreases the specific cake resistance by 14.5% and decreases the limiting cake mass by 15.5% compared to operation without vortices. For the approximate model, a 50% increase in the value of surface renewal rate is shown due to vortices, which increases the limiting permeate flux by 30%, decreases the specific cake resistance by 10.5% and decreases the limiting cake mass by 13.7%. The cake-filtration version of the critical-flux model of microfiltration (Field et al., 1995 is also compared against the experimental permeate-flux data of Mallubhotla and Belfort (1997. Although this model can represent the data, the quality of its fit is inferior compared to that of the surface-renewal model.

  3. Gradient evolution for potential vorticity flows

    Directory of Open Access Journals (Sweden)

    S. Balasuriya

    2001-01-01

    Full Text Available Two-dimensional unsteady incompressible flows in which the potential vorticity (PV plays a key role are examined in this study, through the development of the evolution equation for the PV gradient. For the case where the PV is conserved, precise statements concerning topology-conservation are presented. While establishing some intuitively well-known results (the numbers of eddies and saddles is conserved, other less obvious consequences (PV patches cannot be generated, some types of Lagrangian and Eulerian entities are equivalent are obtained. This approach enables an improvement on an integrability result for PV conserving flows (if there were no PV patches at time zero, the flow would be integrable. The evolution of the PV gradient is also determined for the nonconservative case, and a plausible experiment for estimating eddy diffusivity is suggested. The theory is applied to an analytical diffusive Rossby wave example.

  4. Vorticity Fluctuations in Plane Couette Flow

    Science.gov (United States)

    Ortiz de Zarate, Jose; Sengers, Jan V.

    2010-11-01

    In this presentation we evaluate the flow-induced amplification of the thermal noise in plane Couette configuration. The physical origin of the noise is the random nature of molecular collisions, that contribute with a stochastic component to the stress tensor (Landau's fluctuating hydrodynamics). This intrinsic stochastic forcing is then amplified by the mode- coupling mechanisms associated to shear flow. In a linear approximation, noise amplification can be studied by solving stochastic Orr-Sommerfeld and Squire equations. We compare the efficiency of the different mechanisms, being the most important the direct coupling between Squire and Orr-Sommerfed equations. The main effect is to amplify wall-normal vorticity fluctuations with an spanwise modulation at wave number around 1.5, a configuration that resembles the streaks that have been proposed as precursors of the flow instability.

  5. A Measure of Flow Vorticity with Helical Beams of Light

    CERN Document Server

    Rosales-Guzmán, Aniceto Belmonte Carmelo

    2015-01-01

    Vorticity describes the spinning motion of a fluid, i.e., the tendency to rotate, at every point in a flow. The interest in performing accurate and localized measurements of vorticity reflects the fact that many of the quantities that characterize the dynamics of fluids are intimately bound together in the vorticity field, being an efficient descriptor of the velocity statistics in many flow regimes. It describes the coherent structures and vortex interactions that are at the leading edge of laminar, transitional, and turbulent flows in nature. The measurement of vorticity is of paramount importance in many research fields as diverse as biology microfluidics, complex motions in the oceanic and atmospheric boundary layers, and wake turbulence on fluid aerodynamics. However, the precise measurement of flow vorticity is difficult. Here we put forward an optical sensing technique to obtain a direct measurement of vorticity in fluids using Laguerre-Gauss (LG) beams, optical beams which show an azimuthal phase vari...

  6. Internal and vorticity waves in decaying stratified flows

    Science.gov (United States)

    Matulka, A.; Cano, D.

    2009-04-01

    Most predictive models fail when forcing at the Rossby deformation Radius is important and a large range of scales have to be taken into account. When mixing of reactants or pollutants has to be accounted, the range of scales spans from hundreds of Kilometers to the Bachelor or Kolmogorov sub milimiter scales. We present some theoretical arguments to describe the flow in terms of the three dimensional vorticity equations, using a lengthscale related to the vorticity (or enstrophy ) transport. Effect of intermittent eddies and non-homogeneity of diffusion are also key issues in the environment because both stratification and rotation body forces are important and cause anisotropy/non-homogeneity. These problems need further theoretical, numerical and observational work and one approach is to try to maximize the relevant geometrical information in order to understand and therefore predict these complex environmental dispersive flows. The importance of the study of turbulence structure and its relevance in diffusion of contaminants in environmental flows is clear when we see the effect of environmental disasters such as the Prestige oil spill or the Chernobil radioactive cloud spread in the atmosphere. A series of Experiments have been performed on a strongly stratified two layer fluid consisting of Brine in the bottom and freshwater above in a 1 square meter tank. The evolution of the vortices after the passage of a grid is video recorded and Particle tracking is applied on small pliolite particles floating at the interface. The combination of internal waves and vertical vorticity produces two separate time scales that may produce resonances. The vorticity is seen to oscilate in a complex way, where the frecuency decreases with time.

  7. Lagrangian structures in time-periodic vortical flows

    Directory of Open Access Journals (Sweden)

    S. V. Kostrykin

    2006-01-01

    Full Text Available The Lagrangian trajectories of fluid particles are experimentally studied in an oscillating four-vortex velocity field. The oscillations occur due to a loss of stability of a steady flow and result in a regular reclosure of streamlines between the vortices of the same sign. The Eulerian velocity field is visualized by tracer displacements over a short time period. The obtained data on tracer motions during a number of oscillation periods show that the Lagrangian trajectories form quasi-regular structures. The destruction of these structures is determined by two characteristic time scales: the tracers are redistributed sufficiently fast between the vortices of the same sign and much more slowly transported into the vortices of opposite sign. The observed behavior of the Lagrangian trajectories is quantitatively reproduced in a new numerical experiment with two-dimensional model of the velocity field with a small number of spatial harmonics. A qualitative interpretation of phenomena observed on the basis of the theory of adiabatic chaos in the Hamiltonian systems is given. The Lagrangian trajectories are numerically simulated under varying flow parameters. It is shown that the spatial-temporal characteristics of the Lagrangian structures depend on the properties of temporal change in the streamlines topology and on the adiabatic parameter corresponding to the flow. The condition for the occurrence of traps (the regions where the Lagrangian particles reside for a long time is obtained.

  8. On relation between scalar interfaces and vorticity in inviscid flows

    Science.gov (United States)

    Ramesh, O. N.; Patwardhan, Saurabh

    2013-11-01

    A great variety of applications like pollutant mixing in the atmosphere, mixing of reactants in combustion highlight the importance of passive scalar dynamics in fluid flows. The other dynamically important variable in the study of fluid flow is the vorticity. Vorticity though, unlike a passive scalar, does affect the fluid motion. The dynamics of scalar (linear) and vorticity (non-linear) are governed by the equations which inherently have different characteristics. This paper addresses the question of the faithfulness of representation of vorticity by scalar marker and the motivation for this comes from the experiment of Head and Bandyopadhyay (1981) which showed the existence of coherent vortices by using smoke flow visualization in a turbulent boundary layer. We will show analytically in regions where the molecular diffusion effects are negligible, the vorticity and scalar gradients are orthogonal to each other. The iso- surface of scalar follows the vorticity in an inviscid situation. Also, we will demonstrate that in the case of unsteady burgers vortex and vortex shedding behind a finite circular cylinder, the scalar gradient is orthogonal to vorticity and inner product of vorticity and scalar gradients is zero in regions away from the wall.

  9. Spiral density wave generation by vortices in Keplerian flows

    CERN Document Server

    Bodo, G; Murante, G; Tevzadze, A; Rossi, P; Ferrari, A

    2005-01-01

    We perform a detailed analytical and numerical study of the dynamics of perturbations (vortex/aperiodic mode, Rossby and spiral-density waves) in 2D compressible disks with a Keplerian law of rotation. We draw attention to the process of spiral-density wave generation from vortices, discussing, in particular, the initial, most peculiar stages of wave emission. We show that the linear phenomenon of wave generation by vortices in smooth (without inflection points) shear flows found by using the so-called non-modal approach, is directly applicable to the present case. After an analytical non-modal description of the physics and characteristics of the spiral-density wave generation/propagation in the local shearing-sheet model, we follow the process of wave generation by small amplitude coherent circular vortex structures, by direct global numerical simulation, describing the main features of the generated waves.

  10. Microalga propels along vorticity direction in a shear flow

    Science.gov (United States)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  11. Tidal and residual flows in the western Dutch Wadden Sea III: Vorticity balances

    Science.gov (United States)

    Ridderinkhof, H.

    A vorticity-dynamics approach is used to examine the origin of the small-scale residual current field in the western Dutch Wadden Sea. For a representative part of the Wadden Sea, the magnitude of vorticity and of terms in the balance equation for vorticity is determined on the basis of results from a two-dimensional numerical model. The torque from bottom friction along the side walls of the tidal channels appears to be the dominating mechanism in generating tidal relative vorticity, the magnitude of which is much larger than planetary vorticity. Especially near a tidal inlet, stretching and squeezing of fluid columns is of importance in increasing/decreasing relative vorticity. Averaging over a tidal period shows, compared to the tidal equations, an increased influence of the non-linear advective and streching/squeezing terms in the tidally-averaged balance. However, although the relative influence of these strong non-linear terms increases, the influence of the weak non-linear terms originating in bottom friction cannot be ignored. The mechanism responsible for the headland eddies near a tidal inlet and the topographical eddies in the channels of the Wadden Sea is essentially the same, viz. the transfer of vorticity from a source region where this vorticity is produced by differential bottom friction, to adjacent regions. This transfer of tidal vorticity, or advection, is most effective near a transition from straight to curved isobaths where a gradient in the production of tidal vorticity occurs. This is illustrated by showing the vorticity possessed by a particular fluid column during a tidal excursion. The dominant influence of the bathymetry on the small scale residual current pattern is used for a qualitative discussion of the residual flow field in other parts of our numerical model.

  12. Unsteady flow phenomena associated with leading-edge vortices

    Science.gov (United States)

    Breitsamter, C.

    2008-01-01

    This paper presents selected results from extensive experimental investigations on turbulent flow fields and unsteady surface pressures caused by leading-edge vortices, in particular, for vortex breakdown flow. Such turbulent flows may cause severe dynamic aeroelastic problems like wing and/or fin buffeting on fighter-type aircraft. The wind tunnel models used include a generic delta wing as well as a detailed aircraft configuration of canard-delta wing type. The turbulent flow structures are analyzed by root-mean-square and spectral distributions of velocity and pressure fluctuations. Downstream of bursting local maxima of velocity fluctuations occur in a limited radial range around the vortex center. The corresponding spectra exhibit significant peaks indicating that turbulent kinetic energy is channeled into a narrow band. These quasi-periodic velocity oscillations arise from a helical mode instability of the breakdown flow. Due to vortex bursting there is a characteristic increase in surface pressure fluctuations with increasing angle of attack, especially when the burst location moves closer to the apex. The pressure fluctuations also show dominant frequencies corresponding to those of the velocity fluctuations. Using the measured flow field data, scaling parameters are derived for design purposes. It is shown that a frequency parameter based on the local semi-span and the sinus of angle of attack can be used to estimate the frequencies of dynamic loads evoked by vortex bursting.

  13. Non-linear vorticity upsurge in Burgers flow

    CERN Document Server

    Lam, F

    2016-01-01

    We demonstrate that numerical solutions of Burgers' equation can be obtained by a scale-totality algorithm for fluids of small viscosity (down to one billionth). Two sets of initial data, modelling simple shears and wall boundary layers, are chosen for our computations. Most of the solutions are carried out well into the fully turbulent regime over finely-resolved scales in space and in time. It is found that an abrupt spatio-temporal concentration in shear constitutes an essential part during the flow evolution. The vorticity surge has been instigated by the non-linearity complying with instantaneous enstrophy production while ad hoc disturbances play no role in the process. In particular, the present method predicts the precipitous vorticity re-distribution and accumulation, predominantly over localised regions of minute dimension. The growth rate depends on viscosity and is a strong function of initial data. Nevertheless, the long-time energy decay is history-independent and is inversely proportional to ti...

  14. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space – a pilot study

    Science.gov (United States)

    Roth, Christian J.; Haeussner, Eva; Ruebelmann, Tanja; Koch, Franz V.; Schmitz, Christoph; Frank, Hans-Georg; Wall, Wolfgang A.

    2017-01-01

    Ischemic placental disease is a concept that links intrauterine growth retardation (IUGR) and preeclampsia (PE) back to insufficient remodeling of uterine spiral arteries. The rheological consequences of insufficient remodeling of uterine spiral arteries were hypothesized to mediate the considerably later manifestation of obstetric disease. However, the micro-rheology in the intervillous space (IVS) cannot be examined clinically and rheological animal models of the human IVS do not exist. Thus, an in silico approach was implemented to provide in vivo inaccessible data. The morphology of a spiral artery and the inflow region of the IVS were three-dimensionally reconstructed to provide a morphological stage for the simulations. Advanced high-end supercomputing resources were used to provide blood flow simulations at high spatial resolution. Our simulations revealed turbulent blood flow (high-velocity jets and vortices) combined with elevated blood pressure in the IVS and increased wall shear stress at the villous surface in conjunction with insufficient spiral artery remodeling only. Post-hoc histological analysis of uterine veins showed evidence of increased trophoblast shedding in an IUGR placenta. Our data support that rheological alteration in the IVS is a relevant mechanism linking ischemic placental disease to altered structural integrity and function of the placenta.

  15. Dynamic modeling of uteroplacental blood flow in IUGR indicates vortices and elevated pressure in the intervillous space – a pilot study

    Science.gov (United States)

    Roth, Christian J.; Haeussner, Eva; Ruebelmann, Tanja; Koch, Franz v.; Schmitz, Christoph; Frank, Hans-Georg; Wall, Wolfgang A.

    2017-01-01

    Ischemic placental disease is a concept that links intrauterine growth retardation (IUGR) and preeclampsia (PE) back to insufficient remodeling of uterine spiral arteries. The rheological consequences of insufficient remodeling of uterine spiral arteries were hypothesized to mediate the considerably later manifestation of obstetric disease. However, the micro-rheology in the intervillous space (IVS) cannot be examined clinically and rheological animal models of the human IVS do not exist. Thus, an in silico approach was implemented to provide in vivo inaccessible data. The morphology of a spiral artery and the inflow region of the IVS were three-dimensionally reconstructed to provide a morphological stage for the simulations. Advanced high-end supercomputing resources were used to provide blood flow simulations at high spatial resolution. Our simulations revealed turbulent blood flow (high-velocity jets and vortices) combined with elevated blood pressure in the IVS and increased wall shear stress at the villous surface in conjunction with insufficient spiral artery remodeling only. Post-hoc histological analysis of uterine veins showed evidence of increased trophoblast shedding in an IUGR placenta. Our data support that rheological alteration in the IVS is a relevant mechanism linking ischemic placental disease to altered structural integrity and function of the placenta. PMID:28102332

  16. Confinement and fat-center-vortices model

    CERN Document Server

    Deldar, S

    2004-01-01

    In this paper I review shortly potentials obtained for SU(2), SU(3) and SU(4) static sources from fat-center-vortices model. Results confirm the confinement of quarks in all three gauge groups. Proportionality of string tensions with flux tube counting is better than Casimir scaling especially for SU(4).

  17. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices

    Science.gov (United States)

    Huhn, F.; van Rees, W. M.; Gazzola, M.; Rossinelli, D.; Haller, G.; Koumoutsakos, P.

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  18. Quantitative flow analysis of swimming dynamics with coherent Lagrangian vortices.

    Science.gov (United States)

    Huhn, F; van Rees, W M; Gazzola, M; Rossinelli, D; Haller, G; Koumoutsakos, P

    2015-08-01

    Undulatory swimmers flex their bodies to displace water, and in turn, the flow feeds back into the dynamics of the swimmer. At moderate Reynolds number, the resulting flow structures are characterized by unsteady separation and alternating vortices in the wake. We use the flow field from simulations of a two-dimensional, incompressible viscous flow of an undulatory, self-propelled swimmer and detect the coherent Lagrangian vortices in the wake to dissect the driving momentum transfer mechanisms. The detected material vortex boundary encloses a Lagrangian control volume that serves to track back the vortex fluid and record its circulation and momentum history. We consider two swimming modes: the C-start escape and steady anguilliform swimming. The backward advection of the coherent Lagrangian vortices elucidates the geometry of the vorticity field and allows for monitoring the gain and decay of circulation and momentum transfer in the flow field. For steady swimming, momentum oscillations of the fish can largely be attributed to the momentum exchange with the vortex fluid. For the C-start, an additionally defined jet fluid region turns out to balance the high momentum change of the fish during the rapid start.

  19. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Bin; Wang, Jiong; Xiao, L. Z.; Long, X. [Wuhan University, Hubei (China); Luo, X. [Tsinghua University, Beijing (China); Miyagawa, K. [Waseda University, Tokyo (Japan); Tsujimoto, Yoshinobu [Osaka University, Osaka (Japan)

    2016-06-15

    The strong swirling flow at the exit of the runner of a Francis turbine at part load causes flow instabilities and cavitation surges in the draft tube, deteriorating the performance of the hydraulic power system. The unsteady cavitating turbulent flow in the draft tube is simplified and modeled by a diffuser with swirling flow using the Scale-adaptive simulation method. Unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the cavitation and the vortices are both revealed. The generation and evolution of the vortex rope structures are demonstrated with the help of the iso-surfaces of the vapor volume fraction and the Qcriterion. Analysis based on the vorticity transport equation suggests that the vortex dilatation term is much larger along the cavity interface in the diffuser inlet and modifies the vorticity field in regions with high density and pressure gradients. The present work is validated by comparing two types of cavitation surges observed experimentally in the literature with further interpretations based on simulations.

  20. Numerical and Experimental Study of Electromagnetically Driven Vortical Flows

    NARCIS (Netherlands)

    Kenjeres, S.; Verdoold, J.; Tummers, M.J.; Hanjalic, K.; Kleijn, C.R.

    2009-01-01

    The paper reports on numerical and experimental investigations of electromagnetically driven vortical flows of an electrically conductive fluid in a generic setup. Two different configurations of permanent magnets are considered: a 3-magnet configuration in which the resulting Lorentz force is focus

  1. The Finiteness of vortices in steady incompressible viscous fluid flow

    CERN Document Server

    Kalita, Jiten C; Panda, Swapnendu

    2016-01-01

    In this work, we provide two novel approaches to show that incompressible fluid flow in a finite domain contains at most a finite number vortices. We use a recently developed geometric theory of incompressible viscous flows along with an existing mathematical analysis concept to establish the finiteness. We also offer a second proof of finiteness by roping in the Kolmogorov's length scale criterion in conjunction with the notion of diametric disks.

  2. Investigation of vortical flows over oscillating body using fast Lagrangian vortex method

    Institute of Scientific and Technical Information of China (English)

    Baoshan ZHU

    2009-01-01

    A computational method facilitating long-time and high-resolution unsteady vortical flows is developed with the advantages of the discrete vortex methods. Both the velocity and pressure distribution of the flow field are calculated by integral formulations in combination with a fast summation algorithm. The vorticity field is described by Lagrangian representation, which is well suited to the moving boundary. Viscosity diffusion of the vorticity is considered with the core spreading model corrected by an adaptive splitting and merging algorithm. The effective-ness of the present method is examined by comparing the numerical results of unsteady separated flows which pass a cylinder and a thin cambered blade undergoing rotational oscillations with available experimental results. Interesting results about vortex shedding patterns and lock-in characteristics are provided for the thin cambered blade.

  3. How can vorticity be produced in irrotationally forced flows?

    CERN Document Server

    Del Sordo, Fabio

    2010-01-01

    A spherical hydrodynamical expansion flow can be described as the gradient of a potential. In that case no vorticity should be produced, but several additional mechanisms can drive its production. Here we analyze the effects of baroclinicity, rotation and shear in the case of a viscous fluid. Those flows resemble what happens in the interstellar medium. In fact in this astrophysical environment supernovae explosion are the dominant flows and, in a first approximation, they can be seen as spherical. One of the main difference is that in our numerical study we examine only weakly supersonic flows, while supernovae explosions are strongly supersonic.

  4. Analytic Modeling of Severe Vortical Storms.

    Science.gov (United States)

    1980-07-08

    AD---AO86 919 TR DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CA -ETC F/6 4/2 ANALYTIC MODELING OF SEVERE VORTICAL, STDRMS.CW),7JUL G0 F FENDELL ...and Space Systems Group One Space 1ark ___Redondo Beach, California 90278 Francis E. Fendell , Principal Investigator for Artic and Earth Sciences... Fendell , principal investigator, and Phillip Feldman, numerical analyst, of TRW Defense and Space Systems Group, and George Carrier of Harvard University

  5. Models of Vortices and Spirals in White Dwarf's Accretion Binaries

    Science.gov (United States)

    Boneva, Daniela

    2010-11-01

    The main aim in the current survey is to suggest models of the development of structures, such as vortices and spirals, in accretion white dwarf's binaries. On the base of hydrodynamical analytical considerations it is applied numerical methods and simulations. It is suggested in the theoretical model the perturbation's parameters of the accretion flow, caused by the influences of the tidal wave over the flux of accretion matter around the secondary star. To examine such disturbed flow, the numerical code has involved in the calculations. The results reveal us an appearing of structure with spiral shape due to the tidal interaction in the close binaries. Our further simulations give the solution, which expresses the formation of vortical configurations in the accretion disc's zone. The evolution of vortices in areas of the flow's interaction is explored using single vortex and composite vortex models. Gas in the disc matter is considered to be compressible and non-ideal. The longevity of all these structures is different and each depends of time period of the rotation, density and velocity of the accretion matter.

  6. Formation and stability of tri-polar vortices in stratified geostrophic flows

    Energy Technology Data Exchange (ETDEWEB)

    Corread, S.M.; Carton, X.J. [French Navy Oceanography Center, Brest (France)

    1999-12-01

    The formation, stationary and stability of tri-polar vortices are investigated in a two-layer quasi-geostrophic model. On the f-plane, these tripoles form from the barotropic and baroclinic instabilities of circular isolated vortices. Various horizontal and vertical potential vorticity distributions, both piecewise constant and continuous, are considered here for these circular vortices.

  7. Clustering of heavy particles in vortical flows: a selective review

    Indian Academy of Sciences (India)

    S RAVICHANDRAN; P DEEPU; RAMA GOVINDARAJAN

    2017-04-01

    Heavy particles in a turbulent flow tend to leave regions of high vorticity and cluster into regions of high strain. The consequences of such clustering have been studied in a variety of situations over the past few decades, and this problem has seen several review papers already. Our objectives in this paper are three-fold. (i) We introduce the reader to the basic ideas, and explain why the problem is interesting. (ii) Using an N-vortex system we present an interesting case where particles are attracted to the vicinity of vortices. A new scaling forthe critical Stokes number of attraction is obtained. (iii) We review a number of papers, which are related to cloud physics in this context.

  8. The Universal Aspect Ratio of Vortices in Rotating Stratifi?ed Flows: Experiments and Observations

    CERN Document Server

    Aubert, Oriane; Gal, Patrice Le; Marcus, Philip S

    2012-01-01

    We validate a new law for the aspect ratio $\\alpha = H/L$ of vortices in a rotating, stratified flow, where $H$ and $L$ are the vertical half-height and horizontal length scale of the vortices. The aspect ratio depends not only on the Coriolis parameter f and buoyancy (or Brunt-Vaisala) frequency $\\bar{N}$ of the background flow, but also on the buoyancy frequency $N_c$ within the vortex and on the Rossby number $Ro$ of the vortex such that $\\alpha = f \\sqrt{[Ro (1 + Ro)/(N_c^2- \\bar{N}^2)]}$. This law for $\\alpha$ is obeyed precisely by the exact equilibrium solution of the inviscid Boussinesq equations that we show to be a useful model of our laboratory vortices. The law is valid for both cyclones and anticyclones. Our anticyclones are generated by injecting fluid into a rotating tank filled with linearly-stratified salt water. The vortices are far from the top and bottom boundaries of the tank, so there is no Ekman circulation. In one set of experiments, the vortices viscously decay, but as they do, they c...

  9. Simulation of cross-flow-induced vibration of tube bundle by surface vorticity method

    Institute of Scientific and Technical Information of China (English)

    Fenghao WANG; Gedong JIANG; Jong Zhang Lin

    2008-01-01

    A fluid-structure interaction model based on Surface Vorticity Method (SVM) was used to study flow-induced vibrations of tube bundles in medium space ratio. The flow-induced vibrations of four tubes in a rotated square and a staggered tube bundle in three-row and five-column arrangements were simulated in the high sub-critical Reynolds number (Re) range. The results on fluid forces, tube responses and vorticity maps were pre-sented. The vorticity maps of the four rotated-square tubes changed dramatically when the rigid tubes were replaced by the flexible tubes. From the vorticity maps and vibration responses of the staggered tube bundle of different structural parameters, it was found that with the decrease of tube natural frequency, the maximal vibration response moved from the third row to the first. The results also showed that when more flexible tubes are used, the flow pattern changed drastically and the fluid-structure interaction imposed a dominant impact on the flow.

  10. Fundamental interactions of vortical structures with boundary layers in two-dimensional flows

    DEFF Research Database (Denmark)

    Coutsias, E.A.; Lynov, Jens-Peter

    1991-01-01

    in the vorticity-stream function representation for bounded geometries. Fundamental processes connected to vorticity detachment from the boundary layers caused by the proximity of vortical structures are described. These processes include enstrophy enhancement of the main flow during bursting events, and pinning...

  11. Contribution of velocity-vorticity correlations to the frictional drag in wall-bounded turbulent flows

    Science.gov (United States)

    Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin

    2016-08-01

    The relationship between the frictional drag and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The frictional drag encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag.

  12. The generation of sound by vorticity waves in swirling duct flows

    Science.gov (United States)

    Howe, M. S.; Liu, J. T. C.

    1977-01-01

    Swirling flow in an axisymmetric duct can support vorticity waves propagating parallel to the axis of the duct. When the cross-sectional area of the duct changes a portion of the wave energy is scattered into secondary vorticity and sound waves. Thus the swirling flow in the jet pipe of an aeroengine provides a mechanism whereby disturbances produced by unsteady combustion or turbine blading can be propagated along the pipe and subsequently scattered into aerodynamic sound. In this paper a linearized model of this process is examined for low Mach number swirling flow in a duct of infinite extent. It is shown that the amplitude of the scattered acoustic pressure waves is proportional to the product of the characteristic swirl velocity and the perturbation velocity of the vorticity wave. The sound produced in this way may therefore be of more significance than that generated by vorticity fluctuations in the absence of swirl, for which the acoustic pressure is proportional to the square of the perturbation velocity. The results of the analysis are discussed in relation to the problem of excess jet noise.

  13. Cusp currents from ionospheric vorticity generated by gasdynamic and merging flow fields at the magnetopause

    Energy Technology Data Exchange (ETDEWEB)

    Mie, Y. [Univ. of California, Los Angeles, CA (United States); Crooker, N.U.; Siscoe, G.L. [Boston Univ., MA (United States)

    1995-05-01

    Cusp currents that arise from ionospheric vorticity generated by the combined merging outflow and gasdynamic flow fields at the magnetopause are quantified and compared with those calculated from vorticity generated by mapping the solar wind electric field into a limited cusp region of the polar cap, as proposed in the synthesis view of Banks. The results are essentially identical for strong interplanetary magnetic field (IMF) B{sub Y}, thus demonstrating equivalence between mechanical and electrical descriptions of reconnection-driven convection. For southward IMF, however, the mechanical description yields weak cusp currents with dawn-dusk bipolarity, as deduced from early observations by Iijima and Potemra, whereas the electrical description yields none. The bipolar currents arise from the diverging pattern of gasdynamic flow. The currents become unipolar as B{sub Y} increases and the asymmetry of the merging outflow dominates. Additional cusp currents in both models arise at kinks in the flow contours (additional ionospheric vorticity) around the border of the cusp region, owing to limiting the area of mapping from the magnetopause. The border currents form a bipolar pair that rotates around the circumference of the cusp as the IMF rotates in clock angle. They dominate the currents arising from vorticity within the cusp. 17 refs., 3 figs.

  14. Traveling hairpin-shaped fluid vortices in plane Couette flow.

    Science.gov (United States)

    Deguchi, K; Nagata, M

    2010-11-01

    Traveling-wave solutions are discovered in plane Couette flow. They are obtained when the so-called steady hairpin vortex state found recently by Gibson [J. Fluid Mech. 638, 243 (2009)] and Itano and Generalis [Phys. Rev. Lett. 102, 114501 (2009)] is continued to sliding Couette flow geometry between two concentric cylinders by using the radius ratio as a homotopy parameter. It turns out that in the plane Couette flow geometry two traveling waves having the phase velocities with opposite signs are associated with their appearance from the steady hairpin vortex state, where the amplitude of the phase velocities increases gradually from zero as the Reynolds number is increased. The solutions obviously inherit the streaky structure of the hairpin vortex state, but shape preserving flow patterns propagate in the streamwise direction. Other striking features of the solution are asymmetric mean flow profiles and strong quasistreamwise vortices which occupy the vicinity of only the top or bottom moving boundary, depending on the sign of the phase velocity. Furthermore, we find that the pitchfork bifurcation associated with the appearance of the solution becomes imperfect when the flow is perturbed by a Poiseuille flow component.

  15. CFD Simulation of Flow Features and Vorticity Structures in Tuna-Like Swimming

    Institute of Scientific and Technical Information of China (English)

    YANG Liang; SU Yu-min

    2011-01-01

    The theoretical research on the propulsive principle of aquatic animal becomes more important and attracted more researchers to make efforts on it.In the present study,a computational fluid dynamic(CFD)simulation of a three-dimensional traveling-wave undulations body of tuna has been developed to investigate the fluid flow features and vorticity structures around this body when moving in a straight line.The undulation only takes place in the posterior half of the fish,and the tuna-tail is considered as a lunate fin oscillating with the mode combined swaying with yawing.A Reynolds-averaged Navier-Stokes(BANS)equation is developed,employing a control-volume method and a k-omega SST turbulent model;meanwhile an unstructured tetrahedral grid,which is generated for the three-dimensional geometry,is used based on the deformation of the hind parts of the body and corresponding movement of the tail.We calculated the hydrodynamic performance of tuna-like body when a tuna swims in a uniform velocity,and compared the input power coefficient,output power coefficient and propulsive efficiency of the oscillating tuna-tail with or without body vortex shedding.Additionally,the load distribution on the body,flow features and vorticity structures around the body were demonstrated.The effect of interaction between the body-generated vortices and the tail-generated vorticity on the hydrodynamic performance can be obtained.

  16. Flow structure and vorticity transport on a plunging wing

    Science.gov (United States)

    Eslam Panah, Azar

    The structure and dynamics of the flow field created by a plunging flat plate airfoil are investigated at a chord Reynolds number of 10,000 while varying plunge amplitude and Strouhal number. Digital particle image velocimetry measurements are used to characterize the shedding patterns and the interactions between the leading and trailing edge vortex structures (LEV and TEV), resulting in the development of a wake classification system based on the nature and timing of interactions between the leading- and trailing-edge vortices. The convection speed of the LEV and its resulting interaction with the TEV is primarily dependent on reduced frequency; however, at Strouhal numbers above approximately 0.4, a significant influence of Strouhal number (or plunge amplitude) is observed in which LEV convection is retarded, and the contribution of the LEV to the wake is diminished. It is shown that this effect is caused by an enhanced interaction between the LEV and the airfoil surface, due to a significant increase in the strength of the vortices in this Strouhal number range, for all plunge amplitudes investigated. Comparison with low-Reynolds-number studies of plunging airfoil aerodynamics reveals a high degree of consistency and suggests applicability of the classification system beyond the range examined in the present work. Some important differences are also observed. The three-dimensional flow field was characterized for a plunging two-dimensional flat-plate airfoil using three-dimensional reconstructions of planar PIV data. Whereas the phase-averaged description of the flow field shows the secondary vortex penetrating the leading-edge shear layer to terminate LEV formation on the airfoil, time-resolved, instantaneous PIV measurements show a continuous and growing entrainment of secondary vorticity into the shear layer and LEV. A planar control volume analysis on the airfoil indicated that the generation of secondary vorticity produced approximately one half the

  17. Controlled Flow Distortion in an Offset Diffuser using Hybrid Trapped Vorticity

    Science.gov (United States)

    Burrows, T. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    Trapped vorticity concentration engendered by deliberate modification of the internal surface of an offset diffuser is coupled with a spanwise array of surface-integrated fluidic-oscillating jets for hybrid flow control of streamwise vorticity concentrations that dominate the base flow and give rise to flow distortions at the engine inlet. The local and global characteristics of the diffuser flow in the absence and presence of the actuation are investigated at Mach numbers up to M = 0.7, using surface oil-flow visualization and pressure distributions, and particle image velocimetry. It is shown that two sources of streamwise vorticity dominate the base flow distortion, namely, corner and a central pair of counter-rotating vortices. The present investigations demonstrate that the actuation affects the topology, strength and scale of the trapped vorticity and thereby its coupling to and interaction with the counter rotating streamwise vortices, where the central vortex pair becomes fully suppressed. As a result, the actuation significantly alters the evolution of the flow within the diffuser, and leads to significant suppression of pressure distortion at the engine inlet (by about 80%) at actuation level that is less than 0.7% of the diffuser's mass flow rate. These findings indicate the utility of hybrid trapped vorticity actuation for mitigating adverse effects of secondary vorticity concentrations formed by local separation and corner flows. Supported by ONR.

  18. Topology of streamlines and vorticity contours for two - dimensional flows

    DEFF Research Database (Denmark)

    Andersen, Morten

    Considering a coordinate-free formulation of helical symmetry rather than more traditional definitions based on coordinates, we discuss basic properties of helical vector fields and compare results from the literature. For inviscid flow where a velocity field is generated by a sum of helical vortex...... generated by a helical vortex filament in an ideal fluid. The classical expression for the stream function obtained by Hardin (Phys. Fluids 25, 1982) contains an infinite sum of modified Bessel functions. Using the approach by Okulov (Russ. J. Eng. Thermophys. 5, 1995) we obtain a closed-form approximation...... by a point vortex above a wall in inviscid fluid. There is no reason to a priori expect equivalent results of the three vortex definitions. However, the study is mainly motivated by the findings of Kudela & Malecha (Fluid Dyn. Res. 41, 2009) who find good agreement between the vorticity and streamlines...

  19. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    DEFF Research Database (Denmark)

    Pirrung, Georg; Aagaard Madsen, Helge; Schreck, Scott

    2016-01-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing...... the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where...

  20. Vortices generation in the reactive flow on the evaporative surface

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cha Ryeom; Lee, Chang Jin [Konkuk University, Seoul (Korea, Republic of)

    2015-02-15

    Vortices generation and flow dynamics are investigated by a numerical calculation with LES methodology on the evaporative surface including chemical reactions. For simplicity, fuel is radially injected from the surface in order to decouple pyrolysis of solid fuel from the governing equation and consideration of heat transfer balance. Nevertheless its simple treatment of chemical reactions and fuel pyrolysis, numerical results captured very fundamental understandings in terms of averaged temperature, velocity profile, and mixture fraction distribution. Results showed that a well-defined turbulent velocity profile at the inlet becomes twisted and highly wrinkled in the downstream reaching the maximum velocity at far above the surface, where the flame is located. And the thickness of boundary layer increases in the downstream due to the enhanced interaction of axial flow and mass injection from the surface. Also, chemical reaction appears highly active and partially concentrated along the plane where flow condition is in stoichiometric. In particular, flame front locates at the surface where mixture fraction Z equals to 0.07. Flame front severely wrinkles in the downstream by the interaction with turbulences in the flow. Partial reactions on the flame front contribute to produce hot spots periodically in the downstream attaining the max temperature at the center of each spot. This may take the role of additional unsteady heat generations and pressure perturbations in the downstream. Future study will focus on the evolution of hot spots and pressure perturbations in the post chamber of lab scale hybrid rocket motors.

  1. Hydrodynamic Model of Desalination by "Overlimiting" Electrodialysis with Electroconvective Vortices

    Science.gov (United States)

    Kwak, Rhokyun; Pham, Van Sang; Han, Jongyoon

    2016-11-01

    In 1968, Sonin and Probstein developed a hydrodynamic theory of desalination by electrodialysis. Under a laminar flow between ion exchange membranes, linear ion concentration gradients are developed near the membranes by ion concentration polarization (ICP) in Ohmic-limiting current regimes. This linear ICP determines the relations between current, voltage, and desalting performance. Here, we revisit the hydrodynamic model with nonlinear ICP phenomenon at overlimiting currents. In this regime, electroconvective vortices on the membrane induce flat and extremely low concentration zones. Based on the previous prediction of the vortex height under shear flow, we verify that the height directly represents the amount of the removed salt because there is almost no ion in the vortices. Next, from the mass continuity of ions, the amount of the removed salts is equal to the ion flux through the membrane (i.e. current); as a result, we can develop the relations between current, voltage, and salt removal. Lastly, from these relations, power consumption and desalination cost can be calculated to find the optimal operating condition of overlimiting electrodialysis.

  2. Stability of 3D Gaussian vortices in rotating stratified Boussinesq flows: Linear analysis

    CERN Document Server

    Mahdinia, Mani; Jiang, Chung-Hsiang

    2016-01-01

    The linear stability of three-dimensional (3D) vortices in rotating, stratified flows has been studied by analyzing the non-hydrostatic inviscid Boussinesq equations. We have focused on a widely-used model of geophysical and astrophysical vortices, which assumes an axisymmetric Gaussian structure for pressure anomalies in the horizontal and vertical directions. For a range of Rossby number ($-0.5 < Ro < 0.5$) and Burger number ($0.02 < Bu < 2.3$) relevant to observed long-lived vortices, the growth rate and spatial structure of the most unstable eigenmodes have been numerically calculated and presented as a function of $Ro-Bu$. We have found neutrally-stable vortices only over a small region of the $Ro-Bu$ parameter space: cyclones with $Ro \\sim 0.02-0.05$ and $Bu \\sim 0.85-0.95$. However, we have also found that anticyclones in general have slower growth rates compared to cyclones. In particular, growth rate of the most unstable eigenmode for anticyclones in a large region of the parameter space ...

  3. Time-distance helioseismology: A new averaging scheme for measuring flow vorticity

    CERN Document Server

    Langfellner, Jan; Birch, Aaron C

    2014-01-01

    Time-distance helioseismology provides information about vector flows in the near-surface layers of the Sun by measuring wave travel times between points on the solar surface. Specific spatial averages of travel times have been proposed for distinguishing between flows in the east-west and north-south directions and measuring the horizontal divergence of the flows. No specific measurement technique has, however, been developed to measure flow vorticity. Here we propose a new measurement technique tailored to measuring the vertical component of vorticity. Fluid vorticity is a fundamental property of solar convection zone dynamics and of rotating turbulent convection in particular. The method consists of measuring the travel time of waves along a closed contour on the solar surface in order to approximate the circulation of the flow along this contour. Vertical vorticity is related to the difference between clockwise and counter-clockwise travel times. We applied the method to characterize the vortical motions ...

  4. Potential vorticity and layer thickness variations in the flow around Jupiter's Great Red Spot and White Oval BC

    Science.gov (United States)

    Dowling, Timothy E.; Ingersoll, Andrew P.

    1988-01-01

    Using Voyager images, layer thickness variations in the flow around Jupiter's Great Red Spot (GRS) and White Oval BC were investigated by treating potential vorticity as a conserved tracer. Fluid trajectories around the GRS and the White Oval BC were calculated assuming the flow to be frictionless, adiabatic, hydrostatic, and steady in the reference frame of the vortex. The data obtained constitute a useful diagnostic which will help to differentiate between models of Jovian vortices. Implications of the observations were studied in the context of a one-layer quasi-geostrophic model in which a thin upper weather layer, which contains the vortex, is supported hydrostatically by a much deeper lower layer.

  5. Velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows

    Energy Technology Data Exchange (ETDEWEB)

    Meir, A.J. [Auburn Univ., AL (United States)

    1994-12-31

    In this work we discuss some aspects of the velocity-vorticity formulation of three-dimensional, steady, viscous, incompressible flows. We describe reasonable boundary conditions that should be imposed on the vorticity and a compatibility condition that the vorticity must satisfy. This formulation may give rise to efficient numerical algorithms for approximating solutions of the Stokes problem, which in turn yields an iterative method for approximating solutions of the Navier-Stokes equations.

  6. Fast multipole method applied to Lagrangian simulations of vortical flows

    Science.gov (United States)

    Ricciardi, Túlio R.; Wolf, William R.; Bimbato, Alex M.

    2017-10-01

    Lagrangian simulations of unsteady vortical flows are accelerated by the multi-level fast multipole method, FMM. The combination of the FMM algorithm with a discrete vortex method, DVM, is discussed for free domain and periodic problems with focus on implementation details to reduce numerical dissipation and avoid spurious solutions in unsteady inviscid flows. An assessment of the FMM-DVM accuracy is presented through a comparison with the direct calculation of the Biot-Savart law for the simulation of the temporal evolution of an aircraft wake in the Trefftz plane. The role of several parameters such as time step restriction, truncation of the FMM series expansion, number of particles in the wake discretization and machine precision is investigated and we show how to avoid spurious instabilities. The FMM-DVM is also applied to compute the evolution of a temporal shear layer with periodic boundary conditions. A novel approach is proposed to achieve accurate solutions in the periodic FMM. This approach avoids a spurious precession of the periodic shear layer and solutions are shown to converge to the direct Biot-Savart calculation using a cotangent function.

  7. Inertial particle trapping in an open vortical flow

    CERN Document Server

    Angilella, Jean-Regis; Motter, Adilson E

    2014-01-01

    Recent numerical results on advection dynamics have shown that particles denser than the fluid can remain trapped indefinitely in a bounded region of an open fluid flow. Here, we investigate this counterintuitive phenomenon both numerically and analytically to establish the conditions under which the underlying particle-trapping attractors can form. We focus on a two-dimensional open flow composed of a pair of vortices and its specular image, which is a system we represent as a vortex pair plus a wall along the symmetry line. Considering particles that are much denser than the fluid, we show that two point attractors form in the neighborhood of the vortex pair provided that the particle Stokes number is smaller than a critical value of order unity. In the absence of the wall, the boundaries of the basins of the attracting points are smooth. When the wall is present, the point attractors describe counter-rotating ellipses in this frame, with a period equal to half the period of one isolated vortex pair. Howeve...

  8. Performance of a transverse vorticity probe in a turbulent channel flow

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, T.; Antonia, R.A.; Zhu, Y. [Newcastle upon Tyne Univ. (United Kingdom). Dept. of Mechanical Engineering; Orlandi, P. [Dipartimento di Meccanica e Aeronautica, Universita Degli Studi di Roma ``La Sapienza``, I-00184 Rome (Italy); Esposito, P. [INSEAN - Istituto Nazionale per Studi ed Esperienze di Architettura Navale, Via di Vallerano 139, I-00128 Rome (Italy)

    1998-05-01

    The performance of a four hot-wire transverse vorticity probe is tested by comparing measurements in a fully developed turbulent channel flow with corresponding data obtained from direct numerical simulations (DNS) of the same flow. In the inner region, the probe performs poorly, the rms vorticities being consistently smaller than the DNS values. In the outer region of the flow, there is reasonable agreement between measured and DNS vorticity statistics, especially after correcting the measurements for the effect of spatial resolution. In this region, the imbalance indicated by the vorticity form of the streamwise momentum equation is approximately constant. The magnitude of the imbalance can be reduced to an acceptable level of accuracy by considering sources of error which affect the velocity-vorticity correlations. (orig.) With 11 figs., 30 refs.

  9. Vortical Structures in CT-based Breathing Lung Models

    Science.gov (United States)

    Choi, Jiwoong; Lee, Changhyun; Hoffman, Eric; Lin, Ching-Long

    2016-11-01

    The 1D-3D coupled computational fluid dynamics (CFD) lung model is applied to study vortical structures in the human airways during normal breathing cycles. During inhalation, small vortical structures form around the turbulent laryngeal jet and Taylor-Gőrtler-like vortices form near the curved walls in the supraglottal region and at airway bifurcations. On exhalation elongated vortical tubes are formed in the left main bronchus, whereas a relatively slower stream is observed in the right main bronchus. These structures result in helical motions in the trachea, producing long lasting high wall shear stress on the wall. The current study elucidates that the correct employment of image-based airway deformation and lung deflation information is crucial for capturing the physiologically consistent regional airflow structures. The pathophysiological implications of these structures in destruction of tracheal wall will be discussed.

  10. A relation between velocity-vorticity correlations and skin friction in wall-bounded turbulent flows

    Science.gov (United States)

    Yoon, Min; Ahn, Junsun; Hwang, Jinyul; Sung, Hyung Jin

    2016-11-01

    The relationship between the skin friction and the velocity-vorticity correlations in wall-bounded turbulent flows is derived from the mean vorticity equation. A formula for the skin friction coefficient (Cf) is proposed and evaluated with regards to three canonical wall-bounded flows: turbulent boundary layer, turbulent channel flow, and turbulent pipe flow. The skin friction coefficient can be derived from the mean spanwise vorticity at the wall. Double integration with respect to the wall-normal direction (from 0 to y) is needed to derive Cf from the second derivative of the mean spanwise vorticity in the mean spanwise vorticity equation. One more integration is needed to find the contribution of each component to Cf from the wall to the boundary layer edge (from 0 to δ) . The present formula encompasses four terms: advective vorticity transport, vortex stretching, viscous, and inhomogeneous terms. Drag-reduced channel flow with the slip condition is used to test the reliability of the formula. The advective vorticity transport and vortex stretching terms are found to dominate the contributions to the frictional drag. This work was supported by the Creative Research Initiatives (No. 2016-004749) program of the National Research Foundation of Korea (MSIP).

  11. 4D Flow Assessment of Vorticity in Right Ventricular Diastolic Dysfunction

    Directory of Open Access Journals (Sweden)

    James R. Browning

    2017-04-01

    Full Text Available Diastolic dysfunction, a leading cause of heart failure in the US, is a complex pathology which manifests morphological and hemodynamic changes in the heart and circulatory system. Recent advances in time-resolved phase-contrast cardiac magnetic resonance imaging (4D Flow have allowed for characterization of blood flow in the right ventricle (RV and right atrium (RA, including calculation of vorticity and qualitative visual assessment of coherent flow patterns. We hypothesize that right ventricular diastolic dysfunction (RVDD is associated with changes in vorticity and right heart blood flow. This paper presents background on RVDD, and 4D Flow tools and techniques used for quantitative and qualitative analysis of cardiac flows in the normal and disease states. In this study, 20 patients with RVDD and 14 controls underwent cardiac 4D Flow and echocardiography. A method for determining the time-step for peak early diastole using 4D Flow data is described. Spatially integrated early diastolic vorticity was extracted from the RV, RA, and combined RV/RA regions of each subject using a range of vorticity thresholding and scaling methods. Statistically significant differences in vorticity were found in the RA and combined RA/RV in RVDD subjects compared to controls when vorticity vectors were both thresholded and scaled by cardiac index.

  12. The geometry of a vorticity model equation

    CERN Document Server

    Escher, Joachim; Wunsch, Marcus

    2010-01-01

    We provide rigorous evidence of the fact that the modified Constantin-Lax-Majda equation modeling vortex and quasi-geostrophic dynamics describes the geodesic flow on the subgroup of orientation-preserving diffeomorphisms fixing one point, with respect to right-invariant metric induced by the homogeneous Sobolev norm $H^{1/2}$ and show the local existence of the geodesics in the extended group of diffeomorphisms of Sobolev class $H^{k}$ with $k\\ge 2$.

  13. Visualization and Quantification of Rotor Tip Vortices in Helicopter Flows

    Science.gov (United States)

    Kao, David L.; Ahmad, Jasim U.; Holst, Terry L.

    2015-01-01

    This paper presents an automated approach for effective extraction, visualization, and quantification of vortex core radii from the Navier-Stokes simulations of a UH-60A rotor in forward flight. We adopt a scaled Q-criterion to determine vortex regions and then perform vortex core profiling in these regions to calculate vortex core radii. This method provides an efficient way of visualizing and quantifying the blade tip vortices. Moreover, the vortices radii are displayed graphically in a plane.

  14. Identification of vortices in a transonic compressor flow and the stall process

    Institute of Scientific and Technical Information of China (English)

    HUANGXu-dong; CHENHai-xin; FUSong; DavidWisler; AspiWadia; G.ScottMcNulty

    2007-01-01

    A novel vortex identification method for the visualization of the flow field is used for the study of the stall process of a transonic compressor. The parameter η4, which is one of the five invariants formed by the stain rate and vorticity tensors from the theory of modern rational mechanics, is found to have good ability to identify vortex stretching and vortex relaxation/breakdown processes, is introduced here to identify the tip leakage vortices. Compare with former generally used DPH(dynamic pressure head) contour, the new method reveals much more flow details which may advance our understanding of the compressor behaviors. The Vortices details are revealed in both peak efficiency and near stall condition. A possible stall process is also suggested based on the vortices analysis. The tip leakage flow from mid-chord, besides leading edge leakage flow, is also considered to play an important role in the stall process.

  15. Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil

    Institute of Scientific and Technical Information of China (English)

    JI Bin; LUO Xian-wu; PENG Xiao-xing; WU Yu-lin

    2013-01-01

    Large Eddy Simulation (LES) was coupled with a mass transfer cavitation model to predict unsteady 3-D turbulent cavitating flows around a twisted hydrofoil.The wall-adapting local eddy-viscosity (WALE) model was used to give the Sub-Grid Scale (SGS) stress term.The predicted 3-D cavitation evolutions,including the cavity growth,break-off and collapse downstream,and the shedding cycle as well as its frequency agree fairly well with experimental results.The mechanism for the interactions between the cavitation and the vortices was discussed based on the analysis of the vorticity transport equation related to the vortex stretching,volumetric expansion/contraction and baroclinic torque terms along the hydrofoil mid-plane.The vortical flow analysis demonstrates that cavitation promotes the vortex production and the flow unsteadiness.In non-cavitation conditions,the streamline smoothly passes along the upper wall of the hydrofoil with no boundary layer separation and the boundary layer is thin and attached to the foil except at the trailing edge.With decreasing cavitation number,the present case has r =1.07,and the attached sheet cavitation becomes highly unsteady,with periodic growth and break-off to form the cavitation cloud.The expansion due to cavitation induces boundary layer separation and significantly increases the vorticity magnitude at the cavity interface.A detailed analysis using the vorticity transport equation shows that the cavitation accelerates the vortex stretching and dilatation and increases the baroclinic torque as the major source of vorticity generation.Examination of the flow field shows that the vortex dilatation and baroclinic torque terms increase in the cavitating case to the same magnitude as the vortex stretching term,while for the non-cavitating case these two terms are zero.

  16. MHD Flow Visualization of Magnetopause and Polar Cusps Vortices

    Science.gov (United States)

    Collado-Vega, Y. M.; Kessel, R. L.; Shao, X.; Boller, R. A.

    2007-01-01

    Detailed analysis of Wind, Geotail, and Cluster data shows how magnetopause boundary and polar cusps vortices associated with high speed streams can be a carrier of energy flux to the Earth's magnetosphere. For our analysis time interval, March 29 . - April 5 2002, the Interplanetary Magnetic Field (IMF) is primarily northward and MHD simulations of vortices along the flanks within nine hours of the time interval suggest that a Kelvin Helmholtz (KH) instability is likely present. Vortices were classified by solar wind input provided by the Wind satellite located 70-80 RE upstream from Earth. We present statistics for a total of 304 vortices found near the ecliptic plane on the magnetopause flanks, 273 with northward IMF and 31 with southward IMF. The vortices generated under northward IMF were more driven into the dawnside than into the duskside, being substantially more ordered on the duskside. Most of the vortices were large in scale, up to 10 RE, and with a rotation axis closely aligned with the Z(sub GSE) direction. They rotated preferentially clockwise on the dawnside, and. counter-clockwise on the duskside. Those generated under southward IMF were less ordered, fewer in number, and also smaller in diameter. Significant vortex activity occurred on the nightside region of the magnetosphere for these southward cases in contrast to the northward IMF cases on which most of the activity was driven onto the magnetopause flanks. Magnetopause crossings seen by the Geotail spacecraft for the time interval were analyzed and compared with the MHD simulation to validate our results. Vortices over the polar cusps are also being analyzed and the simulation results will be compared to the multi-point measurements of the four Cluster satellites.

  17. Numerical investigations of submerged vortices in a model pump sump by using Large Eddy Simulation

    Science.gov (United States)

    Yamade, Y.; Kato, C.; Nagahara, T.; Matsui, Jun

    2016-11-01

    Submerged vortices in a model pump sump and their flow structures were investigated numerically. The model pump sump is composed of a 2,500 mm-long water channel with rectangular cross section of 150 mm (channel width) by 100 mm (water height) and a vertical suction pipe with 100 mm diameter installed at its downstream end. At the upstream end of the channel, a uniform velocity of 0.37 m/s is given. In order to capture appearances and disappearances of submerged vortices in the pump sump, large eddy simulations (LES) are performed. The computational grids for the LES are composed of 2 billion hexahedral elements with 0.255 mm resolution. These grids can resolve the streamwise vortices in the approaching turbulent boundary layers that develops on the channel walls. However, it is not sufficiently fine to capture the vortex cores of the submerged vortices. The LES succeeded to capture appearances of the submerged vortices. By performing LES with several different sets of the wall boundary conditions, we have clearly identified, to the best of our knowledge for the first time, the origin of the submerged vortices. Computations that used a simplified computational model, where the computational domain was localized to the region close to the vortex core, were also performed to predict correctly the vortex core and to investigate dynamics of the vortices. The grid resolution in the simplified computational model was 0.03 mm. We successfully computed the size of vortex core in the simplified computational model. For this model, we also investigated the conditions under which a vortex appears by changing inlet tangential velocity.

  18. Effect of spanwise pressure gradient on flow and heat transfer characteristics of longitudinal vortices embedded in a turbulent boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Min; Moon, Joo Hyun; Park, Jae Yong; Kim, Dae Yun; Lee, Seong Hyuk [Chung-Ang University, Seoul (Korea, Republic of)

    2015-02-15

    This study numerically investigated the influence of spanwise pressure gradient on heat transfer of a 3D turbulent boundary layer with longitudinal vortices. A 30° bend in the passage provided the spanwise pressure gradient. The longitudinal pair vortices were generated using a pair of delta winglets. The Reynolds-averaged Navier-Stokes and energy equations based on the conventional Reynolds stress model were used. The predictions agreed well with the experimental data for the straight plate. The turbulent boundary layer was significantly perturbed with the longitudinal vortices. The spanwise pressure gradient contributed to faster degradation of the longitudinal vortices and widened the perturbed flow region. The local Stanton number distributions were asymmetric because of the difference in the evolution of the longitudinal vortices in the curved region. Moreover, comparison showed that the local Stanton number in the downstream of the straight channel increased near the surface because of the secondary re-circulating vortex. The thickness of the thermal boundary layers increased in the streamwise direction because of the significant flow mixing and heat transfer.

  19. Inferred of vorticity structures of flow that go around of a obstacle, by means of Euleriano tridimentional model; Inferencia de estructuras vorticosas del flujo que pasa alrededor de un obstaculo, mediante un modelo euleriano tridimensional

    Energy Technology Data Exchange (ETDEWEB)

    Millan Barrera, C.; Ramirez Leon, H. [Instituto Mexicano de Tecnologia del Agua, Morelos (Mexico)

    2001-02-01

    More than 100 years ago. It was inferred the existence of secondary currents in open channels on the basis of the fact that the maximum velocity occurred just below the free surface indeed another one, the cyclic variation of the concentration of suspended sediment in the span wise direction of them. Gibson, estimated that the velocity of the secondary currents would be about 5% of mainstream velocity. In spite of their apparent weakness, the secondary currents play an essential role in the lateral transfer of momentum, energy heat and mass in a channel, and thus their distributions show variations in all three dimensions. In the same form, for the most part they are responsible of the bed patterns in high content sediment suspended flows. The importance of secondary flows is manifested on the fact of the introduction from vorticity concept. In this work, some results obtained with a 3-D Eulerian model to which has coupled the statistical vorticity equation, are shown. Correlations U{sub i}W{sub j} were modeled according to U{sub i}U{sub j} correlations using the fluid flow turbulence properties. Model is applied to a flow deformed by a three dimensional obstacle at the bottom. Simulation results of the vorticity show similarities with other flow patterns behaviors found in experimental investigations. This work will be used as a background to subsequent studies concerning dynamical processes of the particles movement on the bottom of a channel. [Spanish] Hace mas de cien anos, se infirio la existencia de corrientes secundarias basandose en el hecho de que la velocidad maxima en canales se encuentra justo debajo de la superficie libre, y el de la variacion ciclica de solidos suspendidos en la direccion transversal de un canal. Gibson, estimo la velocidad aproximada de tales corrientes como aproximadamente el 5% de la velocidad principal. A pesar de su aparente debilidad, las corrientes secundarias juegan un papel esencial en la transferencia lateral de cantidad de

  20. Flow Over a Model Submarine

    Science.gov (United States)

    Jiménez, Juan; Smits, Alexander

    2003-11-01

    Experimental investigation over a DARPA SUBOFF submarine model (SUBOFF Model) was performed using flow visualization and Digital Particle Image Velocimetry (DPIV). The model has an axisymmetric body with sail and fins, and it was supported by a streamlined strut that was formed by the extension of the sail appendage. The range of flow conditions studied correspond to a Reynolds numbers based on model length, Re_L, of about 10^5. Velocity vector fields, turbulence intensities, vorticity fields, and flow visualization in the vicinity of the junction flows are presented. In the vicinity of the control surface and sail hull junctions, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. The effects of unsteady motions about an axis passing through the sail are also investigated to understand the evolution of the unsteady wake.

  1. Effect of the number of vortices on the torque scaling in Taylor-Couette flow

    CERN Document Server

    Martínez-Arias, B; Crumeyrolle, O; Mutabazi, I

    2014-01-01

    Torque measurements in Taylor-Couette flow, with large radius ratio and large aspect ratio, over a range of velocities up to a Reynolds number of 24 000 are presented. Following a specific procedure, nine states with distinct number of vortices along the axis were found and the aspect ratio of the vortices were measured. The relationship between the speed and the torque for a given number of vortices is reported. In the turbulent Taylor vortex flow regime, at relatively high Reynolds number, a change in behaviour is observed corresponding to intersections of the torque-speed curves for different states. Before each intersection, the torque for a state with larger number of vortices is higher. After each intersection, the torque for a state with larger number of vortices is lower. The exponent, from the scaling laws of the torque, always depends on the aspect ratio of the vortices. When the Reynolds number is rescaled using the mean aspect ratio of the vortices, only a partial collapse of the exponent data is ...

  2. Two layer asymptotic model for the wave propagation in the presence of vorticity

    Science.gov (United States)

    Kazakova, M. Yu; Noble, P.

    2016-06-01

    In the present study, we consider the system of two layers of the immiscible constant density fluids which are modeled by the full Euler equations. The domain of the flow is infinite in the horizontal directions and delimited above by a free surface. Bottom topography is taken into account. This is a simple model of the wave propagation in the ocean where the upper layer corresponds to the (thin) layer of fluid above the thermocline whereas the lower layer is under the thermocline. Though even this simple framework is computationally too expensive and mathematically too complicated to describe efficiently propagation of waves in the ocean. Modeling assumption such as shallowness, vanishing vorticity and hydrostatic pressure are usually made to get the bi-layer shallow water models that are mathematically more manageable. Though, they cannot describe correctly the propagation of both internal and free surface waves and dispersive/non hydrostatic must be added. Our goal is to consider the regime of medium to large vorticities in shallow water flow. We present the derivation of the model for internal and surface wave propagation in the case of constant and general vorticities in each layer. The model reduces to the classical Green-Naghdi equations in the case of vanishing vorticities.

  3. Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Hansen, Martin Otto Laver; Okulov, Valery

    2009-01-01

    Embedded vortices in turbulent wall-bounded flow over a flat plate, generated by a passive rectangular vane-type vortex generator with variable angle \\beta to the incoming flow in a low-Reynolds number flow (Re = 2600 based on the inlet grid mesh size L = 0:039 m and free stream velocity U......_{\\infty} = 1.0 ms^{-1}) have been studied with respect to helical symmetry. The studies were carried out in a low-speed closed-circuit wind tunnel utilizing Stereoscopic Particle Image Velocimetry (SPIV). The vortices have been shown to possess helical symmetry, allowing the flow to be described in a simple...

  4. Interaction of monopolar and dipolar vortices with a shear flow: a numerical study

    Science.gov (United States)

    Kamp, Leon; Marques Rosas Fernandes, Vitor; van Heijst, Gert-Jan; Clercx, Herman

    2014-11-01

    Interaction of large-scale flows with vortices is of fundamental and widespread importance in geophysical fluid dynamics and also, more recently for the dynamics of fusion plasma. More specifically the interplay between two-dimensional turbulence constituted by a collection of unsteady eddies and so-called zonal flows has gained considerable interest because of the relevance for transport and associated barriers. We present numerical results on the interaction of individual monopolar and dipolar vortices with typical sheared channel flows (Couette and Poiseuille). Contrary to monopolar vortices, dipolar ones tend to retain their compactness while propagating through the shear flow along curved pathways without much distortion. Simulations on the interaction of a driven turbulent field with mentioned channel flows are used to explore the suppression of turbulence and turbulent transport and the pronounced role played by the boundaries on these.

  5. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    Science.gov (United States)

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    2016-09-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.

  6. Influence of nose-perturbation location on behavior of vortical flow around slender body at high incidence

    Institute of Scientific and Technical Information of China (English)

    GUAN XiaoRong; XU Cheng; WANG YongJuan; WANG YaPing

    2009-01-01

    Response of the vortical flow around a slender body of revolution at high incidence to the shift of a single nose perturbation was investigated systematically using numerical methods. A minute geometric bump was employed to act as the nose perturbation, and all computations were performed for subsonic flows at incidence of 50°. The computational results show that the vortical flow is more sensitive to the perturbation located axially closer to the nose apex of a slender body. With perturbation shifting axially downstream away from nose apex, there is a critical axial location appearing. The vortical flow is less sensitive to the perturbation located axially closer to the critical axial location; when perturbation traverses axially around the critical axial location, the vortical flow switches between opposite asymmetric patterns. The eventual influence of perturbation axial location on the vortical flow lies on both its relative locations to nose apex and the critical axial location. The vortical flow is more sensitive to the perturbation located circumferentially farther away from the fore-and-aft symmetric plane of a slender body, and just the asymmetrically-located perturbation can provoke the vortical flow to asymmetry. With perturbation shifting circumferentially in sequence, the vortical flow varies by degrees in manner of a single periodicity. A convective-type of instability existing in the flow field is responsible for the influence of nose perturbation on the vortical flow.

  7. Vorticity alignment and spectral statistics in a variable-density turbulent flow

    Science.gov (United States)

    Gat, Ilana; Matheou, Georgios; Chung, Daniel; Dimotakis, Paul

    2016-11-01

    Turbulent flows with high density gradients subject to an externally imposed acceleration field, such as gravity, occur in many phenomena, ranging from geophysics to astrophysics. This study investigates turbulence in fluids over a range of density ratios, from small (R=1.005) to large (R=10). The investigation relies on direct numerical simulation using the incompressible variable-density Navier-Stokes equations, in a triply periodic domain. The flow is initialized with density gradients perpendicular to the acceleration field. This configuration induces baroclinic torques with shear and buoyancy contributing to the evolution of turbulence and turbulent mixing. Of interest in fluid modeling is vorticity alignment, which is presented for the broad density ratio range studied. Prominent variable-density contributions to the vorticity field such as baroclinic torques are discussed. Kinetic-energy spectra are compared to specific kinetic energy spectra to illustrate aspects of variable-density effects. This material is based upon work supported by the DOE, AFOSR, NSF GRFP, and Caltech.

  8. Polymer solutions in co-rotating Taylor-Couette flow without vorticity

    Science.gov (United States)

    Zell, A.; Wagner, C.

    2012-02-01

    We present experimental results of the flow of dilute and semi-dilute polymer solutions in co-rotating Taylor-Couette cylinders. The experimental set-up consists of a modified Mars II rheometer (Thermo Scientific) with two drive units that are mounted opposite each other. The rotational velocities of the inner and outer cylinders are chosen in a way such that the angular velocity has a 1/r profile and the flow is free of vorticity, but the direction of elongation is not constant, but rotates with the flow. Our particle image velocimetry (PIV) measurements show that for polymer solutions without shear thinning the flow is indeed free of vorticity and is equal to a stagnation point flow at a given position and a given instant in time. In contrast, torque measurements reveal that the stresses are identical to the stresses that are present in a plane shear flow. Thus, we find that for polymer solutions a flow with vorticity and a constant direction of elongation is equal to a flow without vorticity in which the direction of elongation is rotating. Finally, we show that for shear thinning solutions the flow velocity becomes non-monotonic through the gap and resembles a pluglike profile which is known from the Poiseuille flow.

  9. Numerical and experimental investigation of vortical flow-flame interaction

    Energy Technology Data Exchange (ETDEWEB)

    Najm, H.N.; Schefer, R.W.; Milne, R.B.; Mueller, C.J. [Sandia National Labs., Livermore, CA (United States); Devine, K.D.; Kempka, S.N. [Sandia National Labs., Albuquerque, NM (United States)

    1998-02-01

    A massively parallel coupled Eulerian-Lagrangian low Mach number reacting flow code is developed and used to study the structure and dynamics of a forced planar buoyant jet flame in two dimensions. The numerical construction uses a finite difference scheme with adaptive mesh refinement for solving the scalar conservation equations, and the vortex method for the momentum equations, with the necessary coupling terms. The numerical model construction is presented, along with computational issues regarding the parallel implementation. An experimental acoustically forced planar jet burner apparatus is also developed and used to study the velocity and scalar fields in this flow, and to provide useful data for validation of the computed jet. Burner design and laser diagnostic details are discussed, along with the measured laboratory jet flame dynamics. The computed reacting jet flow is also presented, with focus on both large-scale outer buoyant structures and the lifted flame stabilization dynamics. A triple flame structure is observed at the flame base in the computed flow, as is theoretically expected, but was not observable with present diagnostic techniques in the laboratory flame. Computed and experimental results are compared, along with implications for model improvements.

  10. Experimental characterization of wingtip vortices in the near field using smoke flow visualizations

    Science.gov (United States)

    Serrano-Aguilera, J. J.; García-Ortiz, J. Hermenegildo; Gallardo-Claros, A.; Parras, L.; del Pino, C.

    2016-08-01

    In order to predict the axial development of the wingtip vortices strength, an accurate theoretical model is required. Several experimental techniques have been used to that end, e.g. PIV or hot-wire anemometry, but they imply a significant cost and effort. For this reason, we have performed experiments using the smoke-wire technique to visualize smoke streaks in six planes perpendicular to the main stream flow direction. Using this visualization technique, we obtained quantitative information regarding the vortex velocity field by means of Batchelor's model for two chord-based Reynolds numbers, Re_c=3.33× 10^4 and 10^5. Therefore, this theoretical vortex model has been introduced in the integration of ordinary differential equations which describe the temporal evolution of streak lines as function of two parameters: the swirl number, S, and the virtual axial origin, overline{z_0}. We have applied two different procedures to minimize the distance between experimental and theoretical flow patterns: individual curve fitting at six different control planes in the streamwise direction and the global curve fitting which corresponds to all the control planes simultaneously. Both sets of results have been compared with those provided by del Pino et al. (Phys Fluids 23(013):602, 2011b. doi: 10.1063/1.3537791), finding good agreement. Finally, we have observed a weak influence of the Reynolds number on the values S and overline{z_0} at low-to-moderate Re_c. This experimental technique is proposed as a low cost alternative to characterize wingtip vortices based on flow visualizations.

  11. Vortical Structures and Turbulent Bursts Behind Magnetic Obstacles in Transitional Flow Regimes

    NARCIS (Netherlands)

    Kenjeres, S.; Ten Cate, S.; Voesenek, C.J.

    2011-01-01

    The present paper reports on numerical investigations of vortical structures in transient flow regimes generated by the local action of the Lorentz force on an electrically conductive fluid. The locally imposed non-uniform magnetic field generates similar effects as observed for flows over submerged

  12. Wavenumber selection for small-wavelength Goertler vortices in curved channel flows

    Science.gov (United States)

    Dando, Andrew; Hall, Philip

    1995-04-01

    The problem of wavenumber selection for fully nonlinear, small-wavelength Goertler vortices in a curved channel flow is considered. These types of Goertler vortices were first considered by Hall & Lakin (1988) for an external boundary layer flow. They proved particularly amenable to asymptotic description, it was possible to consider vortices large enough so that the mean flow correction driven by them is as large as the basic state, and this prompted the authors to consider them in a curved channel flow as an initial application of the phase-equation approach to Goertler vortices. This involves the assumption that the phase variable of these Goertler vortices varies on slow spanwise and time scales, then an analysis of both inside and outside the core region, to which vortex activity is restricted, leads to a system of partial differential equations which can be solved numerically for the wavenumber. The authors consider in particular the effect on the wavenumber of the outer channel wall varying on the same slow spanwise scale as the phase variable.

  13. Experimental Study on Effects of Ground Roughness on Flow Characteristics of Tornado-Like Vortices

    Science.gov (United States)

    Wang, Jin; Cao, Shuyang; Pang, Weichiang; Cao, Jinxin

    2017-02-01

    The three-dimensional wind velocity and dynamic pressure for stationary tornado-like vortices that developed over ground of different roughness categories were investigated to clarify the effects of ground roughness. Measurements were performed for various roughness categories and two swirl ratios. Variations of the vertical and horizontal distributions of velocity and pressure with roughness are presented, with the results showing that the tangential, radial, and axial velocity components increase inside the vortex core near the ground under rough surface conditions. Meanwhile, clearly decreased tangential components are found outside the core radius at low elevations. The high axial velocity inside the vortex core over rough ground surface indicates that roughness produces an effect similar to a reduced swirl ratio. In addition, the pressure drop accompanying a tornado is more significant at elevations closer to the ground under rough compared with smooth surface conditions. We show that the variations of the flow characteristics with roughness are dependent on the vortex-generating mechanism, indicating the need for appropriate modelling of tornado-like vortices.

  14. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    Science.gov (United States)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  15. Effects of Taylor-Görtler vortices on turbulent flows in a spanwise-rotating channel

    Science.gov (United States)

    Dai, Yi-Jun; Huang, Wei-Xi; Xu, Chun-Xiao

    2016-11-01

    Fully developed turbulent channel flow with system rotation in the spanwise direction has been studied by direct numerical simulation at Rem = 2800 and 7000 with 0 ≤ Rom ≤ 0.5. The width of the computational domain is adjusted for each case to contain two pairs of Taylor-Görtler (TG) vortices. Under a relatively low rotation rate, the turbulent vortical structures are strongly influenced by the TG vortices. A conditional average method is employed to investigate the effects of these TG vortices on turbulence. In the upwash region where the fluid is pumped away from the pressure wall by the TG vortices, turbulence is found to be enhanced, while the opposite scenario occurs in the downwash region where the fluid is shifted toward the pressure wall. The statistics along the centerlines of the two regions of a TG vortex are presented in detail. Through the budget analysis of the transport equation of vorticity fluctuations, we found that the wall-normal stretching term caused by the TG vortices plays an important role in initiating the differences of turbulence intensities between the two regions, which are further augmented by the Coriolis force term in the streamwise direction. Meanwhile, the shear stress on the suction wall is observed to fluctuate in a quasi-periodic manner at Rem = 7000 and Rom = 0.3, which is also revealed to be induced by the TG vortices. Such quasi-periodicity is not found at Rem = 2800 and Rom = 0.3, where turbulence on the suction side is strongly suppressed by rotation.

  16. VISUALIZATION METHODS OF VORTICAL FLOWS IN COMPUTATIONAL FLUID DYNAMICS AND THEIR APPLICATIONS

    Directory of Open Access Journals (Sweden)

    K. N. Volkov

    2014-05-01

    Full Text Available The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation. Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer giving the possibility to use various input and output devices.

  17. The Vorticity of Solar Photospheric Flows on the Scale of Granulation

    CERN Document Server

    Pevtsov, A A

    2016-01-01

    We employ time sequences of images observed with a G-band filter (4305{\\AA}) by the Solar Optical Telescope (SOT) on board of Hinode spacecraft at different latitude along solar central me-ridian to study vorticity of granular flows in quiet Sun areas during deep minimum of solar activity. Using a feature correlation tracking (FCT) technique, we calculate the vorticity of granular-scale flows. Assuming the known pattern of vertical flows (upward in granules and downward in inter-granular lanes), we infer the sign of kinetic helicity of these flows. We show that the kinetic helicity of granular flows and intergranular vortices exhibits a weak hemispheric preference, which is in agreement with the action of the Coriolis force. This slight hemispheric sign asymmetry, however, is not statistically significant given large scatter in the average vorticity. The sign of the current he-licity density of network magnetic fields computed using full disk vector magnetograms from the Synoptic Optical Long-term Investigati...

  18. Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers

    Science.gov (United States)

    Gajjar, J. S. B.

    1995-01-01

    The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.

  19. THE RE-DERIVATION OF THE VORTICITY EQUATION OF THE LAYERED FLOW OF THE SHALLOW SEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The scale analysis of the layered flow problem of the shallow sea shows that the parameter of EV represented the relative thickness of the friction layer is the little value larger than Rossby number. This illustrates that they are not ignorable and the important control factors of the layered flow although friction effect is only limited within interface Ekman layer and bottom Ekman layer. Using larger little parameter EV as the little perturbation parameter is more reasonable than using the classical Rossby number ε. By using the perturbation expansion and doing the researches of the structure of the Ekman layer on the sea surface, sea bottom and interface, a group of new layered flow vorticity equation is derived. It combines the vorticity of the flow of every layer, the inclination of the interface, the inclination of the sea bottom and the wind stress vorticity on the sea surface. Different from the conventional vorticity equation, which derived by using Rossby number as little parameter and is applied to large scale motion, it allows relatively large interfaces fluctuation, even it is applied to the problem that interface touch the bottom or touch the sea surface.

  20. Subsonic Euler Flows with Large Vorticity Through an Infinitely Long Axisymmetric Nozzle

    Science.gov (United States)

    Du, Lili; Duan, Ben

    2016-09-01

    This paper is a sequel to the earlier work Du and Duan (J Diff Equ 250:813-847, 2011) on well-posedness of steady subsonic Euler flows through infinitely long three-dimensional axisymmetric nozzles. In Du and Duan (J Diff Equ 250:813-847, 2011), the authors showed the existence and uniqueness of the global subsonic Euler flows through an infinitely long axisymmetric nozzle, when the variation of Bernoulli's function in the upstream is sufficiently small and the mass flux of the incoming flow is less than some critical value. The smallness of the variation of Bernoulli's function in the upstream prevents the attendance of the possible singularity in the nozzles, however, at the same time it also leads that the vorticity of the ideal flow is sufficiently small in the whole nozzle and the flows are indeed adjacent to axisymmetric potential flows. The purpose of this paper is to investigate the effects of the vorticity for the smooth subsonic ideal flows in infinitely long axisymmetric nozzles. We modify the formulation of the problem in the previous work Du and Duan (J Diff Equ 250:813-847, 2011) and the existence and uniqueness results on the smooth subsonic ideal polytropic flows in infinitely long axisymmetric nozzles without the restriction on the smallness of the vorticity are shown in this paper.

  1. Rotating shallow water modeling of planetary,astrophysical and plasma vortical structures (plasma transport across a magnetic field,model of the jupiter's GRS, prediction of existence of giant vortices in spiral galaxies

    Directory of Open Access Journals (Sweden)

    M. V. Nezlin

    1999-01-01

    Full Text Available Three kinds of results have been described in this paper. Firstly, an experimental study of the Rossby vortex meridional drift on the rotating shallow water has been carried out. Owing to the stringent physical analogy between the Rossby vortices and drift vortices in the magnetized plasma, the results obtained have allowed one to make a conclusion that the transport rate of the plasma, trapped by the drift vortices, across the magnetic field is equivalent to the “gyro-Bohm” diffusion coefficient. Secondly, a model of big vortices of the type of the Great Red Spot of Jupiter, dominating in the atmospheres of the outer planets, has been produced. Thirdly, the rotating shallow water modeling has been carried out of the hydrodynamical generation mechanism of spiral structures in galaxies. Trailing spiral waves of various azimuthal modes, generated by a shear flow between fast rotating “nucleus” and slow rotating periphery, were produced. The spirals are similar to those existing in the real galaxies. The hydrodynamical concept of the spiral structure formation in galaxies has been substantiated. Strong anticyclonic vortices between the spiral arms of the structures under study have been discovered for the first time. The existence of analogous vortices in real galaxies has been predicted. (This prediction has been reliably confirmed recently in special astronomical observations, carried out on the basis of the mentioned laboratory modeling and the prediction made – see the paper by A. Fridman et al. (Astrophysics and Space Science, 1997, 252, 115.

  2. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows

    Science.gov (United States)

    Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob

    2017-02-01

    An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.

  3. Vortices and Particle-banding in Granular Taylor-Couette Flow

    Science.gov (United States)

    Mahajan, Achal; Alam, Meheboob

    2016-11-01

    A collection of smooth inelastic hard spheres is simulated between two rotating concentric cylinders, dubbed granular Taylor-Couette flow (gTCF), using event-driven molecular dynamics simulations. The inner cylinder is rotating with rotational speed ωi and the outer cylinder is kept stationary in the absence of gravity. The onset of Taylor-like vortices is studied as functions of the inner rotation ωi, the restitution coefficient (en) and the aspect ratio of the cylinder. The strength of vortices is found to decrease with increasing dissipation. A novel banding-pattern of particle-rich and particle-depleted regions along the axial direction is found - the density-contrast between the dense and dilute regions increases with decreasing restitution coefficient. The combined effect of inelastic dissipation and compressibility seems to be responsible for the genesis of Taylor-like vortices with axial-banding of particles.

  4. The Universal Aspect Ratio of Vortices in Rotating Stratified Flows: Theory and Simulation

    CERN Document Server

    Hassanzadeh, Pedram; Gal, Patrice Le

    2012-01-01

    We derive a relationship for the vortex aspect ratio $\\alpha$ (vertical half-thickness over horizontal length scale) for steady and slowly evolving vortices in rotating stratified fluids, as a function of the Brunt-Vaisala frequencies within the vortex $N_c$ and in the background fluid outside the vortex $\\bar{N}$, the Coriolis parameter $f$, and the Rossby number $Ro$ of the vortex: $\\alpha^2 = Ro(1+Ro) f^2/(N_c^2-\\bar{N}^2)$. This relation is valid for cyclones and anticyclones in either the cyclostrophic or geostrophic regimes; it works with vortices in Boussinesq fluids or ideal gases, and the background density gradient need not be uniform. Our relation for $\\alpha$ has many consequences for equilibrium vortices in rotating stratified flows. For example, cyclones must have $N_c^2 > \\bar{N}^2$; weak anticyclones (with $|Ro| \\bar{N}^2$. We verify our relation for $\\alpha$ with numerical simulations of the three-dimensional Boussinesq equations for a wide variety of vortices, including: vortices that are i...

  5. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    Science.gov (United States)

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  6. Visualization of pre-set vortices in boundary layer flow over wavy surface in rectangular channel

    KAUST Repository

    Budiman, Alexander Christantho

    2014-12-04

    Abstract: Smoke-wire flow visualization is used to study the development of pre-set counter-rotating streamwise vortices in boundary layer flow over a wavy surface in a rectangular channel. The formation of the vortices is indicated by the vortical structures on the cross-sectional plane normal to the wavy surface. To obtain uniform spanwise vortex wavelength which will result in uniform vortex size, two types of spanwise disturbances were used: a series of perturbation wires placed prior and normal to the leading edge of the wavy surface, and a jagged pattern in the form of uniform triangles cut at the leading edge. These perturbation wires and jagged pattern induce low-velocity streaks that result in the formation of counter-rotating streamwise vortices that evolve downstream to form the mushroom-like structures on the cross-sectional plane of the flow. The evolution of the most amplified disturbances can be attributed to the formation of these mushroom-like structures. It is also shown that the size of the mushroom-like structures depends on the channel entrance geometry, Reynolds number, and the channel gap.Graphical Abstract: [Figure not available: see fulltext.

  7. The Local Balances of Vorticity and Heat for Blocking Anticyclones in a Spectral General Circulation Model.

    Science.gov (United States)

    Mullen, Steven L.

    1986-07-01

    Blocking anticyclones that appear in perpetual January simulations of a spectral general circulation model are examined. Blocks in three geographical regions are studied: the North Pacific, the North Atlantic and western North America. Local time-averaged balances of vorticity and heat are evaluated for composite cases of blocking. The following common relationships emerged from these budgets.The time-mean divergence term is, in general, a flat-order term in the vorticity balance throughout the troposphere and its pattern over severe orography is closely related to the underlying topography. Above the surface layer, the horizontal advection of time-mean absolute vorticity by the mean wind mainly balances the divergence term with the net effect of the time-mean vorticity forcing being a tendency for the blocking pattern to propagate downstream. The transient eddy vorticity transports act to shift the block upstream and hence they mainly offset the downstream tendency due to the time-mean flow; the magnitude of the eddy vorticity term is typically one-third to one-half that of the divergence or advection terms alone. Frictional dissipation is negligible everywhere except near the ground where it primarily offsets the divergence term.The horizontal advection of the time-mean temperature field by the mean wind throughout the troposphere is a first-order term in the beat balance and is mainly responsible for maintaining the block's thermal perturbations; it is predominately balanced by adiabatic heating in the free troposphere and by diabatic heating near the surface. Transient eddy heat transports act to dissipate the block's thermal perturbations at all levels, while diabatic heating does not exhibit a systematic relationship with the temperature field at any level.A quasi-geostrophic diagnosis of the ageostrophic motion field suggests that dynamical processes which strongly affect the vorticity balance may be more important to the maintenance of model blocks than

  8. A possible theory for the interaction between convective activities and vortical flows

    Directory of Open Access Journals (Sweden)

    N. Zhao

    2011-10-01

    Full Text Available Theoretical studies usually attribute convections to the developments of instabilities such as the static or symmetric instabilities of the basic flows. However, the following three facts make the validities of these basic theories unconvincing. First, it seems that in most cases the basic flow with balance property cannot exist as the exact solution, so one cannot formulate appropriate problems of stability. Second, neither linear nor nonlinear theories of dynamical instability are able to describe a two-way interaction between convection and its background, because the basic state which must be an exact solution of the nonlinear equations of motion is prescribed in these issues. And third, the dynamical instability needs some extra initial disturbance to trigger it, which is usually another point of uncertainty. The present study suggests that convective activities can be recognized in the perspective of the interaction of convection with vortical flow. It is demonstrated that convective activities can be regarded as the superposition of free modes of convection and the response to the forcing induced by the imbalance of the unstably stratified vortical flow. An imbalanced vortical flow provides not only an initial condition from which unstable free modes of convection can develop but also a forcing on the convection. So, convection is more appropriately to be regarded as a spontaneous phenomenon rather than a disturbance-triggered phenomenon which is indicated by any theory of dynamical instability. Meanwhile, convection, particularly the forced part, has also a reaction on the basic flow by preventing the imbalance of the vortical flow from further increase and maintaining an approximately balanced flow.

  9. Interaction of Global-Scale Atmospheric Vortices: Modeling Based on Hamiltonian System for Antipodal Vortices on Rotating Sphere

    CERN Document Server

    Mokhov, Igor I; Chefranov, Alexander G

    2012-01-01

    It is shown for the first time that only an antipodal vortex pair (APV) is the elementary singular vortex object on the sphere compatible with the hydrodynamic equations. The exact weak solution of the absolute vorticity equation on the rotating sphere is obtained in the form of Hamiltonian dynamic system for interacting APVs. This is the first model describing interaction of Barrett vortices corresponding to atmospheric centers of action (ACA). In particular, new steady-state conditions for N=2 are obtained. These analytical conditions are used for the analysis of coupled cyclone-anticyclone ACAs over oceans in the Northern Hemisphere.

  10. Improvement of a near wake model for trailing vorticity

    DEFF Research Database (Denmark)

    Pirrung, Georg; Hansen, Morten Hartvig; Aagaard Madsen, Helge

    2014-01-01

    to temporal discretization, both regarding numerical stability and quality of the results. The modified near wake model is coupled to an aerodynamics model, which consists of a blade element momentum model with dynamic inflow for the far wake and a 2D shed vorticity model that simulates the unsteady buildup......A near wake model, originally proposed by Beddoes, is further developed. The purpose of the model is to account for the radially dependent time constants of the fast aerodynamic response and to provide a tip loss correction. It is based on lifting line theory and models the downwash due to roughly...... the first 90 degrees of rotation. This restriction of the model to the near wake allows for using a computationally efficient indicial function algorithm. The aim of this study is to improve the accuracy of the downwash close to the root and tip of the blade and to decrease the sensitivity of the model...

  11. The near wake structure and the development of vorticity behind a model horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ebert, P.; Wood, D. [The Univ. of Newcastle, Dept. of Mechanical Engineering, Callaghan (Australia)

    1997-08-01

    The wake of a two bladed model HAWT operating at zero yaw angle and in a steady flow in a wind tunnel was measured using hot wire probes. By phase locked averaging and moving the probe axially and radially the full three dimensional mean flow file was determined. All measurements were within two chord lengths of the blades and at tip speed ratios giving high turbine power output, a condition approaching runaway, and a stalled condition. For all tip speed ratios the wakes were significantly three dimensional. Large velocity variations were associated with vortex structures in the wakes, and irrotational fluctuations caused by the blade bound circulation. The vorticity clearly defined the hub and tip vortices that traced helical paths downstream, with the constant tip vortex pitch inversely proportional to tip speed ratio. Close to the blades the flow was complicated, though vortex roll-up was completed within one chord length. Considerable changes in wake structure occurred with tip speed ratio. At high power output the wake showed tip and hub vortices connected by a diffuse vortex sheet of mostly radial vorticity from the blade boundary layers; blade bound circulation was almost constant. The structure approaching runaway was similar though the hub vortex was not well defined and formed a vortex sheet around the hub which lifted away and diffused. The stalled condition was more complicated, with evidence of incomplete tip and hub vortex formation. The stream-wise velocity of the tip vortex core decreased with increasing tip speed ratio, but this was never aligned with local streamlines. The core of the tip vortex was not circular but more elliptical. A phase locked averaged angular momentum analysis was undertaken, the extra terms introduced through phase locked averaging were small. (Abstract Truncated)

  12. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI

    Energy Technology Data Exchange (ETDEWEB)

    Hirtler, Daniel [University Hospital Freiburg, Department of Congenital Heart Defects and Pediatric Cardiology (Heart Center, University of Freiburg), Freiburg (Germany); Garcia, Julio; Barker, Alex J. [Northwestern University Feinberg School of Medicine, Department of Radiology, Chicago, IL (United States); Geiger, Julia [University Childrens' Hospital Zurich, Department of Radiology, Zurich (Switzerland)

    2016-10-15

    To comprehensively and quantitatively analyse flow and vorticity in the right heart of patients after repair of tetralogy of Fallot (rTOF) compared with healthy volunteers. Time-resolved flow-sensitive 4D MRI was acquired in 24 rTOF patients and 12 volunteers. Qualitative flow evaluation was based on consensus reading of two observers. Quantitative analysis included segmentation of the right atrium (RA) and ventricle (RV) in a four-chamber view to extract volumes and regional haemodynamic information for computation of regional mean and peak vorticity. Right heart intra-atrial, intraventricular and outflow tract flow patterns differed considerably between rTOF patients and volunteers. Peak RA and mean RV vorticity was significantly higher in patients (p = 0.02/0.05). Significant negative correlations were found between patients' maximum and mean RV and RA vorticity and ventricular volumes (p < 0.05). The main pulmonary artery (MPA) regurgitant flow was associated with higher RA and RV vorticity, which was significant for RA maximum and RV mean vorticity (p = 0.01/0.03). The calculation of vorticity based on 4D flow data is an alternative approach to assess intracardiac flow changes in rTOF patients compared with qualitative flow visualization. Alterations in intracardiac vorticity could be relevant with regard to the development of RV dilation and impaired function. (orig.)

  13. How long do particles spend in vortical regions in turbulent flows?

    CERN Document Server

    Bhatnagar, Akshay; Mitra, Dhrubaditya; Pandit, Rahul; Perlekar, Prasad

    2016-01-01

    We obtain the probability distribution functions (PDFs) of the time that a Lagrangian tracer or a heavy inertial particle spends in vortical or strain-dominated regions of a turbulent flow, by carrying out direct numerical simulation (DNS) of such particles advected by statistically steady, homogeneous and isotropic turbulence in the forced, three-dimensional, incompressible Navier-Stokes equation. We use the two invariants, $Q$ and $R$, of the velocity-gradient tensor to distinguish between vortical and strain-dominated regions of the flow and partition the $Q-R$ plane into four different regions depending on the topology of the flow; out of these four regions two correspond to vorticity-dominated regions of the flow and two correspond to strain-dominated ones. We obtain $Q$ and $R$ along the trajectories of tracers and heavy inertial particles and find out the time $\\mathrm{t_{pers}}$ for which they remain in one of the four regions of the $Q-R$ plane. We find that the PDFs of $\\mathrm{t_{pers}}$ display ex...

  14. Whole Field Measurements of Vorticity in Turbulent and Unsteady Flows

    Science.gov (United States)

    1988-10-11

    shown in Fig. 2. It was fabricated by component of velocity in flows with predominately one individually fixing Aluminum coated mirrors (with the...3. EXPERIMENTAL RESULTS Two experiments were performed to demonstrate the technique. Both used deodorized kerosene with 10 ppm of the photochromtic...the blaze angle, and the grating step width and spacing. It was fabricated by individually fixing 2.1. Review of the measurement technique aluminum

  15. High Re wall-modeled LES of aircraft wake vortices in ground effect

    Science.gov (United States)

    Thiry, Olivier; Winckelmans, Gregoire; Duponcheel, Matthieu

    2014-11-01

    We have been able to perform wall-resolved LES, using a fourth order code, to simulate (aircraft) wake vortices interacting with the ground, also with cross or head winds, up to Reynolds numbers of the order of Re = Γ / ν = 2 ×104 . The present work aims at providing higher Re simulations, and also simulations with rough walls (e.g., grass), through the use of LES with near wall modeling. Various types of models are compared: point-wise and averaged algebraic models, and two-layers models. When using averaged models, the averaging methodology is of importance, since there is essentially no homogeneous direction in the case of wake vortices in ground effects. Uni- and multi-directional averaging strategies, with and without additional time averaging will be considered. When two-layer models are used, a RANS sub-layer will be compared to a simpler approach based on simplified turbulent boundary layer equations. The approaches are first validated on simpler flows, channel flow or wake flow, for which reference wall-resolved LES or DNS results are available. Research fellow (Ph.D. student) at the F.R.S.-FNRS (Belgium)

  16. Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow

    CERN Document Server

    Pumir, Alain; Xu, Haitao

    2012-01-01

    We describe the structure and dynamics of turbulence by the scale dependent perceived velocity gradient tensor as supported by following four tracers, i.e. fluid particles, that initially form a regular tetrahedron. We report results from experiments in a von K\\'arm\\'an swirling water flow and from numerical simulations of the incompressible Navier-Stokes equation. We analyze the dynamics of the perceived rate of strain tensor and perceived vorticity for initially regular tetrahedron of size $r_0$ from the dissipative to the integral scale. The experimental data at higher Reynolds number suggest the existence of a self-similar regime in the inertial range, where the perceived vorticity aligns with the largest eigenvalue of the perceived rate of strain tensor over durations of order $t_0$, where $t_0$ is the turbulence time scale of the flow for scale $r_0$. For smaller Reynolds numbers we found the dynamics to be scale dependent.

  17. Vortices in gauge models at finite density with vector condensates

    CERN Document Server

    Gorbar, E V; Miransky, V A; Jia, Junji

    2006-01-01

    There exists a class of gauge models incorporating a finite density of matter in which the Higgs mechanism is provided by condensates of gauge (or gauge and scalar) fields, i.e., there are vector condensates in this case. We describe vortex solutions in the simplest model in this class, the gauged $SU(2)\\times U(1)_Y$ $\\sigma$-model with the chemical potential for hypercharge $Y$, in which the gauge symmetry is completely broken. It is shown that there are three types of topologically stable vortices in the model, connected either with photon field or hypercharge gauge field, or with both of them. Explicit vortex solutions are numerically found and their energy per unit length are calculated. The relevance of these solutions for the gluonic phase in the dense two-flavor QCD is discussed.

  18. Vortical structures responsible for delayed stall in an idealized humpback whale flipper model

    Science.gov (United States)

    Kim, Heesu; Kim, Jooha; Choi, Haecheon

    2016-11-01

    In this study, we investigate how the tubercles on the leading edge of an idealized humpback whale flipper model delay the stall. Oil-surface visualization is performed to see the surface flow pattern on the suction surface, and PIV is conducted in several streamwise and crossflow planes at different attack angles (α). Without tubercles, leading edge separation first occurs near the tip region and progresses inboard with increasing α. With tubercles, however, two types of vortical motions are observed at the mid-span. The first is streamwise vortex arrays which are dominant at α 9° , and these structures appear near the trailing edge. These two types of vortical motions delay flow separation at the peak regions of the mid-span, eliminating the spanwise stall progression and resulting in delayed stall. At α = 16° at which the tubercle model stalls, a large-scale streamwise vortex is originated from flow separation near the root region. This structure delays flow separation at the mid-span, leading to higher lift coefficient. Supported by NRF-2014M3C1B1033848.

  19. Spatial characterization of the numerically simulated vorticity fields of a flow in a flume

    Energy Technology Data Exchange (ETDEWEB)

    Liberzon, Alex; Gurka, Roi; Hetsroni, Gad [Technion - IIT, Faculty of Mechanical Engineering, Haifa (Israel); Tiselj, Iztok [Jozef Stefan Institute, Reactor Engineering Division, Ljubljana (Slovenia)

    2005-05-01

    The topology of large scale structures in a turbulent boundary layer is investigated numerically. Spatial characteristics of the large scale structure are presented through an original method, proper orthogonal decomposition (POD) of the three-dimensional vorticity fields. The DNS results, obtained by Tiselj et al. [23] for a fully developed turbulent flow in a flume, are used in the present work to analyze coherent structures with the proposed methodology. In contrast to the reconstruction methods that use instantaneous flow quantities, this approach utilizes the whole dataset of the numerical simulation. The analysis uses one thousand 3D vorticity fields from 50000 time steps of the simulation for the Reynolds number of 2600 (the turbulent Reynolds number Re{sup *}=171). The computational domain is 2146 x 171 x 537 wall units and the grid resolution is 128 x 65 x 72 points (in streamwise, wall-normal and spanwise directions, respectively). Experimental results obtained by using particle image velocimetry (PIV) in a fully developed turbulent boundary layer in a flume, which were analyzed with the same statistical characterization method, are in agreement with the DNS analysis: the dominant vortical structure appears to have a longitudinal streamwise orientation, an inclination angle of about 8 , streamwise length of several hundred wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction. (orig.)

  20. Spatial characterization of the numerically simulated vorticity fields of a flow in a flume

    Science.gov (United States)

    Liberzon, Alex; Gurka, Roi; Tiselj, Iztok; Hetsroni, Gad

    2005-05-01

    The topology of large scale structures in a turbulent boundary layer is investigated numerically. Spatial characteristics of the large scale structure are presented through an original method, proper orthogonal decomposition (POD) of the three-dimensional vorticity fields. The DNS results, obtained by Tiselj et al. [23] for a fully developed turbulent flow in a flume, are used in the present work to analyze coherent structures with the proposed methodology. In contrast to the reconstruction methods that use instantaneous flow quantities, this approach utilizes the whole dataset of the numerical simulation. The analysis uses one thousand 3D vorticity fields from 50000 time steps of the simulation for the Reynolds number of 2600 (the turbulent Reynolds number Re*=171). The computational domain is 2146×171×537 wall units and the grid resolution is 128×65×72 points (in streamwise, wall-normal and spanwise directions, respectively). Experimental results obtained by using particle image velocimetry (PIV) in a fully developed turbulent boundary layer in a flume, which were analyzed with the same statistical characterization method, are in agreement with the DNS analysis: the dominant vortical structure appears to have a longitudinal streamwise orientation, an inclination angle of about 8°, streamwise length of several hundred wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction.

  1. A Fourier-based elliptic solver for vortical flows with periodic and unbounded directions

    Science.gov (United States)

    Chatelain, Philippe; Koumoutsakos, Petros

    2010-04-01

    We present a computationally efficient, adaptive solver for the solution of the Poisson and Helmholtz equation used in flow simulations in domains with combinations of unbounded and periodic directions. The method relies on using FFTs on an extended domain and it is based on the method proposed by Hockney and Eastwood for plasma simulations. The method is well-suited to problems with dynamically growing domains and in particular flow simulations using vortex particle methods. The efficiency of the method is demonstrated in simulations of trailing vortices.

  2. Interactions of Shear Layer Vortices with the Trailing Corner in an Open Cavity Flow

    CERN Document Server

    Liu, Xiaofeng

    2011-01-01

    This fluid dynamics video provides sample experimental results focusing on the interactions of shear layer vortices with the trailing corner in a 2D open cavity shear layer. These interactions were investigated experimentally in a water tunnel at a Reynolds number of $4.0\\times 10^4$. Time-resolved particle image velocimetry (PIV) with an image sampling rate of 4500 frames per second was used to simultaneously measure the instantaneous velocity, material acceleration and pressure distribution. The latter was calculated by integrating the spatial distribution of in-plane components of the material acceleration. A large database of instantaneous realizations visualized the dynamic changes to the shear layer vortices, such as deformation and breakup as they impinged and climbed over the cavity trailing corner. These interactions cause time-dependent formation of a pressure maximum as the flow impinges on the forward facing surface of the trailing corner, and a minimum above the corner, where large local pressure...

  3. Modified k-ωmodel using kinematic vorticity for corner separation in compressor cascades

    Institute of Scientific and Technical Information of China (English)

    LIU YangWei; YAN Hao; FANG Le; LU LiPeng; LI QiuShi; SHAO Liang

    2016-01-01

    A new method of modifying the conventional k-ω turbulence model for comer separation is proposed in this paper.The production term in the ω equation is modified using kinematic vorticity considering fluid rotation and deformation in complex geometric boundary conditions.The comer separation flow in linear compressor cascades is calculated using the original k-ω model,the modified k-ωmodel and the Reynolds stress model (RSM).The numerical results of the modified model are compared with the available experimental data,as well as the corresponding results of the original k-comodel and RSM.In terms of accuracy,the modified model,which significantly improves the performance of the original k-ω model for predicting comer separation,is quite competitive with the RSM.However,the modified model,which has considerably lower computational cost,is more robust than the RSM.

  4. Subharmonic tonal noise from backflow vortices radiated by a low-speed ring fan in uniform inlet flow.

    Science.gov (United States)

    Magne, Stéphan; Moreau, Stéphane; Berry, Alain

    2015-01-01

    In order to highlight the mechanisms responsible for subharmonic tonal noise, a complete aeroacoustic study of a ring fan in presence of a uniform inlet flow is conducted. Unsteady RANS simulations with a compressible flow solver are used to compute the flow field and identify the acoustic sources on the rotor. The tip clearance recirculation shows upstream vortices that impinge the rotor blades and create the main source of unsteadiness on the fan. Since these vortices rotate at a lower speed than the rotor, the frequency of the impact is lower than the blade passing frequency. The acoustic signature is computed by propagating the noise sources located on the rotor surfaces using two methods: A Ffowcs-Williams and Hawkings analogy in the time-domain and an analytical model in the frequency-domain based on the compact rotating dipole formulation. A comparison with experimental results confirms that the aeroacoustic phenomena responsible for the subharmonic tonal noise are well captured and properly propagated by the acoustic codes.

  5. Point vortex models and the dynamics of strong vortices in the atmosphere and oceans

    Energy Technology Data Exchange (ETDEWEB)

    Aref, H.; Stremler, M.A. [Illinois Univ., Urbana, IL (United States). Dept. of Theoretical and Applied Mechanics

    2001-07-01

    Point vortex dynamics has a special 'flavor' since it combines fluid mechanics, which usually entails the solution of partial differential equations, with the theory of dynamical systems, which is usually concerned with a small number of ordinary differential equations. Modern developments have shown that very complicated things can happen already for a small number of ODEs. In the case of classical point vortices on the unbounded plane, the two-vortex problem is integrable and very simple. Furthermore, one has the interesting result that the three-vortex problem is integrable. Generally, dynamical three-body problems are non-integrable unless the system in question is integrable for any number of particles. Four point vortices, on the other hand, can display chaotic motion. Indeed, the transition from integrability to chaos occurs already for the problem of passive advection of a particle in the flow field produced by the integrable three-vortex motion. The motion of the advected particle can be chaotic. This insight led to the concept of chaotic advection, which has since emerged as a general paradigm of flow kinematics and fluid mixing, and has been actively pursued in the context of very viscous flows. Here again there are important connections to geophysical fluid dynamics. Thus, Zimmerman and collaborators have emphasized that the mixing in shallow tidal basins, such as the Wadden sea, is probably more appropriately described by chaotic advection than by turbulent transport models. (orig.)

  6. Holographic particle image velocimetry measurements of hairpin vortices in a subcritical air channel flow

    Science.gov (United States)

    Svizher, Alexander; Cohen, Jacob

    2006-01-01

    A holographic particle image velocimetry (HPIV) system is employed to study the evolution of coherent structures artificially generated in a plane Poiseuille air flow. As a first step the hot-wire technique and two-dimensional flow visualization are used to determine the generation conditions and dimensions of the coherent structures, their shedding frequency, trajectory, and convection velocity. Then, the HPIV method is utilized to obtain the instantaneous topology of the hairpin vortex and its associated three-dimensional distribution of the two (streamwise and spanwise) velocity components as well as the corresponding wall-normal vorticity. Finally, the experimental data are compared with results of related experimental and numerical studies. The present experimental results support the view that the generation of hairpins under various base flow conditions is governed by a basic mechanism, the important common elements of which are the shear of the base flow and an initial disturbance having a sufficiently large amplitude.

  7. Stability of helical tip vortices in a rotor far wake

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2007-01-01

    , corresponding to Rankine, Gaussian and Scully vortices, at radial extents ranging from the core radius of a tip vortex to several rotor radii. The analysis shows that the stability of tip vortices largely depends on the radial extent of the hub vorticity as well as on the type of vorticity distribution. As part......As a means of analysing the stability of the wake behind a multi-bladed rotor the stability of a multiplicity of helical vortices embedded in an assigned flow field is addressed. In the model the tip vortices in the far wake are approximated by infinitely long helical vortices with constant pitch...... and radius. The work is a further development of a model developed in Okulov (J. Fluid Mech., vol. 521, p. 319) in which the linear stability of N equally azimuthally spaced helical vortices was considered. In the present work the analysis is extended to include an assigned vorticity field due to root...

  8. A coupled Eulerian/Lagrangian method for the solution of three-dimensional vortical flows

    Science.gov (United States)

    Felici, Helene Marie

    1992-06-01

    A coupled Eulerian/Lagrangian method is presented for the reduction of numerical diffusion observed in solutions of three-dimensional rotational flows using standard Eulerian finite-volume time-marching procedures. A Lagrangian particle tracking method using particle markers is added to the Eulerian time-marching procedure and provides a correction of the Eulerian solution. In turn, the Eulerian solutions is used to integrate the Lagrangian state-vector along the particles trajectories. The Lagrangian correction technique does not require any a-priori information on the structure or position of the vortical regions. While the Eulerian solution ensures the conservation of mass and sets the pressure field, the particle markers, used as 'accuracy boosters,' take advantage of the accurate convection description of the Lagrangian solution and enhance the vorticity and entropy capturing capabilities of standard Eulerian finite-volume methods. The combined solution procedures is tested in several applications. The convection of a Lamb vortex in a straight channel is used as an unsteady compressible flow preservation test case. The other test cases concern steady incompressible flow calculations and include the preservation of turbulent inlet velocity profile, the swirling flow in a pipe, and the constant stagnation pressure flow and secondary flow calculations in bends. The last application deals with the external flow past a wing with emphasis on the trailing vortex solution. The improvement due to the addition of the Lagrangian correction technique is measured by comparison with analytical solutions when available or with Eulerian solutions on finer grids. The use of the combined Eulerian/Lagrangian scheme results in substantially lower grid resolution requirements than the standard Eulerian scheme for a given solution accuracy.

  9. Jets or vortices - what flows are generated by an inverse turbulent cascade?

    CERN Document Server

    Frishman, Anna; Falkovich, Gregory

    2016-01-01

    An inverse cascade - energy transfer to progressively larger scales - is a salient feature of two-dimensional turbulence. If the cascade reaches the system scale, it creates a coherent flow expected to have the largest available scale and conform with the symmetries of the domain. In a doubly periodic rectangle, the mean flow with zero total momentum was therefore believed to be unidirectional, with two jets along the short side; while for an aspect ratio close to unity, a vortex dipole was expected. Using direct numerical simulations, we show that in fact neither the box symmetry is respected nor the largest scale is realized: the flow is never purely unidirectional since the inverse cascade produces coherent vortices, whose number and relative motion are determined by the aspect ratio. This spontaneous symmetry breaking is closely related to the hierarchy of averaging times. Long-time averaging restores translational invariance due to vortex wandering along one direction, and gives jets whose profile, howev...

  10. Vortical flows in strongly coupled Yukawa liquids under external forcing - A molecular dynamics approach

    Science.gov (United States)

    Ganesh, Rajaraman; Charan, Harish

    2016-07-01

    Understanding vortical flows under external forcing in two dimensional (2D) fluids is a fundamental paradigm for structure formation in driven, dissipative systems. Considering Yukawa liquid as a prototype for strongly correlated or strongly coupled plasmas characterized by coupling strength (Γ, the ratio of average potential to kinetic energy per particle) and screening parameter (κ, ratio of mean inter-particle distance to shielding length), we address two important problems: 1. Onset of Rayleigh Benard convection cell (RBCC) in 2D Yukawa liquids subject to gravity and external temperature gradient 2. Onset of von Karman vortices in 2D Yukawa liquid under external pressure head, using large scale, first principles molecular dynamics simulations. For typical values of (Γ,κ), existence of a critical external temperature difference is demonstrated, beyond which RBCC are seen to set in. Beyond this critical external temperature difference, the strength of the maximum convective flow velocity is shown to exhibit a new, hitherto unsuspected linear relationship with external temperature difference and with a slope independent of (Γ,κ). The time taken for the transients to settle down to a steady state RBCC τ_s, is found to be maximum close to the above said critical external temperature difference and is seen to reduce with increasing external temperature difference. For the range of values of (Γ, κ) considered here, τ_s ≃ 10 000-20 000;ω^{-1}_{pd}, where ω_{pd} is dust plasma frequency. As Γ is increased to very high values, due to strong coupling effects, RBC cells are seen to be in a transient state without attaining a steady state for as long as 100 000;ω^{-1}_{pd}, even for a very high external temperature difference. In the second part, we address the existence of universal relation between Strouhal (St) and Rayleigh (Ry) numbers for Yukawa liquid using first principles based classical molecular dynamics. The flow past an obstacle is seen to indeed

  11. The wake south of the Alps: Dynamics and structure of the lee-side flow and secondary potential vorticity banners

    Science.gov (United States)

    Flamant, C.; Richard, E.; Schär, C.; Rotunno, R.; Nance, L.; Sprenger, M.; Benoit, R.

    2004-04-01

    The dynamics and structure of the lee-side flow over the Po valley during a northerly föhn event, which occurred in the framework of the Mesoscale Alpine Programme Special Observation Period (on 8 November 1999 during Intensive Observation Period 15), has been investigated using aircraft data and high-resolution numerical simulations. Numerical simulations were performed with the mesoscale non-hydrostatic model Meso-NH, using three nested domains (with horizontal resolutions 32, 8 and 2 km), the 2 km resolution domain being centred on the Po valley. The basic data-model comparison, and back-trajectory and tracer release analyses, provided evidence that the jet/wake structure of the flow above the Po valley could be reasonably identified with the mountain pass/peak distributions. Measurements from three aircraft flying below the Alps crestline (at 2700, 1500 and 600 m above sea level) along two 350 km east-west legs, designed to be approximately perpendicular to the northerly synoptic flow, were used to compute the potential vorticity (PV) experimentally assuming the lee-side flow to be two-dimensional. (The simplified form of the PV under these assumptions is hereafter referred to as SPV). Due to increasing lee-side flow curvature with decreasing altitude (caused by flow splitting at the scale of the Alps), the experimentally derived SPV was compared to its simulated counterpart.In situ measurements showed that coherent secondary PV banners (PVB2s) do exist downstream of the complex Alpine terrain, as observations show oscillations between positive and negative values of SPV as expected from the simulations. The details of the structure of the SPV field simulated with Meso-NH were found to be different from the observations (i.e. the location of observed maxima and minima of SPV did not match their simulated counterparts at particular points). This is because the correspondence between observed and modelled velocity and potential temperature fields was not good

  12. Giant vortices in the Ginzburg-Landau model

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter

    The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects.......The time-dependent Ginzburg-Landau equation is solved in a region of two spatial dimensions and with complex geometry using the finite element method. The geometry has a marked influence on the vortex distribution and we have observed generation of giant vortices at boundary defects....

  13. The formation of sporadic E layers by a vortical perturbation excited in a horizontal wind shear flow

    Directory of Open Access Journals (Sweden)

    G. G. Didebulidze

    2008-06-01

    Full Text Available The formation of the mid-latitude sporadic E layers (Es layers by an atmospheric vortical perturbation excited in a horizontal shear flow (horizontal wind with a horizontal linear shear is investigated. A three-dimensional atmospheric vortical perturbation (atmospheric shear waves, whose velocity vector is in the horizontal plane and has a vertical wavenumber kz≠0, can provide a vertical shear of the horizontal wind. The shear waves influence the vertical transport of heavy metallic ions and their convergence into thin and dense horizontal layers. The proposed mechanism takes into account the dynamical influence of the shear wave velocity in the horizontal wind on the vertical drift velocity of the ions. It also can explain the multi-layer structure of Es layers. The pattern of the multi-layer structure depends on the value of the shear-wave vertical wavelength, the ion-neutral collision frequency and the direction of the background horizontal wind. The modelling of formation of sporadic E layers with a single and a double peak is presented. Also, the importance of shear wave coupling with short-period atmospheric gravity waves (AGWs on the variations of sporadic E layer ion density is examined and discussed.

  14. Potential Vorticity based parameterization for specification of Upper troposphere/lower stratosphere ozone in atmospheric models

    Data.gov (United States)

    U.S. Environmental Protection Agency — Potential Vorticity based parameterization for specification of Upper troposphere/lower stratosphere ozone in atmospheric models - the data set consists of 3D O3...

  15. An analytical-based method for studying the nonlinear evolution of localized vortices in planar homogenous shear flows

    Science.gov (United States)

    Cohen, J.; Shukhman, I. G.; Karp, M.; Philip, J.

    2010-10-01

    Recent experimental and numerical studies have shown that the interaction between a localized vortical disturbance and the shear of an external base flow can lead to the formation of counter-rotating vortex pairs and hairpin vortices that are frequently observed in wall bounded and free turbulent shear flows as well as in subcritical shear flows. In this paper an analytical-based solution method is developed. The method is capable of following (numerically) the evolution of finite-amplitude localized vortical disturbances embedded in shear flows. Due to their localization in space, the surrounding base flow is assumed to have homogeneous shear to leading order. The method can solve in a novel way the interaction between a general family of unbounded planar homogeneous shear flows and any localized disturbance. The solution is carried out using Lagrangian variables in Fourier space which is convenient and enables fast computations. The potential of the method is demonstrated by following the evolved structures of large amplitude disturbances in three canonical base flows, including simple shear, plane stagnation (extensional) and pure rotation flows, and a general case. The results obtained by the current method for plane stagnation and simple shear flows are compared with the published results. The proposed method could be extended to other flows (e.g. geophysical and rotating flows) and to include periodic disturbances as well.

  16. Dynamics of an unsteady stagnation vortical flow via dynamic mode decomposition analysis

    Science.gov (United States)

    Pan, Chong; Wang, Jianjie; Wang, Jinjun; Sun, Mao

    2017-03-01

    The dynamics of a large-scale stagnation vortex pair in an axisymmetric stagnation flow subject to a laminar wake disturbance is measured by time-resolved two-dimensional particle image velocimetry, and then quantitatively characterized by both the Eulerian velocity/vorticity fields and the Lagrangian finite-time Lyapunov exponents fields. This vortex pair is found to be the result of the forced response of the stagnation flow to the upstream shearing disturbances, and presents a dynamical evolution of quasi-periodic shedding due to short-wave elliptical instability. Dynamic mode decomposition analysis of both the Eulerian measure and the Lagrangian measure is taken for a quantitative description of this process. The sparsity-promoting scheme (Jovanović et al. Phys Fluids 26(2):024,103, 2014), which integrates the mode identification and truncation as a whole, is used to distinguish those modes with dynamical significance from irrelevant ones with transient behavior. The superiority of this scheme is evidenced by the facts that it avoids the eigenvalue contamination problem, and credits higher priority to the sub-dominant modes directly associated with the system dynamics. It is found that the energetic mode with a frequency of 0.177 Hz, or about 10% of the maximum shear rate of the upstream wake, determines the quasi-periodical vortex formation process. Its half-order harmonic represents the vortex shedding event along one fixed direction. High-order even-quarter harmonics jointly contribute to the circular pattern of the vortex tube. In addition, a set of low-frequency odd-quarter harmonics are highlighted as the elliptical instability and the following vortex deformation process. Based on this finding, a reduce-order representation with 8 Eulerian modes or 56 Lagrangian modes is proposed to characterize the dominant dynamics of this unsteady vortical stagnation flow. In addition, the Eulerian measure seems to be more efficient than the Lagrangian measure in

  17. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    is where the major part of the aerodynamic work is generated. The aerodynamic model is further applied to determine the critical speed of a freely rotating wind turbine rotor with respect to the aeroelastic instability classical flutter. The NREL 5MW reference turbine is used for the computations......-of-plane vibrations agrees much better with high fidelity models. Further, the trailed vorticity effects on the aerodynamic work are found to be of the same order of magnitude as the shed vorticity effects. The trailed vorticity effects are, however, mainly important close to the tip in the investigated cases, which......, but the torsional and flapwise stiffness are varied between 70% and 130% of their original value to obtain more general results. In all computed cases, the trailed vorticity increases the critical rotor speeds by four to ten percent. Future work is to compute a full load basis using the new aerodynamic model...

  18. Vortices and magnetic bags in Abelian models with extended scalar sectors and some of their applications

    CERN Document Server

    Forgács, Péter

    2016-01-01

    A detailed study of vortices is presented in Ginzburg-Landau (or Abelian Higgs) models with two complex scalars (order parameters) assuming a general U(1)$\\times$U(1) symmetric potential. Particular emphasis is given to the case, when only one of the scalars obtains a vacuum expectation value (VEV). It is found that for a significantly large domain in parameter space vortices with a scalar field condensate in their core (condensate core, CC) coexist with Abrikosov-Nielsen-Olesen (ANO) vortices. Importantly CC vortices are stable and have lower energy than the ANO ones. Magnetic bags or giant vortices of the order of 1000 flux quanta are favoured to form for the range of parameters ("strong couplings") appearing for the superconducting state of liquid metallic hydrogen (LMH). Furthermore, it is argued that finite energy/unit length 1VEV vortices are smoothly connected to fractional flux 2VEV ones. Stable, finite energy CC-type vortices are also exhibited in the case when one of the scalar fields is neutral.

  19. Vortices and magnetic bags in Abelian models with extended scalar sectors and some of their applications

    Science.gov (United States)

    Forgács, Péter; Lukács, Árpád

    2016-12-01

    A detailed study of vortices is presented in Ginzburg-Landau (or Abelian Higgs) models with two complex scalars (order parameters) assuming a general U (1 )×U (1 ) symmetric potential. Particular emphasis is given to the case in which only one of the scalars obtains a vacuum expectation value (VEV). It is found that for a significantly large domain in parameter space vortices with a scalar field condensate in their core [condensate core (CC)] coexist with Abrikosov-Nielsen-Olesen (ANO) vortices. Importantly, CC vortices are stable and have lower energy than the ANO ones. Magnetic bags or giant vortices of the order of 1000 flux quanta are favored to form for the range of parameters ("strong couplings") appearing for the superconducting state of liquid metallic hydrogen (LMH). Furthermore, it is argued that finite energy/unit length 1VEV vortices are smoothly connected to fractional flux 2VEV ones. Stable, finite energy CC-type vortices are also exhibited in the case when one of the scalar fields is neutral.

  20. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Directory of Open Access Journals (Sweden)

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  1. Convective thermal fluxes in unsteady non-homogeneous flows generating complex three dimensional vorticity patterns

    Science.gov (United States)

    Tellez Alvarez, Jackson David; Redondo, Jose Manuel; Sanchez, Jesu Mary

    2016-04-01

    estimate dominant mixing structures as well as the basic instabilities than drive the turbulent direct and inverse cascades [12]. References [1] Mahjoub O.B.; Redondo J.M.; and Babiano A. (2000). Hyerarchy flux in nonhomogeneous flows in turbulent diffusion in the environment Eds. Redondo J.M. and Babiano A. 249-260. [2] Redondo J.M. (1992). Termodinámica de los procesos irreversibles, efectos termoeléctricos. Rev. Termoelectricidad2, 16-29. AIT. Pamplona. [3] Dalziel, S. B. (1994). Perturbations and coherent flow in Rayleigh-Taylor instability in 4th International Workshop on the Physics of Compressible Turbulent Mixing, ed. P. F. Linden, D. L. Youngs, & S. B. Dalziel; 32-41. [4] Redondo J.M.; Sanchez J.M.; Pascual I.; Noriega, G.F. (1995). Thermoelectric regulation for electric cabinets: XVI International Conference in Thermoelectrics, 02-G20. Ed. V. Vedernikov. 456-468. St. Petersburg, Russia. [5] Mahjoub, O.B; Redondo J.M.; Babiano A. (1998).Structure functions in complex flows: Applied Scientific Research. 59, 299-313. Kluwer. [6] Matulka A.; Redondo J. M.; and Carrillo A. (2008). Experiments in stratified and rotating decaying 2D flows, Il Nuovo Cimento 31, 5-6, 757-770. 2008. [7] Redondo, J.M.; Tellez, J; Sotillos, L.; Gonzalez-Nieto, Pilar L.; Sanchez, J.M.; Furmanek P.,; Diez M (2014). Complex Convective Thermal Fluxes and Vorticity Structure: Geophysical Research Abstracts Vol. 17, EGU2015-14773, 2015 - EGU General Assembly 2015. [8] Nicolleau, F.C.G.A.; Cambon, C.; Redondo, J.M.; Vassilicos, J.C.; Reeks, M.; Nowakowski, A.F. (Eds.) (2012). New Approaches in Modeling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence: ERCOFTAC Series. [9] Redondo J. M.; Sanchez M. A.; and Cantalapiedra I. R. (1995). Turbulent Mechanisms in Stratified Flows, Dynamics of Atmospheres and Oceans, 23, 454-462. [10] Matulka A.; Redondo J.M.; and Carrillo A. (2008) Experiments in stratified and rotating decaying 2D flows. II Nuovo Cimento 31, 5

  2. Using a low-order model to detect and characterize intense vortices in multiple-Doppler radar data

    Science.gov (United States)

    Potvin, Corey Keith

    A new multiple-Doppler radar analysis technique is presented for the objective detection and characterization of intense vortices. The technique consists of fitting radial wind data from two or more radars to a simple analytical model of a vortex and its near-environment. The model combines a uniform flow, linear shear flow, linear divergence flow (all of which comprise a broadscale flow), and modified combined Rankine vortex. The vortex and its environment are allowed to translate. A cost-function accounting for the discrepancy between the model and observed radial winds is evaluated over space and time so that observations can be used at the actual times and locations they were acquired. The parameters in the low-order model are determined by minimizing this cost function. The development of the method is initially guided by emulated radial velocity observations of analytical vortices. A high-resolution Advanced Regional Prediction System (ARPS) simulation of a supercellular tornado is then used to generate more realistic pseudo-observations. Finally, the technique is tested using real dual-Doppler tornado and mesocyclone observations from a variety of radar platforms including Weather Surveillance Radar - 1988 Doppler (WSR-88D), Terminal Doppler Weather Radar (TDWR), Shared Mobile Atmospheric Research and Teaching Radar (SMART-R), and Doppler on Wheels (DOW). The technique shows skill in detecting intense vortices and, when the vortex is well-resolved, in retrieving key model parameters including vortex location, translational velocity, radius and maximum tangential wind speed. In cases where the vortex is not well-resolved, additional vortex characteristics computed from the retrieved model parameters and verified against radial velocity observations can still provide useful information about vortex size and strength.

  3. Color Doppler Ultrasound Velocimetry Flow Reconstruction using Vorticity-Streamfunction Formulation

    Science.gov (United States)

    Meyers, Brett; Vlachos, Pavlos; Goergen, Craig; Scalo, Carlo

    2016-11-01

    Clinicians commonly utilize Color Doppler imaging to qualitatively assess the velocity in patient cardiac or arterial flows. However Color Doppler velocity are restricted to two-dimensional one-component measurements. Recently new methods have been proposed to reconstruct a two-component velocity field from such data. Vector Flow Mapping (VFM), in particular, utilizes the conservation of mass to reconstruct the flow. However, this method over-simplifies the influence of wall and surrounding blood motion on local measurements, which produce large, non-physical velocity gradients, requiring excessive smoothing operations to remove. We propose a new approach based on the Vorticity-Stream Function (Ψ- ω) formulation that yields more physiologically accurate velocity gradients and avoids any added smoothing operations. Zero-penetration conditions are specified at the walls, removing the need for measurement of wall velocity from additional scans, which introduce further uncertainties in the reconstruction. Inflow and outflow boundary conditions are incorporated by prescribing Dirichlet boundary conditions. The proposed solver is compared against the VFM using computational data to evaluate measurement improvement. Finally we demonstrate the method by evaluating murine left ventricle Color Doppler scans.

  4. Defining Coherent Vortices Objectively from the Vorticity

    CERN Document Server

    Haller, George; Farazmand, Mohammad; Huhn, Florian

    2015-01-01

    Rotationally coherent Lagrangian vortices are formed by tubes of deforming fluid elements that complete equal bulk material rotation relative to the mean rotation of the deforming fluid volume. We show that initial positions of such tubes coincide with tubular level surfaces of the Lagrangian-Averaged Vorticity Deviation (LAVD), the trajectory integral of the normed difference of the vorticity from its spatial mean. LAVD-based vortices are objective, i.e., remain unchanged under time-dependent rotations and translations of the coordinate frame. In the limit of vanishing Rossby numbers in geostrophic flows, cyclonic LAVD vortex centers are precisely the observed attractors for light particles. A similar result holds for heavy particles in anticyclonic LAVD vortices. We also establish a relationship between rotationally coherent Lagrangian vortices and their instantaneous Eulerian counterparts. The latter are formed by tubular surfaces of equal material rotation rate, objectively measured by the Instantaneous V...

  5. Sub-Surface Meridional flow, Vorticity and the life time if Solar Active Regions

    CERN Document Server

    Maurya, R A

    2010-01-01

    Solar sub-surface fluid topology provides an indirect approach to examine the internal characteristics of active regions (ARs). Earlier studies have revealed the prevalence of strong flows in the interior of ARs having complex magnetic fields. Using the Doppler data obtained by the Global Oscillation Network Group (GONG) project for a sample of 74 ARs, we have discovered the presence of steep gradients in meridional velocity at depths ranging from 1.5 to 5 Mm in flare productive ARs. The sample of these ARs is taken from the Carrington rotations 1980--2052 covering the period August 2001-January 2007. The gradients showed an interesting hemispheric trend of negative (positive) signs in the northern (southern) hemisphere, i.e., directed toward the equator. We have discovered three sheared layers in the depth range of 0 - 10 Mm, providing an evidence of complex flow structures in several ARs. An important inference derived from our analysis is that the location of the deepest zero vertical vorticity is correlat...

  6. Understanding dynamics of large-scale atmospheric vortices with moist-convective shallow water model

    Science.gov (United States)

    Rostami, M.; Zeitlin, V.

    2016-08-01

    Atmospheric jets and vortices which, together with inertia-gravity waves, constitute the principal dynamical entities of large-scale atmospheric motions, are well described in the framework of one- or multi-layer rotating shallow water models, which are obtained by vertically averaging of full “primitive” equations. There is a simple and physically consistent way to include moist convection in these models by adding a relaxational parameterization of precipitation and coupling precipitation with convective fluxes with the help of moist enthalpy conservation. We recall the construction of moist-convective rotating shallow water model (mcRSW) model and give an example of application to upper-layer atmospheric vortices.

  7. Statistical analysis of turbulent super-streamwise vortices based on observations of streaky structures near the free surface in the smooth open channel flow

    Science.gov (United States)

    Zhong, Qiang; Chen, Qigang; Wang, Hao; Li, Danxun; Wang, Xingkui

    2016-05-01

    Long streamwise-elongated high- and low-speed streaks are repeatedly observed near the free surface in open channel flows in natural rivers and lab experiments. Super-streamwise vortex model has been proposed to explain this widespread phenomenon for quite some time. However, statistical evidence of the existence of the super-streamwise vortices as one type of coherent structures is still insufficient. Correlation and proper orthogonal decomposition (POD) analysis based on PIV experimental data in the streamwise-spanwise plane near the free surface in a smooth open channel flow are employed to investigate this topic. Correlation analysis revealed that the streaky structures appear frequently near the free surface and their occurrence probability at any spanwise position is equal. The spanwise velocity fluctuation usually flows from low-speed streaks toward high-speed streaks. The average spanwise width and spacing between neighboring low (or high) speed streaks are approximately h and 2h respectively. POD analysis reveals that there are streaks with different spanwise width in the instantaneous flow fields. Typical streamwise rotational movement can be sketched out directly based on the results from statistical analyses. Point-by-point analysis indicates that this pattern is consistent everywhere in the measurement window and is without any inhomogeneity in the spanwise direction, which reveals the essential difference between coherent structures and secondary flow cells. The pattern found by statistical analysis is consistent with the notion that the super-streamwise vortices exist universally as one type of coherent structure in open channel flows.

  8. Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Chen, Sheng-Fu; Lo, Chi-Wen; Lu, Po-Chien

    2012-03-01

    Bubble cavitation occurs in the flow field when local pressure drops below vapor pressure. One hypothesis states that low-pressure regions in vortices created by instantaneous valve closure and occluder rebound promote bubble formation. To quantitatively analyze the role of vortices in cavitation, we applied particle image velocimetry (PIV) to reduce the instantaneous fields into plane flow that contains information about vortex core radius, maximum tangential velocity, circulation strength, and pressure drop. Assuming symmetrical flow along the center of the St. Jude Medical 25-mm valve, flow fields downstream of the closing valve were measured using PIV in the mitral position of a circulatory mock loop. Flow measurements were made during successive time phases immediately following the impact of the occluder with the housing (O/H impact) at valve closing. The velocity profile near the vortex core clearly shows a typical Rankine vortex. The vortex strength reaches maximum immediately after closure and rapidly decreases at about 10 ms, indicating viscous dissipation; vortex strength also intensifies with rising pulse rate. The maximum pressure drop at the vortex center is approximately 20 mmHg, an insignificant drop relative to atmospheric vapor pressures, which implies vortices play a minor role in cavitation formation.

  9. Self-Dual Vortices in Abelian Higgs Models with Dielectric Function on the Noncommutative Plane

    CERN Document Server

    Fuertes, W García

    2014-01-01

    We show that Abelian Higgs Models with dielectric function defined on the noncommutative plane enjoy self-dual vorticial solutions. By choosing a particular form of the dielectric function, we provide a family of solutions whose Higgs and magnetic fields interpolate between the profiles of the noncommutative Nielsen-Olesen and Chern-Simons vortices. This is done both for the usual $U(1)$ model and for the $SU(2)\\times U(1)$ semilocal model with a doublet of complex scalar fields. The variety of known noncommutative self-dual vortices which display a regular behaviour when the noncommutativity parameter tends to zero results in this way considerably enlarged.

  10. Interaction between global-scale atmospheric vortices: Modeling with Hamiltonian dynamic system of antipodal point vortices on a rotating sphere

    CERN Document Server

    Mokhov, Igor I; Chefranov, A G

    2016-01-01

    We get point vortices dynamics equations on a rotating sphere surface directly from the hydrodynamic equations as representing their weak exact solution contrary to the conventional case of the use of a kinematic relationship between a given singular vortex field and velocity field. It is first time that the effect of a sphere rotation on the vortices interaction is accounted for in exact form. We show that only the stream function of a vortex pair of antipodal vortices (APV), and only it satisfies the original three-dimensional hydrodynamics equations on a sphere. We prove that only APV pair with two point vortices in the diameter-conjugated points of a sphere with equal by quantity but different sign circulations may be correctly considered as an elementary (stationary, not self-affecting) singular point object on a sphere. We suggest using the axis connecting the two point vortices in an APV for describing of an axis of rotation of the global vortices introduced in (Barrett, 1958) to reflect the observed g...

  11. Vorticity in Heavy-Ion Collisions

    CERN Document Server

    Deng, Wei-Tian

    2016-01-01

    We study the event-by-event generation of flow vorticity in RHIC Au + Au collisions and LHC Pb + Pb collisions by using the HIJING model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  12. Vorticity in heavy-ion collisions

    Science.gov (United States)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  13. Hybrid channel flow-type mechanisms in the Greater Himalayan Sequence (West Nepal): new constraints from vorticity of flow and quartz petrofabric analyses.

    Science.gov (United States)

    Frassi, Chiara

    2016-04-01

    Three main tectono-metamorphic units are classically recognized along the Himalayan belt: the Lesser Himalayan (LH), the Greater Himalayan sequence (GHS) and the Tibetan Sedimentary sequence (TSS). The GHS may be interpreted as a low-viscosity tabular body of mid-crustal rocks extruded southward in Miocene times beneath the Tibetan plateau between two parallel and opposite-sense crustal-scale shear zones: the Main Central thrust at the base, and the South Tibetan Detachment system at the top. The pre-/syn-shearing mineral assemblage documented within these crustal-scale shear zones indicates that the metamorphic grade increases toward the core of the GHS producing an inverted and a normal thermal gradient respectively on the top and on the bottom of the slab. In addition, thermal profiles estimated using both petrology- and microstructures/fabrics-based thermometers indicate that the metamorphic isograds are condensed. Although horizontal extension and vorticity estimates collected across the GHS could be strongly biased by the criteria used to define the map position of the MCT, published vorticity data document general shear flow (1>Wk>0) within the slab with a pure-shear component of flow slightly predominant within the core of the GHS whereas the simple-shear component seems to dominate at the top of the slab. The lower boundary of the GHS records a general shear flow with a comparable contribution of simple and pure shearing. The associated crustal extrusion is compatible with Couette - Poiseuille velocity flow profile as assumed in crustal-scale channel flow-type models In this study, the quartz c-axis petrofabrics, vorticity and deformation-temperature studies are integrated with microstructures and metamorphic studies to individuate the location of the MCT and to document the spatial distribution of ductile deformation patterns across the lower portion of the GHS exposed in the Chaudabise river valley in western Nepal. My results indicate that the Main

  14. A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers

    Science.gov (United States)

    van Rees, Wim M.; Leonard, Anthony; Pullin, D. I.; Koumoutsakos, Petros

    2011-04-01

    We present a validation study for the hybrid particle-mesh vortex method against a pseudo-spectral method for the Taylor-Green vortex at ReΓ = 1600 as well as in the collision of two antiparallel vortex tubes at ReΓ = 10,000. In this study we present diagnostics such as energy spectra and enstrophy as computed by both methods as well as point-wise comparisons of the vorticity field. Using a fourth order accurate kernel for interpolation between the particles and the mesh, the results of the hybrid vortex method and of the pseudo-spectral method agree well in both flow cases. For the Taylor-Green vortex, the vorticity contours computed by both methods around the time of the energy dissipation peak overlap. The energy spectrum shows that only the smallest length scales in the flow are not captured by the vortex method. In the second flow case, where we compute the collision of two anti-parallel vortex tubes at Reynolds number 10,000, the vortex method results and the pseudo-spectral method results are in very good agreement up to and including the first reconnection of the tubes. The maximum error in the effective viscosity is about 2.5% for the vortex method and about 1% for the pseudo-spectral method. At later times the flows computed with the different methods show the same qualitative features, but the quantitative agreement on vortical structures is lost.

  15. Bubble–bubble interaction effects on dynamics of multiple bubbles in a vortical flow field

    Directory of Open Access Journals (Sweden)

    Bing Cui

    2016-02-01

    Full Text Available Bubble–bubble interactions play important roles in the dynamic behaviours of multiple bubbles or bubble clouds in a vortical flow field. Based on the Rayleigh–Plesset equation and the modified Maxey–Riley equation of a single bubble, bubble–bubble interaction terms are derived and introduced for multiple bubbles. Thus, both the Rayleigh–Plesset and modified Maxey–Riley equations are improved by considering bubble–bubble interactions and then applied for the multiple bubbles entrainment into a stationary Gaussian vortex. Runge–Kutta fourth-order scheme is adopted to solve the coupled dynamic and kinematic equations and the convergence study has been conducted. Numerical result has also been compared and validated with the published experimental data. On this basis, the oscillation, trajectory and effects of different parameters of double-bubble and multi-bubble entrainment into Gaussian vortex have been studied and the results have been compared with those of the cases without bubble–bubble interactions. It indicates that bubble–bubble interactions influence the amplitudes and periods of bubble oscillations severely, but have small effects on bubble trajectories.

  16. Generation and Growth of Single Hairpin Vortices

    Science.gov (United States)

    Haji-Haidari, Ahmad

    turbulent spot-like structure is observed to evolve and grow as the initial hairpin vortex advects downstream. It is established, both qualitatively and quantitatively, that hairpin vortices exist within a turbulent spot and that the spot grows from its trailing edge rearward by new hairpin vortices. Hot film anemometry measurements indicate that a convecting hairpin vortex produces Reynolds stress signals with amplitudes similar to the traces associated with a burst in a turbulent boundary layer flow. The results suggest that hairpin vortices can create the kinematical effects observed in a turbulent boundary layer, and provide dynamic effects which can explain the near-wall bursting effects and growth process of a turbulent boundary layer. It is concluded that an accurate physical model of the dynamics of the near-wall flow must consider hairpin vortices as a key building-block of turbulent boundary layer flows.

  17. Two species of vortices in massive gauged non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Alonso-Izquierdo, A. [Departamento de Matemática Aplicada, Universidad de Salamanca,Facultad de Ciencias Agrarias y Ambientales, Av. Filiberto Villalobos 119, E-37008 Salamanca (Spain); Fuertes, W. García [Departamento de Física, Universidad de Oviedo, Facultad de Ciencias, Calle Calvo Sotelo s/n, E-33007 Oviedo (Spain); Guilarte, J. Mateos [Departamento de Física Fundamental, Universidad de Salamanca, Facultad de Ciencias, Plaza de la Merced, E-37008 Salamanca (Spain)

    2015-02-23

    Non-linear sigma models with scalar fields taking values on ℂℙ{sup n} complex manifolds are addressed. In the simplest n=1 case, where the target manifold is the S{sup 2} sphere, we describe the scalar fields by means of stereographic maps. In this case when the U(1) symmetry is gauged and Maxwell and mass terms are allowed, the model accommodates stable self-dual vortices of two kinds with different energies per unit length and where the Higgs field winds at the cores around the two opposite poles of the sphere. Allowing for dielectric functions in the magnetic field, similar and richer self-dual vortices of different species in the south and north charts can be found by slightly modifying the potential. Two different situations are envisaged: either the vacuum orbit lies on a parallel in the sphere, or one pole and the same parallel form the vacuum orbit. Besides the self-dual vortices of two species, there exist BPS domain walls in the second case. Replacing the Maxwell contribution of the gauge field to the action by the second Chern-Simons secondary class, only possible in (2+1)-dimensional Minkowski space-time, new BPS topological defects of two species appear. Namely, both BPS vortices and domain ribbons in the south and the north charts exist because the vacuum orbit consits of the two poles and one parallel. Formulation of the gauged ℂℙ{sup 2} model in a reference chart shows a self-dual structure such that BPS semi-local vortices exist. The transition functions to the second or third charts break the U(1)×SU(2) semi-local symmetry, but there is still room for standard self-dual vortices of the second species. The same structures encompassing N complex scalar fields are easily generalized to gauged ℂℙ{sup N} models.

  18. Energy conserving numerical methods for the computation of complex vortical flows

    Science.gov (United States)

    Allaneau, Yves

    One of the original goals of this thesis was to develop numerical tools to help with the design of micro air vehicles. Micro Air Vehicles (MAVs) are small flying devices of only a few inches in wing span. Some people consider that as their size becomes smaller and smaller, it would be increasingly more difficult to keep all the classical control surfaces such as the rudders, the ailerons and the usual propellers. Over the years, scientists took inspiration from nature. Birds, by flapping and deforming their wings, are capable of accurate attitude control and are able to generate propulsion. However, the biomimicry design has its own limitations and it is difficult to place a hummingbird in a wind tunnel to study precisely the motion of its wings. Our approach was to use numerical methods to tackle this challenging problem. In order to precisely evaluate the lift and drag generated by the wings, one needs to be able to capture with high fidelity the extremely complex vortical flow produced in the wake. This requires a numerical method that is stable yet not too dissipative, so that the vortices do not get diffused in an unphysical way. We solved this problem by developing a new Discontinuous Galerkin scheme that, in addition to conserving mass, momentum and total energy locally, also preserves kinetic energy globally. This property greatly improves the stability of the simulations, especially in the special case p=0 when the approximation polynomials are taken to be piecewise constant (we recover a finite volume scheme). In addition to needing an adequate numerical scheme, a high fidelity solution requires many degrees of freedom in the computations to represent the flow field. The size of the smallest eddies in the flow is given by the Kolmogoroff scale. Capturing these eddies requires a mesh counting in the order of Re³ cells, where Re is the Reynolds number of the flow. We show that under-resolving the system, to a certain extent, is acceptable. However our

  19. Remark on Single Exponential Bound of the Vorticity Gradient for the Two-Dimensional Euler Flow Around a Corner

    Science.gov (United States)

    Itoh, Tsubasa; Miura, Hideyuki; Yoneda, Tsuyoshi

    2016-09-01

    In this paper, we consider the two-dimensional Euler flow under a simple symmetry condition, with hyperbolic structure in a unit square {D = {(x_1,x_2):0 < x_1+x_2 < √{2},0 < -x_1+x_2 < √{2}}}. It is shown that the Lipschitz estimate of the vorticity on the boundary is at most a single exponential growth near the stagnation point.

  20. Modeling of curvilinear suspension flows

    Science.gov (United States)

    Morris, Jeffrey F.; Boulay, Fabienne

    1996-11-01

    The curvilinear parallel-plate and cone-and-plate rheometric flows of monodisperse noncolloidal suspensions have been modeled. Although nonuniform in shear rate, dotγ, the parallel-plate flow has been shown experimentally(A. W. Chow, S. W. Sinton, J. H. Iwayima & T. S. Stephens 1994 Phys. Fluids) 6, 2561. not to exhibit particle migration, contrary to predictions of prior suspension-flow modeling. Predictions of nonuniform particle volume fraction, φ, by the suspension-balance model(P. R. Nott & J. F. Brady 1994 J. Fluid Mech.) 275, 157. for parallel-plate and cone-and-plate flow without normal stress differences are presented. The ``nonmigration'' in parallel-plate flow may be attributed to bulk suspension normal stress differences: assuming the bulk stress has the form Σ ~ η dotγ Q(φ) with η the fluid viscosity, nonmigration is predicted for parallel-plate flow provided that Q_33 = (1/2) Q_11 at the bulk φ of interest, with 1 the flow direction and 3 the vorticity direction. Extending the model to include normal stress differences satisfying this requirement, a range of migration behavior is predicted for the cone-and-plate flow depending upon the ratio Q_11/Q_22.

  1. Magnetic structures and Z_2 vortices in a non-Abelian gauge model

    CERN Document Server

    Cabra, Daniel; Schaposnik, Fidel A

    2015-01-01

    The magnetic order of the triangular lattice with antiferromagnetic interactions is described by an SO(3) field and allows for the presence of Z2 magnetic vortices as defects. In this work we show how these Z2 vortices can be fitted into a local SU(2) gauge theory. We propose simple Ansatzes for vortex configurations and calculate their energies using well-known results of the Abelian gauge model. We comment on how Dzyaloshinskii-Moriya interactions could be derived from a non-Abelian gauge theory and speculate on their effect on non trivial configurations.

  2. Magnetic monopoles and vortices in the standard model of electroweak interactions

    CERN Document Server

    Achúcarro, A

    2000-01-01

    These lectures start with an elementary introduction to the subject of magnetic monopoles which should be accesible from any physics background. In the Weinberg-Salam model of electroweak interactions, magnetic monopoles appear at the ends of a type of non-topological vortices called electroweak strings. These will also be discussed, as well as recent simulations of their formation during a phase transition which indicate that, in the (unphysical) range of parameters in which the strings are classically stable, they can form with a density comparable to topological vortices.

  3. Compact Vortices

    CERN Document Server

    Bazeia, D; Marques, M A; Menezes, R; Zafalan, I

    2016-01-01

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane.

  4. Compact vortices

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Losano, L.; Marques, M.A.; Zafalan, I. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Menezes, R. [Universidade Federal da Paraiba, Departamento de Ciencias Exatas, Rio Tinto, PB (Brazil); Universidade Federal de Campina Grande, Departamento de Fisica, Campina Grande, PB (Brazil)

    2017-02-15

    We study a family of Maxwell-Higgs models, described by the inclusion of a function of the scalar field that represent generalized magnetic permeability. We search for vortex configurations which obey first-order differential equations that solve the equations of motion. We first deal with the asymptotic behavior of the field configurations, and then implement a numerical study of the solutions, the energy density and the magnetic field. We work with the generalized permeability having distinct profiles, giving rise to new models, and we investigate how the vortices behave, compared with the solutions of the corresponding standard models. In particular, we show how to build compact vortices, that is, vortex solutions with the energy density and magnetic field vanishing outside a compact region of the plane. (orig.)

  5. Investigation of the Unsteady Total Pressure Profile Corresponding to Counter-Rotating Vortices in an Internal Flow Application

    Science.gov (United States)

    Gordon, Kathryn; Morris, Scott; Jemcov, Aleksandar; Cameron, Joshua

    2013-11-01

    The interaction of components in a compressible, internal flow often results in unsteady interactions between the wakes and moving blades. A prime example in which this flow feature is of interest is the interaction between the downstream rotor blades in a transonic axial compressor with the wake vortices shed from the upstream inlet guide vane (IGV). Previous work shows that a double row of counter-rotating vortices convects downstream into the rotor passage as a result of the rotor blade bow shock impinging on the IGV. The rotor-relative time-mean total pressure distribution has a region of high total pressure corresponding to the pathline of the vortices. The present work focuses on the relationship between the magnitude of the time-mean rotor-relative total pressure profile and the axial spacing between the IGV and the rotor. A survey of different axial gap sizes is performed in a two-dimensional computational study to obtain the sensitivity of the pressure profile amplitude to IGV-rotor axial spacing.

  6. Field theoretical model of multilayered Josephson junction and dynamics of Josephson vortices

    Science.gov (United States)

    Fujimori, Toshiaki; Iida, Hideaki; Nitta, Muneto

    2016-09-01

    Multilayered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel N -1 domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The N -1 domain walls behave as insulators separating N superconductors, where one of the complex scalar fields has a gap. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in an effective theory in which we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls (the width of superconductors). On the other hand, when two neighboring superconductors tend to have π -phase differences, the ground state has a phase transition depending on the positions of domain walls; when the two walls are close to each other (one superconductor is thin), frustration occurs because of the coupling between the two superconductors besides the thin superconductor. Focusing on the case of three superconductors separated by two insulators, we find for the former case that the interaction between two Josephson vortices on different insulators changes its nature, i.e., attractive or repulsive, depending on the positions of the domain walls. In the latter case, there emerges fractional Josephson vortices when two degenerate ground states appear due to spontaneous charge-symmetry breaking, and the number of the Josephson vortices varies with the position of the domain walls. Our predictions should be verified in multilayered Josephson junctions.

  7. MODELING THE CHAIN CONFORMATION OF POLYMER MELTS IN CONTRACTION FLOW

    Institute of Scientific and Technical Information of China (English)

    Qing Shen; Jian-feng Hu; Qing-feng Gu

    2003-01-01

    A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction flow.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocity profiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction by using the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation of polymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simple shear flow, extensional flow, vortical flow, and mixed flow respectively.

  8. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    Science.gov (United States)

    2016-09-02

    Cambridge Univ. Press. Hornung, H. 1989 Vorticity generation and transport. In Tenth Australasian Fluid Me- chanics Conference - University of Melbourne ...Newman, M. E. J. & Warmbrand, C. M. 2005 A network analysis of committees in the U.S. House of Representatives. Proc. Nat. Acad. Sci. 102 (20), 7057

  9. Navier-Stokes computations of separated vortical flows past prolate spheroid at incidence

    Science.gov (United States)

    Wong, Tin-Chee; Kandil, Osama A.; Liu, C. H.

    1989-01-01

    The problem of steady incompressible viscous flow past prolate spheroids at incidence is formulated using the unsteady incompressible and compressible thin-layer Navier-Stokes equations. The two sets of Navier-Stokes equations are solved using a pseudotime stepping of the implicit flux-difference splitting scheme on a curvilinear grid, which is generated by a transfinite grid generator. The Baldwin and Lomax (1978) algebraic eddy-viscosity model is used to model the turbulent flow. The computational applications cover a 6:1 prolate spheroid at different angles of attack and Reynolds numbers. The results are compared with experimental data.

  10. Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms

    Science.gov (United States)

    Bandyopadhyay, Promode R.; Hellum, Aren M.

    2014-10-01

    Many slow-moving biological systems like seashells and zebrafish that do not contend with wall turbulence have somewhat organized pigmentation patterns flush with their outer surfaces that are formed by underlying autonomous reaction-diffusion (RD) mechanisms. In contrast, sharks and dolphins contend with wall turbulence, are fast swimmers, and have more organized skin patterns that are proud and sometimes vibrate. A nonlinear spatiotemporal analytical model is not available that explains the mechanism underlying control of flow with such proud patterns, despite the fact that shark and dolphin skins are major targets of reverse engineering mechanisms of drag and noise reduction. Comparable to RD, a minimal self-regulation model is given for wall turbulence regeneration in the transitional regime--laterally coupled, diffusively--which, although restricted to pre-breakdown durations and to a plane close and parallel to the wall, correctly reproduces many experimentally observed spatiotemporal organizations of vorticity in both laminar-to-turbulence transitioning and very low Reynolds number but turbulent regions. We further show that the onset of vorticity disorganization is delayed if the skin organization is treated as a spatiotemporal template of olivo-cerebellar phase reset mechanism. The model shows that the adaptation mechanisms of sharks and dolphins to their fluid environment have much in common.

  11. Sparsified-dynamics modeling of discrete point vortices with graph theory

    Science.gov (United States)

    Taira, Kunihiko; Nair, Aditya

    2014-11-01

    We utilize graph theory to derive a sparsified interaction-based model that captures unsteady point vortex dynamics. The present model builds upon the Biot-Savart law and keeps the number of vortices (graph nodes) intact and reduces the number of inter-vortex interactions (graph edges). We achieve this reduction in vortex interactions by spectral sparsification of graphs. This approach drastically reduces the computational cost to predict the dynamical behavior, sharing characteristics of reduced-order models. Sparse vortex dynamics are illustrated through an example of point vortex clusters interacting amongst themselves. We track the centroids of the individual vortex clusters to evaluate the error in bulk motion of the point vortices in the sparsified setup. To further improve the accuracy in predicting the nonlinear behavior of the vortices, resparsification strategies are employed for the sparsified interaction-based models. The model retains the nonlinearity of the interaction and also conserves the invariants of discrete vortex dynamics; namely the Hamiltonian, linear impulse, and angular impulse as well as circulation. Work supported by US Army Research Office (W911NF-14-1-0386) and US Air Force Office of Scientific Research (YIP: FA9550-13-1-0183).

  12. Investigation of Vortical Flow Patterns in the Near Field of a Dynamic Low-Aspect-Ratio Cylinder

    Science.gov (United States)

    Gildersleeve, Samantha; Amitay, Michael

    2016-11-01

    The flowfield and associated flow structures of a low-aspect-ratio cylindrical pin were investigated experimentally in the near-field as the pin underwent wall-normal periodic oscillations. Under dynamic conditions, the pin is driven at the natural wake shedding frequency with an amplitude of 33% of its mean height. Additionally, a static pin was also tested at various mean heights of 0.5, 1.0, and 1.5 times the local boundary layer thickness to explore the effect of the mean height on the flowfield. Three-dimensional flowfields were reconstructed and analyzed from SPIV measurements where data were collected along streamwise planes for several spanwise locations under static and dynamic conditions. The study focuses on the incoming boundary layer as it interacts with the pin, as well as two main vortical formations: the arch-type vortex and the horseshoe vortex. Under dynamic conditions, the upstream boundary layer is thinner, relative to the baseline, and the downwash in the wake increases, resulting in a reduced wake deficit. These results indicate enhanced strength of the aforementioned vortical flow patterns under dynamic conditions. The flow structures in the near-field of the static/dynamic cylinder will be discussed in further detail. Supported by The Boeing Company.

  13. Vortices in generalized Abelian Chern-Simons-Higgs model

    CERN Document Server

    Casana, Rodolfo

    2015-01-01

    We study a generalization of abelian Chern-Simons-Higgs model by introducing nonstandard kinetic terms. We will obtain a generic form of Bogomolnyi equations by minimizing the energy functional of the model. This generic form of Bogomolnyi equations produce an infinity number of soliton solutions. As a particular limit of these generic Bogomolnyi equations, we obtain the Bogomolnyi equations of the abelian Maxwell-Higgs model and the abelian Chern-Simons Higgs model. Finally, novel soliton solutions emerge from these generic Bogomolnyi equations. We analyze these solutions from theoretical and numerical point of view.

  14. Field theoretical model of multi-layered Josephson junction and dynamics of Josephson vortices

    CERN Document Server

    Fujimori, Toshiaki; Nitta, Muneto

    2016-01-01

    Multi-layered Josephson junctions are modeled in the context of a field theory, and dynamics of Josephson vortices trapped inside insulators are studied. Starting from a theory consisting of complex and real scalar fields coupled to a U(1) gauge field which admit parallel $N-1$ domain-wall solutions, Josephson couplings are introduced weakly between the complex scalar fields. The $N-1$ domain walls behave as insulators separating $N$ superconductors. We construct the effective Lagrangian on the domain walls, which reduces to a coupled sine-Gordon model for well-separated walls and contains more interactions for walls at short distance. We then construct sine-Gordon solitons emerging in the effective theory that we identify Josephson vortices carrying singly quantized magnetic fluxes. When two neighboring superconductors tend to have the same phase, the ground state does not change with the positions of domain walls. On the other hand, when two neighboring superconductors tend to have the $\\pi$ phase differenc...

  15. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  16. SU(4) string tensions from the fat-center-vortices model

    CERN Document Server

    Deldar, S; Deldar, Sedigheh; Rafibakhsh, Shahnoosh

    2004-01-01

    Fat-Center-Vortices model has been applied to calculate potentials between static sources of various SU(4) representations. For intermediate distances, a linear potential is achieved. For this region string tensions agree better with flux tube counting than Casimir scaling especially for higher representations. In addition, our results confirm the existence of two different string tensions for non zero 4-ality representations at large distances. In this area zero 4-ality representations are screened.

  17. Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction

    Science.gov (United States)

    Pierson, Kristopher; Povitsky, Alex

    2013-11-01

    In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.

  18. Generalized moist potential vorticity and its application in the analysis of atmospheric flows

    Institute of Scientific and Technical Information of China (English)

    Linus A.Mofor; Chungu Lu

    2009-01-01

    Potential vorticity(PV)serves as an important dynamic tracer for large-scale motions in the atmosphere and oceans.Significant pro-gress has been made on the understanding and application of PV since the work of Hoskins et al,who introduced an"IPV thinking"of a dynamical system in a purely dry atmosphere.In particular,there has been a substantial amount of work done on the PV in a general moist atmosphere.In this paper,the generalized moist potential vorticity(GMPV)and its application in the mesoscale meteorological fields are reviewed.The GMPV is derived for a real atmosphere(neither completely dry nor saturated)by introducing a generalized potential temperature instead of the potential temperature or equivalent potential temperature.Such a generalization can depict the moist effect on PV anomaly in the non-uniformly saturated atmosphere.The effect of mass forcing induced by rainfall on the anomaly of GMPV is also reviewed and a new dynamic variable,the convective vorticity vector(CVV),is introduced in connection with GMPV.2008 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited and Science in China Press.All rights reserved.

  19. Dynamics and Statistical Mechanics of Rotating and non-Rotating Vortical Flows

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chjan [RPI

    2013-12-18

    Three projects were analyzed with the overall aim of developing a computational/analytical model for estimating values of the energy, angular momentum, enstrophy and total variation of fluid height at phase transitions between disordered and self-organized flow states in planetary atmospheres. It is believed that these transitions in equilibrium statistical mechanics models play a role in the construction of large-scale, stable structures including super-rotation in the Venusian atmosphere and the formation of the Great Red Spot on Jupiter. Exact solutions of the spherical energy-enstrophy models for rotating planetary atmospheres by Kac's method of steepest descent predicted phase transitions to super-rotating solid-body flows at high energy to enstrophy ratio for all planetary spins and to sub-rotating modes if the planetary spin is large enough. These canonical statistical ensembles are well-defined for the long-range energy interactions that arise from 2D fluid flows on compact oriented manifolds such as the surface of the sphere and torus. This is because in Fourier space available through Hodge theory, the energy terms are exactly diagonalizable and hence has zero range, leading to well-defined heat baths.

  20. Analysis of vortical structure over sinusoidal riblet surface in turbulent channel flow by means of Dual-plane stereoscopic PIV measurement

    Science.gov (United States)

    Mamori, Hiroya; Yamaguchi, Kyotaro; Sasamori, Monami; Iwamoto, Kaoru; Murata, Akira

    2016-11-01

    We perform a dual-plane stereoscopic particle image velocimetry (DPS-PIV) measurement to investigate vortical structure over a sinusoidal riblet surface in the turbulent channel flow. In the sinusoidal riblet surface, its lateral spacing of the adjacent walls varies in the streamwise direction and 12% of the drag reduction rate has been confirmed in the turbulent channel flow. The DPS-PIV measurement system consists of four high-speed CCD cameras and the two laser sheets. In the flat case, the profile of the velocity statistics shows a good agreement with previous data. In the ribet case, the velocity statistics decrease in the region close to the wall as compared with that of the flat case. Since all velocity components are measured on adjacent laser sheets simultaneously, vortical structures can be obtained by a second invariant of the tensor i.e. the Q value. According to an analysis for the Q value, we found that the vortical structure is shifted up and attenuated owing to the riblet. Moreover, the riblet prevents the approaching of the vortical structure: the upward and downward flows in the region near the wall are generated by the riblet; if the vortical structure approaches the wall, it is shifted away from the wall due to the upward flow.

  1. Brief Analysis of Vorticity in Soil Hydrodynamics

    CERN Document Server

    Nader, José Jorge

    2014-01-01

    This note discusses basic properties of vorticity in groundwater flow theory. An evolution equation for the vorticity vector is derived to demonstrate that, when present, vorticity decreases very rapidly. In addition, it is shown how vorticity affects, though very little, the hydraulic head directional variation in the vicinity of a point.

  2. A vorticity-stream function formulation of the navier-stokes equations for predicting unsteady flow past bodies in arbitrary movement

    Energy Technology Data Exchange (ETDEWEB)

    Nygreen, P.J.

    1997-02-01

    A 2-dimensional vorticity-stream function formulation of the Reynolds averaged Navier-Stokes equations in primitive variable form has been considered for laminar and turbulent flow past airfoils. A new method for establishing boundary distribution of vorticity and stream function at limiting boundaries of the calculation domain is suggested. The method guarantees a unique pressure distribution on a solid body. Eddy-viscosity has been introduced for modeling the Reynolds stresses and is calculated by use of the algebraic model of Baldwin and Lomax, the 1-equation turbulence models of Baldwin and Barth and Spalart and Allmaras and the 2-equation K - {omega}-BSL/SST turbulence model by Menter. Correct implementation of the turbulence models has been regarded for flow past a flat plate with finite thickness and rounded leading edge. The developed Navier-Stokes solver has been used for computing stationary and in-stationary laminar and turbulent airfoil flow with great success. Laminar flow situations has been regarded by three different flow situations past a NACA 0012 airfoil: A low incidence case, an impulsive start at high incidence and an airfoil oscillating in pitch between 0 deg. and 20 deg. incidence. Turbulent airfoil flows past a stationary Onera-A airfoil was considered profoundly at incidences 10.1 deg., 13.3 deg., 17.6 deg., 25 deg. and 40 deg. and comparisons are made with experiment at incidences below 25 deg. The Michel criterion was used to predict transition positions in some cases. Dynamic stall was considered by calculating a light and deep stall case for a NACA 0015 airfoil with the different turbulence models. The light stall case is characterized by a mean incidence equal 11.37 deg. and a variation of the incidence of 7.55 deg. The reduced frequency was 0.102. The deep stall case is characterized by a mean incidence equal 19.58 deg. and a variation of the incidence of 6.83 deg. The reduced frequency was 0.154. In both cases the Reynolds number was

  3. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    Science.gov (United States)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  4. Concerning the interaction of non-stationary cross-flow vortices in a three-dimensional boundary layer

    Science.gov (United States)

    Bassom, Andrew P.; Hall, Philip

    1990-01-01

    Recently there has been much work devoted to considering some of the many and varied interaction mechanisms which may be operative in three-dimensional boundary layer flows. This paper is concerned with resonant triads of crossflow vortices. The effects of interactions upon resonant triads is examined where each member of the triad has the property of being linearly neutrally stable so that the importance of the interplay between modes can be relatively easily assessed. Modes within the boundary layer flow above a rotating disc are investigated because of the similarity between this disc flow and many important practical flows and, secondly, because the selected flow is an exact solution of the Navier-Stokes equations which makes its theoretical analysis especially attractive. It is demonstrated that the desired triads of linearly neutrally stable modes can exist within the chosen boundary layer flow. Evolution equations are obtained to describe the development of the amplitudes of these modes once the interaction mechanism is accounted for. It is found that the coefficients of the interaction terms within the evolution equations are, in general, given by quite intricate expressions although some elementary numerical work shows that the evaluation of these coefficients is practicable. The basis of the work lends itself to generalization to more complicated boundary layers, and effects of detuning or non-parallelism could be provided for within the asymptotic framework.

  5. The Finiteness of Moffatt vortices

    CERN Document Server

    Kalita, Jiten C; Panda, Swapnendu; Unal, Aynur

    2016-01-01

    Till date, the sequence of vortices present in the solid corners of internal viscous incompressible flows, widely known as Moffatt vortices was thought to be infinite. In this paper, we propose two topological equivalence classes of Moffatt vortices in terms of orientation-preserving homeomorphism as well as critical point theory. We further quantify the centers of vortices as fixed points through Brower fixed point theorem and define boundary of a vortex as circle cell. With the aid of these new developments and some existing theorems in topology, we provide six proofs establishing that the sequence of Moffatt vortices cannot be infinite; in fact it is at most finite.

  6. Topological BPS vortices in a Maxwell-Higgs model with a CPT-odd and Lorentz-violating nonminimal coupling

    CERN Document Server

    Casana, Rodolfo; Mota, Alexsandro Lucena

    2015-01-01

    We have studied the existence of topological self-dual vortices in a nonminimal CPT-odd and Lorentz-violating Maxwell-Higgs model. The Lorentz-violating nonminimal interaction is introduced via a modification of the usual covariant derivative coupling the Higgs and the gauge sectors. The self-dual solutions behave similarly to the Abrikosov-Nielsen-Olesen vortices, are electrically neutral and their total energy is proportional to the quantized magnetic flux.

  7. Deformation temperatures and flow vorticities near the base of the Greater Himalayan Series, Sutlej Valley and Shimla Klippe, NW India

    Science.gov (United States)

    Law, R. D.; Stahr, D. W.; Francsis, M. K.; Ashley, K. T.; Grasemann, B.; Ahmad, T.

    2013-09-01

    We report new deformation temperature and flow vorticity data from the base of the Greater Himalayan Series (GHS) exposed in the Sutlej Valley and Shimla Klippe of NW India. We focus on three groups of transects across the hanging wall of the Main Central Thrust (MCT). In order of relative foreland - hinterland positions, they are the Shimla Klippe, Western and Eastern Sutlej transects. Deformation temperatures indicated by quartz c-axis fabric opening-angles increase both from foreland to hinterland at a given structural distance above the MCT and up structural section from the MCT within individual transects. Deformation temperatures in the immediate hanging wall to the MCT are estimated at ˜510-535, 535-550 and 610 °C on the Shimla, Western Sutlej and Eastern Sutlej transects, respectively. The steepest inferred field gradients in deformation temperatures are recorded adjacent to the MCT and progressively decrease up structural section following a power law relationship. Comparison with temperature estimates based on multi-mineral phase equilibria data suggests that penetrative shearing occurred at close to peak metamorphic conditions. Vorticity analyses indicate that shearing along the base of the GHS occurred under sub-simple shear conditions (Wm values of 0.9-1.0) with a minor component of pure shear.

  8. Fractional Vortices and Lumps

    CERN Document Server

    Eto, Minoru; Gudnason, Sven Bjarke; Konishi, Kenichi; Nagashima, Takayuki; Nitta, Muneto; Ohashi, Keisuke; Vinci, Walter

    2009-01-01

    We study what might be called fractional vortices, vortex configurations with the minimum winding from the viewpoint of their topological stability, but which are characterized by various notable substructures in the transverse energy distribution. The fractional vortices occur in diverse Abelian or non-Abelian generalizations of the Higgs model. The global and local features characterizing these are studied, and we identify the two crucial ingredients for their occurrence - the vacuum degeneracy leading to non-trivial vacuum moduli M, and the BPS nature of the vortices. Fractional vortices are further classified into two kinds. The first type of such vortices appear when M has orbifold Z_n singularities; the second type occurs in systems in which the vacuum moduli space M possesses either a deformed geometry or some singularity. These general features are illustrated with several concrete models.

  9. Numerical modeling of fluidic flow meters

    Science.gov (United States)

    Choudhury, D.; Patel, B. R.

    1992-05-01

    The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.

  10. Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core

    Science.gov (United States)

    Tolstykh, Mikhail; Shashkin, Vladimir; Fadeev, Rostislav; Goyman, Gordey

    2017-05-01

    SL-AV (semi-Lagrangian, based on the absolute vorticity equation) is a global hydrostatic atmospheric model. Its latest version, SL-AV20, provides global operational medium-range weather forecast with 20 km resolution over Russia. The lower-resolution configurations of SL-AV20 are being tested for seasonal prediction and climate modeling. The article presents the model dynamical core. Its main features are a vorticity-divergence formulation at the unstaggered grid, high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude grid with variable resolution in latitude. The accuracy of SL-AV20 numerical solutions using a reduced lat-lon grid and the variable resolution in latitude is tested with two idealized test cases. Accuracy and stability of SL-AV20 in the presence of the orography forcing are tested using the mountain-induced Rossby wave test case. The results of all three tests are in good agreement with other published model solutions. It is shown that the use of the reduced grid does not significantly affect the accuracy up to the 25 % reduction in the number of grid points with respect to the regular grid. Variable resolution in latitude allows us to improve the accuracy of a solution in the region of interest.

  11. Vortical structures in a flume

    Science.gov (United States)

    Gurka, R.; Liberzon, A.; Hetsroni, G.

    2006-03-01

    We report the results of statistical spatial characterization of coherent structures in turbulent boundary layer in a flume. The characterization approach is based on the proper orthogonal decomposition (POD) of vorticity, elucidating large-scale coherent patterns in a turbulent boundary layer. The method was successfully applied to the two- and three-dimensional experimental data extracted from particle image velocimetry (PIV), and multi-plane stereoscopic PIV (XPIV) respectively, and the three-dimensional data from direct numerical simulation (DNS) in a channel flow. The large-scale structure was obtained by using linear combination of POD eigenmodes of vorticity. POD allows for methodological analysis of the properties of the educed structure in the different measurement planes (orthogonal in the case of 2D PIV and parallel in the case of XPIV) and in the different cross-sections of the DNS data. Based on the statistical approach we suggest a conceptual model of large-scale coherent structures in a turbulent boundary layer flow that incorporates the experimental and the numerical results. The proposed conceptual model is a spiral vortical structure attached to the wall and expanding in both the spanwise and the wall-normal directions. Its shape resembles a funnel structure and a `double-cone eddy' concept. The relationship of the model to the structures in the near wall region is presented.

  12. Detecting and tracking eddies in oceanic flows: A vorticity based Euler-Lagrangian method

    Science.gov (United States)

    Vortmeyer-Kley, Rahel; Gräwe, Ulf; Feudel, Ulrike

    2016-04-01

    Algae blooms as recurrent events in the Baltic Sea are an increasing natural hazard. Sandulescu et al. show in numerical simulation in [1] that eddies can play the role of an incubator for an algae bloom. Inside the eddy nutrients and plankton are trapped and can then be transported across rather long distances. To gain insight in mechanisms of algae bloom evolution detection and tracking of eddies is of interest. Based on the idea to interpret an eddy as a region that is bounded by manifolds and has an elliptic fixed point inside them, we develop an Euler-Lagrangian eddytracking tool using the idea of Lagrangian descriptors [2] and the vorticity. To test how well the tool detects eddy tracks and shapes, and estimates eddy lifetimes, the method is applied to a synthetic van Karman-Vortex Street. The results are compared to an eddytracking tool by Nencioli et al. [3]. Even velocity fields incorporated with different types of noise are taken into account to test the robustness of the tool. Finally, both methods are applied to velocity fields of the Baltic Sea. [1] M. Sandulescu, C. Lopez, E. Hernandez-Garcia and U. Feudel, Nonlinear Proc. Geophys., 14, 443-454, (2007). [2] J. Jimenez-Madrid and A. Mancho, Chaos, 19, 013111-1-18, (2009). [3] F. Nencioli, C. Dong, T. Dickey, L. Washburn, and J.C. McWilliams, J. Atmos. Ocean Tech., 27, 564-579, (2010).

  13. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu

    2017-01-05

    The flame-vortex interaction enables the study of basic phenomena that control the coupling between combustion and turbulence. Employing a gas phase reaction mechanism considering polycyclic aromatic hydrocarbons (PAH), a two dimensional counterflow ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a prescribed decaying random velocity field is being investigated. Counterflow nonpremixed flames at low strain rate sooting conditions are considered. Effects of vortices are studied on the flame structures and its sensitivity on the soot formation characteristics. As the vortex rolls up the flame, integrated soot volume fraction is found to be larger for the air-side vortex. A detailed analysis on the flame structure and its influence on the formation of soot were carried out. The results indicate that the larger PAH species contributes to the soot formation in the airside perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation.

  14. Non-linear modelling of monthly mean vorticity time changes: an application to the western Mediterranean

    Directory of Open Access Journals (Sweden)

    M. Finizio

    Full Text Available Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities.

    Key words. Meteorology and atmospheric dynamics · General circulation ocean-atmosphere interactions · Synoptic-scale meteorology

  15. Vorticity amplification near the stagnation point of landing gear wheels

    Science.gov (United States)

    Feltham, G.; Ekmekci, A.

    2014-04-01

    The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non

  16. Hodographic vortices

    Energy Technology Data Exchange (ETDEWEB)

    Moro, Antonio, E-mail: a.moro@lboro.ac.u [School of Mathematics, Loughborough University, Loughborough, Leicestershire, LE11 3TU (United Kingdom)

    2009-08-17

    Vortices are screw phase dislocations associated with helicoidal wave-fronts. In nonlinear optics, vortices arise as singular solutions to the phase-intensity equations of geometric optics. They exist for a general class of nonlinear response functions. In this sense, vortices possess a universal character. Analysis of geometric optics equations on the hodograph plane leads to deformed vortex type solutions that are sensitive to the form of the nonlinearity. The case of a Kerr type nonlinear response is discussed as a specific example.

  17. Vorticity models of ocean surface diffusion in coastal jets and eddies

    Science.gov (United States)

    Cano, D.; Matulka, A.; Sekula, E.

    2010-05-01

    We present and discuss the use of multi-fractal techniques used to investigete vorticity and jet dynamical state of these features detected in the sea surface as well as to identify possible local parametrizations of turbulent diffusion in complex non-homogeneous flows. We use a combined vorticity/energy equation to parametrize mixing at the Rossby Deformation Radius, which may be used even in non Kolmogorov types of flows. The vorticity cascade is seen to be different to the energy cascade and may have important cnsecuences in pollutant dispersion prediction, both in emergency accidental releases and on a day to day operational basis. We also identify different SAR signatures of river plumes near the coast, which are usefull to provide calibrations for the different local configurations that allow to predict the behaviour of different tracers and tensioactives in the coastal sea surface area by means of as a geometrical characterization of the vorticity and velocity maps which induce local mixing and dilution jet processes. The satellite-borne SAR seems to be a good system for the identification of dynamic. lt is also a convenient tool to investigate the eddy structures of a certain area where the effect of bathymetry and local currents are important in describing the ocean surface behavior. Maximum eddy size agrees remarkably well with the limit imposed by the local Rossby deformation radius using the usual thermocline induced stratification, Redondo and Platonov (2000). The Rossby deformation radius, defined as Rd = (N/f)h, where N is the Brunt-Vaisalla frequency, f is the local Coriolis parameter (f=2Osin(lat), where O is the rotation of the earth as function of the latitude), The role of buoyancy may be also detected by seasonal changes in h, the thermocline depth, with these considerations Rd is ranged between 6 and 30 Km. Bezerra M.O., Diez M., Medeiros C. Rodriguez A., Bahia E., Sanchez Arcilla A and Redondo J.M. (1998) "Study on the influence of waves on

  18. Chirality and Z2 vortices in a Heisenberg spin model on the kagome lattice

    Science.gov (United States)

    Domenge, J.-C.; Lhuillier, C.; Messio, L.; Pierre, L.; Viot, P.

    2008-05-01

    The phase diagram of the classical J1-J2 model on the kagome lattice is investigated by using extensive Monte Carlo simulations. In a realistic range of parameters, this model has a low-temperature chiral-ordered phase without long-range spin order. We show that the critical transition marking the destruction of the chiral order is preempted by the first-order proliferation of Z2 point defects. The core energy of these vortices appears to vanish when approaching the T=0 phase boundary, where both Z2 defects and gapless magnons contribute to disordering the system at very low temperatures. This situation might be typical of a large class of frustrated magnets. Possible relevance for real materials is also discussed.

  19. Spin vortices in the Abelian-Higgs model with cholesteric vacuum structure

    Science.gov (United States)

    Peterson, Adam J.; Shifman, Mikhail; Tallarita, Gianni

    2015-12-01

    We continue the study of U(1) vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological Z2 behavior of SO(3) windings, the topological charge of the spin vortices is of the Z type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in 1 + 1 dimensions.

  20. Spin vortices in the Abelian-Higgs model with cholesteric vacuum structure

    CERN Document Server

    Peterson, Adam; Tallarita, Gianni

    2015-01-01

    We continue the study of $U(1)$ vortices with cholesteric vacuum structure. A new class of solutions is found which represent global vortices of the internal spin field. These spin vortices are characterized by a non-vanishing angular dependence at spatial infinity, or winding. We show that despite the topological $\\mathbb{Z}_2$ behavior of $SO(3)$ windings, the topological charge of the spin vortices is of the $\\mathbb{Z}$ type in the cholesteric. We find these solutions numerically and discuss the properties derived from their low energy effective field theory in $1+1$ dimensions.

  1. Analysis of Secondary Flows in Centrifugal Impellers

    OpenAIRE

    2005-01-01

    Secondary flows are undesirable in centrifugal compressors as they are a direct cause for flow (head) losses, create nonuniform meridional flow profiles, potentially induce flow separation/stall, and contribute to impeller flow slip; that is, secondary flows negatively affect the compressor performance. A model based on the vorticity equation for a rotating system was developed to determine the streamwise vorticity from the normal and binormal vorticity components (which are known from the me...

  2. Mechanical picture of the linear transient growth of vortical perturbations in incompressible smooth shear flows

    Science.gov (United States)

    Chagelishvili, George; Hau, Jan-Niklas; Khujadze, George; Oberlack, Martin

    2016-08-01

    The linear dynamics of perturbations in smooth shear flows covers the transient exchange of energies between (1) the perturbations and the basic flow and (2) different perturbations modes. Canonically, the linear exchange of energies between the perturbations and the basic flow can be described in terms of the Orr and the lift-up mechanisms, correspondingly for two-dimensional (2D) and three-dimensional (3D) perturbations. In this paper the mechanical basis of the linear transient dynamics is introduced and analyzed for incompressible plane constant shear flows, where we consider the dynamics of virtual fluid particles in the framework of plane perturbations (i.e., perturbations with plane surfaces of constant phase) for the 2D and 3D case. It is shown that (1) the formation of a pressure perturbation field is the result of countermoving neighboring sets of incompressible fluid particles in the flow, (2) the keystone of the energy exchange mechanism between the basic flow and perturbations is the collision of fluid particles with the planes of constant pressure in accordance with the classical theory of elastic collision of particles with a rigid wall, making the pressure field the key player in this process, (3) the interplay of the collision process and the shear flow kinematics describes the transient growth of plane perturbations and captures the physics of the growth, and (4) the proposed mechanical picture allows us to reconstruct the linearized Euler equations in spectral space with a time-dependent shearwise wave number, the linearized Euler equations for Kelvin modes. This confirms the rigor of the presented analysis, which, moreover, yields a natural generalization of the proposed mechanical picture of the transient growth to the well-established linear phenomenon of vortex-wave-mode coupling.

  3. Fully nonlinear mode competitions of nearly bicritical spiral or Taylor vortices in Taylor-Couette flow

    Science.gov (United States)

    Deguchi, K.; Altmeyer, S.

    2013-04-01

    Interactions between nearly bicritical modes in Taylor-Couette flow, which have been concerned with the framework of weakly nonlinear theory, are extended to fully nonlinear Navier-Stokes computation. For this purpose, a standard Newton solver for axially periodic flows is generalized to compute any mixed solutions having up to two phases, which typically arise from interactions of two spiral or Taylor vortex modes. Also, a simple theory is developed in order to classify the mixed solutions. With these methods, we elucidate pattern formation phenomena, which have been observed in a Taylor-Couette flow experiment. Focusing on the counter-rotating parameter range, all possible classes of interaction of various solutions with different azimuthal and axial wave numbers are considered within our computational restriction, and we observe numerous connection branches, e.g., footbridge solutions. Some of the mixed solutions result in a three-dimensional wavy spiral solution with axial relative periodicity or an axially doubly periodic toroidally closed vortex solution. The possible connection of the former solution family to spiral turbulence, which has been observed in highly counter-rotating Taylor-Couette flow, is discussed.

  4. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.

    Science.gov (United States)

    Jardin, T; David, L

    2014-07-01

    While a leading-edge vortex on an infinite translating wing is shed after a short distance of travel, its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust attachment. The latter explains the aerodynamic lift generated by such biological species. Here we analyze the mechanisms responsible for leading-edge vortex attachment. We compute the Navier-Stokes solution of the flow past a finite span wing (i) embedded in a uniform oncoming flow, (ii) embedded in a spanwise varying oncoming flow, and (iii) revolving about its root. We show that over flapping amplitudes typical of insect flight (ϕ = 120°), the spanwise gradient of the local wing speed may suffice in maintaining leading-edge vortex attachment. We correlate this result with the development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading-edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects.

  5. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  6. Vortices and Vortical Structures in Internal Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    RudolfDvorak

    1997-01-01

    The paper aims at summarizing the author's recent phenomenological study of the origin,development and identification of vortical structures in internal aerodynamics.A connection between evolution of these structures and flow separation in closed curved channels is also discussed.It has been shown that in real fluids the individual vortex cores very sonn lose their identity and merge into a new dissipative structure,the properties of which still have to be defined.

  7. Uncharged compactlike and fractional Lorentz-violating BPS vortices in the CPT-even sector of the standard model extension

    Science.gov (United States)

    Miller, C.; Casana, R.; Ferreira, M. M., Jr.; da Hora, E.

    2012-09-01

    We have investigated and verified the existence of stable uncharged Bogomol’nyi-Prasad-Sommerfeld (BPS) vortices in the framework of an Abelian Maxwell-Higgs model supplemented with CPT-even and Lorentz-violating (LV) terms belonging to the gauge and Higgs sectors of the standard model extension. The analysis is performed in two situations: first, by considering the Lorentz violation only in the gauge sector, and then in both gauge and Higgs sectors. In the first case, it is observed that the model supports vortices somehow equivalent to the ones appearing in a dielectric medium. The Lorentz violation controls the radial extension (core of the solution) and the magnetic field amplitude of the Abrikosov-Nielsen-Olesen vortices, yielding compactlike defects in an alternative and simpler way than that of k-field models. At the end, we consider the Lorentz-violating terms in the gauge and Higgs sectors. It is shown that the full model also supports compactlike uncharged BPS vortices in a modified vacuum, but this time there are two LV parameters controlling the defect structure. Moreover, an interesting novelty is introduced by the LV-Higgs sector: fractional vortex solutions.

  8. Evolution of vortical structures in a curved artery model with non-Newtonian blood-analog fluid under pulsatile inflow conditions

    Science.gov (United States)

    Najjari, Mohammad Reza; Plesniak, Michael W.

    2016-06-01

    Steady flow and physiological pulsatile flow in a rigid 180° curved tube are investigated using particle image velocimetry. A non-Newtonian blood-analog fluid is used, and in-plane primary and secondary velocity fields are measured. A vortex detection scheme ( d 2-method) is applied to distinguish vortical structures. In the pulsatile flow case, four different vortex types are observed in secondary flow: deformed-Dean, Dean, Wall and Lyne vortices. Investigation of secondary flow in multiple cross sections suggests the existence of vortex tubes. These structures split and merge over time during the deceleration phase and in space as flow progresses along the 180° curved tube. The primary velocity data for steady flow conditions reveal additional vortices rotating in a direction opposite to Dean vortices—similar to structures observed in pulsatile flow—if the Dean number is sufficiently high.

  9. Sheared Flow Driven Drift Instability and Vortices in Dusty Plasmas with Opposite Polarity

    Science.gov (United States)

    Mushtaq, A.; Shah, AttaUllah; Ikram, M.; Clark, R. E. H.

    2016-02-01

    Low-frequency electrostatic drift waves are studied in an inhomogeneous dust magnetoplasma containing dust with components of opposite polarity. The drift waves are driven by the magnetic-field-aligned (parallel) sheared flows in the presence of electrons and ions. Due to sheared flow in the linear regime, the electrostatic dust drift waves become unstable. The conditions of mode instability, with the effects of dust streaming and opposite polarity, are studied. These are excited modes which gain large amplitudes and exhibit interactions among themselves. The interaction is governed by the Hasegawa-Mima (HM) nonlinear equation with vector nonlinearity. The stationary solutions of the HM equation in the form of a vortex chain and a dipolar vortex, including effects of dust polarity and electron (ion) temperatures, are studied. The relevance of the present work to space and laboratory four component dusty plasmas is noted.

  10. Three-Dimensional Interactions and Vortical Flows with Emphasis on High Speeds

    Science.gov (United States)

    1980-07-01

    Hsia, Seifert, and Karamcheti 1964; Maurer 1966; Zakkay, Erdos , and Calarese 1968; Driftmyer 1974). In terms of upstream effect, the "solid blockage...practical use. At the heart of this review is -the conviction that separation is the prime ingredient of fluid motion determining the lift, drag, and...Zubkov, and Panov (1967); Zakkay, Erdos , and Calarese (1968); Werle et al. (1970); and Driftmeyer (1974). 4.5 Corner Flows Involving Swept-Shock

  11. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow

    KAUST Repository

    Cheng, X.

    2011-12-23

    Colloidal suspensions self-assemble into equilibrium structures ranging from face- and body-centered cubic crystals to binary ionic crystals, and even kagome lattices. When driven out of equilibrium by hydrodynamic interactions, even more diverse structures can be accessed. However, mechanisms underlying out-of-equilibrium assembly are much less understood, though such processes are clearly relevant in many natural and industrial systems. Even in the simple case of hard-sphere colloidal particles under shear, there are conflicting predictions about whether particles link up into string-like structures along the shear flow direction. Here, using confocal microscopy, we measure the shear-induced suspension structure. Surprisingly, rather than flow-aligned strings, we observe log-rolling strings of particles normal to the plane of shear. By employing Stokesian dynamics simulations, we address the mechanism leading to this out-of-equilibrium structure and show that it emerges from a delicate balance between hydrodynamic and interparticle interactions. These results demonstrate a method for assembling large-scale particle structures using shear flows.

  12. Theory of Concentrated Vortices

    DEFF Research Database (Denmark)

    Alekseenko, Sergey; Kuibin, Pavel; Okulov, Valery

    This book presents comprehensive and authoritative coverage of the wide field of concentrated vortices observed in nature and technique. The methods for research of their kinematics and dynamics are considered. Special attention is paid to the flows with helical symmetry. The authors have describ...

  13. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  14. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-03-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  15. THERMAL EFFECTIVENESS OF THE GAS FLOW VORTICAL HEATRELEASE INTENSIFICATION AT AXIAL AND TRANSVERSAL FLOWING-AROUND THE ROUND-TUBULAR SURFACES Part 2

    Directory of Open Access Journals (Sweden)

    V. B. Kuntysh

    2015-01-01

    Full Text Available The paper demonstrates the fact that in valuating the actual heat efficiency from utilizing the vortical heat-release intensification it is necessary to account for the increase of heatreleasing area of the tube with the corresponding lacunae (hollows, lunules. It may vary from 4 to 280 % as a function of their geometrical parameters which causes heat-release increasing with its simultaneous growth from vortex formation in the boundary-layer flow by the swirls generated by lunule turbulizers. For the tube of axial flow-around with hollows applied on the outer surface the vortex intensification enhances the thermal effectiveness up to 1,39 times, and in the case of the transversal flow-around tube banks with lunuled tube outer surface it does not exceed 29 % at Re = 5000. With Re number growing to 14000 the energy effect tangibly declines to 6 %.The thermal effectiveness of the vortex intensification with spherical lunules on the tube inside surface and the air moving inside does not exceed 13 % in the interval Re = (1−2 ⋅ 104 , which is distinctive for air the preheaters of steam-boilers. However, a greater energy effect (up to 33 % for the axial flowing is attained from emerging saliences on the tube inside surface beneath the spherical lacunae on the outside. The authors establish that employing discrete roughness in the form of transverse circular saliences (diaphragms allows attaining much greater heat-emission intensification (up to 70 % in the interval of Re = (10−100 ⋅ 103 as compared to the smooth tube. The paper shows that physical principles of the heat-emission vortex intensification by way of lunuling the round tubular surfaces differentiate from those applying artificial limited roughness in the form of pyramid frusta on the tube outside surfaces flowed around by the transverse flow

  16. Application of the VORTFIND algorithm for the identification of vortical flow features around complex three-dimensional geometries

    OpenAIRE

    Phillips, A B; Turnock, S.R.

    2013-01-01

    Accurate prediction of the hydrodynamic forces and moments acting on a manoeuvring marine vehicle using Reynolds averaged Navier–Stokes simulations requires sufficient mesh resolution to capture off-body vortical structures. Because the path of these structures is not known a priori, a vortex identification and capture strategy is required alongside an iterative mesh adaption process. An improved version of the VORTFIND algorithm, which can identify multiple vortices of variable strength and ...

  17. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  18. 4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Schäfer, Michal; Humphries, Stephen; Stenmark, Kurt R; Kheyfets, Vitaly O; Buckner, J Kern; Hunter, Kendall S; Fenster, Brett E

    2017-04-27

    To investigate the possibility that vorticity assessed by four-dimensional flow cardiac magnetic resonance (4D-Flow CMR) in the left ventricle of patients with mild-to-moderate chronic obstructive pulmonary disease (COPD) is a potential marker of early LV diastolic dysfunction (LVDD) and more sensitive than standard echocardiography, and whether changes in vorticity are associated with quantitative computed tomography (CT) and clinical markers of COPD, and right ventricular (RV) echocardiographic markers indicative of ventricular interdependency. Sixteen COPD patients with presumptive LVDD and 10 controls underwent same-day 4D-Flow CMR and Doppler echocardiography to quantify early and late diastolic vorticity as well as standard evaluation for LVDD. Furthermore, all patients underwent detailed CT analysis for COPD markers including percent emphysema and air trapping. The 4D-Flow CMR derived diastolic vorticity measures were correlated with CT measures, standard clinical and CMR markers, and echocardiographic diastolic RV metrics. Early diastolic vorticity was significantly reduced in COPD patients (P < 0.0001) with normal left ventricular (LV) mass, geometry, systolic function, and no or mild signs of Doppler LVDD when compared with controls. Vorticity significantly differentiated COPD patients without echocardiographic signs of LVDD (n = 11) from controls (P < 0.0001), and from COPD patients with stage I LVDD (n = 5) (P < 0.0180). Vorticity markers significantly correlated with CT computed measures, CMR-derived RV ejection fraction, echocardiographic RV diastolic metrics, and 6-minute walk test. 4D-Flow CMR derived diastolic vorticity is reduced in patients with mild-to-moderate COPD and no or mild signs of LVDD, implying early perturbations in the LV flow domain preceding more obvious mechanical changes (i.e. stiffening and dilation). Furthermore, reduced LV vorticity appears to be driven by COPD induced changes in lung tissue and parallel RV

  19. Data flow modeling techniques

    Science.gov (United States)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  20. Ion-Acoustic Vortices in Two-Electron-Temperature Magnetoplasma with Cairn's Distributed Electrons and in the Presence of Ion Shear Flow

    Science.gov (United States)

    Haque, Q.; Mirza, Arshad M.; Iqbal, Javed

    2016-04-01

    Linear and nonlinear characteristics of electrostatic waves in a multicomponent magnetoplasma comprising of Boltzmann distributed electrons, Cairn's distributed hot electrons, and cold dynamic ions are studied. It is found that the effect of superthermal electrons, ion-neutral collisions, and ion shear flow modifies the propagation of ion-acoustic and drift waves. The growth rate of the ion shear flow instability varies with the addition of Cairn's distributed hot electrons. It is also investigated that the behavior of different type of vortices changes with the inclusion of superthermal hot electrons. The relevance of this investigation in space plasmas such as in auroral region and geomagnetic tail is also pointed out.

  1. Restrictions on the geometry of the periodic vorticity equation

    CERN Document Server

    Escher, Joachim

    2010-01-01

    We prove that several evolution equations arising as mathematical models for fluid motion cannot be realized as metric Euler equations on the Lie group of all smooth and orientation-preserving diffeomorphisms on the circle. These include the quasi-geostrophic model equation, the axisymmetric Euler flow in higher space dimensions, and De Gregorio's vorticity model equation.

  2. Three-dimensional inspiratory flow in a double bifurcation airway model

    Science.gov (United States)

    Jalal, Sahar; Nemes, Andras; Van de Moortele, Tristan; Schmitter, Sebastian; Coletti, Filippo

    2016-09-01

    The flow in an idealized airway model is investigated for the steady inhalation case. The geometry consists of a symmetric planar double bifurcation that reflects the anatomical proportions of the human bronchial tree, and a wide range of physiologically relevant Reynolds numbers ( Re = 100-5000) is considered. Using magnetic resonance velocimetry, we analyze the three-dimensional fields of velocity and vorticity, along with flow descriptors that characterize the longitudinal and lateral dispersion. In agreement with previous studies, the symmetry of the flow partitioning is broken even at the lower Reynolds numbers, and at the second bifurcation, the fluid favors the medial branches over the lateral ones. This trend reaches a plateau around Re = 2000, above which the turbulent inflow results in smoothed mean velocity gradients. This also reduces the streamwise momentum flux, which is a measure of the longitudinal dispersion by the mean flow. The classic Dean-type counter-rotating vortices are observed in the first-generation daughter branches as a result of the local curvature. In the granddaughter branches, however, the secondary flows are determined by the local curvature only for the lower flow regimes ( Re ≤ 250), in which case the classic Dean mechanism prevails. At higher flow regimes, the field is instead dominated by streamwise vortices extending from the daughter into the medial granddaughter branches, where they rotate in the opposite direction with respect to Dean vortices. Circulation and secondary flow intensity show a similar trend as the momentum flux, increasing with Reynolds number up to Re = 2000 and then dropping due to turbulent dissipation of vorticity. The streamwise vortices interact both with each other and with the airway walls, and for Re > 500 they can become stronger in the medial granddaughter than in the upstream daughter branches. With respect to realistic airway models, the idealized geometry produces weaker secondary flows

  3. Multicomponent flow modeling

    Institute of Scientific and Technical Information of China (English)

    GIOVANGIGLI; Vincent

    2012-01-01

    We present multicomponent flow models derived from the kinetic theory of gases and investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial differential equations.We address the Cauchy problem for smooth solutions as well as the existence of deflagration waves,also termed anchored waves.We further discuss related models which have a similar hyperbolic-parabolic structure,notably the SaintVenant system with a temperature equation as well as the equations governing chemical equilibrium flows.We next investigate multicomponent ionized and magnetized flow models with anisotropic transport fluxes which have a different mathematical structure.We finally discuss numerical algorithms specifically devoted to complex chemistry flows,in particular the evaluation of multicomponent transport properties,as well as the impact of multicomponent transport.

  4. Vorticity in analogue gravity

    CERN Document Server

    Cropp, Bethan; Turcati, Rodrigo

    2015-01-01

    In the analogue gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in a curved spacetime. This description is possible only when the fluid under consideration is barotropic, inviscid and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric which depends algebrically on the local speed of sound, density and the background flow velocity, the latter assumed to be vorticity free. In this work we provide an straightforward extension in order to go beyond the irrotational constraint. Using a charged --- relativistic and non-relativistic --- Bose--Einstein condensate as a physical system, we show that in the low momentum limit and performing the eikonal approximation we can derive a d'Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on a flow velocity in the presence of vorticity.

  5. Vorticity in analog gravity

    Science.gov (United States)

    Cropp, Bethan; Liberati, Stefano; Turcati, Rodrigo

    2016-06-01

    In the analog gravity framework, the acoustic disturbances in a moving fluid can be described by an equation of motion identical to a relativistic scalar massless field propagating in curved space-time. This description is possible only when the fluid under consideration is barotropic, inviscid, and irrotational. In this case, the propagation of the perturbations is governed by an acoustic metric that depends algebrically on the local speed of sound, density, and the background flow velocity, the latter assumed to be vorticity-free. In this work we provide a straightforward extension in order to go beyond the irrotational constraint. Using a charged—relativistic and nonrelativistic—Bose-Einstein condensate as a physical system, we show that in the low-momentum limit and performing the eikonal approximation we can derive a d’Alembertian equation of motion for the charged phonons where the emergent acoustic metric depends on flow velocity in the presence of vorticity.

  6. Turbulence Modeling of Flows with Extensive Crossflow Separation

    Directory of Open Access Journals (Sweden)

    Argyris G. Panaras

    2015-07-01

    Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.

  7. A review of flow modeling for dense medium cyclones

    Energy Technology Data Exchange (ETDEWEB)

    M. Narasimha; M.S. Brennan; P.N. Holtham [Tata Steel, Jamshedpur (India). R& amp; D Division

    2006-06-15

    A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.

  8. Cyclones and attractive streaming generated by acoustical vortices.

    Science.gov (United States)

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2014-07-01

    Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating "attractive streaming" with the flow directed toward the transducer. This opens perspectives for contactless vortical flow control.

  9. Cyclones and attractive streaming generated by acoustical vortices

    CERN Document Server

    Riaud, Antoine; Thomas, Jean-Louis; Matar, Olivier Bou

    2014-01-01

    Acoustical and optical vortices have attracted large interest due to their ability in capturing and manipulating particles with the use of the radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating attractive streaming with a flow directed toward the transducer. This opens perspectives for contact-less vortical flow control.

  10. Vorticity production through rotation, shear and baroclinicity

    CERN Document Server

    Del Sordo, Fabio

    2010-01-01

    In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulations to investigate the various effects in isolation. We find that for slow rotation, vorticity production in an isothermal gas is small in the sense that the ratio of the root-mean-square values of vorticity and velocity is small compared with the wavenumber of the energy carrying motions. For Coriolis numbers above a certain level, vorticity production saturates at a value where the aforementioned ratio becomes comparable with the wavenumber of the energy carrying motions. Shear also raises the vorticity production, but...

  11. Variability modes in core flows inverted from geomagnetic field models

    CERN Document Server

    Pais, Maria A; Schaeffer, Nathanaël

    2014-01-01

    We use flows that we invert from two geomagnetic field models spanning centennial time periods (gufm1 and COV-OBS), and apply Principal Component Analysis and Singular Value Decomposition of coupled fields to extract the main modes characterizing their spatial and temporal variations. The quasi geostrophic flows inverted from both geomagnetic field models show similar features. However, COV-OBS has a less energetic mean flow and larger time variability. The statistical significance of flow components is tested from analyses performed on subareas of the whole domain. Bootstrapping methods are also used to extract robust flow features required by both gufm1 and COV-OBS. Three main empirical circulation modes emerge, simultaneously constrained by both geomagnetic field models and expected to be robust against the particular a priori used to build them. Mode 1 exhibits three large robust vortices at medium/high latitudes, with opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interesting...

  12. Direct Measurement of Planar Flow Rate in Excised Canine Larynx Model

    Science.gov (United States)

    Oren, Liran; Khosla, Sid; Dembinski, Doug; Ying, Jun; Gutmark, Ephraim

    2014-01-01

    Objective During phonation, skewing of the glottal flow waveform (Q) during phonation refers to a phenomenon that occurs when the flow decelerates more rapidly than it accelerates. This skewing is clinically important because it increases the glottal efficiency, which is defined by the acoustic intensity (units are sound pressure level or SPL) divided by the subglottal pressure. Current theoretical models predict that the only mechanism to cause skewing of Q involves changes in the vocal tract inertance. The purpose of the current work is to show that other factors at the vocal fold level can also cause skewing of Q and to determine if the acoustic intensity is correlated with MFDR. Study design Basic Science Methods Intraglottal geometry and velocity measurements were taken in five canine larynges at the mid-membranous plane using two-dimensional particle imaging velocimetry (PIV). The flow rate at the glottal exit was computed from the PIV measurements for low, medium, and high subglottal pressures. Results Vortices form in the superior aspect of the divergent glottis during closing. These vortices produce negative pressure that increases both the maximum value of Q and the rapid deceleration of the flow. The skewing of the flow rate is increased as the intraglottal vortices are increased by increasing the subglottal pressure. The increase in the acoustic intensity is highly correlated with certain properties of the flow rate waveform, such as maximum flow rate. Conclusion Flow skewing and the acoustic intensity can be increased by increasing the intraglottal vortices. PMID:25093928

  13. Two Optical Techniques Appropriate for Visualizing the Steady/Unsteady Vortical Flow Past a Highly Swept Delta—Wing Equipped with Double Vortex—Flaps in Low and High Speed Wind—Tunnel

    Institute of Scientific and Technical Information of China (English)

    GongNI; DingdingXIN; 等

    1998-01-01

    For a better understanding of the vortical flow past a highly swept deltawing equipped with double vortex-flaps,two optical techniques including the Laser-light-sheet with artificial particals put in the test-section and the Schlieren photography were used for steady/unsteady flow visualization in the low and high speed wind-tunnel respectively.SIne these techniques are seldom used for vortical flow visualization in the mentioned cases in our country.our success has the significance to indicate that they are appropriate for visualizing the development ,mutual interaction and bresk-down of the vortices appear in the complex flow field.In this paper,besides the experimental procedure,merits and demerits of these two techniques are discussed through comparisons.

  14. CONDITIONAL FLOW STATISTICS AND ALIGNMENT OF PRINCIPAL STRAIN RATES, VORTICITY, AND SCALAR GRADIENTS IN A TURBULENT NONPREMIXED JET FLAME

    KAUST Repository

    Attili, Antonio

    2015-06-30

    The alignment of vorticity and gradients of conserved and reactive scalars with the eigenvectors of the strain rate tensor (i.e., the principal strains) is investigated in a direct numerical simulation of a turbulent nonpremixed flame achieving a Taylor’s scale Reynolds number in the range 100≤Reλ≤150 (Attili et al. Comb. Flame, 161, 2014). The vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain. These alignment statistics are in almost perfect agreement with those in homogeneous isotropic turbulence (Ashurst et al. Physics of Fluids 30, 1987) and differ significantly from the results obtained in other nonpremixed flames in which vorticity alignment with the most extensive strain was observed (Boratavet al. Physics of Fluids 8, 1996). The gradients of conserved and reactive scalars align with the most compressive strain. It is worth noting that conditioning on the local values of the mixture fraction, or equivalently conditioning on the distance from the flame sheet, does not affect the statistics. Our results suggest that turbulence overshadows the effects of heat release and chemical reactions. This may be due to the larger Reynolds number achieved in the present study compared to that in previous works.

  15. Analysis of scalar dissipation in terms of vorticity geometry in isotropic turbulence

    CERN Document Server

    Gonzalez, Michel

    2016-01-01

    The mechanisms promoting scalar dissipation through scalar gradient production are scrutinized in terms of vorticity alignment with respect to strain principal axes. For that purpose, a stochastic Lagrangian model for the velocity gradient tensor and the scalar gradient vector is used. The model results show that the major part of scalar dissipation occurs for stretched vorticity, namely when the vorticity vector aligns with the extensional and intermediate strain eigenvectors. More specifically, it appears that the mean scalar dissipation is well represented by the sample defined by alignment with the extensional strain, while the most intense scalar dissipation is promoted by the set of events for which vorticity aligns with the intermediate strain. This difference is explained by rather subtle mechanisms involving the statistics of both the strain intensities and the scalar gradient alignment resulting from these special alignments of vorticity. The analysis allowing for the local flow structure confirms t...

  16. Vorticity in holographic fluids

    CERN Document Server

    Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2012-01-01

    In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.

  17. Transport hub flow modelling

    OpenAIRE

    Despagne, Wilfried; Frenod, Emmanuel

    2014-01-01

    Purpose: The purpose of this paper is to investigate the road freight haulage activity. Using the physical and data flow information from a freight forwarder, we intend to model the flow of inbound and outbound goods in a freight transport hub. Approach: This paper presents the operation of a road haulage group. To deliver goods within two days to any location in France, a haulage contractor needs to be part of a network. This network handles the processing of both physical goods and data. We...

  18. Vorticity production through rotation, shear and baroclinicity

    OpenAIRE

    Del Sordo, Fabio; Brandenburg, Axel

    2010-01-01

    In the absence of rotation and shear, and under the assumption of constant temperature or specific entropy, purely potential forcing by localized expansion waves is known to produce irrotational flows that have no vorticity. Here we study the production of vorticity under idealized conditions when there is rotation, shear, or baroclinicity, to address the problem of vorticity generation in the interstellar medium in a systematic fashion. We use three-dimensional periodic box numerical simulat...

  19. "Explosively growing" vortices of unstably stratified atmosphere

    Science.gov (United States)

    Onishchenko, O. G.; Horton, W.; Pokhotelov, O. A.; Fedun, V.

    2016-10-01

    A new type of "explosively growing" vortex structure is investigated theoretically in the framework of ideal fluid hydrodynamics. It is shown that vortex structures may arise in convectively unstable atmospheric layers containing background vorticity. From an exact analytical vortex solution the vertical vorticity structure and toroidal speed are derived and analyzed. The assumption that vorticity is constant with height leads to a solution that grows explosively when the flow is inviscid. The results shown are in agreement with observations and laboratory experiments

  20. BPS vortices in the Abelian Maxwell-Carroll-Field-Jackiw-Higgs model with fractional magnetic fl ux

    Energy Technology Data Exchange (ETDEWEB)

    Casana, Rodolfo; Lazar, Guillermo [Universidade Federal do Maranhao, Sao Luis (Brazil)

    2013-07-01

    Full text: In the last years investigations of field theories involving the spontaneous breaking of Lorentz symmetry have been studied in framework of Standard Model Extension. In this context we study the existence of Abrikosov - Nielsen - Olesen - like BPS vortices. Specifically, we analyze Maxwell-Higgs model supplemented by Lorentz violating (LV) terms in both sectors. The LV term in the Higgs sector is CPT-even whereas the gauge sector includes the Carroll-Field-Jackiw term which is CPT-odd. An important consequence due to LV term introduced in the Higgs sector is the fractionalization of the magnetic flux. Among other effects, LV coefficients rule the amplitude and spatial extension of the topological defect. Under appropriated coordinate rescaling and field redefinition BPS equations are similar to the ones of Maxwell - Chern - Simons - Higgs (MCSH) model. The difference appears in Gauss's law which contains a parameter dependent only in Higgs's LV coefficients. The Carroll-Field-Jackiw parameter couples the magnetic and electric sectors such as happens in models containing the Chern-Simons term, hence the BPS vortices are electrically charged. We emphasize that Lorentz-violating theories are somewhat equivalent to generalized Maxwell-Higgs models -in the context of effective field theories which could describe vortex configurations in continuous dielectric media. (author)

  1. Analysis of Secondary Flows in Centrifugal Impellers

    Directory of Open Access Journals (Sweden)

    Brun Klaus

    2005-01-01

    Full Text Available Secondary flows are undesirable in centrifugal compressors as they are a direct cause for flow (head losses, create nonuniform meridional flow profiles, potentially induce flow separation/stall, and contribute to impeller flow slip; that is, secondary flows negatively affect the compressor performance. A model based on the vorticity equation for a rotating system was developed to determine the streamwise vorticity from the normal and binormal vorticity components (which are known from the meridional flow profile. Using the streamwise vorticity results and the small shear-large disturbance flow method, the onset, direction, and magnitude of circulatory secondary flows in a shrouded centrifugal impeller can be predicted. This model is also used to estimate head losses due to secondary flows in a centrifugal flow impeller. The described method can be employed early in the design process to develop impeller flow shapes that intrinsically reduce secondary flows rather than using disruptive elements such as splitter vanes to accomplish this task.

  2. On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle.

    Science.gov (United States)

    Le, Trung Bao; Sotiropoulos, Fotis

    2012-09-01

    We study the formation of the mitral vortex ring during early diastolic filling in a patient-specific left ventricle using direct numerical simulation. The geometry of the left ventricle is reconstructed from Magnetic Resonance Imaging (MRI). The heart wall motion is modeled by a cell-based activation methodology, which yields physiologic kinematics with heart rate equal to 52 beats per minute. We show that the structure of the mitral vortex ring consists of the main vortex ring and trailing vortex tubes, which originate at the heart wall. The trailing vortex tubes play an important role in exciting twisting circumferential instability modes of the mitral vortex ring. At the end of diastole, the vortex ring impinges on the wall and the intraventricular flow transitions to a weak turbulent state. Our results can be used to help interprete and analyze three-dimensional in-vivo flow measurements obtained with MRI.

  3. Vortices revealed: Swimming faster

    Science.gov (United States)

    van Houwelingen, Josje; van de Water, Willem; Kunnen, Rudie; van Heijst, Gertjan; Clercx, Herman

    2016-11-01

    Understanding and optimizing the propulsion in human swimming requires insight into the hydrodynamics of the flow around the swimmer. Experiments and simulations addressing the hydrodynamics of swimming have been conducted in studies before, including the visualization of the flow using particle image velocimetry (PIV). The main objective in this study is to develop a system to visualize the flow around a swimmer in practice inspired by this technique. The setup is placed in a regular swimming pool. The use of tracer particles and lasers to illuminate the particles is not allowed. Therefore, we choose to work with air bubbles with a diameter of 4 mm, illuminated by ambient light. Homogeneous bubble curtains are produced by tubes implemented in the bottom of the pool. The bubble motion is captured by six cameras placed in underwater casings. A first test with the setup has been conducted by pulling a cylinder through the bubbles and performing a PIV analysis. The vorticity plots of the resulting data show the expected vortex street behind the cylinder. The shedding frequency of the vortices resembles the expected frequency. Thus, it is possible to identify and follow the coherent structures. We will discuss these results and the first flow measurements around swimmers.

  4. An eddy closure for potential vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Todd D [Los Alamos National Laboratory

    2009-01-01

    The Gent-McWilliams (GM) parameterization is extended to include a direct influence in the momentum equation. The extension is carried out in two stages; an analysis of the inviscid system is followed by an analysis of the viscous system. In the inviscid analysis the momentum equation is modified such that potential vorticity is conserved along particle trajectories following a transport velocity that includes the Bolus velocity in a manner exactly analogous to the continuity and tracer equations. In addition (and in contrast to traditional GM closures), the new formulation of the inviscid momentum equation results in a conservative exchange between potential and kinetic forms of energy. The inviscid form of the eddy closure conserves total energy to within an error proportional to the time derivative of the Bolus velocity. The hypothesis that the viscous term in the momentum equation should give rise to potential vorticity being diffused along isopycnals in a manner analogous to other tracers is examined in detail. While the form of the momentum closure that follows from a strict adherence to this hypothesis is not immediately interpretable within the constructs of traditional momentum closures, three approximations to this hypothesis results in a form of dissipation that is consistent with traditional Laplacian diffusion. The first two approximations are that relative vorticity, not potential vorticity, is diffused along isopyncals and that the flow is in approximate geostrophic balance. An additional approximation to the Jacobian term is required when the dissipation coefficient varies in space. More importantly, the critique of this hypothesis results in the conclusion that the viscosity parameter in the momentum equation should be identical to the tradition GM closure parameter {Kappa}. Overall, we deem the viscous form of the eddy closure for potential vorticity as a viable closure for use in ocean circulation models.

  5. Evolution of turbulence and in-plane vortices in the near field flow behind multi-scale planar grids

    Science.gov (United States)

    Gan, L.; Krogstad, P.-Å.

    2016-08-01

    In this experimental work, we carry out detailed two-dimensional particle image velocimetry investigations for the near field wakes behind a conventional and two multi-scale planar grids, using stitched camera fields of view. Statistical independent measurements are conducted focusing on the first few mesh distances downstream of the grid. It is found that the multiple integral length scales originated from the grids loose their importance on the turbulence development after about three mesh distances downstream, much earlier than the distance where the turbulence becomes homogeneous. The largest eddy size, represented by the integral length scales, does not show clear differences in its growth rate among the three grids after an initial development of three times the largest grid size downstream. Nevertheless, when examining individual vortex behaviours using conditional averaging and filtering processes, clear differences are found. The grids are found to have different decay rates of peak vorticity and projected vortex strengths. Despite these differences, the in-plane vorticity correlation function reveals that the mean vortex shape of all the grids shows a universal near-Gaussian pattern which does not change much as the turbulence decays.

  6. 叶片形状对涡轮桨搅拌槽内尾涡特性的影响%Effects of the Blade Shape on the Trailing Vortices in Liquid Flow Generated by Disc Turbines*

    Institute of Scientific and Technical Information of China (English)

    赵静; 高正明; 包雨云

    2011-01-01

    Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their relationship with turbulence properties in a stirred tank of 0.48 m diameter, agitated by four different disc turbines, including Rushton turbine, concaved blade disk turbine, half elliptical blade disk turbine, and parabolic blade disk turbine. Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail. The location, size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the mailing vortex characteristics. The larger curvature resulted in longer residence time of the vortex at the impeller tip, bigger distance between the upper and lower vortices and longer vortex life, also leads to smaller and stronger vorfces. In addition, the turbulent kinetic energy and turbulent energy dissipation in the discharge flow were determined and discussed. High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them. Although restricted to single phase flow, the presented results are essential for reliable design and scale-up of stirred tank with disc turbines.

  7. Vortices around Dragonfly Wings

    OpenAIRE

    Kweon, Jihoon; Choi, Haecheon

    2009-01-01

    Dragonfly beats its wings independently, resulting in its superior maneuverability. Depending on the magnitude of phase difference between the fore- and hind-wings of dragonfly, the vortical structures and their interaction with wings become significantly changed, and so does the aerodynamic performance. In this study, we consider hovering flights of modelled dragonfly with three different phase differences (phi=-90, 90, 180 degrees). The three-dimensional wing shape is based on that of Aesch...

  8. Vortical sources of aerodynamic force and moment

    Science.gov (United States)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.

  9. Viscous tilting and production of vorticity in homogeneous turbulence

    Science.gov (United States)

    Holzner, M.; Guala, M.; Lüthi, B.; Liberzon, A.; Nikitin, N.; Kinzelbach, W.; Tsinober, A.

    2010-06-01

    Viscous depletion of vorticity is an essential and well known property of turbulent flows, balancing, in the mean, the net vorticity production associated with the vortex stretching mechanism. In this letter, we, however, demonstrate that viscous effects are not restricted to a mere destruction process, but play a more complex role in vorticity dynamics that is as important as vortex stretching. Based on the results from three dimensional particle tracking velocimetry experiments and direct numerical simulation of homogeneous and quasi-isotropic turbulence, we show that the viscous term in the vorticity equation can also locally induce production of vorticity and changes of the orientation of the vorticity vector (viscous tilting).

  10. Traffic flow modeling: a Genealogy

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Hoogendoorn, S.P.; Vuik, C.; Van Lint, J.W.C.

    2014-01-01

    80 years ago, Bruce Greenshields presented the first traffic flow model at the Annual Meeting of the Highway Research Board. Since then, many models and simulation tools have been developed. We show a model tree with four families of traffic flow models, all descending from Greenshields' model. The

  11. Stationary bathtub vortices and a critical regime of liquid discharge

    Science.gov (United States)

    Stepanyants, Yury A.; Yeoh, Guan H.

    A modified Lundgren model is applied for the description of stationary bathtub vortices in a viscous liquid with a free surface. Laminar liquid flow through the circular bottom orifice is considered in the horizontally unbounded domain. The liquid is assumed to be undisturbed at infinity and its depth is taken to be constant. Three different drainage regimes are studied: (i) subcritical, where whirlpool dents are less than the fluid depth; (ii) critical, where the whirlpool tips touch the outlet orifice; and (iii) supercritical, where surface vortices entrain air into the intake pipe. Particular attention is paid to critical vortices; the condition for their existence is determined and analysed. The influence of surface tension on subcritical whirlpools is investigated. Comparison of results with known experimental data is discussed.

  12. The Wavenumber-One Instability and Trochoidal Motion of Hurricane-like Vortices.

    Science.gov (United States)

    Nolan, David S.; Montgomery, Michael T.; Grasso, Lewis D.

    2001-11-01

    In a previous paper, the authors discussed the dynamics of an instability that occurs in inviscid, axisymmetric, two-dimensional vortices possessing a low-vorticity core surrounded by a high-vorticity annulus. Hurricanes, with their low-vorticity cores (the eye of the storm), are naturally occurring examples of such vortices. The instability is for asymmetric perturbations of azimuthal wavenumber-one about the vortex, and grows in amplitude as t1/2 for long times, despite the fact that there can be no exponentially growing wavenumber-one instabilities in inviscid, two-dimensional vortices. This instability is further studied in three fluid flow models: with high-resolution numerical simulations of two-dimensional flow, for linearized perturbations in an equivalent shallow-water vortex, and in a three-dimensional, baroclinic, hurricane-like vortex simulated with a high-resolution mesoscale numerical model.The instability is found to be robust in all of these physical models. Interestingly, the algebraic instability becomes an exponential instability in the shallow-water vortex, though the structures of the algebraic and exponential modes are nearly identical. In the three-dimensional baroclinic vortex, the instability quickly leads to substantial inner-core vorticity redistribution and mixing. The instability is associated with a displacement of the vortex center (as defined by either minimum pressure or streamfunction) that rotates around the vortex core, and thus offers a physical mechanism for the persistent, small-amplitude trochoidal wobble often observed in hurricane tracks. The instability also indicates that inner-core vorticity mixing will always occur in such vortices, even when the more familiar higher-wavenumber barotropic instabilities are not supported.

  13. Rotating Turbulent Flow Simulation with LES and Vreman Subgrid-Scale Models in Complex Geometries

    Directory of Open Access Journals (Sweden)

    Tao Guo

    2014-07-01

    Full Text Available The large eddy simulation (LES method based on Vreman subgrid-scale model and SIMPIEC algorithm were applied to accurately capture the flowing character in Francis turbine passage under the small opening condition. The methodology proposed is effective to understand the flow structure well. It overcomes the limitation of eddy-viscosity model which is excessive, dissipative. Distributions of pressure, velocity, and vorticity as well as some special flow structure in guide vane near-wall zones and blade passage were gained. The results show that the tangential velocity component of fluid has absolute superiority under small opening condition. This situation aggravates the impact between the wake vortices that shed from guide vanes. The critical influence on the balance of unit by spiral vortex in blade passage and the nonuniform flow around guide vane, combined with the transmitting of stress wave, has been confirmed.

  14. Flow Element Models

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....

  15. Stochastic power flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  16. Turbomachinery Flows Modeled

    Science.gov (United States)

    Adamczyk, John J.

    1997-01-01

    Last year, researchers at the NASA Lewis Research Center used the average passage code APNASA to complete the largest three-dimensional simulation of a multistage axial flow compressor to date. Consisting of 29 blade rows, the configuration is typical of those found in aeroengines today. The simulation, which was executed on the High Performance Computing and Communications (HPCC) Program IBM SP2 parallel computer located at the NASA Ames Research Center, took nearly 90 hr to complete. Since the completion of this activity, a fine-grain, parallel version of APNASA has been written by a team of researchers from General Electric, NASA Lewis, and NYMA. Timing studies performed on the SP2 have shown that, with eight processors assigned to each blade row, the simulation time is reduced by a factor of six. For this configuration, the simulation time would be 15 hr. The reduction in computing time indicates that an overnight turnaround of a multistage configuration simulation is feasible. In addition, average passage forms of two-equation turbulence models were formulated. These models are currently being incorporated into APNASA.

  17. An Investigation into Effect of Randomly Distributed Small Scale Vortices on Vortex Self-Organization

    Institute of Scientific and Technical Information of China (English)

    LUO Zhexian; LI Chunhu

    2008-01-01

    Previous studies concerning the interaction of dual vortices have been made generally in the determin-istic framework. In this paper, by using an advection equation model, eight numerical experiments whose integration times are 30 h are performed in order to analyze the interaction of dual vortices and the vortex self-organization in a coexisting system of deterministic and stochastic components. The stochastic compo-nents are introduced into the model by the way that the Iwayama scheme is used to produce the randomly distributed small-scale vortices which are then added into the initial field. The different intensity of the small-scale vortices is described by parameter K being 0.0, 0.4, 0.6, 0.8, and 1.0, respectively. When there is no small-scale vortex (K=0.0), two initially separated meso-beta vortices rotate counterclockwise mutu-ally, and their quasi-final flow pattern is still two separated vortices; after initially incorporating small-scale vortices (K=0.8, 1.0), the two separated meso-beta vortices of initially same intensity gradually evolve into a major and a secondary vortex in time integration. The major vortex pulls the secondary one, which gradually evolves into the spiral band of the major vortex. The quasi-final flow pattern is a self-organized vortex with typhoon-like circulation, and the relative vorticity at its center increases with increasing in K value, suggesting that small-scale vortices feed the self-organized vortex with vorticity. This may be a pos-sible mechanism responsible for changes in the strength of the self-organized vortex. Results also show that the quasi-final pattern not only relates with the initial intensity of the small-scale vortices, but also with their initial distribution. In addition, three experiments are also performed in the case of various boundary conditions. Firstly, the periodic condition is used on the E-W boundary, but the fixed condition on the S-N boundary; secondly, the fixed condition is set on all the

  18. Experimental investisation on the flow structure over a simplified Papilio Ulysses model

    Institute of Scientific and Technical Information of China (English)

    HU Ye; WANG JinJun; ZHANG PanFeng; ZHANG Cao

    2009-01-01

    The aerodynamic characteristics of butterflies, especially those which can migrate overseas, have received a great deal of attention because they have larger-scale wingspans and lower flapping frequencies than other insects such as drosophilae and bees. The objective of this work is to investigate the flow structures over a simplified model of Papilio Ulysses, one kind of migratory butterflies,through hydrogen bubble visualizations, and leading-edge vortices, wing-tip vortices, separation bubbles and horseshoe vortex wake are observed. Moreover, the variations of these structures with the angle of attack are discussed in detail. A new type of leading-edge vortices which resembles the in versed Chinese character "八" is observed in the experiment.

  19. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  20. Global 2D stability analysis of the cross lid-driven cavity flow with a streamfunction-vorticity approach

    Science.gov (United States)

    Gogoi, Bidyut B.

    2016-07-01

    We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.

  1. Strong swirl approximation and intensive vortices in the atmosphere

    CERN Document Server

    Klimenko, A Y

    2014-01-01

    This work investigates intensive vortices, which are characterised by the existence of a converging radial flow that significantly intensifies the flow rotation. Evolution and amplification of the vorticity present in the flow play important roles in the formation of the vortex. When rotation in the flow becomes sufficiently strong - and this implies validity of the strong swirl approximation developed by Einstein and Li (1951), Lewellen (1962), Turner (1966) and Lundgren (1985) - the analysis of Klimenko (2001a-c) and of the present work determine that further amplification of vorticity is moderated by interactions of vorticity and velocity. This imposes physical constraints on the flow resulting in the so-called compensating regime, where the radial distribution of the axial vorticity is characterised by the 4/3 and 3/2 power laws. This asymptotic treatment of a strong swirl is based on vorticity equations and involves higher order terms. This treatment incorporates multiscale analysis indicating downstream...

  2. Theory of concentrated vortices an introduction

    CERN Document Server

    Alekseenko, S V; Okulov, V L

    2007-01-01

    Vortex motion is one of the basic states of a flowing continuum. Intere- ingly, in many cases vorticity is space-localized, generating concentrated vortices. Vortex filaments having extremely diverse dynamics are the most characteristic examples of such vortices. Notable examples, in particular, include such phenomena as self-inducted motion, various instabilities, wave generation, and vortex breakdown. These effects are typically ma- fested as a spiral (or helical) configuration of a vortex axis. Many publications in the field of hydrodynamics are focused on vortex motion and vortex effects. Only a few books are devoted entirely to v- tices, and even fewer to concentrated vortices. This work aims to highlight the key problems of vortex formation and behavior. The experimental - servations of the authors, the impressive visualizations of concentrated vortices (including helical and spiral) and pictures of vortex breakdown primarily motivated the authors to begin this work. Later, the approach based on the hel...

  3. Flow in a rotating membrane plasma separator.

    Science.gov (United States)

    Lueptow, R M; Hajiloo, A

    1995-01-01

    Rotating filter separators are very effective in the separation of plasma from whole blood, but details of the flow field in the device have not been investigated. The flow in a commercial device has been modeled computationally using the finite element code FIDAP. Taylor vortices appear in the upstream end of the annulus but disappear in the downstream end because of increasing blood viscosity as plasma is removed. Fluid transport at the upstream end of the annulus results from both translation of Taylor vortices and fluid winding around the vortices. If the inertial effects of the axial flow are reduced, less fluid winds around the vortices and more fluid is transported by the translation of the vortices. The pressure at the membrane is nonuniform in the region where vortices appear, although the relative magnitude of the fluctuations is small.

  4. Ricci magnetic geodesic motion of vortices and lumps

    CERN Document Server

    Alqahtani, L S

    2014-01-01

    Ricci magnetic geodesic (RMG) motion in a k\\"ahler manifold is the analogue of geodesic motion in the presence of a magnetic field proportional to the ricci form. It has been conjectured to model low-energy dynamics of vortex solitons in the presence of a Chern-Simons term, the k\\"ahler manifold in question being the $n$-vortex moduli space. This paper presents a detailed study of RMG motion in soliton moduli spaces, focusing on the cases of hyperbolic vortices and spherical $\\mathbb{C}P^1$ lumps. It is shown that RMG flow localizes on fixed point sets of groups of holomorphic isometries, but that the flow on such submanifolds does not, in general, coincide with their intrinsic RMG flow. For planar vortices, it is shown that RMG flow differs from an earlier reduced dynamics proposed by Kim and Lee, and that the latter flow is ill-defined on the vortex coincidence set. An explicit formula for the metric on the whole moduli space of hyperbolic two-vortices is computed (extending an old result of Strachan's), an...

  5. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  6. Vorticity Measurements Using a 6-Sensor Hot-Wire Probe in a Tangentially-Fired Furnace

    Institute of Scientific and Technical Information of China (English)

    何伯述; 刁永发; 许晋源; 陈昌和

    2003-01-01

    Vorticity, which represents the rotation of a fluid element, is an important characteristic of turbulence. Various methods have been used to measure vorticity. A hot-wire/hot-film anemometer (HWA) was used here to measure the vorticity in turbulent flows. The velocity components and their partial derivatives were simultaneously measured with a new 6-sensor hot-wire (HW) probe assuming ideal yaw and pitch factors with Jorgensen's expression and Taylor's hypothesis to analyze the data. The accurate 6-sensor hot-wire probe results for the velocity field were used to determine the velocity gradients and, therefore, the vorticity vector field. The data was measured in an isothermal model of a tangentially fired furnace. The experimental results in the tangentially fired furnace agree with numerical results.

  7. Secondary flow structure in a model curved artery: 3D morphology and circulation budget analysis

    Science.gov (United States)

    Bulusu, Kartik V.; Plesniak, Michael W.

    2015-11-01

    In this study, we examined the rate of change of circulation within control regions encompassing the large-scale vortical structures associated with secondary flows, i.e. deformed Dean-, Lyne- and Wall-type (D-L-W) vortices at planar cross-sections in a 180° curved artery model (curvature ratio, 1/7). Magnetic resonance velocimetry (MRV) and particle image velocimetry (PIV) experiments were performed independently, under the same physiological inflow conditions (Womersley number, 4.2) and using Newtonian blood-analog fluids. The MRV-technique performed at Stanford University produced phase-averaged, three-dimensional velocity fields. Secondary flow field comparisons of MRV-data to PIV-data at various cross-sectional planes and inflow phases were made. A wavelet-decomposition-based approach was implemented to characterize various secondary flow morphologies. We hypothesize that the persistence and decay of arterial secondary flow vortices is intrinsically related to the influence of the out-of-plane flow, tilting, in-plane convection and diffusion-related factors within the control regions. Evaluation of these factors will elucidate secondary flow structures in arterial hemodynamics. Supported by the National Science Foundation under Grant Number CBET-0828903, and GW Center for Biomimetics and Bioinspired Engineering (COBRE). The MRV data were acquired at Stanford University in collaboration with Christopher Elkins and John Eaton.

  8. A Marine Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Tsz Leung Yip

    2013-03-01

    Full Text Available A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on one ship or two ships but does not address the issues in marine traffic flow.

  9. PIV measurements and flow characteristics downstream of mangrove root models

    Science.gov (United States)

    Kazemi, Amirkhosro; Curet, Oscar

    2016-11-01

    Mangrove forests attracted attentions as a solution to protect coastal areas exposed to sea-level rising, frequent storms, and tsunamis. Mangrove forests found in tide-dominated flow regions are characterized by their massive and complex root systems, which play a prominent role in the structure of tidal flow currents. To understand the role of mangrove roots in flow structure, we modeled mangrove roots with rigid and flexible arrays of cylinders with different spacing between them as well as different configurations. In this work, we investigate the fluid dynamics downstream of the models using a 2-D time-resolved particle image velocimetry (PIV) and flow visualization. We carried out experiments for four different Reynolds number based on cylinder diameters ranges from 2200 to 12000. We present time-averaged and time-resolved flow parameters including velocity distribution, vorticity, streamline, Reynolds shear stress and turbulent kinetic energy. The results show that the flow structure has different vortex shedding downstream of the cylinders due to interactions of shear layers separating from cylinders surface. The spectral analysis of the measured velocity data is also performed to obtain Strouhal number of the unsteady flow in the cylinder wake.

  10. Enhanced Forced Convection Heat Transfer using Small Scale Vorticity Concentrations Effected by Flow Driven, Aeroelastically Vibrating Reeds

    Science.gov (United States)

    2016-08-03

    the structural inertial force and ∗ can be thought of as the ratio between the time scale related to the reed’s natural oscillation in vacuum and...tip. Such contact clearly affects the evolution of the flow along the surface and may produce some suction force that leads to progressive...Heat Transfer Enhancement in High-Power Heat Sinks using Active Reed Technology,” THERMINIC, Barcelona, Spain, October, 2010. 29. Huang, W., Shin

  11. Viscous tilting and production of vorticity in homogeneous turbulence

    CERN Document Server

    Holzner, M; Lüthi, B; Liberzon, A; Nikitin, N; Kinzelbach, W; Tsinober, A

    2010-01-01

    Viscous depletion of vorticity is an essential and well known property of turbulent flows, balancing, in the mean, the net vorticity production associated with the vortex stretching mechanism. In this letter we however demonstrate that viscous effects are not restricted to a mere destruction process, but play a more complex role in vorticity dynamics that is as important as vortex stretching. Based on results from particle tracking experiments (3D-PTV) and direct numerical simulation (DNS) of homogeneous and quasi isotropic turbulence, we show that the viscous term in the vorticity equation can also locally induce production of vorticity and changes of its orientation (viscous tilting).

  12. RANS simulation of viscous flow over full appended submarine and field variables validation and vorticity analysis%全附体潜艇粘性流场的RANS模拟及场量和涡量的校验分析

    Institute of Scientific and Technical Information of China (English)

    杨琼方; 王永生; 张志宏

    2012-01-01

    After RANS simulation of full appended SUBOFF submarine's viscous flow with four groups of grids of the same mesh block topology and close mesh quality and five turbulent models, effects of mesh density and nodes distribution and turbulent models on calculation precision were analyzed, and detailed validation of force integral variables and velocity field variables and vorticity of viscous flow were completed at last. Results show that G4 (1.4 million) with the most mesh density can get the high- est precision,which calculated total drag just differ by 0. 723% to the experiment. As for the G4 mesh, choosing the SST model in the calculation is the best. Using G4, the predicted pressure coefficient and wall shear stress coefficient distribution both fit very well with the experiment; The numerical precision of the velocity profiles on propeller disk plane is near to the reference,and the calculated radial position for dimensional axial velocity over 0.9 is a little bigger than the experiment,while the rest is good agree- ment with the data; The precision of the three velocity components at r/R=0. 25 is higher than refer- ence too as a whole, and its axial component fits well with the experiment, the radial components' peak is a little lower while its circumferential position is coincident with the measure. What's more important, RANS simulation of the G4 successfully captures the complexity vorticity structures,including counter- rotating vortex induced by flow over fairwater cap and stern fin's tip surface, necklace-shaped vortex pair downstream of the appendages' root section,shoe-shaped vortex attached upwards of stern fin's tip sur- face trailing edge, horse-shoe vortex system induced by the flow around the appendages, vortex induced by flow extrusion within the passages of stern appendages, and the vortex concentration phenomenon on propeller disk plane,even the phenomenon of counter-rotating vortex induced by flow over fairwater cap being stable

  13. Analysis of the Caudal Vortices Evolvement around Flapping Foil

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-dong; Zhang Xiao-qing; Su Yu-min; Xu Yu-ru

    2005-01-01

    The viscous flow field around two-dimensional flapping (heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained.The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.

  14. Modeling Size Polydisperse Granular Flows

    Science.gov (United States)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  15. Motion Equation of Vorticity for Newton Fluid

    CERN Document Server

    Jianhua, X

    2005-01-01

    The vorticity plays an important role in aerodynamics and rotational flow. Usually, they are studied with modified Navier-Stokes equation. This research will deduce the motion equation of vorticity from Navier-Stokes equation. To this propose, the velocity gradient field is decomposed as the stack of non-rotation field and pure-rotation field. By introducing the Chen S+R decomposition, the rotational flow is redefined. For elastic fluid, the research shows that for Newton fluid, the local average rotation always produces an additional pressure on the rotation plane. This item is deterministic rather than stochastic (as Reynolds stress) or adjustable. For non-elastic fluid, such as air, the research shows that the rotation will produce an additional stress along the rotation axis direction, that is on the normal direction of rotation plane. This result can be used to explain the lift force connected with vortex. The main purpose of this research is to supply a solvable mathematical model for the calculation of...

  16. Study on direct measurement method of vorticity from particle images

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaodong; FU Xin; YANG Huayong

    2007-01-01

    To overcome the shortcomings of conventional methods for vorticity measurement,a new direct measurement of vorticity (DMV) method extracting vorticity from particle images was proposed.Based on the theory of fluid flow,two matched particle patterns were extracted from particle images in the DMV method.The pattern vorticity was determined from the average angular displacement of rotation between the two matched particle patterns.The method was applied on standard particle images,and was compared with the second and third order central finite difference methods.Results show that the accuracy of DMV method is independent of the spatial resolution of the sampling,and the uncertainty errors in the velocity measurement are not propagated into the vorticity.The method is applicable for measuring vorticity of a stronger rotational flow.The time interval of image sampling should be shortened to increase the measurement ranges for higher shearing distortion flows.

  17. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  18. Comparison Between Vortices Created and Evolving During Fixed and Dynamic Solar Wind Conditions

    Science.gov (United States)

    Collado-Vega, Yaireska M.; Kessel, R. L.; Sibeck, David Gary; Kalb, V. L.; Boller, R. A.; Rastaetter, L.

    2013-01-01

    We employ Magnetohydrodynamic (MHD) simulations to examine the creation and evolution of plasma vortices within the Earth's magnetosphere for steady solar wind plasma conditions. Very few vortices form during intervals of such solar wind conditions. Those that do remain in fixed positions for long periods (often hours) and exhibit rotation axes that point primarily in the x or y direction, parallel (or antiparallel) to the local magnetospheric magnetic field direction. Occasionally, the orientation of the axes rotates from the x direction to another direction. We compare our results with simulations previously done for unsteady solar wind conditions. By contrast, these vortices that form during intervals of varying solar wind conditions exhibit durations ranging from seconds (in the case of those with axes in the x or y direction) to minutes (in the case of those with axes in the z direction) and convect antisunward. The local-time dependent sense of rotation seen in these previously reported vortices suggests an interpretation in terms of the Kelvin-Helmholtz instability. For steady conditions, the biggest vortices developed on the dayside (about 6R(E) in diameter), had their rotation axes aligned with the y direction and had the longest periods of duration. We attribute these vortices to the flows set up by reconnection on the high latitude magnetopause during intervals of northward Interplanetary Magnetic Field (IMF) orientation. This is the first time that vortices due to high-latitude reconnection have been visualized. The model also successfully predicts the principal characteristics of previously reported plasma vortices within the magnetosphere, namely their dimension, flow velocities, and durations.

  19. Comparison between vortices created and evolving during fixed and dynamic solar wind conditions

    Energy Technology Data Exchange (ETDEWEB)

    Collado-Vega, Y.M.; Sibeck, D.G.; Rastaetter, L. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Space Weather Lab.; Kessel, R.L. [NASA Headquarters, Washington, DC (United States). Heliophysics Div.; Kalb, V.L. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Terrestrial Information Systems Lab.; Boller, R.A. [NASA Goddard Space Flight Center, Greenbelt, MD (United States). Science Data Systems Branch

    2013-10-01

    We employ Magnetohydrodynamic (MHD) simulations to examine the creation and evolution of plasma vortices within the Earth's magnetosphere for steady solar wind plasma conditions. Very few vortices form during intervals of such solar wind conditions. Those that do remain in fixed positions for long periods (often hours) and exhibit rotation axes that point primarily in the x or y direction, parallel (or antiparallel) to the local magnetospheric magnetic field direction. Occasionally, the orientation of the axes rotates from the x direction to another direction. We compare our results with simulations previously done for unsteady solar wind conditions. By contrast, these vortices that form during intervals of varying solar wind conditions exhibit durations ranging from seconds (in the case of those with axes in the x or y direction) to minutes (in the case of those with axes in the z direction) and convect antisunward. The local-time dependent sense of rotation seen in these previously reported vortices suggests an interpretation in terms of the Kelvin-Helmholtz instability. For steady conditions, the biggest vortices developed on the dayside (about 6 R{sub E} in diameter), had their rotation axes aligned with the y direction and had the longest periods of duration. We attribute these vortices to the flows set up by reconnection on the high-latitude magnetopause during intervals of northward Interplanetary Magnetic Field (IMF) orientation. This is the first time that vortices due to high-latitude reconnection have been visualized. The model also successfully predicts the principal characteristics of previously reported plasma vortices within the magnetosphere, namely their dimension, flow velocities, and durations. (orig.)

  20. Numerical experiments modelling turbulent flows

    Directory of Open Access Journals (Sweden)

    Trefilík Jiří

    2014-03-01

    Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  1. Computational modeling of concrete flow

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic

    2007-01-01

    This paper provides a general overview of the present status regarding computational modeling of the flow of fresh concrete. The computational modeling techniques that can be found in the literature may be divided into three main families: single fluid simulations, numerical modeling of discrete...

  2. Nonquasineutral electron vortices in nonuniform plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)

    2014-11-15

    Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.

  3. Instability of isolated hollow vortices with zero circulation

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    Inviscid linear stability analysis and numerical simulations are used to investigate how temporal disturbances evolve in double-annular hollow vortices with an opposite-signed vorticity (the total circulation is zero). Two extrema exist in the vorticity profile and constitute a factor of instability. The dispersion relation is expressed as a simple cubic equation. The results show that the instabilities of vortices are strongly enhanced by the hollow effect of the annular vorticity. In addition, the growth rate of the dominant modes significantly increases with decreasing negative-vorticity thickness. During the initial stage, the dominant unstable modes obtained from simulations are consistent with those obtained from the linear analysis. In nonlinear developments, the flow field stretches out in one direction depending on the motion of the plural vortex pair formed by rolling up the positive and negative vorticities. Once such structures in the vortex are generated, the vortex immediately breaks down and does not become metastable.

  4. Vortical fluid and $\\Lambda$ spin correlations in high-energy heavy-ion collisions

    CERN Document Server

    Pang, Long-Gang; Wang, Qun; Wang, Xin-Nian

    2016-01-01

    Fermions become polarized in a vortical fluid due to spin-vorticity coupling. The spin polarization density is proportional to the local fluid vorticity at the next-to-leading order of a gradient expansion in a quantum kinetic theory. Spin correlations of two $\\Lambda$-hyperons can therefore reveal the vortical structure of the dense matter in high-energy heavy-ion collisions. We employ a (3+1)D viscous hydrodynamic model with event-by-event fluctuating initial conditions from A MultiPhase Transport (AMPT) model to calculate the vorticity distributions and $\\Lambda$ spin correlations. The azimuthal correlation of the transverse spin is shown to have a cosine form plus an offset due to a circular structure of the transverse vorticity around the beam direction and global spin polarization. The longitudinal spin correlation shows a structure of vortex-pairing in the transverse plane due to the convective flow of hot spots in the radial direction. The dependence on colliding energy, rapidity, centrality and sensi...

  5. PIV Experimental Investigation on the Flow in a Model of Closed Pump Sump

    Institute of Scientific and Technical Information of China (English)

    MANSA Kante; ZHANG Botao(张波涛); LI Xiaoming(李小明); LI Yong(李永); WU Yulin(吴玉林)

    2003-01-01

    Vortices in the flow of a pump sump present an important problem in pump station operation. In the present study, the flow patterns in two model pump sumps with specially designed structures are analyzed using the particle image velocimetry (PIV) technique. The data is analyzed to reveal a number of parameters including the internal flow field with velocity distribution, the streamline distribution, and the turbulent kinetic energy. The analysis certifies that a modified pump with added T-type baffle below the sump exhibits good performance for realistic working conditions.

  6. Large Eddy simulation of turbulence: A subgrid scale model including shear, vorticity, rotation, and buoyancy

    Science.gov (United States)

    Canuto, V. M.

    1994-01-01

    The Reynolds numbers that characterize geophysical and astrophysical turbulence (Re approximately equals 10(exp 8) for the planetary boundary layer and Re approximately equals 10(exp 14) for the Sun's interior) are too large to allow a direct numerical simulation (DNS) of the fundamental Navier-Stokes and temperature equations. In fact, the spatial number of grid points N approximately Re(exp 9/4) exceeds the computational capability of today's supercomputers. Alternative treatments are the ensemble-time average approach, and/or the volume average approach. Since the first method (Reynolds stress approach) is largely analytical, the resulting turbulence equations entail manageable computational requirements and can thus be linked to a stellar evolutionary code or, in the geophysical case, to general circulation models. In the volume average approach, one carries out a large eddy simulation (LES) which resolves numerically the largest scales, while the unresolved scales must be treated theoretically with a subgrid scale model (SGS). Contrary to the ensemble average approach, the LES+SGS approach has considerable computational requirements. Even if this prevents (for the time being) a LES+SGS model to be linked to stellar or geophysical codes, it is still of the greatest relevance as an 'experimental tool' to be used, inter alia, to improve the parameterizations needed in the ensemble average approach. Such a methodology has been successfully adopted in studies of the convective planetary boundary layer. Experienc e with the LES+SGS approach from different fields has shown that its reliability depends on the healthiness of the SGS model for numerical stability as well as for physical completeness. At present, the most widely used SGS model, the Smagorinsky model, accounts for the effect of the shear induced by the large resolved scales on the unresolved scales but does not account for the effects of buoyancy, anisotropy, rotation, and stable stratification. The

  7. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge....

  8. A numerical method of tracing a vortical axis along local topological axis line

    Science.gov (United States)

    Nakayama, Katsuyuki; Hasegawa, Hideki

    2016-06-01

    A new numerical method is presented to trace or identify a vortical axis in flow, which is based on Galilean invariant flow topology. We focus on the local flow topology specified by the eigenvalues and eigenvectors of the velocity gradient tensor, and extract the axis component from its flow trajectory. Eigen-vortical-axis line is defined from the eigenvector of the real eigenvalue of the velocity gradient tensor where the tensor has the conjugate complex eigenvalues. This numerical method integrates the eigen-vortical-axis line and traces a vortical axis in terms of the invariant flow topology, which enables to investigate the feature of the topology-based vortical axis.

  9. Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta

    Science.gov (United States)

    Dasi, L. P.; Ge, L.; Simon, H. A.; Sotiropoulos, F.; Yoganathan, A. P.

    2007-06-01

    We present comprehensive particle image velocimetry measurements and direct numerical simulation (DNS) of physiological, pulsatile flow through a clinical quality bileaflet mechanical heart valve mounted in an idealized axisymmetric aorta geometry with a sudden expansion modeling the aortic sinus region. Instantaneous and ensemble-averaged velocity measurements as well as the associated statistics of leaflet kinematics are reported and analyzed in tandem to elucidate the structure of the velocity and vorticity fields of the ensuing flow-structure interaction. The measurements reveal that during the first half of the acceleration phase, the flow is laminar and repeatable from cycle to cycle. The valve housing shear layer rolls up into the sinus and begins to extract vorticity of opposite sign from the sinus wall. A start-up vortical structure is shed from the leaflets and is advected downstream as the leaflet shear layers become wavy and oscillatory. In the second half of flow acceleration the leaflet shear layers become unstable and break down into two von Karman-like vortex streets. The onset of vortex shedding from the valve leaflets is responsible for the growth of significant cycle-to-cycle vorticity oscillations. At peak flow, the housing and leaflet shear layers undergo secondary instabilities and break down rapidly into a chaotic, turbulent-like state with multiple small-scale vortical structures emerging in the flow. During the deceleration and closing phases all large-scale coherent flow features disappear and a chaotic small-scale vorticity field emerges, which persists even after the valve has closed. Probability density functions of the leaflet position during opening and closing phases show that the leaflet position fluctuates from cycle to cycle with larger fluctuations evident during valve closure. The DNS is carried out by prescribing the leaflet kinematics from the experimental data. The computed instantaneous vorticity fields are in very good

  10. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  11. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  12. Equilibration of centrifugally unstable vortices: A review

    NARCIS (Netherlands)

    Carnevale, G.F.; Kloosterziel, R.C.; Orlandi, P.

    2016-01-01

    In three-dimensional flow, a vortex can become turbulent and be destroyed through a variety of instabilities. In rotating flow, however, the result of the breakup of a vortex is usually a state comprising several vortices with their axes aligned along the ambient rotation direction. This article is

  13. Vorticity dynamics in an intracranial aneurysm

    Science.gov (United States)

    Le, Trung; Borazjani, Iman; Sotiropoulos, Fotis

    2008-11-01

    Direct Numerical Simulation is carried out to investigate the vortex dynamics of physiologic pulsatile flow in an intracranial aneurysm. The numerical solver is based on the CURVIB (curvilinear grid/immersed boundary method) approach developed by Ge and Sotiropoulos, J. Comp. Physics, 225 (2007) and is applied to simulate the blood flow in a grid with 8 million grid nodes. The aneurysm geometry is extracted from MRI images from common carotid artery (CCA) of a rabbit (courtesy Dr.Kallmes, Mayo Clinic). The simulation reveals the formation of a strong vortex ring at the proximal end during accelerated flow phase. The vortical structure advances toward the aneurysm dome forming a distinct inclined circular ring that connects with the proximal wall via two long streamwise vortical structures. During the reverse flow phase, the back flow results to the formation of another ring at the distal end that advances in the opposite direction toward the proximal end and interacts with the vortical structures that were created during the accelerated phase. The basic vortex formation mechanism is similar to that observed by Webster and Longmire (1998) for pulsed flow through inclined nozzles. The similarities between the two flows will be discussed and the vorticity dynamics of an aneurysm and inclined nozzle flows will be analyzed.This work was supported in part by the University of Minnesota Supercomputing Institute.

  14. Correlations between Abelian monopoles and center vortices

    Science.gov (United States)

    Hosseini Nejad, Seyed Mohsen; Deldar, Sedigheh

    2017-04-01

    We study the correlations between center vortices and Abelian monopoles for SU(3) gauge group. Combining fractional fluxes of monopoles, center vortex fluxes are constructed in the thick center vortex model. Calculating the potentials induced by fractional fluxes constructing the center vortex flux in a thick center vortex-like model and comparing with the potential induced by center vortices, we observe an attraction between fractional fluxes of monopoles constructing the center vortex flux. We conclude that the center vortex flux is stable, as expected. In addition, we show that adding a contribution of the monopole-antimonopole pairs in the potentials induced by center vortices ruins the Casimir scaling at intermediate regime.

  15. Vorticity Budget Study on the Seasonal Upper Circulation in the Northern South China Sea from Altimetry Data and a Numerical Model

    Institute of Scientific and Technical Information of China (English)

    CAI Shuqun; ZHENG Shu; HE Yinghui

    2012-01-01

    Based on the EOF analyses of Absolute Dynamic Topography satellite data,it is found that,in summer,the northern South China Sea (SCS) is dominated by an anticyclonic gyre whilst by a cyclonic one in winter.A connected single-layer and two-layer model is employed here to investigate the dynamic mechanism of the circulation in the northern SCS.Numerical experiments show that the nonlinear term,the pressure torque and the planetary vorticity advection play important roles in the circulation of the northern SCS,whilst the contribution by seasonal wind stress curl is local and limited.Only a small part of the Kuroshio water intrudes into the SCS,it then induces a positive vorticity band extending southwestward from the west of the Luzon Strait (LS) and a negative vorticity band along the 200 m isobath of the northern basin.The positive vorticity field induced by the local summer wind stress curl is weaker than that induced in winter in the northern SCS.Besides the Kuroshio intrusion and monsoon,the water transports via the Sunda Shelf and the Sibutu Passage are also important to the circulation in the northern SCS,and the induced vorticity field in summer is almost contrary to that in winter.The strength variations of these three key factors (Kuroshio,monsoon and the water transports via the Sunda Shelf and the Sibutu Passage) determine the seasonal variations of the vorticity and eddy fields in the northern SCS.As for the water exchange via the LS,the Kuroshio intrusion brings about a net inflow into the SCS,and the monsoon has a less effect,whilst the water transports via the Snnda Shelf and the Sibutu Passage are the most important influencing factors,thus,the water exchange of the SCS with the Pacific via the LS changes dramatically from an outflow of the SCS in summer to an inflow into the SCS in winter.

  16. Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method

    NARCIS (Netherlands)

    Dubinkina, S.; Frank, J.E.

    2009-01-01

    We conduct long simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experiments. The observed results a

  17. Statistical relevance of vorticity conservation with the Hamiltonian particle-mesh method

    NARCIS (Netherlands)

    Dubinkina, S.; Frank, J.E.

    2010-01-01

    We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime

  18. Statistical relevance of vorticity conservation in the Hamiltonian particle-mesh method

    NARCIS (Netherlands)

    S. Dubinkina; J. Frank

    2010-01-01

    We conduct long-time simulations with a Hamiltonian particle-mesh method for ideal fluid flow, to determine the statistical mean vorticity field of the discretization. Lagrangian and Eulerian statistical models are proposed for the discrete dynamics, and these are compared against numerical experime

  19. Topological first-order vortices in a gauged CP(2 model

    Directory of Open Access Journals (Sweden)

    R. Casana

    2017-05-01

    Full Text Available We study time-independent radially symmetric first-order solitons in a CP(2 model interacting with an Abelian gauge field whose dynamics is controlled by the usual Maxwell term. In this sense, we develop a consistent first-order framework verifying the existence of a well-defined lower bound for the corresponding energy. We saturate such a lower bound by focusing on those solutions satisfying a particular set of coupled first-order differential equations. We solve these equations numerically using appropriate boundary conditions giving rise to regular structures possessing finite-energy. We also comment the main features these configurations exhibit. Moreover, we highlight that, despite the different solutions we consider for an auxiliary function β(r labeling the model (therefore splitting our investigation in two a priori distinct branches, all resulting scenarios engender the very same phenomenology, being physically equivalent.

  20. Topological first-order vortices in a gauged CP(2) model

    Science.gov (United States)

    Casana, R.; Dias, M. L.; da Hora, E.

    2017-05-01

    We study time-independent radially symmetric first-order solitons in a CP (2) model interacting with an Abelian gauge field whose dynamics is controlled by the usual Maxwell term. In this sense, we develop a consistent first-order framework verifying the existence of a well-defined lower bound for the corresponding energy. We saturate such a lower bound by focusing on those solutions satisfying a particular set of coupled first-order differential equations. We solve these equations numerically using appropriate boundary conditions giving rise to regular structures possessing finite-energy. We also comment the main features these configurations exhibit. Moreover, we highlight that, despite the different solutions we consider for an auxiliary function β (r) labeling the model (therefore splitting our investigation in two a priori distinct branches), all resulting scenarios engender the very same phenomenology, being physically equivalent.

  1. Officer Accessions Flow Model

    Science.gov (United States)

    2011-07-31

    18]) General Charles Campbell noted that , although…. “the Army has a system for organizing, staffing, equipping, training, deploying, sustaining...Harrell, Charles , Ghosh, Biman K., & Bowden Jr.,Royce O. 2004. Simulation Using ProModel. Second edition. McGraw Hill, New York. [22] Klimas, J...RUNS: A Senior Leader Reference Handbook. U.S. Army War College, Carlisle, PA. [24] McNeill , Dan K. 2005 (August). Army Force Generation

  2. On the vortical motions in the Black Sea obtained by the 3-D hydrothermodynamical numerical model

    Directory of Open Access Journals (Sweden)

    D. I. Demetrashvili

    2008-04-01

    Full Text Available Some results of simulation of the Black Sea circulation with consideration of forcing of different averaged wind types by using 3-D prognostic baroclinic model are presented. The results allow us to consider all depth of the sea basin consisting of some relatively homogeneous sub-layers. Within each of them general circulation processes practically do not change by depth, but essentially change from layer to layer. Such character of changeability interpreted by us as a steepness of the Black Sea general circulation takes place in majority cases of climatic atmospheric wind forcing. In the present paper results are analyzed on an example of forcing of January atmospheric cyclonic vortex with ~250 km diameter. Under such forcing the Ekman surface layer of ~12 m thickness is created. The cyclonic vortex formed in the east part of the Black Sea, which is Taylor-Proudman potential vortex with vertical cylindrical configuration, is described in detail. The vertical distribution of vortex characteristics are given in figures: Brunt-Väisälä frequency and Richardson number taken near the vortex wall with maximal velocity. The viable vortexes are characterized by introduced the universal Reynolds number Re.

  3. Vortical versus skyrmionic states in mesoscopic p -wave superconductors

    Science.gov (United States)

    Fernández Becerra, V.; Sardella, E.; Peeters, F. M.; Milošević, M. V.

    2016-01-01

    We investigate the superconducting states that arise as a consequence of mesoscopic confinement and a multicomponent order parameter in the Ginzburg-Landau model for p -wave superconductivity. Conventional vortices, but also half-quantum vortices and skyrmions, are found as the applied magnetic field and the anisotropy parameters of the Fermi surface are varied. The solutions are well differentiated by a topological charge that for skyrmions is given by the Hopf invariant and for vortices by the circulation of the superconducting velocity. We revealed several unique states combining vortices and skyrmions, their possible reconfiguration with varied magnetic field, as well as temporal and field-induced transitions between vortical and skyrmionic states.

  4. Measurements of leading edge vortices in a supersonic stream

    Science.gov (United States)

    Milanovic, Ivana Milija

    An experimental investigation of the leading edge vortices from a 75° sweptback, sharp edge delta wing has been carried out in a Mach 2.49 stream. Five-hole conical probe traverses were conducted vertically and horizontally through the primary vortices at the trailing edge and at one half chord downstream station for 7° and 12° angles of attack. The main objective was to determine the Mach number and pressure distributions in the primary vortex and to present comparisons of flow properties at different survey stations. In response to the continued interest in efficient supersonic flight vehicles, particularly in the missile arena, the motivation for this research has been to provide the quantitative details of supersonic leading edge vortices, the understanding of which up to now has been largely based on flow visualizations and presumed similarity to low speed flows. As a prerequisite to the measurement campaign, the employed five-hole conical probe was numerically calibrated using a three-dimensional Thin Layer Navier-Stokes solver in order to circumvent the traditional experimental approach vastly demanding on resources. The pressure readings at the probe orifices were computed for a range of Mach numbers and pitch angles, and subsequently verified in wind tunnel tests. The calibration phase also demonstrated the profound influence of the probe bluntness on the nearby static pressure ports, its relevance to the ultimate modeling strategy and the resulting calibration charts. Flow diagnostics of the leading edge vortices included both qualitative flow visualizations, as well as quantitative measurements. Shadowgraphs provided information regarding the trajectory and relative size of the generated vortices while assuring that no probe-induced vortex breakdown occurred. Surface oil patterns revealed the general spanwise locations of leeward vortices, and confirmed topological similarity to their low speed counterparts. The probe measurements revealed substantial

  5. Quantum vortices and trajectories in particle diffraction

    CERN Document Server

    Delis, N; Contopoulos, G

    2011-01-01

    We investigate the phenomenon of the diffraction of charged particles by thin material targets using the method of the de Broglie-Bohm quantum trajectories. The particle wave function can be modeled as a sum of two terms $\\psi=\\psi_{ingoing}+\\psi_{outgoing}$. A thin separator exists between the domains of prevalence of the ingoing and outgoing wavefunction terms. The structure of the quantum-mechanical currents in the neighborhood of the separator implies the formation of an array of \\emph{quantum vortices}. The flow structure around each vortex displays a characteristic pattern called `nodal point - X point complex'. The X point gives rise to stable and unstable manifolds. We find the scaling laws characterizing a nodal point-X point complex by a local perturbation theory around the nodal point. We then analyze the dynamical role of vortices in the emergence of the diffraction pattern. In particular, we demonstrate the abrupt deflections, along the direction of the unstable manifold, of the quantum trajector...

  6. Effects of drift angle on model ship flow

    Science.gov (United States)

    Longo, J.; Stern, F.

    The effects of drift angle on model ship flow are investigated through towing tank tests for the Series 60 CB=0.6 cargo/container model ship. Resistance, side force, drift moment, sinkage, trim, and heel data are procured for a range of drift angles β and Froude numbers (Fr) and the model free condition. Detailed free-surface and mean velocity and pressure flow maps are procured for high and low Fr=0.316 and 0.16 and β=5° and 10° (free surface) and β=10° (mean velocity and pressure) for the model fixed condition (i.e. fixed with zero sinkage, trim, and heel). Comparison of results at high and low Fr and previous data for β=0° enables identification of important free-surface and drift effects. Geometry, conditions, data, and uncertainty analysis are documented in sufficient detail so as to be useful as a benchmark for computational fluid dynamics (CFD) validation. The resistance increases linearly with β with same slope for all Fr, whereas the increases in the side force, drift moment, sinkage, trim, and heel with β are quadratic. The wave profile is only affected near the bow, i.e. the bow wave amplitude increases/decreases on the windward/leeward sides, whereas the wave elevations are affected throughout the entire wave field. However, the wave envelope angle on both sides is nearly the same as β=0°, i.e. the near-field wave pattern rotates with the hull and remains within a similar wave envelope as β=0°. The wave amplitudes are significantly increased/decreased on the windward/leeward sides. The wake region is also asymmetric with larger wedge angle on the leeward side. The boundary layer and wake are dominated by the hull vortex system consisting of fore body keel, bilge, and wave-breaking vortices and after body bilge and counter-rotating vortices. The occurrence of a wave-breaking vortex for breaking bow waves has not been previously documented in the literature. The trends for the maximum vorticity, circulation, minimum axial velocity, and

  7. A Critical Review of the Transport and Decay of Wake Vortices in Ground Effect

    Science.gov (United States)

    Sarpkaya, T.

    2004-01-01

    This slide presentation reviews the transport and decay of wake vortices in ground effect and cites a need for a physics-based parametric model. The encounter of a vortex with a solid body is always a complex event involving turbulence enhancement, unsteadiness, and very large gradients of velocity and pressure. Wake counter in ground effect is the most dangerous of them all. The interaction of diverging, area-varying, and decaying aircraft wake vortices with the ground is very complex because both the vortices and the flow field generated by them are altered to accommodate the presence of the ground (where there is very little room to maneuver) and the background turbulent flow. Previous research regarding vortex models, wake vortex decay mechanisms, time evolution within in ground effect of a wake vortex pair, laminar flow in ground effect, and the interaction of the existing boundary layer with a convected vortex are reviewed. Additionally, numerical simulations, 3-dimensional large-eddy simulations, a probabilistic 2-phase wake vortex decay and transport model and a vortex element method are discussed. The devising of physics-based, parametric models for the prediction of (operational) real-time response, mindful of the highly three-dimensional and unsteady structure of vortices, boundary layers, atmospheric thermodynamics, and weather convective phenomena is required. In creating a model, LES and field data will be the most powerful tools.

  8. Large eddy simulation of high frequency oscillating flow in an asymmetric branching airway model.

    Science.gov (United States)

    Nagels, Martin A; Cater, John E

    2009-11-01

    The implementation of artificial ventilation schemes is necessary when respiration fails. One approach involves the application of high frequency oscillatory ventilation (HFOV) to the respiratory system. Oscillatory airflow in the upper bronchial tree can be characterized by Reynolds numbers as high as 10(4), hence, the flow presents turbulent features. In this study, transitional and turbulent flow within an asymmetric bifurcating model of the upper airway during HFOV are studied using large eddy simulation (LES) methods. The flow, characterized by a peak Reynolds number of 8132, is analysed using a validated LES model of a three-dimensional branching geometry. The pressures, velocities, and vorticity within the flow are presented and compared with prior models for branching flow systems. The results demonstrate how pendelluft occurs at asymmetric branches within the respiratory system. These results may be useful in optimising treatments using HFOV methods.

  9. Slow light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  10. Slow-light vortices in periodic waveguides

    DEFF Research Database (Denmark)

    Sukhorukov, Andrey A.; Ha, Sangwoo; Desyatnikov, Anton S.

    2009-01-01

    We reveal that the reduction of the group velocity of light in periodic waveguides is generically associated with the presence of vortex energy flows. We show that the energy flows are gradually frozen for slow-light at the Brillouin zone edge, whereas vortices persist for slow-light states havin...... non-vanishing phase velocity inside the Brillouin zone. We also demonstrate that presence of vortices can be linked to the absence of slow-light at the zone edge, and present calculations illustrating these general results....

  11. Vortices as degenerate metrics

    CERN Document Server

    Baptista, J M

    2012-01-01

    We note that the Bogomolny equation for abelian vortices is precisely the condition for invariance of the Hermitian-Einstein equation under a degenerate conformal transformation. This leads to a natural interpretation of vortices as degenerate hermitian metrics that satisfy a certain curvature equation. Using this viewpoint, we rephrase standard results about vortices and make some new observations. We note the existence of a conceptually simple, non-linear rule for superposing vortex solutions, and we describe the natural behaviour of the L^2-metric on the moduli space upon certain restrictions.

  12. Control of Pitching Airfoil Aerodynamics by Vorticity Flux Modification using Active Bleed

    Science.gov (United States)

    Kearney, John; Glezer, Ari

    2014-11-01

    Distributed active bleed driven by pressure differences across a pitching airfoil is used to regulate the vorticity flux over the airfoil's surface and thereby to control aerodynamic loads in wind tunnel experiments. The range of pitch angles is varied beyond the static stall margin of the 2-D VR-7 airfoil at reduced pitching rates up to k = 0.42. Bleed is regulated dynamically using piezoelectric louvers between the model's pressure side near the trailing edge and the suction surface near the leading edge. The time-dependent evolution of vorticity concentrations over the airfoil and in the wake during the pitch cycle is investigated using high-speed PIV and the aerodynamic forces and moments are measured using integrated load cells. The timing of the dynamic stall vorticity flux into the near wake and its effect on the flow field are analyzed in the presence and absence of bleed using proper orthogonal decomposition (POD). It is shown that bleed actuation alters the production, accumulation, and advection of vorticity concentrations near the surface with significant effects on the evolution, and, in particular, the timing of dynamic stall vortices. These changes are manifested by alteration of the lift hysteresis and improvement of pitch stability during the cycle, while maintaining cycle-averaged lift to within 5% of the base flow level with significant implications for improvement of the stability of flexible wings and rotor blades. This work is supported by the Rotorcraft Center (VLRCOE) at Georgia Tech.

  13. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-06-15

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  14. Downstream Evolution of Longitudinal Embedded Vortices with Helical Structure

    DEFF Research Database (Denmark)

    Velte, Clara Marika; Okulov, Valery; Hansen, Martin Otto Laver

    2009-01-01

    In the present work the downstream development of device induced vortices with helical symmetry embedded in wall bounded flow on a bump is studied with the aid of Stereoscopic Particle Image Velocimetry (SPIV). The downstream evolution of characteristic parameters of helical vortices is studied...

  15. Optimization of the Turbulence Model on Numerical Simulations of Flow Field within a Hydrocyclone

    Directory of Open Access Journals (Sweden)

    Yan Xu

    2015-01-01

    Full Text Available Reynolds Stress Model and Large Eddy Simulation are used to respectively perform numerical simulation for the flow field of a hydrocyclone. The three-dimensional hexahedral computational grids were generated. Turbulence intensity, vorticity, and the velocity distribution of different cross sections were gained. The velocity simulation results were compared with the LDV test results, and the results indicated that Large Eddy Simulation was more close to LDV experimental data. Large Eddy Simulation was a relatively appropriate method for simulation of flow field within a hydrocyclone.

  16. Dynamics of circular arrangements of vorticity in two dimensions

    CERN Document Server

    Swaminathan, Rohith V; Perlekar, Prasad; Govindarajan, Rama

    2015-01-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical co-rotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long-lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to break down into individual vortices. In the pre-annular stage, vortical structures in a viscous flow tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so ...

  17. Oscillating layer thickness and vortices generated in oscillation of finite plate

    Science.gov (United States)

    Sin, V. K.; Wong, I. K.

    2016-06-01

    Moving mesh strategy is used in the model of flow induced by oscillating finite plate through software - COMSOL Multiphysics. Flow is assumed to be laminar and arbitrary Lagrangian-Eulerian method is used for moving mesh in the simulation. Oscillating layer thickness is found which is different from the analytical solution by 2 to 3 times depends on the oscillating frequency. Vortices are also observed near the oscillating finite plate because of the edge effect of the finite plate.

  18. Online traffic flow model applying dynamic flow-density relation

    CERN Document Server

    Kim, Y

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...

  19. Heat transfer enhancement using tip and junction vortices

    Science.gov (United States)

    Gentry, Mark Cecil

    1998-10-01

    Single-phase convective heat transfer can be enhanced by modifying the heat transfer surface to passively generate streamwise vortices. The swirling flow of the vortices modifies the temperature field, thinning the thermal boundary layer and increasing surface convection. Tip vortices generated by delta wings and junction vortices generated by hemispherical protuberances were studied in laminar flat-plate and developing channel flows. Local and average convective measurements were obtained, and the structure of the vortices was studied using quantitative flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement was also investigated. Tip vortices generated by delta wings enhanced local convection by as much as 300% over a flat-plate boundary layer flow. Vortex strength increased with Reynolds number based on chord length, wing aspect ratio, and wing angle of attack. As the vortices were advected downstream, they decayed because of viscous interactions. In the developing channel flow, tip vortices produced a significant local heat transfer enhancement on both sides of the channel. The largest spatially averaged heat transfer enhancement was 55%; it was accompanied by a 100% increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator. Junction vortices created by hemispherical surface protuberances provided local heat transfer enhancements as large as 250%. Vortex strength increased with an increasing ratio of hemisphere radius to local boundary layer thickness on a flat plate. In the developing channel flows, heat transfer enhancements were observed on both sides of the channel. The largest spatially averaged heat transfer enhancement was 50%; it was accompanied by a 90% pressure drop penalty relative to the same channel flow with no hemispherical vortex generator. This research is important in compact heat exchanger design. Enhancing heat transfer can lead to

  20. Higgs phase in a gauge $\\mathbf{U}(1)$ non-linear $\\mathbf{CP}^1$-model. Two species of BPS vortices and their zero modes

    CERN Document Server

    Alonso-Izquierdo, Alberto

    2016-01-01

    In this paper zero modes of fluctuation are dissected around the two species of BPS vortices existing in the critical Higgs phase, where the scalar and vector meson masses are equal, of a gauged $\\mathbb{U}(1)$ nonlinear $\\mathbb{CP}^1$-model. If $2\\pi n$, $n\\in \\mathbb{Z}$, is the quantized magnetic flux of the two species of BPS vortex solutions, $2n$ linearly independent vortex zero modes for each species are found and described. The existence of two species of moduli spaces of dimension $2n$ of these stringy topological defects is thus locally shown.

  1. Evolution of a Vortex in a Strain Flow

    Science.gov (United States)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2016-12-01

    Experiments and vortex-in-cell simulations are used to study an initially axisymmetric, spatially distributed vortex subject to an externally imposed strain flow. The experiments use a magnetized pure electron plasma to model an inviscid two-dimensional fluid. The results are compared to a theory assuming an elliptical region of constant vorticity. For relatively flat vorticity profiles, the dynamics and stability threshold are in close quantitative agreement with the theory. Physics beyond the constant-vorticity model, such as vortex stripping, is investigated by studying the behavior of nonflat vorticity profiles.

  2. The formation mechanism and impact of streamwise vortices on NACA 0021 airfoil's performance with undulating leading edge modification

    Science.gov (United States)

    Rostamzadeh, N.; Hansen, K. L.; Kelso, R. M.; Dally, B. B.

    2014-10-01

    Wings with tubercles have been shown to display advantageous loading behavior at high attack angles compared to their unmodified counterparts. In an earlier study by the authors, it was shown that an undulating leading-edge configuration, including but not limited to a tubercled model, induces a cyclic variation in circulation along the span that gives rise to the formation of counter-rotating streamwise vortices. While the aerodynamic benefits of full-span tubercled wings have been associated with the presence of such vortices, their formation mechanism and influence on wing performance are still in question. In the present work, experimental and numerical tests were conducted to further investigate the effect of tubercles on the flow structure over full-span modified wings based on the NACA 0021 profile, in the transitional flow regime. It is found that a skew-induced mechanism accounts for the formation of streamwise vortices whose development is accompanied by flow separation in delta-shaped regions near the trailing edge. The presence of vortices is detrimental to the performance of full-span wings pre-stall, however renders benefits post-stall as demonstrated by wind tunnel pressure measurement tests. Finally, primary and secondary vortices are identified post-stall that produce an enhanced momentum transfer effect that reduces flow separation, thus increasing the generated amount of lift.

  3. Charged BPS vortices and reversal of the magnetic flux in a Maxwell-Higgs type model without the Chern-Simons term

    Energy Technology Data Exchange (ETDEWEB)

    Cantanhede, Carlisson M. [Instituto de Fisica Teorica (IFT/UNESP), Sao Paulo, SP (Brazil); Casana, Rodolfo; Ferreira Junior, Manoel M. [Universidade Federal do Maranhao (UFMA), MA (Brazil). Dept. de Fisica; Hora, Eduardo da [Universidade Federal da Paraiba (UFPB), PB (Brazil). Dept. de Fisica

    2012-07-01

    Full text: Since the seminal works by Abrikosov [1] and Nielsen-Olesen [2] showing the existence of uncharged vortex, such nonperturbative solutions have been a theoretical issue of enduring interest. Already, the electrically charged vortices are obtained only in abelian models endowed with the Chern-Simons term [3,4]. This remains valid even in the context of highly nonlinear models, such as the Born-Infield electrodynamics. In this work, we demonstrated the existence of electrically charged BPS vortices in a Maxwell-Higgs model without the Chern- Simons term but endowed with a CPT-even and parity-odd Lorentz-violating (LV) structure. The LV term belonging to the CPT-even electrodynamics of the Standard Model Extension [5] plays a similar role that of the Chern-Simons term, mixing the electric and magnetic sectors. Besides the LV coefficients provide a very rich set of vortex configurations exhibiting electric's field inversion also are responsible by controlling the characteristic length of the vortex and by the flipping of the magnetic flux. [1] A. Abrikosov, Sov. Phys. JETP 32, 1442 (1957). [2] H. Nielsen, P. Olesen, Nucl. Phys. B 61, 45 (1973). [3] R. Jackiw and E. J. Weinberg, Phys. Rev. Lett. 64, 2234 (1990). [4] C.K. Lee, K.M. Lee, H. Min, Phys. Lett. B 252, 79 (1990) [5] D. Colladay and V. A. Kostelecky, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998). (author)

  4. Numerical evaluation of gas core length in free surface vortices

    Science.gov (United States)

    Cristofano, L.; Nobili, M.; Caruso, G.

    2014-11-01

    The formation and evolution of free surface vortices represent an important topic in many hydraulic intakes, since strong whirlpools introduce swirl flow at the intake, and could cause entrainment of floating matters and gas. In particular, gas entrainment phenomena are an important safety issue for Sodium cooled Fast Reactors, because the introduction of gas bubbles within the core causes dangerous reactivity fluctuation. In this paper, a numerical evaluation of the gas core length in free surface vortices is presented, according to two different approaches. In the first one, a prediction method, developed by the Japanese researcher Sakai and his team, has been applied. This method is based on the Burgers vortex model, and it is able to estimate the gas core length of a free surface vortex starting from two parameters calculated with single-phase CFD simulations. The two parameters are the circulation and the downward velocity gradient. The other approach consists in performing a two-phase CFD simulation of a free surface vortex, in order to numerically reproduce the gas- liquid interface deformation. Mapped convergent mesh is used to reduce numerical error and a VOF (Volume Of Fluid) method was selected to track the gas-liquid interface. Two different turbulence models have been tested and analyzed. Experimental measurements of free surface vortices gas core length have been executed, using optical methods, and numerical results have been compared with experimental measurements. The computational domain and the boundary conditions of the CFD simulations were set consistently with the experimental test conditions.

  5. Magnetorheological effect in the magnetic field oriented along the vorticity

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhir, P., E-mail: pavel.kuzhir@unice.fr; Magnet, C.; Fezai, H.; Meunier, A.; Bossis, G. [Laboratory of Condensed Matter Physics, CNRS UMR7336, University of Nice-Sophia Antipolis, 28 Avenue Joseph Vallot, 06100 Nice (France); Rodríguez-Arco, L.; López-López, M. T. [Department of Applied Physics, University of Granada, Campus de Fuentenueva, 18071 Granada (Spain); Zubarev, A. [Department of Mathematical Physics, Ural Federal University, 51 Prospekt Lenina, 620083 Ekaterinburg (Russian Federation)

    2014-11-01

    In this work, we have studied the magnetorheological (MR) fluid rheology in the magnetic field parallel to the fluid vorticity. Experimentally, the MR fluid flow was realized in the Couette coaxial cylinder geometry with the magnetic field parallel to the symmetry axis. The rheological measurements were compared to those obtained in the cone-plate geometry with the magnetic field perpendicular to the lower rheometer plate. Experiments revealed a quasi-Bingham behavior in both geometries with the stress level being just a few dozens of percent smaller in the Couette cylindrical geometry at the same internal magnetic field. The unexpectedly high MR response in the magnetic field parallel to the fluid vorticity is explained by stochastic fluctuations of positions and orientations of the particle aggregates. These fluctuations are induced by magnetic interactions between them. Once misaligned from the vorticity direction, the aggregates generate a high stress independent of the shear rate, and thus assimilated to the suspension apparent (dynamic) yield stress. Quantitatively, the fluctuations of the aggregate orientation are modeled as a rotary diffusion process with a diffusion constant proportional to the mean square interaction torque. The model gives a satisfactory agreement with the experimental field dependency of the apparent yield stress and confirms the nearly quadratic concentration dependency σ{sub Y}∝Φ{sup 2.2}, revealed in experiments. The practical interest of this study lies in the development of MR smart devices with the magnetic field nonperpendicular to the channel walls.

  6. The fate of pancake vortices

    Science.gov (United States)

    Sutyrin, G. G.; Radko, T.

    2017-03-01

    Nonlinear evolution of pancake-like vortices in a uniformly rotating and stratified fluid is studied using a 3D Boussinesq numerical model at large Rossby numbers. After the initial stage of viscous decay, the simulations reveal exponential growth of toroidal circulation cells (aka Taylor vortices) at the peripheral annulus with a negative Rayleigh discriminant. At the nonlinear stage, these thin cells redistribute the angular momentum and density differently at the levels of radial outflow and inflow. Resulting layering, with a vertical stacking of sharp variations in velocity and density, enhances small-scale mixing and energy decay. Characteristic detectable stretching patterns are produced in the density field. The circulation patterns, induced by centrifugal instability, tend to homogenize the angular momentum in the vicinity of the unstable region. We demonstrate that the peak intensity of the cells and the vortex energy decay are dramatically reduced by the earth's rotation due to conservation of total absolute angular momentum. The results have important implications for better understanding the fate of pancake vortices and physical mechanisms of energy transfer in stratified fluids.

  7. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  8. Generation and propagation of optical vortices

    Science.gov (United States)

    Rozas, David

    Optical vortices are singularities in phase fronts of laser beams. They are characterized by a dark core whose size (relative to the size of the background beam) may dramatically affect their behavior upon propagation. Previously, only large-core vortices have been extensively studied. The object of the research presented in this dissertation was to explore ways of generating small-core optical vortices (also called optical vortex filaments ), and to examine their propagation using analytical, numerical and experimental methods. Computer-generated holography enabled us to create arbitrary distributions of optical vortex filaments for experimental exploration. Hydrodynamic analogies were used to develop an heuristic model which described the dependence of vortex motion on other vortices and the background beam, both qualitatively and quantitatively. We predicted that pair of optical vortex filaments will rotate with angular rates inversely proportional to their separation distance (just like vortices in a fluid). We also reported the first experimental observation of this novel fluid-like effect. It was found, however, that upon propagation in linear media, the fluid-like rotation was not sustained owing to the overlap of diffracting vortex cores. Further numerical studies and experiments showed that rotation angle may be enhanced in nonlinear self-defocusing media. The results presented in this thesis offer us a better understanding of dynamics of propagating vortices which may result in applications in optical switching, optical data storage, manipulation of micro-particles and optical limiting for eye protection.

  9. Up-Sliding Slantwise Vorticity Development and the Complete Vorticity Equation with Mass Forcing

    Institute of Scientific and Technical Information of China (English)

    崔晓鹏; 高守亭; 吴国雄

    2003-01-01

    The moist potential vorticity (MPV) equation is derived from complete atmospheric equations includingthe effect of mass forcing, with which the theory of Up-sliding Slantwise Vorticity Development (USVD)is proposed based on the theory of Slantwise Vorticity Development (SVD). When an air parcel slides upalong a slantwise isentropic surface, its vertical component of relative vorticity will develop, and the steeperthe isentropic surface is, the more violent the development will be. From the definition of MPV and theMPV equation produced here in, a complete vorticity equation is then put forward with mass forcing, whichexplicitly includes the effects of both internal forcings, such as variations of stability, baroclinicity, andvertical shear of horizontal wind, and external forcings, such as diabatic heating, friction, and mass forcing.When isentropic surfaces are flat, the complete vorticity equation matches its traditional counterpart. Thephysical interpretations of some of the items which are included in the complete vorticity equation butnot in the traditional one are studied with a simplified model of the Changjiang-Huaihe Meiyu front. A60-h simulation is then performed to reproduce a torrential rain event in the Changjiang-Huaihe regionand the output of the model is studied qualitatively based on the theory of USVD. The result shows thatthe conditions of the theory of USVD are easily satisfied immediately in front of mesoscale rainstorms inthe downwind direction, that is, the theory of USVD is important to the development and movement ofthese kinds of systems.

  10. Resolving vorticity and dissipation in a turbulent boundary layer by tomographic PTV and VIC+

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio; Elsinga, Gerrit E.

    2017-04-01

    The existing time-resolved tomographic particle image velocimetry (PIV) measurements by Jodai and Elsinga (J Fluid Mech 795:611-633; Jodai, Elsinga, J Fluid Mech 795:611-633, 2016) in a turbulent boundary layer ( Re θ = 2038) are reprocessed using tomographic particle tracking velocimetry (PTV) and vortex-in-cell-plus (VIC+). The resulting small-scale flow properties, i.e. vorticity and turbulence dissipation, are compared. The VIC+ technique was recently proposed and uses the concept of pouring time into space to increase reconstruction quality of instantaneous velocity. The tomographic PTV particle track measurements are interpolated using VIC+ to a dense grid, making use of both particle velocity and Lagrangian acceleration. Comparison of the vortical structures by visualization of isosurfaces of vorticity magnitude shows that the two methods return similar coherent vortical structures, but their strength in terms of vorticity magnitude is increased when using VIC+, which suggests an improvement in spatial resolution. Further statistical evaluation shows that the root mean square (rms) of vorticity fluctuations from tomographic PIV is approximately 40% lower in comparison to a reference profile available from a DNS simulation, while the VIC+ technique returns rms vorticity fluctuations to within 10% of the reference. The dissipation rate is heavily underestimated by tomographic PIV with approximately 50% damping, whereas the VIC+ analysis yields a dissipation rate to within approximately 5% for y + > 25. The fact that dissipation can be directly measured by a volumetric experiment is novel. It differs from existing approaches that involve 2d measurements combined with isotropic turbulence assumptions or apply corrections based on sub-grid scale turbulence modelling. Finally, the study quantifies the spatial response of VIC+ with a sine-wave lattice analysis. The results indicate a twofold increase of spatial resolution with respect to cross

  11. A NONHYDROSTATIC NUMERICAL MODEL FOR DENSITY STRATIFIED FLOW AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g., tidally driven flow over two-dimensional sills or internal solitary waves propagating over a shoaling bed. The model was based on the non-hydrostatic vorticity-stream function equations for a continuously stratified fluid in a rotating frame. A self-adaptive grid was adopted in the vertical coordinate, the Alternative Direction Implicit (ADI) scheme was used for the time marching equations while the Poisson equation for stream-function was solved based on the Successive Over Relaxation (SOR) iteration with the Chebyshev acceleration. The numerical techniques were described and three applications of the model were presented.

  12. Separation vortices and pattern formation

    DEFF Research Database (Denmark)

    Andersen, Anders Peter; Bohr, Tomas; Schnipper, Teis

    2010-01-01

    In this paper examples are given of the importance of flow separation for fluid patterns at moderate Reynolds numbers—both in the stationary and in the time-dependent domain. In the case of circular hydraulic jumps, it has been shown recently that it is possible to generalise the Prandtl–Kármán–P...... results for the vortex patterns behind a flapping foil in a flowing soap film, which shows the interaction and competition between the vortices shed from the round leading edge (like the von Kármán vortex street) and those created at the sharp trailing edge.......-time evolution of the sand ripple pattern, which has the surprising features that it breaks the local sand conservation and has long-range interaction, features that can be underpinned by experiments. Very similar vortex dynamics takes place around oscillating structures such as wings and fins. Here, we present...

  13. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    Science.gov (United States)

    Martín, Juan A.; Paredes, Pedro

    2016-08-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  14. Sensing and exploitation of vortices for a schooling fish

    Science.gov (United States)

    Gao, Amy; Maertens, Audrey; Triantafyllou, Michael

    2016-11-01

    The question of whether fish are capable of actively sensing and using individual vortices while schooling has long been debated. Prior research has shown that fish can gain a hydrodynamic benefit when swimming in the wake of another fish. However, it remains unclear if lateral line feedback is necessary, and if so, how a fish may adjust its motion to maximize its energy savings. To begin to address this, we study though numerical simulations the hydrodynamic interactions between two fish swimming in tandem, focusing on the interaction of individual vortices with the following fish. Using a potential flow model, we show that the pressure sensed by the following fish can be captured with a low number of states, which provide information that allows the fish to locate near-field vortices and phase its undulating motion accordingly. We will discuss how vortex interactions along the fish can be beneficial, the signals they induce, and which strategies a fish may use to save the most energy.

  15. SIMULATION OF AIRCRAFT CONDENSATION TRAILS AND WAKE VORTICES INTERACTION

    Directory of Open Access Journals (Sweden)

    T. O. Aubakirov

    2015-01-01

    Full Text Available A technique of calculation of aircraft condensation trails (contrails and wake vortices interaction is described. The technique is based on a suitable for real-time applications mathematical model of far wake utilizes the method of discrete vortices. The technique is supplemented by account of the influence of axial velocities in the vortex nucleus on contrail and wake vortex location. Results of calculations of contrails and wake vortices interaction for Il-76 and B-747 aircraft are presented.

  16. Behavior of the Blade Tip Vortices of a Wind Turbine Equipped with a Brimmed-Diffuser Shroud

    Directory of Open Access Journals (Sweden)

    Takanori Uchida

    2012-12-01

    Full Text Available To clarify the behavior of the blade tip vortices of a wind turbine equipped with a brimmed-diffuser shroud, called a “Wind-Lens turbine”, we conducted a three-dimensional numerical simulation using a large eddy simulation (LES. Since this unique wind turbine consists of not only rotating blades but also a diffuser shroud with a broad-ring brim at the exit periphery, the flow field around the turbine is highly complex and unsteady. Previously, our research group conducted numerical simulations using an actuator-disc approximation, in which the rotating blades were simply modeled as an external force on the fluid. Therefore, the detailed flow patterns around the rotating blades and the shroud, including the blade tip vortices, could not be simulated. Instead of an actuator-disc approximation, we used a moving boundary technique in the present CFD simulation to simulate the flow around a rotating blade in order to focus especially on blade tip vortices. The simulation results showed a pair of vortices consisting of a blade tip vortex and a counter-rotating vortex which was generated between the blade tip and the inner surface of the diffuser. Since these vortices interacted with each other, the blade tip vortex was weakened by the counter-rotating vortex. The results showed good agreement with past wind tunnel experiments.

  17. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    Science.gov (United States)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  18. Vortices and Jacobian varieties

    DEFF Research Database (Denmark)

    Manton, Nicholas S.; M. Romão, Nuno

    2011-01-01

    We investigate the geometry of the moduli space of N-vortices on line bundles over a closed Riemann surface of genus g > 1, in the little explored situation where 1 = 1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely...

  19. Vitality of optical vortices

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available Optical vortices are always created or annihilated in pairs with opposite topological charges. However, the presence of such a vortex dipole does not directly indicate whether they are associated with a creation or an annihilation event. Here we...

  20. Computational modelling of SCC flow

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Thrane, Lars Nyholm; Szabo, Peter

    2005-01-01

    To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Exampl...... of computational models for the time dependent flow behavior are given, and advantages and disadvantages of discrete particle and single fluid models are briefly described.......To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Examples...

  1. Eddy viscosity of core flow inferred from comparison between time evolutions of the length-of-day and a core surface flow model

    Science.gov (United States)

    Matsushima, M.

    2016-12-01

    Diffusive processes of large scales in the Earth's core are dominated not by the molecular diffusion but by the eddy diffusion. To carry out numerical simulations of realistic geodynamo models, it is important to adopt appropriate parameters. However, the eddy viscous diffusion, or the eddy viscosity, is not a property of the core fluid but of the core flow. Hence it is significant to estimate the eddy viscosity from core flow models. In fact, fluid motion near the Earth's core surface provides useful information on core dynamics, features of the core-mantle boundary (CMB), and core-mantle coupling, for example. Such core fluid motion can be estimated from spatial and temporal distributions of the geomagnetic field. Most of core surface flow models rely on the frozen-flux approximation (Roberts and Scott, 1965), in which the magnetic diffusion is neglected. It should be noted, however, that there exists a viscous boundary layer at the CMB, where the magnetic diffusion may play an important role in secular variations of geomagnetic field. Therefore, a new approach to estimation of core surface flow has been devised by Matsushima (2015). That is, the magnetic diffusion is explicitly incorporated within the viscous boundary layer, while it is neglected below the boundary layer at the CMB which is assumed to be a spherical surface. A core surface flow model between 1840 and 2015 has been derived from a geomagnetic field model, COV-OBS.x1 (Gillet et al., 2015). Temporal variations of core flows contain information on phenomena in relation with core-mantle coupling, such as the LOD (length-of-day), and spin-up/spin-down of core flows. In particular, core surface flows inside the viscous boundary layer at the CMB may reveal an interesting feature in relation with Earth's rotation. We have examined time series of the LOD and vorticity derived from the core surface flow model. We have found a possible correlation between the LOD and the axial component of global vorticity

  2. Moist Potential Vorticity and Up-Sliding Slantwise Vorticity Development

    Institute of Scientific and Technical Information of China (English)

    GUI Xiao-Peng; GAO Shou-Ting; WU Guo-Xiong

    2003-01-01

    By using the moist potential vorticity equation derived from complete atmospheric equations including the effect of mass forcing, the theory of up-sliding slantwise vorticity development (USVD) is proposed based on the theory of slantwise vorticity development. When an air parcel slides up along a slantwise isentropic surface, its vertical component of relative vorticity is developed. Based on the theory of USVD, a complete vertical vorticity equation is expected with mass forcing, which explicitly includes the effect of both internal forcings and external forcings.

  3. Detection of multi-scale secondary flow structures using anisotropic 2D Ricker wavelets in a bent tube model for curved arteries

    Science.gov (United States)

    Plesniak, Daniel H.; Bulusu, Kartik V.; Plesniak, Michael W.

    2012-11-01

    Interpretation of complex flow patterns observed in this study of a model curved artery required characterization of multiple, low-circulation secondary flow structures that were observed during the late systolic deceleration and diastolic phases under physiological inflow conditions. Phase-locked, planar vorticity PIV data were acquired at various cross-sectional locations of the 180-degree bent tube model. High circulation, deformed Dean- and Lyne-type vortices were observed during early stages of deceleration, while several smaller scale, highly deformed, low-circulation vortical patterns appeared in the core and near-wall regions during late systolic deceleration and diastolic phases. Due to the multiplicity of vortical scales and shapes, anisotropic 2D Ricker wavelets were used for coherent structure detection in a continuous wavelet transform algorithm (PIVlet 1.2). Our bio-inspired study is geared towards understanding whether optimizing the shape of the wavelet kernel will enable better resolution of several low-circulation, multi-scale secondary flow morphologies and whether new insights into the dynamics of arterial secondary flow structures can accordingly be gained. Supported by the National Science Foundation, Grant No. CBET-0828903 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  4. Viscous flow features in scaled-up physical models of normal and pathological vocal phonation

    Energy Technology Data Exchange (ETDEWEB)

    Erath, Byron D., E-mail: berath@purdue.ed [School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 (United States); Plesniak, Michael W., E-mail: plesniak@gwu.ed [Department of Mechanical and Aerospace Engineering, George Washington University, 801 22nd Street NW, Suite 739, Washington, DC 20052 (United States)

    2010-06-15

    Unilateral vocal fold paralysis results when the recurrent laryngeal nerve, which innervates the muscles of the vocal folds becomes damaged. The loss of muscle and tension control to the damaged vocal fold renders it ineffectual. The mucosal wave disappears during phonation, and the vocal fold becomes largely immobile. The influence of unilateral vocal fold paralysis on the viscous flow development, which impacts speech quality within the glottis during phonation was investigated. Driven, scaled-up vocal fold models were employed to replicate both normal and pathological patterns of vocal fold motion. Spatial and temporal velocity fields were captured using particle image velocimetry, and laser Doppler velocimetry. Flow parameters were scaled to match the physiological values associated with human speech. Loss of motion in one vocal fold resulted in a suppression of typical glottal flow fields, including decreased spatial variability in the location of the flow separation point throughout the phonatory cycle, as well as a decrease in the vorticity magnitude.

  5. Vortex identification in the analysis on the topology structure of vortical flow in cavity%涡判据在孔腔涡旋流动拓扑结构分析中的应用

    Institute of Scientific and Technical Information of China (English)

    胡子俊; 张楠; 姚惠之; 杨子轩

    2012-01-01

    Vortex which is a classical flow pattern has not a strict mathematical definition so far, and vortex identification is still an important approach to distinguish them. Different vortex identifications and physical meaning are summarized in this paper as well as the Q and λ2 identifications are employed to distinguish the actual various vortices in the cavity and analyze the topologic structure of vortices, the good results are obtained.%涡作为一种经典的流动现象目前仍没有严格的数学定义,涡判据是人们识别涡的重要途径.文章对涡的各种判据及其物理意义进行了调研和总结,并将目前较为常用的Q判据和λ2判据应用于二维和三维孔腔流动中涡的识别,并对其拓扑结构进行了分析,得到了有意义的结果.

  6. Assessment of Linear and Non-Linear Two-Equation Turbulence Models for Aerothermal Turbomachinery Flows

    Institute of Scientific and Technical Information of China (English)

    Pascale KULISA; Cédric DANO

    2006-01-01

    Three linear two-equation turbulence models k- ε, k- ω and k- 1 and a non-linear k- l model are used for aerodynamic and thermal turbine flow prediction. The pressure profile in the wake and the heat transfer coefficient on the blade are compared with experimental data. Good agreement is obtained with the linear k- l model. No significant modifications are observed with the non-linear model. The balance of transport equation terms in the blade wake is also presented. Linear and non-linear k- l models are evaluated to predict the threedimensional vortices characterising the turbine flows. The simulations show that the passage vortex is the main origin of the losses.

  7. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  8. Vorticity is a marker of right ventricular diastolic dysfunction.

    Science.gov (United States)

    Fenster, Brett E; Browning, James; Schroeder, Joyce D; Schafer, Michal; Podgorski, Chris A; Smyser, Jamie; Silveira, Lori J; Buckner, J Kern; Hertzberg, Jean R

    2015-09-15

    Right ventricular diastolic dysfunction (RVDD) is an important prognostic indicator in pulmonary arterial hypertension (PAH). RV vortex rings have been observed in healthy subjects, but their significance in RVDD is unknown. Vorticity, the local spinning motion of an element of fluid, may be a sensitive measure of RV vortex dynamics. Using four-dimensional (4D) flow cardiac magnetic resonance imaging (CMR), we investigated the relationship between right heart vorticity with echocardiographic indexes of RVDD. Thirteen (13) PAH subjects and 10 controls underwent same-day 4D flow CMR and echocardiography. RV diastolic function was assessed using trans-tricuspid valve (TV) early (E) and late (A) velocities, E/A ratio, and e' and a' tissue Doppler velocities. RV and right atrial (RA) integrated mean vorticity was calculated for E and A-wave filling periods using 4D datasets. Compared with controls, A-wave vorticity was significantly increased in RVDD subjects in both the RV [2343 (1,559-3,295) vs. 492 (267-2,649) 1/s, P = 0.028] and RA [30 (27-44) vs. 9 (5-27) 1/s, P = 0.005]. RA E vorticity was significantly decreased [13 (7-22) vs. 28 (15-31) 1/s, P = 0.038] in RVDD. E-wave vorticity correlated TV e', E-,and TV E/A (P < 0.05), and A-wave vorticity associated with both TV A and E/A (P < 0.02). RVDD is associated with alterations in E- and A-wave vorticity, and vorticity correlates with multiple echocardiographic markers of RVDD. Vorticity may be a robust noninvasive research tool for the investigation of RV fluid and tissue mechanical interactions in PAH. Copyright © 2015 the American Physiological Society.

  9. Cellular automata models for synchronized traffic flow

    CERN Document Server

    Jiang Rui

    2003-01-01

    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  10. Spatio-temporal optical vortices

    CERN Document Server

    Jhajj, N; Rosenthal, E W; Zahedpour, S; Wahlstrand, J K; Milchberg, H M

    2016-01-01

    We present the first experimental, theoretical, and numerical evidence of spatio-temporal optical vortices (STOVs). Quantized STOVs are a fundamental element of the nonlinear collapse and subsequent propagation of short optical pulses in material media. A STOV consists of a ring-shaped null in the electromagnetic field about which the phase is spiral, forming a dynamic torus which is concentric with and tracks the propagating pulse. Depending on the sign of the material dispersion, the local electromagnetic energy flow is saddle or spiral about the STOV. STOVs are born and evolve conserving topological charge; they can be simultaneously created in pairs with opposite windings, or generated from a point null. Our results, here obtained for optical pulse collapse and filamentation in air, are generalizable to a broad class of nonlinearly propagating waves.

  11. Instability of surface lenticular vortices: results from laboratory experiments and numerical simulations

    Science.gov (United States)

    Lahaye, Noé; Paci, Alexandre; Smith, Stefan Llewellyn

    2016-04-01

    We examine the instability of lenticular vortices -- or lenses -- in a stratified rotating fluid. The simplest configuration is one in which the lenses overlay a deep layer and have a free surface, and this can be studied using a two-layer rotating shallow water model. We report results from laboratory experiments and high-resolution direct numerical simulations of the destabilization of vortices with constant potential vorticity, and compare these to a linear stability analysis. The stability properties of the system are governed by two parameters: the typical upper-layer potential vorticity and the size (depth) of the vortex. Good agreement is found between analytical, numerical and experimental results for the growth rate and wavenumber of the instability. The nonlinear saturation of the instability is associated with conversion from potential to kinetic energy and weak emission of gravity waves, giving rise to the formation of coherent vortex multipoles with trapped waves. The impact of flow in the lower layer is examined. In particular, it is shown that the growth rate can be strongly affected and the instability can be suppressed for certain types of weak co-rotating flow.

  12. A reduced-order model of three-dimensional unsteady flow in a cavity based on the resolvent operator

    CERN Document Server

    Gómez, F; Rudman, M; Sharma, AS; McKeon, BJ

    2016-01-01

    A novel reduced-order model for nonlinear flows is presented. The model arises from a resolvent decomposition in which the nonlinear advection terms of the Navier-Stokes equation are considered as the input to a linear system in Fourier space. Results show that Taylor-G\\"ortler-like vortices can be represented from a low-order resolvent decomposition of a nonlinear lid-driven cavity flow. The present approach provides an approximation of the fluctuating velocity given the time-mean and the time history of a single velocity probe.

  13. A speed-flow relationship model of highway traffic flow

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LI Wei; REN Gang

    2005-01-01

    In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.

  14. A toy terrestrial carbon flow model

    Science.gov (United States)

    Parton, William J.; Running, Steven W.; Walker, Brian

    1992-01-01

    A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models.

  15. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  16. Puffed Noncommutative Nonabelian Vortices

    CERN Document Server

    Bouatta, N; MacCaferri, C; Bouatta, Nazim; Evslin, Jarah; Maccaferri, Carlo

    2007-01-01

    We present new solutions of noncommutative gauge theories in which coincident unstable vortices expand into unstable circular shells. As the theories are noncommutative, the naive definition of the locations of the vortices and shells is gauge-dependent, and so we define and calculate the profiles of these solutions using the gauge-invariant noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2 vortex solutions are characterized by two positions and a single nonnegative real number, which we demonstrate is the radius of the shell. We find that the radius is identically zero in all 2-dimensional solutions. If one considers solutions that depend on an additional commutative direction, then there are time-dependent solutions in which the radius oscillates, resembling a braneworld description of a cyclic universe. There are also smooth BIon-like space-dependent solutions in which the shell expands to infinity, describing a vortex ending on a domain wall.

  17. Vortices and Jacobian varieties

    CERN Document Server

    Manton, Nicholas S

    2010-01-01

    We investigate the geometry of the moduli space of N-vortices on line bundles over a closed Riemann surface of genus g > 1, in the little explored situation where 1 = 1, the vortex metric typically degenerates as the dissolving limit is approached, the degeneration occurring precisely on the critical locus of the Abel-Jacobi map at degree N. We describe consequences of this phenomenon from the point of view of multivortex dynamics.

  18. Modelling observed decay-less oscillations as resonantly enhanced Kelvin-Helmholtz vortices from transverse MHD waves and their seismological application

    CERN Document Server

    Antolin, Patrick; Van Doorsselaere, Tom; Yokoyama, Takaaki

    2016-01-01

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfv\\'en waves. Due to its localised nature, a direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction, recent observations indicate that in the low amplitude regime such transverse MHD waves can also appear decay-less, a yet unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modelling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant abs...

  19. On the uniqueness of flow in a recent tsunami model

    CERN Document Server

    Mustafa, Octavian G

    2011-01-01

    We give an elementary proof of uniqueness for the integral curve starting from the vertical axis in the phase-plane analysis of the recent model [A. Constantin, R.S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis, Fluid Dynam. Res. 40 (2008), 175--211]. Our technique can be applied easily in circumstances where the reparametrization device from [A. Constantin, A dynamical systems approach towards isolated vorticity regions for tsunami background states, Arch. Rational Mech. Anal. doi: 10.1007/s00205-010-0347-1] might lead to some serious difficulties.

  20. Computation of hypersonic vortex flows with an Euler model

    Science.gov (United States)

    Bruneau, Charles-Henri; Laminie, Jacques; Chattot, Jean-Jacques

    The variational approach of the steady Euler equations presented at the loth ICNMFD [1] is extended to the treatment of supersonic and hypersonic flows by introducing the energy equation inthe least-squares formulation. The approximation is made with cubic or prismatic linear finite elements and the results are presented for flows around a rectangular flat plate or a thin delta wing for various Mach numbers and angles of attack. They show the occurrence of vortical flows on the upper surface of the wings due to the sharp edges.

  1. The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg–Landau model

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Pedersen, Niels Falsig; Ögren, Magnus

    2016-01-01

    We investigate the dynamics of magnetic vortices in type II superconductors with normal state pinning sites using the Ginzburg–Landau equations. Simulation results demonstrate hopping of vortices between pinning sites, influenced by external magnetic fields and external currents. The system...

  2. Cosmological Perturbations: Vorticity, Isocurvature and Magnetic Fields

    CERN Document Server

    Christopherson, Adam J

    2014-01-01

    In this paper I review some recent, interlinked, work undertaken using cosmological perturbation theory -- a powerful technique for modelling inhomogeneities in the Universe. The common theme which underpins these pieces of work is the presence of non-adiabatic pressure, or entropy, perturbations. After a brief introduction covering the standard techniques of describing inhomogeneities in both Newtonian and relativistic cosmology, I discuss the generation of vorticity. As in classical fluid mechanics, vorticity is not present in linearized perturbation theory (unless included as an initial condition). Allowing for entropy perturbations, and working to second order in perturbation theory, I show that vorticity is generated, even in the absence of vector perturbations, by purely scalar perturbations, the source term being quadratic in the gradients of first order energy density and isocurvature, or non-adiabatic pressure perturbations. This generalizes Crocco's theorem to a cosmological setting. I then introduc...

  3. On n-quantum vortices in superconductors

    CERN Document Server

    Marchenko, V I

    2002-01-01

    The conditions of the n-quantum vortices observation in the superconductors are discussed. It is established in the course of calculating the coefficient by the |psi| sup 6 (psi - the order parameter) in the Ginzburg-Landau theory for the BCS standard model that the sign of this coefficient is negative. This favours the possibility of observing the n-quantum vortices in the superconductors, wherein the vortex lattice with gravitation is formed. The existence of gravitation is manifested in the magnetization finite jump in the H sub 0 = H sub c sub sup 1 field. When by the temperature change the superconductor behavior changes in such a way, that its magnetization in the H sub 0 = H sub c field reduces to the zero, than the observation of the n-quantum vortices near this transition is possible

  4. Site-Scale Saturated Zone Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca

  5. Inward propagating chemical waves in Taylor vortices.

    Science.gov (United States)

    Thompson, Barnaby W; Novak, Jan; Wilson, Mark C T; Britton, Melanie M; Taylor, Annette F

    2010-04-01

    Advection-reaction-diffusion (ARD) waves in the Belousov-Zhabotinsky reaction in steady Taylor-Couette vortices have been visualized using magnetic-resonance imaging and simulated using an adapted Oregonator model. We show how propagating wave behavior depends on the ratio of advective, chemical and diffusive time scales. In simulations, inward propagating spiral flamelets are observed at high Damköhler number (Da). At low Da, the reaction distributes itself over several vortices and then propagates inwards as contracting ring pulses--also observed experimentally.

  6. Dust Devils and Convective Vortices on Mars

    Science.gov (United States)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.

    2017-03-01

    Dust devils are low pressure convective vortices able to lift dust from the surface of a planet. They are a common feature on Mars and they can also be found on desertic locations on Earth. On Mars they are considered an important part of the atmospheric dust cycle. Dust in Mars is an essential ingredient of the atmosphere where it affects the radiative balance of the planet. Here we review observations of these dusty vortices from orbit, from in situ measurements on the surface of Mars and some of the models developed to simulate them.

  7. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  8. A continuous-vorticity panel method for lifting surfaces

    Science.gov (United States)

    Yen, A.; Mook, D. T.; Nayfeh, A. H.

    1981-01-01

    A continuous-vorticity panel method is developed and utilized to predict the steady aerodynamic loads on lifting surfaces having sharp-edge separation. Triangular panels with linearly varying vorticity are used. The velocity field generated by an individual element is obtained in closed form. An optimization scheme is constructed for finding the vorticity at the nodes of the elements. The method is not restricted by aspect ratios, angles of attack, planforms, or camber. Rectangular and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data for incompressible flows.

  9. Modelling of the Czochralski flow

    OpenAIRE

    Jan Franc

    1998-01-01

    The Czochralski method of the industrial production of a silicon single crystal consists of pulling up the single crystal from the silicon melt. The flow of the melt during the production is called the Czochralski flow. The mathematical description of the flow consists of a coupled system of six P.D.E. in cylindrical coordinates containing Navier-Stokes equations (with the stream function), heat convection-conduction equations, convection-diffusion equation for oxygen impurity and an equation...

  10. Overland flow : interfacing models with measurements

    NARCIS (Netherlands)

    Loon, van E.E.

    2002-01-01

    Index words: overland flow, catchment scale, system identification, ensemble simulations.This study presents new techniques to identify scale-dependent overland flow models and use these for ensemble-based predictions. The techniques are developed on the basis of overland flow, rain, discharge, soil

  11. Motion of three vortices near collapse

    Science.gov (United States)

    Leoncini, X.; Kuznetsov, L.; Zaslavsky, G. M.

    2000-08-01

    A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, the vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon known as vortex collapse is of principal importance for many-vortex systems. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. Using an effective potential representation, a detailed quantitative analysis of all the different types of near-collapse dynamics is performed when two of the vortices are identical. We discuss time and length scales, emerging in the problem, and their behavior as the initial vortex triangle is approaching an exact collapse configuration. Different types of critical behaviors, such as logarithmic or power-law divergences are exhibited, which emphasize the importance of the way the collapse is approached. Period asymptotics for all singular cases are presented as functions of the initial vortice's configurations. Special features of passive particle mixing by near-collapse flows are illustrated numerically.

  12. Vorticity, Stokes' Theorem and the Gauss's Theorem

    Science.gov (United States)

    Narayanan, M.

    2004-12-01

    Vorticity is a property of the flow of any fluid and moving fluids acquire properties that allow an engineer to describe that particular flow in greater detail. It is important to recognize that mere motion alone does not guarantee that the air or any fluid has vorticity. Vorticity is one of four important quantities that define the kinematic properties of any fluid flow. The Navier-Stokes equations are the foundation of fluid mechanics, and Stokes' theorem is used in nearly every branch of mechanics as well as electromagnetics. Stokes' Theorem also plays a vital role in many secondary theorems such as those pertaining to vorticity and circulation. However, the divergence theorem is a mathematical statement of the physical fact that, in the absence of the creation or destruction of matter, the density within a region of space can change only by having it flow into, or away from the region through its boundary. This is also known as Gauss's Theorem. It should also be noted that there are many useful extensions of Gauss's Theorem, including the extension to include surfaces of discontinuity in V. Mathematically expressed, Stokes' theorem can be expressed by considering a surface S having a bounding curve C. Here, V is any sufficiently smooth vector field defined on the surface and its bounding curve C. Integral (Surface) [(DEL X V)] . dS = Integral (Contour) [V . dx] In this paper, the author outlines and stresses the importance of studying and teaching these mathematical techniques while developing a course in Hydrology and Fluid Mechanics. References Arfken, G. "Gauss's Theorem." 1.11 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 57-61, 1985. Morse, P. M. and Feshbach, H. "Gauss's Theorem." In Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 37-38, 1953. Eric W. Weisstein. "Divergence Theorem." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DivergenceTheorem.html

  13. Generation of speckle vortices by Archimedes' spiral micro-holes

    Science.gov (United States)

    Sun, Haibin; Liu, Tingting; Chen, Jun; Sun, Ping

    2016-10-01

    Speckle plays an important role in the optical field. Optical vortices which exist in random speckle fields usually contain useful phase information. The distribution of speckle field is determined by these optical vortices. In order to study speckle vortices quantitatively, we established a micro-holes array model based on the law of Archimedes' spiral arrangement. Speckle vortices can be generated by the random diffuse reflection points (spiral micro-holes). In the experiments, the gray image of Archimedes' spiral micro-holes are displayed on the screen of liquid crystal spatial light modulator (LC-SLM), and the output optical field is captured by a CCD camera. The numerical simulations and experimental results show that the model can be used to generate speckle vortices.

  14. Gyrofluid potential vorticity equation and turbulent equipartion states

    DEFF Research Database (Denmark)

    Madsen, Jens; Juul Rasmussen, Jens; Naulin, Volker

    2015-01-01

    An equation governing potential vorticity in a magnetized plasmas is derived. The equation is analogous to Ertel's theorem. In the long wave-length limit the potential vorticity equals the ratio of the gyro-frequency plus the E × B- and diamagnetic polarization densities to the particle density....... The equation is relevant for transport barriers in magnetically confined plasmas because particle density, ion temperature and the radial electric field are mutually coupled through the potential vorticity. The potential vorticity equation is derived from an energy conserving, four-field, electrostatic, full......-F gyrofluid model. It is shown that the gyrofluid model possesses two exact Lagrangian invariants. In systems where mixing uniformly distribute the Lagrangian invariants we derive the corresponding turbulent equipartion states. It is shown that the system is driven towards constant potential vorticity. Given...

  15. Potential vorticity formulation of compressible magnetohydrodynamics.

    Science.gov (United States)

    Arter, Wayne

    2013-01-04

    Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.

  16. Secondary flow behavior in a double bifurcation

    Science.gov (United States)

    Leong, Fong Yew; Smith, Kenneth A.; Wang, Chi-Hwa

    2009-04-01

    Secondary flows in the form of multivortex structures can occur in bifurcation models as the result of upstream influence. Results from numerical modeling of steady inspiratory flows indicate that, for the case of a symmetric planar double bifurcation, four counter-rotating vortices develop in each of the grand daughter branches. In this paper, experimental visualization and verification is provided by particle image velocimetry measurements on a modified single bifurcation model. A splitter plate was positioned in the mother tube so that secondary vorticity was introduced into the fluid core. The axial velocity profile before the bifurcation junction resembles the M-shaped velocity profile commonly observed in bifurcated tube flows. The result of this manipulation is the development of a physically observable four-vortex configuration in the cross sections of the daughter branches, thus demonstrating the strong influence of upstream secondary vorticity. Through numerical visualization of vortex lines, it is shown that secondary vorticity is amplified by the extension of vortex lines due to secondary flow within the daughter tube. Order-of-magnitude arguments have been applied to the vorticity transport equation; and key dimensionless parameters have been obtained, accounting for curvature effects. Results indicate that the secondary vorticity goes through a maximum with increasing downstream distance, as a result of the interplay between vortex stretching and viscous effects.

  17. Martian polar vortices: Comparison of reanalyses

    Science.gov (United States)

    Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.

    2016-09-01

    The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.

  18. Control of Trapped Vorticity in an Offset Diffuser

    Science.gov (United States)

    Burrows, Travis J.; Vukasinovic, Bojan; Glezer, Ari

    2015-11-01

    Vorticity concentrations trapped within in a recessed section in the moldline of an offset diffuser are manipulated using fluidic actuation to alter the flow evolution within the diffuser. Trapped vorticity is engendered by deliberate local flow separation owing to the aggressive moldline curvature. The strength and scale of the trapped vortex and its interaction with the cross flow are controlled by a spanwise array of streamwise, surface-integrated fluidic actuators that are placed just upstream of the recessed moldline. The local and global characteristics of the diffuser flow in the absence and presence of the actuation are investigated at Mach numbers up to M = 0 . 7 , using static pressure distributions, hot-wire anemometry, and particle image velocimetry. It is shown that flow distortion as measured by cross sectional variations of the total pressure distribution within the diffuser can be significantly modified by manipulation of the trapped vorticity, and is reduced (by over 50%) with increasing momentum of the actuation jets. The mitigation of flow distortion by trapped vorticity actuation is associated with manipulation of the evolution of streamwise secondary vortices within the diffuser. Supported by ONR.

  19. Axisymmetrically Tropical Cyclone-like Vortices with Secondary Circulations

    CERN Document Server

    Sun, Liang

    2013-01-01

    The secondary circulation of the tropical cyclone (TC) is related to its formation and intensification, thus becomes very important in the studies. The analytical solutions have both the primary and secondary circulation in a three-dimensionally nonhydrostatic and adiabatic model. We prove that there are three intrinsic radiuses for the axisymmetrically ideal incompressible flow. The first one is the radius of maximum primary circular velocity $r_m$. The second one is radius of the primary kernel $r_k>r_m$, across which the vorticity of the primary circulation changes sign and the vertical velocity changes direction. The last one is the radius of the maximum primary vorticity $r_d$, at which the vertical flow of the secondary circulation approaches its maximum, and across which the radius velocity changes sign. The first TC-like vortex solution has universal inflow or outflow. The relations between the intrinsic length scales are $r_k=\\sqrt{2}r_m$ and $r_d=2r_m$. The second one is a multi-planar solution, per...

  20. Modelling of the Czochralski flow

    Directory of Open Access Journals (Sweden)

    Jan Franc

    1998-01-01

    Full Text Available The Czochralski method of the industrial production of a silicon single crystal consists of pulling up the single crystal from the silicon melt. The flow of the melt during the production is called the Czochralski flow. The mathematical description of the flow consists of a coupled system of six P.D.E. in cylindrical coordinates containing Navier-Stokes equations (with the stream function, heat convection-conduction equations, convection-diffusion equation for oxygen impurity and an equation describing magnetic field effect.

  1. Numerical Simulation of Viscous Flow Through Spherical Particle Assemblage with the Modified Cell Model

    Institute of Scientific and Technical Information of China (English)

    毛在砂

    2002-01-01

    The cell model developed since 1950s is a useful tool for exploring the behavior of particle assemblages,but it demands further careful development of the outer cell boundary conditions so that interaction in a particleswarm is better represented. In this paper, the cell model and its development were reviewed, and the modificationsof outer cell boundary conditions were suggested. At the cell outer boundary, the restriction of uniform liquid flowwas removed in our simulation conducted in the reference frame fixed with the particle. Zero shear stress conditionwas used to evaluate the outer boundary value of the stream function. Boundary vorticity was allowed to evolve tovalues compatible to existing stream function at the free shear outer boundary. The fore-aft symmetry of vorticitydistribution at the outer boundary is thought critical to ensure the continuity of inflow and outflow between touchingneighbor cells, and is also tested in the modified cell model. Numerical simulation in terms of stream function andvorticity based on the modified cell models was carried out to shed light on the interaction between liquid andparticles. Lower predicted drag coefficient by the modified cell models was interpreted with the feature of flowstructure. The drag coefficient from the simulation was also compared with correlations of drag coefficient reportedin literature. It is found that the modified cell model with the uniformity of external flow relaxed and the fore-aftsymmetry of boundary vorticity enforced was the most satisfactory on the overall performance of prediction.

  2. General vorticity conservation

    CERN Document Server

    Gümral, H

    1998-01-01

    The motion of an incompressible fluid in Lagrangian coordinates involves infinitely many symmetries generated by the left Lie algebra of group of volume preserving diffeomorphisms of the three dimensional domain occupied by the fluid. Utilizing a 1+3-dimensional Hamiltonian setting an explicit realization of this symmetry algebra and the related Lagrangian and Eulerian conservation laws are constructed recursively. Their Lie algebraic structures are inherited from the same construction. The laws of general vorticity and helicity conservations are formulated globally in terms of invariant differential forms of the velocity field.

  3. Microgravity two-phase flow regime modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.; Best, F.R.; Faget, N.

    1987-01-01

    A flow pattern or flow regime is the characteristics spatial distribution of the phases of fluid in a duct. Since heat transfer and pressure drop are dependent on the characteristic distribution of the phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that pattern can be chosen. The objective of the present analysis is to create a flow regime map based on physical modeling of vapor/liquid interaction phenomena in a microgravity environment. In the present work, four basic flow patterns are defined: dispersed flow, stratified flow, slug flow, and annular flow. Fluid properties, liquid and vapor flow rates, and pipe size were chosen as the principal parameters. It is assumed that a transition from one flow pattern to another will occur when there is a change in the dominant force which controls that flow pattern. The forces considered in this modeling are surface tension force, both force, inertial force, friction, and turbulent fluctuations.

  4. Average-passage flow model development

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark

    1989-01-01

    A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

  5. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly

  6. Numerical study of spatial-temporal evolution of the secondary flow in the models of a common carotid artery

    Directory of Open Access Journals (Sweden)

    Yakov A. Gataulin

    2017-03-01

    Full Text Available A numerical study of the secondary flow in two geometrically different models of a common carotid artery has been carried out. One of the models (Model 1 is characterized by a statistically averaged curvature, and the second one (Model 2 is attributed to the maximal curvature of the artery. It was shown that the most intensive swirl occurred at the phase of flow rate decreasing, the maximum values of the swirl parameters were observed at the interface of the cervical and thoracic segments of the artery. This interface is the place where the Dean vortices are transformed into a single vortex forming a swirling flow. The swirl intensity averaged over the systole and characterized by the ratio of the maximal values of the axial and circumferential velocities was evaluated as 0.20 for Model 1 and 0.25 for Model 2. Generally, it was in accordance with the data of clinical measurements.

  7. On the Stability of Nonlinear Viscous Vortices in Three-Dimensional Boundary Layers

    Science.gov (United States)

    1992-04-01

    wave disturbances in stable and unsta- ble parallel flows , Part 2. The development of a solution for plane Poiseuille and plane Couette flow . J. Fluid...unstable parallel flows , Part 1. The basic behaviour in plane Poiseuille flow . J. Fluid Mech. 9, 353-370. Watson, J. 1960 On the nonlinear mechanics of...vortices which a particular boundary layer may support. According to a linearised theory vortices within a high G6rtler number flow can take one of

  8. A phase analysis of vorticity vectors associated with tropical convection

    Institute of Scientific and Technical Information of China (English)

    Cui Xiao-Peng

    2008-01-01

    Three new vorticity vectors have been proposed by Gao et al to study the two-dimensional tropical convection. In the present paper, phase relations between surface rain rate and the vorticity vectors are analysed with the calculations of lag correlation coefficients based on hourly zonally-averaged mass-integrated cloud-resolving simulation data. The cloud-resolving model is integrated with the vertical velocity, zonal wind, horizontal thermal and moisture advections, and sea surface temperature observed and derived from tropical ocean global atmosphere - coupled ocean atmosphere response experiment (TOGA-COARE) for 10 days. Maximum local increase of the vertical component of the convective vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interaction between vorticity and zonal gradient of ice heating. While maximum local increase of the vertical component of the moist vorticity vector leads maximum surface rain rate by 2 hours mainly because of the interaction between zonal specific humidity gradient and zonal buoyancy gradient. And the maximum local decrease of the zonal component of the dynamic vorticity vector leads maximum surface rain rate by 2 hours mainly due to the interactions between vorticity and vertical pressure gradient as well as vorticity and buoyancy.

  9. Quantised vortices and mutual friction in relativistic superfluids

    CERN Document Server

    Andersson, N; Vickers, J A

    2016-01-01

    We consider the detailed dynamics of an array of quantised superfluid vortices in the framework of general relativity, as required for quantitative modelling of realistic neutron star cores. Our model builds on the variational approach to relativistic (multi-) fluid dynamics, where the vorticity plays a central role. The description provides a natural extension of, and as it happens a better insight into, existing Newtonian models. In particular, we account for the mutual friction associated with scattering of a second "normal" component in the mixture off of the superfluid vortices.

  10. Approximate Model for Turbulent Stagnation Point Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  11. Vortices and Vermas

    CERN Document Server

    Bullimore, Mathew; Gaiotto, Davide; Hilburn, Justin; Kim, Hee-Cheol

    2016-01-01

    In three-dimensional gauge theories, monopole operators create and destroy vortices. We explore this idea in the context of 3d N=4 gauge theories in the presence of an Omega-background. In this case, monopole operators generate a non-commutative algebra that quantizes the Coulomb-branch chiral ring. The monopole operators act naturally on a Hilbert space, which is realized concretely as the equivariant cohomology of a moduli space of vortices. The action furnishes the space with the structure of a Verma module for the Coulomb-branch algebra. This leads to a new mathematical definition of the Coulomb-branch algebra itself, related to that of Braverman-Finkelberg-Nakajima. By introducing additional boundary conditions, we find a construction of vortex partition functions of 2d N=(2,2) theories as overlaps of coherent states (Whittaker vectors) for Coulomb-branch algebras, generalizing work of Braverman-Feigin-Finkelberg-Rybnikov on a finite version of the AGT correspondence. In the case of 3d linear quiver gaug...

  12. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  13. AN ANALYTIC APPROACH TO THEORETICAL MODELING OF HIGHLY UNSTEADY VISCOUS FLOW EXCITED BY WING FLAPPING IN SMALL INSECTS

    Institute of Scientific and Technical Information of China (English)

    余永亮; 童秉纲; 马晖扬

    2003-01-01

    Numerous studies on the aerodynamics of insect wing flapping were carried out on different approaches of flight investigations, model experiments, and numerical simulations, but the theoretical modeling remains to be explored. In the present paper, an analytic approach is presented to model the flow interactions of wing flapping in air for small insects with the surrounding flow fields being highly unsteady and highly viscous. The model of wing flapping is a 2-D flat plate, which makes plunging and pitching oscillations as well as quick rotations reversing its positions of leading and trailing edges, respectively, during stroke reversals. It contains three simplified aerodynamic assumptions:(i) unsteady potential flow; (ii) discrete vortices shed from both leading and trailing edges of the wing; (iii) Kutta conditions applied at both edges. Then the problem is reduced to the solution of the unsteady Laplace equation, by using distributed singularities, i.e., sources/sinks, and vortices in the field. To validate the present physical model and analytic method proposed via benchmark examples, two elemental motions in wing flapping and a case of whole flapping cycles are analyzed,and the predicted results agree well with available experimental and numerical data. This verifies that the present analytical approach may give qualitatively correct and quantitatively reasonable results.Furthermore, the total fluid-dynamic force in the present method can be decomposed into three parts:one due to the added inertial (or mass) effect, the other and the third due to the induction of vortices shed from the leading- and the trailing-edge and their images respectively, and this helps to reveal the flow control mechanisms in insect wing flapping.

  14. Analytical models for complex swirling flows

    Science.gov (United States)

    Borissov, A.; Hussain, V.

    1996-11-01

    We develops a new class of analytical solutions of the Navier-Stokes equations for swirling flows, and suggests ways to predict and control such flows occurring in various technological applications. We view momentum accumulation on the axis as a key feature of swirling flows and consider vortex-sink flows on curved axisymmetric surfaces with an axial flow. We show that these solutions model swirling flows in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with near-axis Schlichting and Long's swirling jets. The matched solutions model flows with very complex patterns, consisting of up to seven separation regions with recirculatory 'bubbles' and vortex rings. We apply the matched solutions for computing flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The simple analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. These solutions permit extension to other problems (such as heat transfer and chemical reaction) and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.

  15. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  16. A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows

    CERN Document Server

    Mininni, P D; Pouquet, A G

    2004-01-01

    We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...

  17. Large-deviation statistics of vorticity stretching in isotropic turbulence.

    Science.gov (United States)

    Johnson, Perry L; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.

  18. Dynamics of circular arrangements of vorticity in two dimensions

    Science.gov (United States)

    Swaminathan, Rohith V.; Ravichandran, S.; Perlekar, Prasad; Govindarajan, Rama

    2016-07-01

    The merger of two like-signed vortices is a well-studied problem, but in a turbulent flow, we may often have more than two like-signed vortices interacting. We study the merger of three or more identical corotating vortices initially arranged on the vertices of a regular polygon. At low to moderate Reynolds numbers, we find an additional stage in the merger process, absent in the merger of two vortices, where an annular vortical structure is formed and is long lived. Vortex merger is slowed down significantly due to this. Such annular vortices are known at far higher Reynolds numbers in studies of tropical cyclones, which have been noticed to a break down into individual vortices. In the preannular stage, vortical structures in a viscous flow are found here to tilt and realign in a manner similar to the inviscid case, but the pronounced filaments visible in the latter are practically absent in the former. Five or fewer vortices initially elongate radially, and then reorient their long axis closer to the azimuthal direction so as to form an annulus. With six or more vortices, the initial alignment is already azimuthal. Interestingly at higher Reynolds numbers, the merger of an odd number of vortices is found to proceed very differently from that of an even number. The former process is rapid and chaotic whereas the latter proceeds more slowly via pairing events. The annular vortex takes the form of a generalized Lamb-Oseen vortex (GLO), and diffuses inward until it forms a standard Lamb-Oseen vortex. For lower Reynolds number, the numerical (fully nonlinear) evolution of the GLO vortex follows exactly the analytical evolution until merger. At higher Reynolds numbers, the annulus goes through instabilities whose nonlinear stages show a pronounced difference between even and odd mode disturbances. Here again, the odd mode causes an early collapse of the annulus via decaying turbulence into a single central vortex, whereas the even mode disturbance causes a more

  19. 基于层析PIV的湍流边界层展向涡研究%Study of spanwise vortices in turbulent boundary layer flow based on tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    王洪平; 高琪; 魏润杰; 王晋军

    2016-01-01

    层析PIV是一种现代激光测速技术,能实现三分量空间体内三分量(3D3C)速度场的测量。应用层析PIV测量Reτ=1768的平板湍流边界层,得到150个瞬时速度场,测量体的大小为80mm×16mm×45mm。旋涡强度λci 准则用来进行涡识别,而旋涡强度在展向的投影λzci 被用来识别展向涡。根据λzci 的连通域得到展向涡位置后,统计了展向涡沿法向的变化规律,并给出了在流向-法向平面内高低速区域和正负展向涡空间位置的关系。统计结果表明:随着法向高度的增加,展向涡的强度逐渐降低;负展向涡的流向平均速度高于正展向涡,且流向速度与法向速度有很强的依赖性;在小尺度范围内,流向-法向平面内的高低速流动区域与正负展向涡的空间位置密切相关。%Tomographic particle image velocimetry (Tomo-PIV )is a novel laser technique that can be applied to measure a three-dimensional three-component (3D3C)velocity field.In the current work,Tomo-PIV was utilized to measure a plate turbulent boundary layer (TBL)at Reτ= 1768,and 150 velocity fields with each size of 80mm×16mm×45mm were obtained.The swirl strengthλci was used to identify the local vortex,while its proj ection on the spanwise directionλzci was used to identify the spanwise vortex.The spatial coherent structures of spanwise vortices and their population trends along the wall-normal direction were studied through swirling strengthλzci .The statistic results suggest that the strength of the spanwise vortices reduces with the in-crease of the wall-normal distance y+ .The streamwise velocity of retrograde spanwise vortices is higher than that of the prograde vortices and there is a strong dependence between the streamwise velocity and the wall-normal velocity.High or low momentum regions of small scale in the stre-amwise and wall-normal plane are highly correlated with the spatial arrangement of spanwise vor

  20. Electroweak Vortices and Gauge Equivalence

    Science.gov (United States)

    MacDowell, Samuel W.; Törnkvist, Ola

    Vortex configurations in the electroweak gauge theory are investigated. Two gauge-inequivalent solutions of the field equations, the Z and W vortices, have previously been found. They correspond to embeddings of the Abelian Nielsen-Olesen vortex solution into a U(1) subgroup of SU(2)×U(1). It is shown here that any electroweak vortex solution can be mapped into a solution of the same energy with a vanishing upper component of the Higgs field. The correspondence is a gauge equivalence for all vortex solutions except those for which the winding numbers of the upper and lower Higgs components add to zero. This class of solutions, which includes the W vortex, corresponds to a singular solution in the one-component gauge. The results, combined with numerical investigations, provide an argument against the existence of other vortex solutions in the gauge-Higgs sector of the Standard Model.

  1. Flow in a model turbine stator

    Science.gov (United States)

    Buggeln, R. C.; Shamroth, S. J.; Briley, W. R.

    1985-10-01

    In view of the complex nature of the flowfield in the hot section of gas turbine engines, the need to predict heat transfer and flow losses, the possible appearance of separation and strong secondary flows, etc., the present effort is focusing upon a Navier-Stokes approach to the three dimensional turbine stator problem. The advantages of a full Navier-Stokes approach are clear since when combined with a suitable turbulence model these equations represent the flow and heat transfer physics. In particular, the Navier-Stokes equations accurately represent possible separated regions and regions of significant secondary flow. In addition, the Navier-Stokes approach allows representation of the entire flow field by a single set of equations, thus avoiding problems associated with representing different regions of the flow by different equations and then matching flow regions.

  2. NUMERICAL MODEL FOR FLOW MOTION WITH VEGETATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-tao; SU Xiao-hui

    2008-01-01

    A set of governing equations for turbulent flows in vegetated area were derived with the assumption that vegetation is of straight and rigid cylinder. The effect of vegetation on flow motion was represented by additional inertial and drag forces. The new model was validated by available experimental data for open channel flows passing through vegetated areas with different vegetation size, density and distribution. Numerical results are in good agreement with the experimental data. Finally, the flow around a supposed isolated vegetated pile was simulated and the effects of vegetation density on the wake flow were discussed. It is found that the presence of vegetation, even at a very low density, has the pronounced influence on the dissipation of flow energy, both inside the vegetation domain and outside it in the wake flow region.

  3. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  4. Holographic Fluids with Vorticity and Analogue Gravity

    CERN Document Server

    Leigh, Robert G; Petropoulos, P Marios

    2012-01-01

    We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

  5. Dynamic modelling of packaging material flow systems.

    Science.gov (United States)

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.

  6. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process

  7. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process improv

  8. Numerical investigation of cavitation-vortex interaction in a mixed-flow water jet pump

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Renfang; Lou, Xianwu [Tsinghua University, Beijing (China); Ji, Bin [Wuhan University, Hubei (China); Zhai, Zhihong; Zhou, Jiajian [Marine Design and Research Institute of China, Shanghai (China)

    2015-09-15

    Turbulent cavitating flows in a mixed-flow waterjet pump were numerically investigated using the k-w SST turbulence model and the mass transfer cavitation model based on the Rayleigh-Plesset equation to provide a comprehensive understanding of the cavitation-vortex interaction mechanism. The predicted hydraulic performance, as well as the cavitation performance, exhibits a reasonable agreement with the experimental results. The vorticity distributions under three operation conditions were illustrated together. Based on the illustration, cavitation development enhances vorticity production and flow unsteadiness in a mixed-flow waterjet pump. Vortices are basically located at the cavity interface, particularly at the downstream interface, during cavitation. Further analyses using the relative vorticity transport equation in cavitating turbulent flows indicate that vortex dilation and baroclinic torque exhibit a steep jump as cavitation occurs. In addition, vortex stretching contributes mainly to large-scale vortex generation.

  9. Propagation dynamics of vortices in Helico-Conical optical beams

    CERN Document Server

    Bareza, Nestor

    2015-01-01

    We present the dynamics of optical vortices (OVs) that came from the propagation of helico-conical optical beam. This dynamics is investigated numerically by tracking the OVs at several distances using rigorous scalar diffraction theory. To ensure that our numerical calculations are correct, we compare the intensity profiles and their corresponding interferograms taken at different propagation distances between simulations and experiments. We observe that the peripheral isopolar vortices transport radially inward, toward the optical axis along the transverse spatial space as the beam propagates. When the beam has a central vortex, these vortices have significant induced angular rates of motion about the optical axis. These propagation dynamics of vortices influence the internal energy flow and the wave profile reconstruction of the beam, which can be important when deciding their applications.

  10. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-06-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  11. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-12-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  12. Incorporating groundwater flow into the WEPP model

    Science.gov (United States)

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  13. Analysis of Cortical Flow Models In Vivo

    Science.gov (United States)

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  14. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  15. Identification of separate flow features in the shear layer

    Science.gov (United States)

    Mulleners, Karen; Krishna, Swathi; Green, Melissa

    2016-11-01

    Analyzing unsteady flow fields primarily involves the identification of dynamically significant regions of vorticity in the flow. Detection of all the flow features is essential for an accurate description of the physics of the flow, which eventually helps in improving flow modeling and predictions. Eulerian criteria such as λ2 and Γ2 successfully identify large scale structures based on local velocity gradients and topology but do not detect the coherent vortices with the concentrated vorticity in a shear layer. The identification of these smaller structures within the shear layer is important when predicting the overall circulatory contribution to the aerodynamic forces produced, in applications such as flapping wing design. In order to detect the smaller flow features along with the prominent large scale vortices, an alternative method of vortex identification is proposed in which the flow structures are detected based on the vorticity contours. This method is applied to numerical and experimental data of a pitching panel to highlight its robustness. In addition, the finite time Lyapunov exponent (FTLE) is calculated to show that the boundaries of the material lines and identified vorticity contours coincide.

  16. Simple models for shear flow transition

    Science.gov (United States)

    Barkley, Dwight

    2011-11-01

    I will discuss recent developments in modeling transitional shear flows with simple two-variable models. Both pipe flow and plane Couette flow are considered. The essential insight is that most large-scale features of these shear flows can be traced to a change from excitability to bistability in the local dynamics. Models are presented in two variables, turbulence intensity and mean shear. A PDE model of pipe flow captures the essence of the puff-slug transition as a change from excitability to bistability. Extended models with turbulence as deterministic transient chaos or multiplicative noise reproduce almost all large-scale features of transitional pipe flow. In particular they capture metastable localized puffs, puff splitting, slugs, localized edge states, a continuous transition to sustained turbulence via spatiotemporal intermittency (directed percolation), and a subsequent increase in turbulence fraction towards uniform, featureless turbulence. A model that additionally takes into account the symmetries of plane Couette flow reproduces localized turbulence and periodic turbulent-laminar bands.

  17. Efficient Simulation and Novel Modeling by Using Generic Three-Dimensional Exact Solutions to Analyze Transport Dynamics in Turbulent Vortices

    Science.gov (United States)

    2009-02-28

    measurements on the analysis and performance of flapping bird wings. J. Experimental Biology, 211(2):215-223, 2008. [36] M.S. Vest and J. Katz . Unsteady...tunnel. High Performance Computing, Proceedings., 1940:494-500, 2000. [68] R. Friedrich , T.J. Huttl, M. Manhart, and C. Wagner. Direct numerical...Engng. - Transactions of ASME, 120(3):513-519, 1998. [83] J. Katz . A discrete vortex method for the non-steady separated flow over an airfoil. J

  18. Vortices in dam reservoir: A case study of Karun III dam

    Indian Academy of Sciences (India)

    Maryam Azarpira; Hamed Sarkardeh; Sasan Tavakkol; Reza Roshan; Hossein Bakhshi

    2014-10-01

    The present study focuses on the effect of vortex formation on plane velocities in a reservoir. Velocity measurements are performed in the hydraulic model of Karun III dam and hydropower plant. Different vortices were produced at the horizontal intake by changing the submerged depth. Tangential velocities were measured on a rectangular mesh in the reservoir. The results were then processed to plot the contour lines of the plane velocities and study the effect of vortex formation on the flow condition in the reservoir. Contour lines in different submerged depths show that circulation zones are formed in different potential locations over the intakes causing vortex formation. These results were correlated with the location of the appearing vortices observed in the experiments. Experimental data of this study could be useful for numerical modelling of vortex in the reservoirs.

  19. A General Thermal Equilibrium Discharge Flow Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Min-fu; ZHANG; Dong-xu; LV; Yu-feng

    2015-01-01

    In isentropic and thermal equilibrium assumptions,a discharge flow model was derived,which unified the rules of normal temperature water discharge,high temperature and high pressure water discharge,two-phase critical flow,saturated steam and superheated steam critical

  20. Abelian Vortices with Singularities

    CERN Document Server

    Baptista, J M

    2012-01-01

    Let L --> X be a complex line bundle over a compact connected Riemann surface. We consider the abelian vortex equations on L when the metric on the surface has finitely many point degeneracies or conical singularities and the line bundle has parabolic structure. These conditions appear naturally in the study of vortex configurations with constraints, or configurations invariant under the action of a finite group. We first show that the moduli space of singular vortex solutions is the same as in the regular case. Then we compute the total volume and total scalar curvature of the moduli space singular vortex solutions. These numbers differ from the case of regular vortices by a very natural term. Finally we exhibit explicit non-trivial vortex solutions over the thrice punctured hyperbolic sphere.

  1. Effect of the bifurcation angle on the flow within a synthetic model of lower human airways

    Science.gov (United States)

    Espinosa Moreno, Andres Santiago; Duque Daza, Carlos Alberto

    2016-11-01

    The effect of the bifurcation angle on the flow pattern developed during respiratory inhalation and exhalation processes was explored numerically using a synthetic model of lower human airways featuring three generations of a dichotomous morphology as described by a Weibel model. Laminar flow simulations were performed for six bifurcation angles and four Reynolds numbers relevant to human respiratory flow. Numerical results of the inhalation process showed a peak displacement trend of the velocity profile towards the inner walls of the model. This displacement exhibited correlation with Dean-type secondary flow patterns, as well as with the onset and location of vortices. High wall shear stress regions on the inner walls were observed for a range of bifurcation angles. Noteworthy, specific bifurcation angles produced higher values of pressure drop, compared to the average behavior, as well as changes in the volumetric flow through the branches. Results of the simulations for exhalation process showed a different picture, mainly the appearance of symmetrical velocity profiles and the change of location of the regions of high wall shear stress. The use of this modelling methodology for biomedical applications is discussed considering the validity of the obtained results. Department of Mechanical and Mechatronics Engineering, Universidad Nacional de Colombia.

  2. Numerical simulations of viscous flow around the obliquely towed KVLCC2M model in deep and shallow water

    Institute of Scientific and Technical Information of China (English)

    孟庆杰; 万德成

    2016-01-01

    By solving the unsteady Reynolds averaged Navier–Stokes (RANS) equations in combination with thek-ω SST turbulence model, the unsteady viscous flow around the obliquely towed tanker KVLCC2M model in both deep and shallow waters is simulated and the hydrodynamic forces, the surface pressure distribution, and the wake field are calculated. The overset grid technology is used to avoid the grid distortion in large drift angle cases. The effects of the free surface are taken into account. At the first stage, the deep water cases with five oblique angles are designed as the benchmark test cases. The predicted wake field, the surface pressure distribution and the hydrodynamic forces acting on the hull agree well with the corresponding experimental data, implying the capability of the present method in the prediction of the viscous flow around the tanker drifting in shallow water. A set of systematic computations with varying water depths and drift angles are then carried out to study the viscous flow around the model drifting in shallow water. The forces and moments, as well as the surface pressure distribution are predicted and analyzed. The most significant changes such as the increased stagnation pressure in the bow, the acceleration of the flow along the ship’s sides and in the gap between ship and seabed, the lower hull pressure and finally, the stronger vortices along the bilges and weaker vortices with larger diameters in the wake are noticed.

  3. Complex Convective Thermal Fluxes and Vorticity Structure

    Science.gov (United States)

    Redondo, Jose M.; Tellez, Jackson; Sotillos, Laura; Lopez Gonzalez-Nieto, Pilar; Sanchez, Jesus M.; Furmanek, Petr; Diez, Margarita

    2015-04-01

    Local Diffusion and the topological structure of vorticity and velocity fields is measured in the transition from a homogeneous linearly stratified fluid to a cellular or layered structure by means of convective cooling and/or heating[1,2]. Patterns arise by setting up a convective flow generated by an array of Thermoelectric devices (Peltier/Seebeck cells) these are controlled by thermal PID generating a buoyant heat flux [2]. The experiments described here investigate high Prandtl number mixing using brine and fresh water in order to form density interfaces and low Prandtl number mixing with temperature gradients. The set of dimensionless parameters define conditions of numeric and small scale laboratory modeling of environmental flows. Fields of velocity, density and their gradients were computed and visualized [3,4]. When convective heating and cooling takes place the combination of internal waves and buoyant turbulence is much more complicated if the Rayleigh and Reynolds numbers are high in order to study entrainment and mixing. Using ESS and selfsimilarity structures in the velocity and vorticity fieds and intermittency [3,5] that forms in the non-homogeneous flow is related to mixing and stiring. The evolution of the mixing fronts are compared and the topological characteristics of the merging of plumes and jets in different configurations presenting detailed comparison of the evolution of RM and RT, Jets and Plumes in overall mixing. The relation between structure functions, fractal analysis and spectral analysis can be very useful to determine the evolution of scales. Experimental and numerical results on the advance of a mixing or nonmixing front occurring at a density interface due to body forces [6]and gravitational acceleration are analyzed considering the fractal and spectral structure of the fronts like in removable plate experiments for Rayleigh-Taylor flows. The evolution of the turbulent mixing layer and its complex configuration is studied

  4. Modeling Rotating Turbulent Flows with the Body Force Potential Model.

    Science.gov (United States)

    Bhattacharya, Amitabh; Perot, Blair

    2000-11-01

    Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.

  5. Coherence vortices of partially coherent beams in the far field

    Institute of Scientific and Technical Information of China (English)

    Liu Pu-Sheng; Lü Bai-da

    2007-01-01

    Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator, zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points.If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.

  6. Computational modelling flow and transport

    NARCIS (Netherlands)

    Stelling, G.S.; Booij, N.

    1999-01-01

    Lecture notes CT wa4340. Derivation of equations using balance principles; numerical treatment of ordinary differential equations; time dependent partial differential equations; the strucure of a computer model:DUFLO; usage of numerical models.

  7. A Lagrangian-Lagrangian Model for Two-Phase Bubbly Flow around Circular Cylinder

    Directory of Open Access Journals (Sweden)

    M. Shademan

    2014-06-01

    Full Text Available A Lagrangian-Lagrangian model is developed using an in-house code to simulate bubble trajectory in two-phase bubbly flow around circular cylinder. Random Vortex Method (RVM which is a Lagrangian approach is used for solving the liquid phase. The significance of RVM relative to other RANS/LES methods is its capability in directly modelling the turbulence. In RVM, turbulence is modeled by solving the vorticity transport equation and there is no need to use turbulence closure models. Another advantage of RVM relative to other CFD approaches is its independence from mesh generation. For the bubbles trajectory, equation of motion of bubbles which takes into account effect of different forces are coupled with the RVM. Comparison of the results obtained from current model with the experimental data confirms the validity of the model. Effect of different parameters including flow Reynolds number, bubble diameter and injection point on the bubbles' trajectory are investigated. Results show that increase in the Reynolds number reduces the rising velocity of the bubbles. Similar behavior is observed for the bubbles when their diameter was decreased. According to the analysis carried out, present Lagrangian-Lagrangian model solves the issues of mesh generation and turbulence modelling which exist in common two phase flow modelling schemes.

  8. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    CERN Document Server

    Langfellner, J; Birch, A C

    2015-01-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8-h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m/s in the clockwise direction at 40{\\deg} latitude. In average inflow regio...

  9. A new dynamics model for traffic flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As a study method of traffic flow, dynamics models were developedand applied in the last few decades. However, there exist some flaws in most existing models. In this note, a new dynamics model is proposed by using car-following theory and the usual connection method of micro-macro variables, which can overcome some ubiquitous problems in the existing models. Numerical results show that the new model can very well simulate traffic flow conditions, such as congestion, evacuation of congestion, stop-and-go phenomena and phantom jam.

  10. Stabilization of vortices in the wake of a circular cylinder using harmonic forcing

    DEFF Research Database (Denmark)

    Chamoun, George Chaouki; Schilder, Frank; Brøns, Morten

    2011-01-01

    We explore whether vortex flows in the wake of a fixed circular cylinder can be stabilized using harmonic forcing. We use Fo¨ppl's point vortex model augmented with a harmonic point source-sink mechanism which preserves conservation of mass and leaves the system Hamiltonian. We discover a region...... of Lyapunov-stable vortex motion for an appropriate selection of parameters. We identify four unique parameters that affect the stability of the vortices: the uniform flow velocity, vortex equilibrium positions, forcing amplitude, and forcing frequency. We assess the robustness of the controller using...

  11. Energy and vorticity decay in Haloclines and Thermoclines

    Science.gov (United States)

    Redondo, Jose M.; Matulka, Annia M.; Peco, Cristian

    2010-05-01

    Experiments at different Reynolds numbers on the vertical and horizontal mixing structure and efficiency of mixing across a thermocline or halocline are used to investigate the decay of the turbulence [1-3]. Vertical and horizontal grids are used to mix an initialy sharp density interface (mostly made up with brine). Visualization methods are used to derive the velocity and vorticity horizontal fields and density probes allow to evaluate mixing. The vortex behavior is analyzed in detail as well as the process of energy decay and the transfer from kinetic to potential energy.By using the multi-fractal "Box counting Algorithm" [1] on the kinetic energy and vorticity fields and a suitable non dimensional Damkholer type of decay time, based on the local dissipation in the experiments that model ocean haloclines and surface ROFI, it is possible to relate certain patterns to physical processes similar to those in the ocean as in[4]. Diffusion, Spectral variations, Intermittency and higher order estimations of local mixing are presented as functions of the Richardson number and these predictions are compared with practical ocean flows and pollution situations[5]. [1] Redondo J.M. and Garzon G."Multifractal structure and intermittency in Rayleigh-Taylor Driven Fronts". Ed. S. Dalziel www.damtp.cam.ac.uk/iwpctm9/proceedings/IWPCTM9/Papers/Programme.htm. 2004. [2] Redondo, J.M. and Cantalapiedra I.R. "Mixing in Horizontally Heterogeneous Flows". Jour. Flow Turbulence and Combustion. 51. 217-222. 1993. [3] Castilla R, Redondo J.M., Gamez P.J., Babiano A. "Coherent vortices and Lagrangian Dynamics in 2D Turbulence". Non-Linear Processes in Geophysics 14. 139-151. 2007. [4] Bezerra,M.O. M. Diez, C. Medeiros, A. Rodriguez, E. Bahia., A. Sanchez-Arcilla and J.M. Redondo. "Study on the influence of waves on coastal diffusion using image analysis". Jour. Flow Turbulence and Combustion 59,.191-204. 1998. [5] Peco, C. "Mixing in the Thermocline and Halocline Ms". Thesis, ETSECCPB

  12. A laboratory model of the aortic root flow including the coronary arteries

    Science.gov (United States)

    Querzoli, Giorgio; Fortini, Stefania; Espa, Stefania; Melchionna, Simone

    2016-08-01

    Cardiovascular flows have been extensively investigated by means of in vitro models to assess the prosthetic valve performances and to provide insight into the fluid dynamics of the heart and proximal aorta. In particular, the models for the study of the flow past the aortic valve have been continuously improved by including, among other things, the compliance of the vessel and more realistic geometries. The flow within the sinuses of Valsalva is known to play a fundamental role in the dynamics of the aortic valve since they host a recirculation region that interacts with the leaflets. The coronary arteries originate from the ostia located within two of the three sinuses, and their presence may significantly affect the fluid dynamics of the aortic root. In spite of their importance, to the extent of the authors' knowledge, coronary arteries were not included so far when modeling in vitro the transvalvular aortic flow. We present a pulse duplicator consisting of a passively pulsing ventricle, a compliant proximal aorta, and coronary arteries connected to the sinuses of Valsalva. The coronary flow is modulated by a self-regulating device mimicking the physiological mechanism, which is based on the contraction and relaxation of the heart muscle during the cardiac cycle. Results show that the model reproduces satisfyingly the coronary flow. The analysis of the time evolution of the velocity and vorticity fields within the aortic root reveals the main characteristics of the backflow generated through the aorta in order to feed the coronaries during the diastole. Experiments without coronary flow have been run for comparison. Interestingly, the lifetime of the vortex forming in the sinus of Valsalva during the systole is reduced by the presence of the coronaries. As a matter of fact, at the end of the systole, that vortex is washed out because of the suction generated by the coronary flow. Correspondingly, the valve closure is delayed and faster compared to the case with

  13. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  14. Unsteady numerical simulation of the flow in the U9 Kaplan turbine model

    Science.gov (United States)

    Javadi, Ardalan; Nilsson, Håkan

    2014-03-01

    The Reynolds-averaged Navier-Stokes equations with the RNG k-ε turbulence model closure are utilized to simulate the unsteady turbulent flow throughout the whole flow passage of the U9 Kaplan turbine model. The U9 Kaplan turbine model comprises 20 stationary guide vanes and 6 rotating blades (696.3 RPM), working at best efficiency load (0.71 m3/s). The computations are conducted using a general finite volume method, using the OpenFOAM CFD code. A dynamic mesh is used together with a sliding GGI interface to include the effect of the rotating runner. The clearance is included in the guide vane. The hub and tip clearances are also included in the runner. An analysis is conducted of the unsteady behavior of the flow field, the pressure fluctuation in the draft tube, and the coherent structures of the flow. The tangential and axial velocity distributions at three sections in the draft tube are compared against LDV measurements. The numerical result is in reasonable agreement with the experimental data, and the important flow physics close to the hub in the draft tube is captured. The hub and tip vortices and an on-axis forced vortex are captured. The numerical results show that the frequency of the forced vortex in 1/5 of the runner rotation.

  15. Management of Vortices Trailing Flapped Wings via Separation Control

    Science.gov (United States)

    Greenblatt, David

    2005-01-01

    A pilot study was conducted on a flapped semi-span model to investigate the concept and viability of near-wake vortex management via separation control. Passive control was achieved by means of a simple fairing and active control was achieved via zero mass-flux blowing slots. Vortex sheet strength, estimated by integrating surface pressure ports, was used to predict vortex characteristics by means of inviscid rollup relations. Furthermore, vortices trailing the flaps were mapped using a seven-hole probe. Separation control was found to have a marked effect on vortex location, strength, tangential velocity, axial velocity and size over a wide range of angles of attack and control conditions. In general, the vortex trends were well predicted by the inviscid rollup relations. Manipulation of the separated flow near the flap edges exerted significant control over both outboard and inboard edge vortices while producing negligible lift excursions. Dynamic separation and attachment control was found to be an effective means for dynamically perturbing the vortex from arbitrarily long wavelengths down to wavelengths less than a typical wingspan. In summary, separation control has the potential for application to time-independent or time-dependent wake alleviation schemes, where the latter can be deployed to minimize adverse effects on ride-quality and dynamic structural loading.

  16. Migration of anticyclonic vortices in the protoplanetary disk

    CERN Document Server

    Surville, Clément

    2012-01-01

    This contribution describes the evolution of the protoplanetary disk using 2D numerical simulations. The 2D Euler equations are solved with the finite volume method. The numerical simulations are used to study the persistence and migration of anticyclonic vortices. Two cases are presented : (1) vortices produced by a Rossby wave instability, (2) a non-linear vortex model initially implemented into the disk. The migration of the vortices is due to spiral density waves excited by the vortex in the gas of the disk

  17. Interaction of Vortices with a progressive Surface Wave

    Institute of Scientific and Technical Information of China (English)

    LinlinWANG; HuiyangMA

    1996-01-01

    Interaction of submerged vortices with a progressive surface wave is investigated by the finite-difference numerical solution of Navier-Stokes equations.The progressive wave is the surface gravity water wave in a finite depth.The initial vortex model is Oseen vortex.The numerical computations show that a special pattern of the wave surface may be observed by the interaction from the submerged vortices.The influences of Froude number,the initial geometric configuration of vortices,and the amplitude,inital phase of surface wave on the wave pattern are discussed.

  18. Kinetic study of ion-acoustic plasma vortices

    Energy Technology Data Exchange (ETDEWEB)

    Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Téchnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2014-09-15

    The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

  19. Image simulations of kinked vortices for transmission electron microscopy

    DEFF Research Database (Denmark)

    Beleggia, Marco; Pozzi, G.; Tonomura, A.

    2010-01-01

    We present an improved model of kinked vortices in high-Tc superconductors suitable for the interpretation of Fresnel or holographic observations carried out with a transmission electron microscope. A kinked vortex is composed of two displaced half-vortices, perpendicular to the film plane...... observations of high-Tc superconducting films, where the Fresnel contrast associated with some vortices showed a dumbbell like appearance. Here, we show that under suitable conditions the JV segment may reveal itself in Fresnel imaging or holographic phase mapping in a transmission electron microscope....

  20. Point Vortices: Finding Periodic Orbits and their Topological Classification

    CERN Document Server

    Smith, Spencer A

    2015-01-01

    The motion of point vortices constitutes an especially simple class of solutions to Euler's equation for two dimensional, inviscid, incompressible, and irrotational fluids. In addition to their intrinsic mathematical importance, these solutions are also physically relevant. Rotating superfluid helium can support rectilinear quantized line vortices, which in certain regimes are accurately modeled by point vortices. Depending on the number of vortices, it is possible to have either regular integrable motion or chaotic motion. Thus, the point vortex model is one of the simplest and most tractable fluid models which exhibits some of the attributes of weak turbulence. The primary aim of this work is to find and classify periodic orbits, a special class of solutions to the point vortex problem. To achieve this goal, we introduce a number of algorithms: Lie transforms which ensure that the equations of motion are accurately solved; constrained optimization which reduces close return orbits to true periodic orbits; o...

  1. On the link between martian total ozone and potential vorticity

    Science.gov (United States)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.

    2017-01-01

    We demonstrate for the first time that total ozone in the martian atmosphere is highly correlated with the dynamical tracer, potential vorticity, under certain conditions. The degree of correlation is investigated using a Mars global circulation model including a photochemical model. Potential vorticity is the quantity of choice to explore the dynamical nature of polar vortices because it contains information on winds and temperature in a single scalar variable. The correlation is found to display a distinct seasonal variation, with a strong positive correlation in both northern and southern winter at poleward latitudes in the northern and southern hemisphere respectively. The identified strong correlation implies variations in polar total ozone during winter are predominantly controlled by dynamical processes in these spatio-temporal regions. The weak correlation in northern and southern summer is due to the dominance of photochemical reactions resulting from extended exposure to sunlight. The total ozone/potential vorticity correlation is slightly weaker in southern winter due to topographical variations and the preference for ozone to accumulate in Hellas basin. In northern winter, total ozone can be used to track the polar vortex edge. The ozone/potential vorticity ratio is calculated for both northern and southern winter on Mars for the first time. Using the strong correlation in total ozone and potential vorticity in northern winter inside the polar vortex, it is shown that potential vorticity can be used as a proxy to deduce the distribution of total ozone where satellites cannot observe for the majority of northern winter. Where total ozone observations are available on the fringes of northern winter at poleward latitudes, the strong relationship of total ozone and potential vorticity implies that total ozone anomalies in the surf zone of the northern polar vortex can potentially be used to determine the origin of potential vorticity filaments.

  2. Vorticity and Capillaries at the Surface of a Jet

    CERN Document Server

    Andre, Matthieu A

    2012-01-01

    Shear layer instability at the free surface of a water jet is studied. The accompanying video shows experimental data recorded using measurement methods such as Planar Laser Induced Fluorescence (PLIF) and Particle Image Velocity (PIV). These results reveal the mechanisms leading to the formation of capillary waves on the surface due to the roll-up of the shear layer. These capillary waves eventually collide to each other, injecting vorticity in the bulk of the flow. Shear layer and injected vorticity interact to form a counter rotating vortex pair that moves down to the flow.

  3. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  4. Multiple Temperature Model for Near Continuum Flows

    Energy Technology Data Exchange (ETDEWEB)

    XU, Kun; Liu, Hongwei [Hong Kong University of Science and Technology, Kowloon (Hong Kong); Jiang, Jianzheng [Chinese Academy ofSciences, Beijing (China)

    2007-09-15

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime.

  5. Flow field mapping in data rack model

    Directory of Open Access Journals (Sweden)

    Matěcha J.

    2013-04-01

    Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

  6. Flow visualization and 1- and 3-D laser-Doppler-anemometer measurements in models of human carotid arteries.

    Science.gov (United States)

    Liepsch, D; Pflugbeil, G; Matsuo, T; Lesniak, B

    1998-04-01

    Pulsatile flow, wall distensibility, non-Newtonian flow characteristics of blood in flow separation regions, and high/low blood pressure were studied in elastic silicon rubber models having a compliance similar to human vessels and the same surface structure as the biological intima models of (1) a healthy carotid artery model, (2) a 90% stenosis in the ICA, and (3) 80% stenosis in both the internal and external carotid arteries. Flow was visualized for steady flow and pulsatile studies to localize flow separation regions and reattachment points. Local velocity was measured with a 1-, 2-, or 3-D laser-Doppler-anemometer (LDA). Flow in the unstenosed model was Re = 250. In the stenosed models, the Re number decreased to Re = 180 and 213 under the same experimental conditions. High velocity fluctuations with vortices were found in the stenosed models. The jet flow in the stenosis increased up to 4 m/s. With an increasing bifurcation angle, the separation regions in the ECA and ICA increased. Increased flow (Re = 350) led to an increase in flow separation and high velocity shear gradients. The highest shear stresses were nearly 20 times higher than normal. The 90% stenosis created high velocity shear gradients and velocity fluctuations. Downstream of the stenoses, eddies were found over the whole cross-section. In the healthy model a slight flow separation region was observed in the ICA at the branching cross-section whereas in the stenosed models, the flow separation regions extended far into the ICA. We conclude that a detailed understanding of flow is necessary before vascular surgery is performed especially before artificial grafts or patches are implanted.

  7. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  8. Acoustically Induced Streaming Flows near a Model Cod Otolith and their Potential Implications for Fish Hearing

    Energy Technology Data Exchange (ETDEWEB)

    Kotas, Charlotte W [ORNL; Rogers, Peter [Georgia Institute of Technology; Yoda, Minami [Georgia Institute of Technology

    2011-01-01

    The ears of fishes are remarkable sensors for the small acoustic disturbances associated with underwater sound. For example, each ear of the Atlantic cod (Gadus morhua) has three dense bony bodies (otoliths) surrounded by fluid and tissue, and detects sounds at frequencies from 30 to 500 Hz. Atlantic cod have also been shown to localize sounds. However, how their ears perform these functions is not fully understood. Steady streaming, or time-independent, flows near a 350% scale model Atlantic cod otolith immersed in a viscous fluid were studied to determine if these fluid flows contain acoustically relevant information that could be detected by the ear s sensory hair cells. The otolith was oscillated sinusoidally at various orientations at frequencies of 8 24 Hz, corresponding to an actual frequency range of 280 830 Hz. Phaselocked particle pathline visualizations of the resulting flows give velocity, vorticity, and rate of strain fields over a single plane of this mainly two-dimensional flow. Although the streaming flows contain acoustically relevant information, the displacements due to these flows are likely too small to explain Atlantic cod hearing abilities near threshold. The results, however, may suggest a possible mechanism for detection of ultrasound in some fish species.

  9. Flow structure in front of the broad-crested weir

    Directory of Open Access Journals (Sweden)

    Zachoval Zbyněk

    2015-01-01

    Full Text Available The paper deals with research focused on description of flow structure in front of broad-crested weir. Based on experimental measurement, the flow structure in front of the weir (the recirculation zone of flow and tornado vortices and flow structure on the weir crest has been described. The determined flow character has been simulated using numerical model and based on comparing results the suitable model of turbulence has been recommended.

  10. An investigation of fluid flow during induction stroke of a water analog model of an IC engine using an innovative optical velocimetry concept: LIPA

    Science.gov (United States)

    Stier, Bernd; Falco, R. E.

    1994-01-01

    Optical measurements on an axisymmetrical quartz component engine research model were made to evaluate the flow field encountered during induction. The measurement technique is LIPA (Laser Induced Photochemical Anemometry), a non-intrusive velocimetry concept that provides an investigator of fluid flow with a tool to attain planar information about three-dimensional velocity and vorticity vectors in a single measurement step. The goal of this investigation is to further develop this measurement technique and apply it to study the induction stroke of a water analog model of a four-stroke internal combustion engine. The research conducted in the water analog model is a fundamental scientific inquiry into the flow fields that develop in the induction stroke of an engine at idling engine speeds. As this is the first investigation of its kind using LIPA technique, our goal has been to quantify, in a preliminary manner, the flow field features that develop during the intake stroke. In the process a more comprehensive understanding of the flow field features was developed, and tied to the quantification. The study evaluated the flow field of the intake stroke by estimating fields of velocity and vorticity. On the basis of these data, information about fluid dynamics during induction at engine speeds of 10, 20, and 30 RPM (corresponding to 170, 340, and 510 RPM respectively, when air is the flowing medium) for three different valve lifts was obtained. The overall development of the flow field, its energy content (kinetic, fluctuation) for the different settings of the engine parameters, vorticity information, and cyclic variations have been quantified. These have been discussed in terms of mixing performance.

  11. Modeling turbulent flows in the atmospheric boundary layer of Mars: application to Gale crater, Mars, landing site of the Curiosity rover

    Science.gov (United States)

    Anderson, William; Day, Kenzie; Kocurek, Gary

    2016-11-01

    Mars is a dry planet with a thin atmosphere. Aeolian processes - wind-driven mobilization of sediment and dust - are the exclusive mode of landscape variability on Mars. Craters are common topographic features on the surface of Mars, and many craters on Mars contain a prominent central mound (NASA's Curiosity rover was landed in Gale crater). Using density-normalized large-eddy simulations, we have modeled turbulent flows over crater-like topographies that feature a central mound. We have also run one simulation of flow over a digital elevation map of Gale crater. Resultant datasets suggest a deflationary mechanism wherein vortices shed from the upwind crater rim are realigned to conform to the crater profile via stretching and tilting. This was accomplished using three-dimensional datasets (momentum and vorticity) retrieved from LES. As a result, helical vortices occupy the inner region of the crater and, therefore, are primarily responsible for aeolian morphodynamics in the crater. We have also used the immersed-boundary method body force distribution to compute the aerodynamic surface stress on the crater. These results suggest that secondary flows - originating from flow separation at the crater - have played an important role in shaping landscape features observed in craters (including the dune fields observed on Mars, many of which are actively evolving). None.

  12. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan

    2015-07-26

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed particles in a fuel stream using continuous-wave (CW) Argon-ion laser. Velocity fields were also quantified with particle mage velocimetry (PIV) system having kHz repetition rate. The results showed that the dynamic motion of negative buoyance induced vortices near the nozzle exit was coupled strongly with a flame flickering instability. Typically during the flame flickering, the negative buoyant vortices oscillated at the flickering frequency. The vortices were distorted by the flickering motion and exhibited complicated transient vortical patterns, such as tilting and stretching. Numerical simulations were also implemented based on an open source C++ package, LaminarSMOKE, for further validations.

  13. Fresnel Lens with Embedded Vortices

    Directory of Open Access Journals (Sweden)

    Sunil Vyas

    2012-01-01

    Full Text Available Vortices of different charges are embedded in a wavefront that has quadratic phase variation, and the intensity distribution near the focal plane is studied. This method may be useful in realizing complicated beam profiles. We have experimentally demonstrated the generation of vortex arrays having integer as well as fractional topological charges that produce different intensity profiles at the focal plane. The phase variation realized on a spatial light modulator (SLM acts as a Fresnel lens with embedded vortices.

  14. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  15. Interaction of monopoles, dipoles, and turbulence with a shear flow

    Science.gov (United States)

    Marques Rosas Fernandes, V. H.; Kamp, L. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2016-09-01

    Direct numerical simulations have been conducted to examine the evolution of eddies in the presence of large-scale shear flows. The numerical experiments consist of initial-value-problems in which monopolar and dipolar vortices as well as driven turbulence are superposed on a plane Couette or Poiseuille flow in a periodic two-dimensional channel. The evolution of the flow has been examined for different shear rates of the background flow and different widths of the channel. Results found for retro-grade and pro-grade monopolar vortices are consistent with those found in the literature. Boundary layer vorticity, however, can significantly modify the straining and erosion of monopolar vortices normally seen for unbounded domains. Dipolar vortices are shown to be much more robust coherent structures in a large-scale shear flow than monopolar eddies. An analytical model for their trajectories, which are determined by self-advection and advection and rotation by the shear flow, is presented. Turbulent kinetic energy is effectively suppressed by the shearing action of the background flow provided that the shear is linear (Couette flow) and of sufficient strength. Nonlinear shear as present in the Poiseuille flow seems to even increase the turbulence strength especially for high shear rates.

  16. MCRG Flow for the nonlinear Sigma Model

    CERN Document Server

    Koerner, Daniel; Wipf, Andreas

    2013-01-01

    A study of the renormalization group flow in the three-dimensional nonlinear O(N) sigma model using Monte Carlo Renormalization Group (MCRG) techniques is presented. To achieve this, we combine an improved blockspin transformation with the canonical demon method to determine the flow diagram for a number of different truncations. Systematic errors of the approach are highlighted. Results are discussed with hindsight on the fixed point structure of the model and the corresponding critical exponents. Special emphasis is drawn on the existence of a nontrivial ultraviolet fixed point as required for theories modeling the asymptotic safety scenario of quantum gravity.

  17. Effect of thin film on the generation of vorticity by surface waves

    CERN Document Server

    Parfenyev, V M; Lebedev, V V

    2016-01-01

    Recently a theoretical scheme explaining the vorticity generation by surface waves in liquids was developed [S. Filatov et al., Phys. Rev. Lett. 116, 054501 (2016)]. Here we study how a thin (monomolecular) film presented at the surface of liquid affects the generated vorticity. We demonstrate that the vorticity becomes parametrically larger than for the case with a clean surface and now it depends on viscosity of the liquid. We also discuss the motion of particles passively advected by the generated surface flow. The results can be used in different applications: from the analysis of pollutants' diffusion on the ocean surface till the reconstruction of vorticity based on the particle image velocimetry (PIV) measurements.

  18. NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.

  19. Mesoscopic Rhelogical Model for Polymeric Media Flows

    Science.gov (United States)

    Koshelev, K.; Kuznetcov, A.; Merzlikina, D.; Pyshnograi, G.; Pyshnograi, I.; Tolstykh, M. Y.

    2017-01-01

    The paper compares hydrodynamic properties of three-dimensional flows of polymer melts. A modified Vinogradov and Pokrovskii rheological model is used for the mathematical description of nonlinear viscoelastic fluid flows in a planeparallel channel with a sudden convergence. Discrete analogs for partial differential equations were obtained via the control volume method separating physical processes. The numerical implementation is carried out using the GPU-based parallel computing technology. Velocity and pressure fields have been calculated for two samples of polyethylene melts and the circulating flow at the entrance of the slit channel is noticeable. It is shown that the size of the vortex zone depends significantly on melt rheology.

  20. Particle in the Brusselator Model with Flow

    DEFF Research Database (Denmark)

    Kuptsov, P.V.; Kuznetsov, S.P.; Mosekilde, Erik

    2002-01-01

    We consider the interaction of a small moving particle with a stationary space-periodic pattern in a chemical reaction-diffusion system with a flow. The pattern is produced by a one-dimensional Brusselator model that is perturbed by a constant displacement from the equilibrium state at the inlet....... By partially blocking the flow, the particle gives rise to a local increment of the flow rate. For certain parameter values a response with intermittent Hopf and Turing type structures is observed. In other regimes a wave of substitution of missing peaks runs across the pattern....

  1. Buoyancy in tropical cyclones and other rapidly rotating atmospheric vortices

    Science.gov (United States)

    Smith, Roger K.; Montgomery, Michael T.; Zhu, Hongyan

    2005-07-01

    Motivated primarily by its application to understanding tropical-cyclone intensification and maintenance, we re-examine the concept of buoyancy in rapidly rotating vortices, distinguishing between the buoyancy of the symmetric balanced vortex or system buoyancy, and the local buoyancy associated with cloud dynamics. The conventional definition of buoyancy is contrasted with a generalized form applicable to a vortex, which has a radial as well as a vertical component. If, for the special case of axisymmetric motions, the balanced density and pressure distribution of a rapidly rotating vortex are used as the reference state, the buoyancy field then characterizes the unbalanced density perturbations, i.e. the local buoyancy. We show how to determine such a reference state without approximation. The generation of the toroidal circulation of a vortex, which is necessary for vortex amplification, is characterized in the vorticity equation by the baroclinicity vector. This vector depends, inter-alia, on the horizontal (or radial) gradient of buoyancy evaluated along isobaric surfaces. We show that for a tropical-cyclone-scale vortex, the buoyancy so calculated is significantly different from that calculated at constant height or on surfaces of constant σ ( σ = ( p - p*)/( ps - p*), where p is the actual pressure, p* some reference pressure and ps is the surface pressure). Since many tropical-cyclone models are formulated using σ-coordinates, we examine the calculation of buoyancy on σ-surfaces and derive an expression for the baroclinicity vector in σ-coordinates. The baroclinic forcing term in the azimuthal vorticity equation for an axisymmetric vortex is shown to be approximately equal to the azimuthal component of the curl of the generalized buoyancy. A scale analysis indicates that the vertical gradient of the radial component of generalized buoyancy makes a comparatively small contribution to the generation of toroidal vorticity in a tropical cyclone, but may be

  2. SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS

    Institute of Scientific and Technical Information of China (English)

    Yan Guangwu; Hu Shouxin

    2000-01-01

    A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.

  3. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  4. A model for transonic plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-02-15

    A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.

  5. Large-Eddy Simulations of Dust Devils and Convective Vortices

    Science.gov (United States)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  6. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU

    2006-01-01

    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  7. Primordial vorticity and gradient expansion

    Science.gov (United States)

    Giovannini, Massimo; Rezaei, Zahra

    2012-02-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the ΛCDM paradigm, the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the order of 10-37 G over the typical comoving scales ranging between 1 and 10 Mpc. While the obtained results seem to be irrelevant for seeding a reasonable galactic dynamo action, they demonstrate how the proposed fully inhomogeneous treatment can be used for the systematic scrutiny of pre-decoupling plasmas beyond the conventional perturbative expansions.

  8. Primordial vorticity and gradient expansion

    CERN Document Server

    Giovannini, Massimo

    2012-01-01

    The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...

  9. Modelling of gas flow through metallic foams

    Energy Technology Data Exchange (ETDEWEB)

    Crosnier, S. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France); Riva, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Bador, B.; Blet, V.

    2003-09-01

    The transport and distribution of gases (hydrogen at the anode and air at the cathode) and water over the front surfaces of the electrodes in contact with electrolyte membrane are of great importance for the enhancement of efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC). The use of metallic foam as a flow distributor in comparison with grooved plate (formed by parallel channels) commonly used in commercial fuel cells may be advantageous since this porous material has a porosity close to unity and then high specific surface area. In fact, the potentially active surface area is generally considered to be almost equal to the front surface area of the electrodes. In order to ensure a homogeneous flow distribution all over the active surface of such devices, a good understanding of gas flow through these particular porous media is necessary. For that purpose, studying of two-phase flow (oxygen, hydrogen and water) through metallic foams must be undertaken. This is carried out in the present work but, in a first step, only for single-phase flow, since the behaviour of two-phase flow derives from the first one. Novels hydraulic models have then been developed in the literature these last years. However, these models do not take into account the viscous dissipation of the flow along the walls bordering the porous media. Unfortunately, metallic foam used as distributors in fuel cell have thigh thickness (of the order of the millimeter), that shedding a doubt on the validity of the latter assumption. In this paper, we review the different hydraulic models in order to discuss the relevance and the limits of each to describe single-phase flow through foams which could be used as distributor in a fuel cell. For that purpose, numerical solutions obtained using modified MC3D-REPO package originally developed for the modelling of multicomponent two-phase flows in granular porous media have been compared to experimental data measured on a dedicated hydraulic device

  10. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  11. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W. [Sandia National Labs., Albuqureque, NM (United States)

    1996-12-01

    Various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially non-uniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  12. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-12-31

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  13. Wavelet Analysis of the Conditional Vorticity Budget in Fully Developed Homogeneous Isotropic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, M; Friedrich, R [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Kadoch, B [Aix-Marseille Universite and M2P2-CNRS Ecole Centrale de Marseille, 38 Rue Joliot-Curie, 13451 Marseille Cedex 20 (France); Schneider, K [M2P2-CNRS and CMI, Universite de Provence, 39 Rue Joliot-Curie, 13453 Marseille Cedex 13 (France); Farge, M, E-mail: mwilczek@uni-muenster.de [LMD-CNRS, Ecole Normale Superieure, 24 Rue Lhomond, 75231 Paris Cedex 5 (France)

    2011-12-22

    We study the conditional balance of vortex stretching and vorticity diffusion of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. This decomposition is achieved by the Coherent Vorticity Extraction based on orthogonal wavelets applied to DNS data, which yields insights into the influence of the different contributions as well as their interaction.

  14. DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW

    Institute of Scientific and Technical Information of China (English)

    H. P. Zhu; Y. H. WU; A. B. Yu

    2005-01-01

    This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.

  15. Towards laboratory detection of topological vortices in superfluid phases of QCD

    CERN Document Server

    Das, Arpan; De, Somnath; Srivastava, Ajit M

    2016-01-01

    Topological defects arise in a variety of systems, e.g. vortices in superfluid helium to cosmic strings in the early universe. There is an indirect evidence of neutron superfluid vortices from glitches in pulsars. One also expects that topological defects may arise in various high baryon density phases of quantum chromodynamics (QCD), e.g. superfluid topological vortices in the color flavor locked (CFL) phase. We investigate the possibility of detecting these topological superfluid vortices in laboratory experiments, namely heavy-ion collisions. Using hydrodynamic simulations, we show that vortices can qualitatively affect the power spectrum of flow fluctuations. This can give unambiguous signal for superfluid transition resulting in vortices, allowing for check of defect formation theories in a relativistic quantum field theory system.

  16. Sharp asymptotic estimates for vorticity solutions of the 2D Navier-Stokes equation

    Directory of Open Access Journals (Sweden)

    Yuncheng You

    2008-12-01

    Full Text Available The asymptotic dynamics of high-order temporal-spatial derivatives of the two-dimensional vorticity and velocity of an incompressible, viscous fluid flow in $mathbb{R}^2$ are studied, which is equivalent to the 2D Navier-Stokes equation. It is known that for any integrable initial vorticity, the 2D vorticity solution converges to the Oseen vortex. In this paper, sharp exterior decay estimates of the temporal-spatial derivatives of the vorticity solution are established. These estimates are then used and combined with similarity and $L^p$ compactness to show the asymptotical attraction rates of temporal-spatial derivatives of generic 2D vorticity and velocity solutions by the Oseen vortices and velocity solutions respectively. The asymptotic estimates and the asymptotic attraction rates of all the derivatives obtained in this paper are independent of low or high Reynolds numbers.

  17. The Three-Dimensional Velocity Distribution of Wide Gap Taylor-Couette Flow Modelled by CFD

    Directory of Open Access Journals (Sweden)

    David Shina Adebayo

    2016-01-01

    Full Text Available A numerical investigation is conducted for the flow between two concentric cylinders with a wide gap, relevant to bearing chamber applications. This wide gap configuration has received comparatively less attention than narrow gap journal bearing type geometries. The flow in the gap between an inner rotating cylinder and an outer stationary cylinder has been modelled as an incompressible flow using an implicit finite volume RANS scheme with the realisable k-ε model. The model flow is above the critical Taylor number at which axisymmetric counterrotating Taylor vortices are formed. The tangential velocity profiles at all axial locations are different from typical journal bearing applications, where the velocity profiles are quasilinear. The predicted results led to two significant findings of impact in rotating machinery operations. Firstly, the axial variation of the tangential velocity gradient induces an axially varying shear stress, resulting in local bands of enhanced work input to the working fluid. This is likely to cause unwanted heat transfer on the surface in high torque turbomachinery applications. Secondly, the radial inflow at the axial end-wall boundaries is likely to promote the transport of debris to the junction between the end-collar and the rotating cylinder, causing the build-up of fouling in the seal.

  18. Unsaturated Zone Flow Model Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K. J.

    1997-05-30

    This report presents results of the Unsaturated Zone Flow Model Expert Elicitation (UZFMEE) project at Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The objective of this project was to identify and assess the uncertainties associated with certain key components of the unsaturated zone flow system at Yucca Mountain. This assessment reviewed the data inputs, modeling approaches, and results of the unsaturated zone flow model (termed the ''UZ site-scale model'') being developed by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). In addition to data input and modeling issues, the assessment focused on percolation flux (volumetric flow rate per unit cross-sectional area) at the potential repository horizon. An understanding of unsaturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the unsaturated flow processes, including uncertainty in both the models used to represent physical controls on unsaturated zone flow and the parameter values used in the models. To ensure that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and uncertainties about key issues regarding the unsaturated zone at the Yucca

  19. Numerical study of the effects of rotating forced downdraft in reproducing tornado-like vortices

    Science.gov (United States)

    Zhu, Jinwei; Cao, Shuyang; Tamura, Tetsuro; Tokyo Institute of Technology Collaboration; Tongji Univ Collaboration

    2016-11-01

    Appropriate physical modeling of a tornado-like vortex is a prerequisite to studying near-surface tornado structure and tornado-induced wind loads on structures. Ward-type tornado simulator modeled tornado-like flow by mounting guide vanes around the test area to provide angular momentum to converging flow. Iowa State University, USA modified the Ward-type simulator by locating guide vanes at a high position to allow vertical circulation of flow that creates a rotating forced downdraft in the process of generating a tornado. However, the characteristics of the generated vortices have not been sufficiently investigated till now. In this study, large-eddy simulations were conducted to compare the dynamic vortex structure generated with/without the effect of rotating forced downdraft. The results were also compared with other CFD and experimental results. Particular attention was devoted to the behavior of vortex wander of generated tornado-like vortices. The present study shows that the vortex center wanders more significantly when the rotating forced downdraft is introduced into the flow. The rotating forced downdraft is advantageous for modeling the rear flank downdraft phenomenon of a real tornado.

  20. Vortices in Low-Dimensional Magnetic Systems

    Science.gov (United States)

    Costa, B. V.

    2011-05-01

    Vortices are objects that are important to describe several physical phenomena. There are many examples of such objects in nature as in a large variety of physical situations like in fluid dynamics, superconductivity, magnetism, and biology. Historically, the interest in magnetic vortex-like excitations begun in the 1960s. That interest was mainly associated with an unusual phase-transition phenomenon in two-dimensional magnetic systems. More recently, direct experimental evidence for the existence of magnetic vortex states in nano-disks was found. The interest in such model was renewed due to the possibility of the use of magnetic nano-disks as bit elements in nano-scale memory devices. The goal of this study is to review some key points for the understanding of the vortex behavior and the progress that have been done in the study of vortices in low-dimensional magnetic systems.

  1. Statistical mechanics of vortices from field theory

    CERN Document Server

    Kajantie, Keijo; Neuhaus, T; Rajantie, A; Rummukainen, K

    1999-01-01

    We study with lattice Monte Carlo simulations the interactions and macroscopic behaviour of a large number of vortices in the 3-dimensional U(1) gauge+Higgs field theory, in an external magnetic field. We determine non-perturbatively the (attractive or repelling) interaction energy between two or more vortices, as well as the critical field strength H_c, the thermodynamical discontinuities, and the surface tension related to the boundary between the Meissner phase and the Coulomb phase in the type I region. We also investigate the emergence of vortex lattice and vortex liquid phases in the type II region. For the type I region the results obtained are in qualitative agreement with mean field theory, except for small values of H_c, while in the type II region there are significant discrepancies. These findings are relevant for superconductors and some models of cosmic strings, as well as for the electroweak phase transition in a magnetic field.

  2. A nonlinear multigrid solver for a semi-Lagrangian potential vorticity-based barotropic model on the sphere

    Energy Technology Data Exchange (ETDEWEB)

    Ruge, J.; Li, Y.; McCormick, S.F. [and others

    1994-12-31

    The formulation and time discretization of problems in meteorology are often tailored to the type of efficient solvers available for use on the discrete problems obtained. A common procedure is to formulate the problem so that a constant (or latitude-dependent) coefficient Poisson-like equation results at each time step, which is then solved using spectral methods. This both limits the scope of problems that can be handled and requires linearization by forward extrapolation of nonlinear terms, which, in turn, requires filtering to control noise. Multigrid methods do not suffer these limitations, and can be applied directly to systems of nonlinear equations with variable coefficients. Here, a global barotropic semi-Lagrangian model, developed by the authors, is presented which results in a system of three coupled nonlinear equations to be solved at each time step. A multigrid method for the solution of these equations is described, and results are presented.

  3. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...... excitations from the Thanet farm are used for trying to update some of the models discussed in D2.5. Because of very limited amount of data only simple dynamic transfer function models can be obtained. The three obtained data series are somewhat different. Only the first data set seems to have the front...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading....

  4. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  5. A Policy Model for Secure Information Flow

    Science.gov (United States)

    Adetoye, Adedayo O.; Badii, Atta

    When a computer program requires legitimate access to confidential data, the question arises whether such a program may illegally reveal sensitive information. This paper proposes a policy model to specify what information flow is permitted in a computational system. The security definition, which is based on a general notion of information lattices, allows various representations of information to be used in the enforcement of secure information flow in deterministic or nondeterministic systems. A flexible semantics-based analysis technique is presented, which uses the input-output relational model induced by an attacker’s observational power, to compute the information released by the computational system. An illustrative attacker model demonstrates the use of the technique to develop a termination-sensitive analysis. The technique allows the development of various information flow analyses, parametrised by the attacker’s observational power, which can be used to enforce what declassification policies.

  6. On the definition of a moist-air potential vorticity

    CERN Document Server

    Marquet, Pascal

    2014-01-01

    A new potential vorticity is derived by using a specific entropy formulation expressed in terms of a moist-air entropy potential temperature. The new formulation is compared with Ertel's version and with others based on virtual and equivalent potential temperatures. The new potential vorticity is subject to conservative properties ensured by the Second Law applied to the moist-air material derivatives. It is shown that the upper tropospheric and stratospheric (dry) structures are nearly the same as those obtained with Ertel's component. Moreover, new structures are observed in the low troposphere, with negative values associated with moist frontal regions. The negative values are observed in the frontal regions where slantwise convection instabilities may take place, but they are smaller than those observed with the equivalent potential vorticity. The main purpose of the article is to diagnose the behaviour of the new potential vorticity from numerical output generated by the ARPEGE NWP model, with the help o...

  7. Integral Invariance and Non-linearity Reduction for Proliferating Vorticity Scales in Fluid Dynamics

    CERN Document Server

    Lam, F

    2013-01-01

    A vorticity theory for incompressible fluid flows in the absence of solid boundaries is proposed. Some apriori bounds are established. They are used in an interpolation theory to show the well-posedness of the vorticity Cauchy problem. A non-linear integral equation for vorticity is derived and its solution is expressed in an expansion. Interpretations of flow evolutions starting from given initial data are given and elaborated. The kinetic theory for Maxwellian molecules with cut-off is revisited in order to link microscopic properties to flow characters on the continuum.

  8. Chaos control in traffic flow models

    CERN Document Server

    Shahverdiev, E M; Shahverdiev, Elman Mohammed; Tadaki, Shin-ichi

    1998-01-01

    Chaos control in some of the one- and two-dimensional traffic flow dynamical models in the mean field theory is studied.One dimensional model is investigated taking into account the effect of random delay. Two dimensional model takes into account the effects of overpasses, symmetric distribution of cars and blockages of cars moving in the same direction. Chaos synchronization is performed within both replica and nonreplica approaches, and using parameter perturbation method.

  9. 致洪暴雨过程中尺度涡旋的涡散作用及准平衡流诊断分析%A diagnostic analysis of vorticity-divergence effects and the quasi-balanced flow in a mesoscale vortex during the process of flash-flood-producing rainstorm

    Institute of Scientific and Technical Information of China (English)

    葛晶晶; 钟玮; 陆汉城

    2011-01-01

    利用较高分辨率的观测资料与模拟结果进行分析表明,影响2008年6月中旬广西致洪暴雨的主要中尺度天气系统是准静止的中尺度涡旋,它是中纬度天气尺度西风带波动与低纬度暖湿气流带在地形效应下相互作用的结果,其生成、发展和移动对此次致洪暴雨过程的降水强度和持续有重要作用,该中尺度涡旋具有强涡散共存、涡散度达同量级并伴随有较长生命史组织化深厚湿对流的特征.分析了由低空急流中大风速中心的非地转效应以及地形效应所产生的重力波与中尺度涡旋相互作用激发出大振幅组织化的β中尺度深厚湿对流,根据准平衡动力学的理论,准平衡流适用于描述这种同时包含辐散风和旋转风效应的中尺度运动.因此,本文引进基于准平衡流分析的PV-ω方法,将其应用于反演诊断分析暴雨中具有涡散共存特征的长生命史的组织化深厚湿对流.结果表明,准平衡流能真实反映涡散共存的大振幅垂直运动特征,暴雨区的垂直环流中有50%-70%归于准平衡流.因此.准平衡流可以描述广西致洪暴雨过程中具有较长生命史组织化过程的深厚湿对流系统,准平衡流场具有涡散运动共存的特征.%The analysis in this paper based on the atmospheric observation data and the model data of higher resolution shows that one of the major synoptic systems that caused the flash-flood-producing rainstorm in mid-June 2008 in Guangxi is a quasi-stationary mesoscale vortex. The vortex was resulted from the interaction of synoptic westerly waves in the mid-latitude with the warm-moist flow in the low-latitude under the terrain effect. The genesis, development and movement of the mesoscale vortex have important influence on the precipitation intensity and continuance in the process of the flash-flood-producing rainstorm. The vortex has the characteristics of strong vorticity and divergence coexisting, and the

  10. Computational simulations of vorticity enhanced diffusion

    Science.gov (United States)

    Vold, Erik L.

    1999-11-01

    Computer simulations are used to investigate a phenomenon of vorticity enhanced diffusion (VED), a net transport and mixing of a passive scalar across a prescribed vortex flow field driven by a background gradient in the scalar quantity. The central issue under study here is the increase in scalar flux down the gradient and across the vortex field. The numerical scheme uses cylindrical coordinates centered with the vortex flow which allows an exact advective solution and 1D or 2D diffusion using simple numerical methods. In the results, the ratio of transport across a localized vortex region in the presence of the vortex flow over that expected for diffusion alone is evaluated as a measure of VED. This ratio is seen to increase dramatically while the absolute flux across the vortex decreases slowly as the diffusion coefficient is decreased. Similar results are found and compared for varying diffusion coefficient, D, or vortex rotation time, τv, for a constant background gradient in the transported scalar vs an interface in the transported quantity, and for vortex flow fields constant in time vs flow which evolves in time from an initial state and with a Schmidt number of order unity. A simple analysis shows that for a small diffusion coefficient, the flux ratio measure of VED scales as the vortex radius over the thickness for mass diffusion in a viscous shear layer within the vortex characterized by (Dτv)1/2. The phenomenon is linear as investigated here and suggests that a significant enhancement of mixing in fluids may be a relatively simple linear process. Discussion touches on how this vorticity enhanced diffusion may be related to mixing in nonlinear turbulent flows.

  11. Dangerous situations in a synchronized flow model

    Science.gov (United States)

    Jiang, Rui; Wu, Qing-Song

    2007-04-01

    This paper studies the dangerous situation (DS) in a synchronized flow model. The DS on the two branches of the fundamental diagram are investigated, respectively. It is shown that different relationship between DS probability and the density exists in the synchronized flow and in the jams. Moreover, we prove that there is no DS caused by non-stopped car although the model itself is a non-exclusion process. We classify the DS into four sub-types and study the probability of these four sub-types. The simulation result is consistent with the real traffic.

  12. Modelling fluid flow in a reciprocating compressor

    Directory of Open Access Journals (Sweden)

    Tuhovcak Jan

    2015-01-01

    Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  13. Modelling fluid flow in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  14. Flow investigation in sidewall aneurysm model using a novel PIV multi-time-lag method

    Science.gov (United States)

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Mendes Pereira, Vitor; Farhat, Mohamed

    2013-11-01

    The intracranial aneurysm (IA) lesion is one of the main causes of intracranial hemorrhage in productive population. It is well known that the hemodynamic factors have large impact on both the IAs rupture and treatment efficacy based on flow diverter stents. Precise experimental investigations of blood flow in IAs using particle imaging velocimetry (PIV) are therefore strongly required in order to validate clinical treatments based on computational and clinical flow assessment tools. Due to the large variations of flow velocities in IAs, a single PIV measurement with a unique time lag between two consecutive images cannot provide a good level of precision in all the measured volume. In this work, we implement an error analysis based on several PIV measurements with different time lags to ensure an optimal precision in the entire measurement volume. This PIV multi-time-lag method is applied on a sidewall IA model to investigate the effect of the inflow pulsatility. By comparing the flow patterns resulting from steady and unsteady inflows we point out important differences which could be involved in the IAs evolution. In particular, the blood transfer in the IA and the vortical structure are significantly modified when increasing the pulsatility compared to quasi-steady conditions.

  15. Symmetry plane model for turbulent flows with vortex generators

    Science.gov (United States)

    Arnaud, Gilles L.; Russell, David A.

    1991-01-01

    An approximate procedure is proposed for predicting the performance of counterrotating vortex-generator installations in incompressible flow. An inviscid calculation that includes the motion of the vortices is used to obtain crossflow velocities at the boundary-layer edge as a function of initial position, spacing, and strength of the vortices, and local values of the spanwise gradient are then folded into an integral turbulent-boundary layer procedure applied in the plane of symmetry. Special attention is paid to the consistency of the approximations and equations used. The two-dimensional aerodynamics of vortex generator installations on a NACA 0016 airfoil at angle-of-attack are estimated in this manner, and the results compared with experiments carried out with a 30-cm chord wing mounted in a 2.4 x 3.6-m cross-section wind tunnel and tested at chord Reynolds numbers of 0.7 and 1.4 x 10 to the 6th. Agreement in the separation location is found for these complex flows for a range of conditions.

  16. Numerical modeling of the debris flows runout

    Science.gov (United States)

    Federico, Francesco; Cesali, Chiara

    2017-06-01

    Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  17. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  18. Three-Dimensional Flow Separation Induced by a Model Vocal Fold Polyp

    Science.gov (United States)

    Stewart, Kelley C.; Erath, Byron D.; Plesniak, Michael W.

    2012-11-01

    The fluid-structure energy exchange process for normal speech has been studied extensively, but it is not well understood for pathological conditions. Polyps and nodules, which are geometric abnormalities that form on the medial surface of the vocal folds, can disrupt vocal fold dynamics and thus can have devastating consequences on a patient's ability to communicate. A recent in-vitro investigation of a model polyp in a driven vocal fold apparatus demonstrated that such a geometric abnormality considerably disrupts the glottal jet behavior and that this flow field adjustment was a likely reason for the severe degradation of the vocal quality in patients. Understanding of the formation and propagation of vortical structures from a geometric protuberance, and their subsequent impact on the aerodynamic loadings that drive vocal fold dynamic, is a critical component in advancing the treatment of this pathological condition. The present investigation concerns the three-dimensional flow separation induced by a wall-mounted prolate hemispheroid with a 2:1 aspect ratio in cross flow, i.e. a model vocal fold polyp. Unsteady three-dimensional flow separation and its impact of the wall pressure loading are examined using skin friction line visualization and wall pressure measurements. Supported by the National Science Foundation, Grant No. CBET-1236351 and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  19. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  20. Filamentation with nonlinear Bessel vortices.

    Science.gov (United States)

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.