WorldWideScience

Sample records for modeling vibrational predissociation

  1. Surface hopping simulation of vibrational predissociation of methanol dimer

    Science.gov (United States)

    Jiang, Ruomu; Sibert, Edwin L.

    2012-06-01

    The mixed quantum-classical surface hopping method is applied to the vibrational predissociation of methanol dimer, and the results are compared to more exact quantum calculations. Utilizing the vibrational SCF basis, the predissociation problem is cast into a curve crossing problem between dissociative and quasibound surfaces with different vibrational character. The varied features of the dissociative surfaces, arising from the large amplitude OH torsion, generate rich predissociation dynamics. The fewest switches surface hopping algorithm of Tully [J. Chem. Phys. 93, 1061 (1990), 10.1063/1.459170] is applied to both diabatic and adiabatic representations. The comparison affords new insight into the criterion for selecting the suitable representation. The adiabatic method's difficulty with low energy trajectories is highlighted. In the normal crossing case, the diabatic calculations yield good results, albeit showing its limitation in situations where tunneling is important. The quadratic scaling of the rates on coupling strength is confirmed. An interesting resonance behavior is identified and is dealt with using a simple decoherence scheme. For low lying dissociative surfaces that do not cross the quasibound surface, the diabatic method tends to overestimate the predissociation rate whereas the adiabatic method is qualitatively correct. Analysis reveals the major culprits involve Rabi-like oscillation, treatment of classically forbidden hops, and overcoherence. Improvements of the surface hopping results are achieved by adopting a few changes to the original surface hopping algorithms.

  2. Dynamic aspects of electronic predissociation

    DEFF Research Database (Denmark)

    Grønager, Michael; Henriksen, Niels Engholm

    1996-01-01

    We consider electronic excitation induced with a continuous wave laser to an excited bound state which can predissociate due to a radiationless transition to a dissociative state. The conditions for a separation of the process into the preparation of a vibrational eigenstate which subsequently...

  3. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  4. Quantum dynamics of Ne-Br2 vibrational predissociation: the role of continuum resonances as doorway states.

    Science.gov (United States)

    García-Vela, A; Janda, K C

    2006-01-21

    Wave-packet simulations of the Ne-Br2(B,upsilon') vibrational predissociation dynamics in the range upsilon' = 16-29 are reported. The aim is to interpret recent time-dependent pump-probe experiments [Cabrera et al., J. Chem. Phys. 123, 054311 (2005)]. Good agreement is found between the calculated and the experimental lifetimes corresponding to decay of the Ne-Br2(B,upsilon') initial state and to appearance of Br2(B,upsilonBr2(B,upsilonBr2(B,upsilonBr2 distances greater than 15 angstroms. In the light of the results, a structure of the spectrum of continuum resonances is suggested and discussed.

  5. Long-range predissociation in two-color photoassociation of ultracold Na atoms

    NARCIS (Netherlands)

    Molenaar, P.A.; Straten, P. van der; Heideman, H.G.M.

    1997-01-01

    We report two-color photo-associative ionization of sodium in a Magneto-Optical Trap. The experimental results yield information on both singly and doubly excited states. We find that the highest bound vibrational levels (v > 20) of the singly-excited 0^- g state predissociate into the 3²P3/2

  6. A theoretical study on electronic predissociation in the NeBr2 van der Waals molecule

    International Nuclear Information System (INIS)

    Hernández-Lamoneda, Ramón; Sanz-Sanz, Cristina; Roncero, Octavio; Pio, Jordan M.; Taylor, Molly A.; Janda, Kenneth C.

    2012-01-01

    Graphical abstract: What is the chance that the Rg atom induces electronic coupling before it is ejected by vibrational predissociation? How does the competition depend on the initial vibrational level? Ab initio curve couplings are used in a wave packet calculation to successfully simulate experimental results. Highlights: ► We perform ab initio calculations of NeBr 2 PES’s in valence excited states. ► The ab initio PES’s and couplings are used in subsequent WP calculations. ► These WP calculations model the competition between EP and VP. ► The WP results using the ab initio data agree well with experimental results. - Abstract: We present the first comprehensive ab initio study of the Ne–Br 2 potential energy surfaces and the non-adiabatic couplings between the valence excited electronic states. These ab initio results are used to obtain 3-D approximate potentials for each electronic state, and these potentials are used in a wave packet calculation of the competing electronic predissociation and vibrational predissociation dynamics. The results of this calculation are in excellent agreement with both experimental results and a previous empirical fit to the experiments. The calculations allow us to observe not only the competition between vibrational and electronic dynamics for the dimer, but also the competition between two different electronic channels. Coupling to the 2 g state dominates for the levels studied here, but coupling to the C state is progressively more important for low vibrational levels, and may dominate at levels below which the current results pertain. The ability of ab initio surfaces and couplings to so accurately reproduce experimental data raises the hope of a complete understanding of the VP and EP dynamics for other Rg-halogen dimers. Success in the case presented here is largely due to the fact that the VP dynamics for the vibrational levels in this study are in the simple, direct regime. Understanding the simple case so

  7. Infrared spectroscopy, vibrational predissociation dynamics and stability of the hydrogen trioxy (HOOO) radical and estimation of its abundance in the atmosphere

    Science.gov (United States)

    Derro, Erika L.

    The hydrogen trioxy (HOOO) radical has been implicated as an important intermediate in key processes in the atmosphere. In the present studies, HOOO is produced by the combination of O2 and photolytically generated OH radicals in the collisional region of a pulsed supersonic expansion. Rotationally cooled HOOO is probed in the effectively collision-free region of the expansion using infrared action spectroscopy, an infrared-pump, ultraviolet-probe technique, in which HOOO is vibrationally excited and the nascent OH products of vibrational predissociation are probed via laser-induced fluorescence. High resolution infrared spectra of HOOO and DOOO were observed in the fundamental and overtone OH/D stretching regions (nui and 2nu 1), which comprise a rotationally structured band attributed to the trans conformer, and an unstructured component assigned to the cis conformer. Infrared spectra of HOOO and DOOO combination bands composed of the OH stretch and a low frequency mode (nu1 + nun) were also observed. This allowed identification of vibrational frequencies for five of the six modes for trans-H/DOOO and four of the six modes for cis-HOOO and DOOO. Identification of low frequency modes provides critical information on the vibrational dynamics and thermochemical properties of the HOOO radical, and furthermore, provides a potential means for detecting HOOO in situ in the atmosphere. In addition, the nascent OH X2pi products following vibrational predissociation of HOOO have been investigated. The product state distributions reveal a distinct preference for population of pi(A ') Λ-doublets in OH that is indicative of a planar dissociation of trans-HOOO in which the symmetry of the bonding orbital is maintained. The highest observed OH quantum state allows determination of the stability of HOOO relative to the OH + O 2 asymptote using a conservation of energy approach. In conjunction with a similar investigation of DOOO, the binding energy is determined to be ≤ 5

  8. Strong field control of predissociation dynamics.

    Science.gov (United States)

    Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis

    2013-01-01

    Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.

  9. Long-Range Predissociation in Two-Color Photoassociation of Ultracold Na Atoms

    International Nuclear Information System (INIS)

    Molenaar, P.A.; van der Straten, P.; Heideman, H.G.

    1996-01-01

    We report two-color photoassociative ionization of sodium in a magneto-optical trap. The experimental results yield information on both singly and doubly excited states. We find that the highest bound vibrational levels (v approx-gt 20) of the singly excited 0 g - state predissociate into the 3 2 P 3/2 +3 2 S 1/2 (F g =1) dissociation continuum due to avoided crossings of the hyperfine components of this potential with other molecular symmetries. Based on symmetry and energy consideration we argue that a doubly excited 1 u state remains autoionizing even when only a few GHz above the dissociation continuum. copyright 1996 The American Physical Society

  10. Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.

    Science.gov (United States)

    von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M

    2016-07-28

    Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.

  11. Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions

    International Nuclear Information System (INIS)

    Thompson, Michael C.; Weber, J. Mathias; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.

    2015-01-01

    We report infrared spectra of nitromethane anion, CH 3 NO 2 − , in the region 700–2150 cm −1 , obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states

  12. Raman spectrum of predissociating H/sub 2/S

    International Nuclear Information System (INIS)

    Kleinermanns, K.; Suntz, R.; Schneider, R.

    1986-01-01

    Emission spectroscopy of photodissociating molecules provides interesting insights into the short-time dynamics of bond raptures. The authors report here a resolved H/sub 2/S photoemission spectrum after excitation at 193 nm, although its electronic spectrum in this wavelength region is diffuse. The electronic spectrum of H/sub 2/S between 250 and 170 nm is nearly continuous probably due to predissociation

  13. Can Internal Conversion BE Controlled by Mode-Specific Vibrational Excitation in Polyatomic Molecules

    Science.gov (United States)

    Portnov, Alexander; Epshtein, Michael; Bar, Ilana

    2017-06-01

    Nonadiabatic processes, dominated by dynamic passage of reactive fluxes through conical intersections (CIs) are considered to be appealing means for manipulating reaction paths. One approach that is considered to be effective in controlling the course of dissociation processes is the selective excitation of vibrational modes containing a considerable component of motion. Here, we have chosen to study the predissociation of the model test molecule, methylamine and its deuterated isotopologues, excited to well-characterized quantum states on the first excited electronic state, S_{1}, by following the N-H(D) bond fission dynamics through sensitive H(D) photofragment probing. The branching ratios between slow and fast H(D) photofragments, the internal energies of their counter radical photofragments and the anisotropy parameters for fast H photofragments, confirm correlated anomalies for predissociation initiated from specific rovibronic states, reflecting the existence of a dynamic resonance in each molecule. This resonance strongly depends on the energy of the initially excited rovibronic states, the evolving vibrational mode on the repulsive S_{1} part during N-H(D) bond elongation, and the manipulated passage through the CI that leads to radicals excited with C-N-H(D) bending and preferential perpendicular bond breaking, relative to the photolyzing laser polarization, in molecules containing the NH_{2} group. The indicated resonance plays an important role in the bifurcation dynamics at the CI and can be foreseen to exist in other photoinitiated processes and to control their outcome.

  14. Etude du mecanisme de predissociation de l'ion moleculaire de protoxyde d'azote par la mesure de l'energie cinetique des fragments de l'oxyde nitrique et de l'oxygene

    Science.gov (United States)

    Delisle, Claude

    La reaction N2 + O+ ↔ NO + + N, laquelle joue un role important dans la physique de la haute atmosphere, a ete le sujet de plusieurs etudes. Bien que cette reaction ait ete l'objet d'une quantite importante de travaux, ces derniers ne permettent toutefois pas de comprendre entierement le mecanisme d'un point de vue quantique, particulierement les niveaux d'energie excites des fragments qui permettent cette reaction. Puisque cette reaction n'est pas tres facile a reproduire en laboratoire, nous avons utilise la spectroscopie laser sur faisceaux d'ions rapides afin d'explorer les limites de dissociation de l'ion moleculaire intermediaire de cette reaction, a savoir l'ion N2O+. Le faisceau d'ions N2O+ rapides, apres excitation de l'ion moleculaire vers un niveau predissocie de l'etat A2Sigma+, se dissocie pour produire les fragments ioniques O+ et NO+. Par la mesure de la variation du nombre de fragments ioniques en fonction de l'energie cinetique des ions N2O+, nous avons enregistre les spectres de predissociation de l'ion N2O+. Lorsque c'etait possible, nous avons procede a l'analyse de ces spectres de dissociation afin d'en tirer les constantes moleculaires. Pour certaines des transitions rotationnelles intenses, nous avons mesure l'energie cinetique acquise par les fragments lors de la predissociation de l'ion N 2O+. Afin d'analyser les distributions en energie cinetique, nous avons developpe une simulation de l'experience en considerant, entre autres choses, la position des niveaux de vibration et de rotation des fragments diatomiques de chacune des limites de dissociation de N2O+. Les resultats de l'analyse sont exprimes en termes de population des niveaux de vibration des fragments diatomiques pour une distribution donnee de la population des niveaux de rotation des fragments. Les resultats ainsi obtenus, montrent que les fragments diatomiques sont produits dans des niveaux de vibration fortement excites. De tels niveaux d'excitation ne correspondent pas aux

  15. Comparison of the local binding motifs in the imidazolium-based ionic liquids [EMIM][BF{sub 4}] and [EMMIM][BF{sub 4}] through cryogenic ion vibrational predissociation spectroscopy: Unraveling the roles of anharmonicity and intermolecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Joseph A.; Wolke, Conrad T.; Johnson, Christopher J.; Johnson, Mark A., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Sterling Chemistry Laboratory, Yale University, New Haven, Connecticut 06520 (United States); McCoy, Anne B., E-mail: mark.johnson@yale.edu, E-mail: mccoy@chemistry.ohio-state.edu [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-02-14

    We clarify the role of the critical imidazolium C{sub (2)}H position (the central C between N atoms in the heterocycle) in the assembly motif of the [EMIM][BF{sub 4}] ionic liquid by analyzing the vibrational spectra of the bare EMIM{sup +} ion as well as that of the cationic [EMIM]{sub 2}[BF{sub 4}]{sup +} (EMIM{sup +} = 1-ethyl-3-methylimidazolium, C{sub 6}H{sub 11}N{sub 2}{sup +}) cluster. Vibrational spectra of the cold, mass-selected ions are obtained using cryogenic ion vibrational predissociation of weakly bound D{sub 2} molecules formed in a 10 K ion trap. The C{sub (2)}H behavior is isolated by following the evolution of key vibrational features when the C{sub (2)} hydrogen, the proposed binding location of the anion to the imidazolium ring, is replaced by either deuterium or a methyl group (i.e., in the EMMIM{sup +} analogue). Strong features in the ring CH stretching region of the bare ion are traced to Fermi resonances with overtones of lower frequency modes. Upon incorporation into the EMIM{sup +} ⋅ ⋅ ⋅ BF{sub 4}{sup −} ⋅ ⋅ ⋅ EMIM{sup +} ternary complex, the C{sub (2)}H oscillator strength is dramatically increased, accounting for the much more complicated patterns derived from the EMIM{sup +} ring CH stretches in the light isotopomer, which are strongly suppressed in the deuterated analogue. Further changes in the spectra that occur when the C{sub (2)}H is replaced by a methyl group are consistent with BF{sub 4}{sup −} attachment directly to the imidazolium ring in an arrangement that maximizes the electrostatic interaction between the molecular ions.

  16. Photofragment angular momentum distribution beyond the axial recoil approximation: Predissociation

    International Nuclear Information System (INIS)

    Kuznetsov, Vladislav V.; Vasyutinskii, Oleg S.

    2007-01-01

    We present the quantum mechanical expressions for the angular momentum distribution of the photofragments produced in slow predissociation. The paper is based on our recent theoretical treatment [J. Chem. Phys. 123, 034307 (2005)] of the recoil angle dependence of the photofragment multipole moments which explicitly treat the role of molecular axis rotation on the electronic angular momentum polarization of the fragments. The electronic wave function of the molecule was used in the adiabatic body frame representation. The rigorous expressions for the fragment state multipoles which have been explicitly derived from the scattering wave function formalism have been used for the case of slow predissociation where a molecule lives in the excited quasibound state much longer than a rotation period. Possible radial nonadiabatic interactions were taken into consideration. The optical excitation of a single rotational branch and the broadband incoherent excitation of all possible rotational branches have been analyzed in detail. The angular momentum polarization of the photofragments has been treated in the high-J limit. The polarization of the photofragment angular momenta predicted by the theory depends on photodissociation mechanism and can in many cases be significant

  17. The D1Πu state of HD and the mass scaling relation of its predissociation widths

    Science.gov (United States)

    Dickenson, G. D.; Ubachs, W.

    2012-07-01

    Absorption spectra of HD have been recorded in the wavelength range of 75-90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D1Πu-X1Σ+g system observed up to v‧ = 18. The Q-branch transition probing levels of Π- symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm-1. Predissociation line widths of Π+ levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D1Πu state in H2 and D2 reveals that the predissociation widths scale as μ-2J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B‧1Σ+u continuum causing the predissociation.

  18. Predissociation of high-lying Rydberg states of molecular iodine via ion-pair states

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, Alexandr S. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Grüner, Barbara; Mudrich, Marcel [Physikalisches Institut, Universität Freiburg, D-79104 Freiburg (Germany); Kochubei, Sergei A. [Institute of Semiconductor Physics, ac. Lavrent' yev ave., 13, Novosibirsk 630090 (Russian Federation); Baklanov, Alexey V. [Institute of Chemical Kinetics and Combustion, Institutskaya Str. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2, Novosibirsk 630090 (Russian Federation)

    2014-03-28

    Velocity map imaging of the photofragments arising from two-photon photoexcitation of molecular iodine in the energy range 73 500–74 500 cm{sup −1} covering the bands of high-lying gerade Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g} has been applied. The ion signal was dominated by the atomic fragment ion I{sup +}. Up to 5 dissociation channels yielding I{sup +} ions with different kinetic energies were observed when the I{sub 2} molecule was excited within discrete peaks of Rydberg states and their satellites in this region. One of these channels gives rise to images of I{sup +} and I{sup −} ions with equal kinetic energy indicating predissociation of I{sub 2} via ion-pair states. The contribution of this channel was up to about 50% of the total I{sup +} signal. The four other channels correspond to predissociation via lower lying Rydberg states giving rise to excited iodine atoms providing I{sup +} ions by subsequent one-photon ionization by the same laser pulse. The ratio of these channels varied from peak to peak in the spectrum but their total ionic signal was always much higher than the signal of (2 + 1) resonance enhanced multi-photon ionization of I{sub 2}, which was previously considered to be the origin of ionic signal in this spectral range. The first-tier E0{sub g}{sup +} and D{sup ′}2{sub g} ion-pair states are concluded to be responsible for predissociation of Rydberg states [{sup 2}Π{sub 1/2}]{sub c}6d;0{sub g}{sup +} and [{sup 2}Π{sub 1/2}]{sub c}6d;2{sub g}, respectively. Further predissociation of these ion-pair states via lower lying Rydberg states gives rise to excited I(5s{sup 2}5p{sup 4}6s{sup 1}) atoms responsible for major part of ion signal. The isotropic angular distribution of the photofragment recoil directions observed for all channels indicates that the studied Rydberg states are long-lived compared with the rotational period of the I{sub 2} molecule.

  19. Electronic structure and time-dependent description of rotational predissociation of LiH

    DEFF Research Database (Denmark)

    Jasik, P.; Sienkiewicz, J. E.; Domsta, J.

    2017-01-01

    parameters and the experimental ones. The dynamics of the rotational predissociation process of the 11Π state were studied by solving the time-dependent Schrödinger equation. The classical experiment of Velasco [Can. J. Phys., 1957, 35, 1204] on dissociation in the 11Π state is explained for the first time...

  20. Overtone spectroscopy of the hydroxyl stretch vibration in hydroxylamine (NH2OH)

    International Nuclear Information System (INIS)

    Scott, J.L.; Luckhaus, D.; Brown, S.S.; Crim, F.F.

    1995-01-01

    We present photoacoustic spectra of the second (3ν OH ), third (4ν OH ), and fourth (5ν OH ) overtone bands of the hydroxyl stretch vibration in hydroxylamine. Asymmetric rotor simulations of the rovibrational contours provide rotational constants and an estimate of the homogeneous linewidth. The fourth overtone band appears anomalously broad relative to the two lower bands, reflecting a sharp increase in the rate of intramolecular vibrational energy redistribution (IVR). By contrast, the calculated density of states increases smoothly with energy. The homogeneous linewidth of the fourth overtone transition is similar to that measured by Luo et al. [J. Chem. Phys. 93, 9194 (1990)] for the predissociative sixth overtone band, supporting the conclusion that the broadening arises from increased (ro)vibrational coupling at an energy between the third and fourth overtone states

  1. The D1Πu state of HD and the mass scaling relation of its predissociation widths

    International Nuclear Information System (INIS)

    Dickenson, G D; Ubachs, W

    2012-01-01

    Absorption spectra of HD have been recorded in the wavelength range of 75–90 nm at 100 K using the vacuum ultraviolet Fourier transform spectrometer at the Synchrotron SOLEIL. The present wavelength resolution represents an order of magnitude improvement over that of previous studies. We present a detailed study of the D 1 Π u –X 1 Σ + g system observed up to v′ = 18. The Q-branch transition probing levels of Π − symmetry are observed as narrow resonances limited by the Doppler width at 100 K. Line positions for these transitions are determined to an estimated absolute accuracy of 0.06 cm −1 . Predissociation line widths of Π + levels are extracted from the absorption spectra. A comparison with the recent results on a study of the D 1 Π u state in H 2 and D 2 reveals that the predissociation widths scale as μ −2 J(J + 1), with μ being the reduced mass of the molecule and J the rotational angular momentum quantum number, as expected from an interaction with the B′ 1 Σ + u continuum causing the predissociation. (paper)

  2. Resonances in photoabsorption: Predissociation line shapes in the 3pπD1Π+u ← Χ1Σg+ system in H2

    International Nuclear Information System (INIS)

    Mezei, J. Zs.; Schneider, I. F.; Glass-Maujean, M.; Jungen, Ch.

    2014-01-01

    The predissociation of the 3pπD 1 Π u + ,v≥3,N=1, N = 2, and N = 3 levels of diatomic hydrogen is calculated by ab initio multichannel quantum defect theory combined with a R-matrix type approach that accounts for interfering predissociation and autoionization. The theory yields absorption line widths and shapes that are in good agreement with those observed in the high-resolution synchrotron vacuum-ultraviolet absorption spectra obtained by Dickenson et al. [J. Chem. Phys. 133, 144317 (2010)] at the DESIRS beamline of the SOLEIL synchrotron. The theory predicts further that many of the D state resonances with v ⩾ 6 exhibit a complex fine structure which cannot be modeled by the Fano profile formula and which has not yet been observed experimentally

  3. Overtone vibrational spectroscopy in H2-H2O complexes: a combined high level theoretical ab initio, dynamical and experimental study.

    Science.gov (United States)

    Ziemkiewicz, Michael P; Pluetzer, Christian; Nesbitt, David J; Scribano, Yohann; Faure, Alexandre; van der Avoird, Ad

    2012-08-28

    First results are reported on overtone (v(OH) = 2 ← 0) spectroscopy of weakly bound H(2)-H(2)O complexes in a slit supersonic jet, based on a novel combination of (i) vibrationally mediated predissociation of H(2)-H(2)O, followed by (ii) UV photodissociation of the resulting H(2)O, and (iii) UV laser induced fluorescence on the nascent OH radical. In addition, intermolecular dynamical calculations are performed in full 5D on the recent ab initio intermolecular potential of Valiron et al. [J. Chem. Phys. 129, 134306 (2008)] in order to further elucidate the identity of the infrared transitions detected. Excellent agreement is achieved between experimental and theoretical spectral predictions for the most strongly bound van der Waals complex consisting of ortho (I = 1) H(2) and ortho (I = 1) H(2)O (oH(2)-oH(2)O). Specifically, two distinct bands are seen in the oH(2)-oH(2)O spectrum, corresponding to internal rotor states in the upper vibrational manifold of Σ and Π rotational character. However, none of the three other possible nuclear spin modifications (pH(2)-oH(2)O, pH(2)-pH(2)O, or oH(2)-pH(2)O) are observed above current signal to noise level, which for the pH(2) complexes is argued to arise from displacement by oH(2) in the expansion mixture to preferentially form the more strongly bound species. Direct measurement of oH(2)-oH(2)O vibrational predissociation in the time domain reveals lifetimes of 15(2) ns and <5(2) ns for the Σ and Π states, respectively. Theoretical calculations permit the results to be interpreted in terms of near resonant energy levels and intermolecular alignment of the H(2) and H(2)O wavefunctions, providing insight into predissociation dynamical pathways from these metastable levels.

  4. Predissociation measurements of bond dissociation energies: VC, VN, and VS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Eric L.; Davis, Quincy C.; Morse, Michael D. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112 (United States)

    2016-06-21

    The abrupt onset of predissociation in the congested electronic spectra of jet-cooled VC, VN, and VS has been observed using resonant two-photon ionization spectroscopy. It is argued that because of the high density of electronic states in these molecules, the predissociation threshold occurs at the thermochemical threshold for the production of separated atoms in their ground electronic states. As a result, the measured threshold represents the bond dissociation energy. Using this method, bond dissociation energies of D{sub 0}(V C) = 4.1086(25) eV, D{sub 0}(V N) = 4.9968(20) eV, and D{sub 0}(V S) = 4.5353(25) eV are obtained. From these values, enthalpies of formation are derived as Δ{sub f,0K}H°(V C(g)) = 827.0 ± 8 kJ mol{sup −1}, Δ{sub f,0K}H°(V N(g)) = 500.9 ± 8 kJ mol{sup −1}, and Δ{sub f,0K}H°(V S(g)) = 349.3 ± 8 kJ mol{sup −1}. Using a thermochemical cycle and the well-known ionization energies of V, VC, and VN, our results also provide D{sub 0}(V{sup +}–C) = 3.7242(25) eV and D{sub 0}(V{sup +}–N) = 4.6871(20) eV. These values are compared to previous measurements and to computational results. The precision of these bond dissociation energies makes them good candidates for testing computational chemistry methods, particularly those that employ density functional theory.

  5. Improving COIL Efficiency By Iodine Pre-Dissociation Via Corona Discharge In The Transonic Section Of The Secondary Flow

    National Research Council Canada - National Science Library

    Rosenwaks, Zamik; Barmashenko, Boris

    2006-01-01

    ...: We intend to carry out a comprehensive experimental study of I2 pre-dissociation, based on applying corona discharge in the transonic section of the secondary flow in the COIL supersonic nozzle...

  6. The rotational predissociation of HeH+ energy and lifetime measurements, ch. 3

    International Nuclear Information System (INIS)

    Locht, R.; Maas, J.G.; Asselt, N.P.F.B. van; Los, J.

    1976-01-01

    Relative lifetimes and energies above the dissociation limit have been determined for the rotational predissociation of several quasi-bound levels of the X'Σ + state of 4 HeH + . In particular, the lifetimes are very sensitive to the shape of the potential energy curve. These measurements are used to discriminate between two ab initio potential curves which differ by only 0.00004 a.u. (approximately 1 meV). Using the lifetime data, relative population factors were determined for the observed levels

  7. Vibrational spectroscopy of NO^+(H_2O)_n: Evidence for the intracluster reaction NO^+(H_2O)_n→H_3O^+(H_2O)_(n-2)(HONO) at n≥4

    OpenAIRE

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-01-01

    Infrared spectra of mass‐selected clusters NO^+(H_2O)_n for n=1 to 5 were recorded from 2700 to 3800 cm^(−1) by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second‐order Møller–Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H_2O...

  8. Predissociation of the D 1PIsub(u) state of H2 near threshold

    International Nuclear Information System (INIS)

    Borondo, F.; Eguiagaray, L.R.; Riera, A.

    1982-01-01

    A recent calculation of Komarov and Ostrovsky (J. Phys. B.; 12:2485 (1979)) seemed to have settled a controversy regarding the different experimental values of the H(2s)/H(2p) sharing ratio in the predissociation of the D 1 PIsub(u) state of H 2 near threshold. This calculation was based on a correct physical picture of the dissociation process, but the dynamical treatment rests on invalid assumptions. In the present work, a more rigorous quantum mechanical treatment is presented, and a branching ratio of 0.70 is obtained. (author)

  9. Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.

    Science.gov (United States)

    Accardi, A; Borowski, A; Kühn, O

    2009-07-02

    A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.

  10. The effect of Demkov coupling in the rotational predissociation of 3He4He+, ch. 4

    International Nuclear Information System (INIS)

    Asselt, N.P.F.B. van; Maas, J.G.; Los, J.

    1976-01-01

    The momentum distribution of the 3 He + and the 4 He + fragments, both originating from rotational predissociation of 3 He 4 He + has been measured. There is a pronounced difference between the intensity distributions in both spectra. This difference is explained as the result of a Demkov coupling between the two lowest electronic states of the molecular ion. The rotational quantum numbers of the states involved are calculated from the spectra

  11. Model Predictive Vibration Control Efficient Constrained MPC Vibration Control for Lightly Damped Mechanical Structures

    CERN Document Server

    Takács, Gergely

    2012-01-01

    Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: ·         the implementation of ...

  12. Predissociation of the D /sup 1/PIsub(u) state of H/sub 2/ near threshold

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Eguiagaray, L.R.; Riera, A. (Universidad Autonoma de Madrid (Spain). Dept. de Quimica Fisica y Quimica Cuantica)

    1982-03-28

    A recent calculation of Komarov and Ostrovsky (J. Phys. B.; 12:2485 (1979)) seemed to have settled a controversy regarding the different experimental values of the H(2s)/H(2p) sharing ratio in the predissociation of the D /sup 1/PIsub(u) state of H/sub 2/ near threshold. This calculation was based on a correct physical picture of the dissociation process, but the dynamical treatment rests on invalid assumptions. In the present work, a more rigorous quantum mechanical treatment is presented, and a branching ratio of 0.70 is obtained.

  13. Fuzzy Multicriteria Model for Selection of Vibration Technology

    Directory of Open Access Journals (Sweden)

    María Carmen Carnero

    2016-01-01

    Full Text Available The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this decision. This research describes an objective model using Fuzzy Analytic Hierarchy Process (FAHP to make a choice of the most suitable technology among portable vibration analysers. The aim is to create an easy-to-use model for processing, manufacturing, services, and research organizations, to guarantee adequate decision-making in the choice of vibration analysis technology. The model described recognises that judgements are often based on ambiguous, imprecise, or inadequate information that cannot provide precise values. The model incorporates judgements from several decision-makers who are experts in the field of vibration analysis, maintenance, and electronic devices. The model has been applied to a Health Care Organization.

  14. State resolved vibrational relaxation modeling for strongly nonequilibrium flows

    Science.gov (United States)

    Boyd, Iain D.; Josyula, Eswar

    2011-05-01

    Vibrational relaxation is an important physical process in hypersonic flows. Activation of the vibrational mode affects the fundamental thermodynamic properties and finite rate relaxation can reduce the degree of dissociation of a gas. Low fidelity models of vibrational activation employ a relaxation time to capture the process at a macroscopic level. High fidelity, state-resolved models have been developed for use in continuum gas dynamics simulations based on computational fluid dynamics (CFD). By comparison, such models are not as common for use with the direct simulation Monte Carlo (DSMC) method. In this study, a high fidelity, state-resolved vibrational relaxation model is developed for the DSMC technique. The model is based on the forced harmonic oscillator approach in which multi-quantum transitions may become dominant at high temperature. Results obtained for integrated rate coefficients from the DSMC model are consistent with the corresponding CFD model. Comparison of relaxation results obtained with the high-fidelity DSMC model shows significantly less excitation of upper vibrational levels in comparison to the standard, lower fidelity DSMC vibrational relaxation model. Application of the new DSMC model to a Mach 7 normal shock wave in carbon monoxide provides better agreement with experimental measurements than the standard DSMC relaxation model.

  15. OH vibrational activation and decay dynamics of CH4-OH entrance channel complexes

    International Nuclear Information System (INIS)

    Wheeler, Martyn D.; Tsiouris, Maria; Lester, Marsha I.; Lendvay, Gyoergy

    2000-01-01

    Infrared spectroscopy has been utilized to examine the structure and vibrational decay dynamics of CH 4 -OH complexes that have been stabilized in the entrance channel to the CH 4 +OH hydrogen abstraction reaction. Rotationally resolved infrared spectra of the CH 4 -OH complexes have been obtained in the OH fundamental and overtone regions using an IR-UV (infrared-ultraviolet) double-resonance technique. Pure OH stretching bands have been identified at 3563.45(5) and 6961.98(4) cm-1 (origins), along with combination bands involving the simultaneous excitation of OH stretching and intermolecular bending motions. The infrared spectra exhibit extensive homogeneous broadening arising from the rapid decay of vibrationally activated CH 4 -OH complexes due to vibrational relaxation and/or reaction. Lifetimes of 38(5) and 25(3) ps for CH 4 -OH prepared with one and two quanta of OH excitation, respectively, have been extracted from the infrared spectra. The nascent distribution of the OH products from vibrational predissociation has been evaluated by ultraviolet probe laser-induced fluorescence measurements. The dominant inelastic decay channel involves the transfer of one quantum of OH stretch to the pentad of CH 4 vibrational states with energies near 3000 cm-1. The experimental findings are compared with full collision studies of vibrationally excited OH with CH 4 . In addition, ab initio electronic structure calculations have been carried out to elucidate the minimum energy configuration of the CH 4 -OH complex. The calculations predict a C 3v geometry with the hydrogen of OH pointing toward one of four equivalent faces of the CH 4 tetrahedron, consistent with the analysis of the experimental infrared spectra. (c) 2000 American Institute of Physics

  16. Vibration mode and vibration shape under excitation of a three phase model transformer core

    Science.gov (United States)

    Okabe, Seiji; Ishigaki, Yusuke; Omura, Takeshi

    2018-04-01

    Structural vibration characteristics and vibration shapes under three-phase excitation of a archetype transformer core were investigated to consider their influences on transformer noise. Acoustic noise and vibration behavior were measured in a three-limb model transformer core. Experimental modal analysis by impact test was performed. The vibration shapes were measured by a laser scanning vibrometer at different exciting frequencies. Vibration amplitude of the core in out-of-plane direction were relatively larger than those in other two in-plane directions. It was consistent with the result that the frequency response function of the core in out-of-plane direction was larger by about 20 dB or more than those in in-plane directions. There were many vibration modes having bending deformation of limbs in out-of-plane direction. The vibration shapes of the core when excited at 50 Hz and 60 Hz were almost the same because the fundamental frequencies of the vibration were not close to the resonance frequencies. When excitation frequency was 69 Hz which was half of one of the resonance frequencies, the vibration shape changed to the one similar to the resonance vibration mode. Existence of many vibration modes in out-of-plane direction of the core was presumed to be a reason why frequency characteristics of magnetostriction and transformer noise do not coincide.

  17. General complex rotated finite-element method for predissociation studies of diatomic molecules: An application on the (1-6)1Σg+ states of H2

    International Nuclear Information System (INIS)

    Andersson, Stefan; Elander, Nils

    2004-01-01

    An exterior complex rotated finite element method was applied on the diabatic multichannel Schroedinger equation in order to compute and compare rovibronic energy structures, predissociation widths, and nonradiative lifetimes for levels in the (1-4) (1-5), and (1-6) 1 Σ g + manifolds of H 2 . The rotationless (v,J=0) levels are found to be more or less shifted relative to each other when comparing the results for these three manifolds. The existence of homogeneous spectroscopic perturbations was investigated by studying the rovibronic (v,J=0-10) sequences for energies and level widths. Known experimental and theoretical radiative lifetimes were used to estimate present levels that might be spectroscopically measurable. The computed level widths for the EF, GK, and H electronic levels were generally found to be about two orders of magnitude larger than previously reported [P. Quadrelli, K. Pressler, and L. Woiniewicz, J. Chem. Phys. 93, 4958 (1990)], indicating a somewhat stronger predissociation

  18. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  19. VUV spectroscopic study of the ? state of H2

    Science.gov (United States)

    Dickenson, G. D.; Ubachs, W.

    2014-04-01

    Spectral lines, probing rotational quantum states J‧ = 0, 1, 2 of the inner well vibrations (υ‧ ≤ 8) in the ? state of molecular hydrogen, were recorded in high resolution using a vacuum ultraviolet Fourier transform absorption spectrometer in the wavelength range 73-86 nm. Accurate line positions and predissociation widths are determined from a fit to the absorption spectra. Improved values for the line positions are obtained, while the predissociation widths agree well with previous investigations.

  20. Vibrational kinetics in CO electric discharge lasers - Modeling and experiments

    Science.gov (United States)

    Stanton, A. C.; Hanson, R. K.; Mitchner, M.

    1980-01-01

    A model of CO laser vibrational kinetics is developed, and predicted vibrational distributions are compared with measurements. The experimental distributions were obtained at various flow locations in a transverse CW discharge in supersonic (M = 3) flow. Good qualitative agreement is obtained in the comparisons, including the prediction of a total inversion at low discharge current densities. The major area of discrepancy is an observed loss in vibrational energy downstream of the discharge which is not predicted by the model. This discrepancy may be due to three-dimensional effects in the experiment which are not included in the model. Possible kinetic effects which may contribute to vibrational energy loss are also examined.

  1. Lightweight Vehicle and Driver’s Whole-Body Models for Vibration Analysis

    Science.gov (United States)

    MdSah, Jamali; Taha, Zahari; Azwan Ismail, Khairul

    2018-03-01

    Vehicle vibration is a main factor for driving fatigue, discomfort and health problems. The ability to simulate the vibration characteristics in the vehicle and its effects on driver’s whole-body vibration will give significant advantages to designers especially on the vehicle development time and cost. However, it is difficult to achieve optimal condition of ride comfort and handling when using passive suspension system. This paper presents mathematical equations that can be used to describe the vibration characteristics of a lightweight electric vehicle that had been developed. The vehicle’s model was combined with the lumped-parameter model of driver to determine the whole-body vibration level when the vehicle is passing over a road hump using Matlab Simulink. The models were simulated at a constant speed and the results were compared with the experimental data. The simulated vibration level at the vehicle floor and seat were almost similar to the experimental vibration results. The suspension systems that are being used for the solar vehicle are able to reduce the vibration level due to the road hump. The models can be used to simulate and choose the optimal parameters for the suspensions.

  2. Scale modeling flow-induced vibrations of reactor components

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1982-06-01

    Similitude relationships currently employed in the design of flow-induced vibration scale-model tests of nuclear reactor components are reviewed. Emphasis is given to understanding the origins of the similitude parameters as a basis for discussion of the inevitable distortions which occur in design verification testing of entire reactor systems and in feature testing of individual component designs for the existence of detrimental flow-induced vibration mechanisms. Distortions of similitude parameters made in current test practice are enumerated and selected example tests are described. Also, limitations in the use of specific distortions in model designs are evaluated based on the current understanding of flow-induced vibration mechanisms and structural response

  3. Component vibration of VVER-reactors - diagnostics and modelling

    International Nuclear Information System (INIS)

    Altstadt, E.; Scheffler, M.; Weiss, F.-P.

    1995-01-01

    Flow induced vibrations of reactor pressure vessel (RPV) internals (control element and core barrel motions) at VVER-440 reactors have led to the development of dedicated methods for on-line monitoring. These methods need a certain developed stage of the faults to be detected. To achieve a real sensitive early detection of mechanical faults of RPV internals, a theoretical vibration model was developed based on finite elements. The model comprises the whole primary circuit including the steam generators (SG). By means of that model all eigenfrequencies up to 30 Hz and the corresponding mode shapes were calculated for the normal vibration behaviour. Moreover the shift of eigenfrequencies and of amplitudes due to the degradation or to the failure of internal clamping and spring elements could be investigated, showing that a recognition of such degradations even inside the RPV is possible by pure excore vibration measurements. A true diagnostic, that is the identification of the failed component, might become possible because different faults influence different and well separated eigenfrequencies. (author)

  4. Parallel two-phase-flow-induced vibrations in fuel pin model

    International Nuclear Information System (INIS)

    Hara, Fumio; Yamashita, Tadashi

    1978-01-01

    This paper reports the experimental results of vibrations of a fuel pin model -herein meaning the essential form of a fuel pin from the standpoint of vibration- in a parallel air-and-water two-phase flow. The essential part of the experimental apparatus consisted of a flat elastic strip made of stainless steel, both ends of which were firmly supported in a circular channel conveying the two-phase fluid. Vibrational strain of the fuel pin model, pressure fluctuation of the two-phase flow and two-phase-flow void signals were measured. Statistical measures such as power spectral density, variance and correlation function were calculated. The authors obtained (1) the relation between variance of vibrational strain and two-phase-flow velocity, (2) the relation between variance of vibrational strain and two-phase-flow pressure fluctuation, (3) frequency characteristics of variance of vibrational strain against the dominant frequency of the two-phase-flow pressure fluctuation, and (4) frequency characteristics of variance of vibrational strain against the dominant frequency of two-phase-flow void signals. The authors conclude that there exist two kinds of excitation mechanisms in vibrations of a fuel pin model inserted in a parallel air-and-water two-phase flow; namely, (1) parametric excitation, which occurs when the fundamental natural frequency of the fuel pin model is related to the dominant travelling frequency of water slugs in the two-phase flow by the ratio 1/2, 1/1, 3/2 and so on; and (2) vibrational resonance, which occurs when the fundamental frequency coincides with the dominant frequency of the two-phase-flow pressure fluctuation. (auth.)

  5. Physical model study of neutron noise induced by vibration of reactor internals

    International Nuclear Information System (INIS)

    Liu Jinhui; Gu Fangyu

    1999-01-01

    The author presents a physical model of neutron noise induced by reactor internals vibration in frequency domain. Based on system control theory, the reactor dynamic equations are coupled with random vibration equation, and non-linear terms are also taken into accounted while treating the random vibration. Experiments carried out on a zero-power reactor show that the model can be used to describe dynamic character of neutron noise induced by internals' vibration. The model establishes a method to help to determine internals'vibration features, and to diagnosis anomalies through neutron noise

  6. Cartesian coupled coherent states simulations: Ne(n)Br2 dissociation as a test case.

    Science.gov (United States)

    Reed, Stewart K; González-Martínez, Maykel L; Rubayo-Soneira, Jesús; Shalashilin, Dmitrii V

    2011-02-07

    In this article, we describe coupled coherent states (CCS) simulations of vibrational predissociation of weakly bounded complexes. The CCS method is implemented in the Cartesian frame in a manner that is similar to classical molecular dynamics. The calculated lifetimes of the vibrationally excited Ne-Br(2)(ν) complexes agree with experiment and previous calculations. Although the CCS method is, in principle, a fully quantum approach, in practice it typically becomes a semiclassical technique at long times. This is especially true following dissociation events. Consequently, it is very difficult to converge the quantum calculations of the final Br(2) vibrational distributions after predissociation and of the autocorrelation functions. However, the main advantage of the method is that it can be applied with relative ease to determine the lifetimes of larger complexes and, in order to demonstrate this, preliminary results for tetra- and penta-atomic clusters are reported.

  7. DYNAMIC MODELLING OF VIBRATIONS ASSISTED DRILLING

    Directory of Open Access Journals (Sweden)

    Mathieu LADONNE

    2015-05-01

    Full Text Available The number of multi-materials staking configurations for aeronautical structures is increasing, with the evolution of composite and metallic materials. For drilling the fastening holes, the processes of Vibration Assisted Drilling (VAD expand rapidly, as it permits to improve reliability of drilling operations on multilayer structures. Among these processes of VAD, the solution with forced vibrations added to conventional feed to create a discontinuous cutting is the more developed in industry. The back and forth movement allows to improve the evacuation of chips by breaking it. This technology introduces two new operating parameters, the frequency and the amplitude of the oscillation. To optimize the process, the choice of those parameters requires first to model precisely the operation cutting and dynamics. In this paper, a kinematic modelling of the process is firstly proposed. The limits of the model are analysed through comparison between simulations and measurements. The proposed model is used to develop a cutting force model that allows foreseeing the operating conditions which ensure good chips breaking and tool life improvement.

  8. Ir-Driven Dynamics of the 3-AMINOPHENOL-AMMONIA Complex

    Science.gov (United States)

    Heid, Cornelia G.; Merrill, W. G.; Case, Amanda; Crim, Fleming

    2014-06-01

    We report on gas-phase experiments investigating the predissociation and possible IR-driven isomerization of the 3-aminophenol-ammonia complex (3-AP-NH3). A molecular beam of 3-AP-NH3 is vibrationally excited with pulsed IR light, initiating an intramolecular vibrational redistribution and subsequent dissociation. The 3-AP fragment is then probed state-selectively via multiphoton ionization (REMPI) and time-of-flight mass spectrometry. Of particular interest is an IR-driven feature which we associate tentatively with a trans-cis isomerization process. We see clear correlation between the excitation of specific vibrational modes (namely the NH3 symmetric and OH stretches) and the presence of this feature, as evidenced by IR-action and IR-depletion spectra. The feature persists atop a broader signal which we assign to the predissociation of the complex and whose cutoff in REMPI-action experiments provides an upper bound on the dissociation energy for 3-AP-NH3.

  9. Influence of tyre-road contact model on vehicle vibration response

    Science.gov (United States)

    Múčka, Peter; Gagnon, Louis

    2015-09-01

    The influence of the tyre-road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre-road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre-road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.

  10. FFTF scale-model characterization of flow-induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36 percent to 111 percent of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable

  11. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, J A; Julyk, L J [Hanford Engineering Development Laboratory, Richland, WA (United States)

    1977-12-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  12. FFTF scale-model characterization of flow induced vibrational response of reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Julyk, L.J.

    1977-01-01

    As an integral part of the Fast Test Reactor Vibration Program for Reactor Internals, the flow-induced vibrational characteristics of scaled Fast Test Reactor core internal and peripheral components were assessed under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup. The Hydraulic Core Mockup, a 0.285 geometric scale model, was designed to model the vibrational and hydraulic characteristics of the Fast Test Reactor. Model component vibrational characteristics were measured and determined over a range of 36% to 111% of the scaled prototype design flow. Selected model and prototype components were shaker tested to establish modal characteristics. The dynamic response of the Hydraulic Core Mockup components exhibited no anomalous flow-rate dependent or modal characteristics, and prototype response predictions were adjudged acceptable. (author)

  13. Analysis of whole-body vibration on rheological models for tissues

    Science.gov (United States)

    Neamţu, A.; Simoiu, D.; Nyaguly, E.; Crastiu, I.; Bereteu, L.

    2018-01-01

    Whole body vibrations have become a very popular method in recent years, both in physical therapy and in sports. This popularity is due to the fact that, as a result of analyzing the groups of subjects, the effects of small amplitude vibration and low frequency vibration, it was found an increase in the force developed by the feet, a hardening of bone strength or an increase in bone density. In this paper we propose to give a possible explanation of the stress relieving in muscle and/or bone after whole body vibration treatment. To do this we consider some rheological models which after whole body vibrations and after the analysis of their response lead to various experiments.

  14. Observation of the Stark effect in υ+ = 0 Rydberg states of NO: a comparison between predissociating and bound states

    International Nuclear Information System (INIS)

    Jones, N J A; Minns, R S; Patel, R; Fielding, H H

    2008-01-01

    The Stark spectra of Rydberg states of NO below the υ + = 0 ionization limit, with principal quantum numbers n = 25-30, have been investigated in the presence of dc electric fields in the range 0-150 V cm -1 . The Stark states were accessed by two-colour, double-resonance excitation via the υ' = 0, N' = 0 rovibrational state of the A 2 Σ + state. The N( 2 D) atoms produced by predissociation were measured by (2 + 1) resonance-enhanced multiphoton ionization, and compared with pulsed-field ionization spectra of the bound Rydberg state population (Patel et al 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1369)

  15. Fuzzy Multicriteria Model for Selection of Vibration Technology

    OpenAIRE

    María Carmen Carnero

    2016-01-01

    The benefits of applying the vibration analysis program are well known and have been so for decades. A large number of contributions have been produced discussing new diagnostic, signal treatment, technical parameter analysis, and prognosis techniques. However, to obtain the expected benefits from a vibration analysis program, it is necessary to choose the instrumentation which guarantees the best results. Despite its importance, in the literature, there are no models to assist in taking this...

  16. Model-based failure detection for cylindrical shells from noisy vibration measurements.

    Science.gov (United States)

    Candy, J V; Fisher, K A; Guidry, B L; Chambers, D H

    2014-12-01

    Model-based processing is a theoretically sound methodology to address difficult objectives in complex physical problems involving multi-channel sensor measurement systems. It involves the incorporation of analytical models of both physical phenomenology (complex vibrating structures, noisy operating environment, etc.) and the measurement processes (sensor networks and including noise) into the processor to extract the desired information. In this paper, a model-based methodology is developed to accomplish the task of online failure monitoring of a vibrating cylindrical shell externally excited by controlled excitations. A model-based processor is formulated to monitor system performance and detect potential failure conditions. The objective of this paper is to develop a real-time, model-based monitoring scheme for online diagnostics in a representative structural vibrational system based on controlled experimental data.

  17. Full-dimensional characterization of photoelectron spectra of HOCO− and DOCO− and tunneling facilitated decay of HOCO prepared by anion photodetachment

    International Nuclear Information System (INIS)

    Wang, Jun; Li, Jun; Guo, Hua; Ma, Jianyi

    2014-01-01

    The photodetachment of both the HOCO − and DOCO − anions is investigated using full-dimensional quantum wave packets on new ab initio based global potential energy surfaces for both the neutral and anionic species. The calculated electron affinities and neutral fundamental vibrational frequencies of both isotopomers are in good agreement with available experimental data. The measured photoelectron spectra are also accurately reproduced, further validating the accuracy of the potential energy surfaces. In addition, strong mode specificity is found in the lifetimes of the HOCO vibrational features and the tunneling facilitated predissociation rates to H + CO 2 are rationalized using the recently proposed sudden vector projection model

  18. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    International Nuclear Information System (INIS)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee

    2015-01-01

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  19. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2012-12-01

    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  20. Vibration modelling and verifications for whole aero-engine

    Science.gov (United States)

    Chen, G.

    2015-08-01

    In this study, a new rotor-ball-bearing-casing coupling dynamic model for a practical aero-engine is established. In the coupling system, the rotor and casing systems are modelled using the finite element method, support systems are modelled as lumped parameter models, nonlinear factors of ball bearings and faults are included, and four types of supports and connection models are defined to model the complex rotor-support-casing coupling system of the aero-engine. A new numerical integral method that combines the Newmark-β method and the improved Newmark-β method (Zhai method) is used to obtain the system responses. Finally, the new model is verified in three ways: (1) modal experiment based on rotor-ball bearing rig, (2) modal experiment based on rotor-ball-bearing-casing rig, and (3) fault simulations for a certain type of missile turbofan aero-engine vibration. The results show that the proposed model can not only simulate the natural vibration characteristics of the whole aero-engine but also effectively perform nonlinear dynamic simulations of a whole aero-engine with faults.

  1. Vibration analysis of continuous maglev guideways with a moving distributed load model

    International Nuclear Information System (INIS)

    Teng, N G; Qiao, B P

    2008-01-01

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed

  2. A new online secondary path modeling method for adaptive active structure vibration control

    International Nuclear Information System (INIS)

    Pu, Yuxue; Zhang, Fang; Jiang, Jinhui

    2014-01-01

    This paper proposes a new variable step size FXLMS algorithm with an auxiliary noise power scheduling strategy for online secondary path modeling. The step size for the secondary path modeling filter and the gain of auxiliary noise are varied in accordance with the parameters available directly. The proposed method has a low computational complexity. Computer simulations show that an active vibration control system with the proposed method gives much better vibration attenuation and modeling accuracy at a faster convergence rate than existing methods. National Instruments’ CompactRIO is used as an embedded processor to control simply supported beam vibration. Experimental results indicate that the vibration of the beam has been effectively attenuated. (papers)

  3. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Science.gov (United States)

    Marks, Janis; Vitolina, Sandra

    2017-12-01

    Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  4. Modelling of magnetostriction of transformer magnetic core for vibration analysis

    Directory of Open Access Journals (Sweden)

    Marks Janis

    2017-12-01

    Full Text Available Magnetostriction is a phenomenon occurring in transformer core in normal operation mode. Yet in time, it can cause the delamination of magnetic core resulting in higher level of vibrations that are measured on the surface of transformer tank during diagnostic tests. The aim of this paper is to create a model for evaluating elastic deformations in magnetic core that can be used for power transformers with intensive vibrations in order to eliminate magnetostriction as a their cause. Description of the developed model in Matlab and COMSOL software is provided including restrictions concerning geometry and properties of materials, and the results of performed research on magnetic core anisotropy are provided. As a case study modelling of magnetostriction for 5-legged 200 MVA power transformer with the rated voltage of 13.8/137kV is conducted, based on which comparative analysis of vibration levels and elastic deformations is performed.

  5. Vibration analysis of continuous maglev guideways with a moving distributed load model

    Energy Technology Data Exchange (ETDEWEB)

    Teng, N G; Qiao, B P [Department of Civil Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240 (China)

    2008-02-15

    A model of moving distributed load with a constant speed is established for vertical vibration analysis of a continuous guideway in maglev transportation system. The guideway is considered as a continuous structural system and the action of maglev vehicles on guideways is considered as a moving distributed load. Vibration of the continuous guideways used in Shanghai maglev line is analyzed with this model. The factors that affect the vibration of the guideways, such as speeds, guideway's spans, frequency and damping, are discussed.

  6. State-to-state models of vibrational relaxation in Direct Simulation Monte Carlo (DSMC)

    Science.gov (United States)

    Oblapenko, G. P.; Kashkovsky, A. V.; Bondar, Ye A.

    2017-02-01

    In the present work, the application of state-to-state models of vibrational energy exchanges to the Direct Simulation Monte Carlo (DSMC) is considered. A state-to-state model for VT transitions of vibrational energy in nitrogen and oxygen, based on the application of the inverse Laplace transform to results of quasiclassical trajectory calculations (QCT) of vibrational energy transitions, along with the Forced Harmonic Oscillator (FHO) state-to-state model is implemented in DSMC code and applied to flows around blunt bodies. Comparisons are made with the widely used Larsen-Borgnakke model and the in uence of multi-quantum VT transitions is assessed.

  7. Vibration Based Diagnosis for Planetary Gearboxes Using an Analytical Model

    Directory of Open Access Journals (Sweden)

    Liu Hong

    2016-01-01

    Full Text Available The application of conventional vibration based diagnostic techniques to planetary gearboxes is a challenge because of the complexity of frequency components in the measured spectrum, which is the result of relative motions between the rotary planets and the fixed accelerometer. In practice, since the fault signatures are usually contaminated by noises and vibrations from other mechanical components of gearboxes, the diagnostic efficacy may further deteriorate. Thus, it is essential to develop a novel vibration based scheme to diagnose gear failures for planetary gearboxes. Following a brief literature review, the paper begins with the introduction of an analytical model of planetary gear-sets developed by the authors in previous works, which can predict the distinct behaviors of fault introduced sidebands. This analytical model is easy to implement because the only prerequisite information is the basic geometry of the planetary gear-set. Afterwards, an automated diagnostic scheme is proposed to cope with the challenges associated with the characteristic configuration of planetary gearboxes. The proposed vibration based scheme integrates the analytical model, a denoising algorithm, and frequency domain indicators into one synergistic system for the detection and identification of damaged gear teeth in planetary gearboxes. Its performance is validated with the dynamic simulations and the experimental data from a planetary gearbox test rig.

  8. Vibration tests and analyses of the reactor building model on a small scale

    International Nuclear Information System (INIS)

    Tsuchiya, Hideo; Tanaka, Mitsuru; Ogihara, Yukio; Moriyama, Ken-ichi; Nakayama, Masaaki

    1985-01-01

    The purpose of this paper is to describe the vibration tests and the simulation analyses of the reactor building model on a small scale. The model vibration tests were performed to investigate the vibrational characteristics of the combined super-structure and to verify the computor code based on Dr. H. Tajimi's Thin Layered Element Theory, using the uniaxial shaking table (60 cm x 60 cm). The specimens consist of ground model, three structural model (prestressed concrete containment vessel, inner concrete structure, and enclosure building), a combined structural model and a combined structure-soil interaction model. These models are made of silicon-rubber, and they have a scale of 1:600. Harmonic step by step excitation of 40 gals was performed to investigate the vibrational characteristics for each structural model. The responses of the specimen to harmonic excitation were measured by optical displacement meters, and analyzed by a real time spectrum analyzer. The resonance and phase lag curves of the specimens to the shaking table were obtained respectively. As for the tests of a combined structure-soil interaction model, three predominant frequencies were observed in the resonance curves. These values were in good agreement with the analytical transfer function curves on the computer code. From the vibration tests and the simulation analyses, the silicon-rubber model test is useful for the fundamental study of structural problems. The computer code based on the Thin Element Theory can simulate well the test results. (Kobozono, M.)

  9. Vibration acceleration promotes bone formation in rodent models.

    Directory of Open Access Journals (Sweden)

    Ryohei Uchida

    Full Text Available All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF mouse model and a rib fracture healing (RFH rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model or nine days (RFH model. All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT. In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model had significantly greater wet weight and were significantly larger (macroscopically and radiographically than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group, but

  10. Unsteady Vibration Aerodynamic Modeling and Evaluation of Dynamic Derivatives Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Xu Liu

    2015-01-01

    Full Text Available Unsteady aerodynamic system modeling is widely used to solve the dynamic stability problems encountering aircraft design. In this paper, single degree-of-freedom (SDF vibration model and forced simple harmonic motion (SHM model for dynamic derivative prediction are developed on the basis of modified Etkin model. In the light of the characteristics of SDF time domain solution, the free vibration identification methods for dynamic stability parameters are extended and applied to the time domain numerical simulation of blunted cone calibration model examples. The dynamic stability parameters by numerical identification are no more than 0.15% deviated from those by experimental simulation, confirming the correctness of SDF vibration model. The acceleration derivatives, rotary derivatives, and combination derivatives of Army-Navy Spinner Rocket are numerically identified by using unsteady N-S equation and solving different SHV patterns. Comparison with the experimental result of Army Ballistic Research Laboratories confirmed the correctness of the SHV model and dynamic derivative identification. The calculation result of forced SHM is better than that by the slender body theory of engineering approximation. SDF vibration model and SHM model for dynamic stability parameters provide a solution to the dynamic stability problem encountering aircraft design.

  11. Modeling study of vibrational photochemical isotope enrichment. [HBr + Cl/sub 2/; HCl + Br/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Badcock, C.C.; Hwang, W.C.; Kalsch, J.F.

    1978-09-29

    Chemical kinetic modeling studies of vibrational-photochemical isotope enrichment have been performed on two systems: Model (I), H/sup 79/Br(H/sup 81/Br) + Cl/sub 2/ and, Model (II), H/sup 37/Cl(H/sup 35/Cl) + Br. Pulsed laser excitation was modeled to the first excited vibrational level of H/sup 79/Br in Model I and the first and second excited vibrational levels of both HCl isotopes in Model II. These are prototype systems of exoergic (Model I) and endoergic (Model II) reactions. The effects on enrichment of varying the external parameters (pressure, laser intensity) and the internal parameters (rate constants for V-V exchange and excited-state reactions) were examined. Studies of these prototype systems indicate that a favorable reaction for enrichment, with isotopically-specific excitation and a significantly accelerated vibrationally-excited-state reaction should have the following properties: the reaction from v = 0 should be only moderately exoergic, and the most favorable coreactant should be a polyatomic species, such as alkyl radical. Direct excitation of the reacting vibrational level is at least an order of magnitude more favorable for enrichment than is population by energy transfer. Enrichment of the minor isotope by these processes is more effective than is major isotope enrichment. Within limits, increased laser intensity is beneficial. However, for sequential excitation of a second vibrational level, major isotope enrichment can be diminished by high populations of the first vibrational level.

  12. Emergency Gate Vibration of the Pipe-Turbine Model

    Directory of Open Access Journals (Sweden)

    Andrej Predin

    2000-01-01

    Full Text Available The vibration behavior of an emergency gate situated on a horizontal-shaft Kaplan turbine is studied. The analysis and transfer of the dynamic movements of the gate are quite complex. In particular the behavior is examined of the emergency gate for the case when the power unit is disconnected from the system or there is a breakdown of the guide vane system at the moment when the maximal head and capacity are achieved. Experimental-numerical methods both in the time domain and in the frequency domain are employed. Natural vibrations characterize a first zone, corresponding to relatively small gate openings. As the gate opening increases, the vibration behavior of the gate becomes increasingly dependent on the swirl pulsations in the draft tube of the turbine. Finally, the data transfer from the model to the prototype by use of the dynamic similitude law is discussed.

  13. Mathematical model for cross-flow-induced vibrations of tube rows

    International Nuclear Information System (INIS)

    Chen, S.S.

    1976-09-01

    A mathematical model for flow-induced vibrations in heat exchanger tube banks is presented which includes the effects of vortex shedding, fluidelastic coupling, drag force, and fluid inertia coupling. Once the fluid forces are known, the model can predict the details of complex tube-fluid interactions: (1) natural frequencies and mode shapes of coupled vibrations; (2) critical flow velocities; (3) responses to vortex shedding, drag force, and other types of excitations; and (4) the dominant excitation mechanism at a given flow velocity. The analytical results are in good agreement with the published experimental results

  14. Many-body processes in atomic and molecular physics. Progress report, September 1, 1982-August 31, 1983

    International Nuclear Information System (INIS)

    Chu, S.I.

    1983-04-01

    Progress is reported in the following areas: (1) development of a powerful semiclassical many-mode Floquet theory for nonperturbative treatment of the multiphoton dynamics of a quantum system interacting with several monochromatic radiation fields, (2) development of analytical quasi-level models for line shape analysis of intense field molecular multiphoton absorption spectra, (3) completion of a high-precision rotatonal predissociation lifetime determination of Ar-H 2 and Ar-HD van der Waals (vdW) molecules, using the complex-coordinate coupled-channel (CCCC) formalisms, and (4) development of the complex quasi-vibrational energy (QVE) and the inhomogeneous differential equation (IDE) approaches for calculating multiphoton dissociation (MPD) rates from highly excited vibrational states of diatomic molecules

  15. Semiclassical modelling of finite-pulse effects on non-adiabatic photodynamics via initial condition filtering: The predissociation of NaI as a test case

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Mesa, Aliezer [Departmento de Física Teórica, Universidad de la Habana, San Lázaro y L, La Habana 10400 (Cuba); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany)

    2015-05-21

    Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.

  16. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs

    Directory of Open Access Journals (Sweden)

    Chunxi Zhang

    2017-10-01

    Full Text Available Aiming to improve survey accuracy of Measurement While Drilling (MWD based on Fiber Optic Gyroscopes (FOGs in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF method. The KF method needs to model the inertial sensors’ noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn’t white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR. In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  17. Vibration Noise Modeling for Measurement While Drilling System Based on FOGs.

    Science.gov (United States)

    Zhang, Chunxi; Wang, Lu; Gao, Shuang; Lin, Tie; Li, Xianmu

    2017-10-17

    Aiming to improve survey accuracy of Measurement While Drilling (MWD) based on Fiber Optic Gyroscopes (FOGs) in the long period, the external aiding sources are fused into the inertial navigation by the Kalman filter (KF) method. The KF method needs to model the inertial sensors' noise as the system noise model. The system noise is modeled as white Gaussian noise conventionally. However, because of the vibration while drilling, the noise in gyros isn't white Gaussian noise any more. Moreover, an incorrect noise model will degrade the accuracy of KF. This paper developed a new approach for noise modeling on the basis of dynamic Allan variance (DAVAR). In contrast to conventional white noise models, the new noise model contains both the white noise and the color noise. With this new noise model, the KF for the MWD was designed. Finally, two vibration experiments have been performed. Experimental results showed that the proposed vibration noise modeling approach significantly improved the estimated accuracies of the inertial sensor drifts. Compared the navigation results based on different noise model, with the DAVAR noise model, the position error and the toolface angle error are reduced more than 90%. The velocity error is reduced more than 65%. The azimuth error is reduced more than 50%.

  18. Infrared photodissociation of van der Waals molecules containing ethylene

    International Nuclear Information System (INIS)

    Casassa, M.P.; Bomse, D.S.; Janda, K.C.

    1981-01-01

    Vibrational predissociation line shapes in the n 7 region of the ethylene spectrum are measured for van der Waals molecules of ethylene bound to Ne, Ar, Kr, C 2 H 4 , C 2 F 4 , and larger ethylene clusters. The predissociative rate is very fast for this group of molecules. The vibrationally excited state lifetimes are 0.44, 0.59 and 0.89 x 10 -12 sec for (C 2 H 4 ) 2 , ArxC 2 H 4 , and C 2 H 4 xC 2 F 4 respectively. That the observed line shapes are homogeneous is demonstrated by the fact that a low-power, narrow frequency bandwidth laser can dissociate a large fraction of the initial ensemble of ethylene clusters. The observed transition probability is proportional to the number of ethylene subunits for clusters containing three or fewer ethylene subunits. These observations are interpreted in terms of intramolecular energy flow directly from ethylene n 7 to the weak van der Waals modes of motion

  19. Scale-model characterization of flow-induced vibrational response of FFTF reactor internals

    International Nuclear Information System (INIS)

    Ryan, J.A.; Mahoney, J.J.

    1980-10-01

    Fast Test Reactor core internal and peripheral components were assessed for flow-induced vibrational characteristics under scaled and simulated prototype flow conditions in the Hydraulic Core Mockup as an integral part of the Fast Test Reactor Vibration Program. The Hydraulic Core Mockup was an 0.285 geometric scale model of the Fast Test Reactor internals designed to simulate prototype vibrational and hydraulic characteristics. Using water to simulate sodium coolant, vibrational characteristics were measured and determined for selected model components over the scaled flow range of 36 to 110%. Additionally, in-situ shaker tests were conducted on selected Hydraulic Core Mockup outlet plenum components to establish modal characteristics. Most components exhibited resonant response at all test flow rates; however, the measured dynamic response was neither abnormal nor anomalously flow-rate dependent, and the predicted prototype components' response were deemed acceptable

  20. Vibration Signal Forecasting on Rotating Machinery by means of Signal Decomposition and Neurofuzzy Modeling

    Directory of Open Access Journals (Sweden)

    Daniel Zurita-Millán

    2016-01-01

    Full Text Available Vibration monitoring plays a key role in the industrial machinery reliability since it allows enhancing the performance of the machinery under supervision through the detection of failure modes. Thus, vibration monitoring schemes that give information regarding future condition, that is, prognosis approaches, are of growing interest for the scientific and industrial communities. This work proposes a vibration signal prognosis methodology, applied to a rotating electromechanical system and its associated kinematic chain. The method combines the adaptability of neurofuzzy modeling with a signal decomposition strategy to model the patterns of the vibrations signal under different fault scenarios. The model tuning is performed by means of Genetic Algorithms along with a correlation based interval selection procedure. The performance and effectiveness of the proposed method are validated experimentally with an electromechanical test bench containing a kinematic chain. The results of the study indicate the suitability of the method for vibration forecasting in complex electromechanical systems and their associated kinematic chains.

  1. Modelling and Analysis of Vibrations in a UAV Helicopter with a Vision System

    Directory of Open Access Journals (Sweden)

    G. Nicolás Marichal Plasencia

    2012-11-01

    Full Text Available The analysis of the nature and damping of unwanted vibrations on Unmanned Aerial Vehicle (UAV helicopters are important tasks when images from on-board vision systems are to be obtained. In this article, the authors model a UAV system, generate a range of vibrations originating in the main rotor and design a control methodology in order to damp these vibrations. The UAV is modelled using VehicleSim, the vibrations that appear on the fuselage are analysed to study their effects on the on-board vision system by using Simmechanics software. Following this, the authors present a control method based on an Adaptive Neuro-Fuzzy Inference System (ANFIS to achieve satisfactory damping results over the vision system on board.

  2. An Enhanced Random Vibration and Fatigue Model for Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Bruno de Castro Braz

    Full Text Available Abstract Aerospace vehicles are mostly exposed to random vibration loads during its operational lifetime. These harsh conditions excites vibration responses in the vehicles printed circuit boards, what can cause failure on mission functionality due to fatigue damage of electronic components. A novel analytical model to evaluate the useful life of embedded electronic components (capacitors, chips, oscillators etc. mounted on Printed Circuit Boards (PCB is presented. The fatigue damage predictions are calculated by the relative displacement between the PCB and the component, the lead stiffness, as well the natural vibration modes of the PCB and the component itself. Statistical methods are used for fatigue cycle counting. The model is applied to experimental fatigue tests of PCBs available on literature. The analytical results are of the same magnitude order of the experimental findings.

  3. Modeling and Tuning for Vibration Energy Harvesting using a Piezoelectric Bimorph

    Science.gov (United States)

    Cao, Yongqing

    With the development of wireless sensors and other devices, the need for continuous power supply with high reliability is growing ever more. The traditional battery power supply has the disadvantage of limited duration of continuous power supply capability so that replacement for new batteries has to be done regularly. This can be quite inconvenient and sometimes quite difficult especially when the sensors are located in places not easily accessible such as the inside of a machine or wild field. This situation stimulates the development of renewable power supply which can harvest energy from the environment. The use of piezoelectric materials to converting environment vibration to electrical energy is one of the alternatives of which a broad range of research has been done by many researchers, focusing on different issues. The improvement of efficiency is one of the most important issues in vibration based energy harvesting. For this purpose different methods are devised and more accurate modeling of coupled piezoelectric mechanical systems is investigated. In the current paper, the research is focused on improving voltage generation of a piezoelectric bimorph on a vibration beam, as well as the analytical modeling of the same system. Also an initial study is conducted on the characteristics of the vibration of Zinc oxide (ZnO) nanowire, which is a promising material for its coupled semiconducting and piezoelectric properties. The effect on the voltage generation by different placement of the piezoelectric bimorph on the vibrating beam is investigated. The relation between the voltage output and the curvature is derived which is used to explain the effect of placement on voltage generation. The effect of adding a lumped mass on the modal frequencies of the beam and on the curvature distribution is investigated. The increased voltage output from the piezoelectric bimorph by using appropriately selected mass is proved analytically and also verified by experiment. For

  4. Nuclear surface vibrations in bag models

    International Nuclear Information System (INIS)

    Tomio, L.

    1984-01-01

    The main difficulties found in the hadron bag models are reviewed from the original version of the MIT bag model. Following, with the aim to answer two of the main difficulties in bag models, viz., the parity and the divergence illness, a dynamical model is presented. In the model, the confinement surface of the quarks (bag) is treated like a real physical object which interacts with the quarks and is exposed to vibrations. The model is applied to the nucleon, being observed that his spectrum, in the first excited levels, can be reproduced with resonable precision and obeying to the correct parity order. In the same way that in a similar work of Brown et al., it is observed to be instrumental the inclusion of the effect due to pions. (L.C.) [pt

  5. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model

    Science.gov (United States)

    Zhang, Zhaoyan

    2014-01-01

    Although vocal folds are known to be anisotropic, the influence of material anisotropy on vocal fold vibration remains largely unknown. Using a linear stability analysis, phonation onset characteristics were investigated in a three-dimensional anisotropic vocal fold model. The results showed that isotropic models had a tendency to vibrate in a swing-like motion, with vibration primarily along the superior-inferior direction. Anterior-posterior (AP) out-of-phase motion was also observed and large vocal fold vibration was confined to the middle third region along the AP length. In contrast, increasing anisotropy or increasing AP-transverse stiffness ratio suppressed this swing-like motion and allowed the vocal fold to vibrate in a more wave-like motion with strong medial-lateral motion over the entire medial surface. Increasing anisotropy also suppressed the AP out-of-phase motion, allowing the vocal fold to vibrate in phase along the entire AP length. Results also showed that such improvement in vibration pattern was the most effective with large anisotropy in the cover layer alone. These numerical predictions were consistent with previous experimental observations using self-oscillating physical models. It was further hypothesized that these differences may facilitate complete glottal closure in finite-amplitude vibration of anisotropic models as observed in recent experiments. PMID:24606284

  6. Adaptive Neuro-Fuzzy Modeling of UH-60A Pilot Vibration

    Science.gov (United States)

    Kottapalli, Sesi; Malki, Heidar A.; Langari, Reza

    2003-01-01

    Adaptive neuro-fuzzy relationships have been developed to model the UH-60A Black Hawk pilot floor vertical vibration. A 200 point database that approximates the entire UH-60A helicopter flight envelope is used for training and testing purposes. The NASA/Army Airloads Program flight test database was the source of the 200 point database. The present study is conducted in two parts. The first part involves level flight conditions and the second part involves the entire (200 point) database including maneuver conditions. The results show that a neuro-fuzzy model can successfully predict the pilot vibration. Also, it is found that the training phase of this neuro-fuzzy model takes only two or three iterations to converge for most cases. Thus, the proposed approach produces a potentially viable model for real-time implementation.

  7. Experimental dynamic characterizations and modelling of disk vibrations for HDDs.

    Science.gov (United States)

    Pang, Chee Khiang; Ong, Eng Hong; Guo, Guoxiao; Qian, Hua

    2008-01-01

    Currently, the rotational speed of spindle motors in HDDs (Hard-Disk Drives) are increasing to improve high data throughput and decrease rotational latency for ultra-high data transfer rates. However, the disk platters are excited to vibrate at their natural frequencies due to higher air-flow excitation as well as eccentricities and imbalances in the disk-spindle assembly. These factors contribute directly to TMR (Track Mis-Registration) which limits achievable high recording density essential for future mobile HDDs. In this paper, the natural mode shapes of an annular disk mounted on a spindle motor used in current HDDs are characterized using FEM (Finite Element Methods) analysis and verified with SLDV (Scanning Laser Doppler Vibrometer) measurements. The identified vibration frequencies and amplitudes of the disk ODS (Operating Deflection Shapes) at corresponding disk mode shapes are modelled as repeatable disturbance components for servo compensation in HDDs. Our experimental results show that the SLDV measurements are accurate in capturing static disk mode shapes without the need for intricate air-flow aero-elastic models, and the proposed disk ODS vibration model correlates well with experimental measurements from a LDV.

  8. A modified wake oscillator model for predicting vortex induced vibration of heat exchanger tube

    International Nuclear Information System (INIS)

    Feng Zhipeng; Zang Fenggang; Zhang Yixiong; Ye Xianhui

    2014-01-01

    Base on the classical wake oscillator model, a new modified wake oscillator model is proposed, for predicting vortex induced vibration of heat exchanger tube in uniform current. The comparison between the new wake oscillator model and experimental show that the present model can simulate the characteristics of vortex induced vibration of tube. Firstly, the research shows that the coupled fluid-structure dynamical system should be modeled by combined displacement and acceleration mode. Secondly, the empirical parameter in wake oscillator model depends on the material properties of the structure, instead of being a universal constant. Lastly, the results are compared between modified wake oscillator model and fluid-structure interaction numerical model. It shows the present, predicted results are compared to the fluid-structure interaction numerical data. The new modified wake oscillator model can predict the vortex induced heat exchanger tube vibration feasibly. (authors)

  9. Forced vibration test on large scale model on soft rock site

    International Nuclear Information System (INIS)

    Kobayashi, Toshio; Fukuoka, Atsunobu; Izumi, Masanori; Miyamoto, Yuji; Ohtsuka, Yasuhiro; Nasuda, Toshiaki.

    1991-01-01

    Forced vibration tests were conducted in order to investigate the embedment effect on dynamic soil-structure interaction. Two model structures were constructed on actual soil about 60 m apart, after excavating the ground to 5 m depth. For both models, the sinusoidal forced vibration tests were performed with the conditions of different embedment depth, namely non-embedment, half-embedment and full-embedment. As the test results, the increase in both natural frequency and damping factor due to the embedment effects can be observed, and the soil impedances calculated from test results are discussed. (author)

  10. A comprehensive model for the prediction of vibrations due to underground railway traffic: formulation and validation

    International Nuclear Information System (INIS)

    Costa, Pedro Alvares; Cardoso Silva, Antonio; Calçada, Rui; Lopes, Patricia; Fernandez, Jesus

    2016-01-01

    n this communication, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnels is presented. The numerical model is based on the concept of dynamic sub structuring, being composed by three autonomous models to simulate the following main parts of the problem: i) generation of vibrations (train-track interaction); ii) propagation of vibrations (track - tunnel-ground system); iii) reception of vibrations (building coupled to the ground). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort [ 1 , 2 ] . After the brief description of the model, its experimental validation is performed. For that, a case study about vibrations inside of a building close to a shallow railway tunnel in Madrid are simulated and the experimental data [ 3 ] is compared with the predicted results [ 4 ]. Finally, the communication finishes with some insights about the potentialities and challenges of this numerical modelling approach on the prediction of the behavior of ancient structures subjected to vibrations induced by human sources (railway and road traffic, pile driving, etc)

  11. Dynamic modeling and adaptive vibration suppression of a high-speed macro-micro manipulator

    Science.gov (United States)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Fang, Sheng; Chen, Te-huan

    2018-05-01

    This paper presents a dynamic modeling and microscopic vibration suppression for a flexible macro-micro manipulator dedicated to high-speed operation. The manipulator system mainly consists of a macro motion stage and a flexible micromanipulator bonded with one macro-fiber-composite actuator. Based on Hamilton's principle and the Bouc-Wen hysteresis equation, the nonlinear dynamic model is obtained. Then, a hybrid control scheme is proposed to simultaneously suppress the elastic vibration during and after the motor motion. In particular, the hybrid control strategy is composed of a trajectory planning approach and an adaptive variable structure control. Moreover, two optimization indices regarding the comprehensive torques and synthesized vibrations are designed, and the optimal trajectories are acquired using a genetic algorithm. Furthermore, a nonlinear fuzzy regulator is used to adjust the switching gain in the variable structure control. Thus, a fuzzy variable structure control with nonlinear adaptive control law is achieved. A series of experiments are performed to verify the effectiveness and feasibility of the established system model and hybrid control strategy. The excited vibration during the motor motion and the residual vibration after the motor motion are decreased. Meanwhile, the settling time is shortened. Both the manipulation stability and operation efficiency of the manipulator are improved by the proposed hybrid strategy.

  12. Model of heap formation in vibrated gravitational suspensions.

    Science.gov (United States)

    Ebata, Hiroyuki; Sano, Masaki

    2015-11-01

    In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.

  13. Computer modeling of flow induced in-reactor vibrations

    International Nuclear Information System (INIS)

    Turula, P.; Mulcahy, T.M.

    1977-01-01

    An assessment of the reliability of finite element method computer models, as applied to the computation of flow induced vibration response of components used in nuclear reactors, is presented. The prototype under consideration was the Fast Flux Test Facility reactor being constructed for US-ERDA. Data were available from an extensive test program which used a scale model simulating the hydraulic and structural characteristics of the prototype components, subjected to scaled prototypic flow conditions as well as to laboratory shaker excitations. Corresponding analytical solutions of the component vibration problems were obtained using the NASTRAN computer code. Modal analyses and response analyses were performed. The effect of the surrounding fluid was accounted for. Several possible forcing function definitions were considered. Results indicate that modal computations agree well with experimental data. Response amplitude comparisons are good only under conditions favorable to a clear definition of the structural and hydraulic properties affecting the component motion. 20 refs

  14. Modeling the benefits of an artificial gravity countermeasure coupled with exercise and vibration

    Science.gov (United States)

    Goel, Rahul; Kaderka, Justin; Newman, Dava

    2012-01-01

    The current, system-specific countermeasures to space deconditioning have limited success with the musculoskeletal system in long duration missions. Artificial gravity (AG) that is produced by short radius centrifugation has been hypothesized as an effective countermeasure because it reintroduces an acceleration field in space; however, AG alone might not be enough stimuli to preserve the musculoskeletal system. A novel combination of AG coupled with one-legged squats on a vibrating platform may preserve muscle and bone in the lower limbs to a greater extent than the current exercise paradigm. The benefits of the proposed countermeasure have been analyzed through the development of a simulation platform. Ground reaction force data and motion data were collected using a motion capture system while performing one-legged and two-legged squats in 1-G. The motion was modeled in OpenSim, an open-source software, and inverse dynamics were applied in order to determine the muscle and reaction forces of lower limb joints. Vibration stimulus was modeled by adding a 20 Hz sinusoidal force of 0.5 body weight to the force plate data. From the numerical model in a 1-G acceleration field, muscle forces for quadriceps femoris, plantar flexors and glutei increased substantially for one-legged squats with vibration compared to one- or two-legged squats without vibration. Additionally, joint reaction forces for one-legged squats with vibration also increased significantly compared to two-legged squats with or without vibration. Higher muscle forces and joint reaction forces might help to stimulate muscle activation and bone modeling and thus might reduce musculoskeletal deconditioning. These results indicate that the proposed countermeasure might surpass the performance of the current space countermeasures and should be further studied as a method of mitigating musculoskeletal deconditioning.

  15. Numerical Modelling and Simulation of Dynamic Parameters for Vibration Driven Mobile Robot: Preliminary Study

    Science.gov (United States)

    Baharudin, M. E.; Nor, A. M.; Saad, A. R. M.; Yusof, A. M.

    2018-03-01

    The motion of vibration-driven robots is based on an internal oscillating mass which can move without legs or wheels. The oscillation of the unbalanced mass by a motor is translated into vibration which in turn produces vertical and horizontal forces. Both vertical and horizontal oscillations are of the same frequency but the phases are shifted. The vertical forces will deflect the bristles which cause the robot to move forward. In this paper, the horizontal motion direction caused by the vertically vibrated bristle is numerically simulated by tuning the frequency of their oscillatory actuation. As a preliminary work, basic equations for a simple off-centered vibration location on the robot platform and simulation model for vibration excitement are introduced. It involves both static and dynamic vibration analysis of robots and analysis of different type of parameters. In addition, the orientation of the bristles and oscillators are also analysed. Results from the numerical integration seem to be in good agreement with those achieved from the literature. The presented numerical integration modeling can be used for designing the bristles and controlling the speed and direction of the robot.

  16. Validation of vibration-dissociation coupling models in hypersonic non-equilibrium separated flows

    Science.gov (United States)

    Shoev, G.; Oblapenko, G.; Kunova, O.; Mekhonoshina, M.; Kustova, E.

    2018-03-01

    The validation of recently developed models of vibration-dissociation coupling is discussed in application to numerical solutions of the Navier-Stokes equations in a two-temperature approximation for a binary N2/N flow. Vibrational-translational relaxation rates are computed using the Landau-Teller formula generalized for strongly non-equilibrium flows obtained in the framework of the Chapman-Enskog method. Dissociation rates are calculated using the modified Treanor-Marrone model taking into account the dependence of the model parameter on the vibrational state. The solutions are compared to those obtained using traditional Landau-Teller and Treanor-Marrone models, and it is shown that for high-enthalpy flows, the traditional and recently developed models can give significantly different results. The computed heat flux and pressure on the surface of a double cone are in a good agreement with experimental data available in the literature on low-enthalpy flow with strong thermal non-equilibrium. The computed heat flux on a double wedge qualitatively agrees with available data for high-enthalpy non-equilibrium flows. Different contributions to the heat flux calculated using rigorous kinetic theory methods are evaluated. Quantitative discrepancy of numerical and experimental data is discussed.

  17. A modal approach to modeling spatially distributed vibration energy dissipation.

    Energy Technology Data Exchange (ETDEWEB)

    Segalman, Daniel Joseph

    2010-08-01

    The nonlinear behavior of mechanical joints is a confounding element in modeling the dynamic response of structures. Though there has been some progress in recent years in modeling individual joints, modeling the full structure with myriad frictional interfaces has remained an obstinate challenge. A strategy is suggested for structural dynamics modeling that can account for the combined effect of interface friction distributed spatially about the structure. This approach accommodates the following observations: (1) At small to modest amplitudes, the nonlinearity of jointed structures is manifest primarily in the energy dissipation - visible as vibration damping; (2) Correspondingly, measured vibration modes do not change significantly with amplitude; and (3) Significant coupling among the modes does not appear to result at modest amplitudes. The mathematical approach presented here postulates the preservation of linear modes and invests all the nonlinearity in the evolution of the modal coordinates. The constitutive form selected is one that works well in modeling spatially discrete joints. When compared against a mathematical truth model, the distributed dissipation approximation performs well.

  18. Analytical model for vibration prediction of two parallel tunnels in a full-space

    Science.gov (United States)

    He, Chao; Zhou, Shunhua; Guo, Peijun; Di, Honggui; Zhang, Xiaohui

    2018-06-01

    This paper presents a three-dimensional analytical model for the prediction of ground vibrations from two parallel tunnels embedded in a full-space. The two tunnels are modelled as cylindrical shells of infinite length, and the surrounding soil is modelled as a full-space with two cylindrical cavities. A virtual interface is introduced to divide the soil into the right layer and the left layer. By transforming the cylindrical waves into the plane waves, the solution of wave propagation in the full-space with two cylindrical cavities is obtained. The transformations from the plane waves to cylindrical waves are then used to satisfy the boundary conditions on the tunnel-soil interfaces. The proposed model provides a highly efficient tool to predict the ground vibration induced by the underground railway, which accounts for the dynamic interaction between neighbouring tunnels. Analysis of the vibration fields produced over a range of frequencies and soil properties is conducted. When the distance between the two tunnels is smaller than three times the tunnel diameter, the interaction between neighbouring tunnels is highly significant, at times in the order of 20 dB. It is necessary to consider the interaction between neighbouring tunnels for the prediction of ground vibrations induced underground railways.

  19. NH4(+) Resides Inside the Water 20-mer Cage As Opposed to H3O(+), Which Resides on the Surface: A First Principles Molecular Dynamics Simulation Study.

    Science.gov (United States)

    Willow, Soohaeng Yoo; Singh, N Jiten; Kim, Kwang S

    2011-11-08

    Experimental vibrational predissociation spectra of the magic NH4(+)(H2O)20 clusters are close to those of the magic H3O(+)(H2O)20 clusters. It has been assumed that the geometric features of NH4(+)(H2O)20 clusters might be close to those of H3O(+)(H2O)20 clusters, in which H3O(+) resides on the surface. Car-Parrinello molecular dynamics simulations in conjunction with density functional theory calculations are performed to generate the infrared spectra of the magic NH4(+)(H2O)20 clusters. In comparison with the experimental vibrational predissociation spectra of NH4(+)(H2O)20, we find that NH4(+) is inside the cage structure of NH4(+)(H2O)20 as opposed to on the surface structure. This shows a clear distinction between the structures of NH4(+)(H2O)20 and H3O(+)(H2O)20 as well as between the hydration phenomena of NH4(+) and H3O(+).

  20. Kinetic model of vibrational relaxation in a humid-air pulsed corona discharge

    International Nuclear Information System (INIS)

    Komuro, Atsushi; Ono, Ryo; Oda, Tetsuji

    2010-01-01

    The effect of humidity on the vibrational relaxation of O 2 (v) and N 2 (v) in a humid-air pulsed corona discharge is studied using a kinetic model. We previously showed that humidity markedly increases the vibration-to-translation (V-T) rate of molecules in a humid-air pulsed corona discharge by measuring O 2 (v) density (Ono et al 2010 Plasma Sources Sci. Technol. 19 015009). In this paper, we numerically calculate the vibrational kinetics of O 2 , N 2 and H 2 O to study the reason behind the acceleration of V-T in the presence of humidity. The calculation closely reproduces the measured acceleration of V-T due to humidity, and shows that the increase in the V-T rate is caused by the fast vibration-to-vibration (V-V) processes of O 2 -H 2 O and N 2 -H 2 O and the subsequent rapid V-T process of H 2 O-H 2 O. In addition, it is shown that O atom density is also important in the vibrational kinetics owing to the rapid V-T process of O 2 -O.

  1. Vibration test of spherical shell structure and replacing method into mathematical model

    International Nuclear Information System (INIS)

    Takayanagi, M.; Suzuki, S.; Okamura, T.; Haas, E.E.; Krutzik, N.J.

    1989-01-01

    To verify the beam-type and oval-type vibratory characteristics of a spherical shell structure, two test specimens were made and vibration tests were carried out. Results of these tests are compared with results of detailed analyses using 3-D FEM and 2-D axisymmetric FEM models. The analytical results of overall vibratory characteristics are in good agreement with the test results, has been found that the effect of the attached mass should be considered in evaluating local vibration. The replacing method into equivalent beam model is proposed

  2. Modelling and tuning for a time-delayed vibration absorber with friction

    Science.gov (United States)

    Zhang, Xiaoxu; Xu, Jian; Ji, Jinchen

    2018-06-01

    This paper presents an integrated analytical and experimental study to the modelling and tuning of a time-delayed vibration absorber (TDVA) with friction. In system modelling, this paper firstly applies the method of averaging to obtain the frequency response function (FRF), and then uses the derived FRF to evaluate the fitness of different friction models. After the determination of the system model, this paper employs the obtained FRF to evaluate the vibration absorption performance with respect to tunable parameters. A significant feature of the TDVA with friction is that its stability is dependent on the excitation parameters. To ensure the stability of the time-delayed control, this paper defines a sufficient condition for stability estimation. Experimental measurements show that the dynamic response of the TDVA with friction can be accurately predicted and the time-delayed control can be precisely achieved by using the modelling and tuning technique provided in this paper.

  3. Vibration behavior of PWR reactor internals Model experiments and analysis

    International Nuclear Information System (INIS)

    Assedo, R.; Dubourg, M.; Livolant, M.; Epstein, A.

    1975-01-01

    In the late 1971, the CEA and FRAMATOME decided to undertake a comprehensive joint program of studying the vibration behavior of PWR internals of the 900 MWe, 50 cycle, 3 loop reactor series being built by FRAMATOME in France. The PWR reactor internals are submitted to several sources of excitation during normal operation. Two main sources of excitation may effect the internals behavior: the large flow turbulences which could generate various instabilities such as: vortex shedding: the pump pressure fluctuations which could generate acoustic noise in the circuit at frequencies corresponding to shaft speed frequencies or blade passing frequencies, and their respective harmonics. The flow induced vibrations are of complex nature and the approach selected, for this comprehensive program, is semi-empirical and based on both theoretical analysis and experiments on a reduced scale model and full scale internals. The experimental support of this program consists of: the SAFRAN test loop which consists of an hydroelastic similitude of a 1/8 scale model of a PWR; harmonic vibration tests in air performed on full scale reactor internals in the manufacturing shop; the GENNEVILLIERS facilities which is a full flow test facility of primary pump; the measurements carried out during start up on the Tihange reactor. This program will be completed in April 1975. The results of this program, the originality of which consists of studying separately the effects of random excitations and acoustic noises, on the internals behavior, and by establishing a comparison between experiments and analysis, will bring a major contribution for explaining the complex vibration phenomena occurring in a PWR

  4. Spectroscopic and computational studies of ionic clusters as models of solvation and atmospheric reactions

    Science.gov (United States)

    Kuwata, Keith T.

    Ionic clusters are useful as model systems for the study of fundamental processes in solution and in the atmosphere. Their structure and reactivity can be studied in detail using vibrational predissociation spectroscopy, in conjunction with high level ab initio calculations. This thesis presents the applications of infrared spectroscopy and computation to a variety of gas-phase cluster systems. A crucial component of the process of stratospheric ozone depletion is the action of polar stratospheric clouds (PSCs) to convert the reservoir species HCl and chlorine nitrate (ClONO2) to photochemically labile compounds. Quantum chemistry was used to explore one possible mechanism by which this activation is effected: Cl- + ClONO2 /to Cl2 + NO3- eqno(1)Correlated ab initio calculations predicted that the direct reaction of chloride ion with ClONO2 is facile, which was confirmed in an experimental kinetics study. In the reaction a weakly bound intermediate Cl2-NO3- is formed, with ~70% of the charge localized on the nitrate moiety. This enables the Cl2-NO3- cluster to be well solvated even in bulk solution, allowing (1) to be facile on PSCs. Quantum chemistry was also applied to the hydration of nitrosonium ion (NO+), an important process in the ionosphere. The calculations, in conjunction with an infrared spectroscopy experiment, revealed the structure of the gas-phase clusters NO+(H2O)n. The large degree of covalent interaction between NO+ and the lone pairs of the H2O ligands is contrasted with the weak electrostatic bonding between iodide ion and H2O. Finally, the competition between ion solvation and solvent self-association is explored for the gas-phase clusters Cl/-(H2O)n and Cl-(NH3)n. For the case of water, vibrational predissociation spectroscopy reveals less hydrogen bonding among H2O ligands than predicted by ab initio calculations. Nevertheless, for n /ge 5, cluster structure is dominated by water-water interactions, with Cl- only partially solvated by the

  5. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  6. Modelling nuclear fuel vibrations in horizontal CANDU reactors

    International Nuclear Information System (INIS)

    Jagannath, D.V.; Oldaker, I.E.

    1976-01-01

    Flow-induced fuel vibrations in the pressure tubes of CANDU reactors are of vital interest to designers because fretting damage may result. Computer simulation is being used to study how bundles vibrate and to identify bundle design features which will reduce vibration and hence fretting. (author)

  7. Modelling and processing of data from a fibre-optic sensor of vibrations

    International Nuclear Information System (INIS)

    Morawski, R Z; Makowski, P L; Michalik, L; Domanski, A W

    2010-01-01

    A new technique of vibration sensing, based on a polarimetric fibre-optic strain sensor, is presented; it is designed for localisation of multiple sources of disturbances in a broad spectrum without using fibre gratings. A mathematical model of the sensor is used for development of a variational method for estimation of amplitudes of component vibrations on the basis of noisy samples of the voltage at the output of the sensor.

  8. Surface quality prediction model of nano-composite ceramics in ultrasonic vibration-assisted ELID mirror grinding

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bo; Chen, Fan; Jia, Xiao-feng; Zhao, Chong-yang; Wang, Xiao-bo [Henan Polytechnic University, Jiaozuo (China)

    2017-04-15

    Ultrasonic vibration-assisted Electrolytic in-process dressing (ELID) grinding is a highly efficient and highly precise machining method. The surface quality prediction model in ultrasonic vibration-assisted ELID mirror grinding was studied. First, the interaction between grits and workpiece surface was analyzed according to kinematic mechanics, and the surface roughness model was developed. The variations in surface roughness under different parameters was subsequently calculated and analyzed by MATLAB. Results indicate that compared with the ordinary ELID grinding, ultrasonic vibration-assisted ELID grinding is superior, because it has more stable and better surface quality and has an improved range of ductile machining.

  9. Vibration analysis of concrete bridges during a train pass-by using various models

    International Nuclear Information System (INIS)

    Li, Qi; Wang, Ke; Cheng, Shili; Li, Wuqian; Song, Xiaodong

    2016-01-01

    The vibration of a bridge must be determined in order to predict the bridge noise during a train pass-by. It can be generally solved with different models either in the time domain or the frequency domain. The computation cost and accuracy of these models vary a lot in a wide frequency band. This study aims to compare the results obtained from various models for recommending the most suitable model in further noise prediction. First, train-track-bridge models in the time domain are developed by using the finite element method and mode superposition method. The rails are modeled by Timoshenko beam elements and the bridge is respectively modeled by shell elements and volume elements. Second, power flow models for the coupled system are established in the frequency domain. The rails are modelled by infinite Timoshenko beams and the bridge is respectively represented by three finite element models, an infinite Kirchhoff plate, and an infinite Mindlin plate model. The vibration at given locations of the bridge and the power input to the bridges through the rail fasteners are calculated using these models. The results show that the shear deformation of the bridge deck has significant influences on the bridge vibration at medium-to-high frequencies. The Mindlin plate model can be used to represent the U-shaped girder to obtain the power input to the bridge with high accuracy and efficiency. (paper)

  10. Three-dimensional analytic probabilities of coupled vibrational-rotational-translational energy transfer for DSMC modeling of nonequilibrium flows

    International Nuclear Information System (INIS)

    Adamovich, Igor V.

    2014-01-01

    A three-dimensional, nonperturbative, semiclassical analytic model of vibrational energy transfer in collisions between a rotating diatomic molecule and an atom, and between two rotating diatomic molecules (Forced Harmonic Oscillator–Free Rotation model) has been extended to incorporate rotational relaxation and coupling between vibrational, translational, and rotational energy transfer. The model is based on analysis of semiclassical trajectories of rotating molecules interacting by a repulsive exponential atom-to-atom potential. The model predictions are compared with the results of three-dimensional close-coupled semiclassical trajectory calculations using the same potential energy surface. The comparison demonstrates good agreement between analytic and numerical probabilities of rotational and vibrational energy transfer processes, over a wide range of total collision energies, rotational energies, and impact parameter. The model predicts probabilities of single-quantum and multi-quantum vibrational-rotational transitions and is applicable up to very high collision energies and quantum numbers. Closed-form analytic expressions for these transition probabilities lend themselves to straightforward incorporation into DSMC nonequilibrium flow codes

  11. A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.

    2016-08-01

    Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.

  12. Vibration isolation of a ship's seat

    Science.gov (United States)

    Agahi, Maryam; Samani, Mehrdad B.; Behzad, Mehdi

    2005-05-01

    Different factors cause vibration. These vibrations make the voyages difficult and reduce comfort and convenience in passenger ships. In this paper, the creating factors of vibration have discussed first, then with mathematical modelling it will be attempted to minimize the vibration over the crew's seat. The modelling consists of a system with two degrees of freedom and by using vibrationisolation with passive method of Tuned Mass Damper (TMD) it will be tried to reduce the vibration over personnel. Moreover using active control systems will be compared with passive systems.

  13. A study of modelling simplifications in ground vibration predictions for railway traffic at grade

    Science.gov (United States)

    Germonpré, M.; Degrande, G.; Lombaert, G.

    2017-10-01

    Accurate computational models are required to predict ground-borne vibration due to railway traffic. Such models generally require a substantial computational effort. Therefore, much research has focused on developing computationally efficient methods, by either exploiting the regularity of the problem geometry in the direction along the track or assuming a simplified track structure. This paper investigates the modelling errors caused by commonly made simplifications of the track geometry. A case study is presented investigating a ballasted track in an excavation. The soil underneath the ballast is stiffened by a lime treatment. First, periodic track models with different cross sections are analyzed, revealing that a prediction of the rail receptance only requires an accurate representation of the soil layering directly underneath the ballast. A much more detailed representation of the cross sectional geometry is required, however, to calculate vibration transfer from track to free field. Second, simplifications in the longitudinal track direction are investigated by comparing 2.5D and periodic track models. This comparison shows that the 2.5D model slightly overestimates the track stiffness, while the transfer functions between track and free field are well predicted. Using a 2.5D model to predict the response during a train passage leads to an overestimation of both train-track interaction forces and free field vibrations. A combined periodic/2.5D approach is therefore proposed in this paper. First, the dynamic axle loads are computed by solving the train-track interaction problem with a periodic model. Next, the vibration transfer to the free field is computed with a 2.5D model. This combined periodic/2.5D approach only introduces small modelling errors compared to an approach in which a periodic model is used in both steps, while significantly reducing the computational cost.

  14. Vibrational characteristics of graphene sheets elucidated using an elastic network model.

    Science.gov (United States)

    Kim, Min Hyeok; Kim, Daejoong; Choi, Jae Boong; Kim, Moon Ki

    2014-08-07

    Recent studies of graphene have demonstrated its great potential for highly sensitive resonators. In order to capture the intrinsic vibrational characteristics of graphene, we propose an atomistic modeling method called the elastic network model (ENM), in which a graphene sheet is modeled as a mass-spring network of adjacent atoms connected by various linear springs with specific bond ratios. Normal mode analysis (NMA) reveals the various vibrational features of bi-layer graphene sheets (BLGSs) clamped at two edges. We also propose a coarse-graining (CG) method to extend our graphene study into the meso- and macroscales, at which experimental measurements and synthesis of graphene become practical. The simulation results show good agreement with experimental observations. Therefore, the proposed ENM approach will not only shed light on the theoretical study of graphene mechanics, but also play an important role in the design of highly-sensitive graphene-based resonators.

  15. Controlling flow-induced vibrations of flood barrier gates with data-driven and finite-element modelling

    NARCIS (Netherlands)

    Erdbrink, C.D.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.; Klijn, F.; Schweckendiek, T.

    2012-01-01

    Operation of flood barrier gates is sometimes hampered by flow-induced vibrations. Although the physics is understood for specific gate types, it remains challenging to judge dynamic gate behaviour for unanticipated conditions. This paper presents a hybrid modelling system for predicting vibrations

  16. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi; Nayfeh, Ali Hasan; Choura, Slim A.

    2012-01-01

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. Model reduction and analysis of a vibrating beam microgyroscope

    KAUST Repository

    Ghommem, Mehdi

    2012-05-08

    The present work is concerned with the nonlinear dynamic analysis of a vibrating beam microgyroscope composed of a rotating cantilever beam with a tip mass at its end. The rigid mass is coupled to two orthogonal electrodes in the drive and sense directions, which are attached to the rotating base. The microbeam is driven by an AC voltage in the drive direction, which induces vibrations in the orthogonal sense direction due to rotation about the microbeam axis. The electrode placed in the sense direction is used to measure the induced motions and extract the underlying angular speed. A reduced-order model of the gyroscope is developed using the method of multiple scales and used to examine its dynamic behavior. © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields

    Science.gov (United States)

    Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.

    2012-01-01

    Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663

  19. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    Energy Technology Data Exchange (ETDEWEB)

    Skrzypinski, W.

    2012-02-15

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised analyzes based on engineering models and Computational Fluid Dynamics. Two-dimensional, three-degree-of-freedom, elastically-mounted-airfoil engineering models were created. These models aimed at investigating the effect of temporal lag in the aerodynamic response of an airfoil on the aeroelastic stability limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyses was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed-motion and elastically mounted airfoil suspensions. 2D and 3D prescribed-motion CFD computations performed on a DU96-W-180 airfoil predicted vortex-induced vibrations at 90 degrees angle of attack at the frequency close to the stationary vortex shedding frequency predicted by 2D CFD computations. Significant discrepancies were observed between 2D and 3D computations around 25 degrees angle of attack. 3D computations predicted occurrence of vortex-induced vibrations while the wind speed necessary for the occurrence of stall-induced vibrations was predicted too high to occur in normal conditions. Analysis of the dynamic lift and drag resulting from 2D and 3D CFD computations carried out around 25 degrees angle of attack showed loops with the slopes of opposite signs

  20. The Modeling and Analysis for the Self-Excited Vibration of the Maglev Vehicle-Bridge Interaction System

    Directory of Open Access Journals (Sweden)

    Jinhui Li

    2015-01-01

    Full Text Available This paper addresses the self-excited vibration problems of maglev vehicle-bridge interaction system which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, two levitation models with different complexity are developed, and the comparison of the energy curves associated with the two models is carried out. We conclude that the interaction model with a single levitation control unit is sufficient for the study of the self-excited vibration. Then, the principle underlying the self-excited vibration is explored from the standpoint of work acting on the bridge done by the levitation system. Furthermore, the influences of the parameters, including the modal frequency and modal damping of bridge, the gain of the controller, the sprung mass, and the unsprung mass, on the stability of the interaction system are carried out. The study provides a theoretical guidance for solving the self-excited vibration problems of the vehicle-bridge interaction systems.

  1. A Shell Model for Free Vibration Analysis of Carbon Nanoscroll

    Directory of Open Access Journals (Sweden)

    Amin Taraghi Osguei

    2017-04-01

    Full Text Available Carbon nanoscroll (CNS is a graphene sheet rolled into a spiral structure with great potential for different applications in nanotechnology. In this paper, an equivalent open shell model is presented to study the vibration behavior of a CNS with arbitrary boundary conditions. The equivalent parameters used for modeling the carbon nanotubes are implemented to simulate the CNS. The interactions between the layers of CNS due to van der Waals forces are included in the model. The uniformly distributed translational and torsional springs along the boundaries are considered to achieve a unified solution for different boundary conditions. To study the vibration characteristics of CNS, total energy including strain energy, kinetic energy, and van der Waals energy are minimized using the Rayleigh-Ritz technique. The first-order shear deformation theory has been utilized to model the shell. Chebyshev polynomials of first kind are used to obtain the eigenvalue matrices. The natural frequencies and corresponding mode shapes of CNS in different boundary conditions are evaluated. The effect of electric field in axial direction on the natural frequencies and mode shapes of CNS is investigated. The results indicate that, as the electric field increases, the natural frequencies decrease.

  2. Space robots with flexible appendages: Dynamic modeling, coupling measurement, and vibration suppression

    Science.gov (United States)

    Meng, Deshan; Wang, Xueqian; Xu, Wenfu; Liang, Bin

    2017-05-01

    For a space robot with flexible appendages, vibrations of flexible structure can be easily excited during both orbit and/or attitude maneuvers of the base and the operation of the manipulators. Hence, the pose (position and attitude) of the manipulator's end-effector will greatly deviate from the desired values, and furthermore, the motion of the manipulator will trigger and exacerbate vibrations of flexible appendages. Given lack of the atmospheric damping in orbit, the vibrations will last for quite a while and cause the on-orbital tasks to fail. We derived the rigid-flexible coupling dynamics of a space robot system with flexible appendages and established a coupling model between the flexible base and the space manipulator. A specific index was defined to measure the coupling degree between the flexible motion of the appendages and the rigid motion of the end-effector. Then, we analyzed the dynamic coupling for different conditions, such as modal displacements, joint angles (manipulator configuration), and mass properties. Moreover, the coupling map was adopted and drawn to represent the coupling motion. Based on this map, a trajectory planning method was addressed to suppress structure vibration. Finally, simulation studies of typical cases were performed, which verified the proposed models and method. This work provides a theoretic basis for the system design, performance evaluation, trajectory planning, and control of such space robots.

  3. Modal analysis of human body vibration model for Indian subjects under sitting posture.

    Science.gov (United States)

    Singh, Ishbir; Nigam, S P; Saran, V H

    2015-01-01

    Need and importance of modelling in human body vibration research studies are well established. The study of biodynamic responses of human beings can be classified into experimental and analytical methods. In the past few decades, plenty of mathematical models have been developed based on the diverse field measurements to describe the biodynamic responses of human beings. In this paper, a complete study on lumped parameter model derived from 50th percentile anthropometric data for a seated 54- kg Indian male subject without backrest support under free un-damped conditions has been carried out considering human body segments to be of ellipsoidal shape. Conventional lumped parameter modelling considers the human body as several rigid masses interconnected by springs and dampers. In this study, concept of mass of interconnecting springs has been incorporated and eigenvalues thus obtained are found to be closer to the values reported in the literature. Results obtained clearly establish decoupling of vertical and fore-and-aft oscillations. The mathematical modelling of human body vibration studies help in validating the experimental investigations for ride comfort of a sitting subject. This study clearly establishes the decoupling of vertical and fore-and-aft vibrations and helps in better understanding of possible human response to single and multi-axial excitations.

  4. Vibrational and electronic collisional-radiative model in air for Earth entry problems

    Energy Technology Data Exchange (ETDEWEB)

    Annaloro, Julien, E-mail: Julien.Annaloro@cnes.fr [CNES, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9 (France); CORIA - UMR 6614, Normandie Université, CNRS - Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint-Etienne du Rouvray Cedex (France); Bultel, Arnaud, E-mail: Arnaud.Bultel@coria.fr [CORIA - UMR 6614, Normandie Université, CNRS - Université et INSA de Rouen, Campus Universitaire du Madrillet, 76800 Saint-Etienne du Rouvray Cedex (France)

    2014-12-15

    The two-temperature collisional-radiative model CoRaM-AIR, working over a wide range for pressure and temperatures, has been developed for the flow conditions around a space vehicle entering the Earth's atmosphere. The species N{sub 2}, O{sub 2}, NO, N, O, Ar, N{sub 2}{sup +}, O{sub 2}{sup +}, NO{sup +}, N{sup +}, O{sup +}, Ar{sup +}, and free electrons are taken into account. The model is vibrationally specific on the ground electronic state of N{sub 2}, O{sub 2}, and NO, and electronically specific for all species, with a total of 169 vibrational states and 829 electronic states, respectively. A wide set of elementary processes is considered under electron and heavy particle impact given the temperatures involved (up to 30 000 K). This set corresponds to almost 700 000 forward and backward elementary processes. The relaxation from initial thermal or chemical nonequilibrium is studied for dissociation-ionization situations in conditions related to the FIRE II flight experiment. Boltzmann plots clearly prove that the vibrational and electronic excitation distributions are far from being Boltzmanian. In particular, high-lying vibrational levels remain underpopulated for most of the duration of the relaxation. This relaxation can be separated in a first phase characterized by the dissociation and the excitation of the molecular species, and a second phase leading to the excitation and the ionization of the dissociation products. Owing to the vibrational relaxation, the time scales are slightly higher than the ones predicted by former kinetic mechanisms usually used in flow simulations. In the present FIRE II conditions, radiation does not play a significant role.

  5. Suppression of chaotic vibrations in a nonlinear half-car model

    Energy Technology Data Exchange (ETDEWEB)

    Tusset, Ângelo Marcelo, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Piccirillo, Vinícius, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Janzen, Frederic Conrad, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com; Lenz, Wagner Barth, E-mail: tusset@utfpr.edu.br, E-mail: piccirillo@utfpr.edu.br, E-mail: fcjanzen@utfpr.edu.br, E-mail: wagner-barth@hotmail.com [UTFPR- PONTA GROSSA, PR (Brazil); Balthazar, José Manoel, E-mail: jmbaltha@rc.unesp.br [UNESP-BAURU, SP (Brazil); Fonseca Brasil, Reyolando M. L. R. da, E-mail: reyolando.brasil@ufabc.edu.br [UFABC-SANTO ANDRE, SP (Brazil)

    2014-12-10

    The present work investigates the nonlinear response of a half-car model. The disturbances of the road are assumed to be sinusoidal. After constructing the bifurcation diagram, we using the 0-1 test for identify the chaotic motion. The principal objective of this study is to eliminate the chaotic behaviour of the chassis and reduce its vibration, and for this reason a control system for semi-active vehicle suspension with magnetorheological damper is proposed. The control mechanism is designed based on SDRE technique, where the control parameter is the voltage applied to the coil of the damper. Numerical results show that the proposed control method is effective in significantly reducing of the chassis vibration, increasing therefore, passenger comfort.

  6. Vibration Propagation of Gear Dynamics in a Gear-Bearing-Housing System Using Mathematical Modeling and Finite Element Analysis

    Science.gov (United States)

    Parker, Robert G.; Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.

    2012-01-01

    Vibration and noise caused by gear dynamics at the meshing teeth propagate through power transmission components to the surrounding environment. This study is devoted to developing computational tools to investigate the vibro-acoustic propagation of gear dynamics through a gearbox using different bearings. Detailed finite element/contact mechanics and boundary element models of the gear/bearing/housing system are established to compute the system vibration and noise propagation. Both vibration and acoustic models are validated by experiments including the vibration modal testing and sound field measurements. The effectiveness of each bearing type to disrupt vibration propagation is speed-dependent. Housing plays an important role in noise radiation .It, however, has limited effects on gear dynamics. Bearings are critical components in drivetrains. Accurate modeling of rolling element bearings is essential to assess vibration and noise of drivetrain systems. This study also seeks to fully describe the vibro-acoustic propagation of gear dynamics through a power-transmission system using rolling element and fluid film wave bearings. Fluid film wave bearings, which have higher damping than rolling element bearings, could offer an energy dissipation mechanism that reduces the gearbox noise. The effectiveness of each bearing type to disrupt vibration propagation in explored using multi-body computational models. These models include gears, shafts, rolling element and fluid film wave bearings, and the housing. Radiated noise is mapped from the gearbox surface to surrounding environment. The effectiveness of rolling element and fluid film wave bearings in breaking the vibro-acoustic propagation path from the gear to the housing is investigated.

  7. On thermal vibration effects in diffusion model calculations of blocking dips

    International Nuclear Information System (INIS)

    Fuschini, E.; Ugozzoni, A.

    1983-01-01

    In the framework of the diffusion model, a method for calculating blocking dips is suggested that takes into account thermal vibrations of the crystal lattice. Results of calculations of the diffusion factor and the transverse energy distribution taking into accoUnt scattering of the channeled particles at thermal vibrations of lattice nuclei, are presented. Calculations are performed for α-particles with the energy of 2.12 MeV at 300 K scattered by Al crystal. It is shown that calculations performed according to the above method prove the necessity of taking into account effects of multiple scattering under blocking conditions

  8. VCD Robustness of the Amide-I and Amide-II Vibrational Modes of Small Peptide Models.

    Science.gov (United States)

    Góbi, Sándor; Magyarfalvi, Gábor; Tarczay, György

    2015-09-01

    The rotational strengths and the robustness values of amide-I and amide-II vibrational modes of For(AA)n NHMe (where AA is Val, Asn, Asp, or Cys, n = 1-5 for Val and Asn; n = 1 for Asp and Cys) model peptides with α-helix and β-sheet backbone conformations were computed by density functional methods. The robustness results verify empirical rules drawn from experiments and from computed rotational strengths linking amide-I and amide-II patterns in the vibrational circular dichroism (VCD) spectra of peptides with their backbone structures. For peptides with at least three residues (n ≥ 3) these characteristic patterns from coupled amide vibrational modes have robust signatures. For shorter peptide models many vibrational modes are nonrobust, and the robust modes can be dependent on the residues or on their side chain conformations in addition to backbone conformations. These robust VCD bands, however, provide information for the detailed structural analysis of these smaller systems. © 2015 Wiley Periodicals, Inc.

  9. Adaptive Model Predictive Vibration Control of a Cantilever Beam with Real-Time Parameter Estimation

    Directory of Open Access Journals (Sweden)

    Gergely Takács

    2014-01-01

    Full Text Available This paper presents an adaptive-predictive vibration control system using extended Kalman filtering for the joint estimation of system states and model parameters. A fixed-free cantilever beam equipped with piezoceramic actuators serves as a test platform to validate the proposed control strategy. Deflection readings taken at the end of the beam have been used to reconstruct the position and velocity information for a second-order state-space model. In addition to the states, the dynamic system has been augmented by the unknown model parameters: stiffness, damping constant, and a voltage/force conversion constant, characterizing the actuating effect of the piezoceramic transducers. The states and parameters of this augmented system have been estimated in real time, using the hybrid extended Kalman filter. The estimated model parameters have been applied to define the continuous state-space model of the vibrating system, which in turn is discretized for the predictive controller. The model predictive control algorithm generates state predictions and dual-mode quadratic cost prediction matrices based on the updated discrete state-space models. The resulting cost function is then minimized using quadratic programming to find the sequence of optimal but constrained control inputs. The proposed active vibration control system is implemented and evaluated experimentally to investigate the viability of the control method.

  10. Fault Detection of Reciprocating Compressors using a Model from Principles Component Analysis of Vibrations

    International Nuclear Information System (INIS)

    Ahmed, M; Gu, F; Ball, A D

    2012-01-01

    Traditional vibration monitoring techniques have found it difficult to determine a set of effective diagnostic features due to the high complexity of the vibration signals originating from the many different impact sources and wide ranges of practical operating conditions. In this paper Principal Component Analysis (PCA) is used for selecting vibration feature and detecting different faults in a reciprocating compressor. Vibration datasets were collected from the compressor under baseline condition and five common faults: valve leakage, inter-cooler leakage, suction valve leakage, loose drive belt combined with intercooler leakage and belt loose drive belt combined with suction valve leakage. A model using five PCs has been developed using the baseline data sets and the presence of faults can be detected by comparing the T 2 and Q values from the features of fault vibration signals with corresponding thresholds developed from baseline data. However, the Q -statistic procedure produces a better detection as it can separate the five faults completely.

  11. Nonlinear modeling of tuned liquid dampers (TLDs) in rotating wind turbine blades for damping edgewise vibrations

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R. K.; Basu, Biswajit

    2015-01-01

    Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g. This facilit......Tuned liquid dampers (TLDs) utilize the sloshing motion of the fluid to suppress structural vibrations and become a natural candidate for damping vibrations in rotating wind turbine blades. The centrifugal acceleration at the tip of a wind turbine blade can reach a magnitude of 7–8g...... free-surface elevation equally well, the one-mode model can still be utilized for the design of TLD. Parametric optimization of the TLD is carried out based on the one-mode model, and the optimized damper effectively improves the dynamic response of wind turbine blades....

  12. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    Science.gov (United States)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  13. Nonlinear Model of Vibrating Screen to Determine Permissible Spring Deterioration for Proper Separation

    Directory of Open Access Journals (Sweden)

    Cristian G. Rodriguez

    2016-01-01

    Full Text Available Springs of vibrating screens are prone to fatigue induced failure because they operate in a heavy duty environment, with abrasive dust and under heavy cyclic loads. If a spring breaks, the stiffness at supporting positions changes, and therefore the amplitude of motion and the static and dynamic angular inclination of deck motion also change. This change in the amplitude and in the inclination of motion produces a reduction in separation efficiency. Available models are useful to determine motion under nominal operating conditions when angular displacement is not significant. However in practice there is significant angular motion during startup, during shutdown, or under off-design operating conditions. In this article, a two-dimensional three-degree-of-freedom nonlinear model that considers significant angular motion and damping is developed. The proposed model allows the prediction of vibrating screen behavior when there is a reduction in spring stiffness. Making use of this model for an actual vibrating screen in operation in industry has permitted determining a limit for spring’s failure before separation efficiency is affected. This information is of practical value for operation and maintenance staff helping to determine whether or not it is necessary to change springs, and hence optimizing stoppage time.

  14. Research on torsional vibration modelling and control of printing cylinder based on particle swarm optimization

    Science.gov (United States)

    Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.

    2018-03-01

    The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.

  15. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  16. Cross sections for the vibrational excitation of the H2 X 1Σ+g(v) levels generated by electron collisional excitation of the higher singlet states

    International Nuclear Information System (INIS)

    Hiskes, J.R.

    1991-01-01

    The excitation cross sections, σ(v,v double-prime), for an H 2 molecule initially in any one of the 15 vibrational levels, v belonging to the ground electronic state and excited to a final vibrational level, v double-prime are evaluated for direct excitations via all members of the excited electronic singlet spectrum. Account is taken of predissociation, autoionization, and radiative decay of the excited electronic spectrum that leads to a final population distribution for the ground electronic state, X 1 Σ + g (v double-prime). For v=0, account is taken explicitly of transitions via the B, C, B', and D electronic states in evaluating the cross sections. The additional contribution of excitations via all Rydberg states lying above the D state enhances these cross sections by approximately 10%. For v>0, cross sections are evaluated taking explicit account of transitions through the B and C states; higher singlet excitations enhance these values by 25%. The choice of the reference total cross sections remains a subjective one, causing the values calculated here to have a possible uncertainty of +20% -30% . For excitations occurring within a hydrogen discharge, collisional excitation-ionization events among the intermediate singlet states will effectively quench the v, v double-prime excitation process for discharge densities in excess of the range 10 15 --10 16 electrons/cm -3

  17. Expansion Hamiltonian model for a diatomic molecule adsorbed on a surface: Vibrational states of the CO/Cu(100) system including surface vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingyong, E-mail: mengqingyong@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian (China); Meyer, Hans-Dieter, E-mail: hans-dieter.meyer@pci.uni-heidelberg.de [Theoretische Chemie, Physikalisch-Chemisches Institut, Ruprecht-Karls Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-10-28

    Molecular-surface studies are often done by assuming a corrugated, static (i.e., rigid) surface. To be able to investigate the effects that vibrations of surface atoms may have on spectra and cross sections, an expansion Hamiltonian model is proposed on the basis of the recently reported [R. Marquardt et al., J. Chem. Phys. 132, 074108 (2010)] SAP potential energy surface (PES), which was built for the CO/Cu(100) system with a rigid surface. In contrast to other molecule-surface coupling models, such as the modified surface oscillator model, the coupling between the adsorbed molecule and the surface atoms is already included in the present expansion SAP-PES model, in which a Taylor expansion around the equilibrium positions of the surface atoms is performed. To test the quality of the Taylor expansion, a direct model, that is avoiding the expansion, is also studied. The latter, however, requests that there is only one movable surface atom included. On the basis of the present expansion and direct models, the effects of a moving top copper atom (the one to which CO is bound) on the energy levels of a bound CO/Cu(100) system are studied. For this purpose, the multiconfiguration time-dependent Hartree calculations are carried out to obtain the vibrational fundamentals and overtones of the CO/Cu(100) system including a movable top copper atom. In order to interpret the results, a simple model consisting of two coupled harmonic oscillators is introduced. From these calculations, the vibrational levels of the CO/Cu(100) system as function of the frequency of the top copper atom are discussed.

  18. Dynamic Modeling and Vibration Analysis for the Vehicles with Rigid Wheels Based on Wheel-Terrain Interaction Mechanics

    Directory of Open Access Journals (Sweden)

    Jianfeng Wang

    2015-01-01

    Full Text Available The contact mechanics for a rigid wheel and deformable terrain are complicated owing to the rigid flexible coupling characteristics. Bekker’s equations are used as the basis to establish the equations of the sinking rolling wheel, to vertical load pressure relationship. Since vehicle movement on the Moon is a complex and on-going problem, the researcher is poised to simplify this problem of vertical loading of the wheel. In this paper, the quarter kinetic models of a manned lunar rover, which are both based on the rigid road and deformable lunar terrain, are used as the simulation models. With these kinetic models, the vibration simulations were conducted. The simulation results indicate that the quarter kinetic model based on the deformable lunar terrain accurately reflects the deformable terrain’s influence on the vibration characteristics of a manned lunar rover. Additionally, with the quarter kinetic model of the deformable terrain, the vibration simulations of a manned lunar rover were conducted, which include a parametric analysis of the wheel parameters, vehicle speed, and suspension parameters. The results show that a manned lunar rover requires a lower damping value and stiffness to achieve better vibration performance.

  19. Numerical Modelling of Building Vibrations due to Railway Traffic: Analysis of the Mitigation Capacity of a Wave Barrier

    Directory of Open Access Journals (Sweden)

    Fran Ribes-Llario

    2017-01-01

    Full Text Available Transmission of train-induced vibrations to buildings located in the vicinity of the track is one of the main negative externalities of railway transport, since both human comfort and the adequate functioning of sensitive equipment may be compromised. In this paper, a 3D FEM model is presented and validated with data from a real track stretch near Barcelona, Spain. Furthermore, a case study is analyzed as an application of the model, in order to evaluate the propagation and transmission of vibrations induced by the passage of a suburban train to a nearby 3-storey building. As a main outcome, vertical vibrations in the foundation slab are found to be maximum in the corners, while horizontal vibrations keep constant along the edges. The propagation within the building structure is also studied, concluding that vibrations invariably increase in their propagation upwards the building. Moreover, the mitigation capacity of a wave barrier acting as a source isolation is assessed by comparing vibration levels registered in several points of the building structure with and without the barrier. In this regard, the wave barrier is found to effectively reduce vibration in both the soil and the structure.

  20. On the dependence of the OH* Meinel emission altitude on vibrational level: SCIAMACHY observations and model simulations

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-09-01

    Full Text Available Measurements of the OH Meinel emissions in the terrestrial nightglow are one of the standard ground-based techniques to retrieve upper mesospheric temperatures. It is often assumed that the emission peak altitudes are not strongly dependent on the vibrational level, although this assumption is not based on convincing experimental evidence. In this study we use Envisat/SCIAMACHY (Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY observations in the near-IR spectral range to retrieve vertical volume emission rate profiles of the OH(3-1, OH(6-2 and OH(8-3 Meinel bands in order to investigate whether systematic differences in emission peak altitudes can be observed between the different OH Meinel bands. The results indicate that the emission peak altitudes are different for the different vibrational levels, with bands originating from higher vibrational levels having higher emission peak altitudes. It is shown that this finding is consistent with the majority of the previously published results. The SCIAMACHY observations yield differences in emission peak altitudes of up to about 4 km between the OH(3-1 and the OH(8-3 band. The observations are complemented by model simulations of the fractional population of the different vibrational levels and of the vibrational level dependence of the emission peak altitude. The model simulations reproduce the observed vibrational level dependence of the emission peak altitude well – both qualitatively and quantitatively – if quenching by atomic oxygen as well as multi-quantum collisional relaxation by O2 is considered. If a linear relationship between emission peak altitude and vibrational level is assumed, then a peak altitude difference of roughly 0.5 km per vibrational level is inferred from both the SCIAMACHY observations and the model simulations.

  1. Rotational-vibrational coupling in the BPS Skyrme model of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C.; Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2013-11-04

    We calculate the rotational-vibrational spectrum in the BPS Skyrme model for the hedgehog skyrmion with baryon number one. The resulting excitation energies for the nucleon and delta Roper resonances are slightly above their experimental values. Together with the fact that in the standard Skyrme model these excitation energies are significantly lower than the experimental ones, this provides strong evidence for the conjecture that the inclusion of the BPS Skyrme model is required for a successful quantitative description of physical properties of baryons and nuclei.

  2. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  3. Incorporating Vibration Test Results for the Advanced Stirling Convertor into the System Dynamic Model

    Science.gov (United States)

    Meer, David W.; Lewandowski, Edward J.

    2010-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. As part of the extended operation testing of this power system, the Advanced Stirling Convertors (ASC) at NASA GRC undergo a vibration test sequence intended to simulate the vibration history that an ASC would experience when used in an ASRG for a space mission. During these tests, a data system collects several performance-related parameters from the convertor under test for health monitoring and analysis. Recently, an additional sensor recorded the slip table position during vibration testing to qualification level. The System Dynamic Model (SDM) integrates Stirling cycle thermodynamics, heat flow, mechanical mass, spring, damper systems, and electrical characteristics of the linear alternator and controller. This Paper presents a comparison of the performance of the ASC when exposed to vibration to that predicted by the SDM when exposed to the same vibration.

  4. Modeling fluid forces and response of a tube bundle in cross-flow induced vibrations

    International Nuclear Information System (INIS)

    Khushnood, Shahab; Khan, Zaffar M.; Malik, M. Afzaal; Koreshi, Zafarullah; Khan, Mahmood Anwar

    2003-01-01

    Flow induced vibrations occur in process heat exchangers, condensers, boilers and nuclear steam generators. Under certain flow conditions and fluid velocities, the fluid forces result in tube vibrations and possible damage of tube, tube sheet or baffle due to fretting and fatigue. Prediction of these forces is an important consideration. The characteristics of vibration depend greatly on the fluid dynamic forces and structure of the tube bundle. It is undesirable for the tube bundles to vibrate excessively under normal operating conditions because tubes wear and eventual leakage can occur leading to costly shutdowns. In this paper modeling of fluid forces and vibration response of a tube in a heat exchanger bundle has been carried out. Experimental validation has been performed on an existing refinery heat exchanger tube bundle. The target tube has been instrumented with an accelerometer and strain gages. The bundle has been studied for pulse, sinusoidal and random excitations. Natural frequencies and damping of the tubes have also been computed. Experimental fluid forces and response shows a reasonable agreement with the predictions. (author)

  5. Modeling of forced vibration phenomenon by making an electrical analogy with ANSYS finite element software

    Directory of Open Access Journals (Sweden)

    Myriam Rocío Pallares Muñoz

    2009-01-01

    Full Text Available Designing mechanical systems which are submitted to vibration requires calculation methods which are very different to those u-sed in other disciplines because, when this occurs, the magnitude of the forces becomes secondary and the frequency with which the force is repeated becomes the most important aspect. It must be taken care of, given that smaller periodic forces can prompt disasters than greater static forces. The article presents a representative problem regarding systems having forced vibration, the mathematical treatment of differential equations from an electrical and mechanical viewpoint, an electrical analogy, numerical modeling of circuits using ANSYS finite element software, analysis and comparison of numerical modeling results compared to test values, the post-processing of results and conclusions regarding electrical analogy methodology when analysing forced vibra-tion systems.

  6. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  7. Hualien forced vibration calculation with a finite element model

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.; Nedelec, M.; Duretz, Ch.

    1995-01-01

    The forced vibration tests of the Hualien mock-up were useful to validate finite element models developed for soil-structure interaction. In this paper the two sets of tests with and without backfill were analysed. the methods used are based on finite element modeling for the soil. Two approaches were considered: calculation of soil impedance followed by the calculation of the transfer functions with a model taking into account the superstructure and the impedance; direct calculation of the soil-structure transfer functions, with the soil and the structure being represented in the same model by finite elements. Blind predictions and post-test calculations are presented and compared with the test results. (author). 4 refs., 8 figs., 2 tabs

  8. Prediction of powerplant vibration using FRF data of FE model; Dentatsu kansu wo mochiita power plant shindo yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, T; Tsukahara, M; Sakaguchi, M; Takahashi, Y [Honda R and D Co. Ltd., Tokyo (Japan)

    1997-10-01

    For the purpose of shortening the development period, the estimation of powerplant vibration has become more important in the early design stage, and eigenvalue analysis by FEM is commonly used to solve this problem. Eigenvalue Analysis cannot directly predict vibration levels under running conditions that affect the durability of each component and the vibration of a car body. This paper presents a new approach using FRF data from FE models for accurate prediction of engine vibration under running conditions. By applying this approach to an in-line four cylinder engine, the predicted vibration is reasonably comparable with experimental results. 3 refs., 8 figs.

  9. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    Science.gov (United States)

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics

  10. A vibration model for centrifugal contactors

    International Nuclear Information System (INIS)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ''Beam'' for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k B ) of a motor after measuring the k B value for three different motors. The k B value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well

  11. Vibrational spectroscopy of NO + (H2O)n: Evidence for the intracluster reaction NO + (H2O)n --> H3O + (H2O)n - 2 (HONO) at n => 4

    Science.gov (United States)

    Choi, Jong-Ho; Kuwata, Keith T.; Haas, Bernd-Michael; Cao, Yibin; Johnson, Matthew S.; Okumura, Mitchio

    1994-05-01

    Infrared spectra of mass-selected clusters NO+(H2O)n for n=1 to 5 were recorded from 2700 to 3800 cm-1 by vibrational predissociation spectroscopy. Vibrational frequencies and intensities were also calculated for n=1 and 2 at the second-order Møller-Plesset (MP2) level, to aid in the interpretation of the spectra, and at the singles and doubles coupled cluster (CCSD) level energies of n=1 isomers were computed at the MP2 geometries. The smaller clusters (n=1 to 3) were complexes of H2O ligands bound to a nitrosonium ion NO+ core. They possessed perturbed H2O stretch bands and dissociated by loss of H2O. The H2O antisymmetric stretch was absent in n=1 and gradually increased in intensity with n. In the n=4 clusters, we found evidence for the beginning of a second solvation shell as well as the onset of an intracluster reaction that formed HONO. These clusters exhibited additional weak, broad bands between 3200 and 3400 cm-1 and two new minor photodissociation channels, loss of HONO and loss of two H2O molecules. The reaction appeared to go to completion within the n=5 clusters. The primary dissociation channel was loss of HONO, and seven vibrational bands were observed. From an analysis of the spectrum, we concluded that the n=5 cluster rearranged to form H3O+(H2O)3(HONO), i.e., an adduct of the reaction products.

  12. Vibration control of a cluster of buildings through the Vibrating Barrier

    Science.gov (United States)

    Tombari, A.; Garcia Espinosa, M.; Alexander, N. A.; Cacciola, P.

    2018-02-01

    A novel device, called Vibrating Barrier (ViBa), that aims to reduce the vibrations of adjacent structures subjected to ground motion waves has been recently proposed. The ViBa is a structure buried in the soil and detached from surrounding buildings that is able to absorb a significant portion of the dynamic energy arising from the ground motion. The working principle exploits the dynamic interaction among vibrating structures due to the propagation of waves through the soil, namely the structure-soil-structure interaction. In this paper the efficiency of the ViBa is investigated to control the vibrations of a cluster of buildings. To this aim, a discrete model of structures-site interaction involving multiple buildings and the ViBa is developed where the effects of the soil on the structures, i.e. the soil-structure interaction (SSI), the structure-soil-structure interaction (SSSI) as well as the ViBa-soil-structures interaction are taken into account by means of linear elastic springs. Closed-form solutions are derived to design the ViBa in the case of harmonic excitation from the analysis of the discrete model. Advanced finite element numerical simulations are performed in order to assess the efficiency of the ViBa for protecting more than a single building. Parametric studies are also conducted to identify beneficial/adverse effects in the use of the proposed vibration control strategy to protect cluster of buildings. Finally, experimental shake table tests are performed to a prototype of a cluster of two buildings protected by the ViBa device for validating the proposed numerical models.

  13. Evaluation of vibration and vibration fatigue life for small bore pipe in nuclear power plants

    International Nuclear Information System (INIS)

    Wang Zhaoxi; Xue Fei; Gong Mingxiang; Ti Wenxin; Lin Lei; Liu Peng

    2011-01-01

    The assessment method of the steady state vibration and vibration fatigue life of the small bore pipe in the supporting system of the nuclear power plants is proposed according to the ASME-OM3 and EDF evaluation methods. The GGR supporting pipe system vibration is evaluated with this method. The evaluation process includes the filtration of inborn sensitivity, visual inspection, vibration tests, allowable vibration effective velocity calculation and vibration stress calculation. With the allowable vibration effective velocity calculated and the vibration velocity calculated according to the acceleration data tested, the filtrations are performed. The vibration stress at the welding coat is calculated with the spectrum method and compared with the allowable value. The response of the stress is calculated with the transient dynamic method, with which the fatigue life is evaluated with the Miners linear accumulation model. The vibration stress calculated with the spectrum method exceeds the allowable value, while the fatigue life calculated from the transient dynamic method is larger than the designed life with a big safety margin. (authors)

  14. Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets

    Science.gov (United States)

    Belyaev, Fedor S.; Volkov, Aleksandr E.; Evard, Margarita E.; Vikulenkov, Andrey V.; Uspenskiy, Evgeniy S.

    2018-05-01

    A vibration protection system under consideration consists of a payload connected to a vibrating housing by shape memory alloy (SMA) slotted springs. To provide an arrest function two permanent magnets are inserted into the system. The slotted SMA elements are preliminary deformed in the martensitic state. Activation of one element by heating initiates force and displacement generation, which provide an arrest of the payload by magnets. The magnets also secure the arrest mode after cooling of the SMA element. Activation of the other element results in uncaging of the payload and switching to the vibration isolation mode. Computer simulations of arrest and uncaging when the housing is quiescent or producing sine-wave displacements were carried out. Functional-mechanical behavior of SMA parts was described by means of a microstructural model.

  15. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  16. The obscure factor analysis on the vibration reliability of the internals of nuclear power plant reactor and anti-vibration measures

    International Nuclear Information System (INIS)

    Fu Geyan; Zhu Qirong

    1998-11-01

    It is pointed out that the main reason making nuclear power plants reactors leak is the vibration of internals of reactors. The factors which lead the vibration all have randomness and obscureness. The obscure reliability theory is introduced to the vibration system of internals of nuclear power reactor. Based on a quantity of designing and moving data, the obscure factors effecting the vibration reliability of the internals of nuclear power plant reactor are analyzed and the anti-vibration reliability criteria and the evaluating model are given. And the anti-vibration reliability measures are advanced from different quarters of the machine design and building, the thermohydraulics design, the control of reactivity, etc.. They may benefit the theory and practice for building and perfecting the vibration obscure reliability model of the reactor internals

  17. Analytical Model of Underground Train Induced Vibrations on Nearby Building Structures in Cameroon: Assessment and Prediction

    Directory of Open Access Journals (Sweden)

    Lezin Seba MINSILI

    2013-11-01

    Full Text Available The purpose of this research paper was to assess and predict the effect of vibrations induced by an underground railway on nearby-existing buildings prior to the construction of projected new railway lines of the National Railway Master Plan of Cameroon and after upgrading of the railway conceded to CAMRAIL linking the two most densely populated cities of Cameroon: Douala and Yaoundé. With the source-transmitter-receiver mathematical model as the train-soil-structure interaction model, taking into account sub-model parameters such as type of the train-railway system, typical geotechnical conditions of the ground and the sensitivity of the nearby buildings, the analysis is carried out over the entire system using the dynamic finite element method in the time domain. This subdivision of the model is a powerful tool that allows to consider different alternatives of sub-models with different characteristics, and thus to determine any critical excessive vibration impact. Based on semi-empirical analytical results obtained from presented models, the present work assesses and predicts characteristics of traffic-induced vibrations as a function of time duration, intensity and vehicle speed, as well as their influence on buildings at different levels.

  18. A vibration model for centrifugal contactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, R.A.; Wasserman, M.O.; Wygmans, D.G.

    1992-11-01

    Using the transfer matrix method, we created the Excel worksheet ``Beam`` for analyzing vibrations in centrifugal contactors. With this worksheet, a user can calculate the first natural frequency of the motor/rotor system for a centrifugal contactor. We determined a typical value for the bearing stiffness (k{sub B}) of a motor after measuring the k{sub B} value for three different motors. The k{sub B} value is an important parameter in this model, but it is not normally available for motors. The assumptions that we made in creating the Beam worksheet were verified by comparing the calculated results with those from a VAX computer program, BEAM IV. The Beam worksheet was applied to several contactor designs for which we have experimental data and found to work well.

  19. Railway bogie vibration analysis by mathematical simulation model and a scaled four-wheel railway bogie set

    Science.gov (United States)

    Visayataksin, Noppharat; Sooklamai, Manon

    2018-01-01

    The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.

  20. Modeling and experimental characterization of a new piezoelectric sensor for low-amplitude vibration measurement

    International Nuclear Information System (INIS)

    Hou, X Y; Koh, C G; Kuang, K S C; Lee, W H

    2017-01-01

    This paper investigates the capability of a novel piezoelectric sensor for low-frequency and low-amplitude vibration measurement. The proposed design effectively amplifies the input acceleration via two amplifying mechanisms and thus eliminates the use of the external charge amplifier or conditioning amplifier typically employed for measurement system. The sensor is also self-powered, i.e. no external power unit is required. Consequently, wiring and electrical insulation for on-site measurement are considerably simpler. In addition, the design also greatly reduces the interference from rotational motion which often accompanies the translational acceleration to be measured. An analytical model is developed based on a set of piezoelectric constitutive equations and beam theory. Closed-form expression is derived to correlate sensor geometry and material properties with its dynamic performance. Experimental calibration is then carried out to validate the analytical model. After calibration, experiments are carried out to check the feasibility of the new sensor in structural vibration detection. From experimental results, it is concluded that the proposed sensor is suitable for measuring low-frequency and low-amplitude vibrations. (paper)

  1. Transfer matrix method for dynamics modeling and independent modal space vibration control design of linear hybrid multibody system

    Science.gov (United States)

    Rong, Bao; Rui, Xiaoting; Lu, Kun; Tao, Ling; Wang, Guoping; Ni, Xiaojun

    2018-05-01

    In this paper, an efficient method of dynamics modeling and vibration control design of a linear hybrid multibody system (MS) is studied based on the transfer matrix method. The natural vibration characteristics of a linear hybrid MS are solved by using low-order transfer equations. Then, by constructing the brand-new body dynamics equation, augmented operator and augmented eigenvector, the orthogonality of augmented eigenvector of a linear hybrid MS is satisfied, and its state space model expressed in each independent model space is obtained easily. According to this dynamics model, a robust independent modal space-fuzzy controller is designed for vibration control of a general MS, and the genetic optimization of some critical control parameters of fuzzy tuners is also presented. Two illustrative examples are performed, which results show that this method is computationally efficient and with perfect control performance.

  2. Performance of a reduced-order FSI model for flow-induced vocal fold vibration

    Science.gov (United States)

    Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team

    2017-11-01

    Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.

  3. Vibrations of rotating machinery

    CERN Document Server

    Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick

    2017-01-01

    This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...

  4. Numerical investigation of two control rod models for vibration noise in two dimensions

    International Nuclear Information System (INIS)

    Pazsit, I.; Garis, N.S.

    1995-01-01

    In two previous publications it was investigated how the spatial structure of neutron noise, induced by the vibration of localized absorbers, depends on (a) the strength of the rod (i.e. an investigation of the applicability of the weak absorber approximation), and (b) the way the vibrating absorbers are modelled. A quantitative analysis of both items was performed in 1-D. In 2-D, however, only analytical formulae were given. The purpose of this paper is to present a quantitative analysis of the above two problems in 2-D. The results show that the domain of applicability of the weak absorber approximation is smaller in 2-D than in the 1-D case. On the other hand, the choice of the rod model plays a much less significant role in 2-D. (author)

  5. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    Science.gov (United States)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  6. Modeling the interference of vortex-induced vibration and galloping for a slender rectangular prism

    Science.gov (United States)

    Mannini, Claudio; Massai, Tommaso; Marra, Antonino Maria

    2018-04-01

    Several bluff bodies in an airflow, such as rectangular cylinders with moderate side ratio, in particular conditions of mass and damping can experience the interference of vortex-induced vibration (VIV) and galloping. This promotes a combined instability, which one may call "unsteady galloping", with peculiar features and possibly large vibration amplitudes in flow speed ranges where no excitation is predicted by classical theories. The mathematical model proposed between the 70's and the 80's by Prof. Y. Tamura to simulate this phenomenon was considered here for the case study of a two-dimensional rectangular cylinder with a side ratio of 1.5, having the shorter section side perpendicular to the smooth airflow. This wake-oscillator model relies on the linear superposition of the unsteady wake force producing VIV excitation and the quasi-steady force that is responsible for galloping. The model formulation was slightly modified, and the way to determine a crucial parameter was changed, revealing a previously unexplored behavior of the equations. In the present form, the model is able to predict the dynamic response of the rectangular cylinder with a satisfactory qualitative and, to a certain extent, quantitative agreement with the experimental data, although the limitations of the present approach are clearly highlighted in the paper. The mathematical modeling of unsteady galloping and the analysis of the results offer a deep insight into this complicated phenomenon and its nonlinear features. The model also represents a useful engineering tool to estimate the vibration of a structure or structural element for which the interference of VIV and galloping is envisaged.

  7. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  8. A simple steel/water model for preliminary studies of acoustic vibration in LMFBR

    International Nuclear Information System (INIS)

    Bentley, P.G.; Firth, D.; Rowley, R.; Beesley, M.

    1977-01-01

    One source of vibration excitation in Liquid Metal Fast Breeder Reactors is the acoustic energy which is generated by the circulating pump and transmitted through the fluid to various structural components. Since most of the energy occurs at fairly low frequencies, that of low harmonies of blade passing frequency, only the very large components have resonant frequencies such that they are significantly excited. To gain some preliminary understanding of the extent and magnitude of vibration in fast reactors therefore, a simple model has been constructed in which only the major components are represented. The modelling theory is discussed and it is shown that adequate representation of the steel/sodium reactor materials can be obtained in the model based on the use of steel/water. The model represents a pool design with a primary tank of 3 1/4 metres diameter and typical components scaled in proportion; however, it does not necessarily relate to any specific reactor design. The pump acoustic source is represented by an underwater loudspeaker system and vibration amplitudes are scaled according to typical pressures generated by reactor circulators. Results from the model include calibration data for the acoustic source and measurements of acoustic pressure throughout the primary flow circuit and the inner and outer pools. Stresses are measured on structural components over a frequency range scaled from reactor frequencies and compensated for the characteristics of the acoustic source. Appreciable stresses are found on all the components in the primary circuit, not necessarily only those close to the simulated pump source. After scaling them to reactor size and allowing for the source calibration, it is found that stresses are unlikely to be sufficiently high to cause damage

  9. Modeling and control of lateral vibration of an axially translating flexible link

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Heon Seop; Rhim, Sung Soo [Kyung Hee University, Yongin (Korea, Republic of)

    2015-01-15

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  10. Modeling and control of lateral vibration of an axially translating flexible link

    International Nuclear Information System (INIS)

    Shin, Heon Seop; Rhim, Sung Soo

    2015-01-01

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  11. Alpha-transfer reactions and the pairing-vibration model

    International Nuclear Information System (INIS)

    Betts, R.R.

    1977-01-01

    The pairing-vibration model with isospin is extended to include α-transfer reactions. Selection rules and expressions for transition strengths are derived and compared with experimental results for A = 40--66 nuclei. The selection rules are found to be followed quite well in the examples studied. The systematics of ground-state transition strengths are qualitatively quite well reproduced although the quantitative agreement is poor. When the changing nature of the pairing quanta is incorporated using two-particle transfer data the agreement becomes quantitatively good. Evidence is presented for clustering other than that due to pairing in 40 Ca and 44 Ti

  12. Uncertainty modeling in vibration, control and fuzzy analysis of structural systems

    CERN Document Server

    Halder, Achintya; Ayyub, Bilal M

    1997-01-01

    This book gives an overview of the current state of uncertainty modeling in vibration, control, and fuzzy analysis of structural and mechanical systems. It is a coherent compendium written by leading experts and offers the reader a sampling of exciting research areas in several fast-growing branches in this field. Uncertainty modeling and analysis are becoming an integral part of system definition and modeling in many fields. The book consists of ten chapters that report the work of researchers, scientists and engineers on theoretical developments and diversified applications in engineering sy

  13. Mathematical Modelling and Parameter Identification of an Electro-Magneto-Mechanical Actuator for Vibration Control

    DEFF Research Database (Denmark)

    Darula, Radoslav; Stein, George Juraj; Kallesøe, Carsten Skovmose

    2012-01-01

    Electromechanical systems for vibration control exhibit complex non-linear behaviour. Therefore advanced mathematical tools and appropriate simplifications are required for their modelling. To properly understand the dynamics of such a non-linear system, it is necessary to identify the parameters....... The electric circuit is closed with a shunt resistance connected to the electromagnet. The current induced in the circuit generates additional alternating magnetic force. This force counteracts the original vibration and damps it. In this way the coupled electro-magneto-mechanical system suppresses the forced...

  14. Experiment studies of fuel rod vibration in coolant flow for substantiation of vibration stability of fuel rods with no fretting-wear

    International Nuclear Information System (INIS)

    Egorov, Yu. V.; Afanasiev, A. V.; Makarov, V. V.; Matvienko, I. V.

    2013-01-01

    For substantiation of vibration stability it is necessary to determine the ultimate permissible vibration levels which do not cause fretting, to compare them with the level of fuel rod vibration caused by coolant flow. Another approach is feasible if there is experience of successful operation of FA-prototypes. In this case in order to justify vibration stability it may be sufficient to demonstrate that the new element does not cause increased vibration of the fuel rod. It can be done by comparing the levels of hydro-dynamic fuel rod vibration and FA new designs. Program of vibration tests of TVS-2M model included studies of forced oscillations of 12 fuel rods in the coolant flow in the spans containing intensifiers, in the reference span without intensifiers, in the lower spans with assembled ADF and after its disassembly. The experimental results for TVS-2M show that in the spans with intensifier «Sector run» the level of movements is 6% higher on the average than in the span without intensifiers, in the spans with intensifier «Eddy» it is 2% higher. The level of fuel rod vibration movements in the spans with set ADF is 2 % higher on the average than without ADF. During the studies of TVS-KVADRAT fuel rod vibration, the following tasks were solved: determination of acceleration of the middle of fuel rod spans at vibration excited due to hydrodynamics; determination of influence of coolant thermal- hydraulic parameters (temperature, flowrate, dynamic pressure) on fuel rod vibration response; determination of influence of span lengths on the vibration level. Conclusions: 1) The vibration tests of the full-scale model of TVS-2M in the coolant flow showed that the new elements of TVS-2M design (intensifiers of heat exchange and ADF) are not the source of fuel rod increased vibration. Considering successful operation of similar fuel rod spans in the existing TVS-2M design, vibration stability of TVS-2M fuel rods with new elements is ensured on the mechanism of

  15. Application of eigenfunction orthogonalities to vibration problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2009-07-01

    Full Text Available The modelling of vibration problems is of great importance in engineering. A popular method of analysing such problems is the variational method. The simplest vibration model is represented using the example of a long rod. Two kinds...

  16. Enhanced vibration diagnostics using vibration signature analysis

    International Nuclear Information System (INIS)

    Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.

    2001-01-01

    Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)

  17. The vibrating reed frequency meter : digital investigation of an early cochlear model

    NARCIS (Netherlands)

    Bell, Andrew; Wit, Hero P.

    2015-01-01

    The vibrating reed frequency meter, originally employed by Bekesy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea's graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system,

  18. Structural Characteristics of Rotate Vector Reducer Free Vibration

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2017-01-01

    Full Text Available For RV reducer widely used in robots, vibration significantly affects its performance. A lumped parameter model is developed to investigate free vibration characteristics without and with gyroscopic effects. The dynamic model considers key factors affecting vibration such as involute and cycloid gear mesh stiffness, crankshaft bending stiffness, and bearing stiffness. For both nongyroscopic and gyroscopic systems, free vibrations are examined and compared with each other. Results reveal the specific structure of vibration modes for both systems, which results from symmetry structure of RV reducer. According to vibration of the central components, vibration modes of two systems can be classified into three types, rotational, translational, and planetary component modes. Different from nongyroscopic system, the eigenvalues with gyroscopic effects are complex-valued and speed-dependent. The eigenvalue for a range of carrier speeds is obtained by numerical simulation. Divergence and flutter instability is observed at speeds adjacent to critical speeds. Furthermore, the work studies effects of key factors, which include crankshaft eccentricity and the number of pins, on eigenvalues. Finally, experiment is performed to verify the effectiveness of the dynamic model. The research of this paper is helpful for the analysis on free vibration and dynamic design of RV reducer.

  19. Theoretical modeling and experimental validation of a torsional piezoelectric vibration energy harvesting system

    Science.gov (United States)

    Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei

    2018-04-01

    Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.

  20. On the neutron noise diagnostics of pressurized water reactor control rod vibrations II. Stochastic vibrations

    International Nuclear Information System (INIS)

    Pazsit, I.; Glockler, O.

    1984-01-01

    In an earlier publication, using the theory of neutron fluctuations induced by a vibrating control rod, a complete formal solution of rod vibration diagnostics based on neutron noise measurements was given in terms of Fourier-transformed neutron detector time signals. The suggested procedure was checked in numerical simulation tests where only periodic vibrations could be considered. The procedure and its numerical testing are elaborated for stochastic two-dimensional vibrations. A simple stochastic theory of two-dimensional flow-induced vibrations is given; then the diagnostic method is formulated in the stochastic case, that is, in terms of neutron detector auto- and crosspower spectra. A previously suggested approximate rod localization technique is also formulated in the stochastic case. Applicability of the methods is then investigated in numerical simulation tests, using the proposed model of stochastic two-dimensional vibrations when generating neutron detector spectra that simulate measured data

  1. Numerical optimization approach for resonant electromagnetic vibration transducer designed for random vibration

    International Nuclear Information System (INIS)

    Spreemann, Dirk; Hoffmann, Daniel; Folkmer, Bernd; Manoli, Yiannos

    2008-01-01

    This paper presents a design and optimization strategy for resonant electromagnetic vibration energy harvesting devices. An analytic expression for the magnetic field of cylindrical permanent magnets is used to build up an electromagnetic subsystem model. This subsystem is used to find the optimal resting position of the oscillating mass and to optimize the geometrical parameters (shape and size) of the magnet and coil. The objective function to be investigated is thereby the maximum voltage output of the transducer. An additional mechanical subsystem model based on well-known equations describing the dynamics of spring–mass–damper systems is established to simulate both nonlinear spring characteristics and the effect of internal limit stops. The mechanical subsystem enables the identification of optimal spring characteristics for realistic operation conditions such as stochastic vibrations. With the overall transducer model, a combination of both subsystems connected to a simple electrical circuit, a virtual operation of the optimized vibration transducer excited by a measured random acceleration profile can be performed. It is shown that the optimization approach results in an appreciable increase of the converter performance

  2. A semi-analytical beam model for the vibration of railway tracks

    Science.gov (United States)

    Kostovasilis, D.; Thompson, D. J.; Hussein, M. F. M.

    2017-04-01

    The high frequency dynamic behaviour of railway tracks, in both vertical and lateral directions, strongly affects the generation of rolling noise as well as other phenomena such as rail corrugation. An improved semi-analytical model of a beam on an elastic foundation is introduced that accounts for the coupling of the vertical and lateral vibration. The model includes the effects of cross-section asymmetry, shear deformation, rotational inertia and restrained warping. Consideration is given to the fact that the loads at the rail head, as well as those exerted by the railpads at the rail foot, may not act through the centroid of the section. The response is evaluated for a harmonic load and the solution is obtained in the wavenumber domain. Results are presented as dispersion curves for free and supported rails and are validated with the aid of a Finite Element (FE) and a waveguide finite element (WFE) model. Closed form expressions are derived for the forced response, and validated against the WFE model. Track mobilities and decay rates are presented to assess the potential implications for rolling noise and the influence of the various sources of vertical-lateral coupling. Comparison is also made with measured data. Overall, the model presented performs very well, especially for the lateral vibration, although it does not contain the high frequency cross-section deformation modes. The most significant effects on the response are shown to be the inclusion of torsion and foundation eccentricity, which mainly affect the lateral response.

  3. Nonlinear convergence active vibration absorber for single and multiple frequency vibration control

    Science.gov (United States)

    Wang, Xi; Yang, Bintang; Guo, Shufeng; Zhao, Wenqiang

    2017-12-01

    This paper presents a nonlinear convergence algorithm for active dynamic undamped vibration absorber (ADUVA). The damping of absorber is ignored in this algorithm to strengthen the vibration suppressing effect and simplify the algorithm at the same time. The simulation and experimental results indicate that this nonlinear convergence ADUVA can help significantly suppress vibration caused by excitation of both single and multiple frequency. The proposed nonlinear algorithm is composed of equivalent dynamic modeling equations and frequency estimator. Both the single and multiple frequency ADUVA are mathematically imitated by the same mechanical structure with a mass body and a voice coil motor (VCM). The nonlinear convergence estimator is applied to simultaneously satisfy the requirements of fast convergence rate and small steady state frequency error, which are incompatible for linear convergence estimator. The convergence of the nonlinear algorithm is mathematically proofed, and its non-divergent characteristic is theoretically guaranteed. The vibration suppressing experiments demonstrate that the nonlinear ADUVA can accelerate the convergence rate of vibration suppressing and achieve more decrement of oscillation attenuation than the linear ADUVA.

  4. Identification and reduction of piping-vibrations in plants

    International Nuclear Information System (INIS)

    Kerkhof, K.

    2012-01-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  5. Identification and reduction of piping-vibrations in plants

    Energy Technology Data Exchange (ETDEWEB)

    Kerkhof, K. [Stuttgart Univ. (Germany). MPA

    2012-07-01

    Safe operation, availability and lifetime assessment of piping systems are of utmost concern for plant operators. The use of tuned mass dampers is a rather new approach for reducing vibrations to avoid high cycle fatigue in a large chemical piping system. The investigated piping system is supported by a tall structure fixed at the base. As a result, the steel building stiffness decreases with height. Furthermore large piping-elbow forces act at the top of the building, which lead to large vibration amplitudes. Since both piping system and supporting structure exhibited these large vibration amplitudes, dampers or shock absorbers placed between them would prove ineffective. Therefore, special vibration absorbers were developed for such piping systems. The paper presents the design process, starting with an extensive system investigation up to the passive multi-axial vibration absorber design parameters. This includes: Laboratory tests with a mock-up pipe system, where the first design ideas for new passive vibration absorbers were investigated. Vibration measurements were carried out to investigate the current state of the vibration behaviour. The piping system was inspected; strain gauges were used to identify stress concentrations at welds and other notches due to ovalization. Finite element calculations were performed, first as a combined beam and shell model for the pipe without the support structure. A detailed model for the combined steel construction and pipe system was created. Model-updating was done to fit the calculated model to the experimental modal analysis data. Loading assumptions describing excitation forces from the mass flow were checked. Harmonic frequency analysis was performed. On the basis of these calculations design parameters for the passive vibration absorber were determined. Finally, a solution for the design of two passive vibration absorbers will be presented.

  6. Comparison of vibration test results for Atucha II NPP and large scale concrete block models

    International Nuclear Information System (INIS)

    Iizuka, S.; Konno, T.; Prato, C.A.

    2001-01-01

    In order to study the soil structure interaction of reactor building that could be constructed on a Quaternary soil, a comparison study of the soil structure interaction springs was performed between full scale vibration test results of Atucha II NPP and vibration test results of large scale concrete block models constructed on Quaternary soil. This comparison study provides a case data of soil structure interaction springs on Quaternary soil with different foundation size and stiffness. (author)

  7. Modeling and Analysis of a Combined Stress-Vibration Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Yao, Kun; Lin, Qijing; Jiang, Zhuangde; Zhao, Na; Tian, Bian; Shi, Peng; Peng, Gang-Ding

    2018-03-01

    A combined stress-vibration sensor was developed to measure stress and vibration simultaneously based on fiber Bragg grating (FBG) technology. The sensor is composed of two FBGs and a stainless steel plate with a special design. The two FBGs sense vibration and stress and the sensor can realize temperature compensation by itself. The stainless steel plate can significantly increase sensitivity of vibration measurement. Theoretical analysis and Finite Element Method (FEM) were used to analyze the sensor's working mechanism. As demonstrated with analysis, the obtained sensor has working range of 0-6000 Hz for vibration sensing and 0-100 MPa for stress sensing, respectively. The corresponding sensitivity for vibration is 0.46 pm/g and the resulted stress sensitivity is 5.94 pm/MPa, while the nonlinearity error for vibration and stress measurement is 0.77% and 1.02%, respectively. Compared to general FBGs, the vibration sensitivity of this sensor is 26.2 times higher. Therefore, the developed sensor can be used to concurrently detect vibration and stress. As this sensor has height of 1 mm and weight of 1.15 g, it is beneficial for minimization and integration.

  8. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: A case study

    OpenAIRE

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-01-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal andbest functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitor...

  9. The vibrating reed frequency meter: digital investigation of an early cochlear model

    Directory of Open Access Journals (Sweden)

    Andrew Bell

    2015-10-01

    Full Text Available The vibrating reed frequency meter, originally employed by Békésy and later by Wilson as a cochlear model, uses a set of tuned reeds to represent the cochlea’s graded bank of resonant elements and an elastic band threaded between them to provide nearest-neighbour coupling. Here the system, constructed of 21 reeds progressively tuned from 45 to 55 Hz, is simulated numerically as an elastically coupled bank of passive harmonic oscillators driven simultaneously by an external sinusoidal force. To uncover more detail, simulations were extended to 201 oscillators covering the range 1–2 kHz. Calculations mirror the results reported by Wilson and show expected characteristics such as traveling waves, phase plateaus, and a response with a broad peak at a forcing frequency just above the natural frequency. The system also displays additional fine-grain features that resemble those which have only recently been recognised in the cochlea. Thus, detailed analysis brings to light a secondary peak beyond the main peak, a set of closely spaced low-amplitude ripples, rapid rotation of phase as the driving frequency is swept, frequency plateaus, clustering, and waxing and waning of impulse responses. Further investigation shows that each reed’s vibrations are strongly localised, with small energy flow along the chain. The distinctive set of equally spaced ripples is an inherent feature which is found to be largely independent of boundary conditions. Although the vibrating reed model is functionally different to the standard transmission line, its cochlea-like properties make it an intriguing local oscillator model whose relevance to cochlear mechanics needs further investigation.

  10. Remote monitoring of vibrational information in spider webs

    Science.gov (United States)

    Mortimer, B.; Soler, A.; Siviour, C. R.; Vollrath, F.

    2018-06-01

    Spiders are fascinating model species to study information-acquisition strategies, with the web acting as an extension of the animal's body. Here, we compare the strategies of two orb-weaving spiders that acquire information through vibrations transmitted and filtered in the web. Whereas Araneus diadematus monitors web vibration directly on the web, Zygiella x-notata uses a signal thread to remotely monitor web vibration from a retreat, which gives added protection. We assess the implications of these two information-acquisition strategies on the quality of vibration information transfer, using laser Doppler vibrometry to measure vibrations of real webs and finite element analysis in computer models of webs. We observed that the signal thread imposed no biologically relevant time penalty for vibration propagation. However, loss of energy (attenuation) was a cost associated with remote monitoring via a signal thread. The findings have implications for the biological use of vibrations by spiders, including the mechanisms to locate and discriminate between vibration sources. We show that orb-weaver spiders are fascinating examples of organisms that modify their physical environment to shape their information-acquisition strategy.

  11. The influence of flywheel micro vibration on space camera and vibration suppression

    Science.gov (United States)

    Li, Lin; Tan, Luyang; Kong, Lin; Wang, Dong; Yang, Hongbo

    2018-02-01

    Studied the impact of flywheel micro vibration on a high resolution optical satellite that space-borne integrated. By testing the flywheel micro vibration with six-component test bench, the flywheel disturbance data is acquired. The finite element model of the satellite was established and the unit force/torque were applied at the flywheel mounting position to obtain the micro vibration data of the camera. Integrated analysis of the data of the two parts showed that the influence of flywheel micro vibration on the camera is mainly concentrated around 60-80 Hz and 170-230 Hz, the largest angular displacement of the secondary mirror along the optical axis direction is 0.04″ and the maximum angular displacement vertical to optical axis is 0.032″. After the design and installation of vibration isolator, the maximum angular displacement of the secondary mirror is 0.011″, the decay rate of root mean square value of the angular displacement is more than 50% and the maximum is 96.78%. The whole satellite was suspended to simulate the boundary condition on orbit; the imaging experiment results show that the image motion caused by the flywheel micro vibrationis less than 0.1 pixel after installing the vibration isolator.

  12. A THEORETICAL STUDY AND 3D MODELING OF NONLINEAR PASSIVE VIBRATION ISOLATOR

    OpenAIRE

    Sabyasachi Mukherjee

    2017-01-01

    The study of sound and vibration are closely related. Sound or "pressure waves" are generated by vibrating structures (e.g. vocal cords); these pressure waves can also induce the vibration of structures (e.g. ear drum). Hence, when trying to reduce noise it is often a problem in trying to reduce vibration. The high speed engines and machines when mounted on foundations and supports cause vibrations of excessive amplitude because of unbalance forces setup during their working. These are the di...

  13. Random vibration sensitivity studies of modeling uncertainties in the NIF structures

    International Nuclear Information System (INIS)

    Swensen, E.A.; Farrar, C.R.; Barron, A.A.; Cornwell, P.

    1996-01-01

    The National Ignition Facility is a laser fusion project that will provide an above-ground experimental capability for nuclear weapons effects simulation. This facility will achieve fusion ignition utilizing solid-state lasers as the energy driver. The facility will cover an estimated 33,400 m 2 at an average height of 5--6 stories. Within this complex, a number of beam transport structures will be houses that will deliver the laser beams to the target area within a 50 microm ms radius of the target center. The beam transport structures are approximately 23 m long and reach approximately heights of 2--3 stories. Low-level ambient random vibrations are one of the primary concerns currently controlling the design of these structures. Low level ambient vibrations, 10 -10 g 2 /Hz over a frequency range of 1 to 200 Hz, are assumed to be present during all facility operations. Each structure described in this paper will be required to achieve and maintain 0.6 microrad ms laser beam pointing stability for a minimum of 2 hours under these vibration levels. To date, finite element (FE) analysis has been performed on a number of the beam transport structures. Certain assumptions have to be made regarding structural uncertainties in the FE models. These uncertainties consist of damping values for concrete and steel, compliance within bolted and welded joints, and assumptions regarding the phase coherence of ground motion components. In this paper, the influence of these structural uncertainties on the predicted pointing stability of the beam line transport structures as determined by random vibration analysis will be discussed

  14. Consistent post-reaction vibrational energy redistribution in DSMC simulations using TCE model

    Science.gov (United States)

    Borges Sebastião, Israel; Alexeenko, Alina

    2016-10-01

    The direct simulation Monte Carlo (DSMC) method has been widely applied to study shockwaves, hypersonic reentry flows, and other nonequilibrium flow phenomena. Although there is currently active research on high-fidelity models based on ab initio data, the total collision energy (TCE) and Larsen-Borgnakke (LB) models remain the most often used chemistry and relaxation models in DSMC simulations, respectively. The conventional implementation of the discrete LB model, however, may not satisfy detailed balance when recombination and exchange reactions play an important role in the flow energy balance. This issue can become even more critical in reacting mixtures involving polyatomic molecules, such as in combustion. In this work, this important shortcoming is addressed and an empirical approach to consistently specify the post-reaction vibrational states close to thermochemical equilibrium conditions is proposed within the TCE framework. Following Bird's quantum-kinetic (QK) methodology for populating post-reaction states, the new TCE-based approach involves two main steps. The state-specific TCE reaction probabilities for a forward reaction are first pre-computed from equilibrium 0-D simulations. These probabilities are then employed to populate the post-reaction vibrational states of the corresponding reverse reaction. The new approach is illustrated by application to exchange and recombination reactions relevant to H2-O2 combustion processes.

  15. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  16. Experimental validation of a numerical 3-D finite model applied to wind turbines design under vibration constraints: TREVISE platform

    Science.gov (United States)

    Sellami, Takwa; Jelassi, Sana; Darcherif, Abdel Moumen; Berriri, Hanen; Mimouni, Med Faouzi

    2018-04-01

    With the advancement of wind turbines towards complex structures, the requirement of trusty structural models has become more apparent. Hence, the vibration characteristics of the wind turbine components, like the blades and the tower, have to be extracted under vibration constraints. Although extracting the modal properties of blades is a simple task, calculating precise modal data for the whole wind turbine coupled to its tower/foundation is still a perplexing task. In this framework, this paper focuses on the investigation of the structural modeling approach of modern commercial micro-turbines. Thus, the structural model a complex designed wind turbine, which is Rutland 504, is established based on both experimental and numerical methods. A three-dimensional (3-D) numerical model of the structure was set up based on the finite volume method (FVM) using the academic finite element analysis software ANSYS. To validate the created model, experimental vibration tests were carried out using the vibration test system of TREVISE platform at ECAM-EPMI. The tests were based on the experimental modal analysis (EMA) technique, which is one of the most efficient techniques for identifying structures parameters. Indeed, the poles and residues of the frequency response functions (FRF), between input and output spectra, were calculated to extract the mode shapes and the natural frequencies of the structure. Based on the obtained modal parameters, the numerical designed model was up-dated.

  17. On the Modeling of a MEMS Based Capacitive Accelerometer for Measurement of Tractor Seat Vibration

    Directory of Open Access Journals (Sweden)

    M. Alidoost

    2010-04-01

    Full Text Available Drivers of heavy vehicles often face with higher amplitudes of frequencies range between 1-80 Hz. Hence, this range of frequency results in temporary or even sometimes permanent damages to the health of drivers. Examples for these problems are damages to the vertebral column and early tiredness, which both reduce the driver’s performance significantly. One solution to this problem is to decrease the imposed vibration to the driver’s seat by developing an active seat system. These systems require an online measuring unit to sense vibrations transferred to the seat. The measuring unit can include a capacitive micro-accelerometer on the basis of MEMS which measure online vibrations on the seat. In this study, the mechanical behavior of a capacitive micro-accelerometer for the vibration range applied to a tractor seat has been simulated. The accelerometer is capable to measure step, impact and harmonic external excitations applied to the system. The results of the study indicate that, with increasing the applied voltage, the system sensitivity also increases, but the measuring range of vibrations decreases and vice versa. The modeled accelerometer, at damping ratio of 0.67 is capable to measure accelerations within the frequency range of lower than 130 Hz.

  18. Magnetically coupled flextensional transducer for wideband vibration energy harvesting: Design, modeling and experiments

    Science.gov (United States)

    Zou, Hong-Xiang; Zhang, Wen-Ming; Li, Wen-Bo; Wei, Ke-Xiang; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2018-03-01

    The combination of nonlinear bistable and flextensional mechanisms has the advantages of wide operating frequency and high equivalent piezoelectric constant. In this paper, three magnetically coupled flextensional vibration energy harvesters (MF-VEHs) are designed from three magnetically coupled vibration systems which utilize a magnetic repulsion, two symmetrical magnetic attractions and multi-magnetic repulsions, respectively. The coupled dynamic models are developed to describe the electromechanical transitions. Simulations under harmonic excitation and random excitation are carried out to investigate the performance of the MF-VEHs with different parameters. Experimental validations of the MF-VEHs are performed under different excitation levels. The experimental results verify that the developed mathematical models can be used to accurately characterize the MF-VEHs for various magnetic coupling modes. A comparison of three MF-VEHs is provided and the results illustrate that a reasonable arrangement of multiple magnets can reduce the threshold excitation intensity and increase the harvested energy.

  19. Anharmonicities of coupled β and γ vibrations discussed in a simple model

    International Nuclear Information System (INIS)

    Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.

    1984-01-01

    The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method. (orig.)

  20. Anharmonicities of coupled β and γ vibrations discussed in a simple model

    International Nuclear Information System (INIS)

    Piepenbring, R.; Silvestre-Brac, B.; Szymanski, Z.

    1983-11-01

    The multiphonon method based on β and γ phonons is tested in a simple model allowing an exact solution for a many body fermion system where pairing and quadrupole forces are acting. The properties exhibiting the anharmonicities of the lowest-lying vibrational states of positive parity are nicely reproduced by this method

  1. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  2. Predicting Statistical Distributions of Footbridge Vibrations

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2009-01-01

    The paper considers vibration response of footbridges to pedestrian loading. Employing Newmark and Monte Carlo simulation methods, a statistical distribution of bridge vibration levels is calculated modelling walking parameters such as step frequency and stride length as random variables...

  3. On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix

    Directory of Open Access Journals (Sweden)

    Omar Gaber

    2014-01-01

    Full Text Available The effect of bearings on the vibrational behavior of machine tool spindles is investigated. This is done through the development of a calibrated dynamic stiffness matrix (CDSM method, where the bearings flexibility is represented by massless linear spring elements with tuneable stiffness. A dedicated MATLAB code is written to develop and to assemble the element stiffness matrices for the system’s multiple components and to apply the boundary conditions. The developed method is applied to an illustrative example of spindle system. When the spindle bearings are modeled as simply supported boundary conditions, the DSM model results in a fundamental frequency much higher than the system’s nominal value. The simply supported boundary conditions are then replaced by linear spring elements, and the spring constants are adjusted such that the resulting calibrated CDSM model leads to the nominal fundamental frequency of the spindle system. The spindle frequency results are also validated against the experimental data. The proposed method can be effectively applied to predict the vibration characteristics of spindle systems supported by bearings.

  4. Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows

    Science.gov (United States)

    2014-01-01

    important pro- cess in a wide range of high speed flows. High temperature shock layers that form in front of hypersonic vehicles can lead to significant...continuum flows for use in traditional Computational Fluid Dynamics ( CFD ) and non-continuum flows for use with rarefied flow de- scriptions, such as the...145 .98 4396 V. Summary and Conclusions The form of two vibrational relaxation models that are commonly used in DSMC and CFD simula- tions have been

  5. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    Science.gov (United States)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  6. Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model

    International Nuclear Information System (INIS)

    Chang, W.-J.; Lee, H.-L.

    2009-01-01

    The flexural vibration of the fluid-conveying single-walled carbon nanotube (SWCNT) is derived by the Timoshenko beam model, including rotary inertia and transverse shear deformation. The effects of the flow velocity and the aspect ratio of length to diameter on the vibration frequency and mode shape of the SWCNT are analyzed. Results show that the effects of rotary inertia and transverse shear deformation result in a reduction of the vibration frequencies, especially for higher modes of vibration and short nanotubes. The frequency is also compared with the previous study based on Euler beam model. In addition, if the ratio of length to diameter increased to 60, the influence of the shear deformation and rotary inertia on the mode shape and the resonant frequencies can be neglected. However, the influence is very obvious when the ratio decreased to 20. As the flow velocity of the fluid increases in the vicinity of 2π, the SWCNT reveals the divergence instability. It regains stability when the flow velocity reaches about 9. As the velocity increases further, the SWCNT undergoes a coupled-mode flutter and results in a larger amplitude

  7. An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model

    International Nuclear Information System (INIS)

    Torabi, K.; Nafar Dastgerdi, J.

    2012-01-01

    This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: ► The free vibration analysis of cracked nanobeams is investigated. ► This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. ► The small scale effect parameter greatly affects the value of natural frequencies. ► Crack reduces the natural frequencies, causes a discontinuity in the cracked section.

  8. An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, K., E-mail: kvntrb@KashanU.ac.ir; Nafar Dastgerdi, J., E-mail: J.nafardastgerdi@me.iut.ac.ir

    2012-08-31

    This paper is concerned with the free transverse vibration of cracked nanobeams modeled after Eringen's nonlocal elasticity theory and Timoshenko beam theory. The cracked beam is modeled as two segments connected by a rotational spring located at the cracked section. This model promotes discontinuities in rotational displacement due to bending which is proportional to bending moment transmitted by the cracked section. The governing equations of cracked nanobeams with two symmetric and asymmetric boundary conditions are derived; then these equations are solved analytically based on concerning basic standard trigonometric and hyperbolic functions. Besides, the frequency parameters and the vibration modes of cracked nanobeams for variant crack positions, crack ratio, and small scale effect parameters are calculated. The vibration solutions obtained provide a better representation of the vibration behavior of short, stubby, micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant. - Highlights: Black-Right-Pointing-Pointer The free vibration analysis of cracked nanobeams is investigated. Black-Right-Pointing-Pointer This study is based on the theory of nonlocal elasticity and Timoshenko beam theory. Black-Right-Pointing-Pointer The small scale effect parameter greatly affects the value of natural frequencies. Black-Right-Pointing-Pointer Crack reduces the natural frequencies, causes a discontinuity in the cracked section.

  9. Ultrasonic Vibration Assisted Grinding of Bio-ceramic Materials: Modeling, Simulation, and Experimental Investigations on Edge Chipping

    Science.gov (United States)

    Tesfay, Hayelom D.

    Bio-ceramics are those engineered materials that find their applications in the field of biomedical engineering or medicine. They have been widely used in dental restorations, repairing bones, joint replacements, pacemakers, kidney dialysis machines, and respirators. etc. due to their physico-chemical properties, such as excellent corrosion resistance, good biocompatibility, high strength and high wear resistance. Because of their inherent brittleness and hardness nature they are difficult to machine to exact sizes and dimensions. Abrasive machining processes such as grinding is one of the most widely used manufacturing processes for bioceramics. However, the principal technical challenge resulted from these machining is edge chipping. Edge chipping is a common edge failure commonly observed during the machining of bio-ceramic materials. The presence of edge chipping on bio-ceramic products affects dimensional accuracy, increases manufacturing cost, hider their industrial applications and causes potential failure during service. To overcome these technological challenges, a new ultrasonic vibration-assisted grinding (UVAG) manufacturing method has been developed and employed in this research. The ultimate aim of this study is to develop a new cost-effective manufacturing process relevant to eliminate edge chippings in grinding of bio-ceramic materials. In this dissertation, comprehensive investigations will be carried out using experimental, theoretical, and numerical approaches to evaluate the effect of ultrasonic vibrations on edge chipping of bioceramics. Moreover, effects of nine input variables (static load, vibration frequency, grinding depth, spindle speed, grinding distance, tool speed, grain size, grain number, and vibration amplitude) on edge chipping will be studied based on the developed models. Following a description of previous research and existing approaches, a series of experimental tests on three bio-ceramic materials (Lava, partially fired Lava

  10. The effects of vibration-reducing gloves on finger vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2015-01-01

    Vibration-reducing (VR) gloves have been used to reduce the hand-transmitted vibration exposures from machines and powered hand tools but their effectiveness remains unclear, especially for finger protection. The objectives of this study are to determine whether VR gloves can attenuate the vibration transmitted to the fingers and to enhance the understanding of the mechanisms of how these gloves work. Seven adult male subjects participated in the experiment. The fixed factors evaluated include hand force (four levels), glove condition (gel-filled, air bladder, no gloves), and location of the finger vibration measurement. A 3-D laser vibrometer was used to measure the vibrations on the fingers with and without wearing a glove on a 3-D hand-arm vibration test system. This study finds that the effect of VR gloves on the finger vibration depends on not only the gloves but also their influence on the distribution of the finger contact stiffness and the grip effort. As a result, the gloves increase the vibration in the fingertip area but marginally reduce the vibration in the proximal area at some frequencies below 100 Hz. On average, the gloves reduce the vibration of the entire fingers by less than 3% at frequencies below 80 Hz but increase at frequencies from 80 to 400 Hz. At higher frequencies, the gel-filled glove is more effective at reducing the finger vibration than the air bladder-filled glove. The implications of these findings are discussed. Relevance to industry Prolonged, intensive exposure to hand-transmitted vibration can cause hand-arm vibration syndrome. Vibration-reducing gloves have been used as an alternative approach to reduce the vibration exposure. However, their effectiveness for reducing finger-transmitted vibrations remains unclear. This study enhanced the understanding of the glove effects on finger vibration and provided useful information on the effectiveness of typical VR gloves at reducing the vibration transmitted to the fingers. The new

  11. Energy evaluation of protection effectiveness of anti-vibration gloves.

    Science.gov (United States)

    Hermann, Tomasz; Dobry, Marian Witalis

    2017-09-01

    This article describes an energy method of assessing protection effectiveness of anti-vibration gloves on the human dynamic structure. The study uses dynamic models of the human and the glove specified in Standard No. ISO 10068:2012. The physical models of human-tool systems were developed by combining human physical models with a power tool model. The combined human-tool models were then transformed into mathematical models from which energy models were finally derived. Comparative energy analysis was conducted in the domain of rms powers. The energy models of the human-tool systems were solved using numerical simulation implemented in the MATLAB/Simulink environment. The simulation procedure demonstrated the effectiveness of the anti-vibration glove as a method of protecting human operators of hand-held power tools against vibration. The desirable effect is achieved by lowering the flow of energy in the human-tool system when the anti-vibration glove is employed.

  12. Hydroelastic model of PWR reactor internals SAFRAN 1 - Validation of a vibration calculation method

    International Nuclear Information System (INIS)

    Epstein, A.; Gibert, R.J.; Jeanpierre, F.; Livolant, M.

    1978-01-01

    The SAFRAN 1 test loop consists of an hydroelastic similitude of a 1/8 scale model of a 3 loop P.W.R. Vibrations of the main internals (thermal shield and core barrel) and pressure fluctuations in water thin sections between vessel and internals, and in inlet and outlet pipes, have been measured. The calculation method consists of: an evaluation of the main vibration and acoustic sources owing to the flow (unsteady jet impingement on the core barrel, turbulent flow in a water thin section). A calculation of the internal modal parameters taking into account the inertial effects of fluid (the computer codes AQUAMODE and TRISTANA have been used). A calculation of the acoustic response of the circuit (the computer code VIBRAPHONE has been used). The good agreement between the calculation and the experimental results allows using this method with better security for the prediction of the vibration levels of full scale P.W.R. internals

  13. Lateral vibration behavior analysis and TLD vibration absorption design of the soft yoke single-point mooring system

    Science.gov (United States)

    Lyu, Bai-cheng; Wu, Wen-hua; Yao, Wei-an; Du, Yu

    2017-06-01

    Mooring system is the key equipment of FPSO safe operation. The soft yoke mooring system is regarded as one of the best shallow water mooring strategies and widely applied to the oil exploitation in the Bohai Bay in China and the Gulf of Mexico. Based on the analysis of numerous monitoring data obtained by the prototype monitoring system of one FPSO in the Bohai Bay, the on-site lateral vibration behaviors found on the site of the soft yoke subject to wave load were analyzed. ADAMS simulation and model experiment were utilized to analyze the soft yoke lateral vibration and it was determined that lateral vibration was resonance behaviors caused by wave excitation. On the basis of the soft yoke longitudinal restoring force being guaranteed, a TLD-based vibration damper system was constructed and the vibration reduction experiments with multi-tank space and multi-load conditions were developed. The experimental results demonstrated that the proposed TLD vibration reduction system can effectively reduce lateral vibration of soft yoke structures.

  14. Dynamic Model and Vibration Characteristics of Planar 3-RRR Parallel Manipulator with Flexible Intermediate Links considering Exact Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Lianchao Sheng

    2017-01-01

    Full Text Available Due to the complexity of the dynamic model of a planar 3-RRR flexible parallel manipulator (FPM, it is often difficult to achieve active vibration control algorithm based on the system dynamic model. To establish a simple and efficient dynamic model of the planar 3-RRR FPM to study its dynamic characteristics and build a controller conveniently, firstly, considering the effect of rigid-flexible coupling and the moment of inertia at the end of the flexible intermediate link, the modal function is determined with the pinned-free boundary condition. Then, considering the main vibration modes of the system, a high-efficiency coupling dynamic model is established on the basis of guaranteeing the model control accuracy. According to the model, the modal characteristics of the flexible intermediate link are analyzed and compared with the modal test results. The results show that the model can effectively reflect the main vibration modes of the planar 3-RRR FPM; in addition the model can be used to analyze the effects of inertial and coupling forces on the dynamics model and the drive torque of the drive motor. Because this model is of the less dynamic parameters, it is convenient to carry out the control program.

  15. Hand-Arm vibration assessment among tiller operator

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-08-01

    Result: Results of the present study indicated that in all measured situations, exposure to hand arm vibration was higher than the standard limit suggested by Iranian occupational health committee and there was risk of vibration-induced disorders. The maximum exposure to vibration is in plowing ground. Exposure to hand arm vibration in three modes of plowing, transmission and natural, were respectively 16.95, 14.16 and 8.65 meters per second squared. Additionally, in all situations, vibration exposure was highest in the X-axis in comparison with Z- and Y-axes. .Conclusion: This study emphasizes on the need to provide intervention and controlling and managing strategies in order to eliminate or reduce vibration transmitted from tiller to operators hand and arm and also prevent to serious problems including neurovascular disorders, discomfort and white finger syndrome. Meanwhile, more studies are necessary to identify the sources of vibration on different models of tiller.

  16. Combined Euler column vibration isolation and energy harvesting

    Science.gov (United States)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  17. Experimental vibration analysis for a 3D scaled model of a three-floor steel structure

    Directory of Open Access Journals (Sweden)

    Ernesto F. Castillo

    Full Text Available In this paper we present an experimental study of a three dimensional physical model of a three-floor structure subjected to forced vibrations by imposing displacements in its support. The aim of this work is to analyze the behavior of the building when a dynamic vibration absorber (DVA is acting. An analytic simplified analysis and a numerical study are developed to obtain the natural frequencies of the structure. Experiments are carried out in a vibrating table. The frequency range to be experimentally analyzed is determined by the first natural frequency of the structure for which the DVA damping effects are verified. The equipment capabilities, i.e. the frequencies, amplitudes and admissible load, limit the analyses. Nevertheless, satisfactory results are obtained for the study of the first mode of vibration. The effect of different amplitudes of the imposed support motion is also analyzed. In addition, the damping effect of the DVA device is evaluated upon varying its mass and its location in the structure. The characteristic curves in the frequency domain are obtained computing the Fast Fourier Transformation (FFT of the acceleration history registered with piezoelectric accelerometers at different checkpoints for the cases analyzed.

  18. Vibration energy harvesting system for railroad safety based on running vehicles

    International Nuclear Information System (INIS)

    Tianchen, Yuan; Jian, Yang; Ruigang, Song; Xiaowei, Liu

    2014-01-01

    This research is focused on energy harvesting from track vibration in order to provide power for the wireless sensors which monitor railroad health. Considering that track vibration has vibration energy, a new method is proposed in the paper to harvest energy based on the piezoelectric effect. The piezoelectric generator called drum transducer is the key part for track vibration energy harvesting. The model of drum transducer is established and the simulation results show that it can generate 100 mW in real track situation. In addition, an experiment rig is developed and its vibration model is also established. The simulation and experiment results show that peak open-circuit voltage of piezoelectric generator is about 50–70 V at the full load of the train. The whole track vibration energy harvesting system is analytically modeled, numerically simulated, and experimentally realized to demonstrate the feasibility and the reliability of the theoretical model. This paper is the theoretical basis of harvesting, recovering and recycling of the track vibration energy for track safety. (paper)

  19. Topics in molecular mechanics

    International Nuclear Information System (INIS)

    Essen, H.

    1979-05-01

    This report is a personal review of theoretical research concerning molecules. Here one finds some mathematical background from tensor calculus and Lie group theory. The most general transformations of the 3N-dimensional Laplacian, including transformations to group operators, are also presented. I discuss kinematical questions, especially those behind the separations of electronic and nuclear and of vibrational and rotational motion. One also finds discussions of the dynamics of the former separation. Classical atom-diatomic molecule scattering and quasiclassical transition probabilities are touched upon. I present a general discussion of approximate separation schemes, especially adiabatic, and discuss predissociations with special reference to one in SiO. Finally, a simple model is presented which reveals what happens when inversion doubling is connected with decay. (author)

  20. Development of hardware system using temperature and vibration maintenance models integration concepts for conventional machines monitoring: a case study

    Science.gov (United States)

    Adeyeri, Michael Kanisuru; Mpofu, Khumbulani; Kareem, Buliaminu

    2016-03-01

    This article describes the integration of temperature and vibration models for maintenance monitoring of conventional machinery parts in which their optimal and best functionalities are affected by abnormal changes in temperature and vibration values thereby resulting in machine failures, machines breakdown, poor quality of products, inability to meeting customers' demand, poor inventory control and just to mention a few. The work entails the use of temperature and vibration sensors as monitoring probes programmed in microcontroller using C language. The developed hardware consists of vibration sensor of ADXL345, temperature sensor of AD594/595 of type K thermocouple, microcontroller, graphic liquid crystal display, real time clock, etc. The hardware is divided into two: one is based at the workstation (majorly meant to monitor machines behaviour) and the other at the base station (meant to receive transmission of machines information sent from the workstation), working cooperatively for effective functionalities. The resulting hardware built was calibrated, tested using model verification and validated through principles pivoted on least square and regression analysis approach using data read from the gear boxes of extruding and cutting machines used for polyethylene bag production. The results got therein confirmed related correlation existing between time, vibration and temperature, which are reflections of effective formulation of the developed concept.

  1. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  2. COMPENSATED INVERSE PID CONTROLLER FOR ACTIVE VIBRATION CONTROL WITH PIEZOELECTRIC PATCHES: MODELING, SIMULATION AND IMPLEMENTATION

    Directory of Open Access Journals (Sweden)

    Asan Gani

    2010-09-01

    Full Text Available Active vibration control of the first three modes of a vibrating cantilever beam using collocated piezoelectric sensor and actuator is examined in this paper. To achieve this, a model based on Euler-Bernoulli beam equation is adopted and extended to the case of three bonded piezoelectric patches that act as sensor, actuator and exciter respectively. A compensated inverse PID controller has been designed and developed to damp first three modes of vibration. Controllers have been designed for each mode and these are later combined in parallel to damp any of the three modes. Individual controller gives better reduction in sensor output for the second and third modes while the combined controller performs better for the first mode. Simulation studies are carried out using MATLAB. These results are compared and verified experimentally and the real-time implementation is carried out with xPC-target toolbox in MATLAB

  3. Theoretical and experimental study of vibration, generated by monorail trains

    Science.gov (United States)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  4. Smart paint sensor for monitoring structural vibrations

    International Nuclear Information System (INIS)

    Al-Saffar, Y; Baz, A; Aldraihem, O

    2012-01-01

    A class of smart paint sensors is proposed for monitoring the structural vibration of beams. The sensor is manufactured from an epoxy resin which is mixed with carbon black nano-particles to make it electrically conducting and sensitive to mechanical vibrations. A comprehensive theoretical and experimental investigation is presented to understand the underlying phenomena governing the operation of this class of paint sensors and evaluate its performance characteristics. A theoretical model is presented to model the electromechanical behavior of the sensor system using molecular theory. The model is integrated with an amplifier circuit in order to predict the current and voltage developed by the paint sensor when subjected to loading. Furthermore, the sensor/amplifier circuit models are coupled with a finite element model of a base beam to which the sensor is bonded. The resulting multi-field model is utilized to predict the behavior of both the sensor and the beam when subjected to a wide variety of vibration excitations. The predictions of the multi-field finite element model are validated experimentally and the behavior of the sensor is evaluated both in the time and the frequency domains. The performance of the sensor is compared with the performance of conventional strain gages to emphasize its potential and merits. The presented techniques are currently being extended to sensors that can monitor the vibration and structural power flow of two-dimensional structures. (paper)

  5. Ambient vibrations of unstable rock slopes - insights from numerical modeling

    Science.gov (United States)

    Burjanek, Jan; Kleinbrod, Ulrike; Fäh, Donat

    2017-04-01

    The recent events in Nepal (2015 M7.8 Gorkha) and New Zealand (2016 M7.8 Kaikoura) highlighted the importance of earthquake-induced landslides, which caused significant damages. Moreover, landslide created dams present a potential developing hazard. In order to reduce the costly consequences of such events it is important to detect and characterize earthquake susceptible rock slope instabilities before an event, and to take mitigation measures. For the characterisation of instable slopes, acquisition of ambient vibrations might be a new alternative to the already existing methods. We present both observations and 3D numerical simulations of the ambient vibrations of unstable slopes. In particular, models of representative real sites have been developed based on detailed terrain mapping and used for the comparison between synthetics and observations. A finite-difference code has been adopted for the seismic wave propagation in a 3D inhomogeneous visco-elastic media with irregular free surface. It utilizes a curvilinear grid for a precise modeling of curved topography and local mesh refinement to make computational mesh finer near the free surface. Topographic site effects, controlled merely by the shape of the topography, do not explain the observed seismic response. In contrast, steeply-dipping compliant fractures have been found to play a key role in fitting observations. Notably, the synthetized response is controlled by inertial mass of the unstable rock, and by stiffness, depth and network density of the fractures. The developed models fit observed extreme amplification levels (factors of 70!) and show directionality as well. This represents a possibility to characterize slope structure and infer depth or volume of the slope instability from the ambient noise recordings in the future.

  6. Finite element modelling to assess the effect of surface mounted piezoelectric patch size on vibration response of a hybrid beam

    Science.gov (United States)

    Rahman, N.; Alam, M. N.

    2018-02-01

    Vibration response analysis of a hybrid beam with surface mounted patch piezoelectric layer is presented in this work. A one dimensional finite element (1D-FE) model based on efficient layerwise (zigzag) theory is used for the analysis. The beam element has eight mechanical and a variable number of electrical degrees of freedom. The beams are also modelled in 2D-FE (ABAQUS) using a plane stress piezoelectric quadrilateral element for piezo layers and a plane stress quadrilateral element for the elastic layers of hybrid beams. Results are presented to assess the effect of size of piezoelectric patch layer on the free and forced vibration responses of thin and moderately thick beams under clamped-free and clamped-clamped configurations. The beams are subjected to unit step loading and harmonic loading to obtain the forced vibration responses. The vibration control using in phase actuation potential on piezoelectric patches is also studied. The 1D-FE results are compared with the 2D-FE results.

  7. Parameter optimization method for longitudinal vibration absorber of ship shaft system

    Directory of Open Access Journals (Sweden)

    LIU Jinlin

    2017-05-01

    Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.

  8. Nanoscale piezoelectric vibration energy harvester design

    Science.gov (United States)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  9. Folding-type coupling potentials in the context of the generalized rotation-vibration model

    Science.gov (United States)

    Chamon, L. C.; Morales Botero, D. F.

    2018-03-01

    The generalized rotation-vibration model was proposed in previous works to describe the structure of heavy nuclei. The model was successfully tested in the description of experimental results related to the electron-nucleus elastic and inelastic scattering. In the present work, we consider heavy-ion collisions and assume this model to calculate folding-type coupling potentials for inelastic states, through the corresponding transition densities. As an example, the method is applied to coupled-channel data analyses for the α + 70,72,74,76Ge systems.

  10. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  11. Low intensity, high frequency vibration training to improve musculoskeletal function in a mouse model of Duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Susan A Novotny

    Full Text Available The objective of the study was to determine if low intensity, high frequency vibration training impacted the musculoskeletal system in a mouse model of Duchenne muscular dystrophy, relative to healthy mice. Three-week old wildtype (n = 26 and mdx mice (n = 22 were randomized to non-vibrated or vibrated (45 Hz and 0.6 g, 15 min/d, 5 d/wk groups. In vivo and ex vivo contractile function of the anterior crural and extensor digitorum longus muscles, respectively, were assessed following 8 wks of vibration. Mdx mice were injected 5 and 1 days prior to sacrifice with Calcein and Xylenol, respectively. Muscles were prepared for histological and triglyceride analyses and subcutaneous and visceral fat pads were excised and weighed. Tibial bones were dissected and analyzed by micro-computed tomography for trabecular morphometry at the metaphysis, and cortical geometry and density at the mid-diaphysis. Three-point bending tests were used to assess cortical bone mechanical properties and a subset of tibiae was processed for dynamic histomorphometry. Vibration training for 8 wks did not alter trabecular morphometry, dynamic histomorphometry, cortical geometry, or mechanical properties (P ≥ 0.34. Vibration did not alter any measure of muscle contractile function (P ≥ 0.12; however the preservation of muscle function and morphology in mdx mice indicates vibration is not deleterious to muscle lacking dystrophin. Vibrated mice had smaller subcutaneous fat pads (P = 0.03 and higher intramuscular triglyceride concentrations (P = 0.03. These data suggest that vibration training at 45 Hz and 0.6 g did not significantly impact the tibial bone and the surrounding musculature, but may influence fat distribution in mice.

  12. [Occupational standing vibration rate and vibrational diseases].

    Science.gov (United States)

    Karnaukh, N G; Vyshchipan, V F; Haumenko, B S

    2003-12-01

    Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.

  13. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    Science.gov (United States)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  14. Sensitivity of molecular vibrational dynamics to energy exchange rate constants

    International Nuclear Information System (INIS)

    Billing, G D; Coletti, C; Kurnosov, A K; Napartovich, A P

    2003-01-01

    The sensitivity of molecular vibrational population dynamics, governing the CO laser operated in fundamental and overtone transitions, to vibration-to-vibration rate constants is investigated. With this aim, three rate constant sets have been used, differing in their completeness (i.e. accounting for single-quantum exchange only, or for multi-quantum exchange with a limited number of rate constants obtained by semiclassical calculations, and, finally, with an exhaustive set of rate constants including asymmetric exchange processes, as well) and in the employed interaction potential. The most complete set among these three is introduced in this paper. An existing earlier kinetic model was updated to include the latter new data. Comparison of data produced by kinetic modelling with the above mentioned sets of rate constants shows that the vibrational distribution function, and, in particular, the CO overtone laser characteristics, are very sensitive to the choice of the model. The most complete model predicts slower evolution of the vibrational distribution, in qualitative agreement with experiments

  15. Sensitivity of Footbridge Vibrations to Stochastic Walking Parameters

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2010-01-01

    of the pedestrian. A stochastic modelling approach is adopted for this paper and it facilitates quantifying the probability of exceeding various vibration levels, which is useful in a discussion of serviceability of a footbridge design. However, estimates of statistical distributions of footbridge vibration levels...... to walking loads might be influenced by the models assumed for the parameters of the load model (the walking parameters). The paper explores how sensitive estimates of the statistical distribution of vertical footbridge response are to various stochastic assumptions for the walking parameters. The basis...... for the study is a literature review identifying different suggestions as to how the stochastic nature of these parameters may be modelled, and a parameter study examines how the different models influence estimates of the statistical distribution of footbridge vibrations. By neglecting scatter in some...

  16. Active vibration control using state space LQG and internal model control methods

    DEFF Research Database (Denmark)

    Mørkholt, Jakob; Elliott, S.J.

    1998-01-01

    Two ways of designing discrete time robust H2-controllers for feedback broadband active vibration control are compared through computer simulations. The methods are based on different models of disturbance and plant transfer functions, but yield controllers with identical properties. Two simple...... ways of introducing robustness into the H2-design are compared, and finally an efficient way of designing a practical IIR-controller is proposed....

  17. A nonlocal, ab initio model of dissociative electron attachment and vibrational excitation of NO

    International Nuclear Information System (INIS)

    Trevisan, Cynthia S.; Houfek, Karel; Zhang, Zhiyong; Orel, Ann E.; McCurdy, C. William; Rescigno, Thomas N.

    2005-01-01

    We present the results of an ab initio study of elastic scattering and vibrational excitation of NO by electron impact in the loW--energy (0-2 eV) region where the cross sections are dominated by resonance contributions. The 3Sigma-, 1Delta and 1Sigma+ NO- resonance lifetimes are taken from our earlier study [Phys. Rev. A 69, 062711 (2004)], but the resonance energies used here are obtained from new configuration-interaction studies. Here we employ a more elaborate nonlocal treatment of the nuclear dynamics, which is found to remedy the principal deficiencies of the local complex potential model we employed in our earlier study, and gives cross sections in better agreement with the most recent experiments. We also present cross sections for dissociative electron attachment to NO leading to groundstate products. The calculations show that, while the peak cross sections starting from NO in its ground vibrational state are very small, the cross sections are extremely sensitive to vibrational excitation of the target and should be readily observable for target NO molecules excited to v = 10 and above

  18. Recovering Intrinsic Fragmental Vibrations Using the Generalized Subsystem Vibrational Analysis.

    Science.gov (United States)

    Tao, Yunwen; Tian, Chuan; Verma, Niraj; Zou, Wenli; Wang, Chao; Cremer, Dieter; Kraka, Elfi

    2018-05-08

    Normal vibrational modes are generally delocalized over the molecular system, which makes it difficult to assign certain vibrations to specific fragments or functional groups. We introduce a new approach, the Generalized Subsystem Vibrational Analysis (GSVA), to extract the intrinsic fragmental vibrations of any fragment/subsystem from the whole system via the evaluation of the corresponding effective Hessian matrix. The retention of the curvature information with regard to the potential energy surface for the effective Hessian matrix endows our approach with a concrete physical basis and enables the normal vibrational modes of different molecular systems to be legitimately comparable. Furthermore, the intrinsic fragmental vibrations act as a new link between the Konkoli-Cremer local vibrational modes and the normal vibrational modes.

  19. THz-SAR Vibrating Target Imaging via the Bayesian Method

    Directory of Open Access Journals (Sweden)

    Bin Deng

    2017-01-01

    Full Text Available Target vibration bears important information for target recognition, and terahertz, due to significant micro-Doppler effects, has strong advantages for remotely sensing vibrations. In this paper, the imaging characteristics of vibrating targets with THz-SAR are at first analyzed. An improved algorithm based on an excellent Bayesian approach, that is, the expansion-compression variance-component (ExCoV method, has been proposed for reconstructing scattering coefficients of vibrating targets, which provides more robust and efficient initialization and overcomes the deficiencies of sidelobes as well as artifacts arising from the traditional correlation method. A real vibration measurement experiment of idle cars was performed to validate the range model. Simulated SAR data of vibrating targets and a tank model in a real background in 220 GHz show good performance at low SNR. Rapidly evolving high-power terahertz devices will offer viable THz-SAR application at a distance of several kilometers.

  20. Advanced electromagnetic modeling applied to anti-vibration systems for high precision and automotive applications

    NARCIS (Netherlands)

    Janssen, J.L.G.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.

    2012-01-01

    This paper presents the application of two (semi-) analytical modeling techniques to the design of anti-vibration systems. Both methods are based on the direct solution of the Laplace and Poisson equations in terms of the scalar or magnetic vector potential. The first technique, the surface charge

  1. Modeling and imaging of the vocal fold vibration for voice health

    DEFF Research Database (Denmark)

    Granados, Alba

    Identication of abnormalities on the vocal fold by means of dierent diagnostic methods is a key step to determine the cause or causes of a voice disorder, and subsequently give an adequate treatment. To this end, clinical investigations benet from accurate mathematical models for prediction......, analysis and inference. This thesis deals with biomechanical models of the vocal fold, specially of the collision, and laryngeal videoendoscopic analysis procedures suitable for the inference of the underlying vocal fold characteristics. The rst part of this research is devoted to frictionless contact...... modeling during asymmetric vocal fold vibration. The prediction problem is numerically addressed with a self-sustained three-dimensional nite element model of the vocal fold with position-based contact constraints. A novel contact detection mechanism is shown to successfully detect collision in asymmetric...

  2. Vibrational Spectral Studies of Gemfibrozil

    Science.gov (United States)

    Benitta, T. Asenath; Balendiran, G. K.; James, C.

    2008-11-01

    The Fourier Transform Raman and infrared spectra of the crystallized drug molecule 5-(2,5-Dimethylphenoxy)-2,2-dimethylpentanoic acid (Gemfibrozil) have been recorded and analyzed. Quantum chemical computational methods have been employed using Gaussian 03 software package based on Hartree Fock method for theoretically modeling the grown molecule. The optimized geometry and vibrational frequencies have been predicted. Observed vibrational modes have been assigned with the aid of normal coordinate analysis.

  3. Effect of instantaneous and continuous quenches on the density of vibrational modes in model glasses

    Science.gov (United States)

    Lerner, Edan; Bouchbinder, Eran

    2017-08-01

    Computational studies of supercooled liquids often focus on various analyses of their "underlying inherent states"—the glassy configurations at zero temperature obtained by an infinitely fast (instantaneous) quench from equilibrium supercooled states. Similar protocols are also regularly employed in investigations of the unjamming transition at which the rigidity of decompressed soft-sphere packings is lost. Here we investigate the statistics and localization properties of low-frequency vibrational modes of glassy configurations obtained by such instantaneous quenches. We show that the density of vibrational modes grows as ωβ with β depending on the parent temperature T0 from which the glassy configurations were instantaneously quenched. For quenches from high temperature liquid states we find β ≈3 , whereas β appears to approach the previously observed value β =4 as T0 approaches the glass transition temperature. We discuss the consistency of our findings with the theoretical framework of the soft potential model, and contrast them with similar measurements performed on configurations obtained by continuous quenches at finite cooling rates. Our results suggest that any physical quench at rates sufficiently slower than the inverse vibrational time scale—including all physically realistic quenching rates of molecular or atomistic glasses—would result in a glass whose density of vibrational modes is universally characterized by β =4 .

  4. Simultaneous measurements of disk vibration and pressure fluctuation in turbulent flow developing in a model hard disk drive

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, D.; Naka, Y.; Fukagata, K. [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Obi, S., E-mail: obsn@mech.keio.ac.jp [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2011-06-15

    The complex flow features inside hard disk drive models are investigated in an axisymmetric and a semi-open shroud configurations. For the axisymmetric case, we have employed both experimental and computational approaches. The experiment focuses on both flow dynamics and the disk vibration, where measurements of the fluctuating pressure and velocity are undertaken at some representative points. The correlation between the disk vibration and the fluctuating pressure in the turbulent flow between disks is evident from the spectral analysis. The experimentally observed fluctuating pressure and velocity are partly due to the disk vibration and its contribution could be estimated by comparing the experiment with the results of a large eddy simulation. For the semi-open shroud case, although the characteristic peaks attributable to the large-scale vortical structure are still observed in the power spectra, the pressure fluctuation and the disk vibration are suppressed when the arm is inserted.

  5. Study of Piezoelectric Vibration Energy Harvester with non-linear conditioning circuit using an integrated model

    Science.gov (United States)

    Manzoor, Ali; Rafique, Sajid; Usman Iftikhar, Muhammad; Mahmood Ul Hassan, Khalid; Nasir, Ali

    2017-08-01

    Piezoelectric vibration energy harvester (PVEH) consists of a cantilever bimorph with piezoelectric layers pasted on its top and bottom, which can harvest power from vibrations and feed to low power wireless sensor nodes through some power conditioning circuit. In this paper, a non-linear conditioning circuit, consisting of a full-bridge rectifier followed by a buck-boost converter, is employed to investigate the issues of electrical side of the energy harvesting system. An integrated mathematical model of complete electromechanical system has been developed. Previously, researchers have studied PVEH with sophisticated piezo-beam models but employed simplistic linear circuits, such as resistor, as electrical load. In contrast, other researchers have worked on more complex non-linear circuits but with over-simplified piezo-beam models. Such models neglect different aspects of the system which result from complex interactions of its electrical and mechanical subsystems. In this work, authors have integrated the distributed parameter-based model of piezo-beam presented in literature with a real world non-linear electrical load. Then, the developed integrated model is employed to analyse the stability of complete energy harvesting system. This work provides a more realistic and useful electromechanical model having realistic non-linear electrical load unlike the simplistic linear circuit elements employed by many researchers.

  6. Effect of shelf aging on vibration transmissibility of anti-vibration gloves

    Science.gov (United States)

    SHIBATA, Nobuyuki

    2017-01-01

    Anti-vibration gloves have been used in real workplaces to reduce vibration transmitted through hand-held power tools to the hand. Generally materials used for vibration attenuation in gloves are resilient materials composed of certain synthetic and/or composite polymers. The mechanical characteristics of the resilient materials used in anti-vibration gloves are prone to be influenced by environmental conditions such as temperature, humidity, and photo-irradiation, which cause material degradation and aging. This study focused on the influence of shelf aging on the vibration attenuation performance of air-packaged anti-vibration gloves following 2 yr of shelf aging. Effects of shelf aging on the vibration attenuation performance of anti-vibration gloves were examined according to the Japan industrial standard JIS T8114 test protocol. The findings indicate that shelf aging induces the reduction of vibration attenuation performance in air-packaged anti-vibration gloves. PMID:28978817

  7. Analysis of bit-rock interaction during stick-slip vibrations using PDC cutting force model

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.A.; Teodoriu, C. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    Drillstring vibration is one of the limiting factors maximizing the drilling performance and also causes premature failure of drillstring components. Polycrystalline diamond compact (PDC) bit enhances the overall drilling performance giving the best rate of penetrations with less cost per foot but the PDC bits are more susceptible to the stick slip phenomena which results in high fluctuations of bit rotational speed. Based on the torsional drillstring model developed using Matlab/Simulink for analyzing the parametric influence on stick-slip vibrations due to drilling parameters and drillstring properties, the study of relations between weight on bit, torque on bit, bit speed, rate of penetration and friction coefficient have been analyzed. While drilling with the PDC bits, the bit-rock interaction has been characterized by cutting forces and the frictional forces. The torque on bit and the weight on bit have both the cutting component and the frictional component when resolved in horizontal and vertical direction. The paper considers that the bit is undergoing stick-slip vibrations while analyzing the bit-rock interaction of the PDC bit. The Matlab/Simulink bit-rock interaction model has been developed which gives the average cutting torque, T{sub c}, and friction torque, T{sub f}, values on cutters as well as corresponding average weight transferred by the cutting face, W{sub c}, and the wear flat face, W{sub f}, of the cutters value due to friction.

  8. Validation of a Methodology to Predict Micro-Vibrations Based on Finite Element Model Approach

    Science.gov (United States)

    Soula, Laurent; Rathband, Ian; Laduree, Gregory

    2014-06-01

    This paper presents the second part of the ESA R&D study called "METhodology for Analysis of structure- borne MICro-vibrations" (METAMIC). After defining an integrated analysis and test methodology to help predicting micro-vibrations [1], a full-scale validation test campaign has been carried out. It is based on a bread-board representative of typical spacecraft (S/C) platform consisting in a versatile structure made of aluminium sandwich panels equipped with different disturbance sources and a dummy payload made of a silicon carbide (SiC) bench. The bread-board has been instrumented with a large set of sensitive accelerometers and tests have been performed including back-ground noise measurement, modal characterization and micro- vibration tests. The results provided responses to the perturbation coming from a reaction wheel or cryo-cooler compressors, operated independently then simultaneously with different operation modes. Using consistent modelling and associated experimental characterization techniques, a correlation status has been assessed by comparing test results with predictions based on FEM approach. Very good results have been achieved particularly for the case of a wheel in sweeping rate operation with test results over-predicted within a reasonable margin lower than two. Some limitations of the methodology have also been identified for sources operating at a fixed rate or coming with a small number of dominant harmonics and recommendations have been issued in order to deal with model uncertainties and stay conservative.

  9. Mathematical modeling and calculation of forced resonant vibrations of composite electromechanical system

    OpenAIRE

    Ластівка, Іван Олексійович

    2014-01-01

    Resonant vibrations of composite electromechanical symmetric three-element system “metal plate - piezoceramic cylindrical panels” are considered. Forced vibrations are made under the influence of external alternating electric field, supplied to the electrodes of piezoceramic segments of cylindrical panels, previously polarized in the tangential direction.Based on the improved theory, such as the S.P. Timoshenko’s, the system of differential equations of forced vibrations of the system, taking...

  10. Infrared spectroscopy of ionic clusters

    International Nuclear Information System (INIS)

    Price, J.M.

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm -1 region. The species studied include: the hydrated hydronium ions, H 3 O + (H 2 O) 3 -10 , ammoniated ammonium ions, NH 4 + (NH 3 ) 1 -10 and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH 4 + (NH 3 ) n (H 2 O) m (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs

  11. Elastic and inelastic vibrational cross sections for positron scattering by carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Tenfen, W. [Departamento de Física, Universidade Federal da Fronteira Sul, 85770-000, Realeza, Paraná (Brazil); Arretche, F., E-mail: fartch@gmail.com [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil); Michelin, S.E.; Mazon, K.T. [Departamento de Física, Universidade Federal de Santa Catarina, 88040-900, Florianópolis, Santa Catarina (Brazil)

    2015-11-01

    The vibrational cross sections of the CO molecule induced by positron impact is the focus of this work. The positron–molecule interaction is represented by the static potential plus a model potential designed to take into account the positron–target correlations. To calculate the vibrational cross sections, we applied the multichannel version of the continued fractions method in the close-coupling scheme. We present vibrational excitation cross sections and elastic ones, for the ground and excited vibrational states. The results are interpreted in terms of the vibrational coupling-scheme used in the scattering model.

  12. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.

    Science.gov (United States)

    Huang, Yihua; Huang, Wei

    2010-12-01

    We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.

  13. Vibrational interference effects in x-ray emission of a model water dimer: implications for the interpretation of the liquid spectrum.

    Science.gov (United States)

    Ljungberg, M P; Pettersson, L G M; Nilsson, A

    2011-01-28

    We apply the Kramers-Heisenberg formula to a model water dimer to discuss vibrational interference in the x-ray emission spectrum of the donor molecule for which the core-ionized potential energy surface is dissociative but bounded by the accepting molecule. A long core-hole lifetime leads to decay from Zundel-like, fully delocalized vibrational states in the intermediate potential without involvement of a specific dissociated component. Comparison is made to a model with an unbound intermediate state allowing dissociation to infinity which gives a sharp, fully dissociated feature, and a broad molecular peak at long core-hole life time. The implications of the vibrational interference effect on the liquid water spectrum are discussed and it is proposed that this mainly gives rise to an isotope-dependent asymmetrical broadening of the lone pair peak.

  14. MATHEMATICAL MODELING OF SELF-EXCITED VIBRATION OF PIPES CONTAINING MOBILE BOILING FLUID CLOTS

    Directory of Open Access Journals (Sweden)

    Yevgeniy Tolbatov

    2015-06-01

    Full Text Available Numerical modeling dynamic behavior of a pipe containing inner nonhomogeneous flows of a boiling fluid has been carried out. The system vibrations at different values of the parameters of the flow nonhomogeneity and its velocity are observed. The possibility of forming stable and unstable flows depending on the character ofnonhomogeneity and the velocity of fluid clots has been found.

  15. Geometrical nonlinear free vibration of multi-layered graphene sheets

    International Nuclear Information System (INIS)

    Wang Jinbao; He Xiaoqiao; Kitipornchai, S; Zhang Hongwu

    2011-01-01

    A nonlinear continuum model is developed for the nonlinear vibration analysis of multi-layered graphene sheets (MLGSs), in which the nonlinear van der Waals (vdW) interaction between any two layers is formulated explicitly. The nonlinear equations of motion are studied by the harmonic-balance methods. Based on the present model, the nonlinear stiffened amplitude-frequency relations of double-layered graphene sheets (DLGSs) are investigated in the spectral neighbourhood of lower frequencies. The influence of the vdW interaction on the vibration properties of DLGSs is well illustrated by plotting the resulting modes' shapes, in which in-phase and anti-phase vibrations of DLGSs are studied. In particular, the large-amplitude vibration which associates with the anti-phase resonant frequencies, separating DLGS into single-layered GSs, is a promising application that needs to be explored further. In contrast, the vibration modes that are associated with the resonant frequencies are nonidentical and give various vibration patterns, which indicates that MLGSs are highly suited to being used as high-frequency resonators.

  16. Diffusion of solid fuelon a vibrating grate

    DEFF Research Database (Denmark)

    Sabelström, Hanna Katarina

    of vibrations can be incorporated into a numerical model. The chosen model approach has been to separate the gas and solid phases into two independent models related to each other through the bed porosity. By treating the bed as a porous media and using Ergun's equation for the gas flow, the numerical work...... is simplified and the computational time shortened. The vibrations are affecting the transport and mixing of the fuel and incorporated into the model through the diffusion coefficient in the conservation equation of the solid phase. Experimental work has been carried out with the aim to study the behaviour...

  17. Some problems of control of dynamical conditions of technological vibrating machines

    Science.gov (United States)

    Kuznetsov, N. K.; Lapshin, V. L.; Eliseev, A. V.

    2017-10-01

    The possibility of control of dynamical condition of the shakers that are designed for vibration treatment of parts interacting with granular media is discussed. The aim of this article is to develop the methodological basis of technology of creation of mathematical models of shake tables and the development of principles of formation of vibrational fields, estimation of their parameters and control of the structure vibration fields. Approaches to build mathematical models that take into account unilateral constraints, the relationships between elements, with the vibrating surface are developed. Methods intended to construct mathematical model of linear mechanical oscillation systems are used. Small oscillations about the position of static equilibrium are performed. The original method of correction of vibration fields by introduction of the oscillating system additional ties to the structure are proposed. Additional ties are implemented in the form of a mass-inertial device for changing the inertial parameters of the working body of the vibration table by moving the mass-inertial elements. The concept of monitoring the dynamic state of the vibration table based on the original measuring devices is proposed. Estimation for possible changes in dynamic properties is produced. The article is of interest for specialists in the field of creation of vibration technology machines and equipment.

  18. Vibrational relaxation in liquids: Comparisons between gas phase and liquid phase theories

    International Nuclear Information System (INIS)

    Russell, D.J.

    1990-12-01

    The vibrational relaxation of iodine in liquid xenon was studied to understand what processes are important in determining the density dependence of the vibrational relaxation. This examination will be accomplished by taking simple models and comparing the results to both experimental outcomes and the predictions of molecular dynamics simulations. The vibration relaxation of iodine is extremely sensitive to the iodine potential. The anharmonicity of iodine causes vibrational relaxation to be much faster at the top of the iodine well compared to the vibrational relaxation at the bottom. A number of models are used in order to test the ability of the Isolated Binary Collision theory's ability to predict the density dependence of the vibrational relaxation of iodine in liquid xenon. The models tested vary from the simplest incorporating only the fact that the solvent occupies volume to models that incorporate the short range structure of the liquid in the radial distribution function. None of the models tested do a good job of predicting the actual relaxation rate for a given density. This may be due to a possible error in the choice of potentials to model the system

  19. A Novel Dual–Parallelogram Passive Rocking Vibration Isolator: A Theoretical Investigation and Experiment

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    2017-04-01

    Full Text Available Vibration isolators with quasi-zero stiffness (QZS perform well for low- or ultra-low-frequency vibration isolation. This paper proposes a novel dual-parallelogram passive rocking vibration isolator with QZS that could effectively attenuate in-plane disturbances with low-frequency vibration. First, a kinematic model of the proposed vibration isolator was established and four linear spring configuration schemes were developed to implement the QZS. Next, an optimal scheme with good high-static-low-dynamic stiffness (HSLDS performance was obtained through comparison and analysis, and used as a focus for the QZS model. Subsequently, a dynamic model-based Lagrangian equation that considered the spring stiffness and damping and the influence of the payload gravity center on the vibration isolation system was developed, and an average approach was used to analyze the vibration transmissibility. Finally, the prototype and test system were constructed. A comparison of the simulation and experimental results showed that this novel passive rocking vibration isolator could bolster a heavy payload. Experimentally, the vibration amplitude decreased by 53% and 86% under harmonic disturbances of 0.08 Hz and 0.35 Hz, respectively, suggesting the great practical applicability of this presented vibration isolator.

  20. Numerical modelling of ground vibration caused by elevated high-speed railway lines considering structure-soil-structure interaction

    DEFF Research Database (Denmark)

    Bucinskas, Paulius; Andersen, Lars Vabbersgaard; Persson, Kent

    2016-01-01

    Construction of high speed railway lines has been an increasing trend in recent years. Countries like Denmark and Sweden plan to expand and upgrade their railways to accommodate high-speed traffic. To benefit from the full potential of the reduced commuting times, these lines must pass through...... densely populated urban areas with the collateral effect of increased noise and vibrations levels. This paper aims to quantify the vibrations levels in the area surrounding an elevated railway line built as a multi-span bridge structure. The proposed model employs finite-element analysis to model......-space. The paper analyses the effects of structure-soil-structure interaction on the dynamic behaviour of the surrounding soil surface. The effects of different soil stratification and material properties as well as different train speeds are assessed. Finally, the drawbacks of simplifying the numerical model...

  1. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  2. Taking into account for the Pauli principle in particle-vibrator model

    International Nuclear Information System (INIS)

    Knyaz'kov, O.M.

    1985-01-01

    To construct Hamiltonian of the particle interaction and phonons a semimicroscopic approach developed by the author earlier is used. At that the Pauli principle is taken account of in local formalism of density matrix. Analytical expressions permitting in a closed form to solve a task of taking account of the Pauli principle in the particle-vibrator model have been derived. Unlike a phenomenological approach form factors of inelastic transitions are determined with parameters of effective nucleon-nucleon forces, central and transition densities and contain no free parameters

  3. Investigation of vibration characteristics of electric motors

    Science.gov (United States)

    Bakshis, A. K.; Tamoshyunas, Y. K.

    1973-01-01

    The vibration characteristics of electric motors were analyzed using mathematical statistics methods. The equipment used and the method of conducting the test are described. Curves are developed to show the visualization of the electric motor vibrations in the vertical direction. Additional curves are included to show the amplitude-phase frequency characteristic of dynamic rotor-housing vibrations at the first lug and the same data for the second lug of the electric motor. Mathematical models were created to show the transmission function of the dynamic rotor housing system.

  4. Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection

    Science.gov (United States)

    Xue, Song; Howard, Ian

    2018-02-01

    This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.

  5. Vibration mixer

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.

    1983-01-01

    The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.

  6. Dynamic Characteristics of Flow Induced Vibration in a Rotor-Seal System

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2011-01-01

    Full Text Available Flow induced vibration is an important factor affecting the performance of the rotor-seal system. From the point of view of flow induced vibration, the nonlinear models of the rotor-seal system are presented for the analysis of the fluid force, which is induced by the interaction between the unstable fluid flow in the seal and the vibrating rotor. The nonlinear characteristics of flow induced vibration in the rotor-seal system are analyzed, and the nonlinear phenomena in the unbalanced rotor-seal system are investigated using the nonlinear models. Various nonlinear phenomena of flow induced vibration in the rotor-seal system, such as synchronization phenomenon and amplitude mutation, are reproduced.

  7. Optical fiber grating vibration sensor for vibration monitoring of hydraulic pump

    Science.gov (United States)

    Zhang, Zhengyi; Liu, Chuntong; Li, Hongcai; He, Zhenxin; Zhao, Xiaofeng

    2017-06-01

    In view of the existing electrical vibration monitoring traditional hydraulic pump vibration sensor, the high false alarm rate is susceptible to electromagnetic interference and is not easy to achieve long-term reliable monitoring, based on the design of a beam of the uniform strength structure of the fiber Bragg grating (FBG) vibration sensor. In this paper, based on the analysis of the vibration theory of the equal strength beam, the principle of FBG vibration tuning based on the equal intensity beam is derived. According to the practical application of the project, the structural dimensions of the equal strength beam are determined, and the optimization design of the vibrator is carried out. The finite element analysis of the sensor is carried out by ANSYS, and the first order resonant frequency is 94.739 Hz. The vibration test of the sensor is carried out by using the vibration frequency of 35 Hz and the vibration source of 50 Hz. The time domain and frequency domain analysis results of test data show that the sensor has good dynamic response characteristics, which can realize the accurate monitoring of the vibration frequency and meet the special requirements of vibration monitoring of hydraulic pump under specific environment.

  8. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  9. A study on the evaluation of vibration effect and the development of vibration reduction method for Wolsung unit 1 main steam piping

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun; Kim, Yeon Whan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Kim, Tae Ryong; Park, Jin Ho [Korea Atomic Energy Research Inst., Daeduk (Korea, Republic of)

    1996-08-01

    The main steam piping of nuclear power plant which runs between steam generator and high pressure turbine has been experienced to have a severe effect on the safe operation of the plant due to the vibration induced by the steam flowing inside the piping. The imposed cyclic loads by the vibration could result in the degradation of the related structures such as connection parts between main instruments, valves, pipe supports and building. The objective of the study is to reduce the vibration level of Wolsung nuclear power plant unit 1 main steam pipeline by analyzing vibration characteristics of the piping, identifying sources of the vibration and developing a vibration reduction method .The location of the maximum vibration is piping between the main steam header and steam chest .The stress level was found to be within the allowable limit .The main vibration frequency was found to be 4{approx}6 Hz which is the same as the natural frequency from model test .A vibration reduction method using pipe supports of energy absorbing type(WEAR)is selected .The measured vibration level after WEAR installation was reduced about 36{approx}77% in displacement unit (author). 36 refs., 188 figs.

  10. Differences in Train-induced Vibration between Hard Soil and Soft Soil

    Science.gov (United States)

    Noyori, M.; Yokoyama, H.

    2017-12-01

    Vibration and noise caused by running trains sometimes raises environmental issues. Train-induced vibration is caused by moving static and dynamic axle loads. To reduce the vibration, it is important to clarify the conditions under which the train-induced vibration increases. In this study, we clarified the differences in train-induced vibration between on hard soil and on soft soil using a numerical simulation method. The numerical simulation method we used is a combination of two analysis. The one is a coupled vibration analysis model of a running train, a track and a supporting structure. In the analysis, the excitation force of the viaduct slabs generated by a running train is computed. The other analysis is a three-dimensional vibration analysis model of a supporting structure and the ground into which the excitation force computed by the former analysis is input. As a result of the numerical simulation, the ground vibration in the area not more than 25m from the center of the viaduct is larger under the soft soil condition than that under the hard soil condition in almost all frequency ranges. On the other hand, the ground vibration of 40 and 50Hz at a point 50m from the center of the viaduct under the hard soil condition is larger than that under the soft soil condition. These are consistent with the result of the two-dimensional FEM based on a ground model alone. Thus, we concluded that these results are obtained from not the effects of the running train but the vibration characteristics of the ground.

  11. Thermal Effects on Vibration and Control of Piezocomposite Kirchhoff Plate Modeled by Finite Elements Method

    OpenAIRE

    Sanbi, M.; Saadani, R.; Sbai, K.; Rahmoune, M.

    2015-01-01

    Theoretical and numerical results of the modeling of a smart plate are presented for optimal active vibration control. The smart plate consists of a rectangular aluminum piezocomposite plate modeled in cantilever configuration with surface bonded thermopiezoelectric patches. The patches are symmetrically bonded on top and bottom surfaces. A generic thermopiezoelastic theory for piezocomposite plate is derived, using linear thermopiezoelastic theory and Kirchhoff assumptions. Finite element eq...

  12. The High Level Vibration Test Program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the PWR primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis. 4 refs., 16 figs., 2 tabs

  13. The High Level Vibration Test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1990-01-01

    As part of cooperative agreements between the United States and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was designed by modifying the 1/2.5 scale model of the pressurized water reactor primary coolant loop. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. This paper describes the overall plan, input motion development, test procedure, test results and comparisons with pre-test analysis

  14. Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method

    Science.gov (United States)

    Panesi, M.; Munafò, A.; Magin, T. E.; Jaffe, R. L.

    2014-07-01

    A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth's atmosphere. The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions. Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational energy and the translational energy. The multitemperature model fails to predict the correct thermochemical relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate coefficient for dissociation.

  15. Mechanical systems a unified approach to vibrations and controls

    CERN Document Server

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  16. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    International Nuclear Information System (INIS)

    Michaelides, P G; Apostolellis, P G; Fassois, S D

    2011-01-01

    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  17. Vibration-Based Damage Diagnosis in a Laboratory Cable-Stayed Bridge Model via an RCP-ARX Model Based Method

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, P G; Apostolellis, P G; Fassois, S D, E-mail: mixail@mech.upatras.gr, E-mail: fassois@mech.upatras.gr [Laboratory for Stochastic Mechanical Systems and Automation (SMSA), Department of Mechanical and Aeronautical Engineering, University of Patras, GR 265 00 Patras (Greece)

    2011-07-19

    Vibration-based damage detection and identification in a laboratory cable-stayed bridge model is addressed under inherent, environmental, and experimental uncertainties. The problem is challenging as conventional stochastic methods face difficulties due to uncertainty underestimation. A novel method is formulated based on identified Random Coefficient Pooled ARX (RCP-ARX) representations of the dynamics and statistical hypothesis testing. The method benefits from the ability of RCP models in properly capturing uncertainty. Its effectiveness is demonstrated via a high number of experiments under a variety of damage scenarios.

  18. Fluid elastic vibration of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Kim, S. N.; Jung, S. Y.

    1998-01-01

    Since utilities and fuel venders have adopted the fuel design of high burn-up and improved thermal margin flow mixing vane, several PWR nuclear power plants have in recent years experienced fretting wear fuel rod failure due to flow induced vibration. Flow induced vibration can be resulted from fluidelastic instability, periodic shedding, turbulence-induced excitation, and acoustic resonance (1). Among these mechanisms found in the core of nuclear power plant, the governing mechanism that is fluidelastic instability, could be inferred from the analysis of fuel failure patterns. Therefore, to simulate the fuel failure in nuclear power plants, Tanaka's model (2) was chosen as most suitable one, which is well explaining the damage pattern, in particular it's second row damage characteristics. In the model, unsteady fluid dynamic forces acting on the vibrating cyclinders were included which consists of the inertia forces due to the added mass of fluid, damping forces of fluid in phase to the cylinder vibrating velocity, and stiffness forces proportional to cylinder displacements. However, the model did not account for radiation effect-spring forces deflection. So, the model was modified to account for the spring force relaxation due to radiation exposure. The stiffness of spring was fitted with experimental data. Finally the critical velocities were calculated with the modified spring force at beginning and end of cycle

  19. Review of magnetostrictive vibration energy harvesters

    Science.gov (United States)

    Deng, Zhangxian; Dapino, Marcelo J.

    2017-10-01

    The field of energy harvesting has grown concurrently with the rapid development of portable and wireless electronics in which reliable and long-lasting power sources are required. Electrochemical batteries have a limited lifespan and require periodic recharging. In contrast, vibration energy harvesters can supply uninterrupted power by scavenging useful electrical energy from ambient structural vibrations. This article reviews the current state of vibration energy harvesters based on magnetostrictive materials, especially Terfenol-D and Galfenol. Existing magnetostrictive harvester designs are compared in terms of various performance metrics. Advanced techniques that can reduce device size and improve performance are presented. Models for magnetostrictive devices are summarized to guide future harvester designs.

  20. Nonlinear finite element modeling of vibration control of plane rod-type structural members with integrated piezoelectric patches

    Science.gov (United States)

    Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.

    2018-05-01

    This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.

  1. MR Damper Controlled Vibration Absorber for Enhanced Mitigation of Harmonic Vibrations

    Directory of Open Access Journals (Sweden)

    Felix Weber

    2016-12-01

    Full Text Available This paper describes a semi-active vibration absorber (SVA concept based on a real-time controlled magnetorheological damper (MR-SVA for the enhanced mitigation of structural vibrations due to harmonic disturbing forces. The force of the MR damper is controlled in real-time to generate the frequency and damping controls according to the behaviour of the undamped vibration absorber for the actual frequency of vibration. As stiffness and damping emulations in semi-active actuators are coupled quantities the control is formulated to prioritize the frequency control by the controlled stiffness. The control algorithm is augmented by a stiffness correction method ensuring precise frequency control when the desired control force is constrained by the semi-active restriction and residual force of the MR damper. The force tracking task is solved by a model-based feed forward with feedback correction. The MR-SVA is numerically and experimentally validated for the primary structure with nominal eigenfrequency and when de-tuning of −10%, −5%, +5% and +10% is present. Both validations demonstrate that the MR-SVA improves the vibration reduction in the primary structure by up to 55% compared to the passive tuned mass damper (TMD. Furthermore, it is shown that the MR-SVA with only 80% of tuned mass leads to approximately the same enhanced performance while the associated increased relative motion amplitude of the tuned mass is more than compensated be the reduced dimensions of the mass. Therefore, the MR-SVA is an appropriate solution for the mitigation of tall buildings where the pendulum mass can be up to several thousands of metric tonnes and space for the pendulum damper is limited.

  2. 14th International Conference on Acoustics and Vibration of Mechanical Structures

    CERN Document Server

    Marinca, Vasile

    2018-01-01

    This book is a collection of papers presented at Acoustics and Vibration of Mechanical Structures 2017 – AVMS 2017 – highlighting the current trends and state-of-the-art developments in the field. It covers a broad range of topics, such as noise and vibration control, noise and vibration generation and propagation, the effects of noise and vibration, condition monitoring and vibration testing, modeling, prediction and simulation of noise and vibration, environmental and occupational noise and vibration, noise and vibration attenuators, as well as biomechanics and bioacoustics. The book also presents analytical, numerical and experimental techniques for evaluating linear and non-linear noise and vibration problems (including strong nonlinearity). It is primarily intended for academics, researchers and professionals, as well as PhD students in various fields of the acoustics and vibration of mechanical structures.

  3. Vibration behavior optimization of planetary gear sets

    Directory of Open Access Journals (Sweden)

    Farshad Shakeri Aski

    2014-12-01

    Full Text Available This paper presents a global optimization method focused on planetary gear vibration reduction by means of tip relief profile modifications. A nonlinear dynamic model is used to study the vibration behavior. In order to investigate the optimal radius and amplitude, Brute Force method optimization is used. One approach in optimization is straightforward and requires considerable computation power: brute force methods try to calculate all possible solutions and decide afterwards which one is the best. Results show the influence of optimal profile on planetary gear vibrations.

  4. Mathematical Modeling of a Transient Vibration Control Strategy Using a Switchable Mass Stiffness Compound System

    Directory of Open Access Journals (Sweden)

    Diego Francisco Ledezma-Ramirez

    2014-01-01

    Full Text Available A theoretical control strategy for residual vibration control resulting from a shock pulse is studied. The semiactive control strategy is applied in a piecewise linear compound model and involves an on-off logic to connect and disconnect a secondary mass stiffness system from the primary isolation device, with the aim of providing high energy dissipation for lightly damped systems. The compound model is characterized by an energy dissipation mechanism due to the inelastic collision between the two masses and then viscous damping is introduced and its effects are analyzed. The objective of the simulations is to evaluate the transient vibration response in comparison to the results for a passive viscously damped single degree-of-freedom system considered as the benchmark or reference case. Similarly the decay in the compound system is associated with an equivalent decay rate or logarithmic decrement for direct comparison. It is found how the compound system provides improved isolation compared to the passive system, and the damping mechanisms are explained.

  5. Vibration analysis diagnostics by continuous-time models: A case study

    International Nuclear Information System (INIS)

    Pedregal, Diego J.; Carmen Carnero, Ma.

    2009-01-01

    In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme

  6. Vibration analysis diagnostics by continuous-time models: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Pedregal, Diego J. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Diego.Pedregal@uclm.es; Carmen Carnero, Ma. [Escuela Tecnica Superior de Ingenieros Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain)], E-mail: Carmen.Carnero@uclm.es

    2009-02-15

    In this paper a forecasting system in condition monitoring is developed based on vibration signals in order to improve the diagnosis of a certain critical equipment at an industrial plant. The system is based on statistical models capable of forecasting the state of the equipment combined with a cost model consisting of defining the time of preventive replacement when the minimum of the expected cost per unit of time is reached in the future. The most relevant features of the system are that (i) it is developed for bivariate signals; (ii) the statistical models are set up in a continuous-time framework, due to the specific nature of the data; and (iii) it has been developed from scratch for a real case study and may be generalised to other pieces of equipment. The system is thoroughly tested on the equipment available, showing its correctness with the data in a statistical sense and its capability of producing sensible results for the condition monitoring programme.

  7. Tool-specific performance of vibration-reducing gloves for attenuating fingers-transmitted vibration

    Science.gov (United States)

    Welcome, Daniel E.; Dong, Ren G.; Xu, Xueyan S.; Warren, Christopher; McDowell, Thomas W.

    2016-01-01

    BACKGROUND Fingers-transmitted vibration can cause vibration-induced white finger. The effectiveness of vibration-reducing (VR) gloves for reducing hand transmitted vibration to the fingers has not been sufficiently examined. OBJECTIVE The objective of this study is to examine tool-specific performance of VR gloves for reducing finger-transmitted vibrations in three orthogonal directions (3D) from powered hand tools. METHODS A transfer function method was used to estimate the tool-specific effectiveness of four typical VR gloves. The transfer functions of the VR glove fingers in three directions were either measured in this study or during a previous study using a 3D laser vibrometer. More than seventy vibration spectra of various tools or machines were used in the estimations. RESULTS When assessed based on frequency-weighted acceleration, the gloves provided little vibration reduction. In some cases, the gloves amplified the vibration by more than 10%, especially the neoprene glove. However, the neoprene glove did the best when the assessment was based on unweighted acceleration. The neoprene glove was able to reduce the vibration by 10% or more of the unweighted vibration for 27 out of the 79 tools. If the dominant vibration of a tool handle or workpiece was in the shear direction relative to the fingers, as observed in the operation of needle scalers, hammer chisels, and bucking bars, the gloves did not reduce the vibration but increased it. CONCLUSIONS This study confirmed that the effectiveness for reducing vibration varied with the gloves and the vibration reduction of each glove depended on tool, vibration direction to the fingers, and finger location. VR gloves, including certified anti-vibration gloves do not provide much vibration reduction when judged based on frequency-weighted acceleration. However, some of the VR gloves can provide more than 10% reduction of the unweighted vibration for some tools or workpieces. Tools and gloves can be matched for

  8. Some developments in core-barrel vibration diagnostics

    International Nuclear Information System (INIS)

    Pazsit, I.; Karlsson, J.; Garis, N.S.

    1998-01-01

    Diagnostics of core-barrel motion, and notably that of beam mode vibrations, has been usually performed by two distinct concepts. One strategy is to perform a qualitative analysis in the time domain, using descriptors such as vibration trajectory, probability distributions etc. This approach is rather realistic in the sense that it allows for general anisotropic pendular vibrations. The other strategy is to use frequency analysis with the goal of quantifying certain vibration properties. However, this second approach could so far handle only isotropic and unidirectional vibrations. In this paper we propose a unification of these two approaches by introducing a model by which general anisotropic vibrations can be quantified in the frequency domain. However, when separating the noise components prior to the frequency analysis, we suggest the use of symmetry properties of the noise in the time domain, based on reactor physics assumptions, as opposed to the earlier methods that use statistical independence of the components. Due to the unified approach, a combination of time and frequency domain analysis methods can be used for presentation and maximum information extraction

  9. A Study on the Vibration Measurement and Analysis of Rotating Machine Foundations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Kyu Sik; Suh, Young Pyo; Cho, Chul Hwan; Kim, Sung Taeg; Lee, Myung Kyu [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1996-12-31

    To search for the cause of vibration problem of rotating machine in the power plant, first the rotating machine is classified according to their type and each vibration characteristic is reviewed. The criteria for the evaluation of mechanical vibration effect on the structure and human being during the design of machine foundation is described below. The foundation of rotating machine is classified according to its shape and some factors are described which should be considered during dynamic modeling analysis for its correct result. Also the methods of incorporating foundation vibration into mechanical vibration analysis are reviewed. Type of vibration measurement and analysis which is used to find out the dynamic characteristic of structure is described in accordance with its signal processing and measuring method. Measurement of vibration and its analysis when there occurs real vibration troubles in power plant are compared with the results of numerical modeling as case studies. (author). 16 refs., 23 figs.

  10. Substrate vibrations during courtship in three Drosophila species.

    Directory of Open Access Journals (Sweden)

    Valerio Mazzoni

    Full Text Available While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.

  11. Vibrational analysis of a shipboard free electron laser beam path

    OpenAIRE

    Gallant, Bryan M.

    2011-01-01

    This thesis explores the deployment of a free electron laser (FEL) weapon system in a shipboard vibration environment. A concept solid model of a shipboard FEL is developed and used as a basis for a finite element model which is subjected to vibration simulation in MATLAB. Vibration input is obtained from ship shock trials data and wave excited motion data from ship motion simulation software. Emphasis is placed on the motion of electron beam path components of the FEL and the feasibility of ...

  12. Theory of vibration protection

    CERN Document Server

    Karnovsky, Igor A

    2016-01-01

    This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...

  13. Pacinian channel mediated vasoconstriction in the fingers during vibration exposure

    OpenAIRE

    Ye, Ying

    2013-01-01

    A review of the literature showed that acute vascular responses to hand-transmitted vibration depend on the magnitude, the frequency, and the duration of the vibration but the mechanisms involved in the immediate vasoconstriction on exposure to vibration are not clear. This research was designed to advance understanding of the relation between the characteristics of vibration and changes in vascular circulation on exposed hands, and to develop a model of the mechanoreceptor channel involved i...

  14. Molecular dissociation and nascent product state distributions detected with atomic wavepacket interferometry and parametric four-wave mixing: Rb2 predissociation observed by quantum beating in Rb at 18.2 THz

    International Nuclear Information System (INIS)

    Xiao, Y; Senin, A A; Ricconi, B J; Kogler, R; Zhu, C J; Eden, J G

    2008-01-01

    Dissociation of a diatomic molecule and the excited-state distribution of the nascent atomic fragments can be detected and characterized by atomic wavepacket interferometry and a coherent nonlinear optical process, such as parametric four-wave mixing (PFWM), in ultrafast pump-probe experiments. Underlying these experiments is a reliance on atom-atom interaction to alter the properties of an atomic wavepacket which, in turn, impacts the phase and amplitude of a coherent optical signal. Specifically, quantum beating in the atomic species provides a sensitive, in situ probe of molecular dissociation by detecting approaching dissociation fragments through long-range dipole-dipole interaction. The resulting influence of this interaction on the amplitude and phase of the quantum beating is observed in temporal or Fourier domains by probing the wavepacket by interferometry and PFWM with 100-150 fs laser pulses. The wavepacket thus serves as a detector of molecular dissociation fragments and the dynamics of atom-atom interactions are converted into the macroscopic domain by the PFWM signal and idler waves. Femtosecond pump-probe experiments are described in which the predissociation of electronically excited Rb 2 states in the ∼24 000-28 000 cm -1 interval, and the distribution of nascent atomic fragments into Rb excited states (7s, 5d, 6s, 4d and 5p) spanning an energy range >1.25 eV, have been observed in Rb vapour with atomic number densities of ∼6 x 10 13 -3 x 10 17 cm -3 . Quantum beating at 18.2 THz (corresponding to the Rb 7s-5d J (J = 5/2) energy defect of ∼608 cm -1 ) is superimposed onto the axially phase matched PFWM signal wave generated at λ S ∼ 420 nm (Rb 6 2 P J → 5 2 S 1/2 transitions) and recovered by Fourier analysis of the signal wave intensity as the pump-probe time delay (Δt) is scanned. The dominant exit channels for Rb 2 predissociation are found to be sensitive to the interval of internuclear separation R in which the molecular

  15. Vibration of machine

    International Nuclear Information System (INIS)

    Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo

    2001-09-01

    This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.

  16. Vibration-free stirling cryocooler for high definition microscopy

    Science.gov (United States)

    Riabzev, S. V.; Veprik, A. M.; Vilenchik, H. S.; Pundak, N.; Castiel, E.

    2009-12-01

    The normal operation of high definition Scanning Electronic and Helium Ion microscope tools often relies on maintaining particular components at cryogenic temperatures. This has traditionally been accomplished by using liquid coolants such as liquid Nitrogen. This inherently limits the useful temperature range to above 77 K, produces various operational hazards and typically involves elevated ownership costs, inconvenient logistics and maintenance. Mechanical coolers, over-performing the above traditional method and capable of delivering required (even below 77 K) cooling to the above cooled components, have been well-known elsewhere for many years, but their typical drawbacks, such as high purchasing cost, cooler size, low reliability and high power consumption have so far prevented their wide-spreading. Additional critical drawback is inevitable degradation of imagery performance originated from the wideband vibration export as typical for the operation of the mechanical cooler incorporating numerous movable components. Recent advances in the development of reliable, compact, reasonably priced and dynamically quiet linear cryogenic coolers gave rise to so-called "dry cooling" technologies aimed at eventually replacing the traditional use of outdated liquid Nitrogen cooling facilities. Although much improved these newer cryogenic coolers still produce relatively high vibration export which makes them incompatible with modern high definition microscopy tools. This has motivated further research activity towards developing a vibration free closed-cycle mechanical cryocooler. The authors have successfully adapted the standard low vibration Stirling cryogenic refrigerator (Ricor model K535-LV) delivering 5 W@40 K heat lift for use in vibration-sensitive high definition microscopy. This has been achieved by using passive mechanical counterbalancing of the main portion of the low frequency vibration export in combination with an active feed-forward multi

  17. Refined 2D and Exact 3D Shell Models for the Free Vibration Analysis of Single- and Double-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Salvatore Brischetto

    2015-12-01

    Full Text Available The present paper talks about the free vibration analysis of simply supported Single- and Double-Walled Carbon Nanotubes (SWCNTs and DWCNTs. Refined 2D Generalized Differential Quadrature (GDQ shell methods and an exact 3D shell model are compared. A continuum approach (based on an elastic three-dimensional shell model is used for natural frequency investigation of SWCNTs and DWCNTs. SWCNTs are defined as isotropic cylinders with an equivalent thickness and Young modulus. DWCNTs are defined as two concentric isotropic cylinders (with an equivalent thickness and Young modulus which can be linked by means of the interlaminar continuity conditions or by means of van der Waals interactions. Layer wise approaches are mandatory for the analysis of van der Waals forces in DWCNTs. The effect of van der Waals interaction between the two cylinders is shown for different DWCNT lengths, diameters and vibration modes. The accuracy of beam models and classical 2D shell models in the free vibration analysis of SWCNTs and DWCNTs is also investigated.

  18. Vibrational frame transformation for electron-molecule scattering

    International Nuclear Information System (INIS)

    Greene, C.H.; Jungen, C.

    1985-01-01

    The frame-transformation theory of electron interaction with a vibrating diatomic core is extended to allow for energy dependence of its parameters. The Born-Oppenheimer separation of electron and nuclear motion is preserved when the electron penetrates the molecular core. The extended theory reproduces the boomerang-model treatment of vibrational excitation in resonant e-N 2 collisions

  19. Influence of foundation type and soil stratification on ground vibration - a parameter study

    DEFF Research Database (Denmark)

    Andersen, Lars Vabbersgaard; Prins, Joeri Nithan; Persson, Kent

    2016-01-01

    a significant influence. Thus, in order to achieve fair accuracy in the prediction of ground vibration caused by sources vibrating on a foundation, accurate models of the ground and foundation may be required. However, for assessment of vibration in the design phase, simple models may be preferred. The paper...

  20. Vibration of mechanically-assembled 3D microstructures formed by compressive buckling

    Science.gov (United States)

    Wang, Heling; Ning, Xin; Li, Haibo; Luan, Haiwen; Xue, Yeguang; Yu, Xinge; Fan, Zhichao; Li, Luming; Rogers, John A.; Zhang, Yihui; Huang, Yonggang

    2018-03-01

    Micro-electromechanical systems (MEMS) that rely on structural vibrations have many important applications, ranging from oscillators and actuators, to energy harvesters and vehicles for measurement of mechanical properties. Conventional MEMS, however, mostly utilize two-dimensional (2D) vibrational modes, thereby imposing certain limitations that are not present in 3D designs (e.g., multi-directional energy harvesting). 3D vibrational micro-platforms assembled through the techniques of controlled compressive buckling are promising because of their complex 3D architectures and the ability to tune their vibrational behavior (e.g., natural frequencies and modes) by reversibly changing their dimensions by deforming their soft, elastomeric substrates. A clear understanding of such strain-dependent vibration behavior is essential for their practical applications. Here, we present a study on the linear and nonlinear vibration of such 3D mesostructures through analytical modeling, finite element analysis (FEA) and experiment. An analytical solution is obtained for the vibration mode and linear natural frequency of a buckled ribbon, indicating a mode change as the static deflection amplitude increases. The model also yields a scaling law for linear natural frequency that can be extended to general, complex 3D geometries, as validated by FEA and experiment. In the regime of nonlinear vibration, FEA suggests that an increase of amplitude of external loading represents an effective means to enhance the bandwidth. The results also uncover a reduced nonlinearity of vibration as the static deflection amplitude of the 3D structures increases. The developed analytical model can be used in the development of new 3D vibrational micro-platforms, for example, to enable simultaneous measurement of diverse mechanical properties (density, modulus, viscosity etc.) of thin films and biomaterials.

  1. Minimization of Surface Roughness and Tool Vibration in CNC Milling Operation

    Directory of Open Access Journals (Sweden)

    Sukhdev S. Bhogal

    2015-01-01

    Full Text Available Tool vibration and surface roughness are two important parameters which affect the quality of the component and tool life which indirectly affect the component cost. In this paper, the effect of cutting parameters on tool vibration, and surface roughness has been investigated during end milling of EN-31 tool steel. Response surface methodology (RSM has been used to develop mathematical model for predicting surface finish, tool vibration and tool wear with different combinations of cutting parameters. The experimental results show that feed rate is the most dominating parameter affecting surface finish, whereas cutting speed is the major factor effecting tool vibration. The results of mathematical model are in agreement with experimental investigations done to validate the mathematical model.

  2. Model-based design of active vibration compensation in the passenger car powertrain; Modellbasierte Auslegung der aktiven Schwingungskompensation im Kfz-Antriebsstrang

    Energy Technology Data Exchange (ETDEWEB)

    Quernheim, L.

    2008-07-01

    Modern passenger cars have increasingly higher driving torques while the rotary mass of the powertrain is reduced. This induces vibrations. Especially during load change operations, the driving comfort may therefore be impaired by jolting. To reduce these vibrations, the engine control unit has integrated control functions that influence the driving characteristics. Until now, these control functions were adjusted empirically by the application engineer during time-consuming test drives, but this option is failing as development times are getting shorter while there are increasing numbers of car lines. The author therefore presents a new option, i.e. optimisation of the comfort functions by means of model-based control unit design. The example of an active vibration damper is presented to illustrate this model-based procedure, and vehicle analyses were carried out with the intention to show that this method supports the application engineer in his work efficiently. (orig.)

  3. A mathematical model for estimating the vibration due to basting in Sarcheshmeh Copper Mine

    International Nuclear Information System (INIS)

    Hossaini, M. F.; Javaherian, A.; Pourghasemi Sagand, M.

    2002-01-01

    Ground vibration due to blasting is the research subject of many investigations. A lot of works have been done in order to estimate the quality and quantity of this blasting outcome. Mathematical models proposed by various investigators are a noticeable result of these investigations. In this paper, the origin of these mathematical models are studied and the short comes are pointed out. With aid of real data a new empirical model has been proposed. This model is some modification of the previous ones with some different parameters. This investigation is based on analyzing the data obtained by operating 14 blasts in Sarcheshmeh Copper Mine whose data have been collected by seismographs installed in the area. In the proposed model, instead of the amount of charge exploded in each delay the amount of charge the vibration due to which is designed to facilitate application of a radial confining pressure to a grouted bolt while pulling it axially. During the test, both axial displacement of the bolt as well as the radial dilation of the grout was monitored. Few deformed bolts were designed and manufactured to study the effect of the shape of the ribs. While pull out, the cement that is captured between lugs will shear which in turn emphasizes the importance of shear strength of the grout annulus. In this report, details of the laboratory test results are presented and conclusions are given based on the obtained results

  4. Vibration dynamics of single atomic nanocontacts

    International Nuclear Information System (INIS)

    Khater, A; Bourahla, B; Tigrine, R

    2007-01-01

    The motivation for this work is to introduce a model for an atomic nanocontact, whereby its mechanical properties can be analysed via the local spectra. The model system consists of two sets of triple parallel semi-infinite atomic chains joined by a single atom in between. We calculate the vibration spectra and the local densities of vibration states, in the harmonic approximation, for the irreducible set of sites that constitute the nanocontact domain. The nanocontact observables are numerically calculated for different cases of elastic hardening and softening, to investigate how the local dynamics can respond to changes in the microscopic environment on the domain. We have also calculated the phonon scattering and coherent conductance at the nanocontact, derived in a Landauer-Buettiker matrix approach. The analysis of the spectra, of the densities of vibration states, and of the phonon conductance, identifies characteristic features and demonstrates the central role of a core subset of sites in the nanocontact domain

  5. Active vibration control based on piezoelectric smart composite

    International Nuclear Information System (INIS)

    Gao, Le; Lu, Qingqing; Fei, Fan; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2013-01-01

    An aircraft’s vertical fin may experience dramatic buffet loads in high angle of attack flight conditions, and these buffet loads would cause huge vibration and dynamic stress on the vertical fin structure. To reduce the dynamic vibration of the vertical fin structure, macro fiber composite (MFC) actuators were used in this paper. The drive moment equations and sensing voltage equations of the MFC actuators were developed. Finite element analysis models based on three kinds of models of simplified vertical fin structures with surface-bonded MFC actuators were established in ABAQUS. The equivalent damping ratio of the structure was employed in finite element analysis, in order to measure the effectiveness of vibration control. Further, an open-loop test for the active vibration control system of the vertical fin with MFC actuators was designed and developed. The experimental results validated the effectiveness of the MFC actuators as well as the developed methodology. (paper)

  6. Vibrational analysis of single-layered graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Sakhaee-Pour, A; Ahmadian, M T [Center of Excellence in Design, Robotics and Automation (CEDRA), Department of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Naghdabadi, R [Department of Mechanical Engineering and Institute for Nano Science and Technology, Sharif University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: sakhaee@alum.sharif.edu, E-mail: naghdabd@sharif.edu

    2008-02-27

    A molecular structural mechanics method has been implemented to investigate the vibrational behavior of single-layered graphene sheets. By adopting this approach, mode shapes and natural frequencies are obtained. Vibrational analysis is performed with different chirality and boundary conditions. Numerical results from the atomistic modeling are employed to develop predictive equations via a statistical nonlinear regression model. With the proposed equations, fundamental frequencies of single-layered graphene sheets with considered boundary conditions can be predicted within 3% difference with respect to the atomistic simulation.

  7. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  8. Study of flow induce vibration inside 3.5 inch hard disk drives

    Directory of Open Access Journals (Sweden)

    Wichitpon Seepangmon

    2014-06-01

    Full Text Available This study focused on flow induced vibration of head stack assembly (HSA in a 3.5 inch hard disk drive with 5 disks and 10 read/write heads. We studied the effects of air flow on gimbal flex and resonance on arm. The comparison of vibrations on slider between the normal model and the experiment has been done for verifying the model. The peaks of frequency in experiment match the normal model at 1,040 1,320 and 1,400 Hz respectively. After that, the RNG K-ε turbulence model was used to determine the turbulent air flow of 7,200 rpm hard disk drive. The comparison between the normal model and the model with spoiler was investigated by using, computational fluid dynamics software (ANSYS and FLUENT. The results shown velocity magnitudes at the arm were decreased by 0.725 - 57.689 % and pressure dropped by 74.028 - 87.222 %. The velocity magnitudes at the gimbal flex were decreased by 5.522 - 14.291 % and pressure dropped by 48.440 - 82.947 %. The peak of vibrations on arm and gimbal flex was occurred at the frequency 1200 Hz. The model with spoiler could reduce vibration at arm by 2.56 - 95.601 % and reduce vibration at gimbal flex by 4.065 - 95.503 %. In the conclusion, the model with a spoiler could decrease the vibration at all surface of the arm and gimbal flex due to the velocity and pressure reduction[1][4].

  9. A microscopic derivation of nuclear collective rotation-vibration model and its application to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gulshani, P., E-mail: matlap@bell.net [NUTECH Services, 3313 Fenwick Crescent, Mississauga, Ontario, L5L 5N1 (Canada)

    2016-07-07

    We derive a microscopic version of the successful phenomenological hydrodynamic model of Bohr-Davydov-Faessler-Greiner for collective rotation-vibration motion of an axially symmetric deformed nucleus. The derivation is not limited to small oscillation amplitude. The nuclear Schrodinger equation is canonically transformed to collective co-ordinates, which is then linearized using a constrained variational method. The associated constraints are imposed on the wavefunction rather than on the particle co-ordinates. The approach yields three self-consistent, time-reversal invariant, cranking-type Schrodinger equations for the rotation-vibration and intrinsic motions, and a self-consistency equation. For harmonic oscillator mean-field potentials, these equations are solved in closed forms for excitation energy, cut-off angular momentum, and other nuclear properties for the ground-state rotational band in some deformed nuclei. The results are compared with measured data.

  10. Power flow prediction in vibrating systems via model reduction

    Science.gov (United States)

    Li, Xianhui

    This dissertation focuses on power flow prediction in vibrating systems. Reduced order models (ROMs) are built based on rational Krylov model reduction which preserve power flow information in the original systems over a specified frequency band. Stiffness and mass matrices of the ROMs are obtained by projecting the original system matrices onto the subspaces spanned by forced responses. A matrix-free algorithm is designed to construct ROMs directly from the power quantities at selected interpolation frequencies. Strategies for parallel implementation of the algorithm via message passing interface are proposed. The quality of ROMs is iteratively refined according to the error estimate based on residual norms. Band capacity is proposed to provide a priori estimate of the sizes of good quality ROMs. Frequency averaging is recast as ensemble averaging and Cauchy distribution is used to simplify the computation. Besides model reduction for deterministic systems, details of constructing ROMs for parametric and nonparametric random systems are also presented. Case studies have been conducted on testbeds from Harwell-Boeing collections. Input and coupling power flow are computed for the original systems and the ROMs. Good agreement is observed in all cases.

  11. Mechanical behaviour of a fuel cell stack under vibrating conditions linked to aircraft applications part II: Three-dimensional modelling

    Energy Technology Data Exchange (ETDEWEB)

    Rouss, Vicky; Charon, Willy [M3M, University of Technology Belfort - Montbeliard (France); FCLAB, Rue Thierry Mieg, F 90010 Belfort, Cedex (France); Candusso, Denis [INRETS, The French National Institute for Transport and Safety Research (France); FCLAB, Rue Thierry Mieg, F 90010 Belfort, Cedex (France)

    2008-11-15

    The implementation of fuel cells (FC) in transportation systems such as airplanes requires better understanding of their mechanical behaviour in vibrating environment. To this end, a FC stack was tested on a vibrating platform for all three orthogonal axes. The experimental procedure is described in the first part of the paper. This second part of the paper demonstrates how the experimental data collected can be used to create a three-dimensional, multi-input and multi-output model based on the Artificial Neural Network (ANN) approach. Indeed FCs are nonlinear mechanical systems, difficult to be physically modelled. The ANN methodology which depends strictly on raw data is a particularly interesting alternative solution to model FCs, for example, for monitoring purpose. The ANN model is described along with the training, pruning and validation stages. The results are exposed and commented. (author)

  12. A Summary Review of Correlations between Temperatures and Vibration Properties of Long-Span Bridges

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2014-01-01

    Full Text Available The shift of modal parameters induced by temperature fluctuation may mask the changes of vibration properties caused by structural damage and result in false structural condition identification. Thoroughly understanding the temperature effects on vibration properties of long-span bridges becomes an especially important issue before vibration-based damage detection methodologies are applied in real bridges. This paper presents an overview of current research activities and developments in the field of correlations between temperatures and vibration properties of long-span bridges. The theoretical derivation methods using classical structural dynamics and closed-form formulations are first briefly introduced. Then the trend analysis methods that are intended to extract the degree of variability in vibration property under temperature variation for different bridges by numerical analysis, laboratory test, or field monitoring are reviewed in detail. Following that, the development of quantitative models to quantify the temperature influence on vibration properties is discussed including the linear model, nonlinear model, and learning model. Finally, some promising research efforts for promoting the study of correlations between temperatures and vibration properties of long-span bridges are suggested.

  13. Vibration energy absorption in the whole-body system of a tractor operator.

    Science.gov (United States)

    Szczepaniak, Jan; Tanaś, Wojciech; Kromulski, Jacek

    2014-01-01

    Many people are exposed to whole-body vibration (WBV) in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA). The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 - 4.16 ms(-1).

  14. Vibration induced sliding: theory and experiment for a beam with a spring-loaded mass

    DEFF Research Database (Denmark)

    Miranda, Erik; Thomsen, Jon Juel

    1998-01-01

    The study sets up a simple model for predicting vibration induced sliding of mass, and provides quantitative experimental evidence for the validity of the model. The results lend confidence to recent theoretical developments on using vibration induced sliding for passive vibration damping, and co...

  15. Anti-vibration gloves?

    Science.gov (United States)

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.

  16. Active control of noise radiation from vibrating structures

    DEFF Research Database (Denmark)

    Mørkholt, Jakob

    developed, based on the theory of radiation filters for estimating the sound radiation from multimodal vibrations. This model has then been used in simulations of optimal feedback control, with special emphasis of the stability margins of the optimal control scheme. Two different methods of designing...... optimal and robust discrete-time feedback controllers for active vibration control of multimodal structures have been compared. They have been showed to yield controllers with identical frequency response characteristics, even though they employ completely different methods of numerical solutions...... and result in different representations of the controllers. The Internal Model Control structure combined with optimal filtering is suggested as an alternative to state space optimal control techniques for designing robust optimal controllers for audio frequency vibration control of resonant structures....

  17. Simple model for vibration-translation exchange at high temperatures: effects of multiquantum transitions on the relaxation of a N2 gas flow behind a shock.

    Science.gov (United States)

    Aliat, A; Vedula, P; Josyula, E

    2011-02-01

    In this paper a simple model is proposed for computation of rate coefficients related to vibration-translation transitions based on the forced harmonic oscillator theory. This model, which is developed by considering a quadrature method, provides rate coefficients that are in very good agreement with those found in the literature for the high temperature regime (≳10,000 K). This model is implemented to study a one-dimensional nonequilibrium inviscid N(2) flow behind a plane shock by considering a state-to-state approach. While the effects of ionization and chemical reactions are neglected in our study, our results show that multiquantum transitions have a great influence on the relaxation of the macroscopic parameters of the gas flow behind the shock, especially on vibrational distributions of high levels. All vibrational states are influenced by multiquantum processes, but the effective number of transitions decreases inversely according to the vibrational quantum number. For the initial conditions considered in this study, excited electronic states are found to be weakly populated and can be neglected in modeling. Moreover, the computing time is considerably reduced with the model described in this paper compared to others found in the literature. ©2011 American Physical Society

  18. Floor Vibrations - as Induced and Reduced by Humans

    DEFF Research Database (Denmark)

    Pedersen, Lars

    . As for dynamic loads focus is placed on heel impact excitation and actions of jumping people causing floor vibrations. As for interaction between stationary humans and the vibrating floor focus is on modelling humans as oscillating spring-mass-damper systems attached to the floor rather than as simple added mass...

  19. Optimal Vibration Control for Tracked Vehicle Suspension Systems

    Directory of Open Access Journals (Sweden)

    Yan-Jun Liang

    2013-01-01

    Full Text Available Technique of optimal vibration control with exponential decay rate and simulation for vehicle active suspension systems is developed. Mechanical model and dynamic system for a class of tracked vehicle suspension vibration control is established and the corresponding system of state space form is described. In order to prolong the working life of suspension system and improve ride comfort, based on the active suspension vibration control devices and using optimal control approach, an optimal vibration controller with exponential decay rate is designed. Numerical simulations are carried out, and the control effects of the ordinary optimal controller and the proposed controller are compared. Numerical simulation results illustrate the effectiveness of the proposed technique.

  20. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  1. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube

    International Nuclear Information System (INIS)

    Hu, Z L; Guo, X M; Ru, C Q

    2007-01-01

    An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs

  2. Reduction of vibration forces transmitted from a radiator cooling fan to a vehicle body

    Science.gov (United States)

    Lim, Jonghyuk; Sim, Woojeong; Yun, Seen; Lee, Dongkon; Chung, Jintai

    2018-04-01

    This article presents methods for reducing transmitted vibration forces caused by mass unbalance of the radiator cooling fan during vehicle idling. To identify the effects of mass unbalance upon the vibration characteristics, vibration signals of the fan blades were experimentally measured both with and without an added mass. For analyzing the vibration forces transmitted to the vehicle body, a dynamic simulation model was established that reflected the vibration characteristics of the actual system. This process included a method described herein for calculating the equivalent stiffness and the equivalent damping of the shroud stators and rubber mountings. The dynamic simulation model was verified by comparing its results with experimental results of the radiator cooling fan. The dynamic simulation model was used to analyze the transmitted vibration forces at the rubber mountings. Also, a measure was established to evaluate the effects of varying the design parameters upon the transmitted vibration forces. We present design guidelines based on these analyses to reduce the transmitted vibration forces of the radiator cooling fan.

  3. Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System

    OpenAIRE

    Nengqi Xiao; Ruiping Zhou; Xiang Xu; Xichen Lin

    2016-01-01

    This study analyzes the characteristics of hybrid propulsion shafting and builds mathematical models and vibration equations of shafting using the lumped parameter method. Main focus is on the asymmetric double diesel propulsion shafting operation process and the impact of the phase angle and motor excitation on torsional vibration of shafting. Model result is validated by testing results conducted on double diesel propulsion shafting bench. Mathematical model and model-building methods of sh...

  4. Nonlinear mathematical modeling of vibrating motion of nanomechanical cantilever active probe

    Directory of Open Access Journals (Sweden)

    Reza Ghaderi

    Full Text Available Nonlinear vibration response of nanomechanical cantilever (NMC active probes in atomic force microscope (AFM application has been studied in the amplitude mode. Piezoelectric layer is placed piecewise and as an actuator on NMC. Continuous beam model has been chosen for analysis with regard to the geometric discontinuities of piezoelectric layer attachment and NMC's cross section. The force between the tip and the sample surface is modeled using Leonard-Jones potential. Assuming that cantilever is inclined to the sample surface, the effect of nonlinear force on NMC is considered as a shearing force and the concentrated bending moment is regarded at the end. Nonlinear frequency response of NMC is obtained close to the sample surface using the dynamic modeling. It is then become clear that the distance and angle of NMC, the probe length, and the geometric dimensions of piezoelectric layer can affect frequency response bending of the curve.

  5. An FEM-based AI approach to model parameter identification for low vibration modes of wind turbine composite rotor blades

    Science.gov (United States)

    Navadeh, N.; Goroshko, I. O.; Zhuk, Y. A.; Fallah, A. S.

    2017-11-01

    An approach to construction of a beam-type simplified model of a horizontal axis wind turbine composite blade based on the finite element method is proposed. The model allows effective and accurate description of low vibration bending modes taking into account the effects of coupling between flapwise and lead-lag modes of vibration transpiring due to the non-uniform distribution of twist angle in the blade geometry along its length. The identification of model parameters is carried out on the basis of modal data obtained by more detailed finite element simulations and subsequent adoption of the 'DIRECT' optimisation algorithm. Stable identification results were obtained using absolute deviations in frequencies and in modal displacements in the objective function and additional a priori information (boundedness and monotony) on the solution properties.

  6. Design of a Maglev Vibration Test Platform for the Research of Maglev Vehicle-girder Coupled Vibration Problem

    Directory of Open Access Journals (Sweden)

    Zhou Danfeng

    2017-01-01

    Full Text Available The maglev vehicle-girder coupled vibration problem has been encountered in many maglev test or commercial lines, which significantly degrade the performance of the maglev train. In previous research on the principle of the coupled vibration problem, it has been discovered that the fundamental model of the maglev girder can be simplified as a series of mass-spring resonators of different but related resonance frequencies, and that the stability of the vehicle-girder coupled system can be investigated by separately examining the stability of each mass-spring resonator – electromagnet coupled system. Based on this conclusion, a maglev test platform, which includes a single electromagnetic suspension control system, is built for experimental study of the coupled vibration problem. The guideway of the test platform is supported by a number of springs so as to change its flexibility. The mass of the guideway can also be changed by adjusting extra weights attached to it. By changing the flexibility and mass of the guideway, the rules of the maglev vehicle-girder coupled vibration problem are to be examined through experiments, and related theory on the vehicle-girder self-excited vibration proposed in previous research is also testified.

  7. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.C.; Guillou, J.P.

    1995-01-01

    In this paper, we present and industrial study of the dynamic behaviour of the piping system of a French 1300 M We nuclear power plant. High-amplitude vibrations had been noticed on a safeguard system during the periodical operation startup tests. These vibrations, due to acoustical pump sources, cause fatigue-damage and it is therefore necessary to propose an estimation of the service-life of the piping and to propose modification of piping system to reduce vibrations. First, we define a mechanical model readjusted according to gauged vibratory speeds and construct a vibro-acoustic coupled model and a pump-behaviour model as a source of excitation. Second, we simulate a modification of the supports. The influence of this modification is analysed by comparison of the root mean square values of vibratory speeds and the stresses between the initial system and the modified system. 3 refs., 7 figs

  8. Vibrational properties of amorphous semiconductors

    International Nuclear Information System (INIS)

    Schulz, P.A.B.

    1985-01-01

    A model for the lattice dynamics of a-Si 1-X N X is introduced. This model is based on a Born hamiltonian, solved in the Bethe lattice approximation. Starting from the local density of vibrational states, we analize the infrared absoption spectra of this material. (author) [pt

  9. Forced vibration tests of a model foundation on rock ground

    International Nuclear Information System (INIS)

    Kisaki, N.; Siota, M.; Yamada, M.; Ikeda, A.; Tsuchiya, H.; Kitazawa, K.; Kuwabara, Y.; Ogiwara, Y.

    1983-01-01

    The response of very stiff structures, such as nuclear reactor buildings, to earthquake ground motion is significantly affected by radiation damping due to the soil-structure interaction. The radiation damping can be computed by vibration admittance theory or dynamical ground compliance theory. In order to apply the values derived from these theories to the practical problems, comparative studies between theoretical results and experimental results concerning the soil-structure interaction, especially if the ground is rock, are urgently needed. However, experimental results for rock are less easily obtained than theoretical ones. The purpose of this paper is to describe the harmonic excitation tests of a model foundation on rock and to describe the results of comparative studies. (orig./HP)

  10. MODELING OF EQUIVALENT STIFFNESS OF A MAGNETIC SPRING OF VIBRATION EXCITER BASED ON COAXIAL-LINEAR MOTOR

    Directory of Open Access Journals (Sweden)

    G.M. Golenkov

    2015-12-01

    Full Text Available Purpose. The research of the influence of value and direction of current on the equivalent spring magnetic force based on coaxial-linear motor (CLM – MS. Methodology. We carried out investigation of the equivalent harshness of magnetic spring with determination of electromechanical propulsion performance characteristics by the methods of computer modeling and experimental research of physical model of CLM – MS. The modeling of magnetic spring of CLM – MS is carried out by the finite-element method. The challenge is met as an axisymmetric challenge in cylindrical co-ordinates in magnetostatic approach. The experimental investigattion of the propulsion performance characteristics of magnetic spring is carried out on the test bench. Results. After the computer modeling and the experimental investigation of the electromechanical propulsion performance characteristics of magnetic spring the expressions of equivalent stiffness coefficient depending on the current in winding are obtained. The results of computer modeling are confirmed experimentally. Originality. The determination of equivalent stiffness coefficient of magnetic spring of vibration exciter based on coaxial-linear motor. Practical value. The obtained determination of equivalent stiffness coefficient of magnetic spring may be used in process of designing of vibration machines with devices for change of natural oscillation frequency.

  11. Ultra-low-vibration pulse-tube cryocooler system - cooling capacity and vibration

    Science.gov (United States)

    Ikushima, Yuki; Li, Rui; Tomaru, Takayuki; Sato, Nobuaki; Suzuki, Toshikazu; Haruyama, Tomiyoshi; Shintomi, Takakazu; Yamamoto, Akira

    2008-09-01

    This report describes the development of low-vibration cooling systems with pulse-tube (PT) cryocoolers. Generally, PT cryocoolers have the advantage of lower vibrations in comparison to those of GM cryocoolers. However, cooling systems for the cryogenic laser interferometer observatory (CLIO), which is a gravitational wave detector, require an operational vibration that is sufficiently lower than that of a commercial PT cryocooler. The required specification for the vibration amplitude in cold stages is less than ±1 μm. Therefore, during the development of low-vibration cooling systems for the CLIO, we introduced advanced countermeasures for commercial PT cryocoolers. The cooling performance and the vibration amplitude were evaluated. The results revealed that 4 K and 80 K PT cooling systems with a vibration amplitude of less than ±1 μm and cooling performance of 4.5 K and 70 K at heat loads of 0.5 W and 50 W, respectively, were developed successfully.

  12. Effect of vibrational states on nuclear level density

    International Nuclear Information System (INIS)

    Plujko, V. A.; Gorbachenko, O. M.

    2007-01-01

    Simple methods to calculate a vibrational enhancement factor of a nuclear level density with allowance for damping of collective state are considered. The results of the phenomenological approach and the microscopic quasiparticle-phonon model are compared. The practical method of calculation of a vibrational enhancement factor and level density parameters is recommended

  13. Finite Element Modeling of Vibrations in Canvas Paintings

    NARCIS (Netherlands)

    Chiriboga Arroyo, P.G.

    2013-01-01

    Preventing vibration damage from occurring to valuable and sensitive canvas paintings is of main concern for museums and art conservation institutions. This concern has grown in recent years due to the increasing demand of paintings for exhibitions worldwide and the concomitant need for their

  14. FEM Updating of Tall Buildings using Ambient Vibration Data

    DEFF Research Database (Denmark)

    Ventura, C. E.; Lord, J. F.; Turek, M.

    2005-01-01

    Ambient vibration testing is the most economical non-destructive testing method to acquire vibration data from large civil engineering structures. The purpose of this paper is to demonstrate how ambient vibration Modal Identification techniques can be effectively used with Model Updating tools...... to develop reliable finite element models of large civil engineering structures. A fifteen story and a forty-eight story reinforced concrete buildings are used as case studies for this purpose. The dynamic characteristics of interest for this study were the first few lateral and torsional natural frequencies...... the information provided in the design documentation of the building. Different parameters of the model were then modified using an automated procedure to improve the correlation between measured and calculated modal parameters. Careful attention was placed to the selection of the parameters to be modified...

  15. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    International Nuclear Information System (INIS)

    Sim, Kyuho; Park, Jisu; Jang, Seon-Jun

    2015-01-01

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance

  16. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  17. Vibrational and Rotational Energy Relaxation in Liquids

    DEFF Research Database (Denmark)

    Petersen, Jakob

    Vibrational and rotational energy relaxation in liquids are studied by means of computer simulations. As a precursor for studying vibrational energy relaxation of a solute molecule subsequent to the formation of a chemical bond, the validity of the classical Bersohn-Zewail model for describing......, the vibrational energy relaxation of I2 subsequent to photodissociation and recombination in CCl4 is studied using classical Molecular Dynamics simulations. The vibrational relaxation times and the time-dependent I-I pair distribution function are compared to new experimental results, and a qualitative agreement...... is found in both cases. Furthermore, the rotational energy relaxation of H2O in liquid water is studied via simulations and a power-and-work analysis. The mechanism of the energy transfer from the rotationally excited H2O molecule to its water neighbors is elucidated, i.e. the energy-accepting degrees...

  18. Neuropathic Pain-like Alterations in Muscle Nociceptor Function Associated with Vibration-induced Muscle Pain

    OpenAIRE

    Chen, Xiaojie; Green, Paul G.; Levine, Jon D.

    2010-01-01

    We recently developed a rodent model of the painful muscle disorders induced by occupational exposure to vibration. In the present study we used this model to evaluate the function of sensory neurons innervating the vibration-exposed gastrocnemius muscle. Activity of 74 vibration-exposed and 40 control nociceptors, with mechanical receptive fields in the gastrocnemius muscle, were recorded. In vibration-exposed rats ~15% of nociceptors demonstrated an intense and long-lasting barrage of actio...

  19. Vibration energy absorption in the whole-body system of a tractor operator

    Directory of Open Access Journals (Sweden)

    Jan Szczepaniak

    2014-06-01

    Full Text Available Many people are exposed to whole-body vibration (WBV in their occupational lives, especially drivers of vehicles such as tractor and trucks. The main categories of effects from WBV are perception degraded comfort interference with activities-impaired health and occurrence of motion sickness. Absorbed power is defined as the power dissipated in a mechanical system as a result of an applied force. The vibration-induced injuries or disorders in a substructure of the human system are primarily associated with the vibration power absorption distributed in that substructure. The vibration power absorbed by the exposed body is a measure that combines both the vibration hazard and the biodynamic response of the body. The article presents measurement method for determining vibration power dissipated in the human whole body system called Vibration Energy Absorption (VEA. The vibration power is calculated from the real part of the force-velocity cross-spectrum. The absorbed power in the frequency domain can be obtained from the cross-spectrum of the force and velocity. In the context of the vibration energy transferred to a seated human body, the real component reflects the energy dissipated in the biological structure per unit of time, whereas the imaginary component reflects the energy stored/released by the system. The seated human is modeled as a series/parallel 4-DOF dynamic models. After introduction of the excitation, the response in particular segments of the model can be analyzed. As an example, the vibration power dissipated in an operator has been determined as a function of the agricultural combination operating speed 1.39 – 4.16 ms[sup] -1 [/sup].

  20. Vibrational and vibronic coherences in the dynamics of the FMO complex

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaomeng; Kühn, Oliver, E-mail: oliver.kuehn@uni-rostock.de

    2016-12-20

    The coupled exciton–vibrational dynamics of a seven site Frenkel exciton model of the Fenna–Matthews–Olson (FMO) complex is investigated using a Quantum Master Equation approach. Thereby, one vibrational mode per monomer is treated explicitly as being part of the relevant system. Emphasis is put on the comparison of this model with that of a purely excitonic relevant system. Further, the effects of two different approximations to the exciton–vibrational basis are investigated, namely the one- and two-particle description. Analysis of the vibronic and vibrational density matrix in the site basis points to the importance of on- and inter-site coherences for the exciton transfer. Here, one- and two-particle approximations give rise to qualitatively different results.

  1. Topological material layout in plates for vibration suppression and wave propagation control

    DEFF Research Database (Denmark)

    Larsen, Anders Astrup; Laksafoss, B.; Jensen, Jakob Søndergaard

    2009-01-01

    We propose a topological material layout method to design elastic plates with optimized properties for vibration suppression and guided transport of vibration energy. The gradient-based optimization algorithm is based on a finite element model of the plate vibrations obtained using the Mindlin...

  2. Implementation of internal model based control and individual pitch control to reduce fatigue loads and tower vibrations in wind turbines

    Science.gov (United States)

    Mohammadi, Ebrahim; Fadaeinedjad, Roohollah; Moschopoulos, Gerry

    2018-05-01

    Vibration control and fatigue loads reduction are important issues in large-scale wind turbines. Identifying the vibration frequencies and tuning dampers and controllers at these frequencies are major concerns in many control methods. In this paper, an internal model control (IMC) method with an adaptive algorithm is implemented to first identify the vibration frequency of the wind turbine tower and then to cancel the vibration signal. Standard individual pitch control (IPC) is also implemented to compare the performance of the controllers in term of fatigue loads reduction. Finally, the performance of the system when both controllers are implemented together is evaluated. Simulation results demonstrate that using only IMC or IPC alone has advantages and can reduce fatigue loads on specific components. IMC can identify and suppress tower vibrations in both fore-aft and side-to-side directions, whereas, IPC can reduce fatigue loads on blades, shaft and yaw bearings. When both IMC and IPC are implemented together, the advantages of both controllers can be used. The aforementioned analysis and comparisons were not studied in literature and this study fills this gap. FAST, AreoDyn and Simulink are used to simulate the mechanical, aerodynamic and electrical aspects of wind turbine.

  3. FLOW-INDUCED VIBRATION IN PIPES: CHALLENGESS AND SOLUTIONS - A REVIEW

    Directory of Open Access Journals (Sweden)

    M. SIBA

    2016-03-01

    Full Text Available The Flow-induced vibration has recently been the topic of experimental, numerical, and theoretical studies. It was intended to implement better applications for controlling the flow using orifice technique. Having the flow under control, the orifice becomes an instrument for measuring the flow. The flow of all fluid such as water, oil, gas and vapours through an orifice was tested and mathematical models were developed adequately. The basic theme for these enormous studies was the need for the very accurate flow measurements through orifices. All experimental, theoretical, numerical, and analytical studies have agreed that there is more than one avenue to develop, modify, and enhance such measurements. However, one factor that affects the flow measurements is the vibration which was not treated as required until the mid-20th century due to enormous discoveries that damages could be rooted to vibration. Researchers have studied vibration and then proposed mathematical models in conjunction with the pressure and velocity measurements of the flowing fluids and then the effect of the vibration, induced or not induced, has been under continuous investigation. This paper is an attempt to review the previous studies regarding understanding the nature of the vibration and the possible effects of vibration on the flow and on the piping structure in order to limit the damage caused by the vibration. This study shows that the need for more experimental studies and more comprehensive analytical approaches are, in particular, very essential to develop better results.

  4. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  5. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  6. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    Science.gov (United States)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  7. Evaluation of flow-induced vibration of thermometer well for JOYO

    International Nuclear Information System (INIS)

    Isozaki, Kazunori; Tomita, Naoki

    1997-05-01

    Sodium leak accident of MONJU was caused high cycles fatigue damage of thermometer well by flow-induced vibration. It was due to the symmetric vortex shedding which was occurred rear flow of thermometer well. So, Thermometer wells installed in primary and secondary heat transport systems of JOYO were evaluated of flow-induced vibration. Evaluation of flow-induced vibration of thermometer well was done checking of flow-induced vibration base on authorized design report for JOYO, evaluation of summary flow-induced vibration by natural frequency of thermometer well in sodium as cantilever models, and evaluation based on small velocity rule of ASME Code Section III Appendix N-1300. By this result, thermometer wells (12B piping of secondary cooling system) were not satisfied requirement to avoid flow-induced vibration by small velocity rule. Therefore, Detailed vibration characteristic analysis, water flow-induced vibration test, dumping test and evaluation of structural integrity were carried out. These results, vibration amplitude of well on the tip was 0.13 mm (vibration non-dimensional amplitude of 0.015) and peak stress of 2.9 kg/mm 2 is occurred. Thermometer wells (12B piping of secondary cooling system) which occurred peak stress by flow vibration was confirmed enough to satisfy 5.3 kg/mm 2 of design fatigue limit. (author)

  8. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Flow induced vibration studies on Prototype Fast Breeder Reactor control plug model carried out. Black-Right-Pointing-Pointer Velocity similitude was followed for the study. Black-Right-Pointing-Pointer Frequencies and amplitude of vibrations of various control plug components measured. Black-Right-Pointing-Pointer Overall values of vibration are well within permissible limits. - Abstract: The construction of Prototype Fast Breeder Reactor (PFBR), a 500 MWe liquid sodium cooled reactor, is in progress at Kalpakkam in India. Control plug (CP) is located right above the core subassemblies in the hot pool. Control plug is an important component as many of the critical reactor parameters are sensed and controlled by the components housed in the control plug assembly. In PFBR primary circuit, components are basically thin walled, slender shells with diameter to thickness ratio ranging from 100 to 650. These components are prone to flow induced vibrations. The existence of free liquid (sodium) surfaces, which is the source of sloshing phenomenon and the operation of primary sodium pump in the primary pool are other potential sources of vibration of reactor components. Control plug is a hollow cylindrical shell structure and provides passages and support for 12 absorber rod drive mechanisms (ARDM) which consists of 9 control and safety rods and 3 diverse safety rods, 210 thermo wells to measure the sodium temperature at the exit of various fuel subassemblies, three failed fuel localization modules (FFLM) and acoustic detectors. It consists of a core cover plate (CCP), which forms the bottom end, two intermediate supports plate, i.e. lower stay plate (LSP) and upper stay plate (USP) and an outer shell. The CCP is located at a distance of 1.3 m from the core top. With such a gap, there will be long free hanging length of the thermocouple sleeves, Delayed neutron detector (DND) sampling tubes and ARDM shroud tubes and hence they are

  9. Fingers' vibration transmission and grip strength preservation performance of vibration reducing gloves.

    Science.gov (United States)

    Hamouda, K; Rakheja, S; Dewangan, K N; Marcotte, P

    2018-01-01

    The vibration isolation performances of vibration reducing (VR) gloves are invariably assessed in terms of power tools' handle vibration transmission to the palm of the hand using the method described in ISO 10819 (2013), while the nature of vibration transmitted to the fingers is ignored. Moreover, the VR gloves with relatively low stiffness viscoelastic materials affect the grip strength in an adverse manner. This study is aimed at performance assessments of 12 different VR gloves on the basis of handle vibration transmission to the palm and the fingers of the gloved hand, together with reduction in the grip strength. The gloves included 3 different air bladder, 3 gel, 3 hybrid, and 2 gel-foam gloves in addition to a leather glove. Two Velcro finger adapters, each instrumented with a three-axis accelerometer, were used to measure vibration responses of the index and middle fingers near the mid-phalanges. Vibration transmitted to the palm was measured using the standardized palm adapter. The vibration transmissibility responses of the VR gloves were measured in the laboratory using the instrumented cylindrical handle, also described in the standard, mounted on a vibration exciter. A total of 12 healthy male subjects participated in the study. The instrumented handle was also used to measure grip strength of the subjects with and without the VR gloves. The results of the study showed that the VR gloves, with only a few exceptions, attenuate handle vibration transmitted to the fingers only in the 10-200 Hz and amplify middle finger vibration at frequencies exceeding 200 Hz. Many of the gloves, however, provided considerable reduction in vibration transmitted to the palm, especially at higher frequencies. These suggest that the characteristics of vibration transmitted to fingers differ considerably from those at the palm. Four of the test gloves satisfied the screening criteria of the ISO 10819 (2013) based on the palm vibration alone, even though these caused

  10. Model of daytime emissions of electronically-vibrationally excited products of O3 and O2 photolysis: application to ozone retrieval

    Directory of Open Access Journals (Sweden)

    V. A. Yankovsky

    2006-11-01

    Full Text Available The traditional kinetics of electronically excited products of O3 and O2 photolysis is supplemented with the processes of the energy transfer between electronically-vibrationally excited levels O2(a1Δg, v and O2(b1Σ+g, v, excited atomic oxygen O(1D, and the O2 molecules in the ground electronic state O2(X3Σg−, v. In contrast to the previous models of kinetics of O2(a1Δg and O2 (b1Σ+g, our model takes into consideration the following basic facts: first, photolysis of O3 and O2 and the processes of energy exchange between the metastable products of photolysis involve generation of oxygen molecules on highly excited vibrational levels in all considered electronic states – b1Σ+g, a1Δg and X3Σg−; second, the absorption of solar radiation not only leads to populating the electronic states on vibrational levels with vibrational quantum number v equal to 0 – O2(b1Σ+g, v=0 (at 762 nm and O2(a1Δg, v=0 (at 1.27 µm, but also leads to populating the excited electronic–vibrational states O2(b1Σ+g, v=1 and O2(b1Σ+g, v=2 (at 689 nm and 629 nm. The proposed model allows one to calculate not only the vertical profiles of the O2(a1Δg, v=0 and O2(b1Σg, v=0 concentrations, but also the profiles of [O2(a1Δg, v≤5], [O2 (b1Σ+g , v=1, 2] and O2(X3Σg−, v=1–35. In the altitude range 60–125 km, consideration of the electronic-vibrational kinetics significantly changes the calculated concentrations of the metastable oxygen molecules and reduces the discrepancy between the altitude profiles of ozone concentrations retrieved from the 762-nm and 1.27-µm emissions measured simultaneously.

  11. Small-amplitude vibrations at a finite temperature in the liquid drop model

    International Nuclear Information System (INIS)

    Providencia, J. da Jr.

    1991-01-01

    The ground state of a hot nucleus is studied in the classical limit. The equations of motion and boundary conditions of the liquid drop model are derived from the variational principle. The effect of the surface tension is taken into account. The temperature dependence of small-amplitude vibrations in the liquid drop model is investigated. It is shown that the breathing mode suffers a 6.3% decrease in energy when the temperature increases from 0 to 5 MeV. The present model allows for a description of surface modes with an A -1/2 dependence of the energy. It is also found that the surface modes will show an appreciable temperature dependence if a reasonable temperature dependence of the surface tension is postulated. It is shown that the model satisfies the energy-weighted sum rule and the inverse energy-weighted sum rule. (orig.)D

  12. Acoustic Levitation Transportation of Small Objects Using a Ring-type Vibrator

    Science.gov (United States)

    Thomas, Gilles P. L.; Andrade, Marco A. B.; Adamowski, Julio C.; Silva, Eḿílio C. N.

    A new device for noncontact transportation of small solid objects is presented here. Ultrasonic flexural vibrations are generated along the ring shaped vibrator using two Langevin transducers and by using a reflector parallel to the vibrator, small particles are trapped at the nodal points of the resulting acoustic standing wave. The particles are then moved by generating a traveling wave along the vibrator, which can be done by modulating the vibration amplitude of the transducers. The working principle of the traveling wave along the vibrator has been modeled by the superposition of two orthogonal standing waves, and the position of the particles can be predicted by using finite element analysis of the vibrator and the resulting acoustic field. A prototype consisting of a 3 mm thick, 220 mm long, 50 mm wide and 52 mm radius aluminum ring-type vibrator and a reflector of the same length and width was built and small polystyrene spheres have been successfully transported along the straight parts of the vibrator.

  13. Vibration-rotation band intensities in the IR spectra of polyatomic molecules

    International Nuclear Information System (INIS)

    El'kin, M.D.; Kosterina, E.K.; Berezin

    1995-01-01

    Using the curvilinear vibrational coordinates for a nuclear subsystem, expressions for the effective dipole-moment operators are derived in order to analyze the vibrational-rotational transitions in the IR spectra of polyatomic rigid molecules. The explicit expressions obtained for the intensities of hot bands allow one to estimate the influence of the vibration-rotation interaction within the framework of the adopted molecular-vibration model. The suggested method is shown to be suitable for Raman spectra analysis. 12 refs

  14. Tensor-decomposed vibrational coupled-cluster theory: Enabling large-scale, highly accurate vibrational-structure calculations

    Science.gov (United States)

    Madsen, Niels Kristian; Godtliebsen, Ian H.; Losilla, Sergio A.; Christiansen, Ove

    2018-01-01

    A new implementation of vibrational coupled-cluster (VCC) theory is presented, where all amplitude tensors are represented in the canonical polyadic (CP) format. The CP-VCC algorithm solves the non-linear VCC equations without ever constructing the amplitudes or error vectors in full dimension but still formally includes the full parameter space of the VCC[n] model in question resulting in the same vibrational energies as the conventional method. In a previous publication, we have described the non-linear-equation solver for CP-VCC calculations. In this work, we discuss the general algorithm for evaluating VCC error vectors in CP format including the rank-reduction methods used during the summation of the many terms in the VCC amplitude equations. Benchmark calculations for studying the computational scaling and memory usage of the CP-VCC algorithm are performed on a set of molecules including thiadiazole and an array of polycyclic aromatic hydrocarbons. The results show that the reduced scaling and memory requirements of the CP-VCC algorithm allows for performing high-order VCC calculations on systems with up to 66 vibrational modes (anthracene), which indeed are not possible using the conventional VCC method. This paves the way for obtaining highly accurate vibrational spectra and properties of larger molecules.

  15. Implementation of a vibrationally linked chemical reaction model for DSMC

    Science.gov (United States)

    Carlson, A. B.; Bird, Graeme A.

    1994-01-01

    A new procedure closely linking dissociation and exchange reactions in air to the vibrational levels of the diatomic molecules has been implemented in both one- and two-dimensional versions of Direct Simulation Monte Carlo (DSMC) programs. The previous modeling of chemical reactions with DSMC was based on the continuum reaction rates for the various possible reactions. The new method is more closely related to the actual physics of dissociation and is more appropriate to the particle nature of DSMC. Two cases are presented: the relaxation to equilibrium of undissociated air initially at 10,000 K, and the axisymmetric calculation of shuttle forebody heating during reentry at 92.35 km and 7500 m/s. Although reaction rates are not used in determining the dissociations or exchange reactions, the new method produces rates which agree astonishingly well with the published rates derived from experiment. The results for gas properties and surface properties also agree well with the results produced by earlier DSMC models, equilibrium air calculations, and experiment.

  16. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern...

  17. PREFACE: Vibrations at surfaces Vibrations at surfaces

    Science.gov (United States)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  18. Control model for dampening hand vibrations using information of internal and external coordinates.

    Directory of Open Access Journals (Sweden)

    Shunta Togo

    Full Text Available In the present study, we investigate a control mechanism that dampens hand vibrations. Here, we propose a control method with two components to suppress hand vibrations. The first is a passive suppression method that lowers the joint stiffness to passively dampen the hand vibrations. The second is an active suppression method that adjusts an equilibrium point based on skyhook control to actively dampen the hand vibrations. In a simulation experiment, we applied these two methods to dampen hand vibrations during the shoulder's horizontal oscillation. We also conducted a measurement experiment wherein a subject's shoulder was sinusoidally oscillated by a platform that generated horizontal oscillations. The results of the measurement experiments showed that the jerk of each part of the arm in a task using a cup filled with water was smaller than the shoulder jerk and that in a task with a cup filled with stones was larger than the shoulder jerk. Moreover, the amplitude of the hand trajectory in both horizontal and vertical directions was smaller in a task using a cup filled with water than in a task using a cup filled with stones. The results of the measurement experiments were accurately reproduced by the active suppression method based on skyhook control. These results suggest that humans dampen hand vibrations by controlling the equilibrium point through the information of the external workspace and the internal body state rather than by lowering joint stiffness only by using internal information.

  19. Vibration Control of a High-Speed Precision Servo Numerically Controlled Punching Press: Multidomain Simulation and Experiments

    Directory of Open Access Journals (Sweden)

    Teng Xu

    2017-01-01

    Full Text Available A three-degree-of-freedom mathematical vibration model of a high-speed punching press was developed in order to explore the vibration modes of the punching press. A multidomain model of the punching press was established to predict the kinematic state during different conditions, as well as the effects of load fluctuation on the motor speed. Experimental measurements of the acceleration of the punching press were carried out. The results comparison reveals that the multidomain model is consistent with the vibration model and the experimental measurements. Modal analysis and structure modification of the punching press were conducted. The foundation at the base of the punching press was improved against excess of vibration. The effects of the dimensions of the foundation on the vibration were discussed with the aid of the multidomain model. Finally, proper foundation design, able to reduce the vibration, was obtained.

  20. Forced vibration analysis of a Timoshenko cracked beam using a continuous model for the crack

    OpenAIRE

    Mahdi Heydari; Alireza Ebrahimi; Mehdi Behzad

    2014-01-01

    In this paper, forced flexural vibration of a cracked beam is studied by using a continuous bilinear model for the displacement field. The effects of shear deformation and rotary inertia are considered in the model. The governing equation of motion for the beam is obtained using the Hamilton principle and based on the proposed displacement field. The equation of motion is given for a general force distribution. Then, the equation of motion has been solved for a concentrated force to present a...

  1. ANALYSIS OF VIBRATORY PROTECTION SYSTEM VIBRATION DURING HARMONIC AND POLYHARMONIC EXCITATIONS

    Directory of Open Access Journals (Sweden)

    T. N. Mikulik

    2011-01-01

    Full Text Available The paper considers a mathematical model of local «driver-seat» system and an algorithm for vibratory loading formation at external actions. Results of the investigations on the system vibration according to minimum vibration acceleration depending on transfer force factor acting on the seat and a vibration isolation factor are presented in the paper.

  2. Vibration characteristics of dental high-speed turbines and speed-increasing handpieces.

    Science.gov (United States)

    Poole, Ruth L; Lea, Simon C; Dyson, John E; Shortall, Adrian C C; Walmsley, A Damien

    2008-07-01

    Vibrations of dental handpieces may contribute to symptoms of hand-arm vibration syndrome in dental personnel and iatrogenic enamel cracking in teeth. However, methods for measuring dental handpiece vibrations have previously been limited and information about vibration characteristics is sparse. This preliminary study aimed to use a novel approach to assess the vibrations of unloaded high-speed handpieces in vitro. Maximum vibration displacement amplitudes of five air turbines and two speed-increasing handpieces were recorded whilst they were operated with and without a rotary cutting instrument (RCI) using a scanning laser vibrometer (SLV). RCI rotation speeds, calculated from frequency peaks, were consistent with expected values. ANOVA statistical analysis indicated significant differences in vibrations between handpiece models (p0.11). Operating handpieces with a RCI resulted in greater vibrations than with no RCI (pmeasurement exceeded 4 microm for the handpieces in the current test setup (implying that these vibrations may be unlikely to cause adverse effects), this study has formed the basis for future work which will include handpiece vibration measurements whilst cutting under clinically representative loads.

  3. Vibration of imperfect rotating disk

    Directory of Open Access Journals (Sweden)

    Půst L.

    2011-12-01

    Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.

  4. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  5. Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.

    2011-01-01

    Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.

  6. High frequency vibration characteristics of electric wheel system under in-wheel motor torque ripple

    Science.gov (United States)

    Mao, Yu; Zuo, Shuguang; Wu, Xudong; Duan, Xianglei

    2017-07-01

    With the introduction of in-wheel motor, the electric wheel system encounters new vibration problems brought by motor torque ripple excitation. In order to analyze new vibration characteristics of electric wheel system, torque ripple of in-wheel motor based on motor module and vector control system is primarily analyzed, and frequency/order features of the torque ripple are discussed. Then quarter vehicle-electric wheel system (QV-EWS) dynamics model based on the rigid ring tire assumption is established and the main parameters of the model are identified according to tire free modal test. Modal characteristics of the model are further analyzed. The analysis indicates that torque excitation of in-wheel motor is prone to arouse horizontal vibration, in which in-phase rotational, anti-phase rotational and horizontal translational modes of electric wheel system mainly participate. Based on the model, vibration responses of the QV-EWS under torque ripple are simulated. The results show that unlike vertical low frequency (lower than 20 Hz) vibration excited by road roughness, broadband torque ripple will arouse horizontal high frequency (50-100 Hz) vibration of electric wheel system due to participation of the three aforementioned modes. To verify the theoretical analysis, the bench experiment of electric wheel system is conducted and vibration responses are acquired. The experiment demonstrates the high frequency vibration phenomenon of electric wheel system and the measured order features as well as main resonant frequencies agree with simulation results. Through theoretical modeling, analysis and experiments this paper reveals and explains the high frequency vibration characteristics of electric wheel system, providing references for the dynamic analysis, optimal design of QV-EWS.

  7. Seismic isolation floor and vibration control equipment for nuclear power plant

    International Nuclear Information System (INIS)

    Niwa, H.; Fujimoto, S.; Aida, Y.; Miyano, H.

    1996-01-01

    We have developed a seismic isolation floor to improve protection against earthquakes for process computer systems, and a magnetic dynamic damper to reduce the mechanical vibrations of piping systems and pumps in nuclear power plants. Seismic excitation tests of the seismic isolation floor, on which process computer systems were installed, were performed using large earthquake simulators. The test results proved that the seismic isolation floor significantly reduced seismic forces. To control mechanical vibrations, a magnetic dynamic damper was designed using permanent magnets. This magnetic dynamic damper does not require mechanical springs, dampers and supports in the floors and walls of the building. Vibration tests using a rotating machine model confirmed that the magnetic dynamic damper effectively controlled vibrations in such a rotating machine model. (author)

  8. Vibrational excitation in a hydrogen volume source

    International Nuclear Information System (INIS)

    Eenshuistra, P.J.

    1989-01-01

    In this thesis the complex of processes which determines the D - or H - density in a volume source, a hydrogen discharge, is studied. D - beams are of interest for driving the current of a fusion plasma in a TOKAMAK. Densities of vibrationally excited molecules, of H atoms, and of metastable hydrogen molecules were determined using Resonance-Enhanced MultiPhoton Ionization (REMPI). An experiment in which vibrationally highly excited molecules are formed by recombination of atoms in a cold metal surface, is described. The production and destruction of vibrationally excited molecules and atoms in the discharge is discussed. The vibrational distribution for 3≤ν≤5 (ν = vibrational quantumnumber) is strongly super-thermal. This effect is more apparent at higher discharge current and lower gas pressure. The analysis with a model based on rate equations, which molecules are predominantly produced by primary electron excitation of hydrogen molecules and deexcited upon one wall collision. The atom production is compatible with dissociation of molecules by primary electrons, dissociation of molecules on the filaments, and collisions between positive ions and electrons. The electrons are predominantly destroyed by recombination on the walls. Finally the production and destruction of H - in the discharge are discussed. The density of H - in the plasma, the electron density and temperature were determined. H - extraction was measured. The ratio of the extracted H - current and the H - density in the plasma gives an indication of the drift velocity of H - in the plasma. This velocity determines the emittance of the extracted beam. It was found that the H - velocity scales with the square root of the electron temperature. The measured H - densities are compatible with a qualitative model in which dissociative attachment of plasma electrons to vibrationally excited molecules is the most important process. (author). 136 refs.; 39 figs.; 10 tabs

  9. Dynamic Model and Vibration Power Flow of a Rigid-Flexible Coupling and Harmonic-Disturbance Exciting System for Flexible Robotic Manipulator with Elastic Joints

    Directory of Open Access Journals (Sweden)

    Yufei Liu

    2015-01-01

    Full Text Available This paper investigates the dynamic of a flexible robotic manipulator (FRM which consists of rigid driving base, flexible links, and flexible joints. With considering the motion fluctuations caused by the coupling effect, such as the motor parameters and mechanism inertias, as harmonic disturbances, the system investigated in this paper remains a parametrically excited system. An elastic restraint model of the FRM with elastic joints (FRMEJ is proposed, which considers the elastic properties of the connecting joints between the flexible arm and the driving base, as well as the harmonic disturbances aroused by the electromechanical coupling effect. As a consequence, the FRMEJ accordingly remains a flexible multibody system which conveys the effects of rigid-flexible couple and electromechanical couple. The Lagrangian function and Hamilton’s principle are used to establish the dynamic model of the FRMEJ. Based on the dynamic model proposed, the vibration power flow is introduced to show the vibration energy distribution. Numerical simulations are conducted to investigate the effect of the joint elasticities and the disturbance excitations, and the influences of the structure parameters and motion parameters on the vibration power flow are studied. The results obtained in this paper contribute to the structure design, motion optimization, and vibration control of FRMs.

  10. Simulation of nonlinear random vibrations using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Paez, T.L.; Tucker, S.; O`Gorman, C.

    1997-02-01

    The simulation of mechanical system random vibrations is important in structural dynamics, but it is particularly difficult when the system under consideration is nonlinear. Artificial neural networks provide a useful tool for the modeling of nonlinear systems, however, such modeling may be inefficient or insufficiently accurate when the system under consideration is complex. This paper shows that there are several transformations that can be used to uncouple and simplify the components of motion of a complex nonlinear system, thereby making its modeling and random vibration simulation, via component modeling with artificial neural networks, a much simpler problem. A numerical example is presented.

  11. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures

    Science.gov (United States)

    Qin, Yechen; He, Chenchen; Shao, Xinxin; Du, Haiping; Xiang, Changle; Dong, Mingming

    2018-04-01

    This paper presents a new approach for vibration mitigation based on a dynamic vibration absorbing structure (DVAS) for electric vehicles (EVs) that use in-wheel switched reluctance motors (SRMs). The proposed approach aims to alleviate the negative effects of vibration caused by the unbalanced electromagnetic force (UMEF) that arises from road excitations. The analytical model of SRMs is first formulated using Fourier series, and then a model of the coupled longitudinal-vertical dynamics is developed taking into consideration the external excitations consisting of the aerodynamic drag force and road unevenness. In addition, numerical simulations for a conventional SRM-suspension system and two novel DVASs are carried out for varying road levels specified by ISO standards and vehicle velocities. The results of the comparison reveal that a 35% improvement in ride comfort, 30% improvement of road handling, and 68% improvement in air gap between rotor and stator can be achieved by adopting the novel DVAS compared to the conventional SRM-suspension system. Finally, multi-body simulation (MBS) is performed using LMS Motion to validate the feasibility of the proposed DVAS. Analysis of the results shows that the proposed method can augment the effective application of SRMs in EVs.

  12. Active Control of Parametric Vibrations in Coupled Rotor-Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2003-01-01

    of modes. The designed control scheme is applied to a coupled rotor-blade system and dynamic responses are numerically evaluated. Such responses show that the vibrations are efficiently reduced. Frequency response diagrams demonstrate that both basis and parametric vibration modes are significantly...... the model becomes periodic-variant. In order to reduce basis as well as parametric vibrations by means of active control in such systems a time-variant control strategy has to be adopted. This paper presents a methodology for designing an active controller to reduce vibrations in a coupled rotor......-blade system. The main aim is to control blade as well as hub vibrations in such a system by means of active control with focus on reducing the parametric vibration. A periodic state feedback controller is designed by transforming the system into a linear time-invariant form. Using this a controller...

  13. Effect of External Vibration on PZT Impedance Signature

    Directory of Open Access Journals (Sweden)

    Yaowen Yang

    2008-11-01

    Full Text Available Piezoelectric ceramic Lead Zirconate Titanate (PZT transducers, working on the principle of electromechanical impedance (EMI, are increasingly applied for structural health monitoring (SHM in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  14. Effect of External Vibration on PZT Impedance Signature.

    Science.gov (United States)

    Yang, Yaowen; Miao, Aiwei

    2008-11-01

    Piezoelectric ceramic Lead Zirconate Titanate (PZT) transducers, working on the principle of electromechanical impedance (EMI), are increasingly applied for structural health monitoring (SHM) in aerospace, civil and mechanical engineering. The PZT transducers are usually surface bonded to or embedded in a structure and subjected to actuation so as to interrogate the structure at the desired frequency range. The interrogation results in the electromechanical admittance (inverse of EMI) signatures which can be used to estimate the structural health or integrity according to the changes of the signatures. In the existing EMI method, the monitored structure is only excited by the PZT transducers for the interrogating of EMI signature, while the vibration of the structure caused by the external excitations other than the PZT actuation is not considered. However, many structures work under vibrations in practice. To monitor such structures, issues related to the effects of vibration on the EMI signature need to be addressed because these effects may lead to misinterpretation of the structural health. This paper develops an EMI model for beam structures, which takes into account the effect of beam vibration caused by the external excitations. An experimental study is carried out to verify the theoretical model. A lab size specimen with different external excitations is tested and the effect of vibration on EMI signature is discussed.

  15. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  16. Histologic Comparison of Vibrating Guidewire with Conventional Guidewire Technique in an Experimental Coronary In Vivo Model

    International Nuclear Information System (INIS)

    Katsouras, Christos S.; Michalis, Lampros K.; Malamou-Mitsi, Vassiliki D.; Niokou, Demetra; Giogiakas, Vassilios; Nikas, Dimitrios; Massouras, Gerasimos; Dallas, Pavlos; Tsetis, Dimitrios K.; Sideris, Dimitris A.; Rees, Michael R.

    2003-01-01

    Purpose: To compare the damage caused by vibrating guidewire manipulation and conventional guidewire manipulation of soft coronary wires in normal sheep coronary arteries. Methods: Using an intact sheep model the two methods of passing a coronary guidewire down a normal coronary artery under fluoroscopic screening control were studied. The resulting arterial damage caused by the two techniques was studied histologically. The severity of damage was scored from 1 (no damage) to 4 (severe damage) and expressed as: (a) percentage of damaged sections, (b) mean damage score per section and (c) percentage of sections suffering the most severe degree of damage (scores 3 and 4). Results: One hundred and sixty-eight sections were studied.The percentage of damaged sections was lower in the vibrating guidewire group (p 0.004). The mean damage score and the percentage of sections with a damage score of 3 or 4 were smaller in the vibrating guidewire group than in the conventional guidewire manipulation group (p = 0.001 and p =0.009, respectively). Conclusions: Both methods of guidewire manipulation cause identifiable vascular damage. The extent and severity of damage appear greater when the guidewire is manipulated manually

  17. Physical and numerical investigation of the flow induced vibration of the hydrofoil

    Science.gov (United States)

    Wu, Q.; Wang, G. Y.; Huang, B.

    2016-11-01

    The objective of this paper is to investigate the flow induced vibration of a flexible hydrofoil in cavitating flows via combined experimental and numerical studies. The experiments are presented for the modified NACA66 hydrofoil made of POM Polyacetate in the closed-loop cavitation tunnel at Beijing Institute of Technology. The high-speed camera and the single point Laser Doppler Vibrometer are applied to analyze the transient flow structures and the corresponding structural vibration characteristics. The hybrid coupled fluid structure interaction model is conducted to couple the incompressible and unsteady Reynolds Averaged Navier-Stokes solver with a simplified two-degree-of-freedom structural model. The k-ω SST turbulence model with the turbulence viscosity correction and the Zwart cavitation model are introduced to the present simulations. The results showed that with the decreasing of the cavitation number, the cavitating flows display incipient cavitation, sheet cavitation, cloud cavitation and supercavitation. The vibration magnitude increases dramatically for the cloud cavitation and decline for the supercavitation. The cloud cavitation development strongly affects the vibration response, which is corresponding to the periodically developing and shedding of the large-scale cloud cavity. The main frequency of the vibration amplitude is accordance with the cavity shedding frequency and other two frequencies of the vibration amplitude are corresponding to the natural frequencies of the bending and twisting modes.

  18. Fiber-Optic Vibration Sensor Based on Multimode Fiber

    Directory of Open Access Journals (Sweden)

    I. Lujo

    2008-06-01

    Full Text Available The purpose of this paper is to present a fiberoptic vibration sensor based on the monitoring of the mode distribution in a multimode optical fiber. Detection of vibrations and their parameters is possible through observation of the output speckle pattern from the multimode optical fiber. A working experimental model has been built in which all used components are widely available and cheap: a CCD camera (a simple web-cam, a multimode laser in visible range as a light source, a length of multimode optical fiber, and a computer for signal processing. Measurements have shown good agreement with the actual frequency of vibrations, and promising results were achieved with the amplitude measurements although they require some adaptation of the experimental model. Proposed sensor is cheap and lightweight and therefore presents an interesting alternative for monitoring large smart structures.

  19. Vibration of helical springs in cross water flow

    International Nuclear Information System (INIS)

    Axisa, F.; Brunet, G.

    1987-05-01

    The purpose of this paper is to present new experimental data on vortex-shedding induced vibration on helical springs subjected to cross-flows. Intense locked-in vibration were observed on the natural modes of axial displacement. A simplified model is tentatively proposed to interpret the experimental data which is based on an analogy with vortex-shedding as observed on straight tube rows

  20. Vibration characteristics analysis for HANARO fuel assembly

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2001-06-01

    For investigating the vibration characteristics of HANARO fuel assembly, the finite element models of the in-air fuel assemblies and flow tubes were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes and the fuel assemblies were developed. Then, modal analysis of the developed models was carried out. The analysis results show that the fundamental vibration modes of the in-air 18-element and 36-element fuel assemblies are lateral bending modes and its corresponding natural frequencies are 26.4Hz and 27.7Hz, respectively. The fundamental natural frequency of the in-water 18-element and 36-element fuel assemblies were obtained as 16.1Hz and 16.5Hz. For the verification of the developed finite element models, modal analysis results were compared with those obtained from the modal test. These results demonstrate that the natural frequencies of lower order modes obtained from finite element analysis agree well with those of the modal test and the estimation of the hydrodynamic mass is appropriate. It is expected that the analysis results will be applied as a basic data for the operation and management of the HANARO. In addition, when it is necessary to improve the design of the fuel assembly, the developed finite element models will be utilized as a base model for the vibration characteristic analysis of the modified fuel assembly

  1. The influence of molecular rotation on vibration--translation energy transfer

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1977-01-01

    The role of molecular rotations in the exchange of vibrational and translational energy is investigated for collisions between anharmonic diatomic molecules and structureless atoms. A three-dimensional, semiclassical, impact parameter description is applied with emphasis directed towards the influence of rotational coupling on the net rate of vibrational energy transfer summed over all final rotational states. These results are then related to the predictions of an equivalent collinear collision model, and their comparison allows an evaluation of the collinear approximation. The mechanisms of vibrational energy transfer including rotational transitions are shown to be separable into three classes, with the molecules belonging to each class identified first and foremost by their ratio of fundamental vibrational and rotational frequencies, ω/sub e//B/sub e/, and second by the proximity of their initial state to a near-resonant vibration--rotation transition with a small change in angular momentum. While the dynamics of molecules with ω/sub e//B/sub e/ ratios that are comparable to the range of angular momentum transitions having strong coupling are found to require a complete three-dimensional description, the rates of vibrational energy transfer in molecules with large ω/sub e//B/sub e/ ratios appear to be well approximated by a collinear collision model

  2. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse

    Directory of Open Access Journals (Sweden)

    Yunfei Huang

    2018-05-01

    Full Text Available The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups (n = 8, each: hindlimb unloading (HU, HU + vibration (HUV, and cage-control (CON. The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density, immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  3. Effects of Plantar Vibration on Bone and Deep Fascia in a Rat Hindlimb Unloading Model of Disuse.

    Science.gov (United States)

    Huang, Yunfei; Fan, Yubo; Salanova, Michele; Yang, Xiao; Sun, Lianwen; Blottner, Dieter

    2018-01-01

    The deep fascia of the vertebrate body comprises a biomechanically unique connective cell and tissue layer with integrative functions to support global and regional strain, tension, and even muscle force during motion and performance control. However, limited information is available on deep fascia in relation to bone in disuse. We used rat hindlimb unloading as a model of disuse (21 days of hindlimb unloading) to study biomechanical property as well as cell and tissue changes to deep fascia and bone unloading. Rats were randomly divided into three groups ( n = 8, each): hindlimb unloading (HU), HU + vibration (HUV), and cage-control (CON). The HUV group received local vibration applied to the plantar of both hind paws. Micro-computed tomography analyzed decreased bone mineral density (BMD) of vertebra, tibia, and femur in HU vs. CON. Biomechanical parameters (elastic modulus, max stress, yield stress) of spinal and crural fascia in HU were always increased vs. CON. Vibration in HUV only counteracted HU-induced tibia bone loss and crural fascia mechanical changes but failed to show comparable changes in the vertebra and spinal fascia on lumbar back. Tissue and cell morphometry (size and cell nuclear density), immunomarker intensity levels of anti-collagen-I and III, probed on fascia cryosections well correlated with biomechanical changes suggesting crural fascia a prime target for plantar vibration mechano-stimulation in the HU rat. We conclude that the regular biomechanical characteristics as well as tissue and cell properties in crural fascia and quality of tibia bone (BMD) were preserved by local plantar vibration in disuse suggesting common mechanisms in fascia and bone adaptation to local mechanovibration stimulation following hind limb unloading in the HUV rat.

  4. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  5. On-line vibration monitoring for submerged vertical shaft pumps: Final report

    International Nuclear Information System (INIS)

    Walter, T.J.; Marchione, M.M.

    1988-03-01

    The overall goal of this project was to extend to vertical pumps the capability that presently exists to monitor and diagnose vibration problems in horizontal pumps. Specific objectives included the development of analytical techniques to interpret vibration measurements, the verification of these techniqeus by in-plant tests, and the development of recommendations for procuring submergible vibration sensors. A concurrent analytical and experimental approach was used to accomplish these objectives. Rotordynamic analyses of selected pumps were accomplished, and each pump was instrumented and monitored for extended periods of time. The models were used to determine important frequencies and optimum sensor locations and to predict the effect that wear, imbalance, misalighment, and other mechanical changes would have on measured vibration. The predictive ability of the models was confirmed by making changes to instrumented pumps and observing actual changes in pump vibration. Simplified guidelines have been developed to assist the interested user to develop a computer model that realistically predicts the rotordynamic performance of the installed pump. Based on the work accomplished, typical sensor locations have been established. Experience gained in application of commercially available submergible sensors is also related. 11 refs., 11 figs

  6. Use of electro-magnetic damping for vibration control

    DEFF Research Database (Denmark)

    Stein, George Juraj; Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    to introduce additional electromagnetic damping into vibrating mechanical system. The hysteretic losses and eddy currents are included in the model, to take into account more realistic dynamic behaviour of the system. The mathematical model of the controller is derived using lumped parameter approach......Vibration of machines is an unwanted phenomenon, and it is usually of interest to eliminate it. There are various means to be used in order to reach the goal, where the utilization of the electromagnet augmented by an external shunt circuit is analyzed in the paper. The magnetic force is used...

  7. Vibration monitoring for aircraft wing model using fiber Bragg grating array packaged by vacuum-assisted resin transfer molding

    Science.gov (United States)

    Zhang, Wen; Liu, Xiaolong; He, Wei; Dong, Mingli; Zhu, Lianqing

    2017-09-01

    For the improvement of monitoring accuracy, a vibration monitoring for aircraft wing model using a fiber Bragg grating (FBG) array packaged by vacuum-assisted resin transfer molding (VARTM) is proposed. The working principle of the vibration monitoring using FBG array has been explained, which can theoretically support the idea of this paper. VARTM has been explained in detail, which is suitable for not only the single FBG sensor but also the FBG array within a relatively large area. The calibration experiment has been performed using the FBG sensor packaged by VARTM. The strain sensitivity of the VARTM package is 1.35 pm/μɛ and the linearity is 0.9999. The vibration monitoring experiment has been carried out using FBG array packaged by VARTM. The measured rate of strain changes across the aluminum test board used to simulate the aircraft wing is 0.69 μɛ/mm and the linearity is 0.9931. The damping ratio is 0.16, which could be further used for system performance evaluation. Experimental results demonstrate that the vibration monitoring using FBG sensors packaged by VARTM can be efficiently used for the structural health monitoring. Given the validation and great performance, this method is quite promising for in-flight monitoring and holds great reference value in other similar engineering structures.

  8. Large electron transfer rate effects from the Duschinsky mixing of vibrations

    DEFF Research Database (Denmark)

    Sando, Gerald M.; Spears, Kenneth G; Hupp, Joseph T

    2001-01-01

    vibrations are very important. The Duschinsky effect arises when two electronic states have vibrational normal mode coordinate systems that are rotated and translated relative to each other. We use a conventional quantum rate model for ET, and the examples include 6-8 vibrations, where two vibrational modes...... are mixed with different amounts of coordinate rotation. The multidimensional Franck-Condon factors (FCF) are computed with standard algorithms and recently developed recursion relations. When displaced, totally symmetric modes are involved, rates with Duschinsky mixing can increase several orders...

  9. Mechanisms mediating vibration-induced chronic musculoskeletal pain analyzed in the rat.

    Science.gov (United States)

    Dina, Olayinka A; Joseph, Elizabeth K; Levine, Jon D; Green, Paul G

    2010-04-01

    While occupational exposure to vibration is a common cause of acute and chronic musculoskeletal pain, eliminating exposure produces limited symptomatic improvement, and reexposure precipitates rapid recurrence or exacerbation. To evaluate mechanisms underlying these pain syndromes, we have developed a model in the rat, in which exposure to vibration (60-80Hz) induces, in skeletal muscle, both acute mechanical hyperalgesia as well as long-term changes characterized by enhanced hyperalgesia to a proinflammatory cytokine or reexposure to vibration. Exposure of a hind limb to vibration-produced mechanical hyperalgesia measured in the gastrocnemius muscle of the exposed hind limb, which persisted for approximately 2 weeks. When nociceptive thresholds had returned to baseline, exposure to a proinflammatory cytokine or reexposure to vibration produced markedly prolonged hyperalgesia. The chronic prolongation of vibration- and cytokine-hyperalgesia was prevented by spinal intrathecal injection of oligodeoxynucleotide (ODN) antisense to protein kinase Cepsilon, a second messenger in nociceptors implicated in the induction and maintenance of chronic pain. Vibration-induced hyperalgesia was inhibited by spinal intrathecal administration of ODN antisense to receptors for the type-1 tumor necrosis factor-alpha (TNFalpha) receptor. Finally, in TNFalpha-pretreated muscle, subsequent vibration-induced hyperalgesia was markedly prolonged. These studies establish a model of vibration-induced acute and chronic musculoskeletal pain, and identify the proinflammatory cytokine TNFalpha and the second messenger protein kinase Cepsilon as targets against which therapies might be directed to prevent and/or treat this common and very debilitating chronic pain syndrome. Copyright 2010 American Pain Society. All rights reserved.

  10. Active Vibration Suppression of a 3-DOF Flexible Parallel Manipulator Using Efficient Modal Control

    Directory of Open Access Journals (Sweden)

    Quan Zhang

    2014-01-01

    Full Text Available This paper addresses the dynamic modeling and efficient modal control of a planar parallel manipulator (PPM with three flexible linkages actuated by linear ultrasonic motors (LUSM. To achieve active vibration control, multiple lead zirconate titanate (PZT transducers are mounted on the flexible links as vibration sensors and actuators. Based on Lagrange’s equations, the dynamic model of the flexible links is derived with the dynamics of PZT actuators incorporated. Using the assumed mode method (AMM, the elastic motion of the flexible links are discretized under the assumptions of pinned-free boundary conditions, and the assumed mode shapes are validated through experimental modal test. Efficient modal control (EMC, in which the feedback forces in different modes are determined according to the vibration amplitude or energy of their own, is employed to control the PZT actuators to realize active vibration suppression. Modal filters are developed to extract the modal displacements and velocities from the vibration sensors. Numerical simulation and vibration control experiments are conducted to verify the proposed dynamic model and controller. The results show that the EMC method has the capability of suppressing multimode vibration simultaneously, and both the structural and residual vibrations of the flexible links are effectively suppressed using EMC approach.

  11. observer-based diagnostics and monitoring of vibrations in nuclear reactor core cooling system

    International Nuclear Information System (INIS)

    Siry, S.A K.

    2007-01-01

    analysis and diagnostics of vibration in industrial systems play a significant rule to prevent severe severe damages . drive shaft vibration is a complicated phenomenon composed of two independent forms of vibrations, translational and torsional. translational vibration measurements in case of the reactor core cooling system are introduced. the system under study consists of the three phase induction motor, flywheel, centrifugal pump, and two coupling between motor-flywheel, and flywheel-pump. this system structure is considered to be one where the blades are pegged into the discs fitting into the shafts. a non-linear model to simulate vibration in the reactor core cooling system will be introduced. simulation results of an operating reactor core cooling system using the actual parameters will be presented to validate the accuracy and reliability of the proposed analytical method the accuracy in analyzing the results depends on the system model. the shortcomings of the conventional model will be avoided through the use of that accurate nonlinear model which improve the simulation of the reactor core cooling system

  12. Mathematical formulation of temperature fluctuation and control rod vibration in PARR

    International Nuclear Information System (INIS)

    Ansari, S.A.; Ayazuddin, S.K.

    This report describes the mathematical interpretation of experimental neutron noise spectra obtained for PARR core. A one dimensional thermal-hydraulic model of PARR core was developed to calculate the magnitude of neutron noise as a result of fluctuation in the core inlet coolant temperature. The sink structure of the neutron power spectral density as well as the dependence of observed neutron spectra on coolant velocity is also explained by the thermal hydraulic model. An attempt is made to explain the phenomena of control rod vibration by a simple eigen frequency vibration model. The calculated neutron power spectral density due to vibration and temperature noise were added and compared with the experimental power spectra obtained for PARR. (orig./A.B.)

  13. Magnetically levitated autoparametric broadband vibration energy harvesting

    International Nuclear Information System (INIS)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-01-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation. (paper)

  14. Modeling and analysis of Galfenol cantilever vibration energy harvester with nonlinear magnetic force

    Science.gov (United States)

    Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng

    2018-05-01

    Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.

  15. Vibration analysis and vibration damage assessment in nuclear and process equipment

    International Nuclear Information System (INIS)

    Pettigrew, M.J.; Taylor, C.E.; Fisher, N.J.; Yetisir, M.; Smith, B.A.W.

    1997-01-01

    Component failures due to excessive flow-induced vibration are still affecting the performance and reliability of process and nuclear components. The purpose of this paper is to discuss flow-induced vibration analysis and vibration damage prediction. Vibration excitation mechanisms are described with particular emphasis on fluid elastic instability. The dynamic characteristics of process and power equipment are explained. The statistical nature of some parameters, in particular support conditions, is discussed. The prediction of fretting-wear damage is approached from several points-of-view. An energy approach to formulate fretting-wear damage is proposed. (author)

  16. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  17. Vibration analysis of the piping system using the modal analysis method, 1

    International Nuclear Information System (INIS)

    Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio

    1975-01-01

    Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)

  18. Control of noise and structural vibration a MATLAB-based approach

    CERN Document Server

    Mao, Qibo

    2013-01-01

    Control of Noise and Structural Vibration presents a MATLAB®-based approach to solving the problems of undesirable noise generation and transmission by structures and of undesirable vibration within structures in response to environmental or operational forces. The fundamentals of acoustics, vibration and coupling between vibrating structures and the sound fields they generate are introduced including a discussion of the finite element method for vibration analysis. Following this, the treatment of sound and vibration control begins, illustrated by example systems such as beams, plates and double plate structures. Sensor and actuator placement is explained as is the idea of modal sensor–actuators. The design of appropriate feedback systems includes consideration of basic stability criteria and robust active structural acoustic control. Single and multi-mode positive position feedback (PPF) control systems are also described in the context of loudspeaker–duct model with non-collocated loudspeaker–microp...

  19. [The effect of betahistine on histological changes in rabbit brain in model of whole body wide-frequency vibration].

    Science.gov (United States)

    Shimkus, Iu Iu; Sapegin, I D

    2013-01-01

    In acute experiments in conscious rabbits was studied protective action of selective blocker of histamine H3-receptor betahistine (2mg/kg i/v) against histological changes in precentral and postcentral gyrus, as well as in temporal lobe of cerebral cortex, thalamus, hypothalamus, and cerebellum, arising in case of modeling of whole body wide-frequency vibration. Betahistine attenuates edematous and degenerative changes in neurons and reciprocal glial reaction, caused by vibration, but does not eliminate edema in perivascular spaces. This effect may be related to the improvement of blood supply as a result of of vasodilatory action and decrease of oxygen consumption via vestibuloprotective effect.

  20. Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system

    Science.gov (United States)

    Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun

    2014-10-01

    Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.

  1. Vibrations and Eigenvalues

    Indian Academy of Sciences (India)

    We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.

  2. Input Shaping to Reduce Solar Array Structural Vibrations

    Science.gov (United States)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  3. Vibrational motion in a symmetric, double minimum potential

    DEFF Research Database (Denmark)

    Spanget-Larsen, Jens

    2015-01-01

    Molecular vibrational motion in a symmetric, double minimum potential is treated by means of a quartic model potential, by reference to the tables published by Jaan Laane and the results of harmonic analyses for the stationary points. The inversion vibration of ammonia is treated in detail. - Not...... on the harmonic approximation for polyatomic molecules are appended. - Presented at a NORFA Workshop in Hirtshals, Denmark, August 1997....

  4. Vibrational stability of graphene

    Directory of Open Access Journals (Sweden)

    Yangfan Hu

    2013-05-01

    Full Text Available The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP models. Compared with three-dimensional (3-D materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202. This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC, defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D materials.

  5. Study on vibration behaviors of engineered barrier system

    International Nuclear Information System (INIS)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro

    1998-01-01

    High-level radioactive wastes have been buried underground by packing into a strong sealed container made from carbon steel (over-pack) with buffer material (bentonite). The engineered barrier system constructed with an overpack and buffer materials must be resistant to earthquakes as well as invasion of groundwater for a long period. Therefore, seismic evaluation of barrier system for earthquakes is indispensable especially in Japan to keep its structural safety. Here, the effects of earthquake vibration on the engineered barrier systems were investigated experimentally. Random-wave vibration and practical seismic wave one were loaded for the systems and fundamental data were obtained. For the former vibration the response characteristics of both engineered barrier models constructed with overpack and bentonite were non-linear. For the latter one, the stress in bentonite was increased in proportion to the vibration level. (M.N.)

  6. Handbook Of Noise And Vibration

    International Nuclear Information System (INIS)

    1995-12-01

    This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.

  7. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    Science.gov (United States)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  8. Real-Time Performance of Mechatronic PZT Module Using Active Vibration Feedback Control.

    Science.gov (United States)

    Aggogeri, Francesco; Borboni, Alberto; Merlo, Angelo; Pellegrini, Nicola; Ricatto, Raffaele

    2016-09-25

    This paper proposes an innovative mechatronic piezo-actuated module to control vibrations in modern machine tools. Vibrations represent one of the main issues that seriously compromise the quality of the workpiece. The active vibration control (AVC) device is composed of a host part integrated with sensors and actuators synchronized by a regulator; it is able to make a self-assessment and adjust to alterations in the environment. In particular, an innovative smart actuator has been designed and developed to satisfy machining requirements during active vibration control. This study presents the mechatronic model based on the kinematic and dynamic analysis of the AVC device. To ensure a real time performance, a H2-LQG controller has been developed and validated by simulations involving a machine tool, PZT actuator and controller models. The Hardware in the Loop (HIL) architecture is adopted to control and attenuate the vibrations. A set of experimental tests has been performed to validate the AVC module on a commercial machine tool. The feasibility of the real time vibration damping is demonstrated and the simulation accuracy is evaluated.

  9. Study on the coupled vibration of square cylinders in a liquid, 3

    International Nuclear Information System (INIS)

    Kasai, Hiroaki

    1984-01-01

    The through-liquid coupled vibration of a group of square bars with same structural particulars supported in a vessel filled with liquid is under the control by the gap width between the bars, the gap width between the vessel and the bars, the ratio of the density of the bars and the liquid, the viscosity of the liquid and so on. Also the number of the natural frequency and the mode of vibration of the group of bars is 2 x the number of bars. In order to forecast the behavior of heat exchangers, the in-core structures of nuclear reactors and others at the time of earthquakes, the relation among these influencing factors and the vibration characteristics of a group of bars is to be examined. In this study, the vibration response was theoretically examined in the case where the system of many bars arranged two-dimensionally was subjected to forced vibration was examined. First, the method of reducing the equations of fluid force and the equations of motion of bars by using the axisymmetry of vibration mode was considered. Next, the method of approximate calculation under the assumption that fluid force is averaged was proposed. The vibration characteristics of various bar group models were compared by using the exact model and the approximate model, and it was confirmed that this method of approximate calculation can be practically used. (Kako, I.)

  10. Calculation of ground vibration spectra from heavy military vehicles

    Science.gov (United States)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  11. Flow induced vibrations in liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    1989-01-01

    Flow induced vibrations are well known phenomena in industry. Engineers have to estimate their destructive effects on structures. In the nuclear industry, flow induced vibrations are assessed early in the design process, and the results are incorporated in the design procedures. In many cases, model testing is used to supplement the design process to ensure that detrimental behaviour due to flow induced vibrations will not occur in the component in question. While these procedures attempt to minimize the probability of adverse performance of the various components, there is a problem in the extrapolation of analytical design techniques and/or model testing to actual plant operation. Therefore, sodium tests or vibrational measurements of components in the reactor system are used to provide additional assurance. This report is a general survey of experimental and calculational methods in this area of structural mechanics. The report is addressed to specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors. 92 refs, 90 figs, 8 tabs

  12. Capacitance-based frequency adjustment of micro piezoelectric vibration generator.

    Science.gov (United States)

    Mao, Xinhua; He, Qing; Li, Hong; Chu, Dongliang

    2014-01-01

    Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  13. Capacitance-Based Frequency Adjustment of Micro Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Xinhua Mao

    2014-01-01

    Full Text Available Micro piezoelectric vibration generator has a wide application in the field of microelectronics. Its natural frequency is unchanged after being manufactured. However, resonance cannot occur when the natural frequencies of a piezoelectric generator and the source of vibration frequency are not consistent. Output voltage of the piezoelectric generator will sharply decline. It cannot normally supply power for electronic devices. In order to make the natural frequency of the generator approach the frequency of vibration source, the capacitance FM technology is adopted in this paper. Different capacitance FM schemes are designed by different locations of the adjustment layer. The corresponding capacitance FM models have been established. Characteristic and effect of the capacitance FM have been simulated by the FM model. Experimental results show that the natural frequency of the generator could vary from 46.5 Hz to 42.4 Hz when the bypass capacitance value increases from 0 nF to 30 nF. The natural frequency of a piezoelectric vibration generator could be continuously adjusted by this method.

  14. Simulation on Vehicle Vibration Offset of NX70 Flatcar

    Directory of Open Access Journals (Sweden)

    Han Yanhui

    2014-11-01

    Full Text Available The current rolling stock gauge for standard gauge railway is a static gauge to check the vehicle frame. The contradiction of large construction gauge and small rolling stock gauge has always existed. It is important to set down the clearance requirements in respect of physical size for the safe passage of rail vehicles. Reasonably determining the maximum vibration offset can improve the efficiency of clearance. As an example, analyze the complex vibration of NX70 flat car by simulation test on the running track. Comprehensive considering the track model, loading plan, line conditions and running speed, then SIMPACK is used to present the vehicle system dynamics simulation model. After researching simulation result, respectively determine the maximum vehicle vibration offset for railroads of Class I, Class II and Class III on the height of the center of gravity 2000 mm and 2400 mm. According to the clearance between the structure gauge and the position of maximum vibration offset, analyze the safety of vehicle operation since the center of gravity is higher than before.

  15. Torsional Vibration of a Shafting System under Electrical Disturbances

    Directory of Open Access Journals (Sweden)

    Ling Xiang

    2012-01-01

    Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.

  16. Deviations from the Boltzmann distribution in vibrationally excited gas flows

    International Nuclear Information System (INIS)

    Offenhaeuser, F.; Frohn, A.

    1986-01-01

    A new model for the exchange of vibrational energy in one-dimensional flows of CO 2 -H 2 O-N 2 -O 2 -He gas mixtures is presented. In contrast to previous models, the assumption of local Boltzmann distributions for the vibrational degrees of freedom is not required. This generalization was achieved by the assumption that the molecules are harmonic oscillators with one or more degrees of freedom represented by finite numbers of energy levels. The population densities of these energy levels are coupled by a set of rate equations. It is shown that in some cases of molecular gas flow the Boltzmann distribution for the vibrational degrees of freedom may be disturbed. 12 references

  17. Study on vibration behaviors of engineered barrier system

    Energy Technology Data Exchange (ETDEWEB)

    Mikoshiba, Tadashi; Ogawa, Nobuyuki; Minowa, Chikahiro [National Research Inst. for Earth Science and Disaster Prevention, Tsukuba, Ibaraki (Japan)

    1999-02-01

    Small engineered barrier model was mode and tested by vibrating with the random wave and the real earthquake wave. The wave observed at Kamaishi (N-S, N-W), Iwate Prefecture, in September 6, 1993, and Kobe (N-S) etc. were used as the real earthquake waves. The trial overpack showed non-linear characteristics (soft spring) by vibrating with the random wave. The pressure and acceleration of trial overpack and constraint container increased with increasing the vibration level of the real earthquake wave. The trial overpack moved the maximum 1.7 mm of displacement and 16 mm subsidence. The results showed both waves rocked the trialpack. (S.Y.)

  18. Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations

    Science.gov (United States)

    Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.

    2018-04-01

    Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.

  19. Diagnostics of a crack in a load coupling of a gas turbine using the machine model and the analysis of the shaft vibrations

    Science.gov (United States)

    Pennacchi, Paolo; Vania, Andrea

    2008-07-01

    The diagnostics of malfunctions that can cause catastrophic failures has to be made in early stage in the industrial environment. Often flexible couplings are employed in industrial rotating machines when gearboxes and heavy thermal gradients are present. The hot and cold alignment of these couplings can be very different. Severe misalignments can generate cracks in the stub shafts, which can propagate in operating condition. Owing to the flexural flexibility of the load coupling, the shaft vibrations may be not noticeably affected by some typical symptoms that usually point out the presence of a crack, like twice per revolution harmonics in the vibration spectrum. Anyhow, suitable diagnostic strategies can detect clear fault symptoms, while model-based methods can confirm the occurrence of the shaft bow induced by the progressive yielding of a load coupling due to a crack. This paper shows as a model-based diagnostic methodology would have allowed a crack in a load coupling of a gas turbine to be identified before a serious failure happened by means of the shaft vibration analysis under operating conditions and rated speed. Finally, the vibrations caused by the shaft bow due to the propagation of a crack in the stub shaft of the coupling have been simulated using suitable equivalent excitations, the magnitude and phase of which have been estimated by means of a model-based identification method.

  20. Ship Vibrations

    DEFF Research Database (Denmark)

    Sørensen, Herman

    1997-01-01

    Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...

  1. Magnetically induced rotor vibration in dual-stator permanent magnet motors

    Science.gov (United States)

    Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie

    2015-07-01

    Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.

  2. Comparative studies of perceived vibration strength for commercial mobile phones.

    Science.gov (United States)

    Lee, Heow Pueh; Lim, Siak Piang

    2014-05-01

    A mobile phone, also known as cell phone or hand phone, is among the most popular electrical devices used by people all over the world. The present study examines the vibration perception of mobile phones by co-relating the relevant design parameters such as excitation frequency, and size and mass of mobile phones to the vibration perception survey by volunteers. Five popular commercially available mobile phone models were tested. The main findings for the perception surveys were that higher vibration frequency and amplitude of the peak acceleration would result in stronger vibration perception of the mobile phones. A larger contact surface area with the palms and figures, higher peak acceleration and the associated larger peak inertia force may be the main factors for the relatively higher vibration perception. The future design for the vibration alert of the mobile phones is likely to follow this trend. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  4. Preventive measures against vibration of FBR reactor vessel cooling structure

    International Nuclear Information System (INIS)

    Eguchi, Yuzuru; Tanaka, Nobukazu

    1989-01-01

    The present paper describes the fundamental feature of the fluid-elastic vibration of flexible overflow weir, as observed in the French demonstration fast breeder reactor, Super Phenix-1. In the experimental study, the instability criterion of the fluid-elastic vibration was studied by using a simple experimental apparatus of a rectangular tank separated by a flexible weir. A spring-mass model was developed to clarify the mechanism of the instability. The instability condition was analytically derived from the equations of the spring-mass model. The equations of the spring-mass model was also computationally integrated in time to simulate the temporal evolution of the fluid-elastic vibration. The comparison between the experimental and theoretical results indicates that the present theoretical model is capable of predicting most of the physical tendencies observed in the experiment. The present study revealed that the lag time of waterfall at the weir is the most influential parameter among other hydro-elastic parameters. (author)

  5. THE HIGH-RESOLUTION EXTREME-ULTRAVIOLET SPECTRUM OF N{sub 2} BY ELECTRON IMPACT

    Energy Technology Data Exchange (ETDEWEB)

    Heays, A. N. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ajello, J. M.; Aguilar, A. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Lewis, B. R.; Gibson, S. T., E-mail: heays@strw.leidenuniv.nl [Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2014-04-01

    We have analyzed high-resolution (FWHM = 0.2 Å) extreme-ultraviolet (EUV, 800-1350 Å) laboratory emission spectra of molecular nitrogen excited by an electron impact at 20 and 100 eV under (mostly) optically thin, single-scattering experimental conditions. A total of 491 emission features were observed from N{sub 2} electronic-vibrational transitions and atomic N I and N II multiplets and their emission cross sections were measured. Molecular emission was observed at vibrationally excited ground-state levels as high as v'' = 17, from the a {sup 1}Π {sub g} , b {sup 1}Π {sub u} , and b'{sup 1}Σ {sub u} {sup +} excited valence states and the Rydberg series c'{sub n} {sub +1} {sup 1}Σ {sub u} {sup +}, c{sub n} {sup 1}Π {sub u} , and o{sub n} {sup 1}Π {sub u} for n between 3 and 9. The frequently blended molecular emission bands were disentangled with the aid of a sophisticated and predictive quantum-mechanical model of excited states that includes the strong coupling between valence and Rydberg electronic states and the effects of predissociation. Improved model parameters describing electronic transition moments were obtained from the experiment and allowed for a reliable prediction of the vibrationally summed electronic emission cross section, including an extrapolation to unobserved emission bands and those that are optically thick in the experimental spectra. Vibrationally dependent electronic excitation functions were inferred from a comparison of emission features following 20 and 100 eV electron-impact collisional excitation. The electron-impact-induced fluorescence measurements are compared with Cassini Ultraviolet Imaging Spectrograph observations of emissions from Titan's upper atmosphere.

  6. Simulation Study on Material Property of Cantilever Piezoelectric Vibration Generator

    Directory of Open Access Journals (Sweden)

    Yan Zhen

    2014-06-01

    Full Text Available For increasing generating capacity of cantilever piezoelectric vibration generator with limited volume, relation between output voltage, inherent frequency and material parameter of unimorph, bimorph in series type and bimorph in parallel type piezoelectric vibration generator is analyzed respectively by mechanical model and finite element modeling. The results indicate PZT-4, PZT- 5A and PZT-5H piezoelectric materials and stainless steel, nickel alloy substrate material should be firstly chosen.

  7. Vibration of liquid-filled thin shells

    International Nuclear Information System (INIS)

    Kalnins, A.

    1979-01-01

    This paper describes the analysis of free and forced vibration of a thin, axisymmetric shell, which contains some liquid. The axis of symmetry is vertical. Only such vibration is considered which can be produced by a horizontal movement of the base of shell. The objective of this paper is to examine the response of the coupled shell-liquid system for a frequency range lying between zero and the lowest natural sloshing frequency of the liquid. The mass of the liquid is modeled by a stationary and one or more sloshing masses. It is shown how the stationary mass can be incorporated in the vibration analysis of the shell and how to natural frequency of the coupled shell-liquid system can be obtained from a simple formula, if the lowest natural frequency of the shell, plus the stationary mass of the liquid, can be determined. A numerical example is given. (orig.)

  8. Off-axis Modal Active Vibration Control Of Rotational Vibrations

    NARCIS (Netherlands)

    Babakhani, B.; de Vries, Theodorus J.A.; van Amerongen, J.

    Collocated active vibration control is an effective and robustly stable way of adding damping to the performance limiting vibrations of a plant. Besides the physical parameters of the Active Damping Unit (ADU) containing the collocated actuator and sensor, its location with respect to the

  9. Simple systematization of vibrational excitation cross-section calculations for resonant electron-molecule scattering in the boomerang and impulse models.

    Science.gov (United States)

    Sarma, Manabendra; Adhikari, S; Mishra, Manoj K

    2007-01-28

    Vibrational excitation (nu(f), where psi(nu(i))(R,t) approximately =e(-iH(A(2))-(R)t/h phi(nu(i))(R) with time evolution under the influence of the resonance anionic Hamiltonian H(A(2) (-))(A(2) (-)=N(2)(-)/H(2) (-)) implemented using Lanczos and fast Fourier transforms. The target (A(2)) vibrational eigenfunctions phi(nu(i))(R) and phi(nu(f))(R) are calculated using Fourier grid Hamiltonian method applied to potential energy (PE) curves of the neutral target. Application of this simple systematization to calculate vibrational structure in e-N(2) and e-H(2) scattering cross-sections provides mechanistic insights into features underlying presence/absence of structure in e-N(2) and e-H(2) scattering cross-sections. The results obtained with approximate PE curves are in reasonable agreement with experimental/calculated cross-section profiles, and cross correlation functions provide a simple demarcation between the boomerang and impulse models.

  10. The effect of vibrationally excited nitrogen on the low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    B. Jenkins

    1997-11-01

    Full Text Available The first five vibrationally excited states of molecular nitrogen have been included in the Sheffield University plasmasphere ionosphere model. Vibrationally excited molecular nitrogen reacts much more strongly with atomic oxygen ions than ground-state nitrogen; this means that more O+ ions are converted to NO+ ions, which in turn combine with the electrons to give reduced electron densities. Model calculations have been carried out to investigate the effect of including vibrationally excited molecular nitrogen on the low-latitude ionosphere. In contrast to mid-latitudes, a reduction in electron density is seen in all seasons during solar maximum, the greatest effect being at the location of the equatorial trough.

  11. Vibration in car repair work.

    Science.gov (United States)

    Hansson, J E; Eklund, L; Kihlberg, S; Ostergren, C E

    1987-03-01

    The main objective of the study was to find efficient hand tools which caused only minor vibration loading. Vibration measurements were carried out under standardised working conditions. The time during which car body repairers in seven companies were exposed to vibration was determined. Chisel hammers, impact wrenches, sanders and saws were the types of tools which generated the highest vibration accelerations. The average daily exposure at the different garages ranged from 22 to 70 min. The risk of vibration injury is currently rated as high. The difference between the highest and lowest levels of vibration was considerable in most tool categories. Therefore the choice of tool has a major impact on the magnitude of vibration exposure. The importance of choosing the right tools and working methods is discussed and a counselling service on vibration is proposed.

  12. Exploring Modeling Options and Conversion of Average Response to Appropriate Vibration Envelopes for a Typical Cylindrical Vehicle Panel with Rib-stiffened Design

    Science.gov (United States)

    Harrison, Phil; LaVerde, Bruce; Teague, David

    2009-01-01

    Although applications for Statistical Energy Analysis (SEA) techniques are more widely used in the aerospace industry today, opportunities to anchor the response predictions using measured data from a flight-like launch vehicle structure are still quite valuable. Response and excitation data from a ground acoustic test at the Marshall Space Flight Center permitted the authors to compare and evaluate several modeling techniques available in the SEA module of the commercial code VA One. This paper provides an example of vibration response estimates developed using different modeling approaches to both approximate and bound the response of a flight-like vehicle panel. Since both vibration response and acoustic levels near the panel were available from the ground test, the evaluation provided an opportunity to learn how well the different modeling options can match band-averaged spectra developed from the test data. Additional work was performed to understand the spatial averaging of the measurements across the panel from measured data. Finally an evaluation/comparison of two conversion approaches from the statistical average response results that are output from an SEA analysis to a more useful envelope of response spectra appropriate to specify design and test vibration levels for a new vehicle.

  13. Vibration insensitive interferometry

    Science.gov (United States)

    Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.

    2017-11-01

    The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.

  14. Active Low-frequency Vertical Vibration Isolation System for Precision Measurements

    Institute of Scientific and Technical Information of China (English)

    WU Kang; LI Gang; HU Hua; WANG Lijun

    2017-01-01

    Low-frequency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise.Several types of active vibration isolation systems have been developed.However,few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility.An active low-frequency vertical vibration isolation system based on an earlier instrument,the Super Spring,is designed and implemented.The system,which is simple and compact,consists of two stages:a parallelogram-shaped linkage to ensure vertical motion,and a simple spring-mass system.The theoretical analysis of the vibration isolation system is presented,including terms erroneously ignored before.By carefully choosing the mechanical parameters according to the above analysis and using feedback control,the resonance frequency of the system is reduced from 2.3 to 0.03 Hz,a reduction by a factor of more than 75.The vibration isolation system is installed as an inertial reference in an absolute gravimeter,where it improved the scatter of the absolute gravity values by a factor of 5.The experimental results verifies the improved performance of the isolation system,making it particularly suitable for precision experiments.The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems.An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed,providing fundamental guidelines for vibration isolator design and assembling.

  15. Evaluation of Massey Ferguson Model 165 Tractor Drivers exposed to whole-body vibration

    Directory of Open Access Journals (Sweden)

    P. Nassiri

    2013-12-01

    Conclusion: This study shows that the need to provide intervention , controlling and managing measures to eliminate or reduce exposure to whole body vibration among tractor drivers its necessary. And, preventing main disorder Including musculoskeletal disorders, discomfort and early fatigue is of circular importance. More studies are also necessary to identify the sources of vibration among various of tractors.

  16. Characterization of Direct Piezoelectric Properties for Vibration Energy Harvesting

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, Takeshi; Miyabuchi, Hiroki; Ashida, Atsushi; Fujimura, Norifumi [Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531 (Japan); Murakami, Syuichi, E-mail: tyoshi@pe.osakafu-u.ac.jp [Technology Research Institute of Osaka Prefecture, 2-7-1 Ayumino, Izumi, Osaka, 594-1157 (Japan)

    2011-10-29

    Direct piezoelectric effect of Pb(Zr,Ti)O{sub 3} (PZT) thin films was investigated to discuss the application of ferroelectric films to vibration energy harvesting. From the model of the piezoelectric vibration energy harvester, it was found that the figure of merit (FOM) is proportional of the square of the effective transverse piezoelectric coefficient e{sub 31,f}. The e{sub 31,f} coefficient of PZT films were measured by substrate bending method. Furthermore, it was found that the e{sub 31,f} coefficient increases with increasing strain, which is favourable for the vibration energy harvesting.

  17. Active vibration absorber for CSI evolutionary model: Design and experimental results

    Science.gov (United States)

    Bruner, Anne M.; Belvin, W. Keith; Horta, Lucas G.; Juang, Jer-Nan

    1991-01-01

    The development of control of large flexible structures technology must include practical demonstration to aid in the understanding and characterization of controlled structures in space. To support this effort, a testbed facility was developed to study practical implementation of new control technologies under realistic conditions. The design is discussed of a second order, acceleration feedback controller which acts as an active vibration absorber. This controller provides guaranteed stability margins for collocated sensor/actuator pairs in the absence of sensor/actuator dynamics and computational time delay. The primary performance objective considered is damping augmentation of the first nine structural modes. Comparison of experimental and predicted closed loop damping is presented, including test and simulation time histories for open and closed loop cases. Although the simulation and test results are not in full agreement, robustness of this design under model uncertainty is demonstrated. The basic advantage of this second order controller design is that the stability of the controller is model independent.

  18. Evaluation of Bus Vibration Comfort Based on Passenger Crowdsourcing Mode

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2016-01-01

    Full Text Available Vibration comfort is an important factor affecting the quality of service (QoS of bus. In order to make people involved in supervising bus’s vibration comfort and improve passengers’ riding experience, a novel mode of passenger crowdsourcing is introduced. In this paper, comfort degree of bus vibration is calculated from bus’s vibration signals collected by passengers’ smartphones and sent through WiFi to the Boa web server which shows the vibration comfort on the LCD deployed in bus and maybe trigger alarm lamp when the vibration is beyond the threshold. Three challenges here have been overcome: firstly, space coordinate transformation algorithm is used to solve the constant drift of signals collected; secondly, a low-pass filter is designed to isolate gravity from signals real-timely via limited computing resources; thirdly, an embedded evaluation system is developed according to the calculation procedure specified by criterion ISO 2631-1997. Meanwhile, the model proposed is tested in a practical running environment, the vibration data in whole travel are recorded and analyzed offline. The results show that comfort degree of vibration obtained from the experimental system is identical with the truth, and this mode is proved to be effective.

  19. Evaluation of the vibration attenuation properties of an air-inflated cushion with two different heavy machinery seats in multi-axis vibration environments including jolts.

    Science.gov (United States)

    Ji, Xiaoxu; Eger, Tammy R; Dickey, James P

    2017-03-01

    Seats and cushions can attenuate whole-body vibration (WBV) exposures and minimize health risks for heavy machine operators. We successfully developed neural network (NN) algorithms to identify the vibration attenuation properties for four different seating conditions (seat/cushion combinations), and implemented each of the NN models to predict the equivalent daily exposure A(8) values for various vehicles in the forestry and mining environments. We also evaluated the performance of the new prototype No-Jolt™ air-inflated cushion and the original cushion of each seat with jolt exposures. We observed that the air cushion significantly improved the vibration attenuation properties of the seat that initially had good performance, but not for the seat that had relatively poor vibration attenuation properties. In addition, operator's anthropometrics and sex influenced the performance of the air-inflated cushion when the vibration environment included jolt exposures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Induced vibrations increase performance of a winged self-righting robot

    Science.gov (United States)

    Othayoth, Ratan; Xuan, Qihan; Li, Chen

    When upside down, cockroaches can open their wings to dynamically self-right. In this process, an animal often has to perform multiple unsuccessful maneuvers to eventually right, and often flails its legs. Here, we developed a cockroach-inspired winged self-righting robot capable of controlled body vibrations to test the hypothesis that vibrations assist self-righting transitions. Robot body vibrations were induced by an oscillating mass (10% of body mass) and varied by changing oscillation frequency. We discovered that, as the robot's body vibrations increased, righting probability increased, and righting time decreased (P locomotor transitions, but highlights the need for further stochastic modeling to capture the uncertain nature of when righting maneuvers result in successful righting.

  1. Nuclear resonance vibrational spectroscopic studies of iron-containing biomolecules

    International Nuclear Information System (INIS)

    Ohta, Takehiro; Seto, Makoto

    2014-01-01

    In this review, we report recent nuclear resonance vibrational spectroscopic (NRVS) studies of iron-containing biomolecules and their model complexes. The NRVS is synchrotron-based element-specific vibrational spectroscopic methods. Unlike Raman and infrared spectroscopy, the NRVS can investigate all iron motions without selection rules, which provide atomic level insights into the structure/reactivity correlation of biologically relevant iron complexes. (author)

  2. Nonlinear vibration behaviors of high-Tc superconducting bulks in an applied permanent magnetic array field

    Science.gov (United States)

    Li, Jipeng; Li, Haitao; Zheng, Jun; Zheng, Botian; Huang, Huan; Deng, Zigang

    2017-06-01

    The nonlinear vibration of high temperature superconducting (HTS) bulks in an applied permanent magnetic array (Halbach array) field, as a precondition for commercial application to HTS maglev train and HTS bearing, is systematically investigated. This article reports the actual vibration rules of HTS bulks from three aspects. First, we propose a new numerical model to simplify the calculation of levitation force. This model could provide precise simulations, especially the estimation of eigenfrequency. Second, an approximate analytic solution of the vibration of the HTS bulks is obtained by using the method of harmonic balance. Finally, to verify the results mentioned above, we measure the vertical vibration acceleration signals of an HTS maglev model, consisting of eight YBaCuO bulks, oscillating freely above a Halbach array with large displacement excitation. Higher order harmonic components, which indicate the nonlinear vibration phenomenon, are detected in the responses. All the three results are compared and agreed well with each other. This study combines the experimental and theoretical analyses and provides a deep understanding of the physical phenomenon of the nonlinear vibration and is meaningful for the vibration control of the relevant applications.

  3. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    OpenAIRE

    Marius STAN

    2013-01-01

    Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  4. Maximizing semi-active vibration isolation utilizing a magnetorheological damper with an inner bypass configuration

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Xian-Xu, E-mail: bai@hfut.edu.cn [Department of Vehicle Engineering, Hefei University of Technology, Hefei 230009 (China); Wereley, Norman M.; Hu, Wei [Department of Aerospace Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-05-07

    A single-degree-of-freedom (SDOF) semi-active vibration control system based on a magnetorheological (MR) damper with an inner bypass is investigated in this paper. The MR damper employing a pair of concentric tubes, between which the key structure, i.e., the inner bypass, is formed and MR fluids are energized, is designed to provide large dynamic range (i.e., ratio of field-on damping force to field-off damping force) and damping force range. The damping force performance of the MR damper is modeled using phenomenological model and verified by the experimental tests. In order to assess its feasibility and capability in vibration control systems, the mathematical model of a SDOF semi-active vibration control system based on the MR damper and skyhook control strategy is established. Using an MTS 244 hydraulic vibration exciter system and a dSPACE DS1103 real-time simulation system, experimental study for the SDOF semi-active vibration control system is also conducted. Simulation results are compared to experimental measurements.

  5. Vibrational and chiroptical spectroscopic characterization of gamma-turn model cyclic tetrapeptides containing two beta-Ala residues.

    Science.gov (United States)

    Vass, Elemér; Majer, Zsuzsa; Kohalmy, Krisztina; Hollósi, Miklós

    2010-08-01

    The optical spectroscopic characterization of gamma-turns in solution is uncertain and their distinction from beta-turns is often difficult. This work reports systematic ECD and vibrational circular dichroism (VCD) spectroscopic studies on gamma-turn model cyclic tetrapeptides cyclo(Ala-beta-Ala-Pro-beta-Ala) (1), cyclo(Pro-beta-Ala-Pro-beta-Ala) (2) and cyclo(Ala-beta-Ala-Ala-beta-Ala) (3). Conformational analysis performed at the 6-31G(d)/B3LYP level of theory using an adequate PCM solvent model predicted one predominant conformer for 1-3, featuring two inverse gamma-turns. The ECD spectra in ACN of 1 and 2 are characterized by a negative n-->pi* band near 230 nm and a positive pi-->pi* band below 200 nm with a long wavelength shoulder. The ECD spectra in TFE of 1-3 show similar spectra with blue-shifted bands. The VCD spectra in ACN-d(3) of 1 and 2 show a +/-/+/- amide I sign pattern resulting from four uncoupled vibrations in the case of 1 and a sequence of two positive couplets in the case of 2. A -/+/+/- amide I VCD pattern was measured for 3 in TFE-d(2). All three peptides give a positive couplet or couplet-like feature (+/-) in the amide II region. VCD spectroscopy, in agreement with theoretical calculations revealed that low frequency amide I vibrations (at approximately 1630 cm(-1) or below) are indicative of a C(7) H-bonded inverse gamma-turns with Pro in position 2, while gamma-turns encompassing Ala absorb at higher frequency (above 1645 cm(-1)). Copyright 2010 Wiley-Liss, Inc.

  6. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    International Nuclear Information System (INIS)

    Christian, Robby; Song, Seon Ho; Kang, Hyun Gook

    2015-01-01

    The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  7. Bandshapes in vibrational spectroscopy

    International Nuclear Information System (INIS)

    Dijkman, F.G.

    1978-01-01

    A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)

  8. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    KAUST Repository

    Levko, Dmitry

    2017-09-08

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  9. Passive and active vibration isolation systems using inerter

    Science.gov (United States)

    Alujević, N.; Čakmak, D.; Wolf, H.; Jokić, M.

    2018-03-01

    This paper presents a theoretical study on passive and active vibration isolation schemes using inerter elements in a two degree of freedom (DOF) mechanical system. The aim of the work is to discuss basic capabilities and limitations of the vibration control systems at hand using simple and physically transparent models. Broad frequency band dynamic excitation of the source DOF is assumed. The purpose of the isolator system is to prevent vibration transmission to the receiving DOF. The frequency averaged kinetic energy of the receiving mass is used as the metric for vibration isolation quality. It is shown that the use of inerter element in the passive vibration isolation scheme can enhance the isolation effect. In the active case, a feedback disturbance rejection scheme is considered. Here, the error signal is the receiving body absolute velocity which is directly fed to a reactive force actuator between the source and the receiving bodies. In such a scheme, the so-called subcritical vibration isolation problems exist. These problems are characterised by the uncoupled natural frequency of the receiving body larger than the uncoupled natural frequency of the source body. In subcritical vibration isolation problems, the performance of the active control is limited by poor stability margins. This is because the stable feedback gain is restricted in a narrow range between a minimum and a maximum. However, with the inclusion of an inerter in the isolator, one of the two stability margins can be opened. This enables large, theoretically unlimited negative feedback gains and large active damping of the receiving body vibration. A simple expression for the required inertance is derived.

  10. Vibrationally coupled electron transport through single-molecule junctions

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer

    2012-04-26

    Single-molecule junctions are among the smallest electric circuits. They consist of a molecule that is bound to a left and a right electrode. With such a molecular nanocontact, the flow of electrical currents through a single molecule can be studied and controlled. Experiments on single-molecule junctions show that a single molecule carries electrical currents that can even be in the microampere regime. Thereby, a number of transport phenomena have been observed, such as, for example, diode- or transistor-like behavior, negative differential resistance and conductance switching. An objective of this field, which is commonly referred to as molecular electronics, is to relate these transport phenomena to the properties of the molecule in the contact. To this end, theoretical model calculations are employed, which facilitate an understanding of the underlying transport processes and mechanisms. Thereby, one has to take into account that molecules are flexible structures, which respond to a change of their charge state by a profound reorganization of their geometrical structure or may even dissociate. It is thus important to understand the interrelation between the vibrational degrees of freedom of a singlemolecule junction and the electrical current flowing through the contact. In this thesis, we investigate vibrational effects in electron transport through singlemolecule junctions. For these studies, we calculate and analyze transport characteristics of both generic and first-principles based model systems of a molecular contact. To this end, we employ a master equation and a nonequilibrium Green's function approach. Both methods are suitable to describe this nonequilibrium transport problem and treat the interactions of the tunneling electrons on the molecular bridge non-perturbatively. This is particularly important with respect to the vibrational degrees of freedom, which may strongly interact with the tunneling electrons. We show in detail that the resulting

  11. Coupled vibration study of the blade of the flexible wind wheel with the low-speed shafting

    International Nuclear Information System (INIS)

    Su, L Y; Zhao, R Z; Liu, H; Meng, Z R

    2013-01-01

    Movement and deformation of flexible wind wheel has a profound effect on dynamics of the low-speed shafting in Megawatt wind turbine. The paper is based on the power production1.2 MW wind turbine, vibration characteristics of elastic wind wheel with the low-speed shafting were studied. In order to obtain the finite element model, the author created a physical model of this coupled system and used the minimum energy principle to simplify the model. While its single blade simplified as cantilever. Using modal superposition method for solving the coupled system model. Structural mechanics equations were used to solve the simple blade finite element model. Analyzing the natural frequency of the coupled system and the stress diagram, the results indicate that in the coupling system, low frequency vibration occurs in the low-speed shaft bearing, while the high-frequency vibration happens on wind turbine blades. In the low-frequency vibration process, blades vibration and low-speed shaft vibration there is a strong correlation. Contrast inherent frequency of the wind wheel with natural frequency of a single blade, the results show that the frequency of the wind wheel slightly less than it in the single blade

  12. Performance and Vibration Analyses of Lift-Offset Helicopters

    Directory of Open Access Journals (Sweden)

    Jeong-In Go

    2017-01-01

    Full Text Available A validation study on the performance and vibration analyses of the XH-59A compound helicopter is conducted to establish techniques for the comprehensive analysis of lift-offset compound helicopters. This study considers the XH-59A lift-offset compound helicopter using a rigid coaxial rotor system as a verification model. CAMRAD II (Comprehensive Analytical Method of Rotorcraft Aerodynamics and Dynamics II, a comprehensive analysis code, is used as a tool for the performance, vibration, and loads analyses. A general free wake model, which is a more sophisticated wake model than other wake models, is used to obtain good results for the comprehensive analysis. Performance analyses of the XH-59A helicopter with and without auxiliary propulsion are conducted in various flight conditions. In addition, vibration analyses of the XH-59A compound helicopter configuration are conducted in the forward flight condition. The present comprehensive analysis results are in good agreement with the flight test and previous analyses. Therefore, techniques for the comprehensive analysis of lift-offset compound helicopters are appropriately established. Furthermore, the rotor lifts are calculated for the XH-59A lift-offset compound helicopter in the forward flight condition to investigate the airloads characteristics of the ABC™ (Advancing Blade Concept rotor.

  13. Design model for bending vibrations of single-stage tunnel fan rotor

    Science.gov (United States)

    Krasyuk, AM; Kosykh, PV

    2018-03-01

    Using of one-mass model of tunnel fan rotor is justified for estimation calculation of the natural bending vibrations frequency during the design stage. It’s shown that the evaluative computation of the main axial tunnel fan at the early design stage yields the acceptable accuracy. It is shown that after completion of the design, the mass of the stepped-type shaft differs from the mass of the calculated uniform-diameter shaft no more than by 40%. Inclusion of this additional mass in the estimation calculation makes it possible to improve the calculation accuracy. The region of the dimensionless rotor design parameters at which the relative difference of frequency in the evaluative and verification calculations is not higher than 5 % is determined.

  14. Semi-active vibration control in cable-stayed bridges under the condition of random wind load

    International Nuclear Information System (INIS)

    Heo, G; Joonryong, Jeon

    2014-01-01

    This paper aims at an experimental study on the real-time vibration control of bridge structures using a semi-active vibration control method that has been in the spotlight recently. As structures are becoming larger and larger, structural harmful vibration caused by unspecified external forces such as earthquakes, gusts of wind, and collisions has been brought to attention as an important issue. These harmful vibrations can cause not only user anxiety but also severe structural damage or even complete failure of structures. Therefore, in view of structural safety and economical long-term maintenance, real-time control technology of the harmful structural vibration is urgently required. In this paper, a laboratory-scale model of a cable-stayed bridge was built, and a shear-type MR damper and a semi-active vibration control algorithm (Lyapunov and clipped optimal) were applied for the control of harmful vibration of the model bridge, in real time. On the basis of the test results, each semi-active control algorithm was verified quantitatively. (papers)

  15. Determination of acoustic vibration in watermelon by finite element modeling

    Science.gov (United States)

    Nourain, Jamal; Ying, Yibin B.; Wang, Jianping; Rao, Xiuqin

    2004-11-01

    The analysis of the vibration responses of a fruit is suggested to measure firmness non-destructively. A wooden ball excited the fruits and the response signals were captured using an accelerometer sensor. The method has been well studied and understood on ellipsoidal shaped fruit (watermelon). In this work, using the finite element simulations, the applicability of the method on watermelon was investigated. The firmness index is dependent on the mass, density, and natural frequency of the lowest spherical modes (under free boundary conditions). This developed index extends the firmness estimation for fruits or vegetables from a spherical to an ellipsoidal shape. The mode of Finite element analysis (FEA) of watermelon was generated based on measured geometry, and it can be served as a theoretical reference for predicting the modal characteristics as a function of design parameters such as material, geometrical, and physical properties. It was found that there were four types of mode shapes. The 1st one was first-type longitudinal mode, the 2nd one was the second-type longitudinal mode, the 3rd one was breathing mode or pure compression mode, and the fourth was flexural or torsional mode shape. As suggested in many references, the First-type spherical vibration mode or oblate-Prolate for watermelon is the lowest bending modes, it's most likely related to fruit firmness. Comparisons of finite element and experimental modal parameters show that both results were agreed in mode shape as well as natural frequencies. In order to measure the vibration signal of the mode, excitation and sensors should be placed on the watermelon surface far away from the nodal lines. The excitation and the response sensors should be in accordance with vibration directions. The correlations between the natural frequency and firmness was 0.856, natural frequency and Young's modulus was 0.800, and the natural frequency and stiffness factor (SF) was 0.862. The stiffness factor (SF) is adequate

  16. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  17. Coulomb friction modelling in numerical simulations of vibration and wear work rate of multispan tube bundles

    International Nuclear Information System (INIS)

    Antunes, J.; Axisa, F.; Beaufils, B.; Guilbaud, D.

    1990-01-01

    The working life of heat exchanger multispan tube bundles subjected to flow-induced vibration, is heavily dependent on nonlinear interaction between the loosely supported tubes and their supports. Reliable wear prediction techniques must account for a number of factors controlling impact-sliding tube response, such as tube support gap, contact stiffness, impact damping, Coulomb friction and squeeze film effect at supports. Tube fretting wear potential risk may then be adequately quantified by an equivalent wear work rate. A simple model is presented which accounts for the key aspects of dry friction and is well suited to the efficient explicit numerical integration schemes, specifically through nonlinear model superposition. Extensive parametric two-dimensional simulations, under random vibration induced by flow turbulence, are presented. Also, the effect of permanent tube-support preload, arising from cross flow drag, tube-support misalignment and thermal expansion, is investigated. Results show that frictional forces consistently reduce wear work rates, which decrease for high values of the coefficient of friction. Such reductions may be extremely important for the limiting case when preload and frictional forces are of sufficient magnitude to overcome dynamic forces, preventing tube-support relative motion. (author)

  18. Vibrations of wind power plants; Schwingungen von Windenergieanlagen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the meeting of the department vibration engineering of the Association of German Engineers (Duesseldorf, Federal Republic of Germany) between 3rd and 4th February, 2010 in Hanover (Federal Republic of Germany) the following lectures are presented: (1) Reduction of forced strengths generated by wagging and snaking of the rotor in the power strain of wind power plants (F. Mitsch); (2) Reduction of vibrations at wind power plants by means of active additional systems (S. Katz, S. Pankoke, N. Loix); (3) Reduction of vibrations by means of balancing and alignment (E. Becker, M. Kenzler); (4) Active absorber for reducing tonal emissions of vibration at wind power plants (R. Neugebauer, M. Linke, H. Kunze, M. Ulrich); (5) Control structures for damping torsion vibrations and peak loads in the power strain of wind power converters (C. Sourkounis); (6) Possibilities of a non-contact investigation of vibrations at wind power plants (R. Behrendt, E. Reimers, H. Wiegers); (7) Influences on the loadability of CMS statements (R. Wirth); (8) Recording modal structural properties with sensor grids and methods of operational modal analysis (A. Friedmann, D. Mayer, M. Koch, M. Kauba, T. Melz); (9) Early failure detection of damages of roller bearings in wind power gear units with variable speed (B. Hacke, G. Poll); (10) Condition monitoring in wind power plants - structure monitoring and life time monitoring of wind power plants (SCMS and LCMS) (H. Lange); (11) Development of a model-based structural health monitoring system for condition monitoring of rotor blades (C. Ebert, H. Friedmann, F.O. Henkel, B. Frankenstein, L. Schubert); (12) Efficient remote monitoring at wind power plants by means of an external diagnosis centre (G. Ceglarek); (13) Accurate turbine modelling at component and assembly level for durability and acoustic analysis (D. v. Werner, W. Hendricx); (14) Possibilities of the investigation of the dynamic behaviour of power strains in wind power plants by

  19. The vibrational behaviour of a cracked turbine rotor

    International Nuclear Information System (INIS)

    Grabowski, B.

    1978-01-01

    In order to detect an incipient crack on a turbine rotor with the aid of measurement of the shaft vibrations, these must be known in the first place the effects of a crack on the vibrational behavior of a rotor. For this purpose a method using the modal analysis is presented here. The rigidity depending on the angle of rotation at the position of the crack is accounted for by means of a model. Because of the composition of the computer code there may also be worked with measured values for the rigidity. The results of the calculations show that within the range of speeds, in which for many turbines the operating speed lies, a crack will cause distinct variations of the shaft vibrations. The crack stimulates vibrations with frequencies of rotation and frequencies of double-rotation. Both may be used for crack detection. Because of the strong dependence of the size of the amplitudes of vibration on the design of the rotor and the position of the crack each rotor should be subject to a detailed crack calculation for a better judgement of the measured values. (orig.) [de

  20. Anomalous vibrational properties in the continuum limit of glasses

    Science.gov (United States)

    Shimada, Masanari; Mizuno, Hideyuki; Ikeda, Atsushi

    2018-02-01

    The low-temperature thermal properties of glasses are anomalous with respect to those of crystals. These thermal anomalies indicate that the low-frequency vibrational properties of glasses differ from those of crystals. Recent studies revealed that, in the simplest model of glasses, i.e., the harmonic potential system, phonon modes coexist with soft localized modes in the low-frequency (continuum) limit. However, the nature of low-frequency vibrational modes of more realistic models is still controversial. In the present work, we study the Lennard-Jones (LJ) system using large-scale molecular-dynamics (MD) simulation and establish that the vibrational property of the LJ glass converges to coexistence of the phonon modes and the soft localized modes in the continuum limit as in the case of the harmonic potential system. Importantly, we find that the low-frequency vibrations are rather sensitive to the numerical scheme of potential truncation, which is usually implemented in the MD simulation, and this is the reason why contradictory arguments have been reported by previous works. We also discuss the physical origin of this sensitiveness by means of a linear stability analysis.

  1. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    CERN Document Server

    Frisch, J; Decker, V; Hendrickson, L; Markiewicz, T W; Partridge, R; Seryi, Andrei

    2004-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  2. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    International Nuclear Information System (INIS)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; SLAC

    2006-01-01

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system

  3. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Murat [Dept. of Mechanical Engineering, Bayburt University, Bayburt (Turkmenistan); Gundogdu, Omer [Dept. of Mechanical Engineering, Ataturk University, Erzurum (Turkmenistan)

    2017-01-15

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed.

  4. Estimation of physical properties of laminated composites via the method of inverse vibration problem

    International Nuclear Information System (INIS)

    Balci, Murat; Gundogdu, Omer

    2017-01-01

    In this study, estimation of some physical properties of a laminated composite plate was conducted via the inverse vibration problem. Laminated composite plate was modelled and simulated to obtain vibration responses for different length-to-thickness ratio in ANSYS. Furthermore, a numerical finite element model was developed for the laminated composite utilizing the Kirchhoff plate theory and programmed in MATLAB for simulations. Optimizing the difference between these two vibration responses, inverse vibration problem was solved to obtain some of the physical properties of the laminated composite using genetic algorithms. The estimated parameters are compared with the theoretical results, and a very good correspondence was observed

  5. Substantiation of vibration strength of nuclear reactor and steam generator internals. Main problems

    International Nuclear Information System (INIS)

    Fyodorov, V.G.; Sinyavasky, V.F.

    1977-01-01

    The report details the scope and priority of studies necessary for substantiation of vibration strength of steam generator tube bundles and reactor fuel assemblies, and design modifications helping to reduce flow-induced vibration of the internals specified. Steam generator tube bundles are studied on the basis of a standard establishing vibration requirements at various stages of design, manufacture and operation of a steam generator at a nuclear power station. The main vibration characteristics of tubes obtained through model and full-scale tests are compared with calculation results. Results are provided concerning test-stand vibration tests of fuel elements and fuel assemblies. (author)

  6. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  7. Nonlinear Response of Vibrational Conveyers with Nonideal Vibration Exciter: Superharmonic and Subharmonic Resonance

    Directory of Open Access Journals (Sweden)

    H. Bayıroğlu

    2012-01-01

    Full Text Available Vibrational conveyers with a centrifugal vibration exciter transmit their load based on the jumping method. Common unbalanced-mass driver oscillates the trough. The motion is strictly related to the vibrational parameters. The transition over resonance of a vibratory system, excited by rotating unbalances, is important in terms of the maximum vibrational amplitude produced and the power demand on the drive for the crossover. The mechanical system is driven by the DC motor. In this study, the working ranges of oscillating shaking conveyers with nonideal vibration exciter have been analyzed analytically for superharmonic and subharmonic resonances by the method of multiple scales and numerically. The analytical results obtained in this study agree well with the numerical results.

  8. Nonlinear network model analysis of vibrational energy transfer and localisation in the Fenna-Matthews-Olson complex

    Science.gov (United States)

    Morgan, Sarah E.; Cole, Daniel J.; Chin, Alex W.

    2016-11-01

    Collective protein modes are expected to be important for facilitating energy transfer in the Fenna-Matthews-Olson (FMO) complex of photosynthetic green sulphur bacteria, however to date little work has focussed on the microscopic details of these vibrations. The nonlinear network model (NNM) provides a computationally inexpensive approach to studying vibrational modes at the microscopic level in large protein structures, whilst incorporating anharmonicity in the inter-residue interactions which can influence protein dynamics. We apply the NNM to the entire trimeric FMO complex and find evidence for the existence of nonlinear discrete breather modes. These modes tend to transfer energy to the highly connected core pigments, potentially opening up alternative excitation energy transfer routes through their influence on pigment properties. Incorporating localised modes based on these discrete breathers in the optical spectra calculations for FMO using ab initio site energies and excitonic couplings can substantially improve their agreement with experimental results.

  9. RISK ASSESSMENT BY STRUCTURAL ANALYSIS AND VIBRATION MEASUREMENT EQUIPMENT OPERATING AT OIL FACILITIES

    Directory of Open Access Journals (Sweden)

    Marius STAN

    2013-05-01

    Full Text Available Vibration analysis applications in operation is one of the diagnostic methods ofoperation of the facility. Analysis of these types of failures indicated the existence of specificfeatures prints and related equipment vibration spectra. Modeling and identification of theseparticular aspects in the spectrum of vibration machines help to control the operation of oilfacilities built safely.

  10. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Bo Zhu

    2016-03-01

    Full Text Available It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM, especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  11. Effects of vibration frequency on vibration-assisted nano-scratch process of mono-crystalline copper via molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Bo; Zhao, Hongwei, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com; Zhao, Dan; Zhang, Peng; Yang, Yihan; Han, Lei [School of Mechanical Science and Engineering, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China); Kui, Hailin, E-mail: hwzhao@jlu.edu.cn, E-mail: khl69@163.com [School of Transportation, Jilin University, 5988 Renmin Street, Changchun, Jilin 130025 (China)

    2016-03-15

    It has always been a critical issue to understand the material removal behavior of Vibration-Assisted Machining (VAM), especially on atomic level. To find out the effects of vibration frequency on material removal response, a three-dimensional molecular dynamics (MD) model has been established in this research to investigate the effects of scratched groove, crystal defects on the surface quality, comparing with the Von Mises shear strain and tangential force in simulations during nano-scratching process. Comparisons are made among the results of simulations from different vibration frequency with the same scratching feed, depth, amplitude and crystal orientation. Copper potential in this simulation is Embedded-Atom Method (EAM) potential. Interaction between copper and carbon atoms is Morse potential. Simulational results show that higher frequency can make groove smoother. Simulation with high frequency creates more dislocations to improve the machinability of copper specimen. The changing frequency does not have evident effects on Von Mises shear strain. Higher frequency can decrease the tangential force to reduce the consumption of cutting energy and tool wear. In conclusion, higher vibration frequency in VAM on mono-crystalline copper has positive effects on surface finish, machinablility and tool wear reduction.

  12. Vibration analysis of a trimorph plate as a precursor model for smart automotive bodywork

    International Nuclear Information System (INIS)

    Big-Alabo, A; Cartmell, M P

    2012-01-01

    This study investigates the vibration characteristics of a proposed candidate structure for smarter car bodies. The material is conceived as a three-layer laminated structure in the form of a trimorph plate. The vibration response of the plate is investigated for large deflections by considering the effects of geometric nonlinearity. First, the governing equation for the mid-point deflection of the plate is developed based on classical laminate plate theory (CLPT). The governing equation is solved, and a simulation is run for different possible layer-stacking sequences. Comparisons are made between the nonlinear vibration response of this trimorph plate both with and without the effects of the von Kármán geometric nonlinearity. The results show that for the same material properties the different layer-stacking sequences produce different vibration responses, and from there it is concluded that layer-stacking sequencing is a basis for the definition of a suitable material configuration for high performance automotive applications.

  13. Vibration of Piezoelectric Nanowires Including Surface Effects

    Directory of Open Access Journals (Sweden)

    R. Ansari

    2014-04-01

    Full Text Available In this paper, surface and piezoelectric effects on the vibration behavior of nanowires (NWs are investigated by using a Timoshenko beam model. The electric field equations and the governing equations of motion for the piezoelectric NWs are derived with the consideration of surface effects. By the exact solution of the governing equations, an expression for the natural frequencies of NWs with simply-supported boundary conditions is obtained. The effects of piezoelectricity and surface effects on the vibrational behavior of Timoshenko NWs are graphically illustrated. A comparison is also made between the predictions of Timoshenko beam model and those of its Euler-Bernoulli counterpart. Additionally, the present results are validated through comparison with the available data in the literature.

  14. Shock and vibration technology with applications to electrical systems

    Science.gov (United States)

    Eshleman, R. L.

    1972-01-01

    A survey is presented of shock and vibration technology for electrical systems developed by the aerospace programs. The shock environment is surveyed along with new techniques for modeling, computer simulation, damping, and response analysis. Design techniques based on the use of analog computers, shock spectra, optimization, and nonlinear isolation are discussed. Shock mounting of rotors for performance and survival, and vibration isolation techniques are reviewed.

  15. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  16. Rotor Vibration Reduction via Active Hybrid Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2002-01-01

    The use of fluid power to reduce and control rotor vibration in rotating machines is investigated. An active hybrid bearing is studied, whose main objective is to reduce wear and vibration between rotating and stationary machinery parts. By injecting pressurised oil into the oil film, through...... orifices machined in the bearing pads, one can alter the machine dynamic characteristics, thus enhancing its operational range. A mathematical model of the rotor-bearing system, as well as of the hydraulic system, is presented. Numerical results of the system frequency response show good agreement...

  17. The high level vibration test program

    International Nuclear Information System (INIS)

    Hofmayer, C.H.; Curreri, J.R.; Park, Y.J.; Kato, W.Y.; Kawakami, S.

    1989-01-01

    As part of cooperative agreements between the US and Japan, tests have been performed on the seismic vibration table at the Tadotsu Engineering Laboratory of Nuclear Power Engineering Test Center (NUPEC) in Japan. The objective of the test program was to use the NUPEC vibration table to drive large diameter nuclear power piping to substantial plastic strain with an earthquake excitation and to compare the results with state-of-the-art analysis of the problem. The test model was subjected to a maximum acceleration well beyond what nuclear power plants are designed to withstand. A modified earthquake excitation was applied and the excitation level was increased carefully to minimize the cumulative fatigue damage due to the intermediate level excitations. Since the piping was pressurized, and the high level earthquake excitation was repeated several times, it was possible to investigate the effects of ratchetting and fatigue as well. Elastic and inelastic seismic response behavior of the test model was measured in a number of test runs with an increasing excitation input level up to the limit of the vibration table. In the maximum input condition, large dynamic plastic strains were obtained in the piping. Crack initiation was detected following the second maximum excitation run. Crack growth was carefully monitored during the next two additional maximum excitation runs. The final test resulted in a maximum crack depth of approximately 94% of the wall thickness. The HLVT (high level vibration test) program has enhanced understanding of the behavior of piping systems under severe earthquake loading. As in other tests to failure of piping components, it has demonstrated significant seismic margin in nuclear power plant piping

  18. Development of vibrational analysis for detection of antisymmetric shells

    International Nuclear Information System (INIS)

    Esmailzadeh Khadem, S.; Mahmoodi, M.; Rezaee, M.

    2002-01-01

    In this paper, vibrational behavior of bodies of revolution with different types of structural faults is studied. Since vibrational characteristics of structures are natural properties of system, the existence of any structural faults causes measurable changes in these properties. Here, this matter is demonstrated. In other words, vibrational behavior of a body of revolution with no structural faults is analyzed by two methods of I) numerical analysis using super sap software, II) Experimental model analysis, and natural frequencies and mode shapes are obtained. Then, different types of cracks are introduced in the structure, and analysis is repeated and the results are compared. Based on this study, one may perform crack detection by measuring the natural frequencies and mode shapes of the samples and comparing with reference information obtained from the vibration analysis of the original structure with no fault

  19. To the vibrational over wetting and liquefaction effects in moistured soils

    International Nuclear Information System (INIS)

    Karimov, F.H.; Oripov, G.O.; Saidov, R.M.; Tojibekov, M.

    2003-01-01

    There is a lot of evidence of the dynamical effects in soils when they become wetted or during or after the earthquakes or explosions. There are some quantitative estimates for the vibrational wetting and liquefaction of soils under consideration. For the models in the present research the moistured sands and weak soils like losses are accepted. The first model is focusing on soil fractures sliding down under the action of vibrations, tightening of a hard phase, squeezing water phase out and thus bringing to soil liquefaction. The second is based on soil fractures plunging at the action of vibrations into the aquatic background. This mechanism seems to be more effective for the high degree moistured soils. The third mechanism is based on capillary phenomena in moistured porous medium. When inertia forces are large enough the resultant force, consisting of sliding down gravity component and inertia forces, overcomes friction and fracture becomes unstable. Both vibrations amplitude and frequency are the stability controlling factors, playing an important role in the vibrational wetting and liquefaction effects through porous water phase squeezing out or capillary lifting phenomena leading to the wetting or liquefaction of the medium. (author)

  20. Thermal vibration of a rectangular single-layered graphene sheet with quantum effects

    International Nuclear Information System (INIS)

    Wang, Lifeng; Hu, Haiyan

    2014-01-01

    The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.

  1. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.

    Science.gov (United States)

    Decker, Gifford Z; Thomson, Scott L

    2007-05-01

    The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.

  2. High Frequency Longitudinal Damped Vibrations of a Cylindrical Ultrasonic Transducer

    Directory of Open Access Journals (Sweden)

    Mihai Valentin Predoi

    2014-01-01

    Full Text Available Ultrasonic piezoelectric transducers used in classical nondestructive testing are producing in general longitudinal vibrations in the MHz range. A simple mechanical model of these transducers would be very useful for wave propagation numerical simulations, avoiding the existing complicated models in which the real components of the transducer are modeled by finite elements. The classical model for longitudinal vibrations is not adequate because the generated longitudinal wave is not dispersive, the velocity being the same at any frequency. We have adopted the Rayleigh-Bishop model, which avoids these limitations, even if it is not converging to the first but to the second exact longitudinal mode in an elastic rod, as obtained from the complicated Pochhammer-Chree equations. Since real transducers have significant vibrations damping, we have introduced a damping term in the Rayleigh-Bishop model, increasing the imaginary part and keeping almost identical real part of the wavenumber. Common transducers produce amplitude modulated signals, completely attenuated after several periods. This can be modeled by two close frequencies, producing a “beat” phenomenon, superposed on the high damping. For this reason, we introduce a two-rod Rayleigh-Bishop model with damping. Agreement with measured normal velocity on the transducer free surface is encouraging for continuation of the research.

  3. Robust structural design against self-excited vibrations

    CERN Document Server

    Spelsberg-Korspeter, Gottfried

    2013-01-01

    This book studies methods for a robust design of rotors against self-excited vibrations. The occurrence of self-excited vibrations in engineering applications if often unwanted and in many cases difficult to model. Thinking of complex systems such as machines with many components and mechanical contacts, it is important to have guidelines for design so that the functionality is robust against small imperfections. This book discusses the question on how to design a structure such that unwanted self-excited vibrations do not occur. It shows theoretically and practically that the old design rule to avoid multiple eigenvalues points toward the right direction and have optimized structures accordingly. This extends results for the well-known flutter problem in which equations of motion with constant coefficients occur to the case of a linear conservative system with arbitrary time periodic perturbations.

  4. Flow-induced vibration test of an advanced water reactor model. Pt. 1. Turbulence-induced forcing function

    International Nuclear Information System (INIS)

    Au-Yang, M.K.; Brenneman, B.; Raj, D.

    1995-01-01

    A 1:9 scale model of a proposed advanced water reactor was tested for flow-induced vibration. The main objectives of this test were: (1) to derive an empirical equation for the turbulence forcing function which can be applied to the full-sized prototype; (2) to study the effect of viscosity on the turbulence; (3) to verify the ''superposition'' assumption widely used in dynamic analysis of weakly coupled fluid-shell systems; and (4) to measure the shell responses to verify methods and computer programs used in the flow-induced vibration analysis of the prototype. This paper describes objectives (1), (2), and (3); objective (4) will be discussed in a companion paper.The turbulence-induced fluctuating pressure was measured at 49 locations over the surface of a thick-walled, non-responsive scale model of the reactor vessel/core support cylinders. An empirical equation relating the fluctuating pressure, the frequency, and the distance from the inlet nozzle center line was derived to fit the test data. This equation involves only non-dimensional, fluid mechanical parameters that are postulated to represent the full-sized, geometrically similar prototype. While this postulate cannot be verified until similar measurements are taken on the full-sized unit, a similar approach using a 1:6 scale model of a commercial pressurized water reactor was verified in the mid-1970s by field measurements on the full-sized reactor. (orig.)

  5. Vibrational characteristics and wear of fuel rods

    International Nuclear Information System (INIS)

    Schmugar, K.L.

    1977-01-01

    Fuel rod wear, due to vibration, is a continuing concern in the design of liquid-cooled reactors. In my report, the methodology and models that are used to predict fuel rod vibrational response and vibratory wear, in a light water reactor environment, are discussed. This methodology is being followed at present in the design of Westinghouse Nuclear Fuel. Fuel rod vibrations are expressed as the normal bending modes, and sources of rod vibration are examined with special emphasis on flow-induced mechanisms in the stable flow region. In a typical Westinghouse PWR fuel assembly design, each fuel rod is supported at multiple locations along the rod axis by a square-shaped 'grid cell'. For a fuel rod /grid support system, the development of small oscillatory motions, due to fluid flow at the rod/grid interface, results in material wear. A theoretical wear mode is developed using the Archard Theory of Adhesive Wear as the basis. Without question certainty, fretting wear becomes a serious problem if it progresses to the stage where the fuel cladding is penetrated and fuel is exposed to the coolant. Westinghouse fuel is designed to minimize fretting wear by limiting the relative motion between the fuel rod and its supports. The wear producing motion between the fuel rod and its supports occurs when the vibration amplitude exceeds the slippage threshold amplitude

  6. Vibration attenuation and shape control of surface mounted, embedded smart beam

    Directory of Open Access Journals (Sweden)

    Vivek Rathi

    Full Text Available Active Vibration Control (AVC using smart structure is used to reduce the vibration of a system by automatic modification of the system structural response. AVC is widely used, because of its wide and broad frequency response range, low additional mass, high adaptability and good efficiency. A lot of research has been done on Finite Element (FE models for AVC based on Euler Bernoulli Beam Theory (EBT. In the present work Timoshenko Beam Theory (TBT is used to model a smart cantilever beam with surface mounted sensors / actuators. A Periodic Output Feedback (POF Controller has been designed and applied to control the first three modes of vibration of a flexible smart cantilever beam. The difficulties encountered in the usage of surface mounted piezoelectric patches in practical situations can be overcome by the use of embedded shear sensors / actuators. A mathematical model of a smart cantilever beam with embedded shear sensors and actuators is developed. A POF Controller has been designed and applied to control of vibration of a flexible smart cantilever beam and effect of actuator location on the performance of the controller is investigated. The mathematical modeling and control of a Multiple Input multiple Output (MIMO systems with two sensors and two actuators have also been considered.

  7. Vibration control for precision manufacturing at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Hinnerichs, T.; Martinez, D.

    1995-01-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ''smart'' structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics

  8. Vibration control for precision manufacturing at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hinnerichs, T.; Martinez, D. [Sandia National Labs., Albuquerque, NM (United States). Structural Dynamics and Vibration Control Dept.

    1995-04-01

    Sandia National Laboratories performs R and D in structural dynamics and vibration suppression for precision applications in weapon systems, space, underwater, transportation and civil structures. Over the last decade these efforts have expanded into the areas of active vibration control and ``smart`` structures and material systems. In addition, Sandia has focused major resources towards technology to support weapon product development and agile manufacturing capability for defense and industrial applications. This paper will briefly describe the structural dynamics modeling and verification process currently in place at Sandia that supports vibration control and some specific applications of these techniques to manufacturing in the areas of lithography, machine tools and flexible robotics.

  9. Vibrating crystals as possible neutron monochromators

    International Nuclear Information System (INIS)

    Stoica, A.D.; Popovici, M.

    1983-09-01

    The Bragg reflection of neutrons of vibratinq perfect crystals is considered. The additional possibilities offered by the Doppler effect for shaping neutron beams in the k-space are discussed. A simple model for computing the vibrating crystal reflectivity is proposed. (author)

  10. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.

    2015-08-06

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  11. Mode-selective vibrational modulation of charge transport in organic electronic devices

    KAUST Repository

    Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Bredas, Jean-Luc; Cahen, David

    2015-01-01

    The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.

  12. Modal Vibration Control in Periodic Time-Varying Structures with Focus on Rotor Blade Systems

    DEFF Research Database (Denmark)

    Christensen, Rene Hardam; Santos, Ilmar

    2004-01-01

    of active modal controllers. The main aim is to reduce vibrations in periodic time-varying structures. Special emphasis is given to vibration control of coupled bladed rotor systems. A state feedback modal control law is developed based on modal analysis in periodic time-varying structures. The first step...... in the procedure is a transformation of the model into a time-invariant modal form by applying the modal matrices, which are also periodic time-variant. Due to coupled rotor and blade motions complex vibration modes occur in the modal transformed state space model. This implies that the modal transformed model...

  13. Vibration analysis of rotating nanobeam systems using Eringen's two-phase local/nonlocal model

    Science.gov (United States)

    Khaniki, Hossein Bakhshi

    2018-05-01

    Due to the inability of differential form of nonlocal elastic theory in modelling cantilever beams and inaccurate results for some type of boundaries, in this study, a reliable investigation on transverse vibrational behavior of rotating cantilever size-dependent beams is presented. Governing higher order equations are written in the framework of Eringen's two-phase local/nonlocal model and solved using a modified generalized differential quadrature method. In order to indicate the influence of different material and scale parameters, a comprehensive parametric study is presented. It is shown that increasing the nonlocality term leads to lower natural frequency terms for cantilever nanobeams especially for the fundamental frequency parameter which differential nonlocal model is unable to track appropriately. Moreover, it is shown that rotating speed and hub radius have a remarkable effect in varying the mechanical behavior of rotating cantilever nanobeams. This study is a step forward in analyzing nanorotors, nanoturbines, nanoblades, etc.

  14. Vibration test of 1/5 scale H-II launch vehicle

    Science.gov (United States)

    Morino, Yoshiki; Komatsu, Keiji; Sano, Masaaki; Minegishi, Masakatsu; Morita, Toshiyuki; Kohsetsu, Y.

    In order to predict dynamic loads on the newly designed Japanese H-II launch vehicle, the adequacy of prediction methods has been assessed by the dynamic scale model testing. The three-dimensional dynamic model was used in the analysis to express coupling effects among axial, lateral (pitch and yaw) and torsional vibrations. The liquid/tank interaction was considered by use of a boundary element method. The 1/5 scale model of the H-II launch vehicle was designed to simulate stiffness and mass properties of important structural parts, such as core/SRB junctions, first and second stage Lox tanks and engine mount structures. Modal excitation of the test vehicle was accomplished with 100-1000 N shakers which produced random or sinusoidal vibrational forces. The vibrational response of the test vehicle was measured at various locations with accelerometers and pressure sensor. In the lower frequency range, corresmpondence between analysis and experiment was generally good. The basic procedures in analysis seem to be adequate so far, but some improvements in mathematical modeling are suggested by comparison of test and analysis.

  15. Electronic and vibrational spectroscopy and vibrationally mediated photodissociation of V+(OCO).

    Science.gov (United States)

    Citir, Murat; Altinay, Gokhan; Metz, Ricardo B

    2006-04-20

    Electronic spectra of gas-phase V+(OCO) are measured in the near-infrared from 6050 to 7420 cm(-1) and in the visible from 15,500 to 16,560 cm(-1), using photofragment spectroscopy. The near-IR band is complex, with a 107 cm(-1) progression in the metal-ligand stretch. The visible band shows clearly resolved vibrational progressions in the metal-ligand stretch and rock, and in the OCO bend, as observed by Brucat and co-workers. A vibrational hot band gives the metal-ligand stretch frequency in the ground electronic state nu3'' = 210 cm(-1). The OCO antisymmetric stretch frequency in the ground electronic state (nu1'') is measured by using vibrationally mediated photodissociation. An IR laser vibrationally excites ions to nu1'' = 1. Vibrationally excited ions selectively dissociate following absorption of a second, visible photon at the nu1' = 1 CO2, due to interaction with the metal. Larger blue shifts observed for complexes with fewer ligands agree with trends seen for larger V+(OCO)n clusters.

  16. Research on vibration signal analysis and extraction method of gear local fault

    Science.gov (United States)

    Yang, X. F.; Wang, D.; Ma, J. F.; Shao, W.

    2018-02-01

    Gear is the main connection parts and power transmission parts in the mechanical equipment. If the fault occurs, it directly affects the running state of the whole machine and even endangers the personal safety. So it has important theoretical significance and practical value to study on the extraction of the gear fault signal and fault diagnosis of the gear. In this paper, the gear local fault as the research object, set up the vibration model of gear fault vibration mechanism, derive the vibration mechanism of the gear local fault and analyzes the similarities and differences of the vibration signal between the gear non fault and the gears local faults. In the MATLAB environment, the wavelet transform algorithm is used to denoise the fault signal. Hilbert transform is used to demodulate the fault vibration signal. The results show that the method can denoise the strong noise mechanical vibration signal and extract the local fault feature information from the fault vibration signal..

  17. Vibration Analysis of a Residential Building

    Directory of Open Access Journals (Sweden)

    Sampaio Regina Augusta

    2015-01-01

    Full Text Available The aim of this paper is to present the results of a study regarding vibration problems in a 17 storey residential building during pile driving in its vicinity. The structural design of the building was checked according to the Brazilian standards NBR6118 and NBR6123, and using commercial finite element software. An experimental analysis was also carried out using low frequency piezo-accelerometers attached to the building structure. Structure vibrations were recorded under ambient conditions. Four monitoring tests were performed on different days. The objective of the first monitoring test was an experimental modal analysis. To obtain de modal parameters, data was processed in the commercial software ARTEMIS employing two methods: the Stochastic Subspace Identification and the Frequency Domain Decomposition. Human comfort was investigated considering the International Standard ISO 2631. The Portuguese standard, NP2074, was also used as a reference, since it aims to limit the adverse effects of vibrations in structures caused by pile driving in the vicinity of the structure. The carried out experimental tests have shown that, according to ISO2301, the measure vibration levels are above the acceptance limits. However, velocity peaks are below the limits established by NP2074. It was concluded that, although the structure has adequate capacity to resist internal forces according to normative criteria, it has low horizontal stiffness, which could be verified by observing the vibration frequencies and mode shapes obtained with the finite element models, and its similarity with the experimental results. Thus, the analyses indicate the occurrence of discomfort by the residents.

  18. Collisional flow of vibrational energy into surrounding vibrational fields within S1 benzene

    International Nuclear Information System (INIS)

    Tang, K.Y.; Parmenter, C.S.

    1983-01-01

    Vapor phase fluorescence spectra are used to determine the absolute rate constants for the collisional transfer of vibrational energy from initial single vibronic levels of S 1 benzene into the surrounding S 1 vibronic field. 11 initial levels are probed with vibrational energies ranging to 2368 cm -1 where the level density is about 10 per cm -1 . CO, isopentane, and S 0 benzene are the collision partners. Benzene rate constants are three to four times gas kinetic for all levels, and electronic energy switching between the initial S 1 molecule and the S 0 collision partner probably makes important contributions. Isopentane efficiencies range from one to two times gas kinetic. Most of the transfer from low S 1 levels occurs with excitation of vibrational energy within isopentane. These V--V contributions decline to only about 10% for the high transfer. CO-induced transfer is by V-T,R processes for all levels. The CO efficiency rises from about 0.1 for low regions to about unity for levels above 1500 cm -1 . The CO efficiencies retain significant sensitivity to initial level identity even in the higher regions. Propensity rules derived from collisional mode-to-mode transfer among lower levels of S 1 benzene are used to calculate the relative CO efficiencies. The calculated efficiencies agree well enough with the data to suggest that it may be meaningful to model vibrational equilibration with the use of propensity rules. The rules suggest that only a small number of levels among the thousands surrounding a high initial level contribute significantly to the total relaxation cross section and that this number is rather independent of the level density

  19. Dynamics Analysis and Experiment of Vibrating Screen for Asphalt Mixing Equipment

    Directory of Open Access Journals (Sweden)

    He ZHAO-XIA

    2014-04-01

    Full Text Available A dynamics model of vibration screen for asphalt mixing equipment is established in order to investigate the working performance of the system, which combines the lumped parameter method and substructure method in this paper. In order to acquire accurate results, the spring support stiffness, bearing stiffness and torsional stiffness of connecting link are considered in this model. The mass and stiffness matrixes of link are transformed to the master nodes according to the substructure method. Then the part is combined with the whole dynamics model by support points. Furthermore, the differential equations of motion are given by the Newton Second Law, and it is solved by Newmark time integration method. The centroid trajectory of vibrating screen is computed. At the same time, the reaction force of support springs and bearings are also acquired. And the strength of the product can meet the requirements of design by simulations. A vibration experiment is executed in factory, and the dynamics model is validated by comparing the results.

  20. On the analytical modeling of the nonlinear vibrations of pretensioned space structures

    Science.gov (United States)

    Housner, J. M.; Belvin, W. K.

    1983-01-01

    Pretensioned structures are receiving considerable attention as candidate large space structures. A typical example is a hoop-column antenna. The large number of preloaded members requires efficient analytical methods for concept validation and design. Validation through analyses is especially important since ground testing may be limited due to gravity effects and structural size. The present investigation has the objective to present an examination of the analytical modeling of pretensioned members undergoing nonlinear vibrations. Two approximate nonlinear analysis are developed to model general structural arrangements which include beam-columns and pretensioned cables attached to a common nucleus, such as may occur at a joint of a pretensioned structure. Attention is given to structures undergoing nonlinear steady-state oscillations due to sinusoidal excitation forces. Three analyses, linear, quasi-linear, and nonlinear are conducted and applied to study the response of a relatively simple cable stiffened structure.