WorldWideScience

Sample records for modeling uranium transport

  1. Uranium(VI) transport modeling: geochemical data and submodels

    International Nuclear Information System (INIS)

    Tripathi, V.S.

    1984-01-01

    Understanding the geochemical mobility of U(VI) and modeling its transport is important in several contexts including ore genesis, uranium exploration, nuclear and mill-tailings waste management, and solution mining of uranium ores. Adsorption is a major control on partitioning of solutes at the mineral/solution interface. The effect of carbonate, fluoride, and phosphate complexing on adsorption of uranium was investigated. A critical compilation of stability constants of inorganic complexes and solid compounds of U(VI) necessary for proper design of experiment and for modeling transport of uranium was prepared. The general features of U(VI) adsorption in ligand-free systems are similar to those characteristic of other hydrolyzable metal ions. The adsorption processes studied were found to be reversible. The adsorption model developed in ligand-free systems, when solution complexing is taken into account, proved remarkably successful in describing adsorption of uranium in the presence of carbonate and fluoride. The presence of phosphate caused a much smaller decrease in the extent of adsorption than expected; however, a critical reassessment of the stability of UO 2 2+ .HPO 4 2- complexes, showed that phosphato complexes, if any, are extremely weak under experimental conditions. Removal of uranium may have occurred due to precipitation of sodium uranyl phosphates in addition to adsorption

  2. Fate and transport modelling of uranium in Port Hope Harbour

    International Nuclear Information System (INIS)

    Pinilla, C.E.; Garisto, N.; Peters, R.

    2010-01-01

    Fate and transport modelling of contaminants in Port Hope Harbour and near-shore Lake Ontario was undertaken in support of an ecological and human health risk assessment. Uranium concentrations in the Harbour and near-shore Lake Ontario due to groundwater and storm water loadings were estimated with a state-of-the-art 3D hydrodynamic and contaminant transport model (ECOMSED). The hydrodynamic model was simplified to obtain a first estimate of the flow pattern in the Harbour. The model was verified with field data using a tracer (fluoride). The modelling results generally showed good agreement with the tracer field data. (author)

  3. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan [Institute of Tibetan Plateau Research, Chinese Academy of Sciences; Luo, Wensui [ORNL; Parker, Jack C. [University of Tennessee, Knoxville (UTK); Brooks, Scott C [ORNL; Watson, David B [ORNL; Jardine, Philip [University of Tennessee, Knoxville (UTK); Gu, Baohua [ORNL

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  4. Modeling uranium transport in acidic contaminated groundwater with base addition

    International Nuclear Information System (INIS)

    Zhang Fan; Luo Wensui; Parker, Jack C.; Brooks, Scott C.; Watson, David B.; Jardine, Philip M.; Gu Baohua

    2011-01-01

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO 3 - , SO 4 2- , U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  5. Modeling uranium transport in acidic contaminated groundwater with base addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan, E-mail: zhangfan@itpcas.ac.cn [Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085 (China); Luo Wensui [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Parker, Jack C. [Institute for a Secure and Sustainable Environment, Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Brooks, Scott C.; Watson, David B. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Jardine, Philip M. [Biosystems Engineering and Soil Science Department, University of Tennessee, Knoxville, TN 37996 (United States); Gu Baohua [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2011-06-15

    This study investigates reactive transport modeling in a column of uranium(VI)-contaminated sediments with base additions in the circulating influent. The groundwater and sediment exhibit oxic conditions with low pH, high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U and various metal cations. Preliminary batch experiments indicate that additions of strong base induce rapid immobilization of U for this material. In the column experiment that is the focus of the present study, effluent groundwater was titrated with NaOH solution in an inflow reservoir before reinjection to gradually increase the solution pH in the column. An equilibrium hydrolysis, precipitation and ion exchange reaction model developed through simulation of the preliminary batch titration experiments predicted faster reduction of aqueous Al than observed in the column experiment. The model was therefore modified to consider reaction kinetics for the precipitation and dissolution processes which are the major mechanism for Al immobilization. The combined kinetic and equilibrium reaction model adequately described variations in pH, aqueous concentrations of metal cations (Al, Ca, Mg, Sr, Mn, Ni, Co), sulfate and U(VI). The experimental and modeling results indicate that U(VI) can be effectively sequestered with controlled base addition due to sorption by slowly precipitated Al with pH-dependent surface charge. The model may prove useful to predict field-scale U(VI) sequestration and remediation effectiveness.

  6. Sensitivity Analysis and Parameter Estimation for a Reactive Transport Model of Uranium Bioremediation

    Science.gov (United States)

    Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.

    2011-12-01

    A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.

  7. Variably Saturated Flow and Multicomponent Biogeochemical Reactive Transport Modeling of a Uranium Bioremediation Field Experiment

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.; Murray, Christopher J.; Ward, Anderson L.; Dayvault, Richard; Waichler, Scott R.; Newcomer, Darrell R.; Spane, Frank A.; Long, Philip E.

    2011-01-01

    Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely through previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after ∼30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been

  8. Post Audit of a Field Scale Reactive Transport Model of Uranium at a Former Mill Site

    Science.gov (United States)

    Curtis, G. P.

    2015-12-01

    Reactive transport of hexavalent uranium (U(VI)) in a shallow alluvial aquifer at a former uranium mill tailings site near Naturita CO has been monitored for nearly 30 years by the US Department of Energy and the US Geological Survey. Groundwater at the site has high concentrations of chloride, alkalinity and U(VI) as a owing to ore processing at the site from 1941 to 1974. We previously calibrated a multicomponent reactive transport model to data collected at the site from 1986 to 2001. A two dimensional nonreactive transport model used a uniform hydraulic conductivity which was estimated from observed chloride concentrations and tritium helium age dates. A reactive transport model for the 2km long site was developed by including an equilibrium U(VI) surface complexation model calibrated to laboratory data and calcite equilibrium. The calibrated model reproduced both nonreactive tracers as well as the observed U(VI), pH and alkalinity. Forward simulations for the period 2002-2015 conducted with the calibrated model predict significantly faster natural attenuation of U(VI) concentrations than has been observed by the persistent high U(VI) concentrations at the site. Alternative modeling approaches are being evaluating evaluated using recent data to determine if the persistence can be explained by multirate mass transfer models developed from experimental observations at the column scale(~0.2m), the laboratory tank scale (~2m), the field tracer test scale (~1-4m) or geophysical observation scale (~1-5m). Results of this comparison should provide insight into the persistence of U(VI) plumes and improved management options.

  9. Reactive transport modeling of uranium 238 and radium 226 in groundwater of the Königstein uranium mine, Germany

    Science.gov (United States)

    Nitzsche, O.; Merkel, B.

    Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow. Résumé La protection des eaux souterraines et la restauration des sites miniers et de prétraitement d'uranium abandonnés nécessitent de connaître le comportement des radionucléides au cours de leur transport dans les eaux souterraines. La dispersion, la diffusion, le mélange, la recharge de l'aquifère et les interactions chimiques, de même que la décroissance radioactive, doivent être

  10. Building Conceptual Models of Field-Scale Uranium Reactive Transport in a Dynamic Vadose Zone-Aquifer-River System

    International Nuclear Information System (INIS)

    Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.

    2008-01-01

    Subsurface simulation is being used to build, test, and couple conceptual process models to better understand controls on a 0.4 km by 1.0 km uranium plume that has persisted above the drinking water standard in the groundwater of the Hanford 300 Area over the last 15 years. At this site, uranium-contaminated sediments in the vadose zone and aquifer are subject to significant variations in water levels and velocities driven by the diurnal, weekly, seasonal, and episodic Columbia River stage dynamics. Groundwater flow reversals typically occur twice a day with significant exchange of river water and groundwater in the near-river aquifer. Mixing of the dilute solution chemistry of the river with the groundwater complicates the uranium sorption behavior as the mobility of U(VI) has been shown experimentally to be a function of pH, carbonate, calcium, and uranium. Furthermore, uranium mass transfer between solid and aqueous phases has been observed to be rate-limited in the context of the high groundwater velocities resulting from the river stage fluctuations and the highly transmissive sediments (hydraulic conductivities ∼1500 m/d). One- and two-dimensional vertical cross-sectional simulations of variably-saturated flow and reactive transport, based on laboratory-derived models of distributed rate mass transfer and equilibrium multicomponent surface complexation, are used to assess uranium transport at the dynamic vadose zone aquifer interface as well as changes to uranium mobility due to incursions of river water into the aquifer

  11. Performance Assessment Transport Modeling of Uranium at the Area 5 Radioactive Waste Management Site at the Nevada National Security Site

    International Nuclear Information System (INIS)

    2010-01-01

    Following is a brief summary of the assumptions that are pertinent to the radioactive isotope transport in the GoldSim Performance Assessment model of the Area 5 Radioactive Waste Management Site, with special emphasis on the water-phase reactive transport of uranium, which includes depleted uranium products. The Area 5 PA model assumes activity disposed in trenches is well mixed within the native alluvium of the trench at the time the facility is closed. Waste containers and waste forms are assumed not to limit the release of radionuclides for transport. In the Area 5 RWMS PA model, the pathways that are considered to bring radioactivity in the waste zone to the surface soils of the closure covers are (1) plant uptake, (2) burrowing animal activity, and (3) advection/dispersion/diffusion in the pore water. Water-phase transport is a minor component of the transport, which is dominated by plant uptake and burrowing animal activity. Because the soil column is mostly dry, upward water flux rates are extremely small, resulting in small advective/dispersive transport of radioactive isotopes in pore water of the unsaturated zone. Reactive transport of radioactive elements in the Area 5 soil pore water are modeled using element-specific partition coefficients (Kds) that partition radioactivity between pore water and soil of the disposal cell, and solubility limits that control the solubility of elements in pore water. Geochemical modeling is not performed in the Area 5 RWMS GoldSim PA model; however, Kds and solubility limits were derived from previous geochemical modeling performed using Area 5 geochemical data. Kds for uranium were developed based on geochemical modeling using the mineral characteristics of soil (alluvium) and the chemical characteristics of water at the site (Carle et al., 2002). In the GoldSim model, uranium Kd is represented with a lognormal distribution with a mean value of 0.8 milliliter per gram (taken from Figure 4.11, Page 4-19 of Carle et al

  12. A validation study of the intertran model for assessing risks of transportation accidents: Road transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Tomachevsky, E.G.; Ringot, C.; Pages, P.; Hubert, P.

    1985-06-01

    The INTERTRAN code was developed by the IAEA in order to provide member states with a simple and rapide method of assessing the risk involved in the transportation of radioactive materials and one which was applicable on a worldwide scale. Before being used, this code must be validated and the CEA thus compared the results obtained with the conventional risk assessment methods used by the CEPN with those derived from INTERTRAN. This paper gives the results of the studies made on the subject of road transportation of uranium hexafluoride in France. The conventional accident risk assessment method gave a figure of 8.84 x 10 -4 deaths/year, whereas INTERTRAN announces 1.78 x 10 -2 . To these figures should be added 3.38 x 10 -2 deaths/year, which is the intrinsic road risk, whatever the goods carried. In relation to conventional estimates, the INTERTRAN forecasts are five times lower for the U risk and twenty times higher for the HF risk. The chemical risk is indeed the most prevalent one in this case. Other comparisons are needed to validate this code

  13. An improved model of fission gas atom transport in irradiated uranium dioxide

    Science.gov (United States)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  14. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    Science.gov (United States)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  15. Modeling Uranium Transport in Koongarra, Australia: The Effect of a Moving Weathering Zone

    NARCIS (Netherlands)

    Leijnse, A.; Weerd, van de H.; Hassanizadeh, S.M.

    2001-01-01

    Natural analogues are an important source of long-term data and may be viewed as naturally occurring experiments that often include processes, phenomena, and scenarios that are important to nuclear waste disposal safety assessment studies. The Koongarra uranium deposit in the Alligator Rivers region

  16. A coupled transport and solid mechanics formulation with improved reaction kinetics parameters for modeling oxidation and decomposition in a uranium hydride bed.

    Energy Technology Data Exchange (ETDEWEB)

    Salloum, Maher N.; Shugard, Andrew D.; Kanouff, Michael P.; Gharagozloo, Patricia E.

    2013-03-01

    Modeling of reacting flows in porous media has become particularly important with the increased interest in hydrogen solid-storage beds. An advanced type of storage bed has been proposed that utilizes oxidation of uranium hydride to heat and decompose the hydride, releasing the hydrogen. To reduce the cost and time required to develop these systems experimentally, a valid computational model is required that simulates the reaction of uranium hydride and oxygen gas in a hydrogen storage bed using multiphysics finite element modeling. This SAND report discusses the advancements made in FY12 (since our last SAND report SAND2011-6939) to the model developed as a part of an ASC-P&EM project to address the shortcomings of the previous model. The model considers chemical reactions, heat transport, and mass transport within a hydride bed. Previously, the time-varying permeability and porosity were considered uniform. This led to discrepancies between the simulated results and experimental measurements. In this work, the effects of non-uniform changes in permeability and porosity due to phase and thermal expansion are accounted for. These expansions result in mechanical stresses that lead to bed deformation. To describe this, a simplified solid mechanics model for the local variation of permeability and porosity as a function of the local bed deformation is developed. By using this solid mechanics model, the agreement between our reacting bed model and the experimental data is improved. Additionally, more accurate uranium hydride oxidation kinetics parameters are obtained by fitting the experimental results from a pure uranium hydride oxidation measurement to the ones obtained from the coupled transport-solid mechanics model. Finally, the coupled transport-solid mechanics model governing equations and boundary conditions are summarized and recommendations are made for further development of ARIA and other Sandia codes in order for them to sufficiently implement the model.

  17. Determination of the radioactive aerosols transport coefficients generated in open pit uranium mining areas

    International Nuclear Information System (INIS)

    Azevedo Py Junior, D. de.

    1978-01-01

    The classical atmospheric transport model is applied to uranium mining operations. Among the transport parameters there is one concerned with radioactive decay, but it does not include the radioactive decay series which is the specific case for uranium. Therefore, an extension of the transport theory is developed and tested, giving results greater than the ones obtained with the classical model, as expected. (author)

  18. INTRAVAL phase 2, test case 8. Alligator Rivers Natural Analogue - Modelling of uranium transport in the weathered zone at Koongarra (Australia). Progress report

    NARCIS (Netherlands)

    van der Weerd H; Hassanizadeh SM; Richardson-van der Poel MA; LBG

    1993-01-01

    A study of uranium transport in the Koongarra site of Alligator Rivers Uranium deposit (Australia) is carried out. The analysis of the solid phase uranium concentration measured at various depths provides a useful picture of the dispersion process. Results of this analysis seem to support the

  19. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Ku, T.L.; Luo, S.; Goldstein, S.J.; Murrell, M.T.; Chu, W.L.; Dobson, P.F.

    2009-01-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234 U/ 238 U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234 U/ 238 U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234 U/ 238 U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  20. System-Scale Model of Aquifer, Vadose Zone, and River Interactions for the Hanford 300 Area - Application to Uranium Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Rockhold, Mark L.; Bacon, Diana H.; Freedman, Vicky L.; Parker, Kyle R.; Waichler, Scott R.; Williams, Mark D.

    2013-10-01

    This report represents a synthesis and integration of basic and applied research into a system-scale model of the Hanford 300 Area groundwater uranium plume, supported by the U.S. Department of Energy’s Richland Operations (DOE-RL) office. The report integrates research findings and data from DOE Office of Science (DOE-SC), Office of Environmental Management (DOE-EM), and DOE-RL projects, and from the site remediation and closure contractor, Washington Closure Hanford, LLC (WCH). The three-dimensional, system-scale model addresses water flow and reactive transport of uranium for the coupled vadose zone, unconfined aquifer, and Columbia River shoreline of the Hanford 300 Area. The system-scale model of the 300 Area was developed to be a decision-support tool to evaluate processes of the total system affecting the groundwater uranium plume. The model can also be used to address “what if” questions regarding different remediation endpoints, and to assist in design and evaluation of field remediation efforts. For example, the proposed cleanup plan for the Hanford 300 Area includes removal, treatment, and disposal of contaminated sediments from known waste sites, enhanced attenuation of uranium hot spots in the vadose and periodically rewetted zone, and continued monitoring of groundwater with institutional controls. Illustrative simulations of polyphosphate infiltration were performed to demonstrate the ability of the system-scale model to address these types of questions. The use of this model in conjunction with continued field monitoring is expected to provide a rigorous basis for developing operational strategies for field remediation and for defining defensible remediation endpoints.

  1. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  2. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  3. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    Science.gov (United States)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  4. NURE uranium deposit model studies

    International Nuclear Information System (INIS)

    Crew, M.E.

    1981-01-01

    The National Uranium Resource Evaluation (NURE) Program has sponsored uranium deposit model studies by Bendix Field Engineering Corporation (Bendix), the US Geological Survey (USGS), and numerous subcontractors. This paper deals only with models from the following six reports prepared by Samuel S. Adams and Associates: GJBX-1(81) - Geology and Recognition Criteria for Roll-Type Uranium Deposits in Continental Sandstones; GJBX-2(81) - Geology and Recognition Criteria for Uraniferous Humate Deposits, Grants Uranium Region, New Mexico; GJBX-3(81) - Geology and Recognition Criteria for Uranium Deposits of the Quartz-Pebble Conglomerate Type; GJBX-4(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits in Mixed Fluvial-Shallow Marine Sedimentary Sequences, South Texas; GJBX-5(81) - Geology and Recognition Criteria for Veinlike Uranium Deposits of the Lower to Middle Proterozoic Unconformity and Strata-Related Types; GJBX-6(81) - Geology and Recognition Criteria for Sandstone Uranium Deposits of the Salt Wash Type, Colorado Plateau Province. A unique feature of these models is the development of recognition criteria in a systematic fashion, with a method for quantifying the various items. The recognition-criteria networks are used in this paper to illustrate the various types of deposits

  5. Combined Estimation of Hydrogeologic Conceptual Model, Parameter, and Scenario Uncertainty with Application to Uranium Transport at the Hanford Site 300 Area

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philip D.; Ye, Ming; Rockhold, Mark L.; Neuman, Shlomo P.; Cantrell, Kirk J.

    2007-07-30

    This report to the Nuclear Regulatory Commission (NRC) describes the development and application of a methodology to systematically and quantitatively assess predictive uncertainty in groundwater flow and transport modeling that considers the combined impact of hydrogeologic uncertainties associated with the conceptual-mathematical basis of a model, model parameters, and the scenario to which the model is applied. The methodology is based on a n extension of a Maximum Likelihood implementation of Bayesian Model Averaging. Model uncertainty is represented by postulating a discrete set of alternative conceptual models for a site with associated prior model probabilities that reflect a belief about the relative plausibility of each model based on its apparent consistency with available knowledge and data. Posterior model probabilities are computed and parameter uncertainty is estimated by calibrating each model to observed system behavior; prior parameter estimates are optionally included. Scenario uncertainty is represented as a discrete set of alternative future conditions affecting boundary conditions, source/sink terms, or other aspects of the models, with associated prior scenario probabilities. A joint assessment of uncertainty results from combining model predictions computed under each scenario using as weight the posterior model and prior scenario probabilities. The uncertainty methodology was applied to modeling of groundwater flow and uranium transport at the Hanford Site 300 Area. Eight alternative models representing uncertainty in the hydrogeologic and geochemical properties as well as the temporal variability were considered. Two scenarios represent alternative future behavior of the Columbia River adjacent to the site were considered. The scenario alternatives were implemented in the models through the boundary conditions. Results demonstrate the feasibility of applying a comprehensive uncertainty assessment to large-scale, detailed groundwater flow

  6. Status of overpacks for uranium hexafluoride transport

    International Nuclear Information System (INIS)

    Arendt, J.W.; Pryor, W.A.

    1985-01-01

    The original overpacks for uranium hexafluoride (UF 6 ) transport, which utilized phenolic foam insulation, were developed in the 1960's and ultimately became international standards. A second generation of overpacks for 10-ton-capacity UF 6 cylinders used polyurethane foam and was developed in the early 1970's. In the mid 1970's, a third generation was designed, but no attempt to develop it occurred until the early 1980's, when full-scale testing of an overpack for 14-ton capacity UF 6 cylinders was initiated and resulted in designs for a new family of UF 6 overpacks. In the meantime, two additional developments affected overpack use for UF 6 cylinder transport: (1) the discovery that phenolic-foam-insulated overpacks have water absorption and outleakage problems inaugurated a program for their improvement and (2) new polyurethane-insulated overpacks were manufactured. The current status of all these overpacks, including their designs, testing, and approval for transport is presented

  7. A coalescence model for uranium exploration

    International Nuclear Information System (INIS)

    Stuart-Williams, V.; Taylor, C.M.

    1983-01-01

    Uranium mineralization was found in the Pristerognathus-Diictodon Assemblage Zone of the Teekloof Formation, Beaufort Group, west of Beaufort West, Cape Province, South Africa. All the anomalies can be related to a single mineralization model. Mineralization is found at the termination of a silt parting between two coalescing sandstones and lies in the lower sandstone as an inclined zone dipping downflow from the termination of the silt parting. The existence of primary Eh-pH gradient is indicated by a uranium-molybdenum zonation, the molybdenum lying above the uranium mineralization. The upper sandstone was an oxidizing fluvial channel in an arid environment through which uranyl carbonate was being transported in solution. Carbonaceous material undergoing anaerobic bacterial breakdown generated a weakly reducing fluid in the lower sandstone. Carbonaceous material at the REDOX front developed between the two mixing fluids at the point of sandstone coalescence reduced uranyl carbonates in solution. Once reduced the uranium minerals remained stable because the conditions in the REDOX front were only very weakly oxidizing. As floodplain aggradation continued, the upper sandstone was buried and the entire sandstone couplet became reducing, permanently stabilizing the uranium mineralization

  8. Distillation modeling for a uranium refining process

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, B.R.

    1996-03-01

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, containing a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a simple batch operation and is termed {open_quotes}cathode processing{close_quotes}. The incremental distillation of electrolyte salt will be modeled by an equilibrium expression and on a molecular basis since the operation is conducted under moderate vacuum conditions. As processing continues, the two models will be compared and analyzed for correlation with actual operating results. Possible factors that may contribute to aberrations from the models include impurities at the vapor-liquid boundary, distillate reflux, anomalous pressure gradients, and mass transport phenomena at the evaporating surface. Ultimately, the purpose of either process model is to enable the parametric optimization of the process.

  9. Distillation modeling for a uranium refining process

    International Nuclear Information System (INIS)

    Westphal, B.R.

    1996-01-01

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, containing a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a simple batch operation and is termed open-quotes cathode processingclose quotes. The incremental distillation of electrolyte salt will be modeled by an equilibrium expression and on a molecular basis since the operation is conducted under moderate vacuum conditions. As processing continues, the two models will be compared and analyzed for correlation with actual operating results. Possible factors that may contribute to aberrations from the models include impurities at the vapor-liquid boundary, distillate reflux, anomalous pressure gradients, and mass transport phenomena at the evaporating surface. Ultimately, the purpose of either process model is to enable the parametric optimization of the process

  10. Modelling a uranium ore bioleaching process

    International Nuclear Information System (INIS)

    Chien, D.C.H.; Douglas, P.L.; Herman, D.H.; Marchbank, A.

    1990-01-01

    A dynamic simulation model for the bioleaching of uranium ore in a stope leaching process has been developed. The model incorporates design and operating conditions, reaction kinetics enhanced by Thiobacillus ferroxidans present in the leaching solution and transport properties. Model predictions agree well with experimental data with an average deviation of about ± 3%. The model is sensitive to small errors in the estimates of fragment size and ore grade. Because accurate estimates are difficult to obtain a parameter estimation approach was developed to update the value of fragment size and ore grade using on-line plant information

  11. An analytic uranium sources model

    International Nuclear Information System (INIS)

    Singer, C.E.

    2001-01-01

    This document presents a method for estimating uranium resources as a continuous function of extraction costs and describing the uncertainty in the resulting fit. The estimated functions provide convenient extrapolations of currently available data on uranium extraction cost and can be used to predict the effect of resource depletion on future uranium supply costs. As such, they are a useful input for economic models of the nuclear energy sector. The method described here pays careful attention to minimizing built-in biases in the fitting procedure and defines ways to describe the uncertainty in the resulting fits in order to render the procedure and its results useful to the widest possible variety of potential users. (author)

  12. Interim guidance for the safe transport of reprocessed uranium

    International Nuclear Information System (INIS)

    1994-06-01

    Increasingly reprocessed uranium is being used for the fabrication of nuclear fuel elements. Different intermediate reprocessing steps are carried out at different locations. Therefore, transportation of uranium material is necessary. Due to the difference in isotope composition of reprocessed uranium then unirradiated uranium a doubt is casted on the presumption that packages used for the transport of unirradiated uranium are automatically suitable for reprocessed uranium compounds. The Standing Advisory Group on the Safe Transport of Radioactive Material (SAGSTRAM) recommended that the issue be reviewed by consultants and that a document be developed that would give guidance to users of the Regulations. This TECDOC is the result of the endeavors of the experts convened at two Consultants Services meetings. It contains guidance on the provisions in the current Regulations as well as proposals for changes to the new Revised Edition whose publication is planned for 1996. This document demonstrates that under the present Transport Regulations it is possible in most cases to ship reprocessed uranium compounds in the same packages as unirradiated uranium compounds. In few cases a more stringent package type is required. 8 refs, 22 figs, 19 tabs

  13. Comparison of two numerical modelling approaches to a field experiment of unsaturated radon transport in a covered uranium mill tailings soil (Lavaugrasse, France)

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Zakaria; Guillevic, Jerome [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-DGE/SEDRAN/BRN, 31 avenue de la Division Leclerc, B.P. 17, 92262, Fontenay-aux-Roses, Cedex (France)

    2014-07-01

    Uncertainties on the mathematical modelling of radon transport in an unsaturated covered uranium mill tailings (UMT) soil at field scale can have a great impact on the estimation of the average measured radon flux to the atmosphere at the landfill cover, which must be less than the threshold value 0.74 Bq.m{sup -2}.s{sup -1}recommended by the federal standard (EPA 40 CFR 192). These uncertainties are usually attributed to the numerical errors from the numerical schemes dealing with soil layering and to inadequate representations of the modelling of physical processes at the soil/plant/atmosphere interface and of the soil hydraulic and transport properties, as well as their parameterization. In this work, we compare one-dimensional simulation results from two numerical models of two-phase (water-air) porous media flow and radon transport to the data of radon activity exhalation flux and depth-volumetric concentration measured during a field campaign from June to November of 1999 in a two-layered soil of 1.3 m thickness (i.e., cover material/UMT: 0.5/0.8 m) of an experimental pond located at the Lavaugrasse UMT-landfill site (France). The first numerical modelling approach is a coupled finite volume compositional (i.e., water, radon, air) transport model (TOUGH2/EOS7Rn code, Saadi et al., 2013), while the second one is a decoupled finite difference one-component (i.e., radon) transport model (TRACI code, Ferry et al., 2001). Transient simulations during six month of hourly rainfall and atmospheric pressure variations showed that calculations from the one-component transport model usually overestimate both measured radon exhalation flux and depth-concentration. However, considering the effective unsaturated pore air-component diffusivity to be different from that of the radon-component in the compositional transport model allowed to significantly enhancing the modelling of these radon experimental data. The time-averaged radon flux calculated by EOS7Rn (3.42 Bq

  14. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    Science.gov (United States)

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are 1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  15. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A. J.

    2009-10-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ({approx}10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that {sup 230}Th/{sup 238}U activity ratios range from 0.005-0.48 and {sup 226}Ra/{sup 238}U activity ratios range from 0.006-113. {sup 239}Pu/{sup 238}U mass ratios for the saturated zone are <2 x 10{sup -14}, and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order {sup 238}U{approx}{sup 226}Ra > {sup 230}Th{approx}{sup 239}Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  16. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico

    International Nuclear Information System (INIS)

    Goldstein, S.J.; Abdel-Fattah, A.I.; Murrell, M.T.; Dobson, P.F.; Norman, D.E.; Amato, R.S.; Nunn, A.J.

    2009-01-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low (∼10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that 230 Th/ 238 U activity ratios range from 0.005-0.48 and 226 Ra/ 238 U activity ratios range from 0.006-113. 239 Pu/ 238 U mass ratios for the saturated zone are -14 , and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order 238 U∼ 226 Ra > 230 Th∼ 239 Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  17. Geomigration model of uranium transfer

    International Nuclear Information System (INIS)

    Vasil'ev, I.A.; Ovchinnikov, N.A.; Chernov, V.V.; Shestakov, A.A.

    2007-01-01

    Data on geologic structure and radiation environment in the vicinity of the tailings storage facility (TSF) of Kara-Balta uranium hydrometallurgical factory in Kyrgyzstan were used to design a mathematical model of physical processes of wind erosion from the surface of TSF. Numerical calculations have been performed to describe prevalence of contamination due to wind erosion in the environs of Kara-Balta [ru

  18. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, W.D.

    2009-09-02

    This report summarizes research conducted in conjunction with a project entitled “Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center”, which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  19. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  20. Uranium(VI) speciation: modelling, uncertainty and relevance to bioavailability models. Application to uranium uptake by the gills of a freshwater bivalve

    International Nuclear Information System (INIS)

    Denison, F.H.

    2004-07-01

    The effects of varying solution composition on the interactions between uranium(VI) and excised gills of the freshwater bivalve Corbicula fluminea have been investigated in well defined solution media. A significant reduction in the uptake of uranium was observed on increasing the concentrations of the uranium complexing ligands citrate and carbonate. Saturation kinetics as a function of uranium concentration at a pH value of 5.0 were observed, indicating that the uptake of uranium is a facilitated process, probably involving one or several trans-membrane transport systems. A relatively small change in the uptake of uranium was found as a function of pH (factor of ca. 2), despite the extremely large changes to the solution speciation of uranium within the range of pH investigated (5.0 - 7.5). A comprehensive review of the thermodynamic data relevant to the solution composition domain employed for this study was performed. Estimates of the uncertainties for the formation constants of aqueous uranium(VI) species were integrated into a thermodynamic database. A computer program was written to predict the equilibrium distribution of uranium(VI) in simple aqueous systems, using thermodynamic parameter mean-values. The program was extended to perform Monte Carlo and Quasi Monte Carlo uncertainty analyses, incorporating the thermodynamic database uncertainty estimates, to quantitatively predict the uncertainties inherent in predicting the solution speciation of uranium. The use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of uranium(VI) was investigated. Observed uranium(VI) uptake behaviour was interpreted as a function of the predicted changes to the solution speciation of uranium. Different steady-state or pre-equilibrium approaches to modelling uranium uptake were tested. Alternative modelling approaches were also tested, considering the potential changes to membrane transport system activity or sorption characteristics on

  1. Economic model of the US uranium market

    International Nuclear Information System (INIS)

    Owen, A.D.

    1984-01-01

    An economic model of the US uranium market is developed using annual data for the period 1966-81. The model consists of five stochastic equations explaining uranium consumption, forward commitments, mine production, contract prices, and spot prices. A forecasting exercise is also undertaken. By way of essential background information, however, an analysis of current trends in the international uranium market is given, followed by a summary of historical price movements in the US uranium market. A brief discussion on the current state of the US market precedes the statistical analysis. 19 footnotes and references, 3 tables

  2. Documentation of the Uranium Market Model (UMM)

    International Nuclear Information System (INIS)

    1989-01-01

    The Uranium Market Model is used to make projections of activity in the US uranium mining and milling industry. The primary data sources were EIA, the Nuclear Assurance Corporation, and, to a lesser extent, Nuexco and Nuclear Resources International. The Uranium Market Model is a microeconomic simulation model in which uranium supplied by the mining and milling industry is provided to meet the demand for uranium by electric utilities with nuclear power plants. Uranium is measured on a U 3 O 8 (uranium oxide) equivalent basis. The model considers every major production center and utility on a worldwide basis (with Centrally Planned Economies considered in a limited way), and makes annual projections for each major uranium production and consumption region in the world. Typically, nine regions are used: the United States, Canada, Australia, South Africa, Other Africa, Europe, Latin America, the Far East, and Other. Production centers and utilities are identified as being in one of these regions. In general, the model can accommodate any user-provided set of regional definitions and data

  3. The Namibian uranium mining model

    International Nuclear Information System (INIS)

    Swiegers, Wotan; Tibinyane, Axel

    2014-01-01

    Conclusions: • Namibia wishes to be a world class producer of Uranium and a prosperous country to achieve the Nation’s 2030 Vision. • The Government and the Uranium Industry formed a Smart Partnership to protect our ‘Brand’. • The Government and the Uranium Industry are committed to implement ‘world best practices’. • Namibia will be guided by the IAEA and the WNA.

  4. Update on packaging for uranium hexafluoride transport

    International Nuclear Information System (INIS)

    Pryor, W.A.

    1988-01-01

    The slightly enriched product UF 6 shipped from the enriching plants for the world's nuclear power plants must be protected in order to conform to domestic and international transport regulations. The principal overpack currently in use is the U.S. Department of Transportation (DOT) Specification 21PF-1 which protects Model 30 UF 6 cylinders (Title 49, Code of Federal Regulations; Part 178.121, Specification 21PF-1; Fire and Shock Resistant, Phenolic - Foam Insulated Overpack [Horizontal Loading]). Operational problems have developed due both to design and lack of maintenance, resulting in the entry of water into the insulation zone. Following major review of these problems, particularly those concerned with water entry and general deterioration, design modifications for have been proposed. These modifications for existing overpacks are to be made only after any water absorbed within the phenolic foam insulation is reduced to an acceptable level. New overpacks will be fabricated under an enhanced design. Existing overpacks which are modified will be designated as 21PF-1A while new overpacks fabricated to the enhance design will be designated as 21PF-1B. In both cases, proposed quality assurance/control requirements in the fabrication, modification, use and maintenance of the overpacks are applicable to fabricators, modifiers, owners and users. A composite report describing the proposal has been prepared

  5. Reaction-Based Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center

    International Nuclear Information System (INIS)

    Yeh, Gour-Tsyh

    2006-01-01

    This research project (started Fall 2004) was funded by a grant to The Pennsylvania State University, University of Central Florida, and The University of Alabama in the Integrative Studies Element of the NABIR Program (DE-FG04-ER63914/63915/63196). Dr. Eric Roden, formerly at The University of Alabama, is now at the University of Wisconsin - Madison. Our project focuses on the development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. This work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and is directly aligned with the Scheibe et al. NABIR FRC Field Project at Area 2

  6. Simulation of transportation of low enriched uranium solutions

    International Nuclear Information System (INIS)

    Hope, E.P.; Ades, M.J.

    1996-01-01

    A simulation of the transportation by truck of low enriched uranium solutions has been completed for NEPA purposes at the Savannah River Site. The analysis involves three distinct source terms, and establishes the radiological risks of shipment to three possible destinations. Additionally, loading accidents were analyzed to determine the radiological consequences of mishaps during handling and delivery. Source terms were developed from laboratory measurements of chemical samples from low enriched uranium feed materials being stored at SRS facilities, and from manufacturer data on transport containers. The transportation simulations were accomplished over the INTERNET using the DOE TRANSNET system at Sandia National Laboratory. The HIGHWAY 3.3 code was used to analyze routing scenarios, and the RADTRAN 4 code was used to analyze incident free and accident risks of transporting radiological materials. Loading accidents were assessed using the Savannah River Site AXAIR89Q and RELEASE 2 codes

  7. Impact of colloids on uranium transport in groundwater applied to the Aube radioactive waste disposal

    International Nuclear Information System (INIS)

    Le Cointe, Pierre

    2011-01-01

    The presence of colloids, known vectors of radionuclides and chemical contaminants in groundwater, has been identified in groundwater at the Aube radioactive waste disposal in 2004. This thesis aims to characterize these colloids, and to determine their potential impact in the transport of Uranium, chosen as the element of interest for this study. The identified 60 nm in diameter clay colloids and the fulvic and humic acids can move in Aptian groundwater, as indirectly evidenced by column experiments. A feasibility study of a in situ test has been done through a transport modeling to confirm the colloid mobility at the field scale. Using the conditions of the study, the clay colloids do not influence Uranium transport. Even with the greatest concentration assumed on site, they have a very limited impact on the mobilization of Uranium, in the pH range measured on site. On the contrary, the organic colloids, despite their low concentration, can facilitate Uranium transport, the uranyl - organic acid chemical bond being exceptionally strong. Therefore their low concentration in groundwater makes their impact on uranium mobility equally insignificant. (author)

  8. Integrated prospecting model in Jinguanchong uranium deposit

    International Nuclear Information System (INIS)

    Xie Yongjian

    2006-01-01

    Jinguanchong uranium deposit is large in scale, which brings difficulties to prospecting and researches. Based on conditions of mineral-formation, geophysics and geochemistry, this paper summarizes a few geophysical and geochemical prospecting methods applied to this deposit. The principles, characteristics, application condition and exploration phases of these prospecting methods are discussed and some prospecting examples are also given in the prospecting for Jinguanchong uranium deposit. Based on summarizing the practice and effects of different methods such as gamma and electromagnetic method, soil emanation prospecting, track etch technique and polonium method used in uranium prospecting, the author finally puts forward a primary uranium prospecting model for the further prospecting in Jinguanchong uranium deposit through combining the author's experience with practice. (authors)

  9. International transport of uranium materials from China

    International Nuclear Information System (INIS)

    Xu Chizhi; Long Xiuaowei; Achilles, G.

    1993-01-01

    An example of international cooperation is given on the transport of frontend materials from China to Europe. With the assistance of NCS, CNEIC entered into discussions and negotiations with COSCO, the national Chinese shipping line in order to make much cheaper sea transport possible. One of the difficulties to overcome was the passage through the Suez canal but CNEIC, NCS and the port authorities were present to assure smooth operation, during the first passage through the canal, CNEIC key personnels had training at the NCS office in Germany in relation to transport regulations and practice on the job. In turn, NCS personnels were introduced into site specific conditions in China by CNEIC. In the meantime, about 150 containers loaded with yellow cake and about 120 cylinders with low enriched UF6 have been smoothly transported by sea from Shanghai through the Suez canal to European ports. (E.Y.)

  10. Modelling of redox front and uranium movement in a uranium mine at Pocos de Caldas, Brazil

    International Nuclear Information System (INIS)

    Cross, J.E.; Gabriel, D.S.; Haworth, A.; Sharland, S.M.; Tweed, C.J.

    1991-04-01

    A study of the migration of uranium at the Pocos de Caldas uranium mine in Brazil under the influence of the infiltration of oxidising groundwaters has been performed. The modelling was carried out using the coupled chemical equilibria/transport code CHEQMATE. The work presented in this paper extends a previous study. Results give some encouraging agreements with field data, generally increasing confidence in the use of such modelling techniques in problems associated with the migration of radionuclides away from a nuclear waste repository. For particular aspects of the problem where good agreement with field data was not obtained, a number of reasons have been suggested. This study also highlights the importance of accurate thermodynamic data and choice of solubility-limiting mineral phases for modelling such systems. (author)

  11. Spectroscopy and DFT studies of uranyl carbonate, rutherfordine, UO2CO3: a model for uranium transport, carbon dioxide sequestration, and seawater species

    Science.gov (United States)

    Kalashnyk, N.; Perry, D. L.; Massuyeau, F.; Faulques, E.

    2017-12-01

    Several optical microprobe experiments of the anhydrous uranium carbonate—rutherfordine—are presented in this work and compared to periodic density functional theory results. Rutherfordine is the simplest uranyl carbonate and constitutes an ideal model system for the study of the rich uranium carbonate family relevant for environmental sustainability. Micro-Raman, micro-reflectance, and micro-photoluminescence (PL) spectroscopy studies have been carried out in situ on native, micrometer-sized crystals. The sensitivity of these techniques is sufficient to analyze minute amounts of samples in natural environments without using x-ray analysis. In addition, very intense micro-PL and micro-reflectance spectra that were not reported before add new results on the ground and excited states of this mineral. The optical gap value determined experimentally is found at about 2.6-2.8 eV. Optimized geometry, band structure, and phonon spectra have been calculated. The main vibrational lines are identified and predicted by this theoretical study. This work is pertinent for optical spectroscopy, for identification of uranyl species in various environmental settings, and for nuclear forensic analysis.

  12. Modelling of contaminant release from a uranium mine tailings site

    International Nuclear Information System (INIS)

    Kahnt, Rene; Metschies, Thomas

    2007-01-01

    Available in abstract form only. Full text of publication follows: Uranium mining and milling continuing from the early 1960's until 1990 close to the town of Seelingstaedt in Eastern Germany resulted in 4 tailings impoundments with a total tailings volume of about 105 Mio. m 3 . Leakage from these tailings impoundments enters the underlying aquifers and is discharged into surface water streams. High concentration of salts, uranium and several heavy metals are released from the tailings. At present the tailings impoundments are reshaped and covered. For the identification of suitable remediation options predictions of the contaminant release for different remediation scenarios have to be made. A compartment model representing the tailings impoundments and the surrounding aquifers for the calculation of contaminant release and transport was set up using the software GOLDSIM. This compartment model describes the time dependent hydraulic conditions within the tailings and the surrounding aquifers taking into account hydraulic and geotechnical processes influencing the hydraulic properties of the tailings material. A simple geochemical approach taking into account sorption processes as well as retardation by applying a k d -approach was implemented to describe the contaminant release and transport within the hydraulic system. For uranium as the relevant contaminant the simple approach takes into account additional geochemical conditions influencing the mobility. Alternatively the model approach allows to include the results of detailed geochemical modelling of the individual tailings zones which is than used as source term for the modelling of the contaminant transport in the aquifer and to the receiving streams. (authors)

  13. Estimates of health risks associated with uranium hexafluoride transport by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.

    1990-01-01

    In Sweden air transport is considered as an alternative for the shipment of uranium hexafluoride (UF 6 ). The radiological consequences of an aeroplane accident involving UF 6 transport have been estimated and are presented as the dose from acute exposure and the dose from long-term exposure caused by ground contamination. Chemical effects of a UF 6 release are also discussed. A number of limiting scenarios have been defined, resulting in different mechanical and thermal impacts on the transport packages. The expected accident environment and the physical and chemical behaviour of the material have been used to derive a source term for the release to the air. A Gaussian dispersion model has been used to calculate the expected air concentration downwind from the accident site. The radiation dose from short-term exposure was found to be higher than the long-term exposure from uranium deposited on the ground. (author)

  14. Modelling freight transport

    NARCIS (Netherlands)

    Tavasszy, L.A.; Jong, G. de

    2014-01-01

    Freight Transport Modelling is a unique new reference book that provides insight into the state-of-the-art of freight modelling. Focusing on models used to support public transport policy analysis, Freight Transport Modelling systematically introduces the latest freight transport modelling

  15. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-04-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit.

  16. URANIUM-SERIES CONSTRAINTS ON RADIONUCLIDE TRANSPORT AND GROUNDWATER FLOW AT NOPAL I URANIUM DEPOSIT, SIERRA PENA BLANCA, MEXICO

    International Nuclear Information System (INIS)

    S. J. Goldstein, S. Luo, T. L. Ku, and M. T. Murrell

    2006-01-01

    Uranium-series data for groundwater samples from the vicinity of the Nopal I uranium ore deposit are used to place constraints on radionuclide transport and hydrologic processes at this site, and also, by analogy, at Yucca Mountain. Decreasing uranium concentrations for wells drilled in 2003 suggest that groundwater flow rates are low (< 10 m/yr). Field tests, well productivity, and uranium isotopic constraints also suggest that groundwater flow and mixing is limited at this site. The uranium isotopic systematics for water collected in the mine adit are consistent with longer rock-water interaction times and higher uranium dissolution rates at the front of the adit where the deposit is located. Short-lived nuclide data for groundwater wells are used to calculate retardation factors that are on the order of 1,000 for radium and 10,000 to 10,000,000 for lead and polonium. Radium has enhanced mobility in adit water and fractures near the deposit

  17. Alpha radioactivity monitor using ionized air transport technology for large size uranium waste (2). Simulation model reinforcement for practical apparatus design

    International Nuclear Information System (INIS)

    Asada, Takatoshi; Hirata, Yosuke; Naito, Susumu; Izumi, Mikio; Yoshimura, Yukio

    2011-01-01

    In alpha radioactivity measurement using ionized air transportation (AMAT), conversion from ion currents to radioactivity accurate is required. An ion transport simulation provides ways of complementarily determining conversion factors. We have developed an ion transport simulation model. Simulation results were compared with experiments with air speeds, faster than 1 m/s, achieving good agreement. In a practical AMAT apparatus, the air-flow at the alpha source may be slower than 1 m/s, and ion loss is likely to be large. Reinforcement of the ion transport model to cover the lower air speed region is effective. Ions are generated by an alpha particle in a very thin column. Since the ion density at this temporal stage is high, the recombination loss, proportional to the square of ion density, is dominant within a few milli-seconds. The spatial and temporal scales of this columnar recombination are too small for CFD simulation. We solve an ion transport equation during the period of columnar recombination with diffusion and recombination terms and incorporated the relation between ion loss and turbulent parameters into CFD. Using this model, simulations have been done for various air speeds and targets. Those for simulation results agree with experiments, showing improvement of simulation accuracy. (author)

  18. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  19. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    International Nuclear Information System (INIS)

    Crancon, P.; Pili, E.; Charlet, L.

    2010-01-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the 238 U initially present in the soil column and 233 U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  20. Interim guidance on the safe transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    1991-06-01

    Uranium hexafluoride (UF 6 ) is a radioactive material that has significant non-radiological hazardous properties. In conformity with international regulatory practice for dangerous goods transport, these properties are classed as ''subsidiary risks'', although they predominate in the cases of depleted and natural UF 6 . UF 6 is transported as a solid material below atmospheric pressure. The IAEA Regulations for the Safe Transport of Radioactive Material, 1985 Edition, Safety Series No. 6, make recommendations that aimed to provide an adequate level of safety against radiological and criticality hazards. The basis for these is that the stringency of package performance requirements, operational procedures and approval and administrative procedures is graded relative to the severity of the hazard. The cylinders used for transporting UF 6 are also used in the production, storage and use of the material and that the fraction of their life cycle in which transport is involved is small. Consideration must also be given to the large number of existing cylinders (estimated to be between 60,000 and 70,000). Specific recommendations provided for UF 6 transport, listed in Section II, are additional to the requirements of the Regulations. The intent of these additional recommendations is to restrict contamination and to provide protection to workers and to the general public against the chemical hazard possibly resulting from a severe accident involving the transport of UF 6 , and in addition against the consequences of explosive rupture of small bare cylinders of UF 6 . 20 refs, figs and tabs

  1. Estimates of health risks associated with uranium transportation by air

    International Nuclear Information System (INIS)

    Elert, M.; Skagius, K.; Ericsson, A.M.; Karlsson, L.G.; Markstroem, A.

    1989-01-01

    There is today an increased interest for air transport of large quantities of uranium compounds. In this report the health risks from an aircrash where uraniumhexafluoride, uraniumdioxide powder, low enriched unirradiated fuel used in Swedish power reactors and unirradiated MTR-fuel used in the research reactor in Studsvik, is analysed. The radiation doses to personnel and the general public is calculated as well as the ground contamination from the spreaded material. Also air concentration of hydrogenflouride, from uraniumhexaflouride reacting with moisture in the air, is calculated. A number of intermediate results are presented. (authors) (69 refs.)

  2. A mathematical model to forecast uranium production

    International Nuclear Information System (INIS)

    Camisani-Calzolari, F.A.G.M.

    1987-01-01

    The uranium production forecasting program described in this paper projects production from reasonably assured, estimated additional and speculative resources in the cost categories of less than $130/kg U. Originally designed to handle South African production, it has been expanded and redimensioned using available published information to forecast production for countries of the Western World. The program forecasts production from up to 400 plants over a period of fifty years and has built-in production models derived from documented historical data of the more important uranium provinces. It is particularly suitable to assess production capabilities on a national and global scale where variations in outputs for the individual plants tend to even out. The program is aimed at putting the uranium potential of any one country into a realistic perspective, and it could thus be useful for planning purposes and marketing strategies

  3. Model of the coercion uranium hexafluoride on a human body

    International Nuclear Information System (INIS)

    Babenko, S.P.

    2007-01-01

    A method for calculating certain quantities characterizing the effect of uranium hexafluoride (UF 6 ) on the human body under industrial conditions in uranium enrichment plants is described. It is assumed that the effect is determined by uranium and fluorine inhaled together with the products of hydrolysis of uranium hexafluoride. The proposed complex model consists of three models, the first of which describes the contamination of the industrial environment and the second and third describe inhalation and percutaneous intake. A relation is obtained between uranium and fluorine intake and the uranium hexafluoride concentration in air at the moment the compound is discharged [ru

  4. Characterization of transport properties in uranium dioxide: the case of the oxygen auto-diffusion

    International Nuclear Information System (INIS)

    Fraczkiewicz, M.; Baldinozzi, G.

    2008-01-01

    Point defects in uranium dioxide which control the transport phenomena are still badly known. The aim of this work is to show how in carrying out several experimental techniques, it is possible to demonstrate both the existence and to determine the nature (charge and localization) of predominant defects responsible of the transport phenomena in a fluorite-type structure oxide. The oxygen diffusion in the uranium dioxide illustrates this. In the first part of this work, the accent is put on the electric properties of uranium dioxide and more particularly on the variation laws of the electric conductivity in terms of temperature, of oxygen potential and of the impurities amounts present in the material. These evolutions are connected to point and charged complex defects models and the pertinence of these models is discussed. Besides, it is shown how the electric conductivity measurements can allow to define oxygen potential domains in which the concentrations in electronic carriers are controlled. This characterization being made, it is shown that the determination of the oxygen intrinsic diffusion coefficient and particularly its dependence to the oxygen potential and to the amount of impurity, allows to determine the main defect responsible to the atomic diffusion as well as its nature and its charge. In the second part, the experimental techniques to determine the oxygen diffusion coefficient are presented: there are the isotopic exchange technique for introducing the tracer in the material, and two techniques to characterize the diffusion profiles (SIMS and NRA). Examples of preliminary results are given for mono and polycrystalline samples. At last, from this methodology on uranium dioxide, studies considered to quantify the thermal and physicochemical effects are presented. Experiments considered with the aim to characterize the radiation diffusion in uranium dioxide are presented too. (O.M.)

  5. Evaluation of safety in the transportation of natural uranium hexafluoride

    International Nuclear Information System (INIS)

    Maitre, P.; Meslin, T.; Pages, P.

    A general model developed for the safety of transporting radioactive materials is applied to UF 6 . Results given concern only the container contents during an accident; harmful consequences to the environment are not considered. It is shown that railroad transport is safer than road transport, particularly with regard to fire. 13 figs., 12 tables

  6. Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans

    International Nuclear Information System (INIS)

    Rashidi, A.; Safdari, J.; Roosta-Azad, R.; Zokaei-Kadijani, S.

    2012-01-01

    Highlights: ► A mathematical model for the mesophilic bioleaching of uraninite is introduced. ► New rate expressions are used for the iron precipitation and uranium leaching rates. ► Good fits of the model are obtained, while the values of the parameters are within the range expected. ► The model can be applied to other bioleaching processes under the same conditions. - Abstract: In this paper, a mathematical model for the mesophilic bioleaching of uraninite is developed. The case of constant temperature, pH, and initial ore concentration is considered. The model is validated by comparing the calculated and measured values of uranium extraction, ferric and ferrous iron in solution, and cell concentration. Good fits of the model were obtained, while the values of the parameters were within the range expected. New rate expressions were used for the iron precipitation and uranium leaching rates. The rates of chemical leaching and ferric precipitation are related to the ratio of ferric to ferrous in solution. The fitted parameters can be considered applicable only to this study. In contrast, the model equation is general and can be applied to bioleaching under the same conditions.

  7. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  8. Uranium

    International Nuclear Information System (INIS)

    Hamdoun, N.A.

    2007-01-01

    The article includes a historical preface about uranium, discovery of portability of sequential fission of uranium, uranium existence, basic raw materials, secondary raw materials, uranium's physical and chemical properties, uranium extraction, nuclear fuel cycle, logistics and estimation of the amount of uranium reserves, producing countries of concentrated uranium oxides and percentage of the world's total production, civilian and military uses of uranium. The use of depleted uranium in the Gulf War, the Balkans and Iraq has caused political and environmental effects which are complex, raising problems and questions about the effects that nuclear compounds left on human health and environment.

  9. A model of the world uranium market

    International Nuclear Information System (INIS)

    Trieu, L.H.; Savage, E.; Dwyer, G.

    1994-01-01

    In this paper the structure of the world uranium market is analysed and an econometric model developed. The modelling effort is focused on the spot market because developments in the spot market are increasingly being reflected in contract agreements and it is more transparent than the contract market. Changing surplus supplies of uranium on the spot market have led to wide variations in the spot price and this relationship is a focus of the analysis. The results indicate that stocks will reduce to a point where a gradual rise in spot prices can be expected after 1993 but the recovery will be sensitive to new supply entering from non-traditional market sources. (Author)

  10. Transport of uranium by supported liquid membrane containing bis(2-ethylhexyl) hydrogenphosphate and 1-octanol

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Kanno, Takuji; Takahashi, Toshihiko.

    1984-01-01

    Carrier-mediated transport of uranium(VI) has been studied by means of liquid membranes impregnated in a microporous polymer. Liquid membranes containing bis(2-ethylhexyl) hydrogenphosphate (DEHPA) alone yielded inadequate stripping of uranium. The addition of 1-octanol to DEHPA solutions resulted in a decrease in extractability, and made it possible to control the distribution ratio of uranium. Uranium in the feed solution was sufficiently transported across the liquid membrane containing this DEHPA-1-octanol mixture into the product solution. The apparent rate constant (ksub(obs)) of transport increased slightly with an increase in carrier concentrations. Variations in acid concentrations of the feed solution (pH 2.5--3.2) and the product solution (0.1--1.0 M H 2 SO 4 ) had little effect on the transport rate. A large excess of uranium, more than the carrier content in the liquid membrane, was finally concentrated in the stripping acid. (author)

  11. Uranium(VI) speciation: modelling, uncertainty and relevance to bioavailability models. Application to uranium uptake by the gills of a freshwater bivalve; Speciation de l'uranium(6), modelisation, incertitude et implication pour les modeles de biodisponibilite. Application a l'accumulation dans les branchies d'un bivalve d'eau douce

    Energy Technology Data Exchange (ETDEWEB)

    Denison, F.H

    2004-07-01

    The effects of varying solution composition on the interactions between uranium(VI) and excised gills of the freshwater bivalve Corbicula fluminea have been investigated in well defined solution media. A significant reduction in the uptake of uranium was observed on increasing the concentrations of the uranium complexing ligands citrate and carbonate. Saturation kinetics as a function of uranium concentration at a pH value of 5.0 were observed, indicating that the uptake of uranium is a facilitated process, probably involving one or several trans-membrane transport systems. A relatively small change in the uptake of uranium was found as a function of pH (factor of ca. 2), despite the extremely large changes to the solution speciation of uranium within the range of pH investigated (5.0 - 7.5). A comprehensive review of the thermodynamic data relevant to the solution composition domain employed for this study was performed. Estimates of the uncertainties for the formation constants of aqueous uranium(VI) species were integrated into a thermodynamic database. A computer program was written to predict the equilibrium distribution of uranium(VI) in simple aqueous systems, using thermodynamic parameter mean-values. The program was extended to perform Monte Carlo and Quasi Monte Carlo uncertainty analyses, incorporating the thermodynamic database uncertainty estimates, to quantitatively predict the uncertainties inherent in predicting the solution speciation of uranium. The use of thermodynamic equilibrium modelling as a tool for interpreting the bioavailability of uranium(VI) was investigated. Observed uranium(VI) uptake behaviour was interpreted as a function of the predicted changes to the solution speciation of uranium. Different steady-state or pre-equilibrium approaches to modelling uranium uptake were tested. Alternative modelling approaches were also tested, considering the potential changes to membrane transport system activity or sorption characteristics on

  12. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  13. Texas Panhandle soil-crop-beef food chain for uranium: a dynamic model validated by experimental data

    International Nuclear Information System (INIS)

    Wenzel, W.J.; Wallwork-Barber, K.M.; Rodgers, J.C.; Gallegos, A.F.

    1982-01-01

    Long-term simulations of uranium transport in the soil-crop-beef food chain were performed using the BIOTRAN model. Experimental data means from an extensive Pantex beef cattle study are presented. Experimental data were used to validate the computer model. Measurements of uranium in air, soil, water, range grasses, feed, and cattle tissues are compared to simulated uranium output values in these matrices when the BIOTRAN model was set at the measured soil and air values. The simulations agreed well with experimental data even though metabolic details for ruminants and uranium chemical form in the environment remain to be studied

  14. Assessment of the risk of transporting uranium hexafluoride by truck and train

    International Nuclear Information System (INIS)

    Geffen, C.A.; Johnson, J.F.; Davis, D.K.; Friley, J.R.; Ross, B.A.

    1978-08-01

    This report is the fifth in a series of studies of the risk of transporting potentially hazardous energy materials. The report presents an assessment of the risk of shipping uranium hexafluoride (UF 6 ) by truck and rail. The general risk assessment methodology, summarized in Section 3, used in this study is that developed for the first study in this series. The assessment includes the risks from release of uranium hexafluoride during truck or rail transport due to transportation accidents. The contribution to the risk of deteriorated or faulty packaging during normal transport was also considered. The report is sectioned to correspond to the specific analysis steps of the risk assessment model. The transportation system and accident environment are described in Sections 4 and 5. Calculation of the response of the shipping system to forces produced in transportation accidents are presented in Section 6 and the results of a survey to determine the condition of the package during transport are presented in Section 7. Sequences of events that could lead to a release of radioactive material from the shipping cask during transportation are postulated in Section 8 using fault tree analysis. These release sequences are evaluated in Sections 9 through 11, to determine both the likelihood and the possible consequences of each release. Supportive data and analyses are given in the appendices. The results of the risk assessment have been related to the year 1985, when it is projected that 100 GW of electric power will be generated annually by nuclear power plants. It was estimated that approximately 46,000 metric tons (MT) of natural UF 6 and 14,600 MT of enriched UF 6 would be shipped in the reference year

  15. A study of uranium and thorium migration at the Koongarra uranium deposit with application to actinide transport from nuclear waste repositories

    International Nuclear Information System (INIS)

    Payne, T.E.

    1991-01-01

    One way to gain confidence in modelling possible radionuclide releases is to study natural systems which are similar to components of the multibarrier waste repository. Several such analogues are currently under study and these provide useful data about radionuclide behaviour in the natural environment. One such system is the Koongarra uranium deposit in the Northern Territory. In this dissertation, the migration of actinides, primarily uranium and thorium, has been studied as an analogue for the behaviour of transuranics in the far-field of a waste repository. The major findings of this study are: 1. the main process retarding uranium migration in the dispersion fan at Koongarra is sorption, which suppresses dissolved uranium concentrations well below solubility limits, with ferrihydrite being a major sorbing phase; 2. thorium is extremely immobile, with very low dissolved concentrations and corresponding high distribution ratios for 230 Th. Overall, it is estimated that colloids are relatively unimportant in Koongarra groundwater. Uranium migrates mostly as dissolved species, whereas thorium and actinium are mostly adsorbed to larger, relatively immobile particles and the stationary phase. However, of the small amount of 230 Th that passes through a 1μm filter, a significant proportion is associated with colloidal particles. Actinium appears to be slightly more mobile than thorium and is associated with colloids to a greater extent, although generally present in low concentrations. These results support the possibility of colloidal transport of trivalent and tetravalent actinides in the vicinity of a nuclear waste repository. 112 refs., 23 tabs., 32 figs

  16. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  17. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France); Desequilibres des series de l'uranium dans les aquiferes: quantification des mecanismes de transport de l'uranium et de ses descendants: cas de l'aquifere de la craie (Champagne, France)

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, A

    2005-09-15

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ({sup 234}U et {sup 238}U), thorium ({sup 230}Th et {sup 232}Th), {sup 226}Ra and {sup 222}Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during {alpha}-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and {alpha}-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  18. Uranium

    International Nuclear Information System (INIS)

    Cuney, M.; Pagel, M.; Leroy, J.

    1992-01-01

    First, this book presents the physico-chemical properties of Uranium and the consequences which can be deduced from the study of numerous geological process. The authors describe natural distribution of Uranium at different scales and on different supports, and main Uranium minerals. A great place in the book is assigned to description and classification of uranium deposits. The book gives also notions on prospection and exploitation of uranium deposits. Historical aspects of Uranium economical development (Uranium resources, production, supply and demand, operating costs) are given in the last chapter. 7 refs., 17 figs

  19. Modeled atmospheric radon concentrations from uranium mines

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

  20. Modeled atmospheric radon concentrations from uranium mines

    International Nuclear Information System (INIS)

    Droppo, J.G.

    1985-04-01

    Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs

  1. A concept of a nonfissile uranium hexafluoride overpack for storage, transport, and processing of corroded cylinders

    International Nuclear Information System (INIS)

    Pope, R.B.; Cash, J.M.; Singletary, B.H.

    1996-01-01

    There is a need to develop a means of safely transporting breached 48-in. cylinders containing depleted uranium hexafluoride (UF 6 ) from current storage locations to locations where the contents can be safely removed. There is also a need to provide a method of safely and easily transporting degraded cylinders that no longer meet the US Department of Transportation (DOT) and American National Standards Institute, Inc., (ANSI) requirements for shipments of depleted UF 6 . A study has shown that an overpack can be designed and fabricated to satisfy these needs. The envisioned overpack will handle cylinder models 48G, 48X, and 48Y and will also comply with the ANSI N14.1 and the American Society of Mechanical Engineers (ASME) Sect. 8 requirements

  2. Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center, Subproject to Co-PI Eric E. Roden. Final Report

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2011-01-01

    This report summarizes research conducted in conjunction with a project entitled 'Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center', which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2.

  3. Uranium transport around the reactor zone at Okelobondo (Oklo). Data evaluation with M3 and HYTEC

    International Nuclear Information System (INIS)

    Gurban, I.; Laaksoharju, M.; Made, B.; Ledoux, E.

    1999-12-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting and participating in Natural Analogue activities as part of various studies regarding the final disposal of high level nuclear waste (HLW). The aim of this study is to use the hydrogeological and hydrochemical data from Okelobondo (Oklo Natural Analogue) to compare the outcome of two independent modelling approaches (HYTEC and M3). The modelling helps to evaluate the processes associated with nuclear natural reactors such as redox, adsorption/desorption and dissolution/precipitation of the uranium and to develop more realistic codes which can be used for site investigations and data evaluation. HYTEC (1D and 2D) represents a deterministic, transport and multi-solutes reactive coupled code developed at Ecole des Mines de Paris. M3 (Multivariate Mixing and Mass balance calculations) is a mathematical-statistical concept code developed for SKB. M3 can relatively easily be used to calculate mixing portions and to identify sinks or sources of element concentrations that may exist in a geochemical system. M3 helped to address the reactions in the coupled code HYTEC. Thus, the major flow-paths and reaction paths were identified and used for transport evaluation. The reactive transport results (one-dimensional and two-dimensional simulations) are in good agreement with the statistical approach using the M3 model. M3 and HYTEC show a dissolution of the uranium layer in contact with upwardly oxidising waters. M3 and HYTEC show a gain of manganese rich minerals downstream the reactor. A comparison of the U and Mn plots for M3 deviation and HYTEC results showed an almost mirror behaviour. The U transport stops when the Mn gain increases. Thus, HYTEC and M3 modelling predict that a possible reason for not having U transport up to the surface in Okelobondo is due to an inorganic trap which may hinder the uranium transport. The two independent modelling approaches can be used to complement each other and to

  4. A geostatical model for USA uranium deposits

    International Nuclear Information System (INIS)

    Drew, M.W.

    1979-01-01

    Evidence exists which suggests that the frequency distributions of both grade and size of metal deposits may be well approximated by lognormal distribution functions. Using data on presently viable deposits and a simplified function which links production cost to deposit grade and size, a bivariate lognormal deposit grade/size distribution may be calibrated for a given geological environment. Exploration is introduced by assuming that the proportion discovered of the potential uranium reserve available at or below a given production can be represented by a fraction of the average deposit size and the limit exploration expenditure. As output, the model derives estimates of total reserves linked to maximum production costs and to exploration expenditure where the latter may be expressed either as expenditure per lb of mineral discovered or as a given percentage of operating profit. Reserve/price functions have been derived for the USA based on USAEC data. Tentative conclusions which may be drawn from the results are: (1) Assuming that a similar proportion of profits continues to be allocated to exploration in the future, then the USA should be able to meet its own national demand for uranium up to the end of the century (say 2 M tons U) at prices up to US$35/lb U 3 O 8 (1.1.75$ values). (2) If instead of all exploration being funded from a fixed maximum proportion of mining company profits, consumers were to fund additional exploration separately, then it is possible that the total unit cost of uranium to the consumers would thereby be reduced. It should be stressed that these conclusions are tentative and are only as reliable as the input data and assumptions of the model. In particular no account is taken of commercial or political forces which could artificially restrict supplies or raise prices. The model should be regarded as a first attempt and is offered as a basis for discussion leading to further development. (author)

  5. Electrochemo-hydrodynamics modeling approach for a uranium electrowinning cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.R.; Paek, S.; Ahn, D.H., E-mail: krkim1@kaeri.re.kr, E-mail: swpaek@kaeri.re.kr, E-mail: dhahn2@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, J.Y.; Hwang, I.S., E-mail: d486916@snu.ac.kr, E-mail: hisline@snu.ac.kr [Department of Nuclear Engineering, Seoul National University (Korea, Republic of)

    2011-07-01

    This study demonstrated a simulation based on fully coupling of electrochemical kinetics with 3- dimensional transport of ionic species in a flowing molten-salt electrolyte through a simplified channel cell of uranium electro winner. Dependences of ionic electro-transport on the velocity of stationary electrolyte flow were studied using a coupling approach of electrochemical reaction model. The present model was implemented in a commercially available computational fluid dynamics (CFD) platform, Ansys-CFX, using its customization ability via user defined functions. The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes were demonstrated by means of CFD-based multiphysics simulation approach. Simulation was carried out for the case of uranium electrowinning characteristics in a stream of molten salt electrolyte. This approach was taken into account the concentration profile at the electrode surface, to represent the variation of the diffusion limited current density as a function of the flow characteristics and of applied current density. It was able to predict conventional current voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variable, such as flow field, species concentrations, potential, and current distributions throughout the current driven cell. (author)

  6. Electrochemo-hydrodynamics modeling approach for a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Paek, S.; Ahn, D.H.; Park, J.Y.; Hwang, I.S.

    2011-01-01

    This study demonstrated a simulation based on fully coupling of electrochemical kinetics with 3- dimensional transport of ionic species in a flowing molten-salt electrolyte through a simplified channel cell of uranium electro winner. Dependences of ionic electro-transport on the velocity of stationary electrolyte flow were studied using a coupling approach of electrochemical reaction model. The present model was implemented in a commercially available computational fluid dynamics (CFD) platform, Ansys-CFX, using its customization ability via user defined functions. The main parameters characterizing the effect of the turbulent flow of an electrolyte between two planar electrodes were demonstrated by means of CFD-based multiphysics simulation approach. Simulation was carried out for the case of uranium electrowinning characteristics in a stream of molten salt electrolyte. This approach was taken into account the concentration profile at the electrode surface, to represent the variation of the diffusion limited current density as a function of the flow characteristics and of applied current density. It was able to predict conventional current voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variable, such as flow field, species concentrations, potential, and current distributions throughout the current driven cell. (author)

  7. Research on interactive genetic-geological models to evaluate favourability for undiscovered uranium resources

    International Nuclear Information System (INIS)

    Finch, W.I.; Granger, H.C.; Lupe, R.; McCammon, R.B.

    1980-01-01

    Current methods of evaluating favourability for undiscovered uranium resources are unduly subjective, quite possibly inconsistent and, as a consequence, of questionable reliability. This research is aimed at reducing the subjectivity and increasing the reliability by designing an improved method that depends largely on geological data and their statistical frequency of occurrence. This progress report outlines a genetic approach to modelling the geological factors that controlled uranium mineralization in order to evaluate the favourability for the occurrence of undiscovered uranium deposits of the type modelled. A genetic model is constructed from all the factors that describe the processes, in chronological sequence, that formed uranium deposits thought to have a common origin. The field and laboratory evidence for the processes constitute a geologic-occurrence base that parallels the chronological sequence of events. The genetic model and the geologic-occurrence base are portrayed as two columns of an interactive matrix called the ''genetic-geologic model''. For each column, eight chronological stages are used to describe the overall formation of the uranium deposits. These stages consist of (1) precursor processes; (2) host-rock formation; (3) preparation of host-rock; (4) uranium-source development; (5) transport of uranium; (6) primary uranium deposition; (7) post-deposition modification; and (8) preservation. To apply the genetic-geological model to evaluate favourability, a question is posed that determines the presence or absence of each attribute listed under the geologic-occurrence base. By building a logic circuit of the attributes according to either their essential or non-essential nature, the resultant match between a well-documented control area and the test area may be determined. The degree of match is a measure of favourability for uranium occurrence as hypothesized in the genetic model

  8. The fergusonite from Ampasipoana (Madagascar). Alteration mode and uranium transport

    International Nuclear Information System (INIS)

    Chervet, J.

    1958-01-01

    The author reports, comments and discusses the general characteristics of the fergusonite, a primary ore of uranium, and more particularly those of a very specific ore extracted from a large deposit located in Madagascar. These characteristics notably concern the composition and the presence and shapes of various crystals. The studied ore contains yttrium phosphate which demonstrated an attack of uranium and yttrium niobate by phosphated acid solutions, and the formation of autunite provided by the fergusonite uranium

  9. Transport of uranium in water and soil: colloidal-isotopic combined approach

    International Nuclear Information System (INIS)

    Harguindeguy, Stephanie

    2013-01-01

    Mechanisms of interaction between uranium and colloids were studied by samples taken from a site of interest for the 'French Nuclear Agency' (CEA). The mobilization of uranium from soils was apprehended by static and dynamic leaching experiments. The transfer and transport have been studied by considering pond waters and drain waters. Results confirm that anthropogenic uranium is more mobile than natural uranium. However mechanisms of mobilization and distribution of uranium, does not differ depending on its origin. The colloidal fraction plays an important role on the migration in soil and the transfer into water by representing from 10 to 90 % uranium depending on samples. The colloidal fractions of uranium are in a continuum of size up to about 200 nm hydrodynamic diameter. They are mainly composed of organic material, iron and aluminum. Along the drain, from the upstream to the downstream of the site, rearrangement of colloidal associations between uranium and organic material occurs in disfavor of colloidal associations between uranium and iron, the proportion of colloidal uranium bound to aluminum remains unchanged. (author) [fr

  10. Radiological modeling software for underground uranium mines

    International Nuclear Information System (INIS)

    Bjorndal, B.; Moridi, R.

    1999-01-01

    The Canadian Institute for Radiation Safety (CAIRS) has developed computer simulation software for modeling radiological parameters in underground uranium mines. The computer program, called 3d RAD, allows radiation protection professionals and mine ventilation engineers to quickly simulate radon and radon progeny activity concentrations and potential alpha energy concentrations in complex mine networks. The simulation component of 3d RAD, called RSOLVER, is an adaptation of an existing modeling program called VENTRAD, originally developed at Queen's University, Ontario. Based on user defined radiation source terms and network physical properties, radiological parameters in the network are calculated iteratively by solving Bateman's Equations in differential form. The 3d RAD user interface was designed in cooperation with the Canada Centre for Mineral and Energy Technology (CANMET) to improve program functionality and to make 3d RAD compatible with the CANMET ventilation simulation program, 3d CANVENT. The 3d RAD program was tested using physical data collected in Canadian uranium mines. 3d RAD predictions were found to agree well with theoretical calculations and simulation results obtained from other modeling programs such as VENTRAD. Agreement with measured radon and radon progeny levels was also observed. However, the level of agreement was found to depend heavily on the precision of source term data, and on the measurement protocol used to collect radon and radon progeny levels for comparison with the simulation results. The design and development of 3d RAD was carried out under contract with the Saskatchewan government

  11. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P.; Pili, E. [CEA Bruyeres-le-Chatel, DIF, 91 (France); Charlet, L. [Univ Grenoble 1, Lab Geophys Interne and Tectonophys LGIT OSUG, CNRS, UJF, UMR5559, F-38041 Grenoble 9 (France)

    2010-07-01

    The transport of uranium through a sandy podsolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the {<=} 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean pore-water velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source. (authors)

  12. Uranium facilitated transport by water-dispersible colloids in field and soil columns

    Energy Technology Data Exchange (ETDEWEB)

    Crancon, P., E-mail: pierre.crancon@cea.fr [CEA, DAM, DIF, F-91297 Arpajon (France); Pili, E. [CEA, DAM, DIF, F-91297 Arpajon (France); Charlet, L. [Laboratoire de Geophysique Interne et Tectonophysique (LGIT-OSUG), University of Grenoble-I, UMR5559-CNRS-UJF, BP53, 38041 Grenoble cedex 9 (France)

    2010-04-01

    The transport of uranium through a sandy podzolic soil has been investigated in the field and in column experiments. Field monitoring, numerous years after surface contamination by depleted uranium deposits, revealed a 20 cm deep uranium migration in soil. Uranium retention in soil is controlled by the < 50 {mu}m mixed humic and clayey coatings in the first 40 cm i.e. in the E horizon. Column experiments of uranium transport under various conditions were run using isotopic spiking. After 100 pore volumes elution, 60% of the total input uranium is retained in the first 2 cm of the column. Retardation factor of uranium on E horizon material ranges from 1300 (column) to 3000 (batch). In parallel to this slow uranium migration, we experimentally observed a fast elution related to humic colloids of about 1-5% of the total-uranium input, transferred at the mean porewater velocity through the soil column. In order to understand the effect of rain events, ionic strength of the input solution was sharply changed. Humic colloids are retarded when ionic strength increases, while a major mobilization of humic colloids and colloid-borne uranium occurs as ionic strength decreases. Isotopic spiking shows that both {sup 238}U initially present in the soil column and {sup 233}U brought by input solution are desorbed. The mobilization process observed experimentally after a drop of ionic strength may account for a rapid uranium migration in the field after a rainfall event, and for the significant uranium concentrations found in deep soil horizons and in groundwater, 1 km downstream from the pollution source.

  13. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The article briefly discusses the Australian government policy and the attitude of political party factions towards the mining and exporting of the uranium resources in Australia. Australia has a third of the Western World's low-cost uranium resources

  14. Modelling of transport phenomena

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Fukuyama, Atsushi.

    1993-09-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the anomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confinement modes, and the sudden jumps such as L-H transition. Starting from the formalism of the transport matrix, the modelling based on the low frequency instabilities are reviewed. Theoretical results in the range of drift wave frequency are examined. Problems in theories based on the quasilinear and mixing-length estimates lead to the renewal of the turbulence theory, and the physics picture of the self-sustained turbulence is discussed. The theory of transport using the fluid equation of plasma is developed, showing that the new approach is very promising in explaining abovementioned characteristics of anomalous transport in both L-mode and improved confinement plasmas. The interference of the fluxes is the key to construct the physics basis of the bifurcation theory for the L-H transition. The present status of theories on the mechanisms of improved confinement is discussed. Modelling on the nonlocal nature of transport is briefly discussed. Finally, the impact of the anomalous transport on disruptive phenomena is also described. (author) 95 refs

  15. Risk evaluation of uranium mining: A geochemical inverse modelling approach

    Science.gov (United States)

    Rillard, J.; Zuddas, P.; Scislewski, A.

    2011-12-01

    reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation

  16. Uranium

    International Nuclear Information System (INIS)

    Poty, B.; Cuney, M.; Bruneton, P.; Virlogeux, D.; Capus, G.

    2010-01-01

    With the worldwide revival of nuclear energy comes the question of uranium reserves. For more than 20 years, nuclear energy has been neglected and uranium prospecting has been practically abandoned. Therefore, present day production covers only 70% of needs and stocks are decreasing. Production is to double by 2030 which represents a huge industrial challenge. The FBR-type reactors technology, which allows to consume the whole uranium content of the fuel, is developing in several countries and will ensure the long-term development of nuclear fission. However, the implementation of these reactors (the generation 4) will be progressive during the second half of the 21. century. For this reason an active search for uranium ores will be necessary during the whole 21. century to ensure the fueling of light water reactors which are huge uranium consumers. This dossier covers all the aspects of natural uranium production: mineralogy, geochemistry, types of deposits, world distribution of deposits with a particular attention given to French deposits, the exploitation of which is abandoned today. Finally, exploitation, ore processing and the economical aspects are presented. Contents: 1 - the uranium element and its minerals: from uranium discovery to its industrial utilization, the main uranium minerals (minerals with tetravalent uranium, minerals with hexavalent uranium); 2 - uranium in the Earth's crust and its geochemical properties: distribution (in sedimentary rocks, in magmatic rocks, in metamorphic rocks, in soils and vegetation), geochemistry (uranium solubility and valence in magmas, uranium speciation in aqueous solution, solubility of the main uranium minerals in aqueous solution, uranium mobilization and precipitation); 3 - geology of the main types of uranium deposits: economical criteria for a deposit, structural diversity of deposits, classification, world distribution of deposits, distribution of deposits with time, superficial deposits, uranium

  17. Uranium

    International Nuclear Information System (INIS)

    Mackay, G.A.

    1978-01-01

    The author discusses the contribution made by various energy sources in the production of electricity. Estimates are made of the future nuclear contribution, the future demand for uranium and future sales of Australian uranium. Nuclear power growth in the United States, Japan and Western Europe is discussed. The present status of the six major Australian uranium deposits (Ranger, Jabiluka, Nabarlek, Koongarra, Yeelerrie and Beverley) is given. Australian legislation relevant to the uranium mining industry is also outlined

  18. Uranium

    International Nuclear Information System (INIS)

    1982-01-01

    The development, prospecting, research, processing and marketing of South Africa's uranium industry and the national policies surrounding this industry form the headlines of this work. The geology of South Africa's uranium occurences and their positions, the processes used in the extraction of South Africa's uranium and the utilisation of uranium for power production as represented by the Koeberg nuclear power station near Cape Town are included in this publication

  19. Uranium

    International Nuclear Information System (INIS)

    Stewart, E.D.J.

    1974-01-01

    A discussion is given of uranium as an energy source in The Australian economy. Figures and predictions are presented on the world supply-demand position and also figures are given on the added value that can be achieved by the processing of uranium. Conclusions are drawn about Australia's future policy with regard to uranium (R.L.)

  20. Uranium

    International Nuclear Information System (INIS)

    Toens, P.D.

    1981-03-01

    The geological setting of uranium resources in the world can be divided in two basic categories of resources and are defined as reasonably assured resources, estimated additional resources and speculative resources. Tables are given to illustrate these definitions. The increasing world production of uranium despite the cutback in the nuclear industry and the uranium requirements of the future concluded these lecture notes

  1. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-01-01

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments

  2. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  3. Uranium-lead shielding for nuclear material transportation systems

    International Nuclear Information System (INIS)

    Lusk, E.C.; Miller, N.E.; Basham, S.J. Jr.

    1978-01-01

    The basis for the selection of shielding materials for spent fuel shipping containers is described with comments concerning the favorable and unfavorable aspects of steel, lead, and depleted uranium. A concept for a new type of material made of depleted uranium and lead is described which capitalizes on the best cask shielding characteristics of both materials. This cask shielding is made by filling the shielding cavity with pieces of depleted uranium and then backfilling the interstitial voids with lead. The lead would be bonded to the uranium and also to the cask shells if desired. Shielding density approaching 80 percent of that of solid uranium could be achieved, while a density of 65 percent is readily obtainable. This material should overcome the problems of the effect of lead melting in the fire accident, high thermal gradients at uranium-stainless steel interfaces and at a major reduction in cost over that of a solid uranium shielded cask. A development program is described to obtain information on the properties of the composite material to aid in design analysis and licensing and to define the fabrication techniques

  4. Uranium resources evaluation model as an exploration tool

    International Nuclear Information System (INIS)

    Ruzicka, V.

    1976-01-01

    Evaluation of uranium resources, as conducted by the Uranium Resources Evaluation Section of the Geological Survey of Canada, comprises operations analogous with those performed during the preparatory stages of uranium exploration. The uranium resources evaluation model, simulating the estimation process, can be divided into four steps. The first step includes definition of major areas and ''unit subdivisions'' for which geological data are gathered, coded, computerized and retrieved. Selection of these areas and ''unit subdivisions'' is based on a preliminary appraisal of their favourability for uranium mineralization. The second step includes analyses of the data, definition of factors controlling uranium minearlization, classification of uranium occurrences into genetic types, and final delineation of favourable areas; this step corresponds to the selection of targets for uranium exploration. The third step includes geological field work; it is equivalent to geological reconnaissance in exploration. The fourth step comprises computation of resources; the preliminary evaluation techniques in the exploration are, as a rule, analogous with the simplest methods employed in the resource evaluation. The uranium resources evaluation model can be conceptually applied for decision-making during exploration or for formulation of exploration strategy using the quantified data as weighting factors. (author)

  5. Development of interpretation models for PFN uranium log analysis

    International Nuclear Information System (INIS)

    Barnard, R.W.

    1980-11-01

    This report presents the models for interpretation of borehole logs for the PFN (Prompt Fission Neutron) uranium logging system. Two models have been developed, the counts-ratio model and the counts/dieaway model. Both are empirically developed, but can be related to the theoretical bases for PFN analysis. The models try to correct for the effects of external factors (such as probe or formation parameters) in the calculation of uranium grade. The theoretical bases and calculational techniques for estimating uranium concentration from raw PFN data and other parameters are discussed. Examples and discussions of borehole logs are included

  6. Previsional evaluation of risks associated with ground transportation of uranium hexafluoride

    International Nuclear Information System (INIS)

    Pages, P.; Tomachevsky, E.

    1987-11-01

    This communication is a concrete example of application of the evaluation method for risks associated with road transportation of uranium hexafluoride by 48Y shipping container. The statistical bases for UF6 transportation are given by analysis of the list of accidents for dangerous road transportation. This study examines all parameters (cost-safety-meteorology-radiation doses) to take in account in the safety analysis of the UF6 transportation between Pierrelatte and Le Havre [fr

  7. Hybrid empirical--theoretical approach to modeling uranium adsorption

    International Nuclear Information System (INIS)

    Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W.

    2004-01-01

    An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K f parameter is correlated to sediment surface area (r 2 =0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth

  8. Hydrogeochemical modelling of an active system of uranium fixation by organic soils and sediments (Needle's Eye, Scotland)

    International Nuclear Information System (INIS)

    Jamet, P.; Schmitt, J.M.; Ledoux, E.; Hooker, P.J.; Escalier des Orres, P.

    1993-01-01

    Uranium accumulation in organic-rich sediments can be closely modelled by assuming that the dominant effect of the uranium-organic matter interaction is the direct or indirect reduction of uranyl compounds to form U(IV) minerals, especially uraninite-pitchblende. Application of this model to the Needle's Eye (Scotland) site where uranium is actively accumulating in Quaternary sediments demonstrates that uranium accumulation is both effective and rapid in environments involving shallow, organic-rich, reducing horizons. The period of uranium deposit formation at Needle's Eye is estimated to be as short as 5000 years. The transport of uranium to the site of deposition by oxidizing groundwaters and the channelling of these oxidizing uraniferous groundwaters are identified as important factors involved in the rapid accumulation of uranium. The regional hydrogeological model indicates that a fault in the area appears to act as a hydraulic screen for the uraniferous groundwaters. On one side of the fault the Quaternary sediments are well drained whilst on the other the flow of groundwater seeps out creating a major flux just at the bottom of the organic-rich layers. The local hydrogeological model shows that the groundwater flow is vertical in this area. A third significant factor in the development of these uranium accumulations is the presence of a significant nearby source of leachable primary uranium. In the case of the Needle's Eye site this is in the form of some thirty 185 ± 20 Ma, pitchblende-bearing veins. 32 refs., 10 figs., 8 tabs

  9. Characterization of Uranium Contamination, Transport, and Remediation at Rocky Flats - Across Remediation into Post-Closure

    Science.gov (United States)

    Janecky, D. R.; Boylan, J.; Murrell, M. T.

    2009-12-01

    The Rocky Flats Site is a former nuclear weapons production facility approximately 16 miles northwest of Denver, Colorado. Built in 1952 and operated by the Atomic Energy Commission and then Department of Energy, the Site was remediated and closed in 2005, and is currently undergoing long-term surveillance and monitoring by the DOE Office of Legacy Management. Areas of contamination resulted from roughly fifty years of operation. Of greatest interest, surface soils were contaminated with plutonium, americium, and uranium; groundwater was contaminated with chlorinated solvents, uranium, and nitrates; and surface waters, as recipients of runoff and shallow groundwater discharge, have been contaminated by transport from both regimes. A region of economic mineralization that has been referred to as the Colorado Mineral Belt is nearby, and the Schwartzwalder uranium mine is approximately five miles upgradient of the Site. Background uranium concentrations are therefore elevated in many areas. Weapons-related activities included work with enriched and depleted uranium, contributing anthropogenic content to the environment. Using high-resolution isotopic analyses, Site-related contamination can be distinguished from natural uranium in water samples. This has been instrumental in defining remedy components, and long-term monitoring and surveillance strategies. Rocky Flats hydrology interlinks surface waters and shallow groundwater (which is very limited in volume and vertical and horizontal extent). Surface water transport pathways include several streams, constructed ponds, and facility surfaces. Shallow groundwater has no demonstrated connection to deep aquifers, and includes natural preferential pathways resulting primarily from porosity in the Rocky Flats alluvium, weathered bedrock, and discontinuous sandstones. In addition, building footings, drains, trenches, and remedial systems provide pathways for transport at the site. Removal of impermeable surfaces (buildings

  10. Uranium

    International Nuclear Information System (INIS)

    Whillans, R.T.

    1981-01-01

    Events in the Canadian uranium industry during 1980 are reviewed. Mine and mill expansions and exploration activity are described, as well as changes in governmental policy. Although demand for uranium is weak at the moment, the industry feels optimistic about the future. (LL)

  11. Modeling of geochemical processes related to uranium mobilization in the groundwater of a uranium mine

    International Nuclear Information System (INIS)

    Gomez, P.; Garralon, A.; Buil, B.; Turrero, Ma.J.; Sanchez, L.; Cruz, B. de la

    2006-01-01

    This paper describes the processes leading to uranium distribution in the groundwater of five boreholes near a restored uranium mine (dug in granite), and the environmental impact of restoration work in the discharge area. The groundwater uranium content varied from < 1 μg/L in reduced water far from the area of influence of the uranium ore-containing dyke, to 104 μg/L in a borehole hydraulically connected to the mine. These values, however, fail to reflect a chemical equilibrium between the water and the pure mineral phases. A model for the mobilization of uranium in this groundwater is therefore proposed. This involves the percolation of oxidized waters through the fractured granite, leading to the oxidation of pyrite and arsenopyrite and the precipitation of iron oxyhydroxides. This in turn leads to the dissolution of the primary pitchblende and, subsequently, the release of U(VI) species to the groundwater. These U(VI) species are retained by iron hydroxides. Secondary uranium species are eventually formed as reducing conditions are re-established due to water-rock interactions

  12. Biokinetic models for the metabolism of uranium: an overview

    International Nuclear Information System (INIS)

    Bertelli, Luiz; Lipsztein, Joyce L.; Melo, Dunstana R.; Puerta, Anselmo; Wrenn, McDonald E.

    1997-01-01

    This work reviews the main experiments involving uranium injection and inhalation into several animal species and those associated with humans as well. The literature was carefully selected to involve the uranium intake, distribution and excretion in humans and mammals. The available biokinetic models for the uranium metabolism, proposed by ICRP in Publications 2, 30 and 69, were shortly described and tested against the data. Human data which incorporates measurements of urine, autopsy and biopsy samples were also used completing the review of models associated with the systemic part. (author). 21 refs., 4 figs

  13. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  14. Fixation and transport of uranium by humic substances (1962)

    International Nuclear Information System (INIS)

    Martin, J.

    1962-03-01

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [fr

  15. Moderation control in low enriched 235U uranium hexafluoride packaging operations and transportation

    International Nuclear Information System (INIS)

    Dyer, R.H.; Kovac, F.M.; Pryor, W.A.

    1993-01-01

    Moderation control is the basic parameter for ensuring nuclear criticality safety during the packaging and transport of low 235 U enriched uranium hexafluoride before its conversion to nuclear power reactor fuel. Moderation control has permitted the shipment of bulk quantities in large cylinders instead of in many smaller cylinders and, therefore, has resulted in economies without compromising safety. Overall safety and uranium accountability have been enhanced through the use of the moderation control. This paper discusses moderation control and the operating procedures to ensure that moderation control is maintained during packaging operations and transportation

  16. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca{sup 2+} at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor

  17. Root uptake of uranium by a higher plant model (Phaseolus vulgaris) bioavailability from soil solution

    International Nuclear Information System (INIS)

    Laroche, L.; Henner, P.; Camilleri, V.; Garnier-Laplace, J.

    2004-01-01

    Uranium behaviour in soils is controlled by actions and interactions between physicochemical and biological processes that also determine its bioavailability. In soil solution, uranium(+VI) aqueous speciation undergoes tremendous changes mainly depending on pH, carbonates, phosphates and organic matter. In a first approach to identify bioavailable species of U to plants, cultures were performed using hydroponics, to allow an easy control of the composition of the exposure media. The latter, here an artificial soil solution, was designed to control the uranium species in solution. The geochemical speciation code JCHESS using a database compiled from the OECD/NEA thermochemical database project and verified was used to perform the solution speciation calculations. On this theoretical basis, three domains were defined for short-duration well-defined laboratory experiments in simplified conditions: pH 4.9, 5.8 and 7 where predicted dominant species are uranyl ions, hydroxyl complexes and carbonates respectively. For these domains, biokinetics and characterization of transmembrane transport according to a classical Michaelis Menten approach were investigated. The Free Ion Model (or its derived Biotic Ligand Model) was tested to determine if U uptake is governed by the free uranyl species or if other metal complexes can be assimilated. The effect of different variables on root assimilation efficiency and phyto-toxicity was explored: presence of ligands such as phosphates or carbonates and competitive ions such as Ca 2+ at the 3 pH. According to previous experiments, uranium was principally located in roots whatever the pH and no difference in uranium uptake was evidenced between the main growth stages of the plant. Within the 3 studied chemical domains, results from short-term kinetics evidenced a linear correlation between total uranium concentration in bean roots and that in exposure media, suggesting that total uranium in soil solution could be a good predictor for

  18. Modeling the migration of radioactive contaminants in groundwater of in situ leaching uranium mine

    International Nuclear Information System (INIS)

    Li Chunguang; Tai Kaixuan

    2011-01-01

    The radioactive contamination of groundwater from in situ leaching (ISL) of uranium mining is a widespread environmental problem. This paper analyzed the monitor results of groundwater contaminations for a in situ leaching uranium mine. A dynamic model of contaminants transport in groundwater in ISL well field was established. The processes and mechanisms of contaminant transport in groundwater were simulated numerically for a ISL well field. A small quantity of U and SO 4 2- migrate to outside of well field during ISL production stage. But the migration velocity and distance of contaminations is small, and the concentration is low. Contaminants migrate as anomalistic tooth-shape. The migration trend of U and SO 4 2- is consistent. Numerical modeling can provide an effective approach to analyse the transport mechanism, and forecast and control the migration of contaminants in groundwater in ISL well field. (authors)

  19. Indications of uranium transport around the reactor zone at Bagombe (Oklo)

    International Nuclear Information System (INIS)

    Gurban, I.; Laaksoharju, M.; Ledoux, E.; Made, B.; Salignac, A.L.

    1998-08-01

    The aim of this study is to use the hydrogeological and hydrochemical data from Oklo Natural Analogue to compare the outcome of two independent modelling approaches (HYTEC-2D and M3) which can be used to model natural conditions surrounding the reactor. HYTEC-2D represents a 2D, deterministic, transport and multi-solutes reactive coupled code developed at Ecole des Mines de Paris. M3 (named Multivariate Mixing and Mass balance) is a mathematical-statistical concept code developed for SKB. The M3 results are visualised using the Voxel Analyst code and the outcome of the uranium transport predictions are made from a performance assessment point of view. This exercise was in the beginning intended to represent a validation for M3, by comparing this statistic approach with the standard hydrodynamic - geochemical coupled code HYTEC-2D. It was realized that the codes complete each other and a better understanding of the geochemical studied system is obtained. Thus, M3 can relatively easily be used to calculate mixing portions and to identify sinks or sources of element concentrations that may exist in a geochemical system. This can help to address the reactions in the coupled code such as HYTEC-2D, to identify the hydrodynamic and hydrochemical system and to reduce the computation time. M3 shows the existence of the buffer around the reactor. No transport of uranium was indicated downstream the reactor. HYTEC-2D gives the same result in the case when we consider the existence of the redox buffer in the model. M3 shows an increase of the alkalinity in the reactor zone. The increase of the alkalinity was indicated by the M3 modelling to be associated with microbial decomposition of organic material which added reducing capacity to the system. The modelling result was supported by new results from the last field campaign, which included in-situ Eh measurements and microbial sampling and identification. The effects from the same process was indicated also by the HYTEC-2D

  20. Uranium

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R M

    1976-01-01

    Evidence of expanding markets, improved prices and the short supply of uranium became abundantly clear in 1975, providing the much needed impetus for widespread activity in all phases of uranium operations. Exploration activity that had been at low levels in recent years in Canada was evident in most provinces as well as the Northwest Territories. All producers were in the process of expanding their uranium-producing facilities. Canada's Atomic Energy Control Board (AECB) by year-end had authorized the export of over 73,000 tons of U/sub 3/0/sub 8/ all since September 1974, when the federal government announced its new uranium export guidelines. World production, which had been in the order of 25,000 tons of U/sub 3/0/sub 8/ annually, was expected to reach about 28,000 tons in 1975, principally from increased output in the United States.

  1. Cost-effectiveness of safety measures applying to uranium hexafluoride transportation in France

    International Nuclear Information System (INIS)

    Hubert, P.; Pages, P.; Auguin, B.

    1983-01-01

    This paper addresses the problem of uranium hexafluoride transportation by truck and train. It consists of a probabilistic risk assessment of the potential hazards to the public that can arise from the traffice that will take place in France in 1990. The specificity of UF 6 is that it presents both chemical and radiological hazards. But, whatever the transported material, road traffic entails a risk of its own. Thus three kinds of risk are assessed for natural, depleted and enriched uranium hexafluoride. These assessments are the basis of a cost-effectiveness analysis which deals with such safety measures as using a protective overpack, avoiding populated area and escorting the trucks. The results presented here are based upon research supported by the C.E.A. (Commissariat a l'Energie Atomique). It is linked to a more general program of experiments and theoretical analyses on package safety and accidental releases for uranium hexafluoride. 7 references, 2 figures, 4 tables

  2. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1982-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation or ingestion of uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined

  3. Models for estimating the radiation hazards of uranium mines

    International Nuclear Information System (INIS)

    Wise, K.N.

    1990-01-01

    Hazards to the health of workers in uranium mines derive from the decay products of radon and from uranium and its descendants. Radon daughters in mine atmospheres are either attached to aerosols or exist as free atoms and their physical state determines in which part of the lung the daughters deposit. The factors which influence the proportions of radon daughters attached to aerosols, their deposition in the lung and the dose received by the cells in lung tissue are discussed. The estimation of dose to tissue from inhalation of ingestion or uranium and daughters is based on a different set of models which have been applied in recent ICRP reports. The models used to describe the deposition of particulates, their movement in the gut and their uptake by organs, which form the basis for future limits on the concentration of uranium and daughters in air or on their intake with food, are outlined. 34 refs., 12 tabs., 9 figs

  4. Factoring uncertainty into restoration modeling of in-situ leach uranium mines

    Science.gov (United States)

    Johnson, Raymond H.; Friedel, Michael J.

    2009-01-01

    Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.

  5. Comparison of two uranium-market forecasting models

    International Nuclear Information System (INIS)

    Bleistein, S.; Recek, J.

    1983-01-01

    The techniques and methodologies, similarities and differences, and the results of two uranium market computer models - the Uranium Supply Analysis System and the EUREKA model - are surveyed. These models can be of use to electric utilities in developing procurement strategies or planning new reactor requirements. The models are designed to simulate actual market performance of the domestic uranium industry under varying user-specified assumptions. These models provide output in the form of projections of variables of interest, such as investment in exploration and new production capacity, additions to reserves and resources, and adjustments in inventories. Comparison between the models is demonstrative of how output can vary even with use of the same input data. Utilities may profit by the comparison with respect to the task of selecting models on the basis of obtaining the most-useful solution for a given problem. 18 figures

  6. PAT-2 (Plutonium Air Transportable Model 2)

    International Nuclear Information System (INIS)

    Anderson, J.

    1981-01-01

    The PAT-2 (Plutonium Air Transportable Model 2) package is designed for the safe transport of plutonium and/or uranium in small quantities, especially as used in international safeguards activities, and especially as transported by air. The PAT-2 package is resistant to severe accidents, including that of a high-speed jet aircraft crash, and is designed to withstand such environments as extreme impact, crushing, puncturing and slashing loads, severe hydrocarbon-fueled fires, and deep underwater immersion, with no escape of contents. The accident environments may be imposed upon the package singly or seqentially. The package meets the requirements of 10 CFR 71 for Fissile Class I packages with a cargo of 15 grams of Pu-239, or other isotopic forms described herein, not to exceed 2 watts of thermal activity. Packaging, operational features, and contents of package, are discussed

  7. Advantages of integration of uranium exploration data in GIS and models as tools for decision support

    International Nuclear Information System (INIS)

    Tusveld, M.C.L.

    1997-01-01

    In many areas where uranium has been or is explored, an enormous amount of data on geology and hydrogeology is available. When these uranium exploration data are stored in a structured way, they can be made useful for other purposes dm uranium exploration only. For instance, in case of environmental pollution, which is often a side-effect of uranium activities such as mining and leaching, the data can be used to develop a computer model of the environment. With such a model impacts can be calculated of different scenarios for cleaning up or isolation of the pollution. A GIS can be used to store the data, to visualize the data (map production) and to analyse the data, but also to calculate input for the models. The advantages of using GIS and models as tools for decision support are explained with the Contaminant Transport Information System (CTIS) as a case study. The CTIS has been developed for remediation operations in the uranium mining area Straz pod Ralskem and Hamr in the Czech Republic. The CTIS consists of a GIS database, a regional groundwater flow model and a local contaminant transport model as well as interfaces for data transfer between the components of the information system. The power of the CTIS lies in the fact that the modelling necessary for the design of a remediation operation can be carried out efficiently by using one of the two models, depending on the specific question. Thus alternative remediation scenarios can be judged easily and fairly on their consequences and effectiveness. (author)

  8. Equation of state and transport properties of uranium and plutonium carbides in the liquid region

    International Nuclear Information System (INIS)

    Sheth, A.; Leibowitz, L.

    1975-09-01

    By the use of available low-temperature data for various thermophysical and transport properties for uranium and plutonium carbides, values above the melting point were estimated. Sets of recommended values have been prepared for the compounds UC, PuC, and (U,Pu)C. The properties that have been evaluated are density, heat capacity, enthalpy, vapor pressure, thermal conductivity, viscosity, and emissivity

  9. Descriptive documentation for New Mexico uranium milling model

    International Nuclear Information System (INIS)

    Bonem, G.; Livevano, R.J.

    1981-01-01

    The New Mexico Uranium Milling Model is a linear programming model. It can demonstrate how cost minimizing management can reduce the costs of milling uranium subject to a series of environmental, resource, and technological constraints. For example, if 15,000 tons were the targeted level of milling output, the model would provide the minimum cost of this production level, given certain levels of environmental, fuel, water, and technological constraints. The model was developed to allow state policymakers to assess the uranium industry from various standpoints. Through the use of the model, state policymakers can determine the effects of air and water discharge standards and limited capital availability on: milling costs of production; uses of electricity, fuel, and water; and levels of air and water emissions. The model covers the following: process technologies which are acid leach and carbonate leach; raw materials mix; air and water discharges; residual treatment process; and plant types

  10. Hydraulic breakage of tanks for the transport of uranium hexafluoride (UF6)

    International Nuclear Information System (INIS)

    Biaggio, A.L.; Lee Gonzales, H.M.; Lopez Vietri, J.R.; Novo, R.G.

    1987-01-01

    To begin with, the tank models that are proposed by the international norms for the transport and storage of hexafluoride of uranium (UF 6 ) are briefly described. The operations related to the transport in its different forms are also described, particularly those that can produce the hydraulic breakage of tanks during its course or in later stages, when incorrectly performed. With reference to those operations, the most important physicochemical properties of UF 6 as for safety are analyzed. A quantitative evaluation of the deviations of parameters that are controlled during the heating of tanks, comparing them with the normative nominal values, is performed. Adopting some simplifying hypothesis, a general study, applicable to all tank models proposed by norms, is carried out to determine the temperature at which the hydraulic breakage takes place when they are heated in closed-valve conditions. A curve is obtained by plotting the hydraulic breakage temperature against the filling degree. To conclude, the values obtained are compared with the results of other theoretical studies on this subject. (Author)

  11. Validation of the WATEQ4 geochemical model for uranium

    International Nuclear Information System (INIS)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite [UO 2 (OH) 2 . H 2 O], UO 2 (OH) 2 , and rutherfordine ((UO 2 CO 3 ) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions

  12. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Strunk, W.D.; Thornton, S.G. (eds.)

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA. (LTN)

  13. Uranium hexafluoride: Safe handling, processing, and transporting: Conference proceedings

    International Nuclear Information System (INIS)

    Strunk, W.D.; Thornton, S.G.

    1988-01-01

    This conference seeks to provide a forum for the exchange of information and ideas of the safety aspects and technical issue related to the handling of uranium hexafluoride. By allowing operators, engineers, scientists, managers, educators, and others to meet and share experiences of mutual concern, the conference is also intended to provide the participants with a more complete knowledge of technical and operational issues. The topics for the papers in the proceedings are widely varied and include the results of chemical, metallurgical, mechanical, thermal, and analytical investigations, as well as the developed philosophies of operational, managerial, and regulatory guidelines. Papers have been entered individually into EDB and ERA

  14. Influence of hydraulic and geomorphologic components of a semi-arid watershed on depleted-uranium transport

    International Nuclear Information System (INIS)

    Becker, N.M.

    1991-01-01

    Investigations were undertaken to determine the fate and transport of depleted uranium away from high explosive firing sites at Los Alamos National Laboratory in north-central New Mexico. Investigations concentrated on a small, semi-arid watershed which drains 5 firing sites. Sampling for uranium in spring/summer/fall runoff, snowmelt runoff, in fallout, and in soil and in sediments revealed that surface water is the main transport mechanism. Although the watershed is less than 8 km 2 , flow discontinuity was observed between the divide and the outlet; flow discontinuity occurs in semi-arid and arid watersheds, but was unexpected at this scale. This region, termed a discharge sink, is an area where all flow infiltrates and all sediment, including uranium, deposits during nearly all flow events; it is estimated that the discharge sink has provided the locale for uranium detention during the last 23 years. Mass balance calculations indicate that over 90% of uranium expended still remains at or nearby the firing sites. Leaching experiments determined that uranium can rapidly dissolve from the solid phase. It is postulated that precipitation and runoff which percolate vertically through uranium-contaminated soil and sediment are capable of transporting uranium in the dissolved phase to deeper strata. This may be the key transport mechanism which moves uranium out of the watershed

  15. Uranium

    International Nuclear Information System (INIS)

    Perkin, D.J.

    1982-01-01

    Developments in the Australian uranium industry during 1980 are reviewed. Mine production increased markedly to 1841 t U 3 O 8 because of output from the new concentrator at Nabarlek and 1131 t of U 3 O 8 were exported at a nominal value of $37.19/lb. Several new contracts were signed for the sale of yellowcake from Ranger and Nabarlek Mines. Other developments include the decision by the joint venturers in the Olympic Dam Project to sink an exploration shaft and the release of an environmental impact statement for the Honeymoon deposit. Uranium exploration expenditure increased in 1980 and additions were made to Australia's demonstrated economic uranium resources. A world review is included

  16. Uranium

    International Nuclear Information System (INIS)

    Gabelman, J.W.; Chenoweth, W.L.; Ingerson, E.

    1981-01-01

    The uranium production industry is well into its third recession during the nuclear era (since 1945). Exploration is drastically curtailed, and many staffs are being reduced. Historical market price production trends are discussed. A total of 3.07 million acres of land was acquired for exploration; drastic decrease. Surface drilling footage was reduced sharply; an estimated 250 drill rigs were used by the uranium industry during 1980. Land acquisition costs increased 8%. The domestic reserve changes are detailed by cause: exploration, re-evaluation, or production. Two significant discoveries of deposits were made in Mohave County, Arizona. Uranium production during 1980 was 21,850 short tons U 3 O 8 ; an increase of 17% from 1979. Domestic and foreign exploration highlights were given. Major producing areas for the US are San Juan basin, Wyoming basins, Texas coastal plain, Paradox basin, northeastern Washington, Henry Mountains, Utah, central Colorado, and the McDermitt caldera in Nevada and Oregon. 3 figures, 8 tables

  17. Thermodynamic and transport properties of uranium dioxide and related phases

    International Nuclear Information System (INIS)

    1965-01-01

    The high melting point of uranium dioxide and its stability under irradiation have led to its use as a fuel in a variety of types of nuclear reactors. A wide range of chemical and physical studies has been stimulated by this circumstances and by the complex nature of the uranium dioxide phase itself. The boundaries of this phase widen as the temperature is increased; at 2000 deg. K a single, homogeneous phase exists from U 2.27 to a hypostoichiometric (UO 2-x ) composition, depending on the oxygen potential of the surroundings. Since there is often an incentive to operate a reactor at the maximum practicable heat rating and, therefore, maximum thermal gradient in the fuel, the determination of the physical properties of the UO 2-x phase becomes a matter of great technological importance. In addition a complex sequence of U-O phases may be formed during the preparation of powder feed material or during the sintering process; these affect the microstructure and properties of the final product and have also received much attention. 184 refs, 33 figs, 15 tabs

  18. Lacustrine-humate model for primary uranium ore deposits, Grants Uranium Region, New Mexico

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1985-01-01

    Two generations of uranium ore, primary and redistributed, occur in fluvial sandstones of the Upper Jurassic Morrison Formation in the San Juan basin; the two stages of ore formation can be related to the hydrologic history of the basin. Primary ore formed soon after Morrison deposition, in the Late Jurassic to Early Cretaceous, and a model, the lacustrine-humate model, is offered that views primary mineralization as a diagenetic event related to early pore fluid evolution. The basic premise is that the humate, a pore-filling organic material closely associated with primary ore, originated as humic acids dissolved in pore waters of greenish-gray lacustrine mudstones deposited in the mud-flat facies of the Brushy Basin Member and similar K shale beds in the Westwater Canyon Member. During compaction associated with early burial, formation water expelled from lacustrine mudstone units carried these humic acids into adjacent sandstone beds where the organics precipitated, forming the humate deposits that concentrated uranium. During the Tertiary, much later in the hydrologic history of the basin, when Jurassic sediments were largely compacted, oxygenated ground water flowed basinward from uplifted basin margins. This invasion of Morrison sandstone beds by oxidizing ground waters redistributed uranium from primary ores along redox boundaries, forming ore deposits that resemble roll-front-type uranium ores. 11 figures

  19. Speciation and transport of uranium: application to a study case (the 'La Crouzille' uranium mining district, Northern Limousin, France)

    International Nuclear Information System (INIS)

    Peiffert, Ch.; Cathelineau, M.; Ruhlmann, F.; Thiry, J.; Moulin, V.

    2003-01-01

    The occurrence of suspended particles / colloids in mining effluent waters is studied for their potential role in the transport and deposit of contaminants (especially uranium) via the rivers. It is well-know that a major source of acid to waters in mineralized areas is the oxidation of pyrite. Although the overall oxidant that drives pyrite oxidation is O 2 from the atmosphere, dissolved Fe(III) appears to be the primary oxidant that attacks the pyrite surface to form Fe(II), SO 4 , and protons. The Fe(II) that is produced can oxidize in the presence of O 2 to Fe(III). This reaction is the rate determining step and is usually catalyzed by autotrophic bacteria. The Fe(III) produced can either further oxidize pyrite or hydrolyze and then precipitate as hydrous Fe oxide (goethite [?FeOOH] or ferri-hydrite [∼Fe 5 (OH) 8 .4H 2 O]) or as Fe hydroxy-sulfate minerals (jarosite [KFe 3 (SO 4 ) 2 (OH) 6 ] or schwertmannite [Fe 8 O 8 (OH) 6 SO 4 ]) depending on kinetic factors, pH, and concentrations of Fe(III), SO 4 , and bicarbonate. These reactions is accompanied by the gypsum formation. Water circulating through the galleries then will lixiviate these alteration minerals. Then, the mining water with Fe, Ca, Mg, U and SO 4 and to a lesser extent out of Na, K and Cl. Uranium in solution, can then be sorbed on the particles of more or less big size. This chemical adsorption is characterized by the formation of chemical associations between ions or molecules from the solution and surface particles. This includes chemi-sorption, ion exchange and co-precipitation mechanisms. The objective of this work is to discriminate in the uranium transport the relative role played by suspended particles / colloids and complexes (dissolved state). Methods: The most common procedure for the separation and concentration of suspended particles in natural waters for subsequent analysis is filtration using membrane filters of various types and pore diameters. The ultrafiltration technique are

  20. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Recent decisions by the Australian Government will ensure a significant expansion of the uranium industry. Development at Roxby Downs may proceed and Ranger may fulfil two new contracts but the decision specifies that apart from Roxby Downs, no new mines should be approved. The ACTU maintains an anti-uranium policy but reaction to the decision from the trade union movement has been muted. The Australian Science and Technology Council (ASTEC) has been asked by the Government to conduct an inquiry into a number of issues relating to Australia's role in the nuclear fuel cycle. The inquiry will examine in particular Australia's nuclear safeguards arrangements and the adequacy of existing waste management technology. In two additional decisions the Government has dissociated itself from a study into the feasibility of establishing an enrichment operation and has abolished the Uranium Advisory Council. Although Australian reserves account for 20% of the total in the Western World, Australia accounts for a relatively minor proportion of the world's uranium production

  1. Uranium

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    The French Government has decided to freeze a substantial part of its nuclear power programme. Work has been halted on 18 reactors. This power programme is discussed, as well as the effect it has on the supply of uranium by South Africa

  2. Natural analogues and radionuclide transport model validation

    International Nuclear Information System (INIS)

    Lever, D.A.

    1987-08-01

    In this paper, some possible roles for natural analogues are discussed from the point of view of those involved with the development of mathematical models for radionuclide transport and with the use of these models in repository safety assessments. The characteristic features of a safety assessment are outlined in order to address the questions of where natural analogues can be used to improve our understanding of the processes involved and where they can assist in validating the models that are used. Natural analogues have the potential to provide useful information about some critical processes, especially long-term chemical processes and migration rates. There is likely to be considerable uncertainty and ambiguity associated with the interpretation of natural analogues, and thus it is their general features which should be emphasized, and models with appropriate levels of sophistication should be used. Experience gained in modelling the Koongarra uranium deposit in northern Australia is drawn upon. (author)

  3. Advances in the exploration model for Athabasca unconformity uranium deposits

    International Nuclear Information System (INIS)

    Wheatley, K.; Murphy, J.; Leppin, M.; Cutts, C.; Climie, J.A.

    1997-01-01

    This paper covers the genetic model of ore formation and exploration techniques Uranerz Exploration and Mining is presently using to explore for unconformity uranium deposits in the deeper parts of the Athabasca Basin. The main objectives of this paper are: 1) to present a genetic model for unconformity uranium deposits which is being used in our current exploration strategy, and 2) to present the sequence of exploration techniques used by Uranerz to explore for uranium in areas of the Athabasca Basin with up to 1000 m of sandstone cover. The Athabasca unconformity deposits are located in northern Saskatchewan, Canada. Within the Precambrian Athabasca Basin, exploration companies have discovered 18 uranium deposits. These contain more than 500 million kilograms of uranium, with average grades ranging from 0.3 to 12%. Uranerz discovered the Key Lake deposits in 1975, currently the largest and richest open pit uranium mine in the world. Uranerz also holds interests in the Rabbit Lake, Midwest Lake and McArthur River deposits, all in Saskatchewan, and is also actively exploring for uranium worldwide. The first discovery in the eastern Athabasca Basin was in 1968 at Rabbit Lake, followed by Key Lake in 1975. Both deposits had surficial indicators, such as radioactive boulders, strong geochemical anomalies in the surrounding lakes and swamps, and well-defined geophysical signatures. After the Key Lake discovery, an exploration model was devised which incorporated the underlying graphitic horizon and its strong electro-magnetic signature. Since then, there have been numerous new discoveries made by systematically drilling along these electro-magnetic conductors. The advancements in geophysical and geochemical techniques have led to discoveries at increasing depths. In 1988, the McArthur River deposit was discovered at a depth of 500 m. (author). 6 refs

  4. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    International Nuclear Information System (INIS)

    Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.

    1997-01-01

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from open-quotes soluteclose quotes uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 μm-filtered Kalix River water samples increased by a factor of 3 from near the headwaters in the Caledonides to the river mouth while major cation concentrations were relatively constant. 234 U 238 U ratios were high (δ 234 U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of 234 U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil 234 U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small 234 U/ 238 U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs. groundwater. 63 refs., 8 figs., 3 tabs

  5. Recommendations for providing protection during the transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    1987-06-01

    In July 1986 a group of consultants was convened by the IAEA to provide initial guidance on the transport of UF 6 and the regulations for it considering the hazards posed by this material. A Technical Committee meeting was held in November 1986 to finalize the development of the recommendations for providing protection during the transport of UF 6 . This report provides the recommendations resulting from the meetings of these experts. The IAEA recommends that national competent authorities and other relevant national regulatory and standards-related organizations, and appropriate international organizations seriously consider all of the information provided in this report especially the additional requirements set forth in Section III.3 concerning design, manufacturing and testing requirements, design approval requirements, requirements on loading for transport, and requirements for quality assurance and maintenance. This report also deals with United Nations' Recommendations of the Transport of Dangerous Goods, International Modal Regulatory Documents, ANSIN14.1-1982 and ISO/DIS/7195 Standards

  6. The uranium institute transport working group: a common approach to global issues

    International Nuclear Information System (INIS)

    Tissot-Colle, C.

    1998-01-01

    With more than 442 nuclear power plants in operation all over the world delivering clean and safe electricity on a daily basis, nuclear energy is and will undoubtedly be one of the most promising way to cope with present and future economic, demographic, and environmental challenges. Nuclear materials transportation business links the various nuclear actors: research institutes, utilities, fuel cycle industries, and waste management agencies. As pipelines or tankers for the petroleum industry, transportation gives nuclear energy its consistency. Still, conversely to other industrial areas, transportation volumes and figures are rather low in the nuclear business. For instance, transport of dangerous goods in France represents around 15 million packages per year. Out of this, only 15,000 or 0.1 % are nuclear fuel cycle materials. When applied to the USA, this figure is even more striking: 100 million of dangerous goods containers are shipped each year. Only 10,000 pertains to nuclear fuel cycle materials. Even so, in our world of economic and cultural globalization, transport of nuclear materials is no longer a domestic issue. It crosses boundaries and appeals to various areas ranging from safety to communication. That is why the Uranium Institute decided, in 1995, to set up a working group dedicated to transport issues. This paper covers the Uranium Institute Transport Working Group, from its creation to its most recent achievements. (author)

  7. The contribution of radioisotopes in secular equilibrium in the transport index of fissile uranium compounds in different enrichments

    International Nuclear Information System (INIS)

    Silva, Teresinha de Moraes da; Sordi, Gian M.A.A.

    2008-01-01

    Full text: This work shows the contribution of radioisotopes in secular equilibrium in the transport index (TI) of some fissile uranium compounds: uranium oxides UO 2 , U 3 O 8 and uranium silicide U 3 Si 2 , taking into account the different enrichment grades.The range of enrichment (E%) studied was 3,4,5,7,10,20,30,40,50,93 and 100. Initially, the cell of optimum moderation ratio was built, since it represents the most reactive of the system (consisting of uranium), with maximum infinitive multiplication factor k∞, in certain concentration of uranium for each enrichment. This was made using the computer program Gamtec II. The critical radius of a sphere was calculated for a cell of optimum moderation ratio, in order to calculate the critical mass of the uranium compound or of the uranium element for each specific enrichment. For this the program Citation was used. In this study it was calculated the smallest critical mass of the uranium compound or the smallest critical mass of the uranium element. The objective was to match the largest mass of the uranium with each specific enrichment. The largest safety mass corresponds to 45% the critical mass the compound uranium or uranium element. Then, we calculated the uranium element safety mass, which it related to a fifth of this mass to the value 50, which corresponds to criticality safety index (CSI). That is, 20% of the safety mass is the value where the transport is carried out with subcritical mass, going in favor of the security. From the uranium element safety mass (USM) was determined for each enrichment , and it was calculated the mass of 235 U, activity 235 U and dose rate of 235 U, the same items were calculated for the isotope 238 U. The total dose rate was calculated for two isotopes, and applying the transport index definition as the gamma dose rate for the distance of 1 m from the packed, it was determined the TI for 20% of the safety mass for each enrichment of the compound studied. The study of

  8. Geochemical model of uranium and selenium in an aquifer disturbed by in situ uranium mining

    International Nuclear Information System (INIS)

    Johnson, K.; Neumann, M.R.

    1986-01-01

    Restoring ground water to baseline conditions proved to be very difficult, however, and led to the trial of a sodium carbonate/bicarbonate lixiviant. Results of this test indicated the basic lixiviant was unable to address uranium tied up in carbonaceous material. Subsequently, the decision was made to curtail development and restore all affected ground water to the extent achievable through the use of the best practicable technology, such as reverse osmosis. Restoration results, however, were not considered adequate for demonstration of commercial restoration feasibility. Following completion of the restoration effort, regulatory agencies expressed concern as to the long-term fate of certain parameters, such as uranium and selenium, remaining in solution at above baseline levels. Rocky Mountain Energy, through discussions with various consultants, determined that geochemical modeling would be the most appropriate tool for predicting the probable long-term effects. This paper summarizes the results of the subsequent evaluation which was conducted using the PHREEQE computer model. Significant conclusions of the investigation were: (1) the Eh in the ground water decreases regularly after mining activities, as shown by measured Eh values, and (2) the accompanying decrease in uranium and selenium can be predicted by thermodynamic modeling

  9. Preliminary discussion on uranium metallogenic models of China's in-situ leachable sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    Zhang Jindai; Xu Gaozhong; Chen Anping; Wang Cheng

    2005-01-01

    By comprehensively analyzing metallogenic environments and main ore-controlling factors of important uranium metallogenic regions of in-situ leachable sandstone-type uranium deposits at the southern margin of Yili basin, at the south-western margin of Turpan-Hami basin and in the northeastern Ordos basin, the authors of this paper discuss the metallogenic models of China's in-situ leachable sandstone-type uranium deposits, and suggest that the interlayer oxidation zone type uranium deposits in Yili and Turpan-Hami basins are basically controlled by favourable structures, sedimentary formations and interlayer oxidation zone, and are characterized by multistage uranium concentration, namely the uranium pre-concentration of ore-hosting sedimentary formation, the uranium ore-formation in the stage of supergenic epigenetic reworking, and the further superimposition enrichment of post-ore tectonic activity. However, the interlayer oxidation zone type uranium deposit in the northeastern Ordos was formed after the formation of the secondary reduction. So, paleo-interlayer oxidation zone type uranium mineralization has the mineralization size much greater than the former two. (authors)

  10. Central Ukraine Uranium Province: The genetic model

    International Nuclear Information System (INIS)

    Emetz, A.; Cuney, M.

    2014-01-01

    Ukraine produces ~1,100 t U per year from the Michurinske, Centralne, Novokostantynivske and Vatutinske U deposits in the Kirovograd U district of the Central Ukraine Uranium Province (CUUP) consisting of about 20 deposits and numerous showings related to ~1.8 Ga sodium metasomatites developed in the Lower Paleoproterozoic granite-gneiss and iron formations of the Ingul Megablock of the Ukrainian Shield. Two deposits (the Zhovta Richka and Pervomayske) were mined out tens kilometers eastward in iron formations of the Kryvy Rig – Kremenchug mining district. Nametasomatite fields with scarce sub-economical U-mineralization were revealed by geophysical (magnetometry and gravimetry) and drilling programs northward in granitised gneisses around the younger Korsun-Novomyrgorod rapakivi pluton consisting of A2-type within plate granitoids which were emplaced during decompression melting at ~1.75 Ga. The present work aims to demonstrate structural and geochemical factors related to Na-metasomatism, and to mark out geochemical and tectonical parameters which were favorable for U-accumulation using data on deep seismic survey, geological structure analysis, and mineralogical and geochemical investigations of metasomatites. In the Ingul Megablock, Na-metasomatites occur along shear fault zones mostly oriented N-S. Metasomatites form complicate systems of plate- and lens-like bodies of aegirine-riebeckite albitites surrounded by dequartzified host rocks. Elemental alteration during Na-metasomatism demonstrates simple exchange of Si, K, Rb, Ba and Cs by Na, Ca, and locally V and U. δ 18 O H 2 O (300-400ºC) for albitizing hydrothermal solutions is near “zero”, typically for surficial water. These data suggest host rock interaction with hot marine waters. Persistent Na-metasomatic alterations extend along major tectonic faults for several kilometres with variable thicknesses reaching some hundreds meters in the zones of intense brecciation developed in the places of fault

  11. A coupled mass transfer and surface complexation model for uranium (VI) removal from wastewaters

    International Nuclear Information System (INIS)

    Lenhart, J.; Figueroa, L.A.; Honeyman, B.D.

    1994-01-01

    A remediation technique has been developed for removing uranium (VI) from complex contaminated groundwater using flake chitin as a biosorbent in batch and continuous flow configurations. With this system, U(VI) removal efficiency can be predicted using a model that integrates surface complexation models, mass transport limitations and sorption kinetics. This integration allows the reactor model to predict removal efficiencies for complex groundwaters with variable U(VI) concentrations and other constituents. The system has been validated using laboratory-derived kinetic data in batch and CSTR systems to verify the model predictions of U(VI) uptake from simulated contaminated groundwater

  12. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  13. Transport of uranium concentrates: low specific activity versus logistic complexity

    International Nuclear Information System (INIS)

    Dias, Pedro L.S.; Macedo, Eclesio F.; Carvalho, Leonardo B.; Carvalho, Renata R.

    2011-01-01

    This paper describes the case of radioactive material transport, according to pertinent documentation - nuclear material specifically in the form op ammonium diuranate, produced by Industrias Nucleares do Brasil S.A. - from the mine and physic-chemical processing at Caetite, Bahia, to the port of Salvador, state of Bahia, approaching the radiological protection aspects

  14. Modeling study of gaseous Rn-222, Xe-133, and He-4 for uranium exploration

    Energy Technology Data Exchange (ETDEWEB)

    Jeter, H.W.

    1980-01-01

    This work presents one-dimensional mathematical models to simulate the transport of gaseous radon-222 (Rn-222), xenon-133 (Xe-133), and helium-4 (He-4) away from uranium ore deposits. The resulting concentrations of indicator nuclides in the overburden are used to infer the detectability of ore deposits by emanation methods. In the case of homogeneous, non-radioactive formations, Rn-222 and some of its daughter products are calculated to be detectable at distances of several tens of meters from a planar uranium ore deposit (1 m tickness, 0.6% U/sub 3/O/sub 8/, 20% emanation). Models of He-4 diffuson in rock yield highly uncertain results because measurements of diffusion coefficients in actual rock types are lacking and because the flux of helium from deep within the earth is generally unknown. Comparisons of model results to field data suggest that He-4 diffusion coefficients of 10/sup -4/ to 10/sup -5/ cm/sup 2//sec are appropriate. It is speculated that moisture in the rock column could reduce the coefficient significantly compared to the dry-soil case. Inhomogeneity in rock formations is simulated by a multiple-layer model. A comparison of fluorometric uranium data to gamma spectra measurements suggests the migration and deposition of Ra-226 near the water table. Modeling results are improved when this process is taken into account. A constant soil gas velocity of 1 x 10/sup -4/ cm/sec causes indicator concentrations to change by several orders of magnitude. If steady upward soil gas motion exists in nature, the detectability of uranium ore by emanation methods will be significantly different from that indicated by pure diffusion models. Barometric influences on gas transport are simulated by time-dependent numerical models.

  15. A biokinetic and dosimetric model for the metabolism of uranium

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Bertelli, L.; Durbin, P.W.; Eckerman, K.F.; Lipsztein, J.L.; Singh, N.P.

    1995-10-01

    Experiments involving injection and inhalation of uranium compounds into several animal species as well as those associated with humans are described and analyzed. A revised biokinetic and dosimetric model for the metabolism of uranium suitable for bioassay procedures is proposed. The model consists of a systematic part coupled to a model of the respiratory tract. The model has been tested against human data which incorporates in vivo measurements over the chest and measurements of urine, feces, and autopsy and biopsy samples.In particular the lung model of the International Commission on Radiological Protection, Publication 30 ( ICRP-30 ), has been modified in order to provide a model which more nearly predicts urinary excretion in accord with the experiences in humans and animals. We have also tested the data against the new ICRP (LUDEP) lung model. (author). 55 refs., 14 tabs., 33 figs

  16. Fate of Uranium During Transport Across the Groundwater-Surface Water Interface

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, Peter R. [Princeton Univ., NJ (United States); Kaplan, Daniel I. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-30

    Discharge of contaminated groundwater to surface waters is of concern at many DOE facilities. For example, at F-Area and TNX-Area on the Savannah River Site, contaminated groundwater, including uranium, is already discharging into natural wetlands. It is at this interface where contaminants come into contact with the biosphere. These this research addressed a critical knowledge gap focusing on the geochemistry of uranium (or for that matter, any redox-active contaminant) in wetland systems. Understanding the interactions between hydrological, microbial, and chemical processes will make it possible to provide a more accurate conceptual and quantitative understanding of radionuclide fate and transport under these unique conditions. Understanding these processes will permit better long-term management and the necessary technical justification for invoking Monitored Natural Attenuation of contaminated wetland areas. Specifically, this research did provide new insights on how plant-induced alterations to the sediment biogeochemical processes affect the key uranium reducing microorganisms, the uranium reduction, its spatial distribution, the speciation of the immobilized uranium, and its long-term stability. This was achieved by conducting laboratory mesocosm wetland experiments as well as field measurements at the SRNL. Results have shown that uranium can be immobilized in wetland systems. To a degree some of the soluble U(VI) was reduced to insoluble U(IV), but the majority of the immobilized U was incorporated into iron oxyhydroxides that precipitated onto the root surfaces of wetland plants. This U was immobilized mostly as U(VI). Because it was immobilized in its oxidized form, results showed that dry spells, resulting in the lowering of the water table and the exposure of the U to oxic conditions, did not result in U remobilization.

  17. EDRP public local inquiry, UKAEA/BNFL precognition on: The transport of the plutonium and uranium products from the EDRP

    International Nuclear Information System (INIS)

    Wilson, P.W.

    1986-02-01

    Details are given of the design of a container for plutonium transport. The handling of the containers, and their transport, from the proposed EDRP at Dounreay, including security and emergency arrangements, are described. The arrangements for the transport of depleted uranium are briefly outlined. (UK)

  18. Contaminant transport, revegetation, and trace element studies at inactive uranium mill tailings piles

    International Nuclear Information System (INIS)

    Dreesen, D.R.; Marple, M.L.; Kelley, N.E.

    1978-01-01

    The stabilization of inactive uranium mill tailings piles is presently under study. These studies have included investigations of stabilizing tailings by attempting to establish native vegetation without applying irrigation. Examination of processes which transport tailings or associated contaminants into the environment has been undertaken to better understand the containment provided by various stabilization methods. The uptake of toxic trace elements and radionuclides by vegetation has been examined as a mechanism of contaminant transport. The source terms of 222 Rn from inactive piles have been determined as well as the attenuation of radon flux provided by shallow soil covers. The possibility of shallow ground water contamination around an inactive pile has been examined to determine the significance of ground water transport as a mode of contaminant migration. The rationale in support of trace element studies related to uranium milling activities is presented including the enrichment, migration, and toxicities of trace elements often associated with uranium deposits. Some concepts for the stabilization of inactive piles are presented to extrapolate from research findings to practical applications. 25 references, 8 tables

  19. Prediction of the net radon emission from a model open pit uranium mine

    International Nuclear Information System (INIS)

    Nielson, K.K.; Perkins, R.W.; Schwendiman, L.C.; Enderlin, W.I.

    1979-04-01

    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations and production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 740 Ci/AFR during mining operations and 33 Ci/AFR/yr after abandonment of the mine

  20. Experimental study and numerical modelling of geochemical reactions occurring during uranium in situ recovery (ISR) mining

    International Nuclear Information System (INIS)

    Ben Simon, R.

    2011-09-01

    The in situ Recovery (ISR) method consists of ore mining by in situ chemical leaching with acid or alkaline solutions. ISR takes place underground and is therefore limited to the analysis of the pumped solutions, hence ISR mine management is still empirical. Numerical modelling has been considered to achieve more efficient management of this process. Three different phenomena have to be taken into account for numerical simulations of uranium ISR mining: (1) geochemical reactions; (2) the kinetics of these reactions, and (3) hydrodynamic transport with respect to the reaction kinetics. Leaching tests have been conducted on ore samples from an uranium mine in Tortkuduk (Kazakhstan) where ISR is conducted by acid leaching. Two types of leaching experiments were performed: (1) tests in batch reactors; and (2) extraction in flow through columns. The assumptions deduced from the leaching tests were tested and validated by modelling the laboratory experiments with the numerical codes CHESS and HYTEC, both developed at the Geosciences research center of Mines ParisTech. A well-constrained 1D hydrogeochemical transport model of the ISR process at laboratory-scale was proposed. It enables to translate the chemical release sequence that is observed during experiments into a geochemical reaction sequence. It was possible to highlight the controlling factors of uranium dissolution, and the precipitation of secondary mineral phase in the deposit, as well as the determination of the relative importance of these factors. (author)

  1. The migration of uranium through sandstone

    International Nuclear Information System (INIS)

    Bennett, D.G.; Read, D.; Lawless, T.A.; Sims, R.J.

    1992-01-01

    Three column experiments are described in which the migration of uranium through Clashach Sandstone was studied. A priori predictions of uranium migration in the experiments were made using an equilibrium chemical transport model. The experimental results showed that, even under oxidising conditions, the migration of uranium is strongly retarded owing to the affinity of uranium for mineral surfaces. For the relatively simple chemical system investigated, the chemical transport model was successful in predicting the migration of uranium and its distribution along the column. (author)

  2. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jinsong

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs.

  3. Development and test of models in the natural analogue studies of the Cigar Lake uranium deposit

    International Nuclear Information System (INIS)

    Liu Jinsong.

    1995-06-01

    In the model of steady-state near-field mass transport, the model concepts are essentially the same as those in the models developed for a nuclear waste repository. The validity of the model is tested against known helium release. The models shows that the release of Uranium is negligibly low, the release of sulfate is roughly balanced by the release of dissolved hydrogen, indicating possible water radiolysis. The release of radionuclides is in agreement with field observations. In the model of radiation energy deposition, the issue of water radiolysis is addressed directly by calculating the radiation energy deposited in the pore water in the ore body. In the test of the models of coupled solute transport with geochemical reactions, the observed hematisation in the clay halo adjacent to the ore is simulated. The model results show that, at a certain rate of oxidant production, hematite can possibly precipitate in the clay adjacent to the ore body, as observed. The model results also reveal a threshold of oxidant production rate for hematisation. In general, the three models are capable of predicting the most prominent features observed in the deposit. All models point to a certain extent of water radiolysis in the ore body. In addition, the existence of a negligibly permeable clay halo and the presence of reducing minerals like pyrite in the ore and nearby are of vital importance for the preservation of the Uranium ore. 107 refs, 7 figs, 5 tabs

  4. Beaufort group uranium mineralization - a model that may aid exploration

    International Nuclear Information System (INIS)

    Stuart-Williams, V.

    1982-01-01

    The ore bodies examined while working on the Pristerognathus Diictodon Assemblage Zone West of Beaufort West are of the URAVAN type (URA - uranium, VAN - vanadium). It was found that uranium mineralization in any one ore body was not strictly random and tends to be associated with a fairly consistent sandstone and siltstone geometry. Mineralization is only found where coalescence between the two sandstones has occurred and it disappears where the sandstones remain coalesced. At a point of coalescence the fluids from the upper and lower sandstone are mixed, the oxidizing fluid penetrating progressively deeper in the sandstone couplet until the entire couplet is oxidizing. This generates a weakly dipping REDOX front. The REDOX front is not considered strong enough to have precipitated uranyl carbonate complexes in transport

  5. Electrical and thermal transport properties of uranium and plutonium carbides

    International Nuclear Information System (INIS)

    Lewis, H.D.; Kerrisk, J.F.

    1976-09-01

    Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials

  6. Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota

    International Nuclear Information System (INIS)

    Kipp, Gregory G.; Stone, James J.; Stetler, Larry D.

    2009-01-01

    Sediment samples were analyzed as part of ongoing environmental investigations of historical U mining impacts within Custer National Forest in Harding County, South Dakota. Correlations between As and U content, grain size and soil mineralogy were determined to identify contaminant fate and transport mechanisms. Soil samples collected near the mining source zone and up to 61 km downgradient of the minesites were analyzed. Samples were homogenized and wet sieved through polymer screens, and metal(loid) concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). Powder X-ray diffraction (XRD) analysis identified quartz as the primary mineral for all size fractions, with varying amounts of analcime, indicative of volcanic origin. Selected samples were examined for trace mineral composition using scanning electron microscopy (SEM). The presence of Fe sulfides and Fe (hydr)oxides indicate heterogeneity in redox potentials on a microscopic scale. Elevated metal(loid) concentrations were associated with trace concentrations of Fe sulfide, indicating an influence on metal transport during weathering. Sequential chemical extractions (SCE) performed on source sediment fractions demonstrated that most As and U was adsorbed to Fe- and Mn-oxides and carbonates with lesser amounts bound by ion exchange, organics and Fe sulfides. Large changes in U/Th and As/Th ratios were observed to coincide with geochemical changes in the watershed, suggesting that metal(loid)-Th ratios may be used in environmental investigations to identify geochemically-significant watershed conditions.

  7. Uranium

    International Nuclear Information System (INIS)

    Battey, G.C.; McKay, A.D.

    1988-01-01

    Production for 1986 was 4899 t U 3 O 8 (4154 t U), 30% greater than in 1985, mainly because of a 39% increase in production at Ranger. Exports for 1986 were 4166 t U 3 O 8 at an average f.o.b. unit value of $40.57/lb U 3 O 8 . Private exploration expenditure for uranium in Australia during the 1985-86 fiscal year was $50.2 million. Plans were announced to increase the nominal capacity of the processing plant at Ranger from 3000 t/year U 3 O 8 to 4500 t and later to 6000 t/year. Construction and initial mine development at Olympic Dam began in March. Production is planned for mid 1988 at an annual rate of 2000 t U 3 O 8 , 30 000 t Cu, and 90 000 oz (2800 kg) Au. The first long-term sales agreement was concluded in September 1986. At the Manyingee deposit, testing of the alkaline solution mining method was completed, and the treatment plant was dismantled. Spot market prices (in US$/lb U 3 O 8 ) quoted by Nuexco were generally stable. From January-October the exchange value fluctuated from US$17.00-US$17.25; for November and December it was US$16.75. Australia's Reasonably Assured Resources of uranium recoverable at less than US$80/kg U at December 1986 were estimated as 462 000 t U, 3000 t U less than in 1985. This represents 30% of the total low-cost RAR in the WOCA (World Outside the Centrally Planned Economy Areas) countries. Australia also has 257 000 t U in the low-cost Estimated Additional Resources Category I, 29% of the WOCA countries' total resources in this category

  8. A comparative study between transport and criticality safety indexes for fissile uranium nuclearly pure

    Energy Technology Data Exchange (ETDEWEB)

    Moraes da Silva, T. de; Sordi, G.M.A.A. [Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN (Brazil)]. e-mail: tmsilva@ipen.br

    2006-07-01

    The international and national standards determine that during the transport of radioactive materials the package to be sent should be identified by labels of risks specifying content, activity and the transport index. The result of the monitoring of the package to 1 meter identifies the transport index, TI, which represents the dose rate to 1 meter of this. The transport index is, by definition, a number that represents a gamma radiation that crosses the superficial layer the radioactive material of the package to 1 meter of distance. For the fissile radioactive material that is the one in which a neutron causes the division of the atom, the international standards specify criticality safety index CSI, which is related with the safe mass of the fissile element. In this work it was determined the respective safe mass for each considered enrichment for the compounds of uranium oxides UO{sub 2}, U{sub 3}O{sub 8} and U{sub 3}Si{sub 2}. In the study of CSI it was observed that the value 50 of the expression 50/N being N the number of packages be transported in subcriticality conditions it represents a fifth part of the safe mass of the element uranium or 9% of the smallest mass critical for a transport not under exclusive use. As conclusion of the accomplished study was observed that the transport index starting from 7% of enrichment doesn't present contribution and that criticality safety index is always greater than the transport index. Therefore what the standards demand to specify, the largest value between both indexes, was clearly identified in this study as being the criticality safety index. (Author)

  9. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  10. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    Ballast water discharges in the coastal environs have caused a great concern over the recent periods as they account for transporting marine organisms from one part of the world to the other. The movement of discharged ballast water as well...

  11. The IAEA recommendations for providing protection during the transport of uranium hexafluoride

    International Nuclear Information System (INIS)

    Levin, I.; Wieser, K.

    1988-01-01

    The Regulations for the safe transport of radioactive materials, are the basis of national and international regulations concerning this subject throughout the world. These regulations require that subsidiary hazards associated with radioactive materials should also be considered. Other national and international regulations concerning the transport of dangerous materials consider that a radioactive material having other dangerous properties should be classified as class 7. Following this line and acting upon the recommendations of SAGSTRAM (Standing Advisory Committee on the Safe Transport of Radioactive Materials) that the Agency should take the lead in providing guidance to Member States with respect to UF 6 packaging and transport, the Agency convened two expert meetings during 1986 and 1987 in order to look into the special problems associated with the transport of uranium hexafluoride. The experts identified several areas in which additional safety measures should be considered if the transport of UF 6 is to have a non-radiological safety level consistent with that of its radiological risks. In this presentation the new recommendations are described. The main safety issues to be discussed are fire resistance, valve protection and compatibility with service and structural equipment. Another aspect of importance is the interface between the process and the transport phases, bearing in mind that the same containers are used in both. This paper also reveals how far the new recommendations concerning UF 6 have already been endorsed in the forthcoming European Transport Regulations (ADR/RID) together with the 1985 revised Edition of IAEA Safety Series No. 6

  12. Comparison of numerical and physico-chemical models for on-line spectrophotometric control of uranium

    International Nuclear Information System (INIS)

    Corriou, J.P.; Boisde, G.

    1986-04-01

    In view of on-line spectrophotometric control of fuel reprocessing streams, a physico-chemical model able to predict uranium and nitric acid concentrations in an uranyl nitrate-nitric acid system has been searched. Thus the influences of the following parameters: uranium, nitrate, hydrogen ion concentrations, ionic strength, on the equilibria of complexation of uranium (VI) nitrate have been evaluated. Extinction coefficients for the uranium mononitrate and uranium dinitrate complexes are given between 410 and 440 nm. The apparent equilibrium constants are determined as a function of the ionic strength. The limitations of this predictive model are emphasized and comparisons with numerical models are discussed. (16 refs)

  13. On the mineralization model of 'three sources--heat, water and uranium'

    International Nuclear Information System (INIS)

    Li Xueli

    1992-01-01

    In response to the relations between geological and geothermal settings, geothermal water and uranium mineralizations in the Southeastern China, the model of uranium mineralization in discharge area (depressurization area) of fossil geothermal systems in Mesozoic-Cenozoic Volcanic-magmatic active areas has been put forward and expounded in the view of mineral-formation by the 'three sources'-heat, water and uranium

  14. Energy distributions and radiation transport in uranium plasmas

    International Nuclear Information System (INIS)

    Miley, G.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    Electron energy distribution functions have been calculated in a 235 U-plasma at 1 atmosphere for various plasma temperatures (5000 to 8000 0 K) and neutron fluxes (2 x 10 12 to 2 x 10 16 neutrons/(cm 2 -sec)). Two sources of energetic electrons are included; namely fission-fragment and electron-impact ionization, resulting in a high-energy tail superimposed on the thermalized electron distribution. Consequential derivations from equilibrium collision rates are of interest relative to direct pumping of lasers and radiation emission. Results suggest that non-equilibrium excitation can best be achieved with an additive gas such as helium or in lower temperature plasmas requiring UF 6 . An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random-walk treatment of inelastic collisions

  15. Uranium transport to solid electrodes in pyrochemical reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Tomczuk, Z.; Ackerman, J.P.; Wolson, R.D.; Miller, W.E.

    1992-01-01

    A unique pyrochemical process developed for the separation of metallic nuclear fuel from fission products by electrotransport through molten LiCl-KCl eutectic salt to solid and liquid metal cathodes. The process allow for recovery and reuse of essentially all of the actinides in spent fuel from the integral fast reactor (IFR) and disposal of wastes in satisfactory forms. Electrotransport is used to minimize reagent consumption and, consequently, waste volume. In particular, electrotransport to solid cathodes is used for recovery of an essentially pure uranium product in the presence of other actinides; removal of pure uranium is used to adjust the electrolyte composition in preparation for recovery of a plutonium-rich mixture with uranium in liquid cadmium cathodes. This paper presents experiments that delineate the behavior of key actinide and rare-earth elements during electrotransport to a solid electrode over a useful range of PuCl 3 /UCl 3 ratios in the electrolyte, a thermodynamic basis for that behavior, and a comparison of the observed behavior with that calculated from a thermodynamic model. This work clearly established that recovery of nearly pure uranium can be a key step in the overall pyrochemical-fuel-processing strategy for the IFR

  16. Electronic structure calculations of atomic transport properties in uranium dioxide: influence of strong correlations

    International Nuclear Information System (INIS)

    Dorado, B.

    2010-09-01

    Uranium dioxide UO 2 is the standard nuclear fuel used in pressurized water reactors. During in-reactor operation, the fission of uranium atoms yields a wide variety of fission products (FP) which create numerous point defects while slowing down in the material. Point defects and FP govern in turn the evolution of the fuel physical properties under irradiation. In this study, we use electronic structure calculations in order to better understand the fuel behavior under irradiation. In particular, we investigate point defect behavior, as well as the stability of three volatile FP: iodine, krypton and xenon. In order to take into account the strong correlations of uranium 5f electrons in UO 2 , we use the DFT+U approximation, based on the density functional theory. This approximation, however, creates numerous metastable states which trap the system and induce discrepancies in the results reported in the literature. To solve this issue and to ensure the ground state is systematically approached as much as possible, we use a method based on electronic occupancy control of the correlated orbitals. We show that the DFT+U approximation, when used with electronic occupancy control, can describe accurately point defect and fission product behavior in UO 2 and provide quantitative information regarding point defect transport properties in the oxide fuel. (author)

  17. Evaluation of the 226Ra transport by rivers sediments surroundings the brazilian uraniums mining and milling

    International Nuclear Information System (INIS)

    Azevedo, H.L.; Amaral, E.C.S.; Godoy, J.M.

    1989-01-01

    A study of the 226 Ra contamination of the rivers sediments surroundings the Brazilian uranium mining and milling was carried out. The total and mondetrital 226 Ra concentrations was determined as well as some preliminary speciations measurements. It was not observed increments in the nondetrital fraction when comparing with the pre operational results. The values indicated that the soluble form could be the main path of 226 Ra transport. However the critical sampling point supplied to influence from the chemical processing effluent show increments tht indicate to be mainly due to the presence of 226 Ra bound with barium sulphate. (author) [pt

  18. Reactive transport of uranium in a groundwater bioreduction study: Insights from high-temporal resolution 238U/235U data

    Science.gov (United States)

    Shiel, A. E.; Johnson, T. M.; Lundstrom, C. C.; Laubach, P. G.; Long, P. E.; Williams, K. H.

    2016-08-01

    We conducted a detailed investigation of U isotopes in conjunction with a broad geochemical investigation during field-scale biostimulation and desorption experiments. This investigation was carried out in the uranium-contaminated alluvial aquifer of the Rifle field research site. In this well-characterized setting, a more comprehensive understanding of U isotope geochemistry is possible. Our results indicate that U isotope fractionation is consistently observed across multiple experiments at the Rifle site. Microbially-mediated reduction is suggested to account for most or all of the observed fractionation as abiotic reduction has been demonstrated to impart much smaller, often near-zero, isotopic fractionation or isotopic fractionation in the opposite direction. Data from some time intervals are consistent with a simple model for transport and U(VI) reduction, where the fractionation factor (ε = +0.65‰ to +0.85‰) is consistent with experimental studies. However, during other time intervals the observed patterns in our data indicate the importance of other processes in governing U concentrations and 238U/235U ratios. For instance, we demonstrate that departures from Rayleigh behavior in groundwater systems arise from the presence of adsorbed species. We also show that isotope data are sensitive to the onset of oxidation after biostimulation ends, even in the case where reduction continues to remove contaminant uranium downstream. Our study and the described conceptual model support the use of 238U/235U ratios as a tool for evaluating the efficacy of biostimulation and potentially other remedial strategies employed at Rifle and other uranium-contaminated sites.

  19. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  20. Modelling of uranium/plutonium splitting in purex process

    International Nuclear Information System (INIS)

    Boullis, B.; Baron, P.

    1987-06-01

    A mathematical model simulating the highly complex uranium/plutonium splitting operation in PUREX process has been achieved by the french ''Commissariat a l'Energie Atomique''. The development of such a model, which includes transfer and redox reactions kinetics for all the species involved, required an important experimental work in the field of basis chemical data acquisition. The model has been successfully validated by comparison of its results with those of specific trials achieved (at laboratory scale), and with the available results of the french reprocessing units operation. It has then been used for the design of french new plants splitting operations

  1. Multi-coupling dynamic model and 3d simulation program for in-situ leaching of uranium mining

    International Nuclear Information System (INIS)

    Tan Kaixuan; Zeng Sheng; Sang Xiao; Sun Bing

    2010-01-01

    The in-situ leaching of uranium mining is a very complicated non-linear dynamic system, which involves couplings and positive/negative feedback among many factors and processes. A comprehensive, coupled multi-factors and processes dynamic model and simulation method was established to study the in-situ leaching of uranium mining. The model accounts for most coupling among various processes as following: (1) rock texture mechanics and its evolution, (2)the incremental stress rheology of rock deformation, (3) 3-D viscoelastic/ plastic multi-deformation processes, (4) hydrofracturing, (5) tensorial (anisotropic) fracture and rock permeability, (6) water-rock interactions and mass-transport (both advective and diffusive), (7) dissolution-induced chemical compaction, (8) multi-phase fluid flow. A 3-D simulation program was compiled based on Fortran and C++. An example illustrating the application of this model to simulating acidification, production and terminal stage of in situ leaching of uranium mining is presented for the some mine in Xinjiang, China. This model and program can be used for theoretical study, mine design, production management, the study of contaminant transport and restoration in groundwater of in-situ leaching of uranium mining. (authors)

  2. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.

    Science.gov (United States)

    Korichi, Smain; Bensmaili, Aicha

    2009-09-30

    )-BET specific surface area, SSA(BET) (thus, total edge site concentrations). The specific surface area should be at least 80-100m(2)/g for smectite clays in order to reach convergence during the modeling. The range of 10-20% SSA(BET) was used to estimate the values of edge site surfaces that led to the convergence during modeling. An agreement between the experimental data and model predictions is found reasonable when 15% SSA(BET) was used as edge site surface. However, the predicted U (VI) adsorption underestimated and overestimated the experimental observations at the 10 and 20% of the measured SSA(BET), respectively. The dependence of uranium sorption modeling results on specific surface area and edge site surface is useful to describe and predict U (VI) retardation as a function of chemical conditions in the field-scale reactive transport simulations. Therefore this approach can be used in the environmental quality assessment.

  3. Support for Nuclear Explosive Safety Division, Department of Energy, Albuquerque Operations. Effects of a postulated uranium transportation accident

    International Nuclear Information System (INIS)

    Just, R.A.

    1997-10-01

    Transportation System Risk Assessments (TSRAs) document the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations and the risk associated with the proposed shipments. TSRAs must often evaluate the consequences of possible transportation accidents involving uranium. If a relatively simple bounding analysis can show that the consequences resulting from a worst case scenario are acceptably low, a more time intensive and costly risk analysis can be avoided. A bounding consequence analysis has been prepared for a worst case noncriticality transportation accident involving the shipment of uranium. In the absence of a criticality incident, a fire or explosion are the only plausible mechanisms identified for dispersing significant amounts of solid hazardous material. Therefore, three very conservative bounding accidents are considered: (1) analysis of the postulated direct radiation exposure, (2) the airborne release of uranium due to a fire, and (3) the release of uranium into a waterway and uptake into drinking water. This report provides the equations, assumptions, and reference information used to predict the consequences of possible transportation accidents involving natural, depleted, and highly enriched uranium

  4. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1992-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both nominal use and accident conditions to serve the dual-role of shielding and containment, the use of other structure materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describesa two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature. The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracmm resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as win be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term ''structural credit'' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.)

  5. Incentives for the use of depleted uranium alloys as transport cask containment structure

    International Nuclear Information System (INIS)

    McConnell, P.; Salzbrenner, R.; Wellman, G.W.; Sorenson, K.B.

    1993-01-01

    Radioactive material transport casks use either lead or depleted uranium (DU) as gamma-ray shielding material. Stainless steel is conventionally used for structural containment. If a DU alloy had sufficient properties to guarantee resistance to failure during both normal use and accident conditions to serve the dual-role of shielding and containment, the use of other structural materials (i.e., stainless steel) could be reduced. (It is recognized that lead can play no structural role.) Significant reductions in cask weight and dimensions could then be achieved perhaps allowing an increase in payload. The mechanical response of depleted uranium has previously not been included in calculations intended to show that DU-shielded transport casks will maintain their containment function during all conditions. This paper describes a two-part study of depleted uranium alloys: First, the mechanical behavior of DU alloys was determined in order to extend the limited set of mechanical properties reported in the literature (Eckelmeyer, 1991). The mechanical properties measured include the tensile behavior the impact energy. Fracture toughness testing was also performed to determine the sensitivity of DU alloys to brittle fracture. Fracture toughness is the inherent material property which quantifies the fracture resistance of a material. Tensile strength and ductility are significant in terms of other failure modes, however, as will be discussed. These mechanical properties were then input into finite element calculations of cask response to loading conditions to quantify the potential for claiming structural credit for DU. (The term 'structural credit' describes whether a material has adequate properties to allow it to assume a positive role in withstanding structural loadings.) (J.P.N.)

  6. Radon as a natural tracer for gas transport within uranium waste rock piles

    International Nuclear Information System (INIS)

    Silva, N.C.; Chagas, E.G.L.; Dias, D.C.S.; Guerreiro, E.T.Z.; Alberti, H.L.C.; Braz, M.L.; Abreu, C.B.; Lopez, D.; Branco, O.; Fleming, P.

    2014-01-01

    Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Industrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222 Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222 Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m -3 with mean concentration of 320.7±263.3 kBq m -3 . (authors)

  7. Development of a pneumatic transport system for bulk transfer of metal grade uranium oxide powder

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2010-01-01

    Uranium oxide powder is a commonly handled ceramic powder in nuclear industries. Design of the powder transfer system is an important aspect because of some of its typical characteristics. Pneumatic transport system has been widely used in transferring powder from one place to another. A pneumatic transport system using vacuum has been presented in the paper. This is used for bulk transfer of UO 3 powder. The system consists of a cyclone separator and filter cloth at the top of the cyclone separator. The pneumatic transfer system provides high efficiency with sustainable performance and it is a compact, robust, handy and moveable unit. No degradation of the powder quality has been observed during transfer. The system provides highly efficient, easy and safe transfer of radioactive powder, better working environment for the operator. (author)

  8. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...... iterating between a route-choice (demand) model and a time-flow (supply) model. It is generally recognised that a simple iteration scheme where the level-of-service level is fed directly to the route-choice and vice versa may exhibit an unstable pattern and lead to cyclic unstable solutions. It can be shown...

  9. Transport modelling for ergodic configurations

    International Nuclear Information System (INIS)

    Runov, A.; Kasilov, S.V.; McTaggart, N.; Schneider, R.; Bonnin, X.; Zagorski, R.; Reiter, D.

    2004-01-01

    The effect of ergodization, either by additional coils like in TEXTOR-dynamic ergodic divertor (DED) or by intrinsic plasma effects like in W7-X, defines the need for transport models that are able to describe the ergodic configuration properly. A prerequisite for this is the concept of local magnetic coordinates allowing a correct discretization with minimized numerical errors. For these coordinates the appropriate full metric tensor has to be known. To study the transport in complex edge geometries (in particular for W7-X) two possible methods are used. First, a finite-difference discretization of the transport equations on a custom-tailored grid in local magnetic coordinates is used. This grid is generated by field-line tracing to guarantee an exact discretization of the dominant parallel transport (thus also minimizing the numerical diffusion problem). The perpendicular fluxes are then interpolated in a plane (a toroidal cut), where the interpolation problem for a quasi-isotropic system has to be solved by a constrained Delaunay triangulation (keeping the structural information for magnetic surfaces if they exist) and discretization. All toroidal terms are discretized by finite differences. Second, a Monte Carlo transport model originally developed for the modelling of the DED configuration of TEXTOR is used. A generalization and extension of this model was necessary to be able to handle W7-X. The model solves the transport equations with Monte Carlo techniques making use of mappings of local magnetic coordinates. The application of this technique to W7-X in a limiter-like configuration is presented. The decreasing dominance of parallel transport with respect to radial transport for electron heat, ion heat and particle transport results in increasingly steep profiles for the respective quantities within the islands. (author)

  10. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL; McGinn, Wilson [ORNL; Meck, Dr. Robert A. [U.S. Nuclear Regulatory Commission

    2012-01-01

    This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for setting standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.

  11. Pre implanted mouse embryos as model for uranium toxicology studies

    International Nuclear Information System (INIS)

    Kundt, Miriam S.

    2001-01-01

    Full text: The search of 'in vitro' toxicology model that can predict toxicology effects 'in vivo' is a permanent challenge. A toxicology experimental model must to fill to certain requirements: to have a predictive character, an appropriate control to facilitate the interpretation of the data among the experimental groups, and to be able to control the independent variables that can interfere or modify the results that we are analyzing. The preimplantation embryos posses many advantages in this respect: they are a simple model that begins with the development of only one cell. The 'in vitro' model reproduces successfully the 'in vivo' situation. Due to the similarity that exists among the embryos of mammals during this period the model is practically valid for other species. The embryo is itself a stem cell, the toxicology effects are early observed in his clonal development and the physical-chemical parameters are easily controllable. The purpose of the exhibition is to explain the properties of the pre implanted embryo model for toxicology studies of uranium and to show our experimental results. The cultivation 'in vitro' of mouse embryos with uranylo nitrate demonstrated that the uranium causes from the 13 μgU/ml delay of development, decrease the number of cells per embryo and hipoploidy in the embryonic blastomere. (author)

  12. The influence on the environment of uranium ore transport from mining sites to processing site in Romania

    International Nuclear Information System (INIS)

    Peic, T.; Banciu, O.; Bardan, N.; Radulescu, C.

    1997-01-01

    In Romania, the transport of uranium ores from mining sites to the processing plant is carried out by road and rail. The length of the road transport routes is between 5 and 45 km and rail routes between 300 and 500 km. This laboratory began to monitor these transport routes in 1984. Gamma dose rate measurements were made on and around the special wagons and trucks along the road and rail transport routes and in railway stations. Soil and vegetation samples have also been collected along the road and rail transport routes and in railway stations. From the collected samples the specific activity of natural uranium and 226 Ra were measured. The level of natural radioactivity in the train assembling stations in the period 1984-1996, increased 1-4 times in comparison with the natural background. (Author)

  13. Remediation of Canada's historic haul route for radium and uranium ores - the northern transportation route - 59303

    International Nuclear Information System (INIS)

    Geddes, Brian; Wenzel, Chris; Owen, Michael; Gardiner, Mark; Brown, Julie

    2012-01-01

    Established in the 1930's, the Northern Transportation Route (NTR) served to transport pitchblende ore 2,200 km from the Port Radium Mine in Canada's Northwest Territories to Fort McMurray in Alberta. From there, the ore was shipped 3,000 km by rail to the Town of Port Hope, Ontario, where it was refined for its radium content and used for medical purposes. Later, transport and refinement focussed on uranium. The corridor of lakes, rivers, portages and roads that made up the NTR included a number of transfer points, where ore was unloaded and transferred to other barges or trucks. Ore was occasionally spilled during these transfer operations and, in some cases, subsequently distributed over larger areas as properties were re-developed or modified. In addition, relatively small volumes of ore were sometimes transported by air to the south. Since 1991, the Low-Level Radioactive Waste Management Office (LLRWMO), working with communities and its consulting contractors, has conducted surveys to identify and characterize spill sites along the NTR where soils exhibit elevated concentrations of uranium, radium and/or arsenic. In addition to significant areas of impact in Fort McMurray, contamination along the NTR was centered in the Sahtu region near Great Bear Lake and along the southern part of the Slave River. Early radiological investigations found contaminated buildings and soil and occasionally discrete pieces of pitchblende ore at many transfer points and storage areas along the NTR. Where possible, survey work was undertaken in conjunction with property redevelopment activity requiring the relocation of impacted soils (e.g., at Tulita, Fort Smith, Hay River, and Fort McMurray). When feasible to consolidate contaminated material locally, it was placed into Long Term Management Facilities developed to manage and monitor the materials over extended timelines. Radiological activity generated by these engineered facilities are generally below thresholds established by

  14. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  15. Modelling dust transport in tokamaks

    International Nuclear Information System (INIS)

    Martin, J.D.; Martin, J.D.; Bacharis, M.; Coppins, M.; Counsell, G.F.; Allen, J.E.; Counsell, G.F.

    2008-01-01

    The DTOKS code, which models dust transport through tokamak plasmas, is described. The floating potential and charge of a dust grain in a plasma and the fluxes of energy to and from it are calculated. From this model, the temperature of the dust grain can be estimated. A plasma background is supplied by a standard tokamak edge modelling code (B2SOLPS5.0), and dust transport through MAST (the Mega-Amp Spherical Tokamak) and ITER plasmas is presented. We conclude that micron-radius tungsten dust can reach the separatrix in ITER. (authors)

  16. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  17. Transport and fate of ammonium and its impact on uranium and other trace elements at a former uranium mill tailing site

    International Nuclear Information System (INIS)

    Miao, Ziheng; Akyol, Hakan N.; McMillan, Andrew L.; Brusseau, Mark L.

    2013-01-01

    Highlights: • Nitrification of ammonium evidenced by stable isotopes of nitrate at a mining site. • Concentrations of uranium and other trace elements related to ammonium conc. • Observed impact of ammonium on redox, pH, and possibly complexation. • Proposed impact of transformation of NO 3 and NH 4 on trace elements. - Abstract: The remediation of ammonium-containing groundwater discharged from uranium mill tailing sites is a difficult problem facing the mining industry. The Monument Valley site is a former uranium mining site in the southwest US with both ammonium and nitrate contamination of groundwater. In this study, samples collected from 14 selected wells were analyzed for major cations and anions, trace elements, and isotopic composition of ammonium and nitrate. In addition, geochemical data from the U.S. Department of Energy (DOE) database were analyzed. Results showing oxic redox conditions and correspondence of isotopic compositions of ammonium and nitrate confirmed the natural attenuation of ammonium via nitrification. Moreover, it was observed that ammonium concentration within the plume area is closely related to concentrations of uranium and a series of other trace elements including chromium, selenium, vanadium, iron, and manganese. It is hypothesized that ammonium–nitrate transformation processes influence the disposition of the trace elements through mediation of redox potential, pH, and possibly aqueous complexation and solid-phase sorption. Despite the generally relatively low concentrations of trace elements present in groundwater, their transport and fate may be influenced by remediation of ammonium or nitrate at the site

  18. Characteristics and model of sandstone type uranium deposit in south of Songliao basin

    International Nuclear Information System (INIS)

    Yu Wenbin; Yu Zhenqing

    2010-01-01

    Through analyzing the uranium deposit tectonic environment, upper cretaceous sequence stratigraphy, depositional system, evolutionary characteristics of sand bodies, the effect of subsequent transformation and the characteristic of uranium deposit, the sandstone type uranium deposit in southern basin is different from typical interlayer oxidation zone sandstone type uranium deposit. The formation and evolution of sandstone-type uranium deposit are controlled by structure fensters; the favorable sedimentary facies type is braided river facies, and the ore body is braided river sand body. The size of uranium deposits is controlled by the local oxidation zone with the characteristics of sandstone type uranium deposit in partial oxidation zone. Uranium ore bodies which distribute in the roof wings of structure fenstes, and occur in gray layers between the upper and lower oxidation zone, showing tabular, and the plate of uranium ore body is controlled by the local oxidation zone. Based on the geological features of sandstone-type uranium deposits, the metallogenic model of local oxidation zones sandstone-type uranium deposits has been set up in the south of Songliao Baisn. (authors)

  19. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters

  20. Packaging and transportation of derived enriched uranium for the ''megatons to megawatts'' USA/Russia agreement

    International Nuclear Information System (INIS)

    Darrough, E.; Ewing, L.; Ravenscroft, N.

    1998-01-01

    In January 1998 the United States Enrichment Corporation (USEC) and Techsnabexport Co., Ltd (TENEX) of Russia celebrated the fourth anniversary of the signing of the 20-year contract between these two executive agents. USEC and TENEX are responsible for implementing the Government to-Government agreement between the United States and the Russian Federation for the purchase of uranium derived from dismantled nuclear weapons from the former Soviet Union. This program, entitled 'Megatons to Megawatts', is the first time nuclear warheads have been turned into fuel as well as the first time a commercial contract has been used to implement such a program. As of the fourth anniversary, the equivalent of almost 1,200 nuclear warheads had been converted to fuel. USEC is responsible for making all of the arrangements to transport the Russian LEU derived from HEU--hence the term, derived enriched uranium (DEU)--from St Petersburg. Russia to the USEC plant near portsmouth, Ohio. Edlow International Company is working with USEC to implement the shipping campaign and is responsible for coordination of the port delivery within Russia, as well. The organization responsible for these shipments within Russia is IZOTOP. While the program has been a major new responsibility for USEC, the early years of the program prepared all parties for the future challenges such as increased numbers of shipments, additional originating sites in Russia and witnessing requirements in Russia. (authors)

  1. Public radiation exposure due to radon transport from a uranium mine

    International Nuclear Information System (INIS)

    Akber, R.A.; Johnston, A.; Pfitzner, J.

    1992-01-01

    Radon and radon daughter concentrations at locations several kilometres away from a uranium mine are due both to the background sources and the mine-related sources. The contribution of these two types of sources should be distinguished because the authorised limits on public radiation dose apply only to the mine-related sources. Such a distinction can be achieved by measuring radon and radon daughter concentration in the wind sectors containing only the background sources and those in the wind sectors containing both the background and the mine-related sources. This approach has been used to make estimates of public radiation dose due to radon transport from the Ranger Uranium Mine in Australia. The residential town of Jabiru, the non-residential working town of Jabiru East, and the aboriginal camp sites in the vicinity of the mine were considered. The results indicate that, for the groups of population considered, the annual mine-related dose varies between 0.04 and 0.2 mSv. (author)

  2. Use of Gas Transported Reactants for Uranium Remediation in Vadose Zone Sediments

    International Nuclear Information System (INIS)

    Szecsody, James E.; Zhong, Lirong; Truex, Michael J.; Resch, Charles T.; Williams, Mark D.

    2010-01-01

    This laboratory-scale investigation is focused on decreasing mobility of uranium in subsurface contaminated sediments in the vadose zone by in situ geochemical manipulation at low water content. This geochemical manipulation of the sediment surface phases included reduction, pH change (acidic and alkaline), and additions of chemicals (phosphate, ferric iron) to form specific precipitates. Reactants were advected into 1-D columns packed with Hanford 200 area U-contaminated sediment as a reactive gas (for CO2, NH3, H2S, SO2), with a 0.1% water content mist (for NaOH, Fe(III), HCl, PO4) and with a 1% water content foam (for PO4). Because uranium is present in the sediment in multiple phases, changes in U surface phases were evaluated with a series of liquid extractions that dissolve progressively less soluble phases and electron microbe identification of mineral phases. In terms of the short-term decrease in U mobility (in decreasing order), NH3, NaOH mist, CO2, HCl mist, and Fe(III) mist showed 20% to 35% change in U surface phases. The two reductive gas treatments (H2S and SO2) showed little change. For long-term decrease in U transport, mineral phases created that had low solubility (phosphates, silicates) were desired, so NH3, phosphates (mist and foam delivered), and NaOH mist showed the greatest formation of these minerals.

  3. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters. The S/D+T package provides shielding and containment for the DHLW waste canisters. The S/D container is intended to be used as an on-site storage and repository disposal container. In this analysis, the S/D container is constructed from a combination of stainless steel and DU. Other material combinations, such as mild steel and DU, are potential candidates. The transportation overpack is used to transport the S/D containers to a final geological repository and is not included in this analysis

  4. Cost study on waste management at three model Canadian uranium mines

    International Nuclear Information System (INIS)

    1984-03-01

    A waste management cost study was initiated to determine the capital and operating costs of three different uranium waste management systems which incorporate current technologies being used in Canadian uranium mining operations. Cost estimates were to be done to a thirty percent level of accuracy and were to include all waste management related costs of a uranium ore processing facility. Each model is based on an annual uranium production of 1,923,000 kg U (5,000,000 lbs U 3 O 8 ) with a total operating life of 20 years for the facility. The three models, A, B, and C, are based on three different uranium ore grades, 0.10 percent U 3 O 8 , 0.475 percent U 3 O 8 and 1.5 percent U 3 O 8 respectively. Yellowcake production is assumed to start in January 1984. Model A is based on a conceptual 7,180 tonne per day uranium ore processing facility and waste management system typical of uranium operations in the Elliot Lake area of northern Ontario with an established infrastructure. Model B is a 1.512 tonne per day operation based on a remote uranium operation typical of the Athabasca Basin properties in northern Saskatchewan. Model C is a 466 tonne per day operation processing a high-grade uranium ore containing arsenic and heavy metal concentrations typical of some northern Saskatchewan deposits

  5. Ab-initio calculations of the hydrogen-uranium system: Surface phenomena, absorption, transport and trapping

    International Nuclear Information System (INIS)

    Taylor, Christopher D.; Scott Lillard, R.

    2009-01-01

    Density functional theory was applied to the initial steps of uranium hydriding: surface phenomena, absorption, bulk transport and trapping. H adsorbs exothermically to the (0 0 1) surface, yet H absorption into the bulk is endothermic, with off-center octahedral absorption having the lowest absorption energy of 0.39 eV, relative to molecular H 2 . H absorption in interstitial sites causes a local softening of the bulk modulus. Diffusion of H in unstrained α-U has a barrier of 0.6 eV. The energy of H absorption adjacent to the chemical impurities C, S, Si was lowered by an amount proportional to the size of the impurity atom, and the resulting lattice strain Si > S > C. Thus, impurities may promote hydriding by providing surfaces or prestrained zones for H uptake.

  6. Final Report, University of California Merced: Uranium and strontium fate in waste-weathered sediments: Scaling of molecular processes to predict reactive transport (DE-SC0007095)

    Energy Technology Data Exchange (ETDEWEB)

    O' Day, Peggy Anne [University of California Merced; Chorover, Jon [University of Arizona; Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mueller, Karl [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from the same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.

  7. Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.

    Science.gov (United States)

    Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang

    2018-05-07

    Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Choi, S.Y.; Kim, S.H.; Shim, J.B.; Paek, S.; Kim, I.T.

    2014-01-01

    A computational electrochemo-fluid dynamics model has been developed to describe the electrowinning behavior in an electrolyte stream through a planar electrode cell system. Electrode reaction of the uranium electrowinning process from a molten-salt electrolyte stream was modeled to illustrate the details of the flow-assisted mass transport of ions to the cathode. This modeling approach makes it possible to represent variations of the convective diffusion limited current density by taking into account the concentration profile at the electrode surface as a function of the flow characteristics and applied current density in a commercially available computational fluid dynamics platform. It was possible to predict the conventional current-voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variables, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic electrolysis cell. (author)

  9. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  10. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  11. Metallogenic model for continental volcanic-type rich and large uranium deposits

    International Nuclear Information System (INIS)

    Chen Guihua

    1998-01-01

    A metallogenic model for continental volcanic-type rich and large/super large uranium deposits has been established on the basis of analysis of occurrence features and ore-forming mechanism of some continental volcanic-type rich and large/super large uranium deposits in the world. The model proposes that uranium-enriched granite or granitic basement is the foundation, premetallogenic polycyclic and multistage volcanic eruptions are prerequisites, intense tectonic-extensional environment is the key for the ore formation, and relatively enclosed geologic setting is the reliable protection condition of the deposit. By using the model the author explains the occurrence regularities of some rich and large/super large uranium deposits such as Strelichof uranium deposit in Russia, Dornot uranium deposit in Mongolia, Olympic Dam Cu-U-Au-REE deposit in Australia, uranium deposit No.460 and Zhoujiashan uranium deposit in China, and then compares the above deposits with a large poor uranium deposit No.661 as well

  12. A respiratory model for uranium aluminide based on occupational data

    International Nuclear Information System (INIS)

    Leggett, R W; Eckerman, K F; Jr, J D Boice

    2005-01-01

    As part of an epidemiological study, doses from intake of radionuclides were estimated for workers employed during a 52-year period at the Rocketdyne/Atomics International facility in California. The facility was involved in a variety of research programmes, including nuclear fuel fabrication, spent nuclear fuel decladding, and reactor operation and disassembly. Most of the documented intakes involved inhalation of enriched uranium (U), fission products, or plutonium (Pu). Highest doses were estimated for a group of workers exposed to airborne uranium aluminide (UAl x ) during the fabrication of reactor fuel plates. Much of the exposure to UAl x occurred early in the fuel fabrication programme, before it was recognised that intake and lung retention were being underestimated from urinary data due to an unexpected delayed dissolution of the inhaled material. In workers who had been removed from exposure, the rate of urinary excretion of U increased for a few months, peaked, and then declined at a rate consistent with moderately soluble material. This pattern differs markedly from the monotonically decreasing absorption rates represented by the default absorption types in the Human Respiratory Tract Model (HRTM) of the International Commission on Radiological Protection (ICRP). This paper summarises the findings on the behaviour of UAl x in these workers and describes material-specific parameter values of the HRTM based on this information

  13. Colloidal transport of uranium in soil: Size fractionation and characterization by field-flow fractionation-multi-detection

    International Nuclear Information System (INIS)

    Claveranne-Lamolere, C.; Lespes, G.; Dubascoux, St.; Potin-Gautier, M.; Claveranne-Lamolere, C.; Aupiais, J.; Pointurier, F.

    2009-01-01

    The aim of this study was to characterize colloids associated with uranium by using an on-line fractionation/multi-detection technique based on asymmetrical flow field-flow fractionation (As-Fl-FFF) hyphenated with UV detector, multi angle laser light scattering (MALLS) and inductively coupling plasma-mass spectrometry (ICP-MS). Moreover, thanks to the As-Fl-FFF, the different colloidal fractions were collected and characterized by a total organic carbon analyzer (TOC). Thus it is possible to determine the nature (organic or inorganic colloids), molar mass, size (gyration and hydrodynamic radii) and quantitative uranium distribution over the whole colloidal phase. In the case of the site studied, two populations are highlighted. The first population corresponds to humic-like substances with a molar mass of (1500 ± 300) g mol -1 and a hydrodynamic diameter of (2. 0 ± 0. 2) nm. The second one has been identified as a mix of carbonated nano-particles or clays with organic particles (aggregates and/or coating of the inorganic particles) with a size range hydrodynamic diameter between 30 and 450 nm. Each population is implied in the colloidal transport of uranium: maximum 1% of the uranium content in soil leachate is transported by the colloids in the site studied, according to the depth in the soil. Indeed, humic substances are the main responsible of this transport in sub-surface conditions whereas nano-particles drive the phenomenon in depth conditions. (authors)

  14. Experience in the transport and disposal of uranium mill tailings from Aldama City to Sierra Pena Blanca in Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Ruiz, M.; Molina, G.; Angeles C, A.; Cruz G, S.; Lizacano C, D.; Reyes, J.; Rojas, V.

    1996-01-01

    In the process of decontamination, transport and disposal of uranium mill tailings, in the state of Chihuahua, Mexico, was necessary the multidisciplinary and multi institutional task to select mainly the site for the final disposal. The uranium mill tailings content Ra-226 which half live time is 1600 years, therefore the site should be adequately stable, a remote place of population, and which containment will survive for thousand of years. The decontamination of site where the uranium mill tailings were 25 years ago, required the application of norms from regulator organism. For the transport of uranium mill tailings was necessary that the vehicles had devices to reduce the dispersion of material in the road. The selection of the site was product of balance between the cost of transport and the final disposal. To typify the site, studies of hydrology, meteorology, ecology, geology and seismology were performed. On the other hand, the decision to locate the deposit in the site was due to dispersion of material by the rain, wind and bowls. (authors). 3 refs., 1 fig., 1 tab

  15. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    International Nuclear Information System (INIS)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U 3 O 8 resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed

  16. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U/sub 3/O/sub 8/ resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed.

  17. An investigation of fission models for high-energy radiation transport calculations

    International Nuclear Information System (INIS)

    Armstrong, T.W.; Cloth, P.; Filges, D.; Neef, R.D.

    1983-07-01

    An investigation of high-energy fission models for use in the HETC code has been made. The validation work has been directed checking the accuracy of the high-energy radiation transport computer code HETC to investigate the appropriate model for routine calculations, particularly for spallation neutron source applications. Model calculations are given in terms of neutron production, fission fragment energy release, and residual nuclei production for high-energy protons incident on thin uranium targets. The effect of the fission models on neutron production from thick uranium targets is also shown. (orig.)

  18. A generic model of contaminant migration from uranium tailings impoundments

    International Nuclear Information System (INIS)

    Shepherd, T.A.; Brown, S.E.

    1982-01-01

    This paper presents an analytical hydrogeochemical model based upon acid consumption-neutralization front movement. The development of contaminant plumes is discussed and distinct zones within these plumes are identified and characterized. The most important process influencing the rate and extent of contaminant migration at acid-leach uranium tailings impoundments is the neutralization of seepage water by soils along ground water flow paths. The chemical characteristics of the ground water is determined in order to identify and characterize zones within migrating plumes of tailings-derived water. It is concluded that the characterization of specific zones is useful in the interpretation of existing conditions, in the evaluation of future migration, and in the determination of appropriate models for the specific situation

  19. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    Science.gov (United States)

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  20. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  1. Critical evaluation of safety and radiological protection requirements adopted for the transport of uranium and thorium ores and concentrates

    International Nuclear Information System (INIS)

    Mezrahi, Arnaldo; Crispim, Verginia R.

    2009-01-01

    This work evaluates in a critical way the safety and radiological protection recommendations established by the International Atomic Energy Agency - IAEA and adopted national and internationally, for the transport of uranium and thorium ores and concentrates, known according the transport regulations, as being of the Low Specific Activity Material Type-I, LSA-I, basing on more realistic scenarios than the presently existent, aiming at the determination of maximum exposure levels of radiation as well as the maximal contents of those materials in packages and conveyance. A general overview taking into account the scenarios foreseen by the regulations of the IAEA pointed out for a need of a better justification of the requirements edited by the Agency or should be used to support a request of revision of those regulations, national and internationally adopted, in the pertinent aspects to the transport of uranium and thorium ores and concentrates. (author)

  2. Understanding transport barriers through modelling

    International Nuclear Information System (INIS)

    Rozhansky, V

    2004-01-01

    Models of radial electric field formation are discussed and compared with the results of numerical simulations from fluid transport codes and Monte Carlo codes. A comparison of the fluid and Monte Carlo codes is presented. A conclusion is arrived at that all the simulations do not predict any bifurcation of the electric field, i.e. no bifurcation of poloidal rotation from low to high Mach number values is obtained. In most of the simulations, the radial electric field is close to the neoclassical electric field. The deviation from neoclassical electric field at the separatrix due to the existence of a transitional viscous layer is discussed. Scalings for the shear of the poloidal rotation are checked versus simulation results. It is demonstrated that assuming the critical shear to be of the order of 10 5 s -1 , it is possible to obtain a L-H transition power scaling close to that observed in the experiment. The dependence of the threshold on the magnetic field direction, pellet injection, aspect ratio and other factors are discussed on the basis of existing simulations. Transport codes where transport coefficients depend on the turbulence level and scenario simulations of L-H transition are analysed. However, the details of gyrofluid and gyrokinetic modelling should be discussed elsewhere. Simulations of internal transport barrier (ITB) formation are discussed as well as factors responsible for ITB formation

  3. Discussion on geochemical characteristics, mechanism and prospecting model of gluey type sandstone uranium mineralization--taking Redwell uranium deposit as an example

    International Nuclear Information System (INIS)

    Wang Jinping

    1998-01-01

    Redwell uranium deposit hosted in the red clastic rock formation, is a typical example of gluey type uranium mineralization, which has not been reported so far in China. Based on the study of geochemical characteristics of Redwell deposit, the author discusses the genetic mechanism of this type deposits, and proposes the prospecting model of 4 in 1 of red bed-fault-oil gas-uranium source

  4. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1993-01-01

    This report documents progress to date under a three-year contract for developing ''Methods for Testing Transport Models.'' The work described includes (1) choice of best methods for producing ''code emulators'' for analysis of very large global energy confinement databases, (2) recent applications of stratified regressions for treating individual measurement errors as well as calibration/modeling errors randomly distributed across various tokamaks, (3) Bayesian methods for utilizing prior information due to previous empirical and/or theoretical analyses, (4) extension of code emulator methodology to profile data, (5) application of nonlinear least squares estimators to simulation of profile data, (6) development of more sophisticated statistical methods for handling profile data, (7) acquisition of a much larger experimental database, and (8) extensive exploratory simulation work on a large variety of discharges using recently improved models for transport theories and boundary conditions. From all of this work, it has been possible to define a complete methodology for testing new sets of reference transport models against much larger multi-institutional databases

  5. Water balance modelling of a uranium mill effluent management system

    Science.gov (United States)

    Plagnes, Valérie; Schmid, Brad; Mitchell, Brett; Judd-Henrey, Ian

    2017-06-01

    A water balance model was developed to forecast the management strategy of a uranium mill effluent system, located in northern Saskatchewan, Canada. Mining and milling operations, such as pit dewatering or treated effluent release, can potentially influence the hydrology and the water quality downstream of the operations. This study presents the methodology used to predict water volumes and water quality discharging downstream in surface water bodies. A compartment model representing the three subsequent lakes included in the management system was set up using the software GoldSim®. The water balance allows predicting lake volumes at the daily time step. A mass balance model developed for conservative elements was also developed and allows validating the proportions of inputs and outputs issued from the water balance model. This model was then used as predictive tool to evaluate the impact of different scenarios of effluents management on volumes and chemistry of surface water for short and longer time periods. An additional significant benefit of this model is that it can be used as an input for geochemical modelling to predict the concentrations of all constituents of concern in the receiving surface water.

  6. TYPE AF CERTIFICATE FOR TRANSPORTATION OF LOW ENRICHED URANIUM OXIDE (LEUO) FOR DISPOSAL

    International Nuclear Information System (INIS)

    Opperman, E; Kenneth Yates, K

    2007-01-01

    Washington Savannah River Company (WSRC) operates the Savannah River Site (SRS) in Aiken, SC under contract with the U.S. Department of Energy (DOE). SRS had the need to ship 227 drums of low enriched uranium oxide (LEUO) to a disposal site. The LEUO had been packaged nearly 25 years ago in U.S. Department of Transportation (DOT) 17C 55-gallon drums and stored in a warehouse. Since the 235U enrichment was just above 1 percent by weight (wt%) the material did not qualify for the fissile material exceptions in 49 CFR 173.453, and therefore was categorized as 'fissile material' for shipping purposes. WSRC evaluated all existing Type AF packages and did not identify any feasible packaging. Applying for a new Type AF certificate of compliance was considered too costly for a one-time/one-way shipment for disposal. Down-blending the material with depleted uranium (to reduce enrichment below 1 wt% and enable shipment as low specific activity (LSA) radioactive material) was considered, but appropriate blending facilities do not exist at SRS. After reviewing all options, WSRC concluded that seeking a DOT Special Permit was the best option to enable shipment of the material for permanent disposal. WSRC submitted the Special Permit application to the DOT, and after one request-for-additional-information (RAI) the permit was considered acceptable. However, in an interesting development that resulted from the DOT Special Permit application process, it was determined that it was more appropriate for the DOE to issue a Type AF certificate [Ref. 1] for this shipping campaign. This paper will outline the DOT Special Permit application and Type AF considerations, and will discuss the issuance of the new DOE Type AF certificate of compliance

  7. Models for the adsorption of uranium on titanium dioxide

    International Nuclear Information System (INIS)

    Jaffrezic-Renault, N.; Poirier-Andrade, H.; Trang, D.H.

    1980-01-01

    A hydrated titanium oxide whose acid-base properties are well defined has been used to study the retention mechanism of uranium as UO 2 2+ (in acidic media) and as UO 2 (CO 3 ) 3 4- (in carbonate media). The influence of various parameters on the distribution coefficient of uranium (pH, [CO 3 2- ]) and of the adsorption of uranium on the electrophoretic mobilities of the titanium oxide have been investigated. It is shown that, in both media, coordinative TiO-UO 2 bonds are formed. These strong bonds explain the high affinity of the titanium oxide for uranium. (orig.)

  8. Main geologic characteristics and metallogenic models of uranium deposits in Zhejiang

    International Nuclear Information System (INIS)

    Tang Qitao

    2000-01-01

    Uranium resources in Zhejiang is abundant with numerous mineralization types. According to the genesis they can be classified into: sedimentary-reworking type, hydrothermal type and infiltration type. The author briefly describes main geologic characteristics and metallogenic models of different type uranium deposits

  9. A genetic model of progressively partial melting for uranium-bearing granites in south China

    International Nuclear Information System (INIS)

    Zhai Jianping.

    1989-01-01

    A genetic model of progressively partial and enrichment mechanism of uranium during partial melting of the sources of material studied and the significance of the genetic model in search of uranium deposits is elaborated. This model accounts better for some geological and geochemical features of uranium-bearing granties and suspects the traditional idea that igneous uranium-bearing granites were formed by fusion of U-rich strata surrounding these granites. Finally this paper points out that the infuence of U-rich strata of wall rocks of granites over uranium-bearing granites depends on variation of water solubility in the magma and assimilation of magma to wall rocks during its ascending and crystallization

  10. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.; Newby, Jay M.

    2013-01-01

    mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually

  11. Uranium-series isotopes transport in surface, vadose and ground waters at San Marcos uranium bearing basin, Chihuahua, Mexico

    International Nuclear Information System (INIS)

    Burillo Montúfar, Juan Carlos; Reyes Cortés, Manuel; Reyes Cortés, Ignacio Alfonso; Espino Valdez, Ma. Socorro; Hinojosa de la Garza, Octavio Raúl; Nevárez Ronquillo, Diana Pamela; Herrera Peraza, Eduardo; Rentería Villalobos, Marusia; Montero Cabrera, María Elena

    2012-01-01

    In the U deposit area at San Marcos in Chihuahua, Mexico, hydrogeological and climatic conditions are very similar to the Nopal I, Peña Blanca U deposit, 50 km away. The physicochemical parameters and activity concentrations of several 238 U-series isotopes have been determined in surface, vadose and ground waters at San Marcos. The application of some published models to activity ratios of these isotopes has allowed assessing the order of magnitude of transport parameters in the area. Resulting retardation factors in San Marcos area are R f238 ≈ 250–14,000 for the unsaturated zone and ≈110–1100 for the saturated zone. The results confirm that the mobility of U in San Marcos is also similar to that of the Nopal I U deposit and this area can be considered as a natural analog of areas suitable for geologic repositories of high-level nuclear waste.

  12. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  13. Basis for the ICRP's age-specific biokinetic model for uranium

    International Nuclear Information System (INIS)

    Leggett, R.W.

    1994-01-01

    In an effort motivated largely by the Chernobyl nuclear accident, the International Commission on Radiological Protection (ICRP) is developing age-specific biokinetic models and dose coefficients for environmentally important radionuclides. This paper describes the ICRP's age-specific biokinetic model for uranium. The model is constructed within a physiologically based framework originally developed for application to the alkaline earth elements but sufficiently general to apply to the larger class of bone-volume-seeking elements. Transfer rates for a reference adult are based mainly on: (1) measurements of uranium in blood and excreta of several human subjects who were intravenously injected with uranium; (2) postmortem measurements of uranium in tissues of some of those subjects; (3) postmortem measurements of uranium in tissues of occupationally and non-occupationally exposed subjects; (4) data on baboons, dogs, and smaller laboratory animals exposed to uranium for experimental purposes; and (5) consideration of the physiological processes thought to control retention and translocation of uranium in the body. Transfer rates for the adult are extended to children by application of a set of generic assumptions applied by the ICRP to calcium-like elements. These assumptions were derived mainly from observations of the age-specific biokinetics of the alkaline earth elements and lead in humans and laboratory animals but are consistent with available age-specific biokinetic data on uranium. 82 refs., 17 figs., 8 tabs

  14. Long-term fate and transport of arsenic in an in-pit uranium mine tailings facility

    International Nuclear Information System (INIS)

    Moldovan, B.; Hendry, M.J.

    2006-01-01

    An important environmental issue facing the uranium mining industry in Saskatchewan is the quantification of the long-term migration of arsenic from its tailings facilities to the adjacent groundwater system. Decommissioning of these arsenic-rich tailings requires that the long-term arsenic source term for the tailings to the groundwater be defined. To meet this need, arsenic-rich uranium mine tailings from one in-pit tailings facility (tailings emplaced in a mined out open pit) were studied in detail. The tailings facility selected for study was the Rabbit Lake in-pit tailings management facility (RLITMF) in northern Saskatchewan, Canada. The tailings body in the RLITMF is 425 m long x 300 m wide x 100 m deep at its center and mill tailings were deposited in layers between 1985 (base) and 2004 (top). Associated with the low-level radioactive tailings is approximately 23,000 tonnes of arsenic. The in-pit design limits solute transport in these fine-grained tailings to diffusion. Because the layers of tailings have varying chemical characteristics (controlled by the ore being milled at the time), the total arsenic concentrations in the layers and their associated pore fluids range from 56 to 9,871 μ/g and 0.24 to 140 mg/l, respectively. As was the case for arsenic, the concentration of iron present in the layers was also variable (ranging from 8,967 to 30,247 μ/g). Synchrotron-based studies show that the arsenic in these tailings is strongly attenuated by adsorption to secondary 2-line ferrihydrite through inner sphere bidentate linkages. Single reservoir diffusion cell testing shows that the effective diffusion coefficient for arsenic in the tailings is 4.5 x 10 -10 m 2 s- 1 . Based on results from our field- and laboratory-based studies, the redistribution (via diffusion) and attenuation (via adsorption) of arsenic in the RLITMF was modelled using a one-dimensional geochemical reactive transport model to provide a source term for arsenic migration from the

  15. Final Scientific/Technical Report - DE-FG02-06ER64172 - Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center - Subproject to Co-PI Eric E. Roden

    International Nuclear Information System (INIS)

    Roden, Eric E.

    2009-01-01

    This report summarizes research conducted in conjunction with a project entitled 'Reaction-Based Reactive Transport Modeling of Iron Reduction and Uranium Immobilization at Area 2 of the NABIR Field Research Center', which was funded through the Integrative Studies Element of the former NABIR Program (now the Environmental Remediation Sciences Program) within the Office of Biological and Environmental Research. Dr. William Burgos (The Pennsylvania State University) was the overall PI/PD for the project, which included Brian Dempsey (Penn State), Gour-Tsyh (George) Yeh (Central Florida University), and Eric Roden (formerly at The University of Alabama, now at the University of Wisconsin) as separately-funded co-PIs. The project focused on development of a mechanistic understanding and quantitative models of coupled Fe(III)/U(VI) reduction in FRC Area 2 sediments. The work builds on our previous studies of microbial Fe(III) and U(VI) reduction, and was directly aligned with the Scheibe et al. ORNL FRC Field Project at Area 2. Area 2 is a shallow pathway for migration of contaminated groundwater to seeps in the upper reach of Bear Creek at ORNL, mainly through a ca. 1 m thick layer of gravel located 4-5 m below the ground surface. The gravel layer is sandwiched between an overlying layer of disturbed fill material, and 2-3 m of undisturbed shale saprolite derived from the underlying Nolichucky Shale bedrock. The fill was put in place when contaminated soils were excavated and replaced by native saprolite from an uncontaminated area within Bear Creek Valley; the gravel layer was presumably installed prior to addition of the fill in order to provide a stable surface for the operation of heavy machinery. The undisturbed saprolite is highly weathered bedrock that has unconsolidated character but retains much of the bedding and fracture structure of the parent rock (shale with interbedded limestone). Hydrological tracer studies conducted during the Scheibe et al. field

  16. Computer-modeling codes to improve exploration nuclear-logging methods. National Uranium Resource Evaluation

    International Nuclear Information System (INIS)

    Wilson, R.D.; Price, R.K.; Kosanke, K.L.

    1983-03-01

    As part of the Department of Energy's National Uranium Resource Evaluation (NURE) project's Technology Development effort, a number of computer codes and accompanying data bases were assembled for use in modeling responses of nuclear borehole logging Sondes. The logging methods include fission neutron, active and passive gamma-ray, and gamma-gamma. These CDC-compatible computer codes and data bases are available on magnetic tape from the DOE Technical Library at its Grand Junction Area Office. Some of the computer codes are standard radiation-transport programs that have been available to the radiation shielding community for several years. Other codes were specifically written to model the response of borehole radiation detectors or are specialized borehole modeling versions of existing Monte Carlo transport programs. Results from several radiation modeling studies are available as two large data bases (neutron and gamma-ray). These data bases are accompanied by appropriate processing programs that permit the user to model a wide range of borehole and formation-parameter combinations for fission-neutron, neutron-, activation and gamma-gamma logs. The first part of this report consists of a brief abstract for each code or data base. The abstract gives the code name and title, short description, auxiliary requirements, typical running time (CDC 6600), and a list of references. The next section gives format specifications and/or directory for the tapes. The final section of the report presents listings for programs used to convert data bases between machine floating-point and EBCDIC

  17. The radon 222 transport in soils. The case of the storage of residues coming from uranium ores processing; La migration du radon 222 dans un sol. Application aux stockages de residus issus du traitement des minerais d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, C

    2000-07-01

    Uranium Mill Tailings (UMT) contain comparatively large quantities of radium-226. This radionuclide yields, by radioactive decay, the radioactive gas radon-222. Tailing piles are routinely covered to reduce the radon release-rate into the atmosphere. In order to assess the long term environmental impact of a UMT repository, mechanisms governing radon exhalation at the soil surface must be deciphered and understood. A model of radon transport in the unsaturated zone is developed for this purpose: water- and air-flow in the porous material are determined, as well as radon transport by diffusion in the pore space and advection by the gas phase. The radon transport model in the unsaturated zone - TRACI (which stands, in French, for Radon Transport within the Unsaturated Layer) - calculates moisture contents in the soil, Darcy's velocities of the liquid and gas phases, radon concentrations in the gas phase and radon flux at the soil surface. TRACI's results are compared with observations carried out on a UMT and a cover layer. Input parameters are derived from the textural analysis of the material under study, whereas upper boundary conditions are given by meteorological data. If we consider measurement errors and uncertainties on the porous medium characterisation, model's results are generally in good agreement with observations, at least on the long run. Moreover, data analysis shows hat transient phenomena are understood as well, in most situations. (author)

  18. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    International Nuclear Information System (INIS)

    Hoyer, Michael

    2017-01-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  19. Post-mining water treatment. Nanofiltration of uranium-contaminated drainage. Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, Michael

    2017-07-01

    Nanofiltration of real uranium-contaminated mine drainage was successfully discussed in experiments and modeling. For the simulation a renowned model was adapted that is capable of describing multi-component solutions. Although the description of synthetic multi-component solutions with a limited number of components was performed before ([Garcia-Aleman2004], [Geraldes2006], [Bandini2003]) the results of this work show that the adapted model is capable of describing the very complex solution. The model developed here is based on: The Donnan-Steric Partitioning Pore Model incorporating Dielectric Exclusion - DSPM and DE ref. [Bowen1997], [Bandini2003], [Bowen2002], [Vezzani2002]. The steric, electric, and dielectric exclusion model - SEDE ref. [Szymczyk2005]. The developed modeling approach is capable of describing multi-component transport, and is based on the pore radius, membrane thickness, and volumetric membrane charge density as physically relevant membrane parameters instead of mere fitting parameters which allows conclusions concerning membrane modification or process design. The experiments involve typical commercially available membranes in combination with a water sample of industrial relevance in the mining sector. Furthermore, it has been shown experimentally that uranium speciation influences its retention. Hence, all experiments consider the speciation of uranium when assessing its charge and size. In the simulation 10 different ionic components have been taken into account. By freely fitting 4 parameters in parallel (pore radius, membrane thickness, membrane charge, relative permittivity of the oriented water layer at the pore wall) an excellent agreement between experiment and simulation was obtained. Moreover, the determined membrane thickness and pore radius is in close agreement with the values obtained by independent membrane characterization using pure water permeability and glucose retention. On the other hand, the fitted and the literature

  20. Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway.

    Science.gov (United States)

    Wendel, Cato Christian; Fifield, L Keith; Oughton, Deborah H; Lind, Ole Christian; Skipperud, Lindis; Bartnicki, Jerzy; Tims, Stephen G; Høibråten, Steinar; Salbu, Brit

    2013-09-01

    A combination of state-of-the-art isotopic fingerprinting techniques and atmospheric transport modelling using real-time historical meteorological data has been used to demonstrate direct tropospheric transport of radioactive debris from specific nuclear detonations at the Semipalatinsk test site in Kazakhstan to Norway via large areas of Europe. A selection of archived air filters collected at ground level at 9 stations in Norway during the most intensive atmospheric nuclear weapon testing periods (1957-1958 and 1961-1962) has been screened for radioactive particles and analysed with respect to the concentrations and atom ratios of plutonium (Pu) and uranium (U) using accelerator mass spectrometry (AMS). Digital autoradiography screening demonstrated the presence of radioactive particles in the filters. Concentrations of (236)U (0.17-23nBqm(-3)) and (239+240)Pu (1.3-782μBqm(-3)) as well as the atom ratios (240)Pu/(239)Pu (0.0517-0.237) and (236)U/(239)Pu (0.0188-0.7) varied widely indicating several different sources. Filter samples from autumn and winter tended to have lower atom ratios than those sampled in spring and summer, and this likely reflects a tropospheric influence in months with little stratospheric fallout. Very high (236)U, (239+240)Pu and gross beta activity concentrations as well as low (240)Pu/(239)Pu (0.0517-0.077), (241)Pu/(239)Pu (0.00025-0.00062) and (236)U/(239)Pu (0.0188-0.046) atom ratios, characteristic of close-in and tropospheric fallout, were observed in filters collected at all stations in Nov 1962, 7-12days after three low-yield detonations at Semipalatinsk (Kazakhstan). Atmospheric transport modelling (NOAA HYSPLIT_4) using real-time meteorological data confirmed that long range transport of radionuclides, and possibly radioactive particles, from Semipalatinsk to Norway during this period was plausible. The present work shows that direct tropospheric transport of fallout from atmospheric nuclear detonations periodically may have

  1. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo; Artina, Marco; Foransier, Massimo; Markowich, Peter A.

    2015-01-01

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation

  2. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  3. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Becker, N.M.; Vanta, E.B.

    1995-01-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  4. Uranium geochemistry, mineralogy, geology, exploration and resources

    International Nuclear Information System (INIS)

    De Vivo, B.

    1984-01-01

    This book comprises papers on the following topics: history of radioactivity; uranium in mantle processes; transport and deposition of uranium in hydrothermal systems at temperatures up to 300 0 C: Geological implications; geochemical behaviour of uranium in the supergene environment; uranium exploration techniques; uranium mineralogy; time, crustal evolution and generation of uranium deposits; uranium exploration; geochemistry of uranium in the hydrographic network; uranium deposits of the world, excluding Europe; uranium deposits in Europe; uranium in the economics of energy; role of high heat production granites in uranium province formation; and uranium deposits

  5. Filtration and Hydrogen Reaction Modeling in a Depleted Uranium Bed

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Jin; Kim, Yean Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Seok [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    The storage and delivery system (SDS) stores the hydrogen isotopes and delivers them to the fuel injection system. Depleted uranium (DU) was chosen as a hydrogen isotope storage material. The hydrogen isotopes stored in the SDS are in the form of DU hydride confined in the primary and secondary containment within a glove box with an argon atmosphere. In this study, we performed a modeling study of the SDS. A modeling study is practically important because an experimental study requires comparatively more money and time. We estimated the hydrogen atomic ratio in DU hydride by two empirical equations we formulated. Two empirical equations are used to determine Pressure-Composition-Temperature (PCT) curves and the hydrogen atomic ratio in DU hydride. In addition, we present the effect of pressure and temperature in the hydriding and dehydriding. A modeling study of the SDS was performed in this study. It is practically important to save more money and time. The hydrogen atomic ratio in the DU hydride was estimated using two empirical equations. The two empirical equations are modified and reformulated to determine PCT curves and the hydrogen atomic ratio in DU hydride. All parameters that are required to solve two empirical equations are obtained from the experimental data. The derived parameters are utilized for the numerical simulations. In the numerical simulations, the effects of pressure and temperature on both the hydriding and dehydriding reaction rates are confirmed.

  6. Modelling of radon transport in porous media

    NARCIS (Netherlands)

    van der Graaf, E.R.; de Meijer, R.J.; Katase, A; Shimo, M

    1998-01-01

    This paper aims to describe the state of the art of modelling radon transport in soil on basis of multiphase radon transport equations. Emphasis is given to methods to obtain a consistent set of input parameters needed For such models. Model-measurement comparisons with the KVI radon transport

  7. Geochemical modeling of uranium mill tailings: a case study

    International Nuclear Information System (INIS)

    Peterson, S.R.; Felmy, A.R.; Serne, R.J.; Gee, G.W.

    1983-08-01

    Liner failure was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 y. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The decreases in permeability noted above are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. X-ray diffraction identified gypsum and alunite group minerals, such as jarosite, as having precipitated after acidic tailings solutions reacted with clay liners. The geochemical modeling and experimental work described above were used to construct an equilibrium conceptual model consisting of minerals and solid phases. This model was developed to represent a soil column. A computer program was used as a tool to solve the system of mathematical equations imposed by the conceptual chemical model. The combined conceptual model and computer program were used to predict aqueous phase compositions of effluent solutions from permeability cells packed with geologic materials and percolated with uranium mill tailings solutions. An initial conclusion drawn from these studies is that the laboratory experiments and geochemical modeling predictions were capable of simulating field observations. The same mineralogical changes and contaminant reductions observed in the laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 10-year history of acid attack. 24 references, 5 figures 5 tables

  8. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    International Nuclear Information System (INIS)

    1997-01-01

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day's presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E

  9. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

  10. Directions in Radiation Transport Modelling

    Directory of Open Access Journals (Sweden)

    P Nicholas Smith

    2016-12-01

    More exciting advances are on the horizon to increase the power of simulation tools. The advent of high performance computers is allowing bigger, higher fidelity models to be created, if the challenges of parallelization and memory management can be met. 3D whole core transport modelling is becoming possible. Uncertainty quantification is improving with large benefits to be gained from more accurate, less pessimistic estimates of uncertainty. Advanced graphical displays allow the user to assimilate and make sense of the vast amounts of data produced by modern modelling tools. Numerical solvers are being developed that use goal-based adaptivity to adjust the nodalisation of the system to provide the optimum scheme to achieve the user requested accuracy on the results, thus removing the need to perform costly convergence studies in space and angle etc. More use is being made of multi-physics methods in which radiation transport is coupled with other phenomena, such as thermal-hydraulics, structural response, fuel performance and/or chemistry in order to better understand their interplay in reactor cores.

  11. Up-gradient transport in a probabilistic transport model

    DEFF Research Database (Denmark)

    Gavnholt, J.; Juul Rasmussen, J.; Garcia, O.E.

    2005-01-01

    The transport of particles or heat against the driving gradient is studied by employing a probabilistic transport model with a characteristic particle step length that depends on the local concentration or heat gradient. When this gradient is larger than a prescribed critical value, the standard....... These results supplement recent works by van Milligen [Phys. Plasmas 11, 3787 (2004)], which applied Levy distributed step sizes in the case of supercritical gradients to obtain the up-gradient transport. (c) 2005 American Institute of Physics....

  12. Mantle geofluid and uranium ore-formation model

    International Nuclear Information System (INIS)

    Wu Jianhua; Liu Shuai; Yu Dagan; Zhang Bangtong

    2005-01-01

    Results of the recent research show that volcanic-type and granite-type uranium deposits have both early and late phases of uranium mineralization, and the early phase uranium mineralization is characterized by metallogenetic features of mantle fluids. This paper discusses the geofluids and related metallogenesis, as well as characteristics of early phase uranium mineralisation, and emphasizes, that the ΣCO 2 , U and H 2 O, that comprise the bulk of the ore-forming hot fluids, are originated from different sources, namely CO 2 comes from mantle fluids, U comes from country rocks the mantle fluids have passed during their ascending way, and H 2 O comes from mantle fluids and country rocks the mantle fluids have passed during their ascending way. (authors)

  13. Relative risk models of lung cancer in uranium miners

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, L [National Radiation Protection Institute, Prague (Czech Republic); Placek, V [Inst. for Expertises and Emergencies, Pribram-Kamenna (Czech Republic)

    1996-12-31

    The study population of the S cohort (studies of underground miners of uranium and other substances as the source of information on long term effects of exposure to radon and its progeny) involve uranium miners, that started underground work at the Jachymov and Horni Slavkov mines in the period 1978-1959, and had worked at least for four years. A total 4320 men satisfied these criteria. During the decade up to 1990, follow-up of the cohort mainly relied on the national population registry. In order to improve the follow-u, a series of additional checks were conducted: in the files of the Czech and Slovak Pensions Offices, by local enquires, and by direct correspondence. These additional efforts resulted in an increase of more than 10% in the numbers of known men to have died or emigrated. An exceptional feature of the S study is the large number of measurements of radon concentrations made in each mine-shaft (mean number per year and shaft was 223 in the period 1949-1960). Each man`s annual exposures to radon progeny in terms of working levels were estimated combining measurement data with men`s employment details. The excess relative risk models were used in the form RR = c(1 + ERR(w,x)), where ERR is excess relative risk, w and x denote exposure history and modifying variable, and c is an intercept term that allows the mortality rate for `unexposed` cohort to differ from that in the general population. The increased mortality (O/E=1.58; where O is observed and E is expected cases among collected death cases in the cohort) in the cohort, generally, somewhat lower ratios than one reflect the non-industrial character of the region, with the exception of lung cancer in man. The differences in the O/E ratios for lung cancer among the separate communities indicate that even in the situation of generally lower mortality, the dependence of lung cancer mortality on radon exposure cannot be excluded. 3 tabs., 6 refs.

  14. Fixation and transport of uranium by humic substances (1962); Fixation et transport de l'uranium par les substances humiques (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1962-03-15

    One enter upon the study of the part taken by organic substances in ores that contain uranium in a disseminated form, without mineralization, being considered the reaction between uranium and humus. 'Humic acids' are extracted from the peat by ammonia. By the fact of their ability to cationic exchange, these are forming humates with metal cations; monovalent humates, normally soluble in water, can become insoluble after treatment of humic acids with methanal. The polyvalent humates are insoluble in water, especially humates of U (IV) and uranyl U (VI). Action of Li, Na, K, Mg, Ca uranyl carbonates solutions on the humic acids results in the formation of humates containing uranyl and the other cation. 100 g of humic acids give a fixation of no more than 38 g of uranium as uranyl. In contact with uraniferous weakly concentrated solutions, they fix 4 to 8 g according to pH, with a yield in the extraction greater than 95 per cent. The action of a sodium humate solution on a humate of uranyl give a solution containing a soluble sodium and uranyl humate. The solution is precipitated at various degrees by the polyvalent cations and insoluble humic substances. In all cases, the fixation of uranium with such prepared humic acids corresponds to a chemisorption of uranyl cations. (author) [French] L'etude du role des matieres organiques dans les minerais contenant de l'uranium sous une forme disseminee, sans mineralisation, est abordee en envisageant les reactions de l'uranium et de l'humus. Des 'acides humiques' sont extraits de la tourbe par l'ammoniaque. Par leur capacite d'echange cationique, ils forment des humates avec les cations metalliques; les humates de metaux monovalents, normalement solubles dans l'eau, peuvent etre rendus insolubles apres traitement des acides humiques par le methanal. Les humates de metaux plurivalents sont insolubles dans l'eau, en particulier ceux de U (IV) et d'uranyle U (VI). L'action de solutions d'uranylcarbonates de Li, Na, K, Mg, Ca sur

  15. Prediction of the net radon emission from a model open pit uranium mine

    International Nuclear Information System (INIS)

    Nielson, K.K.; Perkins, R.W.; Schwendiman, L.C.; Enderlin, W.I.

    1979-09-01

    Radon emission from a model open pit uranium mining operation has been estimated by applying radon exhalation fluxes measured in an open pit uranium mine to the various areas of the model mine. The model mine was defined by averaging uranium concentrations, mine dimensions, production and procedural statistics for eight major open pit uranium mines in the Casper, Wyoming area. The resulting emission rates were 630 Ci/RRY (1 RRY one = 1000-MW(e) reactor operating for 1 year) during mining operations and 26 Ci/RRY/y after abandoment of the mine assuming 100% recovery of U 3 O 8 from the ore, or 700 Ci/RRY and 29 Ci/RRY/y assuming 90.5% recovery

  16. A thermal modelling of displacement cascades in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.

  17. Potential benefits and impacts on the CRWMS transportation system of filling spent fuel shipping casks with depleted uranium silicate glass

    International Nuclear Information System (INIS)

    Pope, R.B.; Forsberg, C.W.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1996-01-01

    A new technology, the Depleted Uranium Silicate COntainer Fill System (DUSCOFS), is proposed to improve the performance and reduce the uncertainties of geological disposal of spent nuclear fuel (SNF), thus reducing both radionuclide release rates from the waste package and the potential for repository nuclear criticality events. DUSCOFS may also provide benefits for SNF storage and transport if it is loaded into the container early in the waste management cycle. Assessments have been made of the benefits to be derived by placing depleted uranium silicate (DUS) glass into SNF containers for enhancing repository performance assessment and controlling criticality over geologic times in the repository. Also, the performance, benefits, and impacts which can be derived if the SNF is loaded into a multi-purpose canister with DUS glass at a reactor site have been assessed. The DUSCOFS concept and the benefits to the waste management cycle of implementing DUSCOFS early in the cycle are discussed in this paper

  18. Potential supply system for uranium based upon a crustal abundance model

    International Nuclear Information System (INIS)

    Chavez-Martinez, M.L.

    1982-01-01

    The design of a computerized system for the estimation of uranium potential supply in the US was the primary objective of this study. Once completed, this system performs for various levels of economic variables, such as prices and estimation of potential uranium supply, without requiring the appraisal by geologists, area by area, of undiscovered uranium endowment. The main components that form the system are explicit models of endowment, exploration, and production. These component models are derived from engineering and geological data, and together, they comprise the system. This system is unique in that it likes physical attributes of endowment to time series of price and production. This linkage is made by simulating the activities of the US uranium industry, activities (exploration, mine development, and production) that are involved in the transformation of endowment to potential supply

  19. Toxicity of Depleted Uranium Dust Particles: Results of a New Model

    International Nuclear Information System (INIS)

    Zucchetti, M.

    2013-01-01

    Depleted uranium (DU) is mostly composed of U-238, a naturally radioactive isotope. Concerning chemical toxicity, uranium, being a heavy metal, is known to have toxic effects on specific organs in the body, the kidneys in particular. Its effects are similar to those of other heavy metals, such as lead and cadmium. Scientific evidence resulting both from in vitro and in vivo analyses shows that current models of the mechanisms of toxicity of uranium dust are not fully satisfactory. They should be refined in order to obtain more effective responses and predictions regarding health effects. In particular, radiotoxicity potential of Depleted Uranium dust originated by military use of this material for ammunition must be re-evaluated taking into account the bystander effect, the dose enhancing effect and other minor phenomena. Uranium dust has both chemical and radiological toxicity: the synergistic aspect of the two effects has to be accounted for, in order to arrive to a complete description of the phenomenon. The combination of the two different toxicities (chemical and radiological) of depleted uranium is attempted here for the first time, approaching the long-term effects of Depleted Uranium, and in particular the carcinogenetic effects. A case study (Balkan war, 1999) is discussed. (Author)

  20. Possible variations on the calcrete-gypcrete uranium model

    International Nuclear Information System (INIS)

    Carlisle, D.

    1980-01-01

    Genetic models and favorability criteria for calcrete and gypcrete uranium deposits based upon Yeelirrie and other occurrences in Western Australia and upon Langer Henirich and others in Namibia-South West Africa are summarized. Viable analogues of these world-class deposits have not yet been found in USA even though several of the favorable conditions occur in the southwest. A principal deterrent to economic concentration has been tectonic instability. But even in the most favorable areas it is not clear that climates have ever been sufficiently similar to that of the valley-calcrete region of Western Australia. Extensive, thick valley (nonpedogenic) calcretes such as those which host the carnotite in Australia and in Namibia have not been documented here. Nevertheless, submarginal occurrances of carnotite have been found in southwestern United States in small bodies of nonpedogenic and mixed pedogenic-nonpedogenic calcrete. Much of the study is based upon occurrences of carnotite-bearing calcrete and calcrete-gypcrete in the Republic of South Africa. Several of these are described briefly. Some reference is also made to new occurrences and to new data on previously described occurrences on the Namib Desert. Possible variations on the Western Australian and Namibia-South West Africa models which are considered are capillary rise of U in solution, addition of new uraniferous sediment over a calcrete, lateral access of U into a pedogenic calcrete, reworking of U from a weekly mineralized pedogenic calcrete or gypcrete into a new or reconstituted calcrete, or into an unrelated environment for fixation of U

  1. Possible variations on the calcrete-gypcrete uranium model

    Energy Technology Data Exchange (ETDEWEB)

    Carlisle, D.

    1980-01-01

    Genetic models and favorability criteria for calcrete and gypcrete uranium deposits based upon Yeelirrie and other occurrences in Western Australia and upon Langer Henirich and others in Namibia-South West Africa are summarized. Viable analogues of these world-class deposits have not yet been found in USA even though several of the favorable conditions occur in the southwest. A principal deterrent to economic concentration has been tectonic instability. But even in the most favorable areas it is not clear that climates have ever been sufficiently similar to that of the valley-calcrete region of Western Australia. Extensive, thick valley (nonpedogenic) calcretes such as those which host the carnotite in Australia and in Namibia have not been documented here. Nevertheless, submarginal occurrances of carnotite have been found in southwestern United States in small bodies of nonpedogenic and mixed pedogenic-nonpedogenic calcrete. Much of the study is based upon occurrences of carnotite-bearing calcrete and calcrete-gypcrete in the Republic of South Africa. Several of these are described briefly. Some reference is also made to new occurrences and to new data on previously described occurrences on the Namib Desert. Possible variations on the Western Australian and Namibia-South West Africa models which are considered are capillary rise of U in solution, addition of new uraniferous sediment over a calcrete, lateral access of U into a pedogenic calcrete, reworking of U from a weekly mineralized pedogenic calcrete or gypcrete into a new or reconstituted calcrete, or into an unrelated environment for fixation of U.

  2. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    OpenAIRE

    Pešić Milan P.; Šotić Obrad; Hopwood William H.Jr

    2002-01-01

    This paper presents the relevant data related to the recent shipment (August 2002) of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR) Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  3. Transport of high enriched uranium fresh fuel from Yugoslavia to the Russian federation

    Directory of Open Access Journals (Sweden)

    Pešić Milan P.

    2002-01-01

    Full Text Available This paper presents the relevant data related to the recent shipment (August 2002 of fresh highly enriched uranium fuel elements from Yugoslavia back to the Russian Federation for uranium down blending. In this way, Yugoslavia gave its contribution to the Reduced Enrichment for Research and Test Reactors (RERTR Program and to the world's joint efforts to prevent possible terrorist actions against nuclear material potentially usable for the production of nuclear weapons.

  4. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    International Nuclear Information System (INIS)

    Auzans, Aris; Teder, Allan; Tkaczyk, Alan H.

    2016-01-01

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  5. Time delay and profit accumulation effect on a mine-based uranium market clearing model

    Energy Technology Data Exchange (ETDEWEB)

    Auzans, Aris [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia); Teder, Allan [School of Economics and Business Administration, University of Tartu, Narva mnt 4, EE-51009 Tartu (Estonia); Tkaczyk, Alan H., E-mail: alan@ut.ee [Institute of Physics, University of Tartu, Ostwaldi 1, EE-50411 Tartu (Estonia)

    2016-12-15

    Highlights: • Improved version of a mine-based uranium market clearing model for the front-end uranium market and enrichment industries is proposed. • A profit accumulation algorithm and time delay function provides more realistic uranium mine decision making process. • Operational decision delay increased uranium market price volatility. - Abstract: The mining industry faces a number of challenges such as market volatility, investment safety, issues surrounding employment and productivity. Therefore, computer simulations are highly relevant in order to reduce financial risks associated with these challenges. In the mining industry, each firm must compete with other mines and the basic target is profit maximization. The aim of this paper is to evaluate the world uranium (U) supply by simulating financial management challenges faced by an individual U mine that are caused by a variety of regulation issues. In this paper front-end nuclear fuel cycle tool is used to simulate market conditions and the effects they have on the stability of U supply. An individual U mine’s exit or entry in the market might cause changes in the U supply side which can increase or decrease the market price. In this paper we offer a more advanced version of a mine-based U market clearing model. The existing U market model incorporates the market of primary U from uranium mines with secondary uranium (depleted uranium DU), enriched uranium (HEU) and enrichment services. In the model each uranium mine acts as an independent agent that is able to make operational decisions based on the market price. This paper introduces a more realistic decision making algorithm of individual U mine that adds constraints to production decisions. The authors added an accumulated profit model, which allows for the profits accumulated to cover any possible future economic losses and the time-delay algorithm to simulate delayed process of reopening a U mine. The U market simulation covers time period 2010

  6. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    International Nuclear Information System (INIS)

    B.W. ARNOLD

    2004-01-01

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ

  7. Transport Choice Modeling for the Evaluation of New Transport Policies

    Directory of Open Access Journals (Sweden)

    Ander Pijoan

    2018-04-01

    Full Text Available Quantifying the impact of the application of sustainable transport policies is essential in order to mitigate effects of greenhouse gas emissions produced by the transport sector. One of the most common approaches used for this purpose is that of traffic modelling and simulation, which consists of emulating the operation of an entire road network. This article presents the results of fitting 8 well known data science methods for transport choice modelling, the area in which more research is needed. The models have been trained with information from Biscay province in Spain in order to match as many of its commuters as possible. Results show that the best models correctly forecast more than 51% of the trips recorded. Finally, the results have been validated with a second data set from the Silesian Voivodeship in Poland, showing that all models indeed maintain their forecasting ability.

  8. Logistics and Transport - a conceptual model

    DEFF Research Database (Denmark)

    Jespersen, Per Homann; Drewes, Lise

    2004-01-01

    This paper describes how the freight transport sector is influenced by logistical principles of production and distribution. It introduces new ways of understanding freight transport as an integrated part of the changing trends of mobility. By introducing a conceptual model for understanding...... the interaction between logistics and transport, it points at ways to over-come inherent methodological difficulties when studying this relation...

  9. Solubility measurement of uranium in uranium-contaminated soils

    International Nuclear Information System (INIS)

    Lee, S.Y.; Elless, M.; Hoffman, F.

    1993-08-01

    A short-term equilibration study involving two uranium-contaminated soils at the Fernald site was conducted as part of the In Situ Remediation Integrated Program. The goal of this study is to predict the behavior of uranium during on-site remediation of these soils. Geochemical modeling was performed on the aqueous species dissolved from these soils following the equilibration study to predict the on-site uranium leaching and transport processes. The soluble levels of total uranium, calcium, magnesium, and carbonate increased continually for the first four weeks. After the first four weeks, these components either reached a steady-state equilibrium or continued linearity throughout the study. Aluminum, potassium, and iron, reached a steady-state concentration within three days. Silica levels approximated the predicted solubility of quartz throughout the study. A much higher level of dissolved uranium was observed in the soil contaminated from spillage of uranium-laden solvents and process effluents than in the soil contaminated from settling of airborne uranium particles ejected from the nearby incinerator. The high levels observed for soluble calcium, magnesium, and bicarbonate are probably the result of magnesium and/or calcium carbonate minerals dissolving in these soils. Geochemical modeling confirms that the uranyl-carbonate complexes are the most stable and dominant in these solutions. The use of carbonate minerals on these soils for erosion control and road construction activities contributes to the leaching of uranium from contaminated soil particles. Dissolved carbonates promote uranium solubility, forming highly mobile anionic species. Mobile uranium species are contaminating the groundwater underlying these soils. The development of a site-specific remediation technology is urgently needed for the FEMP site

  10. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon [Nuclear Fuel Cycle Analysis, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-08-15

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation.

  11. Statistical model for forecasting uranium prices to estimate the nuclear fuel cycle cost

    International Nuclear Information System (INIS)

    Kim, Sung Ki; Ko, Won Il; Nam, Hyoon; Kim, Chul Min; Chung, Yang Hon; Bang, Sung Sig

    2017-01-01

    This paper presents a method for forecasting future uranium prices that is used as input data to calculate the uranium cost, which is a rational key cost driver of the nuclear fuel cycle cost. In other words, the statistical autoregressive integrated moving average (ARIMA) model and existing engineering cost estimation method, the so-called escalation rate model, were subjected to a comparative analysis. When the uranium price was forecasted in 2015, the margin of error of the ARIMA model forecasting was calculated and found to be 5.4%, whereas the escalation rate model was found to have a margin of error of 7.32%. Thus, it was verified that the ARIMA model is more suitable than the escalation rate model at decreasing uncertainty in nuclear fuel cycle cost calculation

  12. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  13. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  14. Tariff Model for Combined Transport

    Directory of Open Access Journals (Sweden)

    Velimir Kolar

    2002-11-01

    Full Text Available By analysing the cwTen.t situation on the Croatian transportationmarket, and considering all parameters needed forthe development of combined transport, measures are suggestedin order to improve and stimulate its development. Oneof the first measures is the standardisation and introduction ofunique tariffs for combined transport, and then government incentivefor the organisation and development of combinedtransport means and equipment. A significant role in thisshould be set on adequately defined transport policy.

  15. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  16. Uncertainty calculation in transport models and forecasts

    DEFF Research Database (Denmark)

    Manzo, Stefano; Prato, Carlo Giacomo

    Transport projects and policy evaluations are often based on transport model output, i.e. traffic flows and derived effects. However, literature has shown that there is often a considerable difference between forecasted and observed traffic flows. This difference causes misallocation of (public...... implemented by using an approach based on stochastic techniques (Monte Carlo simulation and Bootstrap re-sampling) or scenario analysis combined with model sensitivity tests. Two transport models are used as case studies: the Næstved model and the Danish National Transport Model. 3 The first paper...... in a four-stage transport model related to different variable distributions (to be used in a Monte Carlo simulation procedure), assignment procedures and levels of congestion, at both the link and the network level. The analysis used as case study the Næstved model, referring to the Danish town of Næstved2...

  17. Control of remediation of uranium deposit Straz with use of numerical modelling approach

    International Nuclear Information System (INIS)

    Novak, J.; Muzak, J.; Smetana, R.

    2002-01-01

    The chemical mining of uranium on the deposit Straz has caused large contamination of groundwater of cretaceous collectors in Straz block of Northbohemian cretaceous table. The low cenomanian aquifer where the uranium deposit is placed is mainly afflicted. In the cenomanian collector there is now more than 4.8 mil. t dissolved solids mainly SO 4 2- , Al, Fe, NH 4 + etc. The total salinity reaches up to 80 g/l. The upper laying turonian collector is drinking water reservoir for larger region. Its contamination is weaker than in cenomanian collector. Use of complex 3D Transport - Reaction Model can be divided into two separate parts. First modelling step is a quantification of overflow between individual mesh elements calculated out of calibrated mixed-hybrid flow model. Two different types of mathematical models are used to accomplish the task: Flow model based on a primary formulation of finite element method, which calculates spatial distribution of piezometric head and flow velocity vectors in selected points of area considered (finite element mesh nodes). This model exactly describes hydraulic situation in area studied; Flow model based on mixed-hybrid formulation of finite element method. This model strictly complies with exact water balance at inter-element faces. In the second part transport-reaction model based on finite volume method is used for calculations using pre-calculated advective velocity field in the area considered. The finite-element mesh covering about 40 km 2 consists of about 16,000 spatial elements. In the leaching fields area the length of the triangular edge is 100-150 meters, vertically the horizon is split into 9-13 layers. The geological boundary-lines were constructed from a database containing information about almost 10 thousand wells. Permeability parameters are defined on the bases of hydrogeological model calculations (calibration) and their vertical distribution is defined more precisely using the GTIS (Geotechnological

  18. Extraction and desorption of accessible uranium

    International Nuclear Information System (INIS)

    Payne, T.

    1987-01-01

    The proportion of the uranium in natural ore samples which is in isotopic equilibrium with the uranium in the groundwater may be designated accessible uranium, and can be regarded as being in short-term exchange with the aqueous phase. Some of the natural uranium is secured in resistant crystalline minerals, and is described as inaccessible, because it may not be brought into solution unless the mineral is subjected to extreme chemical attack. It is not available for groundwater transport in the short term. An estimate of the proportion of accessible uranium is therefore useful when modeling radionuclide migration. The amount of accessible natural uranium is some uranium ore samples from the Ranger deposit has been determined by combining a sequential extraction with isotopic measurements of the extracted phases. The solid samples were crushed drill core form Ranger S1/146 which had previously been used for uranium adsorption experiments and therefore contained 236 U as well as natural uranium. This Section discusses how the uranium partitioning found with the sequential extraction procedure predicts the leaching behavior of these samples

  19. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    Science.gov (United States)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  20. Preparation, spectrometric analysis and determination of the electrochemical transport characteristics of uranium (IV) in aqueous systems

    International Nuclear Information System (INIS)

    Schwarzer, W.G.

    1985-01-01

    A process for the quantitative development of uranium-(IV) solutions in nitric and perchloric acid media was developed. After appropriate concentration setting of the solutions, the conductivity of the uranium (IV) in the dependence on concentration were analysed. The conversion of the measuring results on the standard system water was done by means of a conductivity theory; this allows a comparison with the conductivity data of other ions. The conductivity calculated, at an ion strength I tending to zero, provided the suitable data for the ion mobility and the transference number. (orig./PW) [de

  1. A Mercury Model of Atmospheric Transport

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Alex B. [Oregon State Univ., Corvallis, OR (United States); Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chodash, Perry A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Procassini, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  2. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  3. Dileptons from transport and hydrodynamical models

    International Nuclear Information System (INIS)

    Huovinen, P.; Koch, V.

    2000-01-01

    Transport and hydrodynamical models used to describe the expansion stage of a heavy-ion collision at the CERN SPS give different dilepton spectrum even if they are tuned to reproduce the observed hadron spectra. To understand the origin of this difference we compare the dilepton emission from transport and hydrodynamical models using similar initial states in both models. We find that the requirement of pion number conservation in a hydrodynamical model does not change the dilepton emission. Also the mass distribution from the transport model indicates faster cooling and longer lifetime of the fireball

  4. Implementation of the ICRP 66 respiratory tract model: example of occupational exposure to uranium oxides formed in a new laser enrichment process

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Henge-Napoli, M.H.; Hodgson, A.; Stradling, G.N.; Birchall, A.

    1996-01-01

    A new uranium enrichment facility using laser isotopic separation generates aerosols consisting of U metal + UO 2 : with traces of UPON. Results of lung absorption to blood showed that the U metal + UO 2 transportability was appreciably greater than for other industrial forms of UO 2 . Taking into account the new ICRP human respiratory tract model, the data were used as a basis for assessing the dose coefficient, for the dust sampled at the workplace. (author)

  5. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  6. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  7. Optimal transportation networks models and theory

    CERN Document Server

    Bernot, Marc; Morel, Jean-Michel

    2009-01-01

    The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.

  8. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    International Nuclear Information System (INIS)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology

  9. Precambrian uranium-bearing quartz-pebble conglomerates: exploration model and United States resource potential

    Energy Technology Data Exchange (ETDEWEB)

    Houston, R.S.; Karlstrom, K.E.

    1979-11-01

    Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrian age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.

  10. Two-point model for divertor transport

    International Nuclear Information System (INIS)

    Galambos, J.D.; Peng, Y.K.M.

    1984-04-01

    Plasma transport along divertor field lines was investigated using a two-point model. This treatment requires considerably less effort to find solutions to the transport equations than previously used one-dimensional (1-D) models and is useful for studying general trends. It also can be a valuable tool for benchmarking more sophisticated models. The model was used to investigate the possibility of operating in the so-called high density, low temperature regime

  11. Transportation of foreign-owned enriched uranium from the Republic of Georgia. Environmental assessment for Project Partnership

    International Nuclear Information System (INIS)

    1998-01-01

    The Department of Energy (DOE) Office of Nonproliferation and National Security (NN) has prepared a classified environmental assessment to evaluate the potential environmental impact for the transportation of 5.26 kilograms of enriched uranium-235 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom. The nuclear fuel consists of primarily fresh fuel, but also consists of a small quantity (less than 1 kilogram) of partially-spent fuel. Transportation of the enriched uranium fuel would occur via US Air Force military aircraft under the control of the Defense Department European Command (EUCOM). Actions taken in a sovereign nation (such as the Republic of Georgia and the United Kingdom) are not subject to analysis in the environmental assessment. However, because the action would involve the global commons of the Black Sea and the North Sea, the potential impact to the global commons has been analyzed. Because of the similarities in the two actions, the Project Sapphire Environmental Assessment was used as a basis for assessing the potential impacts of Project Partnership. However, because Project Partnership involves a small quantity of partially-spent fuel, additional analysis was conducted to assess the potential environmental impacts and to consider reasonable alternatives as required by NEPA. The Project Partnership Environmental Assessment found the potential environmental impacts to be well below those from Project Sapphire

  12. Design and construction of a Type B overpack container for the safe transportation of enriched uranium hexafluoride

    International Nuclear Information System (INIS)

    Gablin, K.A.

    1976-01-01

    The Paducah Tiger is an overpack designed for the international shipment of ten-ton cylinders of uranium hexafluoride in enriched form above the level of low specific acitivity. This container is designed as a Type B Package and has undergone all the tests and analyses required for a U.S. Department of Transportation Permit No. 6553. The Paducah Tiger is currently being used to ship fuel material in the USA on both truck and rail modes of transportation. In many ways, the design resembles the Super Tigersup(R), but incorporates features such as ISO corners, quick opening fasteners, and interior shock isolators that provide a system approach to the high volume of fuel shipment required in the last half of the 20th century. (author)

  13. Molding and casting process of a depleted uranium shield for a multipurpose type B (U) transport package of radioactive substances

    International Nuclear Information System (INIS)

    Raffaeli, Hector A.; Acosta, Mario; Ilarri, Sergio; Alonso, Paula R.; Gargano, Pablo H.; Rubiolo, Gerardo H.

    2009-01-01

    Anticipating future demand for transport of radioisotopes, a high performance transport package (BU-MAN) with a gamma barrier built in depleted uranium (DU) has been designed by the Radioisotope and Radiation Program (P4) of CNEA in 2003. The shield is a hollow cylinder of approximately 173 mm outside diameter, 223 mm in height, a cylindrical hollow interior 63 mm diameter and 166 mm in height, and a cylindrical plug 58 mm diameter and 57 mm height. Its total weight is 84 Kg. In the period 2004-2006 the Special Alloys Group (DM-GIDAT-GAEN-CNEA) has conducted several developments in order to obtain the mentioned shield, including a manufacturing test casting SAE 1010 in a sand mold. The confirmation of its properties, mechanical and gamma shield are being evaluated by licensing tests of the whole package. In this paper we show all metallurgical processes involved to get the shield in metallic DU. (author)

  14. Quantifying and Predicting Reactive Transport of Uranium in Waste Plumes: Are Colloids and Nanoparticles Important?

    International Nuclear Information System (INIS)

    Jiamin Wan; Tetsu Tokunaga; Carl Steefel; Peter Burns

    2006-01-01

    The Hanford Site is the DOE's largest legacy waste site, with uranium (U) from plutonium processing being a major contaminant in its subsurface. Accidental release of highly concentrated high-level wastes left large quantities of U in the vadose zone under tank farms. The U contamination has been found in groundwater beneath the tank farms, indicating U is mobile

  15. Model Comparison for Electron Thermal Transport

    Science.gov (United States)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  16. The use of geochemical speciation modelling to predict the impact of uranium to freshwater biota

    International Nuclear Information System (INIS)

    Markich, S.J.; Brown, P.L.; Jeffree, R.A.

    1996-01-01

    Uranium is the prime potential contaminant in mine waste waters that may be released from the Ranger Uranium Mine (RUM) into the receiving waters of the Magela Creek, Alligator Rivers Region, Northern Australia. The potential ecological impact of the migration of uranium, that would result from an elevation in its concentration above background, in the Magela Creek downstream of the RUM, has been experimentally investigated by integrating biomonitoring with geochemical speciation modelling. The freshwater bivalve Velesunio angasi, abundant throughout the Magela Creek catchment, was exposed to a variety of uranium concentrations in a synthetic Magela Creek water, at four pH levels (5.0, 5.3, 5.5 and 6.0), in the presence (3.05 and 7.50 mg l -1 ) and absence of a model fulvic acid (FA), and its behavioural response was measured. Speciation modelling, using the HARPHRQ code, provided evidence that UO 2+ 2 and UO 2 OH + are the uranium species most responsible (ca. 96%) for eliciting an adverse behavioural response when UO 2+ 2 is assigned twice the toxic effect of UO 2 OH + . This finding rejects the notion that biota respond specifically to the sum total of inorganic uranyl species. (orig.)

  17. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  18. Uranium enrichment

    International Nuclear Information System (INIS)

    1989-01-01

    GAO was asked to address several questions concerning a number of proposed uranium enrichment bills introduced during the 100th Congress. The bill would have restructured the Department of Energy's uranium enrichment program as a government corporation to allow it to compete more effectively in the domestic and international markets. Some of GAO's findings discussed are: uranium market experts believe and existing market models show that the proposed DOE purchase of a $750 million of uranium from domestic producers may not significantly increase production because of large producer-held inventories; excess uranium enrichment production capacity exists throughout the world; therefore, foreign producers are expected to compete heavily in the United States throughout the 1990s as utilities' contracts with DOE expire; and according to a 1988 agreement between DOE's Offices of Nuclear Energy and Defense Programs, enrichment decommissioning costs, estimated to total $3.6 billion for planning purposes, will be shared by the commercial enrichment program and the government

  19. Final Report Coupling in silico microbial models with reactive transport models to predict the fate of contaminants in the subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, Derek R.

    2012-10-31

    This project successfully accomplished its goal of coupling genome-scale metabolic models with hydrological and geochemical models to predict the activity of subsurface microorganisms during uranium bioremediation. Furthermore, it was demonstrated how this modeling approach can be used to develop new strategies to optimize bioremediation. The approach of coupling genome-scale metabolic models with reactive transport modeling is now well enough established that it has been adopted by other DOE investigators studying uranium bioremediation. Furthermore, the basic principles developed during our studies will be applicable to much broader investigations of microbial activities, not only for other types of bioremediation, but microbial metabolism in diversity of environments. This approach has the potential to make an important contribution to predicting the impact of environmental perturbations on the cycling of carbon and other biogeochemical cycles.

  20. Developments in tokamak transport modeling

    International Nuclear Information System (INIS)

    Houlberg, W.A.; Attenberger; Lao, L.L.

    1981-01-01

    A variety of numerical methods for solving the time-dependent fluid transport equations for tokamak plasmas is presented. Among the problems discussed are techniques for solving the sometimes very stiff parabolic equations for particle and energy flow, treating convection-dominated energy transport that leads to large cell Reynolds numbers, optimizing the flow of a code to reduce the time spent updating the particle and energy source terms, coupling the one-dimensional (1-D) flux-surface-averaged fluid transport equations to solutions of the 2-D Grad-Shafranov equation for the plasma geometry, handling extremely fast transient problems such as internal MHD disruptions and pellet injection, and processing the output to summarize the physics parameters over the potential operating regime for reactors. Emphasis is placed on computational efficiency in both computer time and storage requirements

  1. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    International Nuclear Information System (INIS)

    Luo, S.; Ku, T.L.; Todd, V.; Murrell, M.; Pineda, J. Alfredo Rodriguez; Dinsmoor, J.; Mitchell, A.

    2005-01-01

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ( 228 Ra, 224 Ra and 223 Ra) and activity ratios of 224 Ra/ 228 Ra and 224 Ra/ 223 Ra are higher at PB and Pozos than at PB4. In contrast, the 210 Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high 210 Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 ± 0.02) x 10 3 at PB, (1.68 ± 0.08) x 10 3 at Pozos, and (1.19 ± 0.08) x 10 3 at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 (micro)m at PB, 0.37 (micro)m at Posos, and 4.0 (micro)m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that in addition to alpha recoil, decay of 226 Ra from the adsorbed

  2. IN-SITU RADIONUCLIDE TRANSPORT NEAR THE NOPAL I URANIUM DEPOSIT AT PENA BLANCA, MEXICO: CONSTRAINTS FROM SHORT-LIVED DECAY-SERIES RADIONUCLIDES

    Energy Technology Data Exchange (ETDEWEB)

    S. Luo; T.L. Ku; V. Todd; M. Murrell; J. Alfredo Rodriguez Pineda; J. Dinsmoor; A. Mitchell

    2005-07-11

    For nuclear waste management, an important mechanism by which radioactive waste components are isolated from returning to the human environment, the biosphere, is by the geological barrier in which the effectiveness of the barrier is characterized by in-situ retardation factor, i.e., the transport rate of a radionuclide relative to that of groundwater. As part of natural analog studies of the Yucca Mountain Project of the U. S. Department of Energy, we propose such characterization by using naturally-occurring decay-series radioisotopes as an analog. We collected large-volume (>1000 liters) groundwater samples from three wells (PB, Pozos, and PB4, respectively) near the Nopal I Uranium Ore site at Pena Blanca, Mexico, by using an in-situ Mn-cartridge filtration technique for analysis of short-lived decay-series radionuclides. Results show that the activities of short-lived radioisotopes ({sup 228}Ra, {sup 224}Ra and {sup 223}Ra) and activity ratios of {sup 224}Ra/{sup 228}Ra and {sup 224}Ra/{sup 223}Ra are higher at PB and Pozos than at PB4. In contrast, the {sup 210}Po activity is much lower at PB and Pozos than at PB4. The high Ra activities and activities ratios at PB and Pozos are attributable to the high alpha-recoil input from the aquifer rocks, while the high {sup 210}Po activity at PB4 is due to the enhanced colloidal transport. Based on a uranium-series transport model, we estimate that the in-situ retardation factor of Ra is (0.43 {+-} 0.02) x 10{sup 3} at PB, (1.68 {+-} 0.08) x 10{sup 3} at Pozos, and (1.19 {+-} 0.08) x 10{sup 3} at PB4 and that the mean fracture width in the aquifer rocks is about 0.23 {micro}m at PB, 0.37 {micro}m at Posos, and 4.0 {micro}m at PB4, respectively. The large fracture width at PB4 as derived from the model provides an additional evidence to the inference from the Po measurements that particle-reactive radionuclides are transported mainly as colloidal forms through the large fractures in rocks. Our model also suggests that

  3. Using proteomic data to assess a genome-scale "in silico" model of metal reducing bacteria in the simulation of field-scale uranium bioremediation

    Science.gov (United States)

    Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team

    2011-12-01

    A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein

  4. Geological 3-D modelling and resources estimation of the Budenovskoye uranium deposit (Kazakhstan)

    International Nuclear Information System (INIS)

    Boytsov, A.; Heyns, M.; Seredkin, M.

    2014-01-01

    The Budenovskoye deposit is the biggest sandstone-hosted, roll front type uranium deposit in Kazakhstan and in the world. Uranium mineralization occurs in the unconsolidated lacustrine-alluvial sediments of Late Cretaceous Mynkuduk and Inkuduk horizons. The Budenovskoye deposit was split into four areas for development with the present Karatau ISL Mine operating No. 2 area and Akbastau ISL Mine Nos. 1, 3 and 4 areas. Mines are owned by Kazatomprom and Uranium One in equal shares. CSA Global was retained by Uranium One to update in accordance with NI 43-101 the Mineral Resource estimates for the Karatau and Akbastau Mines. The modelling Reports shows a significant increase in total uranium resources tonnage at both mines when compared to the March 2012 NI 43-101 resource estimate: at Karartau measured and indicated resources increased by 586% while at Akbastau by 286%. It has also added a 55,766 tonnes U to the Karatau Inferred Mineral Resource category.The new estimates result from the application of 3-D modelling techniques to the extensive database of drilling information, new exploration activities.

  5. Centrifuge modelling of contaminant transport processes

    OpenAIRE

    Culligan, P. J.; Savvidou, C.; Barry, D. A.

    1996-01-01

    Over the past decade, research workers have started to investigate problems of subsurface contaminant transport through physical modelling on a geotechnical centrifuge. A major advantage of this apparatus is its ability to model complex natural systems in a controlled laboratory environment In this paper, we discusses the principles and scaling laws related to the centrifugal modelling of contaminant transport, and presents four examples of recent work that has bee...

  6. Effects of drop testing on scale model shipping containers shielded with depleted uranium

    International Nuclear Information System (INIS)

    Butler, T.A.

    1980-02-01

    Three scale model shipping containers shielded with depleted uranium were dropped onto an essentially unyielding surface from various heights to determine their margins to failure. This report presents the results of a thorough posttest examination of the models to check for basic structural integrity, shielding integrity, and deformations. Because of unexpected behavior exhibited by the depleted uranium shielding, several tests were performed to further characterize its mechanical properties. Based on results of the investigations, recommendations are made for improved container design and for applying the results to full-scale containers. Even though the specimens incorporated specific design features, the results of this study are generally applicable to any container design using depleted uranium

  7. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model i...... is being developed as a part of a study being carried out at the University of Aalborg, Denmark and VBB VIAK, Sweden. The project is funded by the Swedish Water and Waste Water Works Association and the Nordic Industrial Foundation.......This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  8. Packaging and transportation of depleted uranium for disposition from the Savannah River Site

    International Nuclear Information System (INIS)

    Gillas, D.L.; Berg, J.

    2009-01-01

    The Savannah River Site (SRS) produced a large inventory of depleted uranium trioxide (DUO) in a powder form packaged in approximately 36,000 55-gallon drums that required final disposition. Each drum weighs an average of 680 kg (1,500 pounds) with some as much as 820 kg (1,800 pounds). The weight, and the fact that the material is in a powder form, requires detailed planning concerning the packaging and transportation (P and T) that must be used. Four disposition campaigns have been completed with the first in Fiscal Year 2003 (FY03), the second in FY04/05, and the most recent two campaigns being completed in early FY09. The remaining inventory of approximately 16,000 drums will likely follow similar paths in the future. This paper will describe the DUO inventory and the thought process behind determining the appropriate P and T for each campaign, very briefly covering the first two campaigns and emphasizing the most recent campaigns. In FY03, SRS completed a pilot project that disposed of 3,270 55-gallon drums of DUO. The shipping method used 110-ton mill gondola rail-cars with a polypropylene coated fabric liner as the DOT 'strong, tight' package. These rail-cars were shipped to the EnergySolutions low level waste (LLW) disposal facility in Clive, UT (previously Envirocare of Utah now referred to in this paper as the Clive Facility) for final disposition of the DUO as LLW. In FY04/05, an additional 7,296 drums that were over-packed in 85-gallon drums were shipped in boxcars (not part of the packaging) since the overpacks were qualified as IP-2 containers due to the excessive weight of the drums (over 680 kg each) to the Clive Facility. The two most recent campaigns consisted of: 1) 5,408 55-gallon drums that were shipped to the Clive Facility in 52.5-foot gondola rail-cars with fiberglass lids; the rail-car itself was the package as well as the conveyance, and 2) 4014 55-gallon drums that were shipped to the Nevada Test Site (NTS) in 20-foot modified cargo

  9. Modeling electrokinetic transport in phenol contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Zorn, R.; Haus, R.; Czurda, K. [Dept. of Applied Geology, Univ. Karlsruhe (Germany)

    2001-07-01

    Numerical simulations are compared to laboratory experiments of electroremediation in soils contaminated by phenolic pollutants. The developing pH affects the electrokinetic transport behaviour of phenol. It is found that a water chemistry model must be included in an electrokinetic mass transport model to describe the process of electroremediation more accurately, if no buffering system is used at the electrodes. In the case of controlling the pH at the electrode compartments only a simplified chemical reaction model must be included in the numerical code to match the experimental phenolic transport. (orig.)

  10. Pharmacokinetic models relevant to toxicity and metabolism for uranium in humans and animals

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Lipsztein, J.; Bertelli, L.

    1988-01-01

    The aim of this paper is to summarize pharmacokinetic models of uranium metabolism. Fortunately, others have recently reviewed metabolic models of all types, not just pharmacokinetic models. Their papers should be consulted for greater biological detail than is possible here. Improvements in the models since these other papers are noted. Models for assessing the biological consequences of exposure should account for the kinetics of intake by ingestion, inhalation, and injection, and the chemical form of uranium; predict the time dependent concentration in red blood cells, plasma, urine, kidney, bone and other organs (or compartments); and be adaptable to calculating these concentrations for varying regimens of intake. The biological parameters in the models come from metabolic data in humans and animals. Some of these parameters are reasonably well defined. For example, the cumulative urinary excretion at 24 hours post injection of soluble uranium in man is about 70%, the absorbed fraction for soluble uranium ingested by man in drinking water during normal dietary conditions is about 1%, and the half time in the mammalian kidney is several days. 17 refs., 8 figs

  11. Simulation of uranium transport with variable temperature and oxidation potential: The computer program THCC [Thermo-Hydro-Chemical Coupling

    International Nuclear Information System (INIS)

    Carnahan, C.L.

    1986-12-01

    A simulator of reactive chemical transport has been constructed with the capabilities of treating variable temperatures and variable oxidation potentials within a single simulation. Homogeneous and heterogeneous chemical reactions are simulated at temperature-dependent equilibrium, and changes of oxidation states of multivalent elements can be simulated during transport. Chemical mass action relations for formation of complexes in the fluid phase are included explicitly within the partial differential equations of transport, and a special algorithm greatly simplifies treatment of reversible precipitation of solid phases. This approach allows direct solution of the complete set of governing equations for concentrations of all aqueous species and solids affected simultaneously by chemical and physical processes. Results of example simulations of transport, along a temperature gradient, of uranium solution species under conditions of varying pH and oxidation potential and with reversible precipitation of uraninite and coffinite are presented. The examples illustrate how inclusion of variable temperature and oxidation potential in numerical simulators can enhance understanding of the chemical mechanisms affecting migration of multivalent waste elements

  12. Predictive geochemical modeling of uranium and other contaminants in laboratory columns in relatively oxidizing, carbonate-rich solutions

    International Nuclear Information System (INIS)

    Longmire, P.; Turney, W.R.; Mason, C.F.V.

    1994-01-01

    Carbonate heap leaching of uranium-contaminated soils and sediments represents a viable, cost-effective remediation technology. Column experiments have been conducted using 0.1, 0.25, and 0.5 M Na 2 CO 3 /NaHCO 3 solutions for leaching uranium from soils located adjacent to an incinerator at the Fernald Environmental Management Project (FEMP) site. Results from column experiments and geochemical modeling are used to quantitatively evaluate the effectiveness of heap leaching. Leach efficiencies of up to 72 wt.% of total uranium in CaO-agglomerated soil result from dissolution of uranium (U(VI)-dominated) minerals, formation of the soluble complex UO 2 (CO 3 ) 3 4- , and uranium desorption from clay minerals, ferric hydroxides, and humic acids. Parameters that control the extent of uranium extraction include pH, Eh, temperature, carbonate concentration, lixiviant-flow rate, pore-solution chemistry, solid phases, and soil texture

  13. Metallogenic characteristics, model and exploration prospect for the paleo-interlayer-oxidation type sandstone-hosted uranium deposits in China

    International Nuclear Information System (INIS)

    Huang Jingbai; Li Shengxiang

    2007-01-01

    In this paper, the paleo-interlayer-oxidation type sandstone-hosted uranium deposits occurred in the Meso-Cenozoic continental basins in China are divided into 3 subtype, they are stratum over lapping buried subtype, structure-uplifting destroy subtype and faulted-folding conserved subtype. The metallogenic characteristics, metallogenic model and exploration prospect for these 3 subtypes uranium deposits are discussed. It is proposed that the paleo-interlayer-oxidation type sandstone-hosted uranium deposits, besides the recent interlayer oxidation type sandstone-hosted uranium deposits, are of great prospecting potential in the Meso-Cenozoic continental basins in China. Therefore, the metallogenic theory of these types uranium deposits should be conscientiously summarized and replenished continuously so as to propel forward the exploration of the sandstone-hosted uranium deposits in China. (authors)

  14. Concept Layout Model of Transportation Terminals

    Directory of Open Access Journals (Sweden)

    Li-ya Yao

    2012-01-01

    Full Text Available Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish the function layout design. The mapping mechanism of demand, function, and structure was analyzed, and a quantitative relationship between function and structure was obtained from a design perspective. Passenger demand and terminal structure were decomposed into several demand units and structural elements following the principle of reverse engineering. The relationship maps between these two kinds of elements were then analyzed. Function-oriented concept layout model of transportation terminals was established using the previous method. Thus, a technique in planning and design of transportation structures was proposed. Meaningful results were obtained from the optimization of transportation terminal facilities, which guide the design of the functional layout of transportation terminals and improve the development of urban passenger transportation systems.

  15. Corrosion of Uranium in Desert Soil, with Application to GCD Source Term Models

    International Nuclear Information System (INIS)

    ANDERSON, HOWARD L.; BACA, JULIANNE; KRUMHANSL, JAMES L.; STOCKMAN, HARLAN W.; THOMPSON, MOLLIE E.

    1999-01-01

    Uranium fragments from the Sandia Sled Track were studied as analogues for weapons components and depleted uranium buried at the Greater Confinement Disposal (GCD) site in Nevada. The Sled Track uranium fragments originated as weapons mockups and counterweights impacted on concrete and soil barriers, and experienced heating and fragmentation similar to processes thought to affect the Nuclear Weapons Accident Residues (NWAR) at GCD. Furthermore, the Sandia uranium was buried in unsaturated desert soils for 10 to 40 years, and has undergone weathering processes expected to affect the GCD wastes. Scanning electron microscopy, X-ray diffraction and microprobe analyses of the fragments show rapid alteration from metals to dominantly VI-valent oxy-hydroxides. Leaching studies of the samples give results consistent with published U-oxide dissolution rates, and suggest longer experimental periods (ca. 1 year) would be required to reach equilibrium solution concentrations. Thermochemical modeling with the EQ3/6 code indicates that the uranium concentrations in solutions saturated with becquerelite could increase as the pore waters evaporate, due to changes in carbonate equilibria and increased ionic strength

  16. Highway and interline transportation routing models

    International Nuclear Information System (INIS)

    Joy, D.S.; Johnson, P.E.

    1994-01-01

    The potential impacts associated with the transportation of hazardous materials are important issues to shippers, carriers, and the general public. Since transportation routes are a central characteristic in most of these issues, the prediction of likely routes is the first step toward the resolution of these issues. In addition, US Department of Transportation requirements (HM-164) mandate specific routes for shipments of highway controlled quantities of radioactive materials. In response to these needs, two routing models have been developed at Oak Ridge National Laboratory under the sponsorship of the U.S. Department of Energy (DOE). These models have been designated by DOE's Office of Environmental Restoration and Waste Management, Transportation Management Division (DOE/EM) as the official DOE routing models. Both models, HIGHWAY and INTERLINE, are described

  17. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Parameters for Fickian diffusion and polymer relaxation models were determined by .... Water transport process of resin and polymer composite specimens at ..... simulation. ... Kwon Y W and Bang H 1997 Finite element method using matlab.

  18. Metallogenesis and metallogenic model of Nuheting uranium deposit in Erlian Basin

    International Nuclear Information System (INIS)

    Li Hongjun; Kuang Wenzhan

    2010-01-01

    Based on the study on geological characteristics, metallogesis and geochemical features in Nuheting uranium deposit, it is considered that the deposit belongs to syn-sedimentary and epigenetic reworking type. The deposit position was controlled by the lake area developed during Erlian period in Late Cretaceous. The metallognesis has experienced three stages, they are syn-sedimentary metallogenesis, epigenetic reworking metallogenesis and exogenic metallogenesis. The ore-forming ages are respectively 85 Ma, (41±5)Ma and 6-13 Ma. Based on the summary of metallogenic geological features,metallogenesis and geochemical features, the metallogenic model of Nuheting uranium deposit has been established. (authors)

  19. The application of artificial neural network in radon disaster model of uranium mining

    International Nuclear Information System (INIS)

    Zhu Yufeng; Zhu Guogen; Zhou Shijian

    2012-01-01

    The structural features, data analysis and learning process of feed-forward neural network (BP ANN) were analyzed at first. Rodon sample from Fuzhou Jinan Uranium Industry Limited Company were used to training the network and make the forecast then, and a forecasting model was established for the radon disaster in uranium mines. The method and effectiveness of BP neural network in predicting radon disaster was discussed. The test of training samples showed that the BP network had gotten fairly satisfied result in predicting mine radon disaster. (authors)

  20. Mathematical modeling plasma transport in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Quiang, Ji [Univ. of Illinois, Urbana-Champaign, IL (United States)

    1997-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 1020/m3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%.

  1. Mathematical modeling plasma transport in tokamaks

    International Nuclear Information System (INIS)

    Quiang, Ji

    1995-01-01

    In this work, the author applied a systematic calibration, validation and application procedure based on the methodology of mathematical modeling to international thermonuclear experimental reactor (ITER) ignition studies. The multi-mode plasma transport model used here includes a linear combination of drift wave branch and ballooning branch instabilities with two a priori uncertain constants to account for anomalous plasma transport in tokamaks. A Bayesian parameter estimation method is used including experimental calibration error/model offsets and error bar rescaling factors to determine the two uncertain constants in the transport model with quantitative confidence level estimates for the calibrated parameters, which gives two saturation levels of instabilities. This method is first tested using a gyroBohm multi-mode transport model with a pair of DIII-D discharge experimental data, and then applied to calibrating a nominal multi-mode transport model against a broad database using twelve discharges from seven different tokamaks. The calibrated transport model is then validated on five discharges from JT-60 with no adjustable constants. The results are in a good agreement with experimental data. Finally, the resulting class of multi-mode tokamak plasma transport models is applied to the transport analysis of the ignition probability in a next generation machine, ITER. A reference simulation of basic ITER engineering design activity (EDA) parameters shows that a self-sustained thermonuclear burn with 1.5 GW output power can be achieved provided that impurity control makes radiative losses sufficiently small at an average plasma density of 1.2 X 10 20 /m 3 with 50 MW auxiliary heating. The ignition probability of ITER for the EDA parameters, can be formally as high as 99.9% in the present context. The same probability for concept design activity (CDA) parameters of ITER, which has smaller size and lower current, is only 62.6%

  2. Standard model for safety analysis report of hexafluoride power plants from natural uranium

    International Nuclear Information System (INIS)

    1983-01-01

    The standard model for safety analysis report for hexafluoride production power plants from natural uranium is presented, showing the presentation form, the nature and the degree of detail, of the minimal information required by the Brazilian Nuclear Energy Commission - CNEN. (E.G.) [pt

  3. Global Modeling of Uranium Molecular Species Formation Using Laser-Ablated Plasmas

    Science.gov (United States)

    Curreli, Davide; Finko, Mikhail; Azer, Magdi; Armstrong, Mike; Crowhurst, Jonathan; Radousky, Harry; Rose, Timothy; Stavrou, Elissaios; Weisz, David; Zaug, Joseph

    2016-10-01

    Uranium is chemically fractionated from other refractory elements in post-detonation nuclear debris but the mechanism is poorly understood. Fractionation alters the chemistry of the nuclear debris so that it no longer reflects the chemistry of the source weapon. The conditions of a condensing fireball can be simulated by a low-temperature plasma formed by vaporizing a uranium sample via laser heating. We have developed a global plasma kinetic model in order to model the chemical evolution of U/UOx species within an ablated plasma plume. The model allows to track the time evolution of the density and energy of an uranium plasma plume moving through an oxygen atmosphere of given fugacity, as well as other relevant quantities such as average electron and gas temperature. Comparison of model predictions with absorption spectroscopy of uranium-ablated plasmas provide preliminary insights on the key chemical species and evolution pathways involved during the fractionation process. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16-1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Stochastic model of radioiodine transport

    International Nuclear Information System (INIS)

    Schwarz, G.; Hoffman, F.O.

    1980-01-01

    A research project has been underway at the Oak Ridge National Laboratory with the objective to evaluate dose assessment models and to determine the uncertainty associated with the model predictions. This has resulted in the application of methods to propagate uncertainties through models. Some techniques and results related to this problem are discussed

  5. Streamline-concentration balance model for in-situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.; Schechter, R.S.; Humenick, M.J.

    1981-03-01

    This work presents two computer models. One describes in-situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure except that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is simulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  6. Streamline-concentration balance model for in situ uranium leaching and site restoration

    International Nuclear Information System (INIS)

    Bommer, P.M.

    1979-01-01

    This work presents two computer models. One describes in situ uranium leaching and the other describes post leaching site restoration. Both models use a streamline generator to set up the flow field over the reservoir. The leaching model then uses the flow data in a concentration balance along each streamline coupled with the appropriate reaction kinetics to calculate uranium production. The restoration model uses the same procedure ecept that binary cation exchange is used as the restoring mechanism along each streamline and leaching cation clean up is stimulated. The mathematical basis for each model is shown in detail along with the computational schemes used. Finally, the two models have been used with several data sets to point out their capabilities and to illustrate important leaching and restoration parameters and schemes

  7. Groundwater contamination from an inactive uranium mill tailings pile. 2. Application of a dynamic mixing model

    International Nuclear Information System (INIS)

    Narashimhan, T.N.; White, A.F.; Tokunaga, T.

    1986-01-01

    At Riverton, Wyoming, low pH process waters from an abandoned uranium mill tailings pile have been infiltrating into and contaminating the shallow water table aquifer. The contamination process has been governed by transient infiltration rates, saturated-unsaturated flow, as well as transient chemical reactions between the many chemical species present in the mixing waters and the sediments. In the first part of this two-part series the authors presented field data as well as an interpretation based on a static mixing models. As an upper bound, the authors estimated that 1.7% of the tailings water had mixed with the native groundwater. In the present work they present the results of numerical investigation of the dynamic mixing process. The model, DYNAMIX (DYNamic MIXing), couples a chemical speciation algorithm, PHREEQE, with a modified form of the transport algorithm, TRUMP, specifically designed to handle the simultaneous migration of several chemical constituents. The overall problem of simulating the evolution and migration of the contaminant plume was divided into three sub problems that were solved in sequential stages. These were the infiltration problem, the reactive mixing problem, and the plume-migration problem. The results of the application agree reasonably with the detailed field data. The methodology developed in the present study demonstrates the feasibility of analyzing the evolution of natural hydrogeochemical systems through a coupled analysis of transient fluid flow as well as chemical reactions. It seems worthwhile to devote further effort toward improving the physicochemical capabilities of the model as well as to enhance its computational efficiency

  8. Evaluation of mass transport property using natural uranium-series and thorium-series nuclides in the Toki Granite

    International Nuclear Information System (INIS)

    Hama, Katsuhiro

    2016-07-01

    The Mizunami Underground Research Laboratory (MIU) project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of relevant disposal technologies through investigations of the deep geological environment within the host crystalline rock at Mizunami City in Gifu Prefecture, central Japan. The project proceeds in three overlapping phases, 'Phase I: Surface-based investigation Phase', 'Phase II: Construction Phase' and 'Phase III: Operation Phase'. As a part of the Phase III investigation, the mass transport property has been evaluated by using natural uranium-series and thorium-series nuclides in the Toki Granite. In this report, the compilation of existing data and preliminary evaluation was carried out. (author)

  9. Occupational safety and health program for a model uranium mill

    International Nuclear Information System (INIS)

    Miller, H.T.

    1981-01-01

    The basic purpose of this paper is to suggest procedures and practices to insure that no employee working in a uranium milling operation receives exposure to radioactive, toxic, or other materials or agents that might produce a permanent, deleterious effect upon his physical health and well-being. This program is also designed to insure that each employee can carry out his assigned duties without risk to his health or to that of his fellow workers. The total program is envisioned as a balanced combination of occupational hygiene and radiation monitoring. This includes surveying, air sampling, personnel dosimetry, bioassay, medical surveillance, epidemiology, and training - all backed by a thoroughly tested and evaluated set of emergency procedures. The program, as presented, is keyed to the results of monitoring, surveying, air sampling, medical surveillance, and epidemiology - it being obvious that no problem can result when no hazard can be identified

  10. Statistical model of global uranium resources and long-term availability

    International Nuclear Information System (INIS)

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  11. Pharmacokinetic models relevant to toxicity and metabolism for uranium in humans and animals

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1989-01-01

    Models to predict short and long term accumulation of uranium in the human kidney are reviewed and summarised. These are generally first order linear compartmental models or pseudo-pharmacokinetic models such as the retention model of the ICRP. Pharmacokinetic models account not only for transfer from blood to organs, but also recirculation from the organ to blood. The most recent information on mammalian and human metabolism of uranium is used to establish a revised model. The model is applied to the short term accumulation of uranium in the human kidney after a single rapid dosage to the blood, such as that obtained by inhaling UF6 or its hydrolysis products. It is shown that the maximum accumulation in the kidney under these conditions is less than the fraction of the material distributed from the blood to kidney if a true pharmacokinetic model is used. The best coefficients applicable to man in the authors' view are summarised in model V. For a half-time of two days in the mammalian kidney, the maximum concentration in kidney is 75% of that predicted by a retention model such as that used by the ICRP following a single acute intake. We conclude that one must use true pharmacokinetic models, which incorporate recirculation from the organs to the blood, in order to realistically predict time dependent uptake in the kidneys and other organs. Information is presented showing that the half-time for urinary excretion of soluble uranium in man after inhalation of UF6 is about one quarter of a day. (author)

  12. Measurement and modelling of reactive transport in geological barriers for nuclear waste containment.

    Science.gov (United States)

    Xiong, Qingrong; Joseph, Claudia; Schmeide, Katja; Jivkov, Andrey P

    2015-11-11

    Compacted clays are considered as excellent candidates for barriers to radionuclide transport in future repositories for nuclear waste due to their very low hydraulic permeability. Diffusion is the dominant transport mechanism, controlled by a nano-scale pore system. Assessment of the clays' long-term containment function requires adequate modelling of such pore systems and their evolution. Existing characterisation techniques do not provide complete pore space information for effective modelling, such as pore and throat size distributions and connectivity. Special network models for reactive transport are proposed here using the complimentary character of the pore space and the solid phase. This balances the insufficient characterisation information and provides the means for future mechanical-physical-chemical coupling. The anisotropy and heterogeneity of clays is represented using different length parameters and percentage of pores in different directions. Resulting networks are described as mathematical graphs with efficient discrete calculus formulation of transport. Opalinus Clay (OPA) is chosen as an example. Experimental data for the tritiated water (HTO) and U(vi) diffusion through OPA are presented. Calculated diffusion coefficients of HTO and uranium species are within the ranges of the experimentally determined data in different clay directions. This verifies the proposed pore network model and validates that uranium complexes are diffusing as neutral species in OPA. In the case of U(vi) diffusion the method is extended to account for sorption and convection. Rather than changing pore radii by coarse grained mathematical formula, physical sorption is simulated in each pore, which is more accurate and realistic.

  13. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    International Nuclear Information System (INIS)

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables

  14. Comparison of two lung clearance models based on the dissolution rates of oxidized depleted uranium

    Energy Technology Data Exchange (ETDEWEB)

    Crist, K.C.

    1984-10-01

    An in-vitro dissolution study was conducted on two respirable oxidized depleted uranium samples. The dissolution rates generated from this study were then utilized in the International Commission on Radiological Protection Task Group lung clearance model and a lung clearance model proposed by Cuddihy. Predictions from both models based on the dissolution rates of the amount of oxidized depleted uranium that would be cleared to blood from the pulmonary region following an inhalation exposure were compared. It was found that the predictions made by both models differed considerably. The difference between the predictions was attributed to the differences in the way each model perceives the clearance from the pulmonary region. 33 references, 11 figures, 9 tables.

  15. A Model for High-Strain-Rate Deformation of Uranium-Niobium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    F.L.Addessio; Q.H.Zuo; T.A.Mason; L.C.Brinson

    2003-05-01

    A thermodynamic approach is used to develop a framework for modeling uranium-niobium alloys under the conditions of high strain rate. Using this framework, a three-dimensional phenomenological model, which includes nonlinear elasticity (equation of state), phase transformation, crystal reorientation, rate-dependent plasticity, and porosity growth is presented. An implicit numerical technique is used to solve the evolution equations for the material state. Comparisons are made between the model and data for low-strain-rate loading and unloading as well as for heating and cooling experiments. Comparisons of the model and data also are made for low- and high-strain-rate uniaxial stress and uniaxial strain experiments. A uranium-6 weight percent niobium alloy is used in the comparisons of model and experiment.

  16. Approaches to surface complexation modeling of Uranium(VI) adsorption on aquifer sediments

    Science.gov (United States)

    Davis, J.A.; Meece, D.E.; Kohler, M.; Curtis, G.P.

    2004-01-01

    Uranium(VI) adsorption onto aquifer sediments was studied in batch experiments as a function of pH and U(VI) and dissolved carbonate concentrations in artificial groundwater solutions. The sediments were collected from an alluvial aquifer at a location upgradient of contamination from a former uranium mill operation at Naturita, Colorado (USA). The ranges of aqueous chemical conditions used in the U(VI) adsorption experiments (pH 6.9 to 7.9; U(VI) concentration 2.5 ?? 10-8 to 1 ?? 10-5 M; partial pressure of carbon dioxide gas 0.05 to 6.8%) were based on the spatial variation in chemical conditions observed in 1999-2000 in the Naturita alluvial aquifer. The major minerals in the sediments were quartz, feldspars, and calcite, with minor amounts of magnetite and clay minerals. Quartz grains commonly exhibited coatings that were greater than 10 nm in thickness and composed of an illite-smectite clay with occluded ferrihydrite and goethite nanoparticles. Chemical extractions of quartz grains removed from the sediments were used to estimate the masses of iron and aluminum present in the coatings. Various surface complexation modeling approaches were compared in terms of the ability to describe the U(VI) experimental data and the data requirements for model application to the sediments. Published models for U(VI) adsorption on reference minerals were applied to predict U(VI) adsorption based on assumptions about the sediment surface composition and physical properties (e.g., surface area and electrical double layer). Predictions from these models were highly variable, with results overpredicting or underpredicting the experimental data, depending on the assumptions used to apply the model. Although the models for reference minerals are supported by detailed experimental studies (and in ideal cases, surface spectroscopy), the results suggest that errors are caused in applying the models directly to the sediments by uncertain knowledge of: 1) the proportion and types of

  17. On-site transportation and handling of uranium-233 special nuclear material: Preliminary hazards and accident analysis. Final

    International Nuclear Information System (INIS)

    Solack, T.; West, D.; Ullman, D.; Coppock, G.; Cox, C.

    1995-01-01

    U-233 Special Nuclear Material (SNM) currently stored at the T-Building Storage Areas A and B must be transported to the SW/R Tritium Complex for repackaging. This SNM is in the form of oxide powder contained in glass jars which in turn are contained in heat sealed double polyethylene bags. These doubled-bagged glass jars have been primarily stored in structural steel casks and birdcages for approximately 20 years. The three casks, eight birdcages, and one pail/pressure vessel will be loaded onto a transport truck and moved over an eight day period. The Preliminary Hazards and Accident Analysis for the on-site transportation and handling of Uranium-233 Special Nuclear Material, documented herein, was performed in accordance with the format and content guidance of DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, dated July 1994, specifically Chapter Three, Hazard and Accident Analysis. The Preliminary Hazards Analysis involved detailed walkdowns of all areas of the U-233 SNM movement route, including the T-Building Storage Area A and B, T-Building truck tunnel, and the roadway route. Extensive discussions were held with operations personnel from the Nuclear Material Control Group, Nuclear Materials Accountability Group, EG and G Mound Security and the Material Handling Systems Transportation Group. Existing documentation related to the on-site transportation of hazardous materials, T-Building and SW/R Tritium Complex SARs, and emergency preparedness/response documentation were also reviewed and analyzed to identify and develop the complete spectrum of energy source hazards

  18. The computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in Northern Xinjiang, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhengbang, Wang; Mingkuan, Qin; Ruiquan, Zhao; Shenghuang, Tang [Beijing Research Inst. of Uranium Geology, CNNC (China); Baoqun, Wang; Shuangxing, Lin [Geo-prospecting Team No. 216, CNNC (China)

    2001-08-01

    The process of establishment of the model includes following steps: (1) Systematically studying a known typical in-situ leachable sandstone type uranium deposit--Deposit No. 512 in Yili basin, analyzing its controlling factors and establishing its metallogenetic model; (2) Establishing the metallogenetic models of this type of uranium deposit and uranium-bearing area on the basis of comparison study on the deposit No. 512 with the same type uranium deposits in the world; (3) Creating the computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in northern Xinjiang; (4) Determining the standards of giving a evaluation-mark for each controlling factor of in-situ leachable sandstone type uranium deposit and uranium-bearing area; (5) Evaluating uranium potential and prospect of the unknown objective target.

  19. The computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in Northern Xinjiang, China

    International Nuclear Information System (INIS)

    Wang Zhengbang; Qin Mingkuan; Zhao Ruiquan; Tang Shenghuang; Wang Baoqun; Lin Shuangxing

    2001-01-01

    The process of establishment of the model includes following steps: (1) Systematically studying a known typical in-situ leachable sandstone type uranium deposit--Deposit No. 512 in Yili basin, analyzing its controlling factors and establishing its metallogenetic model; (2) Establishing the metallogenetic models of this type of uranium deposit and uranium-bearing area on the basis of comparison study on the deposit No. 512 with the same type uranium deposits in the world; (3) Creating the computerized semi-quantitative comprehensive identification-evaluation model for the large-sized in-situ leachable sandstone type uranium deposits in northern Xinjiang; (4) Determining the standards of giving a evaluation-mark for each controlling factor of in-situ leachable sandstone type uranium deposit and uranium-bearing area; (5) Evaluating uranium potential and prospect of the unknown objective target

  20. Uranium mineralization and unconformities: how do they correlate? - A look beyond the classic unconformity-type deposit model?

    Science.gov (United States)

    Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.

    2010-05-01

    Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier

  1. Radium and heavy metal transport beneath an abandoned uranium tailings dam

    International Nuclear Information System (INIS)

    Jeffery, J.J.; Sinclair, G.; Lowson, R.T.

    1988-09-01

    An abandoned uranium tailings dam at Moline in the Northern Territory of Australia was the site of a study to assess the movement of potentially toxic elements from tailings into subsoil. The tailings at Moline were first laid down in 1959 and have since been leached by prevailing rainfall. Sixteen sampling sites were selected to give a good representation of the dam. At each site, a trench was excavated through the tailings and into the subsoil, then samples of subsoil were taken at 10 cm intervals down to a depth of 50 cm. A sample of the tailings overlying the tailings-subsoil interface was also taken. Samples were analysed for radium, uranium, copper, zinc, and lead. At most sites there was only minor accumulation of these elements in the 0-10 cm subsoil layer immediately below the interface, with concentrations typically one or two orders of magnitude less than the concentrations in overlying tailings. Below 10 cm, the concentrations were typically at or close to background concentrations

  2. Uncertainty associated with selected environmental transport models

    International Nuclear Information System (INIS)

    Little, C.A.; Miller, C.W.

    1979-11-01

    A description is given of the capabilities of several models to predict accurately either pollutant concentrations in environmental media or radiological dose to human organs. The models are discussed in three sections: aquatic or surface water transport models, atmospheric transport models, and terrestrial and aquatic food chain models. Using data published primarily by model users, model predictions are compared to observations. This procedure is infeasible for food chain models and, therefore, the uncertainty embodied in the models input parameters, rather than the model output, is estimated. Aquatic transport models are divided into one-dimensional, longitudinal-vertical, and longitudinal-horizontal models. Several conclusions were made about the ability of the Gaussian plume atmospheric dispersion model to predict accurately downwind air concentrations from releases under several sets of conditions. It is concluded that no validation study has been conducted to test the predictions of either aquatic or terrestrial food chain models. Using the aquatic pathway from water to fish to an adult for 137 Cs as an example, a 95% one-tailed confidence limit interval for the predicted exposure is calculated by examining the distributions of the input parameters. Such an interval is found to be 16 times the value of the median exposure. A similar one-tailed limit for the air-grass-cow-milk-thyroid for 131 I and infants was 5.6 times the median dose. Of the three model types discussed in this report,the aquatic transport models appear to do the best job of predicting observed concentrations. However, this conclusion is based on many fewer aquatic validation data than were availaable for atmospheric model validation

  3. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    International Nuclear Information System (INIS)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-01-01

    An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  4. Effect of the Changes of Respiratory Tract Model on the Uranium Bioassay Data

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Taeeun; Noh, Siwan; Kim, Meeryeong; Lee, Jaiki [Hanyang Univ., Seoul (Korea, Republic of); Lee, Jongil; Kim, Jang Lyul [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The HRTM, however, was revised based on the recent experimental data in OIR (Occupational Intakes of Radionuclides) draft report of ICRP. The changes of respiratory tract model are predicted to directly affect bioassay data like retention and excretion functions. Lung retention function is especially important to internal exposure assessment for workers related to fuel manufacturing because the place could be contaminated by uranium. In addition, faecel samples are recommended to be used for in-vitro bioassay of uranium because of very slow excretion via urine. More reliable assessments for the workers in fuel manufacturing could be achieved by recalculation of bioassay data for uranium and the comparing study using original and revised HRTM. In this study, therefore, the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were recalculated using revised HRTM and the results were compared with those of original HRTM. In this study the lung retention and faecal excretion functions for inhalation of UO{sub 2} and U{sub 3}O{sub 8} were calculated based on original and revised HRTM. The results show that the revised HRTM increases lung retention and uptakes to alimentary tract which cause the more faecal excretion. The results in this study confirm the effect of the changes of respiratory tract model on the uranium bioassay data although the more study is needed to apply to practical fields.

  5. A Point Kinetics Model for Estimating Neutron Multiplication of Bare Uranium Metal in Tagged Neutron Measurements

    Science.gov (United States)

    Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.

    2017-07-01

    An extension of the point kinetics model is developed to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If the detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. The spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.

  6. Transport properties site descriptive model. Guidelines for evaluation and modelling

    International Nuclear Information System (INIS)

    Berglund, Sten; Selroos, Jan-Olof

    2004-04-01

    This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of

  7. Thermal model of spent fuel transport cask

    International Nuclear Information System (INIS)

    Ahmed, E.E.M.; Rahman, F.A.; Sultan, G.F.; Khalil, E.E.

    1996-01-01

    The investigation provides a theoretical model to represent the thermal behaviour of the spent fuel elements when transported in a dry shipping cask under normal transport conditions. The heat transfer process in the spent fuel elements and within the cask are modeled which include the radiant heat transfer within the cask and the heat transfer by thermal conduction within the spent fuel element. The model considers the net radiant method for radiant heat transfer process from the inner most heated element to the surrounding spent elements. The heat conduction through fuel interior, fuel-clad interface and on clad surface are also presented. (author) 6 figs., 9 refs

  8. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  9. Development of Pneumatic Transport System (PTS) for safe handling of uranium oxide powder in UMP/UED

    International Nuclear Information System (INIS)

    Manna, S.; Satpati, S.K.; Roy, S.B.

    2009-01-01

    Tonnage quantity radioactive uranium oxide powder of particle size sub micron to 100 micron is handled in Uranium Metal Plant (UMP), UED/BARC for production of nuclear grade uranium metal, required for fuelling research reactors - Dhruva and Cirus. A Pneumatic Transfer System (PTS) using vacuum has been introduced and is being used for handling radioactive powder to improve radiation protection

  10. Potential uses of genetic geological modelling to identify new uranium provinces

    International Nuclear Information System (INIS)

    Finch, W.I.

    1982-01-01

    Genetic-geological modelling is the placing of the various processes of the development of a uranium province into distinct stages that are ordered chronologically and made part of a matrix with corresponding geologic evidence. The models can be applied to a given region by using one of several methods to determine a numerical favorability rating. Two of the possible methods, geologic decision analysis and an oil-and-gas type of play analysis, are briefly described. Simplified genetic models are given for environments of the quartz-pebble conglomerate, unconformity-related vein, and sandstone types of deposits. Comparison of the genetic models of these three sedimentary-related environments reveals several common attributes that may define a general uranium province environment

  11. Clinton River Sediment Transport Modeling Study

    Science.gov (United States)

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  12. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2001-01-01

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada

  13. Regional transport model of atmospheric sulfates

    International Nuclear Information System (INIS)

    Rao, K.S.; Thomson, I.; Egan, B.A.

    1977-01-01

    As part of the Sulfate Regional Experiment (SURE) Design Project, a regional transport model of atmospheric sulfates has been developed. This quasi-Lagrangian three-dimensional grid numerical model uses a detailed SO 2 emission inventory of major anthropogenic sources in the Eastern U.S. region, and observed meteorological data during an episode as inputs. The model accounts for advective transport and turbulent diffusion of the pollutants. The chemical transformation of SO 2 and SO 4 /sup =/ and the deposition of the species at the earth's surface are assumed to be linear processes at specified constant rates. The numerical model can predict the daily average concentrations of SO 2 and SO 4 /sup =/ at all receptor locations in the grid region during the episode. Because of the spatial resolution of the grid, this model is particularly suited to investigate the effect of tall stacks in reducing the ambient concentration levels of sulfur pollutants. This paper presents the formulations and assumptions of the regional sulfate transport model. The model inputs and results are discussed. Isopleths of predicted SO 2 and SO 4 /sup =/ concentrations are compared with the observed ground level values. The bulk of the information in this paper is directed to air pollution meteorologists and environmental engineers interested in the atmospheric transport modeling studies of sulfur oxide pollutants

  14. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  15. Geophysical and geochemical regional evaluation and geophysical model for uranium exploration in the western part of Yanliao region

    International Nuclear Information System (INIS)

    Liu Tengyao; Cui Huanmin; Chen Guoliang; Zhai Yugui

    1992-01-01

    The western part of Yanliao region is an important uranium metallogenic region. This paper summarizes the regional geophysical model for uranium exploration composed of prediction model for favourable area of mineralization and evaluation model for anomalies on the basis of aeromagnetic and aeroradiometric data interpretation and analysis of the data from carborane and ground gamma spectrometric survey, high accurate magnetic survey, VLF survey and α-collected film survey in mult-displiary research work. The prospective prediction for uranium metallogenesis in this region was also conducted

  16. Radionuclide Transport Models Under Ambient Conditions

    International Nuclear Information System (INIS)

    Moridis, G.; Hu, Q.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  17. Modelling of uranium inputs and its fate in soil; Modellierung von Uraneintraegen aus Duengern und ihr Verbleib im Boden

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, M. [Bundesamt fuer Strahlenschutz, Berlin (Germany); Urso, L. [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany)

    2016-07-01

    87 % of mineral phosphate fertilizers are produced of sedimentary rock phosphate, which generally contains heavy metals, like uranium. The solution and migration behavior of uranium is apart from its redox ratio, determined by its pH conditions as well as its ligand quality and quantity. A further important role in sorption is played by soil components like clay minerals, pedogenic oxides and soil organic matter. To provide a preferably detailed speciation model of U in soil several physical and chemical components have to be included to be able to state distribution coefficients (k{sub D}) and sorption processes. The model of Hormann and Fischer served as the basis of modelling uranium mobility in soil by using the program PhreeqC. The usage of real soil and soil water measurements may contribute to identify factors and processes influencing the mobility of uranium under preferably realistic conditions. Additionally, the assessment of further predictions towards uranium migration in soil can be made based on a modelling with PhreeqC. The modelling of uranium inputs and its fate in soil can help to elucidate the human caused occurrence or geogenic origin of uranium in soil.

  18. The modelling of the uranium-leaching and ion-exchange processes of the Hartebeestfontein Gold Mine and its role in economic plant operation

    International Nuclear Information System (INIS)

    Broekman, B.R.; Ward, B.

    1985-01-01

    Computer facilities available in the Metallurgical Department at Hartebeestfontein Gold Mine have enabled the research staff to develope complex, practical mathematical models of their uranium hydrometallurgical processes. Empirical models of uranium leaching, uranium loading on resin and redox potential in leach liquors are discussed. These models, developed with non-linear regression techniques, form the basis of an over all mathematical model for a uranium plant. The most economic operating conditions can be predicted for specific prices of uranium and reagents. Substantial profit improvements have been achieved as a result of the changes in the process and equipment that have been made

  19. 36Cl production in situ, and groundwater transport in a uranium ore deposit

    International Nuclear Information System (INIS)

    Cornett, R.J.; Andrews, H.R.; Brown, R.M.; Chant, L.A.; Cramer, J.; Davies, W.G.; Greiner, B.F.; Imahori, Y.; Koslowsky, V.T.; McKay, J.W.; Milton, G.M.; Milton, J.D.C.

    1992-01-01

    The authors have used AMS to measure 36 Cl concentrations produced in situ in ore and in groundwater within the 1.3 billion year old Cigar Lake uranium ore deposit. 36 Cl concentrations are up to 300 times higher in the ore zone than in the surrounding aquifer. Based on 36 Cl ingrowth, the authors calculate the residence time of water within the ore zone to be 100,000 to 300,000 years. Since the geologic setting of this deposit is a very close natural analogue to a proposed nuclear fuel waste repository, this analysis demonstrates that natural geological barriers can effectively isolate mobile radionuclides from an open, regional groundwater flow system over millennia

  20. Organ burdens and excretion rates of inhaled uranium - computations using ICRP model

    International Nuclear Information System (INIS)

    Abani, M.C.; Murthy, K.B.S.; Sunta, C.M.

    1988-01-01

    Uranium being a highly toxic material, proper estimation of the body burden is very important. During manufacture of uranium fuel, it is likely to enter the body by inhalation. By the body burden and excretion measurements, one should be able to assess whether the intake is within the safe limits or not. This is possible if one performs theoretical calculations and estimates the amount of uranium which builds up in the body as a function of time. Similarly theoretical estimates in case of excretion have to be made. For this purpose, a computer programme has been developed to find out organ burdens and excretion rates resulting from exposure to a radioactive nuclide. ICRP-30 lung model has been used and cases of single instantaneous inhalation of 1 ALI as well as inhalation at a steady rate of ALI/365 per day have been considered. Using this programme, results for uranium aerosols of classes D, W and Y and sizes 0.2, 1 and 5 microns are generated by ND computers in tabular as well as graphical forms. These will be useful in conjunction with body burden measurements by direct counting or excretion analysis. (author). 7 tabs., 56 figs

  1. Revised uranium--plutonium cycle PWR and BWR models for the ORIGEN computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; Bjerke, M.A.; Morrison, G.W.; Petrie, L.M.

    1978-09-01

    Reactor physics calculations and literature searches have been conducted, leading to the creation of revised enriched-uranium and enriched-uranium/mixed-oxide-fueled PWR and BWR reactor models for the ORIGEN computer code. These ORIGEN reactor models are based on cross sections that have been taken directly from the reactor physics codes and eliminate the need to make adjustments in uncorrected cross sections in order to obtain correct depletion results. Revised values of the ORIGEN flux parameters THERM, RES, and FAST were calculated along with new parameters related to the activation of fuel-assembly structural materials not located in the active fuel zone. Recommended fuel and structural material masses and compositions are presented. A summary of the new ORIGEN reactor models is given

  2. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  3. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  4. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  5. Experimental study and kinetic modeling of the hydro-fluorination of uranium dioxide

    International Nuclear Information System (INIS)

    Pages, Simon

    2014-01-01

    A kinetic study of hydro-fluorination of uranium dioxide was performed between 375 and 475 C under partial pressures of HF between 42 and 720 mbar. The reaction was followed by thermogravimetry in isothermal and isobaric conditions. The kinetic data obtained coupled with a characterization of the powder before, during and after reaction by SEM, EDS, BET and XRD showed that the powder grains of UO 2 are transformed according a model of instantaneous germination, anisotropic growth and internal development. The rate limiting step of the growth process is the diffusion of HF in the UF 4 layer. A mechanism of growth of the UF 4 layer has been proposed. In the temperature and pressure range studied, the reaction is of first order with respect to HF and follows an Arrhenius law. A rate equation was determined and used to perform kinetic simulations which have shown a very good correlation with experience. Coupling of this rate equation with heat and mass transport phenomena allowed to perform simulations at the scale of a powder's agglomerate. They have shown that some structures of agglomerates influence the rate of diffusion of the gases in the porous medium and thereby influence the reaction rate. Finally kinetic simulations on powder's beds and pellets were carried out and compared with experimental rates. The experimental and simulated kinetic curves have the same paces, but improvements in the simulations are needed to accurately predict rates: the coupling between the three scales (grain, agglomerate, oven) would be a good example. (author) [fr

  6. Models in Planning Urban Public Passenger Transport

    Directory of Open Access Journals (Sweden)

    Gordana Štefančić

    2007-07-01

    Full Text Available The solving of complex problems in public transport requiresthe usage of models that are based on the estimate of demandin planning the transport routes. The intention is to predictwhat is going to happen in the future, if the proposed solutionsare implemented. In the majority of cases, the publictransport system is formed as a network and stored in the computermemory in order to start the evaluation process by specifYingthe number of trip origins and destinations in each zone.The trip distribution model which is used to calculate the numberof trips between each pair in the zone is based on the overalltravel frictions from zone to zone.

  7. Transport of the reactive substances eosin, uranium and lithium in a heterogeneous aquifer; Transport der reaktiven Stoffe Eosin, Uranin und Lithium in einem heterogenen Grundwasserleiter

    Energy Technology Data Exchange (ETDEWEB)

    Doering, U.

    1997-02-01

    To predict the movement of a contaminant plume in an aquifer is still a task of great uncertainty. This uncertainty is generally attributed to an insufficient understanding of the chemical reaction processes and/or to the natural aquifer heterogeneities. In an integrated approach of field experiments, laboratory experiments and numerical simulations, the transport of the weakly reactive solutes eosin, uranin and lithium was investigated at a test site near the Research Center in Juelich. The field scale transport behavior of the solutes was studied by large scale tracer tests. To characterize aquifer heterogeneities, in-situ and laboratory measurements were performed. In-situ measurements covered about 1500 flowmeter measurements and 90 determinations of the groundwater flow velocity by the borehole method. The spatial variability of hydraulic and physico-chemical parameters was further determined on 400 sediment samples. These parameters included: Grain size distribution, calculated hydraulic conductivity, unconformity and as physico-chemical parameters the organic carbon content, specific surface and the cation exchange capacity. Furthermore sorption coefficients were measured on 75 sediment samples for uranium and lithium. The statistical evaluation of these data showed that the hydraulic heterogeneity was larger but in the same order of magnitude as the physico-chemical parameters. (orig./SR) [Deutsch] Eine Schadstoff-Ausbreitung im Grundwasser vorherzusagen, ist noch immer eine Aufgabe mit unsicherem Ergebnis. Diese Prognose-Unsicherheiten werden im Allgemeinen auf ein unzureichendes Verstaendnis der chemischen Reaktionsprozesse und/oder auf die natuerliche Heterogenitaet des Grundwasserleiters zurueckgefuehrt. In dem hier beschriebenen Forschungsprojekt, das Feldversuche, Laborversuche und numerische Simulationen integriert, wurde der Transport der schwach reaktiven Substanzen Eosin, Uranin und Lithium auf einem Versuchsgelaende nahe des Forschungszentrums

  8. Modelling of activity transport in PHWR

    International Nuclear Information System (INIS)

    Veena, S.N.; Rangarajan, S.; Narasimhan, S.V.; Horvath, G.L.

    2000-01-01

    The modelling of mass and activity transport in PHWR is of importance in predicting the build up of radiation field in and around the Primary Heat Transport system which will consequently help in planning the Dilute Chemical Decontamination and man rem budgeting. Modeling also helps in understanding the different parameters controlling the transport behaviour. Some of the important parameters include coolant chemistry like pH, physical parameters like temperature, the nature of the corrosion film and hence the effect of passivation techniques. VVER code for activity transport uses six nodes for the primary system and is essentially devised for stainless steel system. In the present work though based on this model, major modifications have been incorporated to suit the PHWR conditions. In the code, the PHT system of PHWR is suitably divided into 14 nodes, 5 in-core and 9 out of core nodes based on material and heat transfer properties. This paper describes the mechanisms involved in the various processes like generation of corrosion products, their release as well as their transport into the primary coolant, the activation of inactive corrosion product nuclides and the build up of radiation field due to 60 Co around the PHT system. (author)

  9. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    Science.gov (United States)

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  10. Multi-compartment Aerosol Transport Model

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Joshua Allen; Santarpia, Joshua; Brotherton, Christopher M.; Omana, Michael Alexis; Rivera, Danielle; Lucero, Gabriel Anthony

    2017-06-01

    A simple aerosol transport model was developed for a multi-compartmented cleanroom. Each compartment was treated as a well-mixed volume with ventilating supply and return air. Gravitational settling, intercompartment transport, and leakage of exterior air into the system were included in the model. A set of first order, coupled, ordinary differential equations was derived from the conservation equations of aerosol mass and air mass. The system of ODEs was then solved in MATLAB using pre-existing numerical methods. The model was verified against cases of (1) constant inlet-duct concentration, and (2) exponentially decaying inlet-duct concentration. Numerical methods resulted in normalized error of less than 10 -9 when model solutions were compared to analytical solutions. The model was validated against experimental measurements from a single field test and showed good agreement in the shape and magnitude of the aerosol concentration profile with time.

  11. U(VI) speciation and reduction in acid chloride fluids in hydrothermal conditions: from transport to deposition of uranium in unconformity-related deposits

    International Nuclear Information System (INIS)

    Dargent, Maxime

    2014-01-01

    Circulations of acidic chloride brines in the earth's crust are associated with several types of uranium deposits, particularly unconformity-related uranium (URU) deposits. The spectacular high grade combined with the large tonnage of these deposits is at the origin of the key questions concerning the geological processes responsible for U transport and precipitation. The aim of this work is to performed experimental studies of U(VI) speciation and its reduction to U(IV) subsequently precipitation to uraninite under hydrothermal condition. About uranium transport, the study of U(VI) speciation in acidic brines at high temperature is performed by Raman and XAS spectroscopy, showing the coexistence of several uranyl chloride complexes UO 2 Cl n 2-n (n = 0 - 5). From this study, complexation constants are proposed. The strong capability of chloride to complex uranyl is at the origin of the transport of U(VI) at high concentration in acidic chloride brines. Concerning uranium precipitation, the reactivity of four potential reductants under conditions relevant for URU deposits genesis is investigated: H 2 , CH 4 , Fe(II) and the C-graphite. The kinetics of reduction reaction is measured as a function of temperature, salinity, pH and concentration of reductant. H 2 , CH 4 , and the C-graphite are very efficient while Fe(II) is not able to reduce U(VI) in same conditions. The duration of the mineralizing event is controlled by (i) the U concentration in the ore-forming fluids and (ii) by the generation of gaseous reductants, and not by the reduction kinetics. These mobile and efficient gaseous reductant could be at the origin of the extremely focus and massive character of ore in URU deposits. Finally, first partition coefficients uraninite/fluid of trace elements are obtained. This last part opens-up new perspectives on (i) REE signatures interpretation for a given type of uranium deposit (ii) and reconstruction of mineralizing fluids composition. (author) [fr

  12. Numerical models of groundwater flow and transport

    International Nuclear Information System (INIS)

    Konikow, L.F.

    1996-01-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs

  13. Numerical models of groundwater flow and transport

    Energy Technology Data Exchange (ETDEWEB)

    Konikow, L F [Geological Survey, Reston, VA (United States)

    1996-10-01

    This chapter reviews the state-of-the-art in deterministic modeling of groundwater flow and transport processes, which can be used for interpretation of isotope data through groundwater flow analyses. Numerical models which are available for this purpose are described and their applications to complex field problems are discussed. The theoretical bases of deterministic modeling are summarized, and advantages and limitations of numerical models are described. The selection of models for specific applications and their calibration procedures are described, and results of a few illustrative case study type applications are provided. (author). 145 refs, 17 figs, 2 tabs.

  14. Genetic models and their impact on uranium exploration in the Athabasca sandstone basin, Saskatchewan, Canada

    International Nuclear Information System (INIS)

    Strnad, J.G.

    1980-01-01

    While the Beaverlodge area of Northern Saskatchewan became an important uranium-producing district during the 1950s, the Athabasca sandstone basin, located in the immediate vicinity, was considered to be non-prospective in Canada's regional assessment. Twenty years later, with the introduction of the supergene model into the basin's exploration strategy, the favourability of the host-rock for uranium deposits was shown. However, in some instances the search for local targets was enriched by implementing non-supergene models. Most geologists originally favoured the Middle Proterozoic (sub-Helikian) unconformity as a unique ore-controlling feature. Later, the concept of Lower Proterozoic (Aphebian) syngenetic protore, as represented by graphite-bearing strata in Archaean proximity, was added. In the author's view the combination of these factors is productive only within specialized segments of Archaean-Lower Proterozoic (Archaean-Aphebian) contact zones. (author)

  15. Studying uranium migration in natural environment: experimental approach and geochemical modeling

    International Nuclear Information System (INIS)

    Phrommavanh, V.

    2008-10-01

    The present study deals with characterizing uranium migration in a limited zone of Le Bouchet site, a former uranium ore treatment facility, which is dismantled and the rehabilitation of which is under process. Some wastes are packed in a rehabilitated disposal nearby, called the Itteville site. In the framework of the monitoring of the deposit environment (air, water, sediment) set by prefectorial decrees, a piezometer (PZPK) located downstream to the latter, has shown total dissolved uranium peaks each winter since the 1990's. PZPK collects both the interstitial water of a calcareous peat formation, between the surface and 3 m, and an alluvial aquifer near 6 m of depth. Firstly, a hydrogeochemical characterization of the site has evidenced the uranium source term, which is present in the peat soil near 0.8 m, hence excluding any leaching from the waste disposal. Actually, a few microparticles of uranium oxide and mixed uranium-thorium oxide have been detected, but they do not represent the major part of the source term. Secondly, water chemistry of the peat soil water and PZPK has been monitored every two months from 2004 to 2007 in order to understand the reasons of the seasonal fluctuations of [U]tot.diss.. Completed with geochemical modeling and a bacterial identification by 16S rDNA sequence analysis, water chemistry data showed an important sulfate-reducing bacterial activity in summertime, leading to reducing conditions and therefore, a total dissolved uranium content limited by the low solubility of uraninite U IV O 2 (s). In wintertime, the latter bacterial activity being minimal and the effective pluviometry more important, conditions are more oxidant, which favors U(VI), more soluble, notably as the Ca 2 UO 2 (CO 3 ) 3 (aq) complex, evidenced by TRLFS. Finally, bacterial activity has been reproduced in laboratory in order to better characterize its impact on uranium solubility in the peat soil. Various parameters were tested (C sources, temperature

  16. Uranium deposits of Gabon and Oklo reactors. Metallogenic model for rich deposits of the lower proterozoic

    International Nuclear Information System (INIS)

    Gauthier-Lafaye, F.

    1986-05-01

    The geology of the Franceville basin (Gabon) is examined: stratigraphy, tectonics and geodynamics. The mobile zone of the Ogooue is specially studied: lithology, metamorphism and tectonics, isotopic geochronologic data are given. The different uranium deposits are described. A whole chapter is devoted to the study of Oklo natural nuclear reactor. A metallogenic model is proposed evidencing conditions required for deposit genesis. Tectonics, microstructures sedimentology, organic matter, diagenesis and uraniferous mineralizations are examined [fr

  17. Logistics Chains in Freight Transport Modelling

    NARCIS (Netherlands)

    Davydenko, I.Y.

    2015-01-01

    The flow of trade is not equal to transport flows, mainly due to the fact that warehouses and distribution facilities are used as intermediary stops on the way from production locations to the points of consumption or further rework of goods. This thesis proposes a logistics chain model, which

  18. Neutral gas transport modeling with DEGAS 2

    International Nuclear Information System (INIS)

    Karney, C.; Stotler, D.

    1993-01-01

    The authors are currently re-writing the neutral gas transport code, DEGAS, with a view to making it both faster and easier to include new physics. They present model calculations including ionization and charge exchange illustrating the way that reactions are included into DEGAS 2 and its operation on a distributed network of workstations

  19. Climate impact of transportation A model comparison

    NARCIS (Netherlands)

    Girod, B.; Vuuren, D.P. van; Grahn, M.; Kitous, A.; Kim, S.H.; Kyle, P.

    2013-01-01

    Transportation contributes to a significant and rising share of global energy use and GHG emissions. Therefore modeling future travel demand, its fuel use, and resulting CO2 emission is highly relevant for climate change mitigation. In this study we compare the baseline projections for global

  20. Unreliability effects in public transport modelling.

    NARCIS (Netherlands)

    van Oort, Niels; Brands, Ties; de Romph, Erik; Aceves Flores, Jessica

    2015-01-01

    Nowadays, transport demand models do not explicitly evaluate the impacts of service reliability of transit. Service reliability of transit systems is adversely experienced by users, as it causes additional travel time and unsecure arrival times. Because of this, travellers are likely to perceive a

  1. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  2. Glucose transport machinery reconstituted in cell models.

    Science.gov (United States)

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it.

  3. Manual on safe production, transport, handling and storage of uranium hexafluoride

    International Nuclear Information System (INIS)

    1994-11-01

    This document includes a description of the physical, chemical and radiological properties of UF 6 and related products, including information concerning their production, handling, storage and transportation and the management of the wastes which result. All the operations of UF 6 management are considered form a safety point of view. The IAEA organized a series of meetings to consider the hazards of UF 6 transport since considerable quantities of depleted, natural and enriched UF 6 are transported between nuclear fuel sites. Storage of depleted UF 6 is another important issue. Factors affecting long term storage are presented, especially site choice and cylinder corrosion. Other topics such as waste management, quality assurance and emergency preparedness which contribute to the overall safety of UF 6 handling, are included. The intention of this document is to provide analysis of the safety implications of all stages of UF 6 operations and to draw attention to specific features and properties of importance. 38 refs, figs, tabs

  4. Cumulus parameterizations in chemical transport models

    Science.gov (United States)

    Mahowald, Natalie M.; Rasch, Philip J.; Prinn, Ronald G.

    1995-12-01

    Global three-dimensional chemical transport models (CTMs) are valuable tools for studying processes controlling the distribution of trace constituents in the atmosphere. A major uncertainty in these models is the subgrid-scale parametrization of transport by cumulus convection. This study seeks to define the range of behavior of moist convective schemes and point toward more reliable formulations for inclusion in chemical transport models. The emphasis is on deriving convective transport from meteorological data sets (such as those from the forecast centers) which do not routinely include convective mass fluxes. Seven moist convective parameterizations are compared in a column model to examine the sensitivity of the vertical profile of trace gases to the parameterization used in a global chemical transport model. The moist convective schemes examined are the Emanuel scheme [Emanuel, 1991], the Feichter-Crutzen scheme [Feichter and Crutzen, 1990], the inverse thermodynamic scheme (described in this paper), two versions of a scheme suggested by Hack [Hack, 1994], and two versions of a scheme suggested by Tiedtke (one following the formulation used in the ECMWF (European Centre for Medium-Range Weather Forecasting) and ECHAM3 (European Centre and Hamburg Max-Planck-Institut) models [Tiedtke, 1989], and one formulated as in the TM2 (Transport Model-2) model (M. Heimann, personal communication, 1992). These convective schemes vary in the closure used to derive the mass fluxes, as well as the cloud model formulation, giving a broad range of results. In addition, two boundary layer schemes are compared: a state-of-the-art nonlocal boundary layer scheme [Holtslag and Boville, 1993] and a simple adiabatic mixing scheme described in this paper. Three tests are used to compare the moist convective schemes against observations. Although the tests conducted here cannot conclusively show that one parameterization is better than the others, the tests are a good measure of the

  5. Double-layer structure model of the uranium generating bed in the land basins of the northwestern China and its significance

    International Nuclear Information System (INIS)

    Wang Zhilong

    1988-04-01

    The paper puts forward a double layer structure model of uranium generating bed in the land basins of Northwestern China, i.e. uranium ganerating bed = source layer of uranium+gathering uranium layer. The mechanism of its formation: Feldspar was hydromicatized. Some feldspar, quarts detrital silicate minerals were replaced to redden by the authigenesis of hematite and goethite. In the course of the oxidation, a little uranium is released from the detrital minerals. Because of the oxidation environment, the released uranium wasn't able to be precipitated, only to diffuse to the adjacent grey bed which has low Eh value with uranium-bearing 'stagnant water' fixed in pores during the dewatering process of the diagenesis and form minable uranium deposit. The significance of the model for uranium prospecting are as follows: (1) Uranium source range is much expanded concerning ruanium prospecting in sandstone. (2) For the potential assessment of basin and the selection of potential area, the model is an important prospecting criterion. (3) By using the main criterion uranium-generating bed-arkosic red beds well, the buried ore bodies can be found provided that arkosic red beds were regarded as a significant criterion of uranium-generating bed

  6. Three dimensional transport model for toroidal plasmas

    International Nuclear Information System (INIS)

    Copenhauer, C.

    1980-12-01

    A nonlinear MHD model, developed for three-dimensional toroidal geometries (asymmetric) and for high β (β approximately epsilon), is used as a basis for a three-dimensional transport model. Since inertia terms are needed in describing evolving magnetic islands, the model can calculate transport, both in the transient phase before nonlinear saturation of magnetic islands and afterwards on the resistive time scale. In the β approximately epsilon ordering, the plasma does not have sufficient energy to compress the parallel magnetic field, which allows the Alfven wave to be eliminated in the reduced nonlinear equations, and the model then follows the slower time scales. The resulting perpendicular and parallel plasma drift velocities can be identified with those of guiding center theory

  7. Uranium Resources Modeling And Estimation In Lembah Hitam Sector, Kalan, West Kalimantan

    International Nuclear Information System (INIS)

    Adi Gunawan Muhammad; Bambang Soetopo

    2016-01-01

    Lembah Hitam Sector is part of Schwaner Mountains and Kalan Basin upper part stratigraphy. Uranium (U) mineralization layer is associated with metasiltstone and metapelites schistose heading to N 265° E/60° S. Evaluation drilling carried out with a distance of 50 m from an existing point (FKL 14 and FKL 13) to determine the model and the amount of U resources in measured category. To achieve these objectives some activities including reviewing the previous studies, geological and U mineralization data collecting, grades quantitative estimation using log gross-count gamma ray, database and modeling creation and resource estimation of U carried out. Based on modeling on ten drilling data and completed with drilled core observation, the average grade of U mineralization in Lembah Hitam Sector obtained. The average grade is ranging from 0.0076 - 0.95 % eU_3O_8, with a thickness of mineralization ranging from 0.1 - 4.5 m. Uranium mineralization present as fracture filling (veins) or groups of veins and as matrix filling in tectonic breccia, associated with pyrite, pyrrhotite, magnetite, molybdenite, tourmaline and quartz in metasiltstone and metapelites schistose. Calculation of U resources to 26 ores body using 25 m searching radius resulted in 655.65 tons ores. By using 0.01 % cut-off grade resulted in 546.72 tons ores with an average grade 0.101 % eU_3O_8. Uranium resource categorized as low-grade measured resources. (author)

  8. Modelling soil transport by wind in drylands

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1994-01-01

    Understanding the movement of windblown soil particles and the resulting formation of complex surface features are among the most intriguing problems in dryland research. This understanding can only be achieved trough physical and mathematical modelling and must also involve observational data and laboratory experiments. Some current mathematical models that have contributed to the basic understanding of the transportation and deposition of soil particles by wind are presented and solved in these notes. (author). 26 refs, 5 figs

  9. European initiatives for modeling emissions from transport

    DEFF Research Database (Denmark)

    Joumard, Robert; Hickman, A. John; Samaras, Zissis

    1998-01-01

    In Europe there have been many cooperative studies into transport emission inventories since the late 80s. These cover the scope of CORINAIR program involving experts from seven European Community laboratories addressing only road transport emissions at national level. These also include the latest...... covered are the composition of the vehicle fleets, emission factors, driving statistics and the modeling approach. Many of the European initiatives aim also at promoting further cooperation between national laboratories and at defining future research needs. An assessment of these future needs...... is presented from a European point of view....

  10. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  11. Symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W.

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted

  12. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  13. Molecular modeling of auxin transport inhibitors

    International Nuclear Information System (INIS)

    Gardner, G.; Black-Schaefer, C.; Bures, M.G.

    1990-01-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for [ 3 H]NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections

  14. Model prodrugs for the intestinal oligopeptide transporter

    DEFF Research Database (Denmark)

    Nielsen, C U; Andersen, R; Brodin, Birger

    2001-01-01

    The human intestinal di/tri-peptide carrier, hPepT1, has been suggested as a target for increasing intestinal transport of low permeability compounds by creating prodrugs designed for the transporter. Model ester prodrugs using the stabilized dipeptides D-Glu-Ala and D-Asp-Ala as pro...... with a pH of approximately 6.0, but still release the model drug at the intercellular and blood pH of approximately 7.4. Even though benzyl alcohol is not a low molecular weight drug molecule, these results indicate that the dipeptide prodrug principle is a promising drug delivery concept. However......, the physico-chemical properties such as electronegativity, solubility, and log P of the drug molecule may also have an influence on the potential of these kinds of prodrugs. The purpose of the present study is to investigate whether the model drug electronegativity, estimated as Taft substitution parameter...

  15. Development and application of model RAIA uranium on-line analyser

    International Nuclear Information System (INIS)

    Dong Yanwu; Song Yufen; Zhu Yaokun; Cong Peiyuan; Cui Songru

    1999-01-01

    The working principle, structure, adjustment and application of model RAIA on-line analyser are reported. The performance of this instrument is reliable. For identical sample, the signal fluctuation in continuous monitoring for four months is less than +-1%. According to required measurement range, appropriate length of sample cell is chosen. The precision of measurement process is better than 1% at 100 g/L U. The detection limit is 50 mg/L. The uranium concentration in process stream can be displayed automatically and printed at any time. It presents 4∼20 mA current signal being proportional to the uranium concentration. This makes a long step towards process continuous control and computer management

  16. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    International Nuclear Information System (INIS)

    Williams, R.W.; Gaffney, A.M.; Kristo, M.J.; Hutcheon, I.D.

    2009-01-01

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the 230 Th- 234 U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial 230 Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U 3 O 8 ) may be assumed with confidence. We present here 230 Th- 234 U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history

  17. Uranium fission track length distribution modelling for retracing chronothermometrical history of minerals

    International Nuclear Information System (INIS)

    Rebetez, M.

    1987-01-01

    Spontaneous fission of uranium 238 isotope contained in certain minerals creates damage zones called latent tracks, that can be etched chemically. The observation of these etched tracks and the measurement of their characteristics using an optical microscope are the basis of several applications in the domain of the earth sciences. First, the determination of their densities permits dating a mineral and establishing uranium mapping of rocks. Second, the measurement of their lengths can be a good source of information for retracing the thermal and tectonic history of the sample. The study of the partial annealing of tracks in apatite appears to be the ideal indicator for the evaluation of petroleum potential of a sedimentary basin. To allow the development of this application, it is necessary to devise a theoretical model of track length distributions. The model which is proposed takes into account the most realistic hypotheses concerning registration, etching and observation of tracks. The characteristics of surface tracks (projected lengths, depths, inclination angles, real lengths) and confined tracks (Track IN Track and Track IN Cleavage) are calculated. Surface tracks and confined tracks are perfectly complementary for chrono-thermometric interpretation of complex geological histories. The method is applied to the case of two samples with different tectonic history, issued from the cretaceous alcalin magmatism from the Pyrenees (Bilbao, Spain). A graphic method of distribution deconvolution is proposed. Finally, the uranium migration, depending on the hydrothermal alteration, is studied on the granite from Auriat (France) [fr

  18. 230Th-234U Model-Ages of Some Uranium Standard Reference Materials

    Energy Technology Data Exchange (ETDEWEB)

    Williams, R W; Gaffney, A M; Kristo, M J; Hutcheon, I D

    2009-05-28

    The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumption of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.

  19. Fractional diffusion models of nonlocal transport

    International Nuclear Information System (INIS)

    Castillo-Negrete, D. del

    2006-01-01

    A class of nonlocal models based on the use of fractional derivatives (FDs) is proposed to describe nondiffusive transport in magnetically confined plasmas. FDs are integro-differential operators that incorporate in a unified framework asymmetric non-Fickian transport, non-Markovian ('memory') effects, and nondiffusive scaling. To overcome the limitations of fractional models in unbounded domains, we use regularized FDs that allow the incorporation of finite-size domain effects, boundary conditions, and variable diffusivities. We present an α-weighted explicit/implicit numerical integration scheme based on the Grunwald-Letnikov representation of the regularized fractional diffusion operator in flux conserving form. In sharp contrast with the standard diffusive model, the strong nonlocality of fractional diffusion leads to a linear in time response for a decaying pulse at short times. In addition, an anomalous fractional pinch is observed, accompanied by the development of an uphill transport region where the 'effective' diffusivity becomes negative. The fractional flux is in general asymmetric and, for steady states, it has a negative (toward the core) component that enhances confinement and a positive component that increases toward the edge and leads to poor confinement. The model exhibits the characteristic anomalous scaling of the confinement time, τ, with the system's size, L, τ∼L α , of low-confinement mode plasma where 1<α<2 is the order of the FD operator. Numerical solutions of the model with an off-axis source show that the fractional inward transport gives rise to profile peaking reminiscent of what is observed in tokamak discharges with auxiliary off-axis heating. Also, cold-pulse perturbations to steady sates in the model exhibit fast, nondiffusive propagation phenomena that resemble perturbative experiments

  20. Development and testing af a model for the supergene distribution of uranium and accompanying elements around a known uranium deposit associated with an alkaline intrusion

    International Nuclear Information System (INIS)

    Rose-Hansen, J.; Soerensen, H.

    1983-01-01

    The Ilimaussaq intrusion may be characterized as a geochemically abnormal region, since its rocks are strongly enriched in a number of rare elements, including elements which accompany uranium in deposits in other parts of the world. Examples are the rare earth metals, Nb, Ta, Be, Li, and metals as Cu, Pb, Zn, Mo and Sn. It was proposed to develop and test a model for the supergene distribution of uranium and accompanying elements around a known uranium deposit associated with an alkaline intrusion. The most promising results are those obtained by the PCA technique. For a more preliminary study of a region fjord and river sediments might be the sampling target. These sediments were found to be mixtures in which the proportion of material from the Ilimaussaq U-deposit could be evaluated by the PCA technique involving a distance function related to the loadings in the first principal dimen- sion of the elements characterizing the Ilimaussaq Intrusion. One of the major features of the material sampled in this study is the general high degree of preservation in the sub-arctic environment of the primary igneous mineralogy in the sediments, and in other areas, the structure of data should be investigated in order to test them in this respect. One obvious way is X-ray diffraction analysis. It was indicated that uranium is selectively absorbed on the organic material in lakes and is able to reflect the concentration of U in the lake waters, informing the ultimate potential of the drainage areas in question. It is however yet to be established whether the correlation of uranium and the organic material of the lake sediments actually reflects the long term U concentrations of the lake water. The use of the cluster analysis and discriminant analysis techniques proved to be of lesser value in this project. (author)

  1. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

    2013-07-01

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

  2. The model of interaction with the National Operator when doing uranium mining in Kazakhstan

    International Nuclear Information System (INIS)

    Yermilov, A.; Niyetbayev, M.; Sakharova, Y.

    2014-01-01

    The report presents a model of organizational and production interaction with the National Operator, NAC Kazatomprom JSC, with regard to uranium mining in Kazakhstan by means of mechanism of joint management of mining, processing and service companies. NAC Kazatomprom JSC is the world's largest producer of uranium, and Uranium One Holding is the largest foreign partner of the National Operator. The mining assets of Uranium One Holdings include the following joint ventures: Betpak Dala LLP (South Inkai and Akdala Mines), Karatau LLP, Akbastau JSC, Kyzylkum LLP and KRC Zarechnoye JSC. It shows that the project management in the form of joint ventures allows for minimization of investment risks in Kazakhstan. The practice of corporate communication with NAC Kazatomprom JSC goes far beyond the “investment– receipt of dividends” scheme when the investment guarantees mean control over the enterprise activities through participation in the meetings of enterprise management bodies. The sustainable model has been developed for the interaction with the National Operator and with state authorities of the Republic of Kazakhstan through or together with the National Operator, whereby various projects have been implemented starting with the joint support of social development of Kazakhstan regions in excess of the minimum amounts established by the government in subsoil use contracts (through Kazatomprom-Demeu LLP, specially established for this purpose) and ending with the implementation of such major projects as the “Atomic Ring” or innovative projects on the construction of alternative energy sources (solar power plant) on sites of joint industrial projects. Effective cooperation with the National operator Kazatomprom allowed to successfully establish and run at the jointly owned mines the program of efficiency improvement which stimulates continuous improvement of current operations and results in considerable cost reduction. The key ideas of the Efficiency

  3. Transperitoneal transport of creatinine. A comparison of kinetic models

    DEFF Research Database (Denmark)

    Fugleberg, S; Graff, J; Joffe, P

    1994-01-01

    Six kinetic models of transperitoneal creatinine transport were formulated and validated on the basis of experimental results obtained from 23 non-diabetic patients undergoing peritoneal dialysis. The models were designed to elucidate the presence or absence of diffusive, non-lymphatic convective...... including all three forms of transport is superior to other models. We conclude that the best model of transperitoneal creatinine transport includes diffusion, non-lymphatic convective transport and lymphatic convective transport....

  4. Manual on safe production, transport, handling and storage of uranium hexafluoride

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    This document includes a description of the physical, chemical and radiological properties of UF{sub 6} and related products, including information concerning their production, handling, storage and transportation and the management of the wastes which result. All the operations of UF{sub 6} management are considered form a safety point of view. The IAEA organized a series of meetings to consider the hazards of UF{sub 6} transport since considerable quantities of depleted, natural and enriched UF{sub 6} are transported between nuclear fuel sites. Storage of depleted UF{sub 6} is another important issue. Factors affecting long term storage are presented, especially site choice and cylinder corrosion. Other topics such as waste management, quality assurance and emergency preparedness which contribute to the overall safety of UF{sub 6} handling, are included. The intention of this document is to provide analysis of the safety implications of all stages of UF{sub 6} operations and to draw attention to specific features and properties of importance. 38 refs, figs, tabs.

  5. Assessment of the bioavailability and depuration of uranium, cesium and thorium in snails (Cantareus aspersus) using kinetics models

    International Nuclear Information System (INIS)

    Pauget, B.; Villeneuve, A.; Redon, P.O.; Cuvier, A.; Vaufleury, A. de

    2017-01-01

    Highlights: • Kinetic studies allow to take into account the dynamic mechanisms of bioavailability. • An absence of Cs and Th accumulation is evidenced showing their low bioavailability. • The uranium accumulation is not only a function of the soil contamination. - Abstract: Uranium ore waste has led to soil contamination that may affect both environmental and soil health. To analyze the risk of metal transfer, metal bioavailability must be estimated by measuring biological parameters. Kinetic studies allow taking into account the dynamic mechanisms of bioavailability, as well as the steady state concentration in organisms necessary to take into account for relevant risk assessment. In this way, this work aims to model the snail accumulation and excretion kinetics of uranium (U), cesium (Cs) and thorium (Th). Results indicate an absence of Cs and Th accumulation showing the low bioavailability of these two elements and a strong uranium accumulation in snails related to the levels of soil contamination. During the depuration phase, most of the uranium ingested was excreted by the snails. After removing the source of uranium by soil remediation, continued snails excretion of accumulated uranium would lead to the return of their initial internal concentration, thus the potential trophic transfer of this hazardous element would stop.

  6. Assessment of the bioavailability and depuration of uranium, cesium and thorium in snails (Cantareus aspersus) using kinetics models

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B., E-mail: benjamin.pauget@tesora.fr [Tésora, Le Visium, 22 Av. Aristide Briand, 94110 Arcueil (France); Andra, R& D Division, Centre de Meuse/Haute-Marne, RD 960, 55290 Bure (France); University of Bourgogne Franche-Comté, Department Chrono-Environnement, UMR UFC/CNRS 6249, 16 Route de Gray, 25030 Besançon Cedex (France); Villeneuve, A.; Redon, P.O. [Tésora, Le Visium, 22 Av. Aristide Briand, 94110 Arcueil (France); Cuvier, A. [ECOLAB, Université de Toulouse, CNRS, INPT, UPS, Toulouse (France); IRSN/PRP-ENV/SESURE/Laboratoire d’études radioécologiques en milieu continental et marin, BP 1, 13108 Saint-Paul-lès-Durance Cedex (France); Vaufleury, A. de [University of Bourgogne Franche-Comté, Department Chrono-Environnement, UMR UFC/CNRS 6249, 16 Route de Gray, 25030 Besançon Cedex (France)

    2017-08-05

    Highlights: • Kinetic studies allow to take into account the dynamic mechanisms of bioavailability. • An absence of Cs and Th accumulation is evidenced showing their low bioavailability. • The uranium accumulation is not only a function of the soil contamination. - Abstract: Uranium ore waste has led to soil contamination that may affect both environmental and soil health. To analyze the risk of metal transfer, metal bioavailability must be estimated by measuring biological parameters. Kinetic studies allow taking into account the dynamic mechanisms of bioavailability, as well as the steady state concentration in organisms necessary to take into account for relevant risk assessment. In this way, this work aims to model the snail accumulation and excretion kinetics of uranium (U), cesium (Cs) and thorium (Th). Results indicate an absence of Cs and Th accumulation showing the low bioavailability of these two elements and a strong uranium accumulation in snails related to the levels of soil contamination. During the depuration phase, most of the uranium ingested was excreted by the snails. After removing the source of uranium by soil remediation, continued snails excretion of accumulated uranium would lead to the return of their initial internal concentration, thus the potential trophic transfer of this hazardous element would stop.

  7. Empirical particle transport model for tokamaks

    International Nuclear Information System (INIS)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ ≅ chi/sub e/ is the thermal diffusivity, and then use the κ/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles

  8. Modelling contaminant transport in saturated aquifers

    International Nuclear Information System (INIS)

    Lakshminarayana, V.; Nayak, T.R.

    1990-01-01

    With the increase in population and industrialization the problem of pollution of groundwater has become critical. The present study deals with modelling of pollutant transport through saturated aquifers. Using this model it is possible to predict the concentration distribution, spatial as well as temporal, in the aquifer. The paper also deals with one of the methods of controlling the pollutant movement, namely by pumping wells. A simulation model is developed to determine the number, location and rate of pumping of a number of wells near the source of pollution so that the concentration is within acceptable limits at the point of interest. (Author) (18 refs., 14 figs., tab.)

  9. Studying uranium migration in natural environment: experimental approach and geochemical modeling; Etude de la migration de l'uranium en milieu naturel: approche experimentale et modelisation geochimique

    Energy Technology Data Exchange (ETDEWEB)

    Phrommavanh, V.

    2008-10-15

    The present study deals with characterizing uranium migration in a limited zone of Le Bouchet site, a former uranium ore treatment facility, which is dismantled and the rehabilitation of which is under process. Some wastes are packed in a rehabilitated disposal nearby, called the Itteville site. In the framework of the monitoring of the deposit environment (air, water, sediment) set by prefectorial decrees, a piezometer (PZPK) located downstream to the latter, has shown total dissolved uranium peaks each winter since the 1990's. PZPK collects both the interstitial water of a calcareous peat formation, between the surface and 3 m, and an alluvial aquifer near 6 m of depth. Firstly, a hydrogeochemical characterization of the site has evidenced the uranium source term, which is present in the peat soil near 0.8 m, hence excluding any leaching from the waste disposal. Actually, a few microparticles of uranium oxide and mixed uranium-thorium oxide have been detected, but they do not represent the major part of the source term. Secondly, water chemistry of the peat soil water and PZPK has been monitored every two months from 2004 to 2007 in order to understand the reasons of the seasonal fluctuations of [U]tot.diss.. Completed with geochemical modeling and a bacterial identification by 16S rDNA sequence analysis, water chemistry data showed an important sulfate-reducing bacterial activity in summertime, leading to reducing conditions and therefore, a total dissolved uranium content limited by the low solubility of uraninite U{sup IV}O{sub 2}(s). In wintertime, the latter bacterial activity being minimal and the effective pluviometry more important, conditions are more oxidant, which favors U(VI), more soluble, notably as the Ca{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complex, evidenced by TRLFS. Finally, bacterial activity has been reproduced in laboratory in order to better characterize its impact on uranium solubility in the peat soil. Various parameters were tested

  10. Modelling an Ammonium Transporter with SCLS

    Directory of Open Access Journals (Sweden)

    Angelo Troina

    2009-10-01

    Full Text Available The Stochastic Calculus of Looping Sequences (SCLS is a recently proposed modelling language for the representation and simulation of biological systems behaviour. It has been designed with the aim of combining the simplicity of notation of rewrite systems with the advantage of compositionality. It also allows a rather simple and accurate description of biological membranes and their interactions with the environment.In this work we apply SCLS to model a newly discovered ammonium transporter. This transporter is believed to play a fundamental role for plant mineral acquisition, which takes place in the arbuscular mycorrhiza, the most wide-spread plant-fungus symbiosis on earth. Due to its potential application in agriculture this kind of symbiosis is one of the main focuses of the BioBITs project. In our experiments the passage of NH3 / NH4+ from the fungus to the plant has been dissected in known and hypothetical mechanisms; with the model so far we have been able to simulate the behaviour of the system under different conditions. Our simulations confirmed some of the latest experimental results about the LjAMT2;2 transporter. The initial simulation results of the modelling of the symbiosis process are promising and indicate new directions for biological investigations.

  11. Modeling the highway transportation of spent fuel

    International Nuclear Information System (INIS)

    Harrison, I.G.

    1986-01-01

    There will be a substantial increase in the number of spent fuel shipments on the nation's highway system in the next thirty years. Most of the spent fuel will be moving from reactors to a spent fuel repository. This study develops two models that evaluate the risk and cost of moving the spent fuel. The Minimum Total Transport Risk Model (MTTRM) seeks an efficient solution for this problem by finding the minimum risk path through the network and sending all the spent fuel shipments over this one path. The Equilibrium Transport Risk Model (ETRM) finds an equitable solution by distributing the shipments over a number of paths in the network. This model decreases the risk along individual paths, but increases society's risk because the spent fuel shipments are traveling over more links in the network. The study finds that there is a trade off between path risk and societal risk. As path risk declines, societal risk rises. The cost of shipping also increases as the number of paths expand. The cost and risk of shipping spent fuel from ten reactors to four potential repository sites are evaluated using the MTTRM. The temporary monitored retrievable storage (MRS) facility in Tennessee is found to be the minimum cost and minimum risk solution. When direct shipment to the permanent sites is considered, Deaf Smith, Texas is the least cost and least incident free transport risk location. Yucca Mountain, Nevada is the least risk location when the focus is placed on the potential consequences of an accident

  12. Thermochemical modeling of the plutonium and uranium-plutonium dioxides

    International Nuclear Information System (INIS)

    Besmann, T.M.; Lindemer, T.B.

    1984-01-01

    The chemical thermodynamic properties of the actinide oxides have long been of interest for nuclear fuel design and for predicting fuel behavior under accident conditions. The result of such interest has been the publication of many studies over several decades containing thousands of measurements. The calcium fluorite structure and phases have been intensely studied, with in excess of 1000 data points having been determined. The object of the current work is to develop quantitative models of and which accurately describe the oxygen potential-temperature-composition behavior of the phases. The entire available data base of oxygen potential-temperature-composition values were extracted for use in the development of the models for the plutonia and mixed oxide phases. With perhaps the exception of Babelot et al., little effort has been made to utilize the large existing data base in such analyses. These data were instrumental in developing our models for the oxides, indicating the appropriate oxygen potential-composition relationships and providing for the determination of parametric values. The modeling approach used by us is fundamentally simple, utilizing the assumption that the complex oxides can be described as solutions of oxides with invariant stoichiometries. The chemical thermodynamic models for and described here are among the first to make extensive use of the large oxygen potential-temperature-composition data base which exists for these systems. These relatively simple models should be easily applied to the design of fuel compositions the analysis of behavior during burnup, and the development of codes for accident analysis. 5 references

  13. Uranium isotopes and dissolved organic carbon in loess permafrost: Modeling the age of ancient ice

    Science.gov (United States)

    Ewing, Stephanie A.; Paces, James B.; O'Donnell, J.A.; Jorgenson, M.T.; Kanevskiy, M.Z.; Aiken, George R.; Shur, Y.; Harden, Jennifer W.; Striegl, Robert G.

    2015-01-01

    The residence time of ice in permafrost is an indicator of past climate history, and of the resilience and vulnerability of high-latitude ecosystems to global change. Development of geochemical indicators of ground-ice residence times in permafrost will advance understanding of the circumstances and evidence of permafrost formation, preservation, and thaw in response to climate warming and other disturbance. We used uranium isotopes to evaluate the residence time of segregated ground ice from ice-rich loess permafrost cores in central Alaska. Activity ratios of 234U vs. 238U (234U/238U) in water from thawed core sections ranged between 1.163 and 1.904 due to contact of ice and associated liquid water with mineral surfaces over time. Measured (234U/238U) values in ground ice showed an overall increase with depth in a series of five neighboring cores up to 21 m deep. This is consistent with increasing residence time of ice with depth as a result of accumulation of loess over time, as well as characteristic ice morphologies, high segregated ice content, and wedge ice, all of which support an interpretation of syngenetic permafrost formation associated with loess deposition. At the same time, stratigraphic evidence indicates some past sediment redistribution and possibly shallow thaw among cores, with local mixing of aged thaw waters. Using measures of surface area and a leaching experiment to determine U distribution, a geometric model of (234U/238U) evolution suggests mean ages of up to ∼200 ky BP in the deepest core, with estimated uncertainties of up to an order of magnitude. Evidence of secondary coatings on loess grains with elevated (234U/238U) values and U concentrations suggests that refinement of the geometric model to account for weathering processes is needed to reduce uncertainty. We suggest that in this area of deep ice-rich loess permafrost, ice bodies have been preserved from the last glacial period (10–100 ky BP), despite subsequent

  14. Modeling tritium transport in the environment

    International Nuclear Information System (INIS)

    Murphy, C.E. Jr.

    1986-01-01

    A model of tritium transport in the environment near an atmospheric source of tritium is presented in the general context of modeling material cycling in ecosystems. The model was developed to test hypotheses about the process involved in tritium cycling. The temporal and spatial scales of the model were picked to allow comparison to environmental monitoring data collected in the vicinity of the Savannah River Plant. Initial simulations with the model showed good agreement with monitoring data, including atmospheric and vegetation tritium concentrations. The model can also simulate values of tritium in vegetation organic matter if the key parameter distributing the source of organic hydrogen is varied to fit the data. However, because of the lack of independent conformation of the distribution parameter, there is still uncertainty about the role of organic movement of tritium in the food chain, and its effect on the dose to man

  15. Variational multiscale models for charge transport.

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  16. Variational multiscale models for charge transport

    Science.gov (United States)

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  17. Comparison of a semi-analytic and a CFD model uranium combustion to experimental data

    International Nuclear Information System (INIS)

    Clarksean, R.

    1998-01-01

    Two numerical models were developed and compared for the analysis of uranium combustion and ignition in a furnace. Both a semi-analytical solution and a computational fluid dynamics (CFD) numerical solution were obtained. Prediction of uranium oxidation rates is important for fuel storage applications, fuel processing, and the development of spent fuel metal waste forms. The semi-analytical model was based on heat transfer correlations, a semi-analytical model of flow over a flat surface, and simple radiative heat transfer from the material surface. The CFD model numerically determined the flowfield over the object of interest, calculated the heat and mass transfer to the material of interest, and calculated the radiative heat exchange of the material with the furnace. The semi-analytical model is much less detailed than the CFD model, but yields reasonable results and assists in understanding the physical process. Short computation times allowed the analyst to study numerous scenarios. The CFD model had significantly longer run times, was found to have some physical limitations that were not easily modified, but was better able to yield details of the heat and mass transfer and flow field once code limitations were overcome

  18. Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

    2009-11-01

    This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

  19. Abstracts of the symposium on unsaturated flow and transport modeling

    International Nuclear Information System (INIS)

    1982-03-01

    Abstract titles are: Recent developments in modeling variably saturated flow and transport; Unsaturated flow modeling as applied to field problems; Coupled heat and moisture transport in unsaturated soils; Influence of climatic parameters on movement of radionuclides in a multilayered saturated-unsaturated media; Modeling water and solute transport in soil containing roots; Simulation of consolidation in partially saturated soil materials; modeling of water and solute transport in unsaturated heterogeneous fields; Fluid dynamics and mass transfer in variably-saturated porous media; Solute transport through soils; One-dimensional analytical transport modeling; Convective transport of ideal tracers in unsaturated soils; Chemical transport in macropore-mesopore media under partially saturated conditions; Influence of the tension-saturated zone on contaminant migration in shallow water regimes; Influence of the spatial distribution of velocities in porous media on the form of solute transport; Stochastic vs deterministic models for solute movement in the field; and Stochastic analysis of flow and solute transport

  20. Preliminary discussion on the application of the geological conceptual model method of uranium ore formation

    International Nuclear Information System (INIS)

    Ma Guangzhong; Wei Mingji; Luo Yiyue

    1992-01-01

    The geological conceptual model method of uranium ore formation is established on the basis of geological theory and apriorism. Variables are screened with the application of the method of mathematical geology to find out the variables which are more contributed. In combination with the practical situation in Xikang-Yunnan axis, the variables are compiled and graded so as to determine the optimal ore-controlling factor and to establish the statistical predictive model which is of geological significance. The resources evaluation work has been conducted in the Late Proterozoic geological terrain in Xikang-Yunnan axis

  1. Transport and leaching of technetium and uranium from spent UO2 fuel in compacted bentonite clay

    International Nuclear Information System (INIS)

    Ramebaeck, H.; Albinsson, Y.; Skaalberg, M.; Eklund, U.B.; Kjellberg, L.; Werme, L.

    2000-01-01

    The transport properties of Tc and U in compacted bentonite clay and the leaching behaviour of these elements from spent nuclear fuel in the same system were investigated. Pieces of spent UO 2 fuel were embedded in bentonite clay (ρ d =2100 kg/m 3 ). A low saline synthetic groundwater was used as the aqueous phase. After certain experimental times, the bentonite clay was cut into 0.1 mm thick slices, which were analysed for their content of Tc and U. Measurements were made using inductively coupled plasma mass spectrometry. Tc analysis comprised chemical separation. The analysis of U was done by means of detecting 236 U, since the natural content of U in bentonite clay made it impossible to distinguish between U originating from the fuel and the clay. The influence of different additives mixed into the clay was studied. The results showed an influence on both transport and leaching behaviour when metallic Fe was mixed into the clay. This indicates that Tc and U are reduced to their lower oxidation states as a result of this additive

  2. Discrete element modelling of bedload transport

    Science.gov (United States)

    Loyer, A.; Frey, P.

    2011-12-01

    Discrete element modelling (DEM) has been widely used in solid mechanics and in granular physics. In this type of modelling, each individual particle is taken into account and intergranular interactions are modelled with simple laws (e.g. Coulomb friction). Gravity and contact forces permit to solve the dynamical behaviour of the system. DEM is interesting to model configurations and access to parameters not directly available in laboratory experimentation, hence the term "numerical experimentations" sometimes used to describe DEM. DEM was used to model bedload transport experiments performed at the particle scale with spherical glass beads in a steep and narrow flume. Bedload is the larger material that is transported on the bed on stream channels. It has a great geomorphic impact. Physical processes ruling bedload transport and more generally coarse-particle/fluid systems are poorly known, arguably because granular interactions have been somewhat neglected. An existing DEM code (PFC3D) already computing granular interactions was used. We implemented basic hydrodynamic forces to model the fluid interactions (buoyancy, drag, lift). The idea was to use the minimum number of ingredients to match the experimental results. Experiments were performed with one-size and two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm (about the same width as the coarser particles) and the channel inclination was typically 10%. The water flow rate and the particle rate were kept constant at the upstream entrance and adjusted to obtain bedload transport equilibrium. Flows were filmed from the side by a high-speed camera. Using image processing algorithms made it possible to determine the position, velocity and trajectory of both smaller and coarser particles. Modelled and experimental particle velocity and concentration depth

  3. Undiscovered Resource Modelling: Towards Applying a Systematic Approach to Uranium or How Much Uranium is Left and Where Might It Be Found?

    International Nuclear Information System (INIS)

    Fairclough, Martin; Katona, Laz

    2014-01-01

    Uranium Resource Modelling: Why do we want to plan for it? Purely from a supply-demand perspective: 1) Current supplies (at mid-range demand scenario) only enough until 2035 (likely to increase due to reactor shut down/stockpiling); 2) Not all uranium will be brought into production; 3) Long lead in times (particularly) for U mines; 4) Projections to 2060 (beyond IR) e.g IAEA TECDOC). From a socio-economic perspective: 1) Need for financial analysis; 2) Need for comparison with other land uses; 3) Need for comparison with other tracts of land; 4) Need for consideration of economic/environmental consequences of possible development; 5) Security of supply!!!

  4. Uranium Mill Tailings Management

    International Nuclear Information System (INIS)

    Nelson, J.D.

    1982-01-01

    This book presents the papers given at the Fifth Symposium on Uranium Mill Tailings Management. Advances made with regard to uranium mill tailings management, environmental effects, regulations, and reclamation are reviewed. Topics considered include tailings management and design (e.g., the Uranium Mill Tailings Remedial Action Project, environmental standards for uranium mill tailings disposal), surface stabilization (e.g., the long-term stability of tailings, long-term rock durability), radiological aspects (e.g. the radioactive composition of airborne particulates), contaminant migration (e.g., chemical transport beneath a uranium mill tailings pile, the interaction of acidic leachate with soils), radon control and covers (e.g., radon emanation characteristics, designing surface covers for inactive uranium mill tailings), and seepage and liners (e.g., hydrologic observations, liner requirements)

  5. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  6. Model for radionuclide transport in running waters

    International Nuclear Information System (INIS)

    Jonsson, Karin; Elert, Mark

    2005-11-01

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  7. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  8. Simplified modeling photo-ionisation of uranium in Silva project

    International Nuclear Information System (INIS)

    Bodin, B.; Pourre-Brichot, P.; Valadier, L.

    2000-01-01

    SILVA is a process which targets 235 U by photo-ionization. It is therefore important to compute the proportion of ionized atoms depending on the properties of the lasers. The interaction between atoms and lasers occurs via the link between the Maxwell and Schroedinger equations. This kind of approach is only feasible for a few simple cases: e.g. wave plane or simple laser profiling. Introducing the characteristics of SILVA, computation time increases substantially (several hundred days per kilogram of vapor). To circumvent this problem, we wrote a program (Jackpot) that treats photo-ionization by a simplified model: kinetics equations. However, various optical components were introduced with absorption factor by wavelength, to account for the effects of optics systems on the trajectory. Instead of seeking the complex wavefunction solutions of the Maxwell-Schroedinger equations, we solve a system where the unknown values are a set of populations. The size of the set depends only on the number of hold points in the process. Recent work shows that we can converge towards the same results as the Maxwell-Schroedinger system if we can fit the cross-sections of the kinetic system correctly. As to the optical aspect, Jackpot can handle diffraction. In this case, it solves the propagation equation of an electric field by a double Fourier transform method. For interactions with mirrors, the new direction of a ray is calculated with Descartes law, applying a numerical phase mask to the electric field. We account for diaphragmation mechanisms as well as the absorption law for each mirror, by a real factor by wavelength. Jackpot is simple to use and can be used to predict experimental results. Jackpot is now a library calling by a script written in Python. Changes are being made for a closer approach to reality (real laser, new photo-ionization model)

  9. A Model of Uranium Uptake by Plant Roots Allowing for Root-Induced Changes in the soil.

    Science.gov (United States)

    Boghi, Andrea; Roose, Tiina; Kirk, Guy J D

    2018-03-20

    We develop a model with which to study the poorly understood mechanisms of uranium (U) uptake by plants. The model is based on equations for transport and reaction of U and acids and bases in the rhizosphere around cylindrical plant roots. It allows for the speciation of U with hydroxyl, carbonate, and organic ligands in the soil solution; the nature and kinetics of sorption reactions with the soil solid; and the effects of root-induced changes in rhizosphere pH. A sensitivity analysis showed the importance of soil sorption and speciation parameters as influenced by pH and CO 2 pressure; and of root geometry and root-induced acid-base changes linked to the form of nitrogen taken up by the root. The root absorbing coefficient for U, relating influx to the concentration of U species in solution at the root surface, was also important. Simplified empirical models of U uptake by different plant species and soil types need to account for these effects.

  10. Pion interferometric tests of transport models

    Energy Technology Data Exchange (ETDEWEB)

    Padula, S.S.; Gyulassy, M.; Gavin, S. (Lawrence Berkeley Lab., CA (USA). Nuclear Science Div.)

    1990-01-08

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.).

  11. Pion interferometric tests of transport models

    International Nuclear Information System (INIS)

    Padula, S.S.; Gyulassy, M.; Gavin, S.

    1990-01-01

    In hadronic reactions, the usual space-time interpretation of pion interferometry often breaks down due to strong correlations between spatial and momentum coordinates. We derive a general interferometry formula based on the Wigner density formalism that allows for arbitrary phase space and multiparticle correlations. Correction terms due to intermediate state pion cascading are derived using semiclassical hadronic transport theory. Finite wave packets are used to reveal the sensitivity of pion interference effects on the details of the production dynamics. The covariant generalization of the formula is shown to be equivalent to the formula derived via an alternate current ensemble formalism for minimal wave packets and reduces in the nonrelativistic limit to a formula derived by Pratt. The final expression is ideally suited for pion interferometric tests of Monte Carlo transport models. Examples involving gaussian and inside-outside phase space distributions are considered. (orig.)

  12. Transport modeling: An artificial immune system approach

    Directory of Open Access Journals (Sweden)

    Teodorović Dušan

    2006-01-01

    Full Text Available This paper describes an artificial immune system approach (AIS to modeling time-dependent (dynamic, real time transportation phenomenon characterized by uncertainty. The basic idea behind this research is to develop the Artificial Immune System, which generates a set of antibodies (decisions, control actions that altogether can successfully cover a wide range of potential situations. The proposed artificial immune system develops antibodies (the best control strategies for different antigens (different traffic "scenarios". This task is performed using some of the optimization or heuristics techniques. Then a set of antibodies is combined to create Artificial Immune System. The developed Artificial Immune transportation systems are able to generalize, adapt, and learn based on new knowledge and new information. Applications of the systems are considered for airline yield management, the stochastic vehicle routing, and real-time traffic control at the isolated intersection. The preliminary research results are very promising.

  13. Model for tritiated water transport in soil

    International Nuclear Information System (INIS)

    Galeriu, D.; Paunescu, N.

    1999-01-01

    Chemical forms of tritium released from nuclear facilities are mostly water (HTO) and hydrogen (HT, TT). Elemental tritium is inert in vegetation and superior animals, but the microorganisms from soil oxidize HT to HTO. After an atmospheric HT emission, in short time an equivalent quantity of HTO is re-emitted from soil. In the vicinity of a tritium source the spatial and temporary distribution of HTO is dependent on the chemical form of tritium releases. During routine tritium releases (continuously and constant releases), the local distribution of tritium reaches equilibrium, and specific activities of tritium in environmental compartments are almost equal. The situation is very different after an accidental emission. Having in view, harmful effects of tritium when it is incorporated into the body several models were developed for environmental tritium transport and dose assessment. The tritium transport into the soil is an important part of the environmental tritium behavior, but, unfortunately, in spite of the importance of this problem the corresponding modeling is unsatisfactory. The aim of this paper was the improvement of the TRICAIAP model, and the application of the model to BIOMOVS scenario. The BIOMOVS scenario predicts HTO concentrations in soil during 30 days, after one hour atmospheric HTO emission. The most important conclusions of the paper are: the principal carrier of tritium into the soil is water; the transfer processes are the reactions of water in soil and the diffusion due to concentration gradient; atmosphere-soil transport is dependent of surface characteristics (granulation, humidity, roughness, etc.); the conversion rate of HT to HTO is not well known and is dependent on active microorganism concentration in soil and on soil humidity. More experimental data are needed to decrease the uncertainty of transfer parameter, for the definition of the influence of vegetation, etc. (authors)

  14. Colloid transport in model fracture filling materials

    Science.gov (United States)

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  15. Near-field high-temperature transport: Evidence from the genesis of the Osamu Utsumi uranium mine, Pocos de Caldas alkaline complex, Brazil

    International Nuclear Information System (INIS)

    Cathles, L.M.; Shea, M.E.

    1990-01-01

    The chemical, isotopic and mineralogical alteration which occurred during primary uranium ore deposition at the breccia pipe-hosted Osamu Utsumi mine, Pocos de Caldas, Brazil, was studied as a natural analogue for near-field radionuclide migration. Chemical and isotopic alteration models were combined with finite difference models of the convective cooling of caldera intrusives. Application of the chemical models successfully used to interpret mineralization and alteration at the Osamu Utsumi mine to the hypothetical waste repository shows that even in a worst case scenario (waste emplaced in a permeable host rock with no measures taken to inhibit flow through the repository), the amount of hydrothermal alteration in the hypothetical repository will be about 0.1% of that in the breccia pipe at the Osamu Utsumi mine. Assuming no barriers to uranium mobility, uranium precipitation above the hypothetical repository would be 0.05 ppm (rather than 50 ppm), hydrothermal alteration 0.03 wt.% (rather than 30 wt.%), etc. The analysis indicates that mineralogical alteration is extremely sensitive to thermodynamic data. Prediction of mineralogical alteration (which may be necessary to predict the migration of radionuclides other than uranium, for example) probably cannot be based directly on even very carefully collected laboratory thermodynamic data. Mineralogical complexities of the system, as well as database uncertainties, will require calibration of the thermodynamic framework against mineralogical alteration observed in the laboratory or field by procedures briefly described. (au)

  16. A Record of Uranium-Series Transport in Fractured, Unsaturated Tuff at Nopal I, Sierra Peña Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.

    2015-12-01

    In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.

  17. A dynamic uranium-leaching model for process-control studies

    International Nuclear Information System (INIS)

    Vetter, D.A.; Barker, I.J.; Turner, G.A.

    1989-01-01

    The modelling of the uranium-leaching process, and the logging of data from a plant for the evaluation of the model, are reported. A phenomenological approach was adopted in the development of the model. A set of eight chemical reactions was chosen to represent the complex chemistry of the process, and kinetic expressions for these reactions were incorporated in differential equations representing mass and energy balances. These equations were coded in FORTRAN to form a program that simulated the process, and that allowed averaged and continuous data from the plant to be compared with the model. This allowed the model to be 'tuned', and to reveal a number of minor problems with the control infrastructure on the plant. 7 figs., 21 refs

  18. A theoretical model of processes of irradiation of workers in uranium mines

    International Nuclear Information System (INIS)

    Zettwoog, Pierre.

    1980-11-01

    A quantity caled mine 'irradiativity', which is the ratio of collective dose to the production of uranium 'metal', is introduced. A distinction is made between irradiativity due to external exposure and that due to radon. A mathematical model to predict irradiativity has been developed using specific data from a mine: a) amount and distribution of work in areas of access and production; b) technology of ore extraction, especially the productivity of ore extraction, which is a basic parameter; c) protection technologies, especially the ventilation system; and d) geologic conditions. A numerical example is presented [fr

  19. The Alligator rivers natural analogue - Modelling of uranium and thorium migration in the weathered zone at Koongarra

    International Nuclear Information System (INIS)

    Skagius, K.; Lindgren, M.; Boghammar, A.; Brandberg, F.; Pers, K.; Widen, H.

    1993-08-01

    The Koongarra Uranium Deposit in the Alligator Rivers Region in the Northern Territory of Australia is a natural analogue being investigated with the aim to contribute to the understanding of the scientific basis for the long term prediction of radionuclide migration within geological environments relevant to radioactive waste repositories. The dispersion of uranium and decay products in the weathered zone has been modelled with a simple advection-dispersion-reversible sorption model and with a model extended to also consider α-recoil and transfer of radionuclides between different mineral phases of the rock. The modelling work was carried out in several iterations, each including a review of available laboratory and field data, selection of the system to be modelled and suitable model, and a comparison of modelling results with field observations. Uranium concentrations in bulk rock calculated with the simple advection-dispersion- reversible sorption model were in fair agreement with observed data using parameter values within ranges recommended based on independent interpretations. The advection-dispersion-reversible sorption model is a large simplification of the system among other things because the partitioning of radionuclides between water and solid phase is described with a sorption equilibrium term only. Although the results from this study not are enough to validate simple performance assessment models in a strict sense, it has been shown that even simple models are able to describe the present day distribution of uranium in the weathered zone at Koongarra. 23 refs, 61 figs

  20. The Alligator rivers natural analogue - Modelling of uranium and thorium migration in the weathered zone at Koongarra

    Energy Technology Data Exchange (ETDEWEB)

    Skagius, K; Lindgren, M; Boghammar, A; Brandberg, F; Pers, K; Widen, H [Kemakta, Stockholm (Sweden)

    1993-08-01

    The Koongarra Uranium Deposit in the Alligator Rivers Region in the Northern Territory of Australia is a natural analogue being investigated with the aim to contribute to the understanding of the scientific basis for the long term prediction of radionuclide migration within geological environments relevant to radioactive waste repositories. The dispersion of uranium and decay products in the weathered zone has been modelled with a simple advection-dispersion-reversible sorption model and with a model extended to also consider {alpha}-recoil and transfer of radionuclides between different mineral phases of the rock. The modelling work was carried out in several iterations, each including a review of available laboratory and field data, selection of the system to be modelled and suitable model, and a comparison of modelling results with field observations. Uranium concentrations in bulk rock calculated with the simple advection-dispersion- reversible sorption model were in fair agreement with observed data using parameter values within ranges recommended based on independent interpretations. The advection-dispersion-reversible sorption model is a large simplification of the system among other things because the partitioning of radionuclides between water and solid phase is described with a sorption equilibrium term only. Although the results from this study not are enough to validate simple performance assessment models in a strict sense, it has been shown that even simple models are able to describe the present day distribution of uranium in the weathered zone at Koongarra. 23 refs, 61 figs.

  1. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    Science.gov (United States)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    . Independent multi-element analyses of three samples by ICP-MS show decreasing uranium concentration with depth as well. The transport of the radionuclides is evaluated using STANMOD, a Windows-based software package for evaluating solute transport in porous media using analytical solutions of the advection-dispersion solute transport equation. The package allows various one-dimensional, advection-dispersion parameters to be determined by fitting mathematical solutions of theoretical transport models to observed data. The results are promising for future work on the release rate of radionuclides from the boulder, the dominant mode of transport (e.g., particulate or dissolution), and the movement of radionuclides through porous media. The measured subsurface transport rates provide modelers with a model validation dataset.

  2. Risk management model in road transport systems

    Science.gov (United States)

    Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.

    2016-08-01

    The article presents the results of a study of road safety indicators that influence the development and operation of the transport system. Road safety is considered as a continuous process of risk management. Authors constructed a model that relates the social risks of a major road safety indicator - the level of motorization. The model gives a fairly accurate assessment of the level of social risk for any given level of motorization. Authors calculated the dependence of the level of socio-economic costs of accidents and injured people in them. The applicability of the concept of socio-economic damage is caused by the presence of a linear relationship between the natural and economic indicators damage from accidents. The optimization of social risk is reduced to finding the extremum of the objective function that characterizes the economic effect of the implementation of measures to improve safety. The calculations make it possible to maximize the net present value, depending on the costs of improving road safety, taking into account socio-economic damage caused by accidents. The proposed econometric models make it possible to quantify the efficiency of the transportation system, allow to simulate the change in road safety indicators.

  3. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    Science.gov (United States)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  4. GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology, development, use, and results

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1999-01-01

    This report documents the development and use of the most recent version (Version 1.5) of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy associated with various transportation fuels and advanced vehicle technologies for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, carbon monoxide, nitrogen oxides, particulate matter with diameters of 10 micrometers or less, and sulfur oxides) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates total energy consumption, fossil fuel consumption, and petroleum consumption when various transportation fuels are used. The GREET model includes the following cycles: petroleum to conventional gasoline, reformulated gasoline, conventional diesel, reformulated diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied natural gas, liquefied petroleum gas, methanol, Fischer-Tropsch diesel, dimethyl ether, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; soybeans to biodiesel; flared gas to methanol, dimethyl ether, and Fischer-Tropsch diesel; and landfill gases to methanol. This report also presents the results of the analysis of fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies to be applied to passenger cars and light-duty trucks

  5. Modeling in transport phenomena a conceptual approach

    CERN Document Server

    Tosun, Ismail

    2007-01-01

    Modeling in Transport Phenomena, Second Edition presents and clearly explains with example problems the basic concepts and their applications to fluid flow, heat transfer, mass transfer, chemical reaction engineering and thermodynamics. A balanced approach is presented between analysis and synthesis, students will understand how to use the solution in engineering analysis. Systematic derivations of the equations and the physical significance of each term are given in detail, for students to easily understand and follow up the material. There is a strong incentive in science and engineering to

  6. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1985-01-01

    This contract stipulated separate pieces of work to consider mass transport in the far-field of a repository, and more detailed geochemical modelling of the groundwater in the near-field. It was envisaged that the far-field problem would be tackled by numerical solutions to the classical advection-diffusion equation obtained by the finite element method. For the near-field problem the feasibility of coupling existing geochemical equilibrium codes to the three dimensional groundwater flow codes was to be investigated. This report is divided into two sections with one part devoted to each aspect of this contract. (author)

  7. Collective effects in microscopic transport models

    International Nuclear Information System (INIS)

    Greiner, Carsten

    2003-01-01

    We give a reminder on the major inputs of microscopic hadronic transport models and on the physics aims when describing various aspects of relativistic heavy ion collisions at SPS energies. We then first stress that the situation of particle ratios being reproduced by a statistical description does not necessarily mean a clear hint for the existence of a fully isotropic momentum distribution at hydrochemical freeze-out. Second, a short discussion on the status of strangeness production is given. Third we demonstrate the importance of a new collective mechanism for producing (strange) antibaryons within a hardonic description, which guarantees sufficiently fast chemical equilibration

  8. A disaggregate freight transport model of transport chain and shipment size choice

    NARCIS (Netherlands)

    Windisch, E.; De Jong, G.C.; Van Nes, R.; Hoogendoorn, S.P.

    2010-01-01

    The field of freight transport modelling is relatively young compared to passenger transport modelling. However, some key issues in freight policy, like growing freight shares on the road, advanced logistics concepts or emerging strict freight transport regulations, have been creating increasing

  9. Uncertainty in reactive transport geochemical modelling

    International Nuclear Information System (INIS)

    Oedegaard-Jensen, A.; Ekberg, C.

    2005-01-01

    Full text of publication follows: Geochemical modelling is one way of predicting the transport of i.e. radionuclides in a rock formation. In a rock formation there will be fractures in which water and dissolved species can be transported. The composition of the water and the rock can either increase or decrease the mobility of the transported entities. When doing simulations on the mobility or transport of different species one has to know the exact water composition, the exact flow rates in the fracture and in the surrounding rock, the porosity and which minerals the rock is composed of. The problem with simulations on rocks is that the rock itself it not uniform i.e. larger fractures in some areas and smaller in other areas which can give different water flows. The rock composition can be different in different areas. In additions to this variance in the rock there are also problems with measuring the physical parameters used in a simulation. All measurements will perturb the rock and this perturbation will results in more or less correct values of the interesting parameters. The analytical methods used are also encumbered with uncertainties which in this case are added to the uncertainty from the perturbation of the analysed parameters. When doing simulation the effect of the uncertainties must be taken into account. As the computers are getting faster and faster the complexity of simulated systems are increased which also increase the uncertainty in the results from the simulations. In this paper we will show how the uncertainty in the different parameters will effect the solubility and mobility of different species. Small uncertainties in the input parameters can result in large uncertainties in the end. (authors)

  10. Modeling Substrate Utilization, Metabolite Production, and Uranium Immobilization in Shewanella oneidensis Biofilms

    Directory of Open Access Journals (Sweden)

    Ryan S. Renslow

    2017-06-01

    Full Text Available In this study, we developed a two-dimensional mathematical model to predict substrate utilization and metabolite production rates in Shewanella oneidensis MR-1 biofilm in the presence and absence of uranium (U. In our model, lactate and fumarate are used as the electron donor and the electron acceptor, respectively. The model includes the production of extracellular polymeric substances (EPS. The EPS bound to the cell surface and distributed in the biofilm were considered bound EPS (bEPS and loosely associated EPS (laEPS, respectively. COMSOL® Multiphysics finite element analysis software was used to solve the model numerically (model file provided in the Supplementary Material. The input variables of the model were the lactate, fumarate, cell, and EPS concentrations, half saturation constant for fumarate, and diffusion coefficients of the substrates and metabolites. To estimate unknown parameters and calibrate the model, we used a custom designed biofilm reactor placed inside a nuclear magnetic resonance (NMR microimaging and spectroscopy system and measured substrate utilization and metabolite production rates. From these data we estimated the yield coefficients, maximum substrate utilization rate, half saturation constant for lactate, stoichiometric ratio of fumarate and acetate to lactate and stoichiometric ratio of succinate to fumarate. These parameters are critical to predicting the activity of biofilms and are not available in the literature. Lastly, the model was used to predict uranium immobilization in S. oneidensis MR-1 biofilms by considering reduction and adsorption processes in the cells and in the EPS. We found that the majority of immobilization was due to cells, and that EPS was less efficient at immobilizing U. Furthermore, most of the immobilization occurred within the top 10 μm of the biofilm. To the best of our knowledge, this research is one of the first biofilm immobilization mathematical models based on experimental

  11. A new mechanistic and engineering fission gas release model for a uranium dioxide fuel

    International Nuclear Information System (INIS)

    Lee, Chan Bock; Yang, Yong Sik; Kim, Dae Ho; Kim, Sun Ki; Bang, Je Geun

    2008-01-01

    A mechanistic and engineering fission gas release model (MEGA) for uranium dioxide (UO 2 ) fuel was developed. It was based upon the diffusional release of fission gases from inside the grain to the grain boundary and the release of fission gases from the grain boundary to the external surface by the interconnection of the fission gas bubbles in the grain boundary. The capability of the MEGA model was validated by a comparison with the fission gas release data base and the sensitivity analyses of the parameters. It was found that the MEGA model correctly predicts the fission gas release in the broad range of fuel burnups up to 98 MWd/kgU. Especially, the enhancement of fission gas release in a high-burnup fuel, and the reduction of fission gas release at a high burnup by increasing the UO 2 grain size were found to be correctly predicted by the MEGA model without using any artificial factor. (author)

  12. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling

    International Nuclear Information System (INIS)

    Sommer de Gelicourt, Y.

    2004-03-01

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  13. Conceptual and Numerical Models for UZ Flow and Transport

    International Nuclear Information System (INIS)

    Liu, H.

    2000-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the conceptual and numerical models used for modeling of unsaturated zone (UZ) fluid (water and air) flow and solute transport processes. This is in accordance with ''AMR Development Plan for U0030 Conceptual and Numerical Models for Unsaturated Zone (UZ) Flow and Transport Processes, Rev 00''. The conceptual and numerical modeling approaches described in this AMR are used for models of UZ flow and transport in fractured, unsaturated rock under ambient and thermal conditions, which are documented in separate AMRs. This AMR supports the UZ Flow and Transport Process Model Report (PMR), the Near Field Environment PMR, and the following models: Calibrated Properties Model; UZ Flow Models and Submodels; Mountain-Scale Coupled Processes Model; Thermal-Hydrologic-Chemical (THC) Seepage Model; Drift Scale Test (DST) THC Model; Seepage Model for Performance Assessment (PA); and UZ Radionuclide Transport Models

  14. Model of reversible vesicular transport with exclusion

    International Nuclear Information System (INIS)

    Bressloff, Paul C; Karamched, Bhargav R

    2016-01-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states. (paper)

  15. A Lagrangian mixing frequency model for transported PDF modeling

    Science.gov (United States)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  16. Documentation of TRU biological transport model (BIOTRAN)

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text.

  17. Documentation of TRU biological transport model (BIOTRAN)

    International Nuclear Information System (INIS)

    Gallegos, A.F.; Garcia, B.J.; Sutton, C.M.

    1980-01-01

    Inclusive of Appendices, this document describes the purpose, rationale, construction, and operation of a biological transport model (BIOTRAN). This model is used to predict the flow of transuranic elements (TRU) through specified plant and animal environments using biomass as a vector. The appendices are: (A) Flows of moisture, biomass, and TRU; (B) Intermediate variables affecting flows; (C) Mnemonic equivalents (code) for variables; (D) Variable library (code); (E) BIOTRAN code (Fortran); (F) Plants simulated; (G) BIOTRAN code documentation; (H) Operating instructions for BIOTRAN code. The main text is presented with a specific format which uses a minimum of space, yet is adequate for tracking most relationships from their first appearance to their formulation in the code. Because relationships are treated individually in this manner, and rely heavily on Appendix material for understanding, it is advised that the reader familiarize himself with these materials before proceeding with the main text

  18. Parameter optimization for surface flux transport models

    Science.gov (United States)

    Whitbread, T.; Yeates, A. R.; Muñoz-Jaramillo, A.; Petrie, G. J. D.

    2017-11-01

    Accurate prediction of solar activity calls for precise calibration of solar cycle models. Consequently we aim to find optimal parameters for models which describe the physical processes on the solar surface, which in turn act as proxies for what occurs in the interior and provide source terms for coronal models. We use a genetic algorithm to optimize surface flux transport models using National Solar Observatory (NSO) magnetogram data for Solar Cycle 23. This is applied to both a 1D model that inserts new magnetic flux in the form of idealized bipolar magnetic regions, and also to a 2D model that assimilates specific shapes of real active regions. The genetic algorithm searches for parameter sets (meridional flow speed and profile, supergranular diffusivity, initial magnetic field, and radial decay time) that produce the best fit between observed and simulated butterfly diagrams, weighted by a latitude-dependent error structure which reflects uncertainty in observations. Due to the easily adaptable nature of the 2D model, the optimization process is repeated for Cycles 21, 22, and 24 in order to analyse cycle-to-cycle variation of the optimal solution. We find that the ranges and optimal solutions for the various regimes are in reasonable agreement with results from the literature, both theoretical and observational. The optimal meridional flow profiles for each regime are almost entirely within observational bounds determined by magnetic feature tracking, with the 2D model being able to accommodate the mean observed profile more successfully. Differences between models appear to be important in deciding values for the diffusive and decay terms. In like fashion, differences in the behaviours of different solar cycles lead to contrasts in parameters defining the meridional flow and initial field strength.

  19. Upscaling of Long-Term U9VI) Desorption from Pore Scale Kinetics to Field-Scale Reactive Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Andy Miller

    2009-01-25

    Environmental systems exhibit a range of complexities which exist at a range of length and mass scales. Within the realm of radionuclide fate and transport, much work has been focused on understanding pore scale processes where complexity can be reduced to a simplified system. In describing larger scale behavior, the results from these simplified systems must be combined to create a theory of the whole. This process can be quite complex, and lead to models which lack transparency. The underlying assumption of this approach is that complex systems will exhibit complex behavior, requiring a complex system of equations to describe behavior. This assumption has never been tested. The goal of the experiments presented is to ask the question: Do increasingly complex systems show increasingly complex behavior? Three experimental tanks at the intermediate scale (Tank 1: 2.4m x 1.2m x 7.6cm, Tank 2: 2.4m x 0.61m x 7.6cm, Tank 3: 2.4m x 0.61m x 0.61m (LxHxW)) have been completed. These tanks were packed with various physical orientations of different particle sizes of a uranium contaminated sediment from a former uranium mill near Naturita, Colorado. Steady state water flow was induced across the tanks using constant head boundaries. Pore water was removed from within the flow domain through sampling ports/wells; effluent samples were also taken. Each sample was analyzed for a variety of analytes relating to the solubility and transport of uranium. Flow fields were characterized using inert tracers and direct measurements of pressure head. The results show that although there is a wide range of chemical variability within the flow domain of the tank, the effluent uranium behavior is simple enough to be described using a variety of conceptual models. Thus, although there is a wide range in variability caused by pore scale behaviors, these behaviors appear to be smoothed out as uranium is transported through the tank. This smoothing of uranium transport behavior transcends

  20. Reactive transport modeling of interaction processes between clay stone and cement

    International Nuclear Information System (INIS)

    Windt, L. de; van der Lee, J.; Pellegrini, D.

    2001-01-01

    The disposal of radioactive wastes in clayey formations may require the use of large amounts of concrete and cement. The chemical interactions between these industrial materials and the host rock are modeled with the reactive transport code HYTEC for time scales and a geometry representative of disposal projects. The pH evolution, a key parameter in element mobility, is studied more specifically. It depends on several interdependent processes: i) diffusion of highly alkaline cement pore solution, ii) strong buffering related to important mineral transformations both in the cement and in the clay, and iii) cation exchange processes, beyond the zone of intense mineral transformations. In addition, precipitation of secondary minerals may lead to a partial or complete clogging of the pore space, almost stopping the propagation of the high pH plume. In a second step, preliminary results on the migration of strontium and uranium in these strongly coupled systems are presented as an example of transport parameter derivation. (authors)

  1. Modeling of the Microchemistry for Diffusion of Selected Impurities in Uranium

    International Nuclear Information System (INIS)

    Kirkpatrick, J. R.; Bullock, J.S. IV

    2001-01-01

    framework and an advance toward a comprehensive model of uranium metal microchemical distributions

  2. Depleted uranium

    International Nuclear Information System (INIS)

    Huffer, E.; Nifenecker, H.

    2001-02-01

    This document deals with the physical, chemical and radiological properties of the depleted uranium. What is the depleted uranium? Why do the military use depleted uranium and what are the risk for the health? (A.L.B.)

  3. Concept Layout Model of Transportation Terminals

    OpenAIRE

    Yao, Li-ya; Sun, Li-shan; Wang, Wu-hong; Xiong, Hui

    2012-01-01

    Transportation terminal is the key node in transport systems. Efficient terminals can improve operation of passenger transportation networks, adjust the layout of public transportation networks, provide a passenger guidance system, and regulate the development of commercial forms, as well as optimize the assembly and distribution of modern logistic modes, among others. This study aims to clarify the relationship between the function and the structure of transportation terminals and establish ...

  4. A Theoretic Model of Transport Logistics Demand

    OpenAIRE

    Natalija Jolić; Nikolina Brnjac; Ivica Oreb

    2006-01-01

    Concerning transport logistics as relation between transportand integrated approaches to logistics, some transport and logisticsspecialists consider the tenn tautological. However,transport is one of the components of logistics, along with inventories,resources, warehousing, infonnation and goods handling.Transport logistics considers wider commercial and operationalframeworks within which the flow of goods is plannedand managed. The demand for transport logistics services canbe valorised as ...

  5. Quantification of Hydrological, Geochemical, and Mineralogical Processes Governing the Fate and Transport of Uranium over Multiple Scales in Hanford Sediments

    International Nuclear Information System (INIS)

    Fendorf, Scott; Mayes, Melanie A.; Perfect, Edmund; van den Berg, Elmer; Parker, Jack C.; Jardine, Philip M.; Tang, Guoping

    2006-01-01

    A long-term measure of the DOE Environmental Remediation Sciences Division is to provide sufficient scientific understanding to allow a significant fraction of DOE sites to incorporate coupled biological, chemical, and physical processes into decision making for environmental remediation and long-term stewardship by 2015. Our research targets two related, major obstacles to understanding and predicting contaminant transport at DOE sites: the heterogeneity of subsurface geologic media, and the scale dependence of experimental and modeled results

  6. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions

    International Nuclear Information System (INIS)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C.; Brooks, Scott C; Pace, Molly; Kim, Young Jin; Jardine, Philip M.; Watson, David B.

    2007-01-01

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M. partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M. species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing NE equilibrium reactions and a set of reactive transport equations of M-NE kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions

  7. A reaction-based paradigm to model reactive chemical transport in groundwater with general kinetic and equilibrium reactions.

    Science.gov (United States)

    Zhang, Fan; Yeh, Gour-Tsyh; Parker, Jack C; Brooks, Scott C; Pace, Molly N; Kim, Young-Jin; Jardine, Philip M; Watson, David B

    2007-06-16

    This paper presents a reaction-based water quality transport model in subsurface flow systems. Transport of chemical species with a variety of chemical and physical processes is mathematically described by M partial differential equations (PDEs). Decomposition via Gauss-Jordan column reduction of the reaction network transforms M species reactive transport equations into two sets of equations: a set of thermodynamic equilibrium equations representing N(E) equilibrium reactions and a set of reactive transport equations of M-N(E) kinetic-variables involving no equilibrium reactions (a kinetic-variable is a linear combination of species). The elimination of equilibrium reactions from reactive transport equations allows robust and efficient numerical integration. The model solves the PDEs of kinetic-variables rather than individual chemical species, which reduces the number of reactive transport equations and simplifies the reaction terms in the equations. A variety of numerical methods are investigated for solving the coupled transport and reaction equations. Simulation comparisons with exact solutions were performed to verify numerical accuracy and assess the effectiveness of various numerical strategies to deal with different application circumstances. Two validation examples involving simulations of uranium transport in soil columns are presented to evaluate the ability of the model to simulate reactive transport with complex reaction networks involving both kinetic and equilibrium reactions.

  8. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  9. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  10. Numerical Modelling Approaches for Sediment Transport in Sewer Systems

    DEFF Research Database (Denmark)

    Mark, Ole

    A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...... constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model....

  11. Nuclear energy in Europe: uranium flow modeling and fuel cycle scenario trade-offs from a sustainability perspective.

    Science.gov (United States)

    Tendall, Danielle M; Binder, Claudia R

    2011-03-15

    The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.

  12. Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington

    Science.gov (United States)

    Slater, Lee D.; Ntarlagiannis, Dimitrios; Day-Lewis, Frederick D.; Mwakanyamale, Kisa; Versteeg, Roelof J.; Ward, Andy; Strickland, Christopher; Johnson, Carole D.; Lane, John W.

    2010-01-01

    We explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber‐optic distributed temperature sensor (FO‐DTS) monitoring, to improve the conceptual model for uranium transport within the Columbia River corridor at the Hanford 300 Area, Washington. We first inverted resistivity and induced polarization CWEI data sets for distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units was reconstructed. Variations in the depth to the interface between the overlying coarse‐grained, high‐permeability Hanford Formation and the underlying finer‐grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, were resolved along ∼3 km of the river corridor centered on the 300 Area. Polarizability images were translated into lithologic images using established relationships between polarizability and surface area normalized to pore volume (Spor). The FO‐DTS data recorded along 1.5 km of cable with a 1 m spatial resolution and 5 min sampling interval revealed subreaches showing (1) temperature anomalies (relatively warm in winter and cool in summer) and (2) a strong correlation between temperature and river stage (negative in winter and positive in summer), both indicative of reaches of enhanced surface water–groundwater exchange. The FO‐DTS data sets confirm the hydrologic significance of the variability identified in the CWEI and reveal a pattern of highly focused exchange, concentrated at springs where the Hanford Formation is thickest. Our findings illustrate how the combination of CWEI and FO‐DTS technologies can characterize surface water–groundwater exchange in a complex, coupled river‐aquifer system.

  13. Signal Processing Model for Radiation Transport

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  14. Mid-crustal uranium and rare metal mineralisation in the Mount Isa Inlier: a genetic model for formation of orogenic uranium deposits

    OpenAIRE

    McGloin, Matthew

    2017-01-01

    Uranium mineralisation near Mount Isa in northwest Queensland, Australia, is widespread yet poorly understood. Within this region in the Western Fold Belt, one hundred and ninety uranium-rare metal occurrences are known. This uranium mineralisation is similar to worldwide examples of albitite-hosted or sodium-metasomatic uranium deposits, which host albite-carbonate ore zones enriched in incompatible elements. Various metal sources and ore-forming processes have been sugg...

  15. Modelling the Global Transportation Systems for the Hydrogen Economy

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, D.A.; Kypreos, S.

    2004-03-01

    A modelling analysis of the transportation system is described, focused on the market penetration of different transportation technologies (including Learning-by-Doing) until the year 2050. A general outline of the work and first preliminary results are presented. (author)

  16. RAETRAD MODEL OF RADON GAS GENERATION, TRANSPORT, AND INDOOR ENTRY

    Science.gov (United States)

    The report describes the theoretical basis, implementation, and validation of the Radon Emanation and Transport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for simulating radon (222Rn) gas generation and transport from soils and building foundations to ...

  17. Model for the behaviour of thorium and uranium fuels at pelletization

    International Nuclear Information System (INIS)

    Ferreira Neto, Ricardo Alberto

    2000-11-01

    In this work, a model for the behaviour of thorium-uranium-mixed oxide microspheres in the pelletizing process is presented. This model was developed in a program whose objective was to demonstrate the viability of producing fissile material through the utilization of thorium in pressurized water reactors. This is important because it allows the saving of the strategic uranium reserves, and makes it possible the nuclear utilization of the large brazilian thorium reserves. The objective was to develop a model for optimizing physical properties of the microspheres, such as density, fracture strength and specific surface, so as to produce fuel pellets with microstructure, density, open porosity and impurity content, in accordance with the fuel specification. And, therefore, to adjust the sol-gel processing parameters in order to obtain these properties, and produce pellets with an optimized microstructure, adequate to a stable behaviour under irradiation. The model made it clear that to achieve this objective, it is necessary to produce microspheres with density and specific surface as small as possible. By changing the sol-gel processing parameters, microspheres with the desired properties were produced, and the model was experimentally verified by manufacturing fuel pellets with optimized microstructures, density, open porosity and impurity content, meeting the specifications for this new nuclear fuel for pressurized water reactors. Furthermore it was possible to obtain mathematical expressions that enables to calculate from the microspheres properties and the utilized compaction pressure, the sinter density that will be obtained in the sintered pellet and the necessary compaction pressure to reach the sintered density specified for the fuel. (author)

  18. Turbulent precipitation of uranium oxalate in a vortex reactor - experimental study and modelling; Precipitation turbulente d'oxalate d'uranium en reacteur vortex - etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Sommer de Gelicourt, Y

    2004-03-15

    Industrial oxalic precipitation processed in an un-baffled magnetically stirred tank, the Vortex Reactor, has been studied with uranium simulating plutonium. Modelling precipitation requires a mixing model for the continuous liquid phase and the solution of population balance for the dispersed solid phase. Being chemical reaction influenced by the degree of mixing at molecular scale, that commercial CFD code does not resolve, a sub-grid scale model has been introduced: the finite mode probability density functions, and coupled with a model for the liquid energy spectrum. Evolution of the dispersed phase has been resolved by the quadrature method of moments, first used here with experimental nucleation and growth kinetics, and an aggregation kernel based on local shear rate. The promising abilities of this local approach, without any fitting constant, are strengthened by the similarity between experimental results and simulations. (author)

  19. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    DEFF Research Database (Denmark)

    Liu, W.; Lund, H.; Mathiesen, B.V.

    2013-01-01

    in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13...

  20. Probabilistic finite-size transport models for fusion: Anomalous transport and scaling laws

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Sanchez, R.; Carreras, B.A.

    2004-01-01

    Transport in fusion plasmas in the low confinement mode is characterized by several remarkable properties: the anomalous scaling of transport with system size, stiff (or 'canonical') profiles, power degradation, and rapid transport phenomena. The present article explores the possibilities of constructing a unified transport model, based on the continuous-time random walk, in which all these phenomena are handled adequately. The resulting formalism appears to be sufficiently general to provide a sound starting point for the development of a full-blown plasma transport code, capable of incorporating the relevant microscopic transport mechanisms, and allowing predictions of confinement properties

  1. Chemical Transport Models on Accelerator Architectures

    Science.gov (United States)

    Linford, J.; Sandu, A.

    2008-12-01

    Heterogeneous multicore chipsets with many layers of polymorphic parallelism are becoming increasingly common in high-performance computing systems. Homogeneous co-processors with many streaming processors also offer unprecedented peak floating-point performance. Effective use of parallelism in these new chipsets is paramount. We present optimization techniques for 3D chemical transport models to take full advantage of emerging Cell Broadband Engine and graphical processing unit (GPU) technology. Our techniques achieve 2.15x the per-node performance of an IBM BlueGene/P on the Cell Broadband Engine, and a strongly-scalable 1.75x the per-node performance of an IBM BlueGene/P on an NVIDIA GeForce 8600.

  2. The Beasts' model of percolative transport

    International Nuclear Information System (INIS)

    Dubois, M.A.; Beaufume, P.; Fromont, B.

    1991-12-01

    A class of nonlinear dynamical systems is introduced: it is aimed to be a tool in order to study anomalous transport and percolation phenomena. We study a simple example of this system, and explore different regimes of transport exhibited

  3. Lung cancer from radon and smoking: a multistage model for the WISMUT uranium miners

    International Nuclear Information System (INIS)

    Dillen, Teun van; Bijwaard, Harmen; Schnelzer, Maria; Kreuzer, Michaela; Grosche, Bernd

    2008-01-01

    Full text: In the world's third-largest uranium-mining province located in areas of Saxony and Thuringia in the former German Democratic Republic, the WISMUT Company conducted extensive uranium mining starting in 1946. Up to 1990, when mining activities were discontinued, most of the 400,000 employees had been exposed to uranium ore dust and radon and its progeny. It is well established that, besides smoking, such exposures are associated with an increased risk of lung cancer. From about 130,000 known miners a huge cohort of 59,000 miners has been formed and in an epidemiological analysis lung cancer risks have been evaluated (Grosche et al., 2006). We will present an alternative approach using a biologically-based multistage carcinogenesis model quantifying the lung-cancer risk related to both the exposure to radon and smoking habits. This mechanistic technique allows for extrapolation to the low exposures that are important for present-day radiation protection purposes and the transfer of risk across populations. The model is applied to a sub-cohort of about 35,000 persons who were employed at WISMUT after 1955, with known annual exposures estimated from the job-exposure matrix (Lehmann et al., 2004). Unfortunately, detailed information on smoking is missing for most miners. However, this information has been retrieved in two case-control studies, one of which was nested in the cohort while the other was not (Brueske-Hohlfeld et al., 2006). For these studies, the relevant smoking parameters are assembled in so-called smoking spectra that are next projected onto the entire cohort using a Monte-Carlo sampling method. Individual smoking habits that are randomly assigned to the cohort members, together with the information on annual exposure to radon, is used as an input for the multistage model. Model parameters related to radon and tobacco exposure are fitted with a maximum-likelihood technique. We will show results of the observed and expected lung