Stochastic models for turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.
A model for reaction rates in turbulent reacting flows
Chinitz, W.; Evans, J. S.
1984-01-01
To account for the turbulent temperature and species-concentration fluctuations, a model is presented on the effects of chemical reaction rates in computer analyses of turbulent reacting flows. The model results in two parameters which multiply the terms in the reaction-rate equations. For these two parameters, graphs are presented as functions of the mean values and intensity of the turbulent fluctuations of the temperature and species concentrations. These graphs will facilitate incorporation of the model into existing computer programs which describe turbulent reacting flows. When the model was used in a two-dimensional parabolic-flow computer code to predict the behavior of an experimental, supersonic hydrogen jet burning in air, some improvement in agreement with the experimental data was obtained in the far field in the region near the jet centerline. Recommendations are included for further improvement of the model and for additional comparisons with experimental data.
Hoffie, Andreas Frank
Large eddy simulation (LES) combined with the one-dimensional turbulence (ODT) model is used to simulate spatially developing turbulent reacting shear layers with high heat release and high Reynolds numbers. The LES-ODT results are compared to results from direct numerical simulations (DNS), for model development and validation purposes. The LES-ODT approach is based on LES solutions for momentum and pressure on a coarse grid and solutions for momentum and reactive scalars on a fine, one-dimensional, but three-dimensionally coupled ODT subgrid, which is embedded into the LES computational domain. Although one-dimensional, all three velocity components are transported along the ODT domain. The low-dimensional spatial and temporal resolution of the subgrid scales describe a new modeling paradigm, referred to as autonomous microstructure evolution (AME) models, which resolve the multiscale nature of turbulence down to the Kolmogorv scales. While this new concept aims to mimic the turbulent cascade and to reduce the number of input parameters, AME enables also regime-independent combustion modeling, capable to simulate multiphysics problems simultaneously. The LES as well as the one-dimensional transport equations are solved using an incompressible, low Mach number approximation, however the effects of heat release are accounted for through variable density computed by the ideal gas equation of state, based on temperature variations. The computations are carried out on a three-dimensional structured mesh, which is stretched in the transverse direction. While the LES momentum equation is integrated with a third-order Runge-Kutta time-integration, the time integration at the ODT level is accomplished with an explicit Forward-Euler method. Spatial finite-difference schemes of third (LES) and first (ODT) order are utilized and a fully consistent fractional-step method at the LES level is used. Turbulence closure at the LES level is achieved by utilizing the Smagorinsky
An LES-PBE-PDF approach for modeling particle formation in turbulent reacting flows
Sewerin, Fabian; Rigopoulos, Stelios
2017-10-01
Many chemical and environmental processes involve the formation of a polydispersed particulate phase in a turbulent carrier flow. Frequently, the immersed particles are characterized by an intrinsic property such as the particle size, and the distribution of this property across a sample population is taken as an indicator for the quality of the particulate product or its environmental impact. In the present article, we propose a comprehensive model and an efficient numerical solution scheme for predicting the evolution of the property distribution associated with a polydispersed particulate phase forming in a turbulent reacting flow. Here, the particulate phase is described in terms of the particle number density whose evolution in both physical and particle property space is governed by the population balance equation (PBE). Based on the concept of large eddy simulation (LES), we augment the existing LES-transported probability density function (PDF) approach for fluid phase scalars by the particle number density and obtain a modeled evolution equation for the filtered PDF associated with the instantaneous fluid composition and particle property distribution. This LES-PBE-PDF approach allows us to predict the LES-filtered fluid composition and particle property distribution at each spatial location and point in time without any restriction on the chemical or particle formation kinetics. In view of a numerical solution, we apply the method of Eulerian stochastic fields, invoking an explicit adaptive grid technique in order to discretize the stochastic field equation for the number density in particle property space. In this way, sharp moving features of the particle property distribution can be accurately resolved at a significantly reduced computational cost. As a test case, we consider the condensation of an aerosol in a developed turbulent mixing layer. Our investigation not only demonstrates the predictive capabilities of the LES-PBE-PDF model but also
Direct numerical simulation of turbulent reacting flows
Energy Technology Data Exchange (ETDEWEB)
Chen, J.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.
Foy, E.; Ronan, G.; Chinitz, W.
1982-01-01
A principal element to be derived from modeling turbulent reacting flows is an expression for the reaction rates of the various species involved in any particular combustion process under consideration. A temperature-derived most-likely probability density function (pdf) was used to describe the effects of temperature fluctuations on the Arrhenius reaction rate constant. A most-likely bivariate pdf described the effects of temperature and species concentrations fluctuations on the reaction rate. A criterion is developed for the use of an "appropriate" temperature pdf. The formulation of models to calculate the mean turbulent Arrhenius reaction rate constant and the mean turbulent reaction rate is considered and the results of calculations using these models are presented.
Multigrid acceleration of turbulent reacting flow simulations
Wasserman, Mark
The study at hand is motivated by the ever growing complexity of turbulent combustion CFD simulations, imposing severe demands on computational resources. Such demands often render the simulation of practical, supersonic reacting flows about complex geometries unaffordable. As standard numerical methods are inefficient in solving the highly stiff, reacting Reynolds-averaged Navier-Stokes (RANS) equations that govern turbulent combustion, there is a need for methods that accelerate the iterative convergence to a steady-state. This work investigates the applicability of the multigrid (MG) approach as a means to accelerate convergence by alleviating the inherent numerical stiffness present in the RANS equations, especially when coupled with turbulence and finite-rate chemical kinetics models. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of source-terms, small-scale physics of combustion, and loss of positivity. To maximize the acceleration offered by multigrid, this work is aimed at developing a robust and stable multigrid method and an implicit solver for turbulent combustion, that do not rely on extensive artificial stabilization. The unconditionally positive-convergent (UPC) time integration implicit scheme, originally developed for turbulence model equations is adopted in this work, and successfully extended for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. Several modifications aimed at improving the efficiency of the scheme are also proposed. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic Full Approximation Storage (FAS) multigrid method. First, a novel prolongation operator that is based on logarithmic variables is proposed. The new operator prevents loss of positivity due to
Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet
Musa, Omer; Xiong, Chen; Changsheng, Zhou
2017-10-01
This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.
Wu, Hao; Ihme, Matthias
2017-11-01
The modeling of turbulent combustion requires the consideration of different physico-chemical processes, involving a vast range of time and length scales as well as a large number of scalar quantities. To reduce the computational complexity, various combustion models are developed. Many of them can be abstracted using a lower-dimensional manifold representation. A key issue in using such lower-dimensional combustion models is the assessment as to whether a particular combustion model is adequate in representing a certain flame configuration. The Pareto-efficient combustion (PEC) modeling framework was developed to perform dynamic combustion model adaptation based on various existing manifold models. In this work, the PEC model is applied to a turbulent flame simulation, in which a computationally efficient flamelet-based combustion model is used in together with a high-fidelity finite-rate chemistry model. The combination of these two models achieves high accuracy in predicting pollutant species at a relatively low computational cost. The relevant numerical methods and parallelization techniques are also discussed in this work.
Quantitative imaging of turbulent and reacting flows
Energy Technology Data Exchange (ETDEWEB)
Paul, P.H. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
Quantitative digital imaging, using planar laser light scattering techniques is being developed for the analysis of turbulent and reacting flows. Quantitative image data, implying both a direct relation to flowfield variables as well as sufficient signal and spatial dynamic range, can be readily processed to yield two-dimensional distributions of flowfield scalars and in turn two-dimensional images of gradients and turbulence scales. Much of the development of imaging techniques to date has concentrated on understanding the requisite molecular spectroscopy and collision dynamics to be able to determine how flowfield variable information is encoded into the measured signal. From this standpoint the image is seen as a collection of single point measurements. The present effort aims at realizing necessary improvements in signal and spatial dynamic range, signal-to-noise ratio and spatial resolution in the imaging system as well as developing excitation/detection strategies which provide for a quantitative measure of particular flowfield scalars. The standard camera used for the study is an intensified CCD array operated in a conventional video format. The design of the system was based on detailed modeling of signal and image transfer properties of fast UV imaging lenses, image intensifiers and CCD detector arrays. While this system is suitable for direct scalar imaging, derived quantities (e.g. temperature or velocity images) require an exceptionally wide dynamic range imaging detector. To apply these diagnostics to reacting flows also requires a very fast shuttered camera. The authors have developed and successfully tested a new type of gated low-light level detector. This system relies on fast switching of proximity focused image-diode which is direct fiber-optic coupled to a cooled CCD array. Tests on this new detector show significant improvements in detection limit, dynamic range and spatial resolution as compared to microchannel plate intensified arrays.
Turbulence-chemistry interactions in reacting flows
Energy Technology Data Exchange (ETDEWEB)
Barlow, R.S.; Carter, C.D. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
Interactions between turbulence and chemistry in nonpremixed flames are investigated through multiscalar measurements. Simultaneous point measurements of major species, NO, OH, temperature, and mixture fraction are obtained by combining spontaneous Raman scattering, Rayleigh scattering, and laser-induced fluorescence (LIF). NO and OH fluorescence signals are converted to quantitative concentrations by applying shot-to-shot corrections for local variations of the Boltzmann fraction and collisional quenching rate. These measurements of instantaneous thermochemical states in turbulent flames provide insights into the fundamental nature of turbulence-chemistry interactions. The measurements also constitute a unique data base for evaluation and refinement of turbulent combustion models. Experimental work during the past year has focused on three areas: (1) investigation of the effects of differential molecular diffusion in turbulent combustion: (2) experiments on the effects of Halon CF{sub 3}Br, a fire retardant, on the structure of turbulent flames of CH{sub 4} and CO/H{sub 2}/N{sub 2}; and (3) experiments on NO formation in turbulent hydrogen jet flames.
Chinitz, W.
1986-01-01
A computationally-viable model describing the interaction between fluid-mechanical turbulence and finite-rate combustion reactions, principally in high-speed flows was developed. Chemical kinetic mechanisms, complete and global, were developed describing the finite rate reaction of fuels of interest to NASA. These fuels included principally hydrogen and silane, although a limited amount of work involved hydrocarbon fuels as well.
Turbulent Reacting Flows at High Speed
National Research Council Canada - National Science Library
Brown, Garry
2001-01-01
.... To accomplish this goal, expertise in chemical kinetics, experimental fluid mechanics and combustion, and computational fluid mechanics were brought together to make a systematic attack on turbulent...
Multiphase reacting flows modelling and simulation
Marchisio, Daniele L
2007-01-01
The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
Computational Investigation of Soot and Radiation in Turbulent Reacting Flows
Lalit, Harshad
This study delves into computational modeling of soot and infrared radiation for turbulent reacting flows, detailed understanding of both of which is paramount in the design of cleaner engines and pollution control. In the first part of the study, the concept of Stochastic Time and Space Series Analysis (STASS) as a numerical tool to compute time dependent statistics of radiation intensity is introduced for a turbulent premixed flame. In the absence of high fidelity codes for large eddy simulation or direct numerical simulation of turbulent flames, the utility of STASS for radiation imaging of reacting flows to understand the flame structure is assessed by generating images of infrared radiation in spectral bands dominated by radiation from gas phase carbon dioxide and water vapor using an assumed PDF method. The study elucidates the need for time dependent computation of radiation intensity for validation with experiments and the need for accounting for turbulence radiation interactions for correctly predicting radiation intensity and consequently the flame temperature and NOx in a reacting fluid flow. Comparison of single point statistics of infrared radiation intensity with measurements show that STASS can not only predict the flame structure but also estimate the dynamics of thermochemical scalars in the flame with reasonable accuracy. While a time series is used to generate realizations of thermochemical scalars in the first part of the study, in the second part, instantaneous realizations of resolved scale temperature, CO2 and H2O mole fractions and soot volume fractions are extracted from a large eddy simulation (LES) to carry out quantitative imaging of radiation intensity (QIRI) for a turbulent soot generating ethylene diffusion flame. A primary motivation of the study is to establish QIRI as a computational tool for validation of soot models, especially in the absence of conventional flow field and measured scalar data for sooting flames. Realizations of
Poludnenko, Alexei
2016-11-01
Turbulent reacting flows are pervasive both in our daily lives on Earth and in the Universe. They power modern society being at the heart of many energy generation and propulsion systems, such as gas turbines, internal combustion and jet engines. On astronomical scales, thermonuclear turbulent flames are the driver of some of the most powerful explosions in the Universe, knows as Type Ia supernovae. Despite this ubiquity in Nature, turbulent reacting flows still pose a number of fundamental questions often exhibiting surprising and unexpected behavior. In this talk, we will discuss several such phenomena observed in direct numerical simulations of high-speed, premixed, turbulent flames. We show that turbulent flames in certain regimes are intrinsically unstable even in the absence of the surrounding combustor walls or obstacles, which can support the thermoacoustic feedback. Such instability can fundamentally change the structure and dynamics of the turbulent cascade, resulting in a significant (and anisotropic) redistribution of kinetic energy from small to large scales. In particular, three effects are observed. 1) The turbulent burning velocity can develop pulsations with significant peak-to-peak amplitudes. 2) Unstable burning can result in pressure build-up and the formation of pressure waves or shocks when the flame speed approaches or exceeds the speed of a Chapman-Jouguet deflagration. 3) Coupling of pressure and density gradients across the flame can lead to the anisotropic generation of turbulence inside the flame volume and flame acceleration. We extend our earlier analysis, which relied on a simplified single-step reaction model, by demonstrating existence of these effects in realistic chemical flames (hydrogen and methane) and in thermonuclear flames in degenerate, relativistic plasmas found in stellar interiors. Finally, we discuss the implications of these results for subgrid-scale LES combustion models. This work was supported by the Air Force
Density Weighted FDF Equations for Simulations of Turbulent Reacting Flows
Shih, Tsan-Hsing; Liu, Nan-Suey
2011-01-01
In this report, we briefly revisit the formulation of density weighted filtered density function (DW-FDF) for large eddy simulation (LES) of turbulent reacting flows, which was proposed by Jaberi et al. (Jaberi, F.A., Colucci, P.J., James, S., Givi, P. and Pope, S.B., Filtered mass density function for Large-eddy simulation of turbulent reacting flows, J. Fluid Mech., vol. 401, pp. 85-121, 1999). At first, we proceed the traditional derivation of the DW-FDF equations by using the fine grained probability density function (FG-PDF), then we explore another way of constructing the DW-FDF equations by starting directly from the compressible Navier-Stokes equations. We observe that the terms which are unclosed in the traditional DW-FDF equations are now closed in the newly constructed DW-FDF equations. This significant difference and its practical impact on the computational simulations may deserve further studies.
Spectral kinetic energy transfer in turbulent premixed reacting flows.
Towery, C A Z; Poludnenko, A Y; Urzay, J; O'Brien, J; Ihme, M; Hamlington, P E
2016-05-01
Spectral kinetic energy transfer by advective processes in turbulent premixed reacting flows is examined using data from a direct numerical simulation of a statistically planar turbulent premixed flame. Two-dimensional turbulence kinetic-energy spectra conditioned on the planar-averaged reactant mass fraction are computed through the flame brush and variations in the spectra are connected to terms in the spectral kinetic energy transport equation. Conditional kinetic energy spectra show that turbulent small-scale motions are suppressed in the burnt combustion products, while the energy content of the mean flow increases. An analysis of spectral kinetic energy transfer further indicates that, contrary to the net down-scale transfer of energy found in the unburnt reactants, advective processes transfer energy from small to large scales in the flame brush close to the products. Triadic interactions calculated through the flame brush show that this net up-scale transfer of energy occurs primarily at spatial scales near the laminar flame thermal width. The present results thus indicate that advective processes in premixed reacting flows contribute to energy backscatter near the scale of the flame.
The effect of temperature fluctuations of reaction rate constants in turbulent reacting flows
Chinitz, W.; Antaki, P. J.; Kassar, G. M.
1981-01-01
Current models of turbulent reacting flows frequently use Arrhenius reaction rate constants obtained from static or laminar flow theory and/or experiments, or from best fits of static, laminar, and turbulent data. By treating the reaction rate constant as a continuous random variable which is temperature-dependent, the present study assesses the effect of turbulent temperature fluctuations on the reaction rate constant. This model requires that a probability density function (PDF) describing the nature of the fluctuations be specified. Three PDFs are examined: the clipped Gaussian, the beta PDF, and the ramp model. All the models indicate that the reaction rate constant is greater in a turbulent flow field than in an equivalent laminar flow. In addition, an amplification ratio, which is the ratio of the turbulent rate constant to the laminar rate constant, is defined and its behavior as a function of the mean temperature fluctuations is described
Visualization of turbulent reacting flow in a microscale nanoprecipitation reactor
Shi, Yanxiang; Vishwanat, Somashekar; Olsen, Michael; Fox, Rodney
2009-11-01
A flow visualization technique using the pH sensitive dye phenolphthalein was used to visualize and quantify turbulent reacting mixing in a microscale nanoprecipitation reactor. Phenolphthalein is colorless at pH lower than 8, but turns pink at higher pH, making it useful for visualizing acid-base reactions. Using this dye, turbulent reactive mixing in a confined impinging jets reactor (CIJR) was investigated. The reactor has two inlet streams, one at a pH of 3, and the other at a pH of 11. Phenolphthalein is also dissolved in both streams. A flash lamp with a extremely short pulse duration is used to freeze the turbulent motion of the fluids, and images are captured using a video camera. Quantitative mixing data are obtained by using a thresholding technique where local image intensities are transformed to binary signals which represent the local pH: 0 stands for pH lower than 8 and 1 for pH higher than 8. For each Reynolds number under consideration, thousands of realizations are acquired. Using this thresholding technique, probability density functions are obtained, allowing comparison to numerical simulations.
Considerations for the application of cars to turbulent reacting flow
International Nuclear Information System (INIS)
Eckbreth, A.C.; Stufflebeam, J.H.
1984-01-01
Laser diagnostic techniques have certain advantages for an employment in combustion-related studies. In this connection, coherent anti-Stokes Raman spectroscopy (CARS) has received much attention, taking into account the improvement of the capabilities of CARS for studies regarding reacting flow. This paper is concerned with areas in which improvements would be desirable and with approaches for achieving them. Factors affecting single pulse CARS spectral quality are reviewed, and techniques for improving single pulse measurements are suggested.Attention is given to the physics of single pulse CARS generation, referencing, improved broadband dye laser profiles, temporally-smooth pump laser pulses, spatial mode effects, and single pulse averaging. The effects of turbulence and extinction on the viability of the various CARS concentration measurement approaches are discussed, and a mobile CARS instrument is considered. 47 references
Considerations for the application of CARS to turbulent reacting flows
Eckbreth, A. C.; Stufflebeam, J. H.
1985-11-01
Coherent anti-Stokes Raman spectroscopy (CARS) has matured considerably over recent years and is experiencing widespread application in fundamental and practical combustion situations. Its utilization in turbulent reacting flows is far from routine, however, and several problem areas need to be addressed and refined. This paper reviews these problems and assesses the status of current and proposed solution approaches. Due to its highly nonlinear dependence on temperature and species concentration, CARS measurements in time-varying environments necessitate assembly of “instantaneous” single-pulse measurement histograms, even to extract time-averaged properties. A number of factors contribute to distortion of single pulse CARS spectra and, thus, measurement inaccuracy; various improvement strategies will be evaluated. The problem of absolute concentration measurements at low and high Mach numbers in refracting and attenuating media will be discussed. The paper concludes with a description of an approach to permit CARS measurements of several species simultaneously in a single laser pulse.
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (R ij -ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
International Nuclear Information System (INIS)
Ghosh, Somnath; Friedrich, Rainer
2015-01-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case
Effects of radiative heat transfer on the turbulence structure in inert and reacting mixing layers
Ghosh, Somnath; Friedrich, Rainer
2015-05-01
We use large-eddy simulation to study the interaction between turbulence and radiative heat transfer in low-speed inert and reacting plane temporal mixing layers. An explicit filtering scheme based on approximate deconvolution is applied to treat the closure problem arising from quadratic nonlinearities of the filtered transport equations. In the reacting case, the working fluid is a mixture of ideal gases where the low-speed stream consists of hydrogen and nitrogen and the high-speed stream consists of oxygen and nitrogen. Both streams are premixed in a way that the free-stream densities are the same and the stoichiometric mixture fraction is 0.3. The filtered heat release term is modelled using equilibrium chemistry. In the inert case, the low-speed stream consists of nitrogen at a temperature of 1000 K and the highspeed stream is pure water vapour of 2000 K, when radiation is turned off. Simulations assuming the gas mixtures as gray gases with artificially increased Planck mean absorption coefficients are performed in which the large-eddy simulation code and the radiation code PRISSMA are fully coupled. In both cases, radiative heat transfer is found to clearly affect fluctuations of thermodynamic variables, Reynolds stresses, and Reynolds stress budget terms like pressure-strain correlations. Source terms in the transport equation for the variance of temperature are used to explain the decrease of this variance in the reacting case and its increase in the inert case.
Quadrature Method of Moments for the Simulation of Turbulent Reacting Flows
Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney
2003-11-01
Computational schemes for turbulent reacting flow systems typically solve the species transport equations using a grid-based Eulerian technique. Such schemes inherently do not contain information about the sub-grid scalar PDF required for the computation of the non-linear reaction source terms and sub-grid scalar dissipation. Though a transport equation for the scalar PDF can be formulated, the high-dimensional equation has to be solved using a computationally expensive particle-based Lagrangian scheme. To overcome this difficulty, the Direct Quadrature Method of Moments (DQMOM) is used to approximate the joint composition PDF by a set of delta functions. The delta-functions are characterized by their location and size, both of which are obtained by solving Eulerian transport equations. Using a N-peak description, N species-moments can be forced to be accurate. The Direct QMOM model is extended to LES schemes and comparisons are made with transported-PDF simulations for both reacting and non-reacting mixing layer setup. Re-formulation of the DQMOM equation leads to conditional multi-environment method that can be used for describing combustion systems that exhibit extinction.
Magnetohydrodynamic turbulence model
Hammer, James
2005-10-01
K-epsilon models find wide application as approximate models of fluid turbulence. The models couple equations for the turbulent kinetic energy and dissipation rate to the usual fluid equations, where the turbulence is driven by Reynolds stress or buoyancy source terms. We generalize to the case with magnetic forces in a Z-pinch geometry (azimuthal fields), using simple energy arguments to derive the turbulent source terms. The field is presumed strong enough that 3 dimensional twisting or bending of the field can be ignored, i.e. the flow is of the interchange type. The generalized source terms show the familiar correspondence between magnetic curvature and acceleration as drive terms for Rayleigh-Taylor and sausage instability. The source terms lead naturally to a modification of Ohm's law including a turbulent electric field that allows magnetic field to diffuse through material. The turbulent magnetic diffusion parallels a corresponding ohmic heating term in the equation for the turbulent kinetic energy.
Turbulence modification and multiphase turbulence transport modeling
International Nuclear Information System (INIS)
Besnard, D.C.; Kataoka, I.; Serizawa, A.
1991-01-01
It is shown here that in the derivation of turbulence transport models for multiphase flows, terms naturally appear that can be interpreted as related to turbulence modification of one field by the other. We obtain two such terms, one suggesting turbulence enhancement due to instabilities in two-phase flow, the second one showing turbulence damping due to the presence of the other field, both in gas-particle and gas-liquid cases
Lee, Insu
Confined non-reacting turbulent jets are ideal for recirculating the hot flue gas back into the furnace from an external exhaust duct. Such jets are also used inside the furnace to internally entrain and recirculate the hot flue gas to preheat and dilute the reactants. Both internal and external implementation of confined turbulent jets increase the furnace thermal efficiency. For external implementation, depending on the circumstances, the exhaust gas flow may be co- or counter-flow relative to the jet flow. Inside the furnaces, fuel and air jets are injected separately. To create a condition which can facilitate near homogeneous combustion, these jets have to first mix with the burned gas inside the furnace and simultaneously being heated and diluted prior to combustion. Clearly, the combustion pattern and emissions from reacting confined turbulent jets are affected by jet interactions, mixing and entrainment of hot flue gas. In this work, the flow and mixing characteristics of a non-reacting and reacting confined turbulent jet are investigated experimentally and numerically. This work consists of two parts: (i) A study of flow and mixing characteristics of non-reacting confined turbulent jets with co- or counter-flowing exhaust/flue gas. Here the axial and radial distributions of temperature, velocity and NO concentration (used as a tracer gas) were measured. FLUENT was used to numerically simulate the experimental results. This work provides the basic understanding of the flow and mixing characteristics of confined turbulent jets and develops some design considerations for recirculating flue gas back into the furnace as expressed by the recirculation zone and the stagnation locations. (ii) Numerical calculations of near homogeneous combustion are performed for the existing furnace. The exact geometry of the furnace in the lab is used and the real dimensional boundary conditions are considered. The parameters such as air nozzle diameter (dair), fuel nozzle
International Nuclear Information System (INIS)
Kaiser, Sebastian A; Frank, Jonathan H
2011-01-01
The effects of laser-sheet thickness on planar laser measurements of scalar gradients in turbulent flows are studied. Experiments are performed in the near field of a turbulent, non-premixed, axisymmetric jet flame and in the near field of a non-reacting, isothermal turbulent jet. Laser Rayleigh scattering provides two-dimensional measurements of the instantaneous temperature and mixture fraction fields in the flame and non-reacting jet, respectively. The effect of spatial resolution on measurements of the mean dissipation and the power spectral density of axial temperature and mixture-fraction gradients is examined. The effect of varying the laser-sheet thickness is compared to that of spatial filtering within the image plane. Measurements of the mean dissipation and power spectral density are significantly less sensitive to resolution degradation in the non-differentiated dimensions than in the differentiated dimension. For example, on the jet flame centreline, the dissipation-cut-off microscale, which is determined from the measured power spectral density, is overestimated by 9% when the beam-waist thickness is increased from a 1/e-squared width of 160 µm to 624 µm. In contrast, spatial filtering along the direction of differentiation with a smoothing kernel of 624 µm width produces a bias of 76% in the cut-off microscale. These results experimentally confirm the theoretical analysis of previous studies. A simple spatial model illustrates the origin of this difference and approximately predicts its magnitude for both planar and line measurements. A criterion for matching in-plane and out-of-plane resolution is established. For many planar gradient measurements, considerably less out-of-plane resolution is needed than in-plane resolution. The combined effects of noise and spatial averaging on the dissipation measurements are also briefly examined
A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows
Energy Technology Data Exchange (ETDEWEB)
James, Sutherland [University of Utah
2018-04-12
Abstract In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the curse of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.
Anderson, E. C.; Lewis, C. H.
1971-01-01
Turbulent boundary layer flows of non-reacting gases are predicted for both interal (nozzle) and external flows. Effects of favorable pressure gradients on two eddy viscosity models were studied in rocket and hypervelocity wind tunnel flows. Nozzle flows of equilibrium air with stagnation temperatures up to 10,000 K were computed. Predictions of equilibrium nitrogen flows through hypervelocity nozzles were compared with experimental data. A slender spherically blunted cone was studied at 70,000 ft altitude and 19,000 ft/sec. in the earth's atmosphere. Comparisons with available experimental data showed good agreement. A computer program was developed and fully documented during this investigation for use by interested individuals.
A Framework for the Modelling of Biphasic Reacting Systems
DEFF Research Database (Denmark)
Anantpinijwatna, Amata; Sin, Gürkan; O’Connell, John P.
2014-01-01
Biphasic reacting systems have a broad application range from organic reactions in pharmaceutical and agro-bio industries to CO 2 capture. However, mathematical modelling of biphasic reacting systems is a formidable challenge due to many phenomena underlying the process such as chemical equilibrium...
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Energy Technology Data Exchange (ETDEWEB)
Caughey, David
2010-10-08
A Symposium on Turbulence and Combustion was held at Cornell University on August 3-4, 2009. The overall goal of the Symposium was to promote future advances in the study of turbulence and combustion, through an unique forum intended to foster interactions between leading members of these two research communities. The Symposium program consisted of twelve invited lectures given by world-class experts in these fields, two poster sessions consisting of nearly 50 presentations, an open forum, and other informal activities designed to foster discussion. Topics covered in the lectures included turbulent dispersion, wall-bounded flows, mixing, finite-rate chemistry, and others, using experiment, modeling, and computations, and included perspectives from an international community of leading researchers from academia, national laboratories, and industry.
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
2009-01-01
positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Iannetti, Anthony C.; Moder, Jeffery P.
2010-01-01
Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results
Structure and modeling of turbulence
International Nuclear Information System (INIS)
Novikov, E.A.
1995-01-01
The open-quotes vortex stringsclose quotes scale l s ∼ LRe -3/10 (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES)
International Nuclear Information System (INIS)
Meshram, M C
2013-01-01
The Lewis–Kraichnan space–time version of Hopf functional formalism is considered for the investigation of turbulence with reacting and mixing chemical elements of type A + B → Product. The equations of motion are written in Fourier space. We first define the characteristic functional (or the moments generating functional) for the joint probability distribution of the velocity vector of the flow field and the reactants’ concentration scalar fields and translate the equations of motion in terms of the differential equations for the characteristic functional. These differential equations for the characteristic functional are further written in terms of the second characteristic functional (or the cumulant generating functional). This helps us in obtaining the equations for various order cumulants. We note from these equations for cumulants the characteristic difficulty of the theory of turbulence that the (n + 1)th order cumulant C (n+1) occurs in the equation for the dynamics of nth order cumulant C n . We use the factorized cumulant expansion approximation method for the present investigation. Under this approximation an arbitrary nth order cumulant C n is expressed in terms of the lower-order cumulants C (2) , C (3) and C (n−1) and thus we obtain a closed but untruncated system of equations for the cumulants. On using the factorized fourth-cumulant approximation method a closed set of equations for the reactants’ energy spectrum functions and the reactants’ energy transfer functions are derived. These equations are solved numerically and the similarity laws of the solutions are derived analytically. The statistical quantities such as the reactants’ energy, the reactants’ enstrophy, the reactants’ scale of segregations and so on are calculated numerically and the statistical laws of these quantities are discussed. Also, the scope of this tool for investigation of turbulent phenomena not covered in the present study is discussed. (paper)
Modelling of structural effects on chemical reactions in turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Gammelsaeter, H.R.
1997-12-31
Turbulence-chemistry interactions are analysed using algebraic moment closure for the chemical reaction term. The coupling between turbulence and chemical length and time scales generate a complex interaction process. This interaction process is called structural effects in this work. The structural effects are shown to take place on all scales between the largest scale of turbulence and the scales of the molecular motions. The set of equations describing turbulent correlations involved in turbulent reacting flows are derived. Interactions are shown schematically using interaction charts. Algebraic equations for the turbulent correlations in the reaction rate are given using the interaction charts to include the most significant couplings. In the frame of fundamental combustion physics, the structural effects appearing on the small scales of turbulence are proposed modelled using a discrete spectrum of turbulent scales. The well-known problem of averaging the Arrhenius law, the specific reaction rate, is proposed solved using a presumed single variable probability density function and a sub scale model for the reaction volume. Although some uncertainties are expected, the principles are addressed. Fast chemistry modelling is shown to be consistent in the frame of algebraic moment closure when the turbulence-chemistry interaction is accounted for in the turbulent diffusion. The modelling proposed in this thesis is compared with experimental data for an laboratory methane flame and advanced probability density function modelling. The results show promising features. Finally it is shown a comparison with full scale measurements for an industrial burner. All features of the burner are captured with the model. 41 refs., 33 figs.
The lagRST Model: A Turbulence Model for Non-Equilibrium Flows
Lillard, Randolph P.; Oliver, A. Brandon; Olsen, Michael E.; Blaisdell, Gregory A.; Lyrintzis, Anastasios S.
2011-01-01
This study presents a new class of turbulence model designed for wall bounded, high Reynolds number flows with separation. The model addresses deficiencies seen in the modeling of nonequilibrium turbulent flows. These flows generally have variable adverse pressure gradients which cause the turbulent quantities to react at a finite rate to changes in the mean flow quantities. This "lag" in the response of the turbulent quantities can t be modeled by most standard turbulence models, which are designed to model equilibrium turbulent boundary layers. The model presented uses a standard 2-equation model as the baseline for turbulent equilibrium calculations, but adds transport equations to account directly for non-equilibrium effects in the Reynolds Stress Tensor (RST) that are seen in large pressure gradients involving shock waves and separation. Comparisons are made to several standard turbulence modeling validation cases, including an incompressible boundary layer (both neutral and adverse pressure gradients), an incompressible mixing layer and a transonic bump flow. In addition, a hypersonic Shock Wave Turbulent Boundary Layer Interaction with separation is assessed along with a transonic capsule flow. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWTBLI flows assessed. Separation predictions are not as good as the baseline models, but the over prediction of the peak heat flux downstream of the reattachment shock that plagues many models is reduced.
Numerical experiments modelling turbulent flows
Trefilík, Jiří; Kozel, Karel; Příhoda, Jaromír
2014-03-01
The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k - ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Numerical experiments modelling turbulent flows
Directory of Open Access Journals (Sweden)
Trefilík Jiří
2014-03-01
Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.
Reduced Models for Gyrokinetic Turbulence
Besse, Nicolas; Bertrand, Pierre; Morel, Pierre; Gravier, Etienne
2009-09-01
Turbulent transport is a key issue for controlled thermonuclear fusion based on magnetic confinement. The thermal confinement of a magnetized fusion plasma is essentially determined by the turbulent heat conduction across the equilibrium magnetic field. It has long been acknowledged, that the prediction of turbulent transport requires to solve Vlasov-type gyrokinetic equations. Although the kinetic description is more accurate than fluid models (Magnetohydrodynamics (MHD), gyro-fluid), because among other things it takes into account nonlinear resonant wave-particle interaction, kinetic modeling has the drawback of a huge demand on computer resources. A unifying approach consists in considering water-bag-like weak solutions of kinetic collisionless equations, which allow to reduce the full kinetic Vlasov equation into a set of hydrodynamic equations, while keeping its kinetic behaviour. As a result this exact reduction induces a multi-fluid numerical resolution cost. Therefore, finding water-bag-like weak solutions of the gyrokinetic equations leads to the birth of the gyro-water-bag model. This model is suitable for studying linear and nonlinear low-frequency micro-instabilities and the associated anomalous transport in magnetically confined plasmas. Here we present the derivation of nonlinear gyro-water-bag models and their numerical approximations by backward Runge-Kutta semi-Lagrangian methods and forward Runge-Kutta discontinuous Galerkin schemes.
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
Model for Simulation Atmospheric Turbulence
DEFF Research Database (Denmark)
Lundtang Petersen, Erik
1976-01-01
A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....
Sub-grid combustion modeling for compressible two-phase reacting flows
Sankaran, Vaidyanathan
2003-06-01
A generic formulation for modeling the turbulent combustion in compressible, high Reynolds number, two-phase; reacting flows has been developed and validated. A sub-grid mixing/combustion model called Linear Eddy Mixing (LEM) model has been extended to compressible flows and used inside the framework of Large Eddy Simulation (LES) in this LES-LEM approach. The LES-LEM approach is based on the proposition that the basic mechanistic distinction between the convective and the molecular effects should be preserved for accurate prediction of complex flow-fields such as those encountered in many combustion systems. Liquid droplets (represented by computational parcels) are tracked using the Lagrangian approach wherein the Newton's equation of motion for the discrete particles are integrated explicitly in the Eulerian gas field. The gas phase LES velocity fields are used to estimate the instantaneous gas velocity at the droplet location. Drag effects due to the droplets on the gas phase and the heat transfer between the gas and the liquid phase are explicitly included. Thus, full coupling is achieved between the two phases in the simulation. Validation of the compressible LES-LEM approach is conducted by simulating the flow-field in an operational General Electric Aircraft Engines combustor (LM6000). The results predicted using the proposed approach compares well with the experiments and a conventional (G-equation) thin-flame model. Particle tracking algorithms used in the present study are validated by simulating droplet laden temporal mixing layers. Quantitative and qualitative comparison with the results of spectral DNS exhibits good agreement. Simulations using the current LES-LEM for freely propagating partially premixed flame in a droplet-laden isotropic turbulent field correctly captures the flame structure in the partially premixed flames. Due to the strong spatial variation of equivalence ratio a broad flame similar to a premixed flame is realized. The current
Simulation and modeling of turbulent flows
Gatski, Thomas B; Lumley, John L
1996-01-01
This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.
Review of Four Turbulence Models using Topology
DEFF Research Database (Denmark)
Voigt, Lars Peter Kølgaard; Sørensen, Jens Nørkær; Pedersen, Jakob Martin
2003-01-01
The validation and development of turbulence models are still important issues related to Computational fluid Dynamics for ventilation purpose.The present work continues the work initiated by (Voigt, 2002). Four turbulence models are reviewed, the k-e model, the k-w model and two blending models...
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Turbulence modeling for hypersonic flows
Marvin, J. G.; Coakley, T. J.
1992-01-01
Turbulence modeling for high-speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models, and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary-layer flows, shock-wave boundary-layer interactions, and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
Approximate Model for Turbulent Stagnation Point Flow.
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Modeling and design of reacting systems with phase transfer catalysis
DEFF Research Database (Denmark)
Piccolo, Chiara; Hodges, George; Piccione, Patrick M.
2011-01-01
Issues related to the design of biphasic (liquid) catalytic reaction operations are discussed. A chemical system involving the reaction of an organic-phase soluble reactant (A) with an aqueous-phase soluble reactant (B) in the presence of phase transfer catalyst (PTC) is modeled and based on it, ...
Settlement Relocation Modeling: Reacting to Merapi’s Eruption Incident
Pramitasari, A.; Buchori, I.
2018-02-01
Merapi eruption has made severe damages in Central Java Province. Klaten was one of the most affected area, specifically in Balerante Village. This research is made to comprehend GIS model on finding alternative locations for impacted settlement in hazardous zones of eruption. The principal objective of the research study is to identify and analyze physical condition, community characteristics, and local government regulation related to settlements relocation plan for impacted area of eruption. The output is location map which classified into four categories, i.e. not available, available with low accessibility, available with medium accessibility, and available with high accessibility.
Improved Nonequilibrium Algebraic Model Of Turbulence
Johnson, D. A.; Coakley, T. J.
1993-01-01
Blend of previous models predicts pressure distributions more accurately. Improved algebraic model represents some of time-averaged effects of turbulence in transonic flow of air over airfoil. Based partly on comparisons among various eddy-viscosity formulations for turbulence and partly on premise that law of wall more universally valid in immediate region of surface in presence of adverse gradient of pressure than mixing-length theory and original Johnson and King model.
Quasi-Wavelet Models for Atmospheric Turbulence
National Research Council Canada - National Science Library
Goedecke, George
2002-01-01
...). The "quasi-wavelet" (QW) model discussed in this paper is an attempt to develop a mathematical representation for the turbulence that more closely resembles this physical picture than Fourier modes or customary wavelets...
Modeling turbulence structure. Chemical kinetics interaction in turbulent reactive flows
Energy Technology Data Exchange (ETDEWEB)
Magnussen, B.F. [The Norwegian Univ. of Science and Technology, Trondheim (Norway)
1997-12-31
The challenge of the mathematical modelling is to transfer basic physical knowledge into a mathematical formulation such that this knowledge can be utilized in computational simulation of practical problems. The combustion phenomena can be subdivided into a large set of interconnected phenomena like flow, turbulence, thermodynamics, chemical kinetics, radiation, extinction, ignition etc. Combustion in one application differs from combustion in another area by the relative importance of the various phenomena. The difference in fuel, geometry and operational conditions often causes the differences. The computer offers the opportunity to treat the individual phenomena and their interactions by models with wide operational domains. The relative magnitude of the various phenomena therefore becomes the consequence of operational conditions and geometry and need not to be specified on the basis of experience for the given problem. In mathematical modelling of turbulent combustion, one of the big challenges is how to treat the interaction between the chemical reactions and the fluid flow i.e. the turbulence. Different scientists adhere to different concepts like the laminar flamelet approach, the pdf approach of the Eddy Dissipation Concept. Each of these approaches offers different opportunities and problems. All these models are based on a sound physical basis, however none of these have general validity in taking into consideration all detail of the physical chemical interaction. The merits of the models can only be judged by their ability to reproduce physical reality and consequences of operational and geometric conditions in a combustion system. The presentation demonstrates and discusses the development of a coherent combustion technology for energy conversion and safety based on the Eddy Dissipation Concept by Magnussen. (author) 30 refs.
Directory of Open Access Journals (Sweden)
S. Wahyuni
2016-07-01
Full Text Available Tujuan dari penelitian ini adalah untuk menerapkan model pembelajaran yang berkualitas dan dapat mengembangkan kecakapan hidup mahasiswa. Model pembelajaran yang diterapkan adalah model pembelajaran berorientasi chemo-entrepreneurship berbasis REACT. Penelitian ini merupakan penelitian pengembangan. Data yang diperoleh dianalisis menggunakan met ode deskriptif kualitatif. Hasil penelitian menunjukkan bahwa nilai akhir kelompok eksperimen lebih baik dibanding kelas KontroL Kelas Eksperimen memberikan skor kecakapan hidup yang lebih tinggi dibanding Kelas Kontrol. Perlu dilakukan penelitian lebih lanjut mengenai manfaat yang lebih spesifik penerapan model pembelajaran kimia berorientasi Chemo entrepreneurship berstrategi REACT, misalnya dalam meningkatkan kemampuan berpikir kritis mahasiswa.The purpose of this study was to apply a qualified model and can develop students' life skills. Applied learning model was REACT based and chemo-entrepreneurship oriented learning model. This research is development research. The data obtained were analyzed using descriptive-qualitative method. The results showed that the final value of the experimental class was better than that of the control class. The experimental class provided life skills higher score than the control class. A further research on the benefits of a more specific application of chemistry learning model oriented to chemo-entrepreneurship with REACT strategy is necessary to be conducted, for example in improving students' critical thinking skills.
Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
Kim, S.-W.
1990-01-01
A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
A LES-Langevin model for turbulence
Dolganov, Rostislav; Dubrulle, Bérengère; Laval, Jean-Philippe
2006-11-01
The rationale for Large Eddy Simulation is rooted in our inability to handle all degrees of freedom (N˜10^16 for Re˜10^7). ``Deterministic'' models based on eddy-viscosity seek to reproduce the intensification of the energy transport. However, they fail to reproduce backward energy transfer (backscatter) from small to large scale, which is an essentiel feature of the turbulence near wall or in boundary layer. To capture this backscatter, ``stochastic'' strategies have been developed. In the present talk, we shall discuss such a strategy, based on a Rapid Distorsion Theory (RDT). Specifically, we first divide the small scale contribution to the Reynolds Stress Tensor in two parts: a turbulent viscosity and the pseudo-Lamb vector, representing the nonlinear cross terms of resolved and sub-grid scales. We then estimate the dynamics of small-scale motion by the RDT applied to Navier-Stockes equation. We use this to model the cross term evolution by a Langevin equation, in which the random force is provided by sub-grid pressure terms. Our LES model is thus made of a truncated Navier-Stockes equation including the turbulent force and a generalized Langevin equation for the latter, integrated on a twice-finer grid. The backscatter is automatically included in our stochastic model of the pseudo-Lamb vector. We apply this model to the case of homogeneous isotropic turbulence and turbulent channel flow.
Turbulence models for compressible boundary layers
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1994-01-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Turbulence models for compressible boundary layers
Energy Technology Data Exchange (ETDEWEB)
Huang, P.G.; Bradshaw, P.; Coakley, T.J. [Eloret Institute, Palo Alto, CA (United States)]|[Stanford Univ., CA (United States)]|[NASA, Ames Research Center, Moffet Field, CA (United States)
1994-04-01
It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
Turbulence Modeling of Torsional Couette Flows
Directory of Open Access Journals (Sweden)
Sofia Haddadi
2008-01-01
Full Text Available The present study considers the numerical modeling of the turbulent flow inside a rotor-stator cavity subjected or not to a superimposed throughflow. Extensive numerical predictions based on one-point statistical modeling using a low Reynolds number second-order full stress transport closure (RSM model are performed mainly in the case of turbulent flows with merged boundary layers known as turbulent torsional Couette flows and belonging to regime III of Daily and Nece (1960. The RSM model has already shown its capability of predicting accurately the mean and turbulent fields in various rotating disk configurations (Poncet, 2005; Poncet et al., 2005, 2007, 2008. For the first time, a detailed mapping of the hydrodynamic flow over a wide range of rotational Reynolds numbers (180 000≤Re≤10 000 000, aspect ratios of the cavity (0.02≤G≤0.05, and flow rate coefficients (−10000≤Cw≤10000 is here provided in the turbulent torsional Couette flow regime.
Lipkens, B; Blackstock, D T
1998-09-01
A model experiment was reported to be successful in simulating the propagation of sonic booms through a turbulent atmosphere [B. Lipkens and D. T. Blackstock, J. Acoust. Soc. Am. 103, 148-158 (1998)]. In this study the effect on N wave characteristics of turbulence intensity and propagation distance through turbulence are investigated. The main parameters of interest are the rise time and the peak pressure. The effect of turbulence intensity and propagation distance is to flatten the rise time and peak pressure distributions. Rise time and peak pressure distributions always have positive skewness after propagation through turbulence. Average rise time grows with turbulence intensity and propagation distance. The scattering of rise time data is one-sided, i.e., rise times are almost always increased by turbulence. Average peak pressure decreases slowly with turbulence intensity and propagation distance. For the reported data a threefold increase in average rise time is observed and a maximum decrease of about 20% in average peak pressure. Rise times more than ten times that of the no turbulence value are observed. At most, the maximum peak pressure doubles after propagation through turbulence, and the minimum peak pressure values are about one-half the no-turbulence values. Rounded waveforms are always more common than peaked waveforms.
Turbulence modeling for high speed flows
Coakley, T. J.; Huang, P. G.
1992-01-01
An investigation of turbulence models for high speed flows is presented. The flows consist of simple 2D flows over flat plates and complex shock-wave boundary-layer interaction flows over ramps and wedges. The flows are typical of those encountered by high speed vehicles such as the NASP. The turbulence models investigated include various two-equation models which, as a class, are considered to be well suited to the design of high speed vehicles. A description and discussion of the specific models is given and includes both baseline or uncorrected models, and model corrections which are needed to improve predictions of complex flows. It is found that most of the models studied are able to give good predictions of the flat plate flows, and some of the models are able to predict some of the complex flows, but none of them are able to accurately predict all of the complex flows. Recommendations for future model improvements are discussed.
International Nuclear Information System (INIS)
Devoino, A.N.
1978-01-01
An experimental set up, a method and experimental results of the study of heat transfer and hydraulic resistance under conditions of cooling the dissociating coolant flow at elevated wall temperatures of the tube (Tsub(w) 2 O 4 reversible 2NO 2 reversible 2NO + O 2 chemically reacting turbulent flow in a tube are considered
Turbulence Modeling Validation, Testing, and Development
Bardina, J. E.; Huang, P. G.; Coakley, T. J.
1997-01-01
The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.
Improvements to a nonequilibrium algebraic turbulence model
Johnson, D. A.; Coakley, T. J.
1990-01-01
It has been noted that while the nonequilibrium turbulence model of Johnson and King (1985, 1987) performed significantly better than alternative methods, differences between predicted and observed shock locations for certain weak interactions are produced due to a defficiency in the model's inner eddy viscosity formulation. A novel formulation for the model is presented which removes this deficiency, while satisfying the law of the wall for adverse pressure-gradient conditions better than either the original formulation or mixing-length theory.
Efficient Turbulence Modeling for CFD Wake Simulations
DEFF Research Database (Denmark)
van der Laan, Paul
, that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...
The Research of Optical Turbulence Model in Underwater Imaging System
Directory of Open Access Journals (Sweden)
Liying Sun
2014-01-01
Full Text Available In order to research the effect of turbulence on underwater imaging system and image restoration, the underwater turbulence model is simulated by computer fluid dynamics. This model is obtained in different underwater turbulence intensity, which contains the pressure data that influences refractive index distribution. When the pressure value is conversed to refractive index, the refractive index distribution can be received with the refraction formula. In the condition of same turbulent intensity, the distribution of refractive index presents gradient in the whole region, with disorder and mutations in the local region. With the turbulence intensity increase, the holistic variation of the refractive index in the image is larger, and the refractive index change more tempestuously in the local region. All the above are illustrated by the simulation results with he ray tracing method and turbulent refractive index model. According to different turbulence intensity analysis, it is proved that turbulence causes image distortion and increases noise.
An Improved Model for the Turbulent PBL
Cheng, Y.; Canuto, V. M.; Howard, A. M.; Hansen, James E. (Technical Monitor)
2001-01-01
Second order turbulence models of the Mellor and Yamada type have been widely used to simulate the PBL. It is however known that these models have several deficiencies. For example, they all predict a critical Richardson number which is about four times smaller than the Large Eddy Simulation (LES) data, they are unable to match the surface data, and they predict a boundary layer height lower than expected. In the present model, we show that these difficulties are all overcome by a single new physical input: the use of the most complete expression for both the pressure-velocity and the pressure-temperature correlations presently available. Each of the new terms represents a physical process that, was not accounted for by previous models. The new model is presented in three different levels according to Mellor and Yamada's terminology, with new, ready-to-use expressions for the turbulent, moments. We show that the new model reproduces several experimental and LES data better than previous models. As far as the PBL is concerned, we show that the model reproduces both the Kansas data as analyzed by Businger et al. in the context of Monin-Obukhov similarity theory for smaller Richardson numbers, as well as the LES and laboratory data up to Richardson numbers of order unity. We also show that the model yields a higher PBL height than the previous models.
Realistic Creativity Training for Innovation Practitioners: The Know-Recognize-React Model
DEFF Research Database (Denmark)
Valgeirsdóttir, Dagný; Onarheim, Balder
2017-01-01
As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program...... the transdisciplinary study described in this paper. Co-creation was employed as a method to ensure the three layers of focus would be taken into consideration. The result is a program called Creative Awareness Training which is based on the new Know-Recognize-React model....
Nested polyhedra model of turbulence
Gürcan, Ö. D.
2017-06-01
A discretization of the wave-number space is proposed, using nested polyhedra, in the form of alternating dodecahedra and icosahedra that are self-similarly scaled. This particular choice allows the possibility of forming triangles using only discretized wave vectors when the scaling between two consecutive dodecahedra is equal to the golden ratio and the icosahedron between the two dodecahedra is the dual of the inner dodecahedron. Alternatively, the same discretization can be described as a logarithmically spaced (with a scaling equal to the golden ratio), nested dodecahedron-icosahedron compounds. A wave vector which points from the origin to a vertex of such a mesh, can always find two other discretized wave vectors that are also on the vertices of the mesh (which is not true for an arbitrary mesh). Thus, the nested polyhedra grid can be thought of as a reduction (or decimation) of the Fourier space using a particular set of self-similar triads arranged approximately in a spherical form. For each vertex (i.e., discretized wave vector) in this space, there are either 9 or 15 pairs of vertices (i.e., wave vectors) with which the initial vertex can interact to form a triangle. This allows the reduction of the convolution integral in the Navier-Stokes equation to a sum over 9 or 15 interaction pairs, transforming the equation in Fourier space to a network of "interacting" nodes that can be constructed as a numerical model, which evolves each component of the velocity vector on each node of the network. This model gives the usual Kolmogorov spectrum of k-5 /3. Since the scaling is logarithmic, and the number of nodes for each scale is constant, a very large inertial range (i.e., a very high Reynolds number) with a much lower number of degrees of freedom can be considered. Incidentally, by assuming isotropy and a certain relation between the phases, the model can be used to systematically derive shell models.
Fundamental Research in Turbulent Modeling.
1980-02-01
Ri equation) implies (23). We introduce wave number space by 4D (k) = R eik. d (24) 813 and the three-dimensional spectrum, E , by the Karman-Howarth...Mech. Series No. 4, 1965, pp. 13-23. 10 simple model for T , which has derivatives only (no integrals*) both in t space and for R ,is 1 ’S 15F The...coefficients have been chosen so that for Kolmogoroff equili- brium, i.e., T = 0 , the only solution is E = const k -5 / 3 and, in addition, Eq. (28) is
Modelling asphaltene deposition in turbulent pipeline flows
Energy Technology Data Exchange (ETDEWEB)
Eskin, D.; Ratulowski, J.; Akbarzadeh, K.; Pan, S. [Schlumberg DBR Technology Center (Canada)
2011-06-15
Asphaltene deposition is one of the important problems of oil production that requires accurate predictive modeling. A model of asphaltene deposition in a turbulent pipe flow is introduced in this paper. A Couette device is employed to perform experiments. There are two major modules in this model. (1) A model of particle size distribution evolution along a pipe - the concept of 'critical particle size' is introduced. Only particles smaller than the critical particle size may deposit. (2) A model of particle transport to the wall. The major mechanism of particle transport to the wall is the Brownian motion. The model developed contains three major tuning parameters that are determined experimentally using a Couette device: particle-particle collision efficiency, particle-wall sticking efficiency, and particle critical size. Performance of the deposition model for a pipeline with the coefficients obtained using a laboratory Couette device is also illustrated in this paper.
Turbulence modeling for complex hypersonic flows
Huang, P. G.; Coakley, T. J.
1993-01-01
The paper presents results of calculations for a range of 2D turbulent hypersonic flows using two-equation models. The baseline models and the model corrections required for good hypersonic-flow predictions will be illustrated. Three experimental data sets were chosen for comparison. They are: (1) the hypersonic flare flows of Kussoy and Horstman, (2) a 2D hypersonic compression corner flow of Coleman and Stollery, and (3) the ogive-cylinder impinging shock-expansion flows of Kussoy and Horstman. Comparisons with the experimental data have shown that baseline models under-predict the extent of flow separation but over-predict the heat transfer rate near flow reattachment. Modifications to the models are described which remove the above-mentioned deficiencies. Although we have restricted the discussion only to the selected baseline models in this paper, the modifications proposed are universal and can in principle be transferred to any existing two-equation model formulation.
Multigrid solution of incompressible turbulent flows by using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Zheng, X.; Liu, C. [Front Range Scientific Computations, Inc., Denver, CO (United States); Sung, C.H. [David Taylor Model Basin, Bethesda, MD (United States)
1996-12-31
Most of practical flows are turbulent. From the interest of engineering applications, simulation of realistic flows is usually done through solution of Reynolds-averaged Navier-Stokes equations and turbulence model equations. It has been widely accepted that turbulence modeling plays a very important role in numerical simulation of practical flow problem, particularly when the accuracy is of great concern. Among the most used turbulence models today, two-equation models appear to be favored for the reason that they are more general than algebraic models and affordable with current available computer resources. However, investigators using two-equation models seem to have been more concerned with the solution of N-S equations. Less attention is paid to the solution method for the turbulence model equations. In most cases, the turbulence model equations are loosely coupled with N-S equations, multigrid acceleration is only applied to the solution of N-S equations due to perhaps the fact the turbulence model equations are source-term dominant and very stiff in sublayer region.
Finite-element numerical modeling of atmospheric turbulent boundary layer
Lee, H. N.; Kao, S. K.
1979-01-01
A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.
Jha, Pradeep Kumar
Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow
Low dimensional modeling of wall turbulence
Aubry, Nadine
2015-11-01
In this talk we will review the original low dimensional dynamical model of the wall region of a turbulent boundary layer [Aubry, Holmes, Lumley and Stone, Journal of Fluid Dynamics 192, 1988] and discuss its impact on the field of fluid dynamics. We will also invite a few researchers who would like to make brief comments on the influence Lumley had on their research paths. In collaboration with Philip Holmes, Program in Applied and Computational Mathematics and Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ.
Advanced Chemical Modeling for Turbulent Combustion Simulations
2012-05-03
Bunsen flame. Proc. Comb. Inst., 31:1291–1298, 2007. [48] J.-H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao...turbulent combustion. Combust. Flame, 143:587–598, 2005. [50] J. A. van Oijen, F. A. Lammers, and L. P. H. de Goey. Modeling of complex premixed burner ... bunsen flames using flamelet-generated manifold reduction. Int. J. of Hydrogen Energy, 34:2778–2788, 2009. [53] K.-J. Nogenmyr, P. Petersson, X. S. Bai
Directory of Open Access Journals (Sweden)
Aditya Prihandhika
2017-03-01
Full Text Available Hasil analisa TIMSS Tahun 2013 menempatkan Indonesia sebagai salah satu negara dengan peringkat terendah dalam perolehan nilai matematika. Model pembelajaran yang dapat digunakan untuk meningkatkan kemampuan koneksi matematis diantaranya adalah model pembelajaran REACT dan Learning Cycle 5E. Penelitian ini bertujuan untuk mengetahui terdapat atau tidaknya perbedaan kemampuan koneksi matematis peserta didik yang diajarkan dengan kedua model tersebut. Penelitian dilaksanakan di SMKN 39 Jakarta dengan populasi kelas X semester ganjil tahun pelajaran 2015-2016. Sampel yang diteliti sebanyak 61 orang dengan menggunakan design penelitian quasi experimental. Variabel bebas : model pembelajaran REACT dan model pembelajaran Learning Cycle 5E. Variabel terikat : kemampuan koneksi matematis. Uji instrumen dengan uji validitas dan uji reliabilitas. Uji validitas dengan rumus korelasi Product Moment didapat 7 soal yang valid. Uji reliabilitas dengan rumus Alpha menunjukan bahwa soal tersebut reliabel. Uji normalitas dengan uji Lilliefors menunjukan kedua sampel dari populasi yang berdistribusi normal. Uji homogenitas dengan uji Fisher menunjukan kedua sampel memiliki varians yang homogen. Uji hipotesis dengan uji-t didapat dengan alpha sebesar 0,05, maka di tolak. Dengan demikian terdapat perbedaan kemampuan koneksi matematis peserta didik yang diajarkan dengan model pembelajaran REACT dan model pembelajaran Learning Cycle 5E di SMKN 39 Jakarta. Kata Kunci: Kemampuan Koneksi Matematis, Model Pembelajaran REACT Model Pembelajaran Learning Cycle 5E.
A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows
Kim, S.-W.
1988-01-01
A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.
Modelling of turbulent combustion in the blast furnace raceway
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Maekiranta, R. [Tampere Univ. (Finland). Energy and Process Engineering
1996-12-31
The phenomena concerning coke-gas -suspension and simultaneous combustion of solid coke particles and residual fuel oil in a blast furnace raceway are modelled. The flow field of suspension is predicted by using the two fluid model, which is based on the Eulerian method, in the Phoenics code. The standard k-e -model of turbulence is used. Pyrolysis of oil droplets is calculated with the own coded subroutine, which is based on the Lagrangian approach. Gas phase reaction rate is assumed to be controlled by chemical kinetics. Radiative heat transfer is calculated by using the six-flux method. Heterogenous surface reactions are used for the coke particles. Calculations without coke combustion show that due to a poor mixing in the hot blast, pyrolysis gases of residual fuel oil have not time enough to react with oxygen. It is obvious that if combustion of coke particles is taken into account, the oxygen content in the blast decreases to such a level, that unburnt pyrolysis gases can flow out of the raceway causing problems. The distribution of coke void fraction has been succeeded to predict in the raceway domain. Coke particles fall from the upper part of the raceway to the hot blast forming locally high concentrations, which affect very strongly the oxygen distribution of the hot blast. (orig.) SULA 2 Research Programme; 10 refs.
Realistic Creativity Training for Innovation Practitioners: The Know-Recognize-React Model
DEFF Research Database (Denmark)
Valgeirsdóttir, Dagný; Onarheim, Balder
2017-01-01
As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program sp...... the transdisciplinary study described in this paper. Co-creation was employed as a method to ensure the three layers of focus would be taken into consideration. The result is a program called Creative Awareness Training which is based on the new Know-Recognize-React model.......As creativity becomes increasingly recognized as important raw material for innovation, the importance of identifying ways to increase practitioners’ creativity through rigorously designed creativity training programs is highlighted. Therefore we sat out to design a creativity training program...
An implicit Navier-Stokes code for turbulent flow modeling
Huang, P. G.; Coakley, T. J.
1992-01-01
This paper presents a numerical approach to calculating turbulent flows employing advanced turbulence models. The main features include a line-by-line Gauss-Seidel algorithm using Roe's approximate Riemann solver, TVD numerical schemes, implicit boundary conditions and a decoupled turbulence-model solver. Based on the problems tested so far, the method has consistently demonstrated its ability in offering accuracy, boundedness and a fast rate of convergence to steady-state solution.
The Selection of Turbulence Models for Prediction of Room Airflow
DEFF Research Database (Denmark)
Nielsen, Peter V.
This paper discusses the use of different turbulence models and their advantages in given situations. As an example, it is shown that a simple zero-equation model can be used for the prediction of special situations as flow with a low level of turbulence. A zero-equation model with compensation...
Nicolleau, FCGA; Redondo, J-M
2012-01-01
This book contains a collection of the main contributions from the first five workshops held by Ercoftac Special Interest Group on Synthetic Turbulence Models (SIG42. It is intended as an illustration of the sig's activities and of the latest developments in the field. This volume investigates the use of Kinematic Simulation (KS) and other synthetic turbulence models for the particular application to environmental flows. This volume offers the best syntheses on the research status in KS, which is widely used in various domains, including Lagrangian aspects in turbulence mixing/stirring, partic
Turbulence modeling of natural convection in enclosures: A review
International Nuclear Information System (INIS)
Choi, Seok Ki; Kim, Seong O
2012-01-01
In this paper a review of recent developments of turbulence models for natural convection in enclosures is presented. The emphasis is placed on the effect of the treatments of Reynolds stress and turbulent heat flux on the stability and accuracy of the solution for natural convection in enclosures. The turbulence models considered in the preset study are the two-layer k -ε model, the shear stress transport (SST) model, the elliptic-relaxation (V2-f) model and the elliptic-blending second-moment closure (EBM). Three different treatments of the turbulent heat flux are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The mathematical formulation of the above turbulence models and their solution method are presented. Evaluation of turbulence models are performed for turbulent natural convection in a 1:5 rectangular cavity ( Ra = 4.3x10 10 ) and in a square cavity with conducting top and bottom walls ( Ra =1.58x10 9 ) and the Rayleigh-Benard convection ( Ra = 2x10 6 ∼ Ra =10 9 ). The relative performances of turbulence models are examined and their successes and shortcomings are addressed
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
Modelling of the decay of isotropic turbulence by the LES
Energy Technology Data Exchange (ETDEWEB)
Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)
2011-12-22
This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.
On specification of initial conditions in turbulence models
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-12-01
Recent research has shown that initial conditions have a significant influence on the evolution of a flow towards turbulence. This important finding offers a unique opportunity for turbulence control, but also raises the question of how to properly specify initial conditions in turbulence models. We study this problem in the context of the Rayleigh-Taylor instability. The Rayleigh-Taylor instability is an interfacial fluid instability that leads to turbulence and turbulent mixing. It occurs when a light fluid is accelerated in to a heavy fluid because of misalignment between density and pressure gradients. The Rayleigh-Taylor instability plays a key role in a wide variety of natural and man-made flows ranging from supernovae to the implosion phase of Inertial Confinement Fusion (ICF). Our approach consists of providing the turbulence models with a predicted profile of its key variables at the appropriate time in accordance to the initial conditions of the problem.
A weakened cascade model for turbulence in astrophysical plasmas
International Nuclear Information System (INIS)
Howes, G. G.; TenBarge, J. M.; Dorland, W.
2011-01-01
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
A weakened cascade model for turbulence in astrophysical plasmas
Energy Technology Data Exchange (ETDEWEB)
Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom); TenBarge, J. M. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Dorland, W. [Department of Physics, University of Maryland, College Park, Maryland 20742-3511 (United States); Isaac Newton Institute for Mathematical Sciences, Cambridge, CB3 0EH (United Kingdom)
2011-10-15
A refined cascade model for kinetic turbulence in weakly collisional astrophysical plasmas is presented that includes both the transition between weak and strong turbulence and the effect of nonlocal interactions on the nonlinear transfer of energy. The model describes the transition between weak and strong MHD turbulence and the complementary transition from strong kinetic Alfven wave (KAW) turbulence to weak dissipating KAW turbulence, a new regime of weak turbulence in which the effects of shearing by large scale motions and kinetic dissipation play an important role. The inclusion of the effect of nonlocal motions on the nonlinear energy cascade rate in the dissipation range, specifically the shearing by large-scale motions, is proposed to explain the nearly power-law energy spectra observed in the dissipation range of both kinetic numerical simulations and solar wind observations.
Modelling and prediction of non-stationary optical turbulence behaviour
Doelman, N.J.; Osborn, J.
2016-01-01
There is a strong need to model the temporal fluctuations in turbulence parameters, for instance for scheduling, simulation and prediction purposes. This paper aims at modelling the dynamic behaviour of the turbulence coherence length r0, utilising measurement data from the Stereo-SCIDAR instrument
Madadi-Kandjani, E.; Fox, R. O.; Passalacqua, A.
2017-06-01
An extended quadrature method of moments using the β kernel density function (β -EQMOM) is used to approximate solutions to the evolution equation for univariate and bivariate composition probability distribution functions (PDFs) of a passive scalar for binary and ternary mixing. The key element of interest is the molecular mixing term, which is described using the Fokker-Planck (FP) molecular mixing model. The direct numerical simulations (DNSs) of Eswaran and Pope ["Direct numerical simulations of the turbulent mixing of a passive scalar," Phys. Fluids 31, 506 (1988)] and the amplitude mapping closure (AMC) of Pope ["Mapping closures for turbulent mixing and reaction," Theor. Comput. Fluid Dyn. 2, 255 (1991)] are taken as reference solutions to establish the accuracy of the FP model in the case of binary mixing. The DNSs of Juneja and Pope ["A DNS study of turbulent mixing of two passive scalars," Phys. Fluids 8, 2161 (1996)] are used to validate the results obtained for ternary mixing. Simulations are performed with both the conditional scalar dissipation rate (CSDR) proposed by Fox [Computational Methods for Turbulent Reacting Flows (Cambridge University Press, 2003)] and the CSDR from AMC, with the scalar dissipation rate provided as input and obtained from the DNS. Using scalar moments up to fourth order, the ability of the FP model to capture the evolution of the shape of the PDF, important in turbulent mixing problems, is demonstrated. Compared to the widely used assumed β -PDF model [S. S. Girimaji, "Assumed β-pdf model for turbulent mixing: Validation and extension to multiple scalar mixing," Combust. Sci. Technol. 78, 177 (1991)], the β -EQMOM solution to the FP model more accurately describes the initial mixing process with a relatively small increase in computational cost.
Theoretical study (Lagrangian modeling) of turbulent particulate dispersion
Berlemont, A.; Grancher, M. S.; Desjonqueres, P.
A study aimed at improving the prediction and knowledge of two phase phenomena in a turbomachine is presented. A code to three dimensionally simulate particle dispersion, taking account of turbulent droplet evaporation, and which can be easily integrated into the DIAMANT code, is developed. Lagrangian modeling of particle dispersion is used. The influence of turbulence on evaporation appears to be non-negligible and must therefore be taken into account in droplet turbulent transfer problems.
Turbulence theories and modelling of fluids and plasmas
International Nuclear Information System (INIS)
Yoshizawa, Akira; Yokoi, Nobumitsu; Itoh, Sanae-I.; Itoh, Kimitaka
2001-04-01
Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Numerical Investigation of Turbulence Models for a Superlaminar Journal Bearing
Directory of Open Access Journals (Sweden)
Aoshuang Ding
2018-01-01
Full Text Available With rotating machineries working at high speeds, oil flow in bearings becomes superlaminar. Under superlaminar conditions, flow exhibits between laminar and fully developed turbulence. In this study, superlaminar oil flow in an oil-lubricated tilting-pad journal bearing is analyzed through computational fluid dynamics (CFD. A three-dimensional bearing model is established. CFD results from the laminar model and 14 turbulence models are compared with experimental findings. The laminar simulation results of pad-side pressure are inconsistent with the experimental data. Thus, the turbulence effects on superlaminar flow should be considered. The simulated temperature and pressure distributions from the classical fully developed turbulence models cannot correctly fit the experimental data. As such, turbulence models should be corrected for superlaminar flow. However, several corrections, such as transition correction, are unsuitable. Among all the flow models, the SST model with low-Re correction exhibits the best pressure distribution and turbulence viscosity ratio. Velocity profile analysis confirms that a buffer layer plays an important role in the superlaminar boundary layer. Classical fully developed turbulence models cannot accurately predict the buffer layer, but this problem can be resolved by initiating an appropriate low-Re correction. Therefore, the SST model with low-Re correction yields suitable results for superlaminar flows in bearings.
Status of Turbulence Modeling for Hypersonic Propulsion Flowpaths
Georgiadis, Nicholas J.; Yoder, Dennis A.; Vyas, Manan A.; Engblom, William A.
2012-01-01
This report provides an assessment of current turbulent flow calculation methods for hypersonic propulsion flowpaths, particularly the scramjet engine. Emphasis is placed on Reynolds-averaged Navier-Stokes (RANS) methods, but some discussion of newer meth- ods such as Large Eddy Simulation (LES) is also provided. The report is organized by considering technical issues throughout the scramjet-powered vehicle flowpath including laminar-to-turbulent boundary layer transition, shock wave / turbulent boundary layer interactions, scalar transport modeling (specifically the significance of turbulent Prandtl and Schmidt numbers) and compressible mixing. Unit problems are primarily used to conduct the assessment. In the combustor, results from calculations of a direct connect supersonic combustion experiment are also used to address the effects of turbulence model selection and in particular settings for the turbulent Prandtl and Schmidt numbers. It is concluded that RANS turbulence modeling shortfalls are still a major limitation to the accuracy of hypersonic propulsion simulations, whether considering individual components or an overall system. Newer methods such as LES-based techniques may be promising, but are not yet at a maturity to be used routinely by the hypersonic propulsion community. The need for fundamental experiments to provide data for turbulence model development and validation is discussed.
Turbulent Combustion Modeling Advances, New Trends and Perspectives
Echekki, Tarek
2011-01-01
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...
A model combustor for studying a reacting jet in an oscillating crossflow
Fugger, Christopher A.; Gejji, Rohan M.; Portillo, J. Enrique; Yu, Yen; Lucht, Robert P.; Anderson, William E.
2017-06-01
This paper discusses a novel model combustion experiment that was built for studying the structure and dynamics of a reacting jet in an unsteady crossflow. A natural-gas-fired dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection. Unlike most other techniques that are limited in operating pressure or acoustic amplitude, this method of generating an unsteady flow field is demonstrated at a pressure of 10 atm with peak-to-peak oscillation amplitudes approaching 20% of the mean pressure. An optically accessible test section designed for these conditions provides access for advanced laser and optical diagnostic measurements. Detailed measurements provide insight into the complex acoustic-hydrodynamic-combustion coupling processes and offer high-quality, high-resolution validation data for numerical simulations. Careful instrumentation port design considerations for the higher amplitude acoustics are detailed. As a whole, this paper focuses on select representative segments of the experiment operational space that highlight our strategy of providing an oscillatory flowfield. This includes presenting the acoustic operational space such as acoustic amplitudes, frequencies, and mode shapes. Select imaging results are then reported to support our strategies capability to produce high-fidelity measurements.
A model combustor for studying a reacting jet in an oscillating crossflow.
Fugger, Christopher A; Gejji, Rohan M; Portillo, J Enrique; Yu, Yen; Lucht, Robert P; Anderson, William E
2017-06-01
This paper discusses a novel model combustion experiment that was built for studying the structure and dynamics of a reacting jet in an unsteady crossflow. A natural-gas-fired dump combustor is used to generate and sustain an acoustically oscillating vitiated flow that serves as the crossflow for transverse jet injection. Unlike most other techniques that are limited in operating pressure or acoustic amplitude, this method of generating an unsteady flow field is demonstrated at a pressure of 10 atm with peak-to-peak oscillation amplitudes approaching 20% of the mean pressure. An optically accessible test section designed for these conditions provides access for advanced laser and optical diagnostic measurements. Detailed measurements provide insight into the complex acoustic-hydrodynamic-combustion coupling processes and offer high-quality, high-resolution validation data for numerical simulations. Careful instrumentation port design considerations for the higher amplitude acoustics are detailed. As a whole, this paper focuses on select representative segments of the experiment operational space that highlight our strategy of providing an oscillatory flowfield. This includes presenting the acoustic operational space such as acoustic amplitudes, frequencies, and mode shapes. Select imaging results are then reported to support our strategies capability to produce high-fidelity measurements.
International Nuclear Information System (INIS)
Vandersall, Kevin S; Garcia, Frank; Fried, Laurence E; Tarver, Craig M
2014-01-01
Experimental data from measurements of the reacted state of an energetic material are desired to incorporate reacted states in modeling by computer codes. In a case such as LX-17 (92.5% TATB and 7.5% Kel-F by weight), where the time dependent kinetics of reaction is still not fully understood and the reacted state may evolve over time, this information becomes even more vital. Experiments were performed to measure the reacted state of LX-17 using a double shock method involving the use of two flyer materials (with known properties) mounted on the projectile that send an initial shock through the material close to or above the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. By measuring the parameters of the first and second shock waves, information on the reacted state can be obtained. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments.
Models for turbulent flows with variable density and combustion
International Nuclear Information System (INIS)
Jones, W.P.
1980-01-01
Models for transport processes and combustion in turbulent flows are outlined with emphasis on the situation where the fuel and air are injected separately. Attention is restricted to relatively simple flames. The flows investigated are high Reynolds number, single-phase, turbulent high-temperature flames in which radiative heat transfer can be considered negligible. Attention is given to the lower order closure models, algebraic stress and flux models, the k-epsilon turbulence model, the diffusion flame approximation, and finite rate reaction mechanisms
Progress in wall turbulence 2 understanding and modelling
Jimenez, Javier; Marusic, Ivan
2016-01-01
This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS, and modeling with RANS, LES.The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.
Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles
Energy Technology Data Exchange (ETDEWEB)
Bellakhal, Ghazi
2005-03-15
The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)
Turbulent Spot Pressure Fluctuation Wave Packet Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
Wave packet analysis provides a connection between linear small disturbance theory and subsequent nonlinear turbulent spot flow behavior. The traditional association between linear stability analysis and nonlinear wave form is developed via the method of stationary phase whereby asymptotic (simplified) mean flow solutions are used to estimate dispersion behavior and stationary phase approximation are used to invert the associated Fourier transform. The resulting process typically requires nonlinear algebraic equations inversions that can be best performed numerically, which partially mitigates the value of the approximation as compared to a more complete, e.g. DNS or linear/nonlinear adjoint methods. To obtain a simpler, closed-form analytical result, the complete packet solution is modeled via approximate amplitude (linear convected kinematic wave initial value problem) and local sinusoidal (wave equation) expressions. Significantly, the initial value for the kinematic wave transport expression follows from a separable variable coefficient approximation to the linearized pressure fluctuation Poisson expression. The resulting amplitude solution, while approximate in nature, nonetheless, appears to mimic many of the global features, e.g. transitional flow intermittency and pressure fluctuation magnitude behavior. A low wave number wave packet models also recover meaningful auto-correlation and low frequency spectral behaviors.
Single-Phase Bundle Flows Including Macroscopic Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.
Two-equation turbulence modeling for 3-D hypersonic flows
Bardina, J. E.; Coakley, T. J.; Marvin, J. G.
1992-01-01
An investigation to verify, incorporate and develop two-equation turbulence models for three-dimensional high speed flows is presented. The current design effort of hypersonic vehicles has led to an intensive study of turbulence models for compressible hypersonic flows. This research complements an extensive review of experimental data and the current development of 2D turbulence models. The review of experimental data on 2D and 3D flows includes complex hypersonic flows with pressure profiles, skin friction, wall heat transfer, and turbulence statistics data. In a parallel effort, turbulence models for high speed flows have been tested against flat plate boundary layers, and are being tested against the 2D database. In the present paper, we present the results of 3D Navier-Stokes numerical simulations with an improved k-omega two-equation turbulence model against experimental data and empirical correlations of an adiabatic flat plate boundary layer, a cold wall flat plate boundary layer, and a 3D database flow, the interaction of an oblique shock wave and a thick turbulent boundary layer with a free stream Mach number = 8.18 and Reynolds number = 5 x 10 to the 6th.
Assessing Model Assumptions for Turbulent Premixed Combustion at High Karlovitz Number
2015-09-03
and non-premixed modes of combustion, Combust. Flame 156 (2009) 678–696. [48] S . Viswanathan, H. Wang, S . Pope , Numerical implementation of mixing...and molecular transport in LES/PDF studies of turbulent reacting flows, J. Comp. Phys. 230 (2011) 6916–6957. [49] S . Pope , Turbulent Flows, Cambridge...Girimaji, S . Pope , Straining and scalar dissipation on material-surfaces in turbulence - implications for flamelets, Combust. Flame 79 (1990) 340–365. [57
A new energy transfer model for turbulent free shear flow
Liou, William W.-W.
1992-01-01
A new model for the energy transfer mechanism in the large-scale turbulent kinetic energy equation is proposed. An estimate of the characteristic length scale of the energy containing large structures is obtained from the wavelength associated with the structures predicted by a weakly nonlinear analysis for turbulent free shear flows. With the inclusion of the proposed energy transfer model, the weakly nonlinear wave models for the turbulent large-scale structures are self-contained and are likely to be independent flow geometries. The model is tested against a plane mixing layer. Reasonably good agreement is achieved. Finally, it is shown by using the Liapunov function method, the balance between the production and the drainage of the kinetic energy of the turbulent large-scale structures is asymptotically stable as their amplitude saturates. The saturation of the wave amplitude provides an alternative indicator for flow self-similarity.
A compressible Navier-Stokes code for turbulent flow modeling
Coakley, T. J.
1984-01-01
An implicit, finite volume code for solving two dimensional, compressible turbulent flows is described. Second order upwind differencing of the inviscid terms of the equations is used to enhance stability and accuracy. A diagonal form of the implicit algorithm is used to improve efficiency. Several zero and two equation turbulence models are incorporated to study their impact on overall flow modeling accuracy. Applications to external and internal flows are discussed.
A turbulent two-phase flow model for nebula flows
International Nuclear Information System (INIS)
Champney, J.M.; Cuzzi, J.N.
1990-01-01
A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles. 24 refs
Modelling and simulation of turbulence and heat transfer in wall-bounded flows
Popovac, M.
2006-01-01
At present it is widely accepted that there is no universal turbulence model, i.e. no turbulence model can give acceptably good predictions for all turbulent flows that are found in nature or engineering. Every turbulence model is based on certain assumptions, and hence it is aimed at certain type
Study and modelling of liquid metal turbulent flows
International Nuclear Information System (INIS)
Pimont, Vincent
1983-01-01
In this research thesis, the author first reports the study of equations of a turbulent flow with heat transfer: transport equations of 2. order moments related to different fluctuations, influence of a change of referential. He analyses the structure of a non isothermal turbulent flow of liquid metal: study of the turbulent heat flow and of liquid metal temperature fluctuations, study of characteristic scales for such a flow, principle of assessment of orders of magnitude. He presents the modelling of transport equations of moments related to temperature fluctuation, and of transport equations at high Reynolds number. He finally reports the application of the developed model to the wall area of a non isothermal turbulent flow of liquid metal [fr
Stochastic model of Rayleigh-Taylor turbulent mixing
International Nuclear Information System (INIS)
Abarzhi, S.I.; Cadjan, M.; Fedotov, S.
2007-01-01
We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for
On the Conditioning of Machine-Learning-Assisted Turbulence Modeling
Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng
2017-11-01
Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.
Tempered fractional time series model for turbulence in geophysical flows
Meerschaert, Mark M.; Sabzikar, Farzad; Phanikumar, Mantha S.; Zeleke, Aklilu
2014-09-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model.
Tempered fractional time series model for turbulence in geophysical flows
International Nuclear Information System (INIS)
Meerschaert, Mark M; Sabzikar, Farzad; Phanikumar, Mantha S; Zeleke, Aklilu
2014-01-01
We propose a new time series model for velocity data in turbulent flows. The new model employs tempered fractional calculus to extend the classical 5/3 spectral model of Kolmogorov. Application to wind speed and water velocity in a large lake are presented, to demonstrate the practical utility of the model. (paper)
Energy Technology Data Exchange (ETDEWEB)
McDaniel, Dwayne; Dulikravich, George; Cizmas, Paul
2017-11-27
This report summarizes the objectives, tasks and accomplishments made during the three year duration of this research project. The report presents the results obtained by applying advanced computational techniques to develop reduced-order models (ROMs) in the case of reacting multiphase flows based on high fidelity numerical simulation of gas-solids flow structures in risers and vertical columns obtained by the Multiphase Flow with Interphase eXchanges (MFIX) software. The research includes a numerical investigation of reacting and non-reacting gas-solids flow systems and computational analysis that will involve model development to accelerate the scale-up process for the design of fluidization systems by providing accurate solutions that match the full-scale models. The computational work contributes to the development of a methodology for obtaining ROMs that is applicable to the system of gas-solid flows. Finally, the validity of the developed ROMs is evaluated by comparing the results against those obtained using the MFIX code. Additionally, the robustness of existing POD-based ROMs for multiphase flows is improved by avoiding non-physical solutions of the gas void fraction and ensuring that the reduced kinetics models used for reactive flows in fluidized beds are thermodynamically consistent.
Log-Normal Turbulence Dissipation in Global Ocean Models
Pearson, Brodie; Fox-Kemper, Baylor
2018-03-01
Data from turbulent numerical simulations of the global ocean demonstrate that the dissipation of kinetic energy obeys a nearly log-normal distribution even at large horizontal scales O (10 km ) . As the horizontal scales of resolved turbulence are larger than the ocean is deep, the Kolmogorov-Yaglom theory for intermittency in 3D homogeneous, isotropic turbulence cannot apply; instead, the down-scale potential enstrophy cascade of quasigeostrophic turbulence should. Yet, energy dissipation obeys approximate log-normality—robustly across depths, seasons, regions, and subgrid schemes. The distribution parameters, skewness and kurtosis, show small systematic departures from log-normality with depth and subgrid friction schemes. Log-normality suggests that a few high-dissipation locations dominate the integrated energy and enstrophy budgets, which should be taken into account when making inferences from simplified models and inferring global energy budgets from sparse observations.
Hydrodynamics of Bubble Columns: Turbulence and Population Balance Model
Directory of Open Access Journals (Sweden)
Camila Braga Vieira
2018-03-01
Full Text Available This paper presents an in-depth numerical analysis on the hydrodynamics of a bubble column. As in previous works on the subject, the focus here is on three important parameters characterizing the flow: interfacial forces, turbulence and inlet superficial Gas Velocity (UG. The bubble size distribution is taken into account by the use of the Quadrature Method of Moments (QMOM model in a two-phase Euler-Euler approach using the open-source Computational Fluid Dynamics (CFD code OpenFOAM (Open Field Operation and Manipulation. The interfacial forces accounted for in all the simulations presented here are drag, lift and virtual mass. For the turbulence analysis in the water phase, three versions of the Reynolds Averaged Navier-Stokes (RANS k-ε turbulence model are examined: namely, the standard, modified and mixture variants. The lift force proves to be of major importance for a trustworthy prediction of the gas volume fraction profiles for all the (superficial gas velocities tested. Concerning the turbulence, the mixture k-ε model is seen to provide higher values of the turbulent kinetic energy dissipation rate in comparison to the other models, and this clearly affects the prediction of the gas volume fraction in the bulk region, and the bubble-size distribution. In general, the modified k-ε model proves to be a good compromise between modeling simplicity and accuracy in the study of bubble columns of the kind undertaken here.
Modeling of detonation transition through the field of mixing the reacting and inert gases
Directory of Open Access Journals (Sweden)
Prokhorov Evgeniy
2017-01-01
Full Text Available The non-stationary problem of exciting a plane shock wave by gas detonation in a tube is numerically solved. The case, when the field of mixing the reacting and inert gases filling the closed tube end has finite size, is considered. The influence of mixing field width on the intensity and damping law of excited shock waves is studied. Ignoring energy losses, the problem solution is determined by one dimensionless parameter equal to the ratio of gas mixture volume in the mixing field to the volume of reacting gas located in the tube before the detonation is initiated. By varying this parameter within the range from 0 to 2, the maximal value for the Mach number of the shock wave in inert gas (air is decreased by about 20%. It is established that decrease pattern of the shock-wave front velocity can be approximately described by the dependence corresponding to the conclusions made from the theory of point explosion for the case of plane adiabatic gas motions.
Simulating tidal turbines with mesh optimisation and RANS turbulence models
Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.
2015-01-01
A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model
Effects of Freestream Turbulence in a Model Wind Turbine Wake
Directory of Open Access Journals (Sweden)
Yaqing Jin
2016-10-01
Full Text Available The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at R e ∼ 7 × 10 4 . Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locations. The pre-multiplied spectral difference of the velocity fluctuations between the two cases shows a significant energy contribution from the background turbulence on scales larger than the rotor diameter. The integral scale along the rotor axis is found to grow linearly with distance, independent of the incoming turbulence levels. This scale appears to reach that of the incoming flow in the high turbulence case at x / d ∼ 35–40. The energy contribution from the turbine to the large-scale flow structures in the low turbulence case increases monotonically with distance. Its growth rate is reduced past x / d ∼ 6–7. There, motions larger than the rotor contribute ∼ 50 % of the total energy, suggesting that the population of large-scale motions is more intense in the intermediate field. In contrast, the wake in the high incoming turbulence is quickly populated with large-scale motions and plateau at x / d ∼ 3 .
Approximate deconvolution models of turbulence analysis, phenomenology and numerical analysis
Layton, William J
2012-01-01
This volume presents a mathematical development of a recent approach to the modeling and simulation of turbulent flows based on methods for the approximate solution of inverse problems. The resulting Approximate Deconvolution Models or ADMs have some advantages over more commonly used turbulence models – as well as some disadvantages. Our goal in this book is to provide a clear and complete mathematical development of ADMs, while pointing out the difficulties that remain. In order to do so, we present the analytical theory of ADMs, along with its connections, motivations and complements in the phenomenology of and algorithms for ADMs.
Temperature-Corrected Model of Turbulence in Hot Jet Flows
Abdol-Hamid, Khaled S.; Pao, S. Paul; Massey, Steven J.; Elmiligui, Alaa
2007-01-01
An improved correction has been developed to increase the accuracy with which certain formulations of computational fluid dynamics predict mixing in shear layers of hot jet flows. The CFD formulations in question are those derived from the Reynolds-averaged Navier-Stokes equations closed by means of a two-equation model of turbulence, known as the k-epsilon model, wherein effects of turbulence are summarized by means of an eddy viscosity. The need for a correction arises because it is well known among specialists in CFD that two-equation turbulence models, which were developed and calibrated for room-temperature, low Mach-number, plane-mixing-layer flows, underpredict mixing in shear layers of hot jet flows. The present correction represents an attempt to account for increased mixing that takes place in jet flows characterized by high gradients of total temperature. This correction also incorporates a commonly accepted, previously developed correction for the effect of compressibility on mixing.
On the problem of turbulent arcs modelling
International Nuclear Information System (INIS)
Yas'ko, O.I.
1998-01-01
A new hypothesis is proposed which considers mass as a charge which produces a special field during its movement likewise the electric charge creates magnetic one. This approach throws new light on vortexes formation since interaction of moving mass with the considered field exerts swirling effect. Some aspects of turbulence in flows near walls and in blown electric arc discharge were considered to validate the hypothesis in the cases of cold and high-temperature flows. The theoretical results are found to comply with experiment well. (author)
Turbulence Modeling of Flows with Extensive Crossflow Separation
Directory of Open Access Journals (Sweden)
Argyris G. Panaras
2015-07-01
Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.
Kopasakis, George
2014-01-01
The presentation covers a recently developed methodology to model atmospheric turbulence as disturbances for aero vehicle gust loads and for controls development like flutter and inlet shock position. The approach models atmospheric turbulence in their natural fractional order form, which provides for more accuracy compared to traditional methods like the Dryden model, especially for high speed vehicle. The presentation provides a historical background on atmospheric turbulence modeling and the approaches utilized for air vehicles. This is followed by the motivation and the methodology utilized to develop the atmospheric turbulence fractional order modeling approach. Some examples covering the application of this method are also provided, followed by concluding remarks.
Low-Level Turbulence Forecasts From Fine-Scale Models
2014-02-01
Obviously, it is the “big picture ” that influences the “small picture ” so additional development in model initialization and model physics will also serve...241–253. 15. Keller, J. L. Clear air turbulence as a response to meso- and synoptic -scale dynamic processes. Mon. Wea. Rev., 1990, 118, 2228–2242
A new turbulence-based model for sand transport
Mayaud, Jerome; Wiggs, Giles; Bailey, Richard
2016-04-01
Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical
Decaying and kicked turbulence in a shell model
DEFF Research Database (Denmark)
Hooghoudt, Jan Otto; Lohse, Detlef; Toschi, Federico
2001-01-01
Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account for the ens......Decaying and periodically kicked turbulence are analyzed within the Gledzer–Ohkitani–Yamada shell model, to allow for sufficiently large scaling regimes. Energy is transferred towards the small scales in intermittent bursts. Nevertheless, mean field arguments are sufficient to account...
The Lag Model, a Turbulence Model for Wall Bounded Flows Including Separation
Olsen, Michael E.; Coakley, Thomas J.; Kwak, Dochan (Technical Monitor)
2001-01-01
A new class of turbulence model is described for wall bounded, high Reynolds number flows. A specific turbulence model is demonstrated, with results for favorable and adverse pressure gradient flowfields. Separation predictions are as good or better than either Spalart Almaras or SST models, do not require specification of wall distance, and have similar or reduced computational effort compared with these models.
Modeling subgrid-scale turbulent fluxes in the "Grey Zone"
De Roode, S. R.; Jonker, H. J.; Siebesma, P.
2017-12-01
The ever increasing computational power nowadays allows both weather and climate models to operate at a horizontal grid resolution that is high enough to resolve some part of the turbulent transport. Some of these models apply a Smagorinsky type TKE closure model including a buoyancy production term to compute the subgrid turbulent fluxes of heat, momentum and moisture. For a stable stratification an analytical solution for the eddy viscosity can be derived. From a comparison with similarity relations from field observations it is concluded that an anistropic grid, as measured by the ratio of the horizontal to the vertical grid mesh sizes (r=Dx/Dz>1), will yield excessive subgrid mixing and an erroneous dependency on the grid resolution. Secondly, in contrast to what is being used in many LES models, field observations suggest that for a stable boundary layer the turbulent Prandtl number is close to unity. The effect of grid anistropy is also investigated for the CONSTRAIN cold air outbreak model intercomparison case. Here opposite results are found. In the presence of convective stratocumulus clouds the Smagorinsky model appears to be well capable of compensating the gradual reduction of the resolved vertical fluxes with coarsening horizontal grid resolution, up to values Dx>3 km, in such a way that the total turbulent fluxes are hardly affected.
Description of group-theoretical model of developed turbulence
International Nuclear Information System (INIS)
Saveliev, V L; Gorokhovski, M A
2008-01-01
We propose to associate the phenomenon of stationary turbulence with the special self-similar solutions of the Euler equations. These solutions represent the linear superposition of eigenfields of spatial symmetry subgroup generators and imply their dependence on time through the parameter of the symmetry transformation only. From this model, it follows that for developed turbulent process, changing the scale of averaging (filtering) of the velocity field is equivalent to composition of scaling, translation and rotation transformations. We call this property a renormalization-group invariance of filtered turbulent fields. The renormalization group invariance provides an opportunity to transform the averaged Navier-Stokes equation over a small scale (inner threshold of the turbulence) to larger scales by simple scaling. From the methodological point of view, it is significant to note that the turbulent viscosity term appeared not as a result of averaging of the nonlinear term in the Navier-Stokes equation, but from the molecular viscosity term with the help of renormalization group transformation.
Description of group-theoretical model of developed turbulence
Energy Technology Data Exchange (ETDEWEB)
Saveliev, V L [Institute of Ionosphere, Almaty 050020 (Kazakhstan); Gorokhovski, M A [Laboratoire de Mecanique des Fluides et Acoustique, Ecole Centrale de Lyon, 36, Avenue Guy de Collongues, F69134 Ecully-Cedex (France)], E-mail: saveliev@topmail.kz, E-mail: mikhael.gorokhovski@ec-lyon.fr
2008-12-15
We propose to associate the phenomenon of stationary turbulence with the special self-similar solutions of the Euler equations. These solutions represent the linear superposition of eigenfields of spatial symmetry subgroup generators and imply their dependence on time through the parameter of the symmetry transformation only. From this model, it follows that for developed turbulent process, changing the scale of averaging (filtering) of the velocity field is equivalent to composition of scaling, translation and rotation transformations. We call this property a renormalization-group invariance of filtered turbulent fields. The renormalization group invariance provides an opportunity to transform the averaged Navier-Stokes equation over a small scale (inner threshold of the turbulence) to larger scales by simple scaling. From the methodological point of view, it is significant to note that the turbulent viscosity term appeared not as a result of averaging of the nonlinear term in the Navier-Stokes equation, but from the molecular viscosity term with the help of renormalization group transformation.
Consequences of Symmetries on the Analysis and Construction of Turbulence Models
Directory of Open Access Journals (Sweden)
Dina Razafindralandy
2006-05-01
Full Text Available Since they represent fundamental physical properties in turbulence (conservation laws, wall laws, Kolmogorov energy spectrum, ..., symmetries are used to analyse common turbulence models. A class of symmetry preserving turbulence models is proposed. This class is refined such that the models respect the second law of thermodynamics. Finally, an example of model belonging to the class is numerically tested.
Gaussian free turbulence: structures and relaxation in plasma models
International Nuclear Information System (INIS)
Gruzinov, A.V.
1993-01-01
Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)
Numerical modelling of turbulent flow over rough walls
Czech Academy of Sciences Publication Activity Database
Louda, P.; Kozel, K.; Příhoda, Jaromír
2008-01-01
Roč. 7, - (2008), s. 4100011-4100012 ISSN 1617-7061 R&D Projects: GA ČR GA103/06/0461 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence modelling * rough wall * decelerated flow Subject RIV: BK - Fluid Dynamics
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2016-01-27
Jan 27, 2016 ... We present a numerical model developed to calculate observed fluxes of relativistic jets in active galactic nuclei. The observed flux of each turbulent eddy is dependent upon its variable Doppler boosting factor, computed as a function of the relativistic sum of the individual eddy and bulk jet velocities, and ...
Turbulence modeling of shock separated boundary-layer flows
Coakley, T. J.; Viegas, J. R.
1977-01-01
Computations of transonic and hypersonic shock-separated boundary-layer flows using zero-equation (algebraic), one-equation (kinetic energy), and two-equation (kinetic energy plus length scale) turbulence eddy viscosity models are described and compared with measurements. The computations make use of a new Navier-Stokes computer algorithm that has reduced computing times by one to two orders of magnitude. The algorithm, and how the turbulence models are incorporated into it, are described. Results for the transonic flow show that the unmodified one-equation model is superior to the zero-equation model in skin-friction predictions. For the hypersonic flow, a highly modified one-equation model that accurately predicts surface pressure and heat transfer is described. Preliminary two-equation model results are also presented.
Li, Chunggang; Tsubokura, Makoto; Wang, Weihsiang
2017-11-01
The automatic dissipation adjustment (ADA) model based on truncated Navier-Stokes equations is utilized to investigate the feasibility of using implicit large eddy simulation (ILES) with ADA model on the transition in natural convection. Due to the high Rayleigh number coming from the larger temperature difference (300K), Roe scheme modified for low Mach numbers coordinating ADA model is used to resolve the complicated flow field. Based on the qualitative agreement of the comparisons with DNS and experimental results and the capability of numerically predicating a -3 decay law for the temporal power spectrum of the temperature fluctuation, this study thus validates the feasibility of ILES with ADA model on turbulent natural convection. With the advantages of ease of implementation because no explicit modeling terms are needed and nearly free of tuning parameters, ADA model offers to become a promising tool for turbulent thermal convection. Part of the results is obtained using the K computer at the RIKEN Advanced Institute for Computational Science (Proposal number hp160232).
A marketing mix model for a complex and turbulent environment
Directory of Open Access Journals (Sweden)
R. B. Mason
2007-12-01
Full Text Available Purpose: This paper is based on the proposition that the choice of marketing tactics is determined, or at least significantly influenced, by the nature of the companys external environment. It aims to illustrate the type of marketing mix tactics that are suggested for a complex and turbulent environment when marketing and the environment are viewed through a chaos and complexity theory lens. Design/Methodology/Approach: Since chaos and complexity theories are proposed as a good means of understanding the dynamics of complex and turbulent markets, a comprehensive review and analysis of literature on the marketing mix and marketing tactics from a chaos and complexity viewpoint was conducted. From this literature review, a marketing mix model was conceptualised. Findings: A marketing mix model considered appropriate for success in complex and turbulent environments was developed. In such environments, the literature suggests destabilising marketing activities are more effective, whereas stabilising type activities are more effective in simple, stable environments. Therefore the model proposes predominantly destabilising type tactics as appropriate for a complex and turbulent environment such as is currently being experienced in South Africa. Implications: This paper is of benefit to marketers by emphasising a new way to consider the future marketing activities of their companies. How this model can assist marketers and suggestions for research to develop and apply this model are provided. It is hoped that the model suggested will form the basis of empirical research to test its applicability in the turbulent South African environment. Originality/Value: Since businesses and markets are complex adaptive systems, using complexity theory to understand how to cope in complex, turbulent environments is necessary, but has not been widely researched. In fact, most chaos and complexity theory work in marketing has concentrated on marketing strategy, with
Fluid model of the magnetic presheath in a turbulent plasma
International Nuclear Information System (INIS)
Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S
2005-01-01
A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models
Quasiwavelet models of sound scattering by atmospheric turbulence
Goedecke, George H.; Ostashev, Vladimir E.; Wilson, D. Keith; Auvermann, Harry J.
2002-05-01
Quasiwavelet (QW) representations of turbulence are composed of self-similar, localized, eddylike structures. The QW functions are not true wavelets, in that they do not form a mathematically complete basis or have zero mean. Nevertheless, they appear to be very useful for applications involving scattering and propagation of sound waves. In this paper, the QW formulation of Goedecke and Auvermann [J. Acoust. Soc. Am. 102, 759-771 (1997)] is outlined. The QW expressions for the spatial spectra and the corresponding sound scattering cross sections due to the velocity and temperature fluctuations of isotropic homogeneous turbulence are discussed. The spectra for different eddy structures are always similar to the von Karman spectra, and agree with the Kolmogorov spectra in the inertial range. Equations that yield the QW eddy functions in terms of the spectra are derived, and a QW function is found that yields the von Karman velocity spectrum exactly. Some results are presented from a numerical calculation of coherent scattering and temporal spectral broadening due to advecting turbulence modeled by QW eddies flowing with a wind. Future applications to modeling scattering by anisotropic and/or inhomogeneous turbulence are discussed. [Work supported by the ARO under Contract No. DAAD19-01-1-0640 (administered by W. Bach).
Validating modeled turbulent heat fluxes across large freshwater surfaces
Lofgren, B. M.; Fujisaki-Manome, A.; Gronewold, A.; Anderson, E. J.; Fitzpatrick, L.; Blanken, P.; Spence, C.; Lenters, J. D.; Xiao, C.; Charusambot, U.
2017-12-01
Turbulent fluxes of latent and sensible heat are important physical processes that influence the energy and water budgets of the Great Lakes. Validation and improvement of bulk flux algorithms to simulate these turbulent heat fluxes are critical for accurate prediction of hydrodynamics, water levels, weather, and climate over the region. Here we consider five heat flux algorithms from several model systems; the Finite-Volume Community Ocean Model, the Weather Research and Forecasting model, and the Large Lake Thermodynamics Model, which are used in research and operational environments and concentrate on different aspects of the Great Lakes' physical system, but interface at the lake surface. The heat flux algorithms were isolated from each model and driven by meteorological data from over-lake stations in the Great Lakes Evaporation Network. The simulation results were compared with eddy covariance flux measurements at the same stations. All models show the capacity to the seasonal cycle of the turbulent heat fluxes. Overall, the Coupled Ocean Atmosphere Response Experiment algorithm in FVCOM has the best agreement with eddy covariance measurements. Simulations with the other four algorithms are overall improved by updating the parameterization of roughness length scales of temperature and humidity. Agreement between modelled and observed fluxes notably varied with geographical locations of the stations. For example, at the Long Point station in Lake Erie, observed fluxes are likely influenced by the upwind land surface while the simulations do not take account of the land surface influence, and therefore the agreement is worse in general.
National Aeronautics and Space Administration — Shock Wave / Turbulent Boundary Layer Flows at High Mach Numbers. This web page provides data from experiments that may be useful for the validation of turbulence...
The Turbulent Interstellar Medium: Insights and Questions from Numerical Models
Mac Low, Mordecai-Mark; de Avillez, Miguel A.; Korpi, Maarit J.
2003-01-01
"The purpose of numerical models is not numbers but insight." (Hamming) In the spirit of this adage, and of Don Cox's approach to scientific speaking, we discuss the questions that the latest generation of numerical models of the interstellar medium raise, at least for us. The energy source for the interstellar turbulence is still under discussion. We review the argument for supernovae dominating in star forming regions. Magnetorotational instability has been suggested as a way of coupling di...
National Aeronautics and Space Administration — Computational fluid dynamics (CFD) simulations are routinely used by NASA to optimize the design of propulsion systems. Current methods for CFD modeling rely on...
BOOK REVIEW: Plasma and Fluid Turbulence: Theory and Modelling
Yoshizawa, A.; Itoh, S. I.; Itoh, K.
2003-03-01
The area of turbulence has been covered by many books over the years. This has, of course, mainly been fluid turbulence, while the area of plasma turbulence has been treated much less. This book by Yoshizawa et al covers both plasma and fluid turbulence, in a way that does justice to both areas at the same time as cross-disciplinary aspects are illuminated. The book should be useful to physicists working in both areas partly because it examines fundamental aspects in a pedagogical way, partly because it is up to date and partly because of the cross-disciplinary aspects which enrich both areas. It is written as an advanced textbook. The reader should have previous knowledge of at least one of the areas and also some background in statistical physics. The book starts with the very important and highly up to date area of structure formation which is relevant both to fluids and plasmas. Here, pipe flow of fluids is treated as an introduction to the area, then follows discussion of the generation of magnetic fields by turbulent motion in stellar objects and stucture formation in plasmas confined by a magnetic field. Also the concept of bifurcation is introduced. This part builds up knowledge from the simple fluid case to the problems of magnetic confinement of plasmas in a very pedagogical way. It continues by introducing the fundamentals of fluid turbulence. This is done very systematically and concepts useful for industrial applications like the K-e method and several ways of heuristic modelling are introduced. Also the two dimensional vortex equation, which is also relevant to magnetized plasmas is introduced. In chapter 5 the statistical theory of turbulence is treated. It starts with a very nice and easy to understand example of renormalization of a simple nonlinear equation where the exact solution is known. It introduces the method of partial renormalization, Greens functions and the direct interaction approximation (DIA). The book then continues with an
Atmospheric Turbulence Modeling for Aero Vehicles: Fractional Order Fits
Kopasakis, George
2015-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying coupling between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms and then by deriving an explicit fractional circuit-filter type analog for this model. This circuit model is utilized to develop a generalized formulation in frequency domain to approximate the fractional order with the products of first order transfer functions, which enables accurate time domain simulations. The objective of this work is as follows. Given the parameters describing the conditions of atmospheric disturbances, and utilizing the derived formulations, directly compute the transfer function poles and zeros describing these disturbances for acoustic velocity, temperature, pressure, and density. Time domain simulations of representative atmospheric turbulence can then be developed by utilizing these computed transfer functions together with the disturbance frequencies of interest.
Relevant criteria for testing the quality of turbulence models
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, J.D.
2007-01-01
Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approx. 10......% smaller than the IEC model, for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3sec and 10sec pre-averaging of wind speed data are relevant for MW-size wind...... turbines when seeking wind characteristics that correspond to one blade and the entire rotor, respectively. For heights exceeding 50-60m the gust factor increases with wind speed. For heights larger the 60-80m, present assumptions on the value of the gust factor are significantly conservative, both for 3...
From Detailed Description of Chemical Reacting Carbon Particles to Subgrid Models for CFD
Directory of Open Access Journals (Sweden)
Schulze S.
2013-04-01
Full Text Available This work is devoted to the development and validation of a sub-model for the partial oxidation of a spherical char particle moving in an air/steam atmosphere. The particle diameter is 2 mm. The coal particle is represented by moisture- and ash-free nonporous carbon while the coal rank is implemented using semi-global reaction rate expressions taken from the literature. The submodel includes six gaseous chemical species (O2, CO2, CO, H2O, H2, N2. Three heterogeneous reactions are employed, along with two homogeneous semi-global reactions, namely carbon monoxide oxidation and the water-gas-shift reaction. The distinguishing feature of the subgrid model is that it takes into account the influence of homogeneous reactions on integral characteristics such as carbon combustion rates and particle temperature. The sub-model was validated by comparing its results with a comprehensive CFD-based model resolving the issues of bulk flow and boundary layer around the particle. In this model, the Navier-Stokes equations coupled with the energy and species conservation equations were used to solve the problem by means of the pseudo-steady state approach. At the surface of the particle, the balance of mass, energy and species concentration was applied including the effect of the Stefan flow and heat loss due to radiation at the surface of the particle. Good agreement was achieved between the sub-model and the CFD-based model. Additionally, the CFD-based model was verified against experimental data published in the literature (Makino et al. (2003 Combust. Flame 132, 743-753. Good agreement was achieved between numerically predicted and experimentally obtained data for input conditions corresponding to the kinetically controlled regime. The maximal discrepancy (10% between the experiments and the numerical results was observed in the diffusion-controlled regime. Finally, we discuss the influence of the Reynolds number, the ambient O2 mass fraction and the ambient
Numerical Modeling of Mixing of Chemically Reacting, Non- Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, David A.; Onishi, Yasuo
1999-01-01
The objectives of this study are to investigate interactions among chemical reactions, waste rheology, and slurry mixing occurring during the tank waste retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of non-Newtonian waste with yield strength; (2) Examine reactive transport simulation of tank waste; (3) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries coupled with the relevant chemical reactions and realistic rheology, which depends critically on the chemistry, strain rate, and slurry concentrations; (4) Develop easy-to-use interactive software with the collaborative visualization for monitoring the various flow regimes in nuclear waste tanks; and (5) Provide the bases to develop an appropriate decision-making support tool based on scientifically justifiable analysis for tank-waste retrieval operation
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, David A.; Onishi, Yasuo; Rustad, James R.; Michener, Thomas E.; Felmy, Andrew R.; Ten, Arkady A.; Hier, Catherine A.
2000-01-01
Many highly radioactive wastes will be retrieved by installing mixer pumps that inject high-speed jets to stir up the sludge, saltcake, and supernatant liquid in the tank, blending them into a slurry. This slurry will then be pumped out of the tank into a waste treatment facility. Our objectives are to investigate interactions-chemical reactions, waste rheology, and slurry mixing-occurring during the retrieval operation and to provide a scientific basis for the waste retrieval decision-making process. Specific objectives are to: (1) Evaluate numerical modeling of chemically active, non-Newtonian tank waste mixing, coupled with chemical reactions and realistic rheology; (2) Conduct numerical modeling analysis of local and global mixing of non-Newtonian and Newtonian slurries; and (3) Provide the bases to develop a scientifically justifiable, decision-making support tool for the tank waste retrieval operation
Turbulent transport measurements in a cold model of GT-burner at realistic flow rates
Directory of Open Access Journals (Sweden)
Gobyzov Oleg
2016-01-01
Full Text Available In the present work simultaneous velocity field and passive admixture concentration field measurements at realistic flow-rates conditions in a non-reacting flow in a model of combustion chamber with an industrial mixing device are reported. In the experiments for safety reasons the real fuel (natural gas was replaced with neon gas to simulate stratification in a strongly swirling flow. Measurements were performed by means of planar laser-induced fluorescence (PLIF and particle image velocimetry technique (PIV at Reynolds number, based on the mean flow rate and nozzle diameter, ≈300 000. Details on experimental technique, features of the experimental setup, images and data preprocessing procedures and results of performed measurements are given in the paper. In addition to the raw velocity and admixture concentration data in-depth evaluation approaches aimed for estimation of turbulent kinetic energy (TKE components, assessment of turbulent Schmidt number and analysis of the gradient closure hypothesis from experimental data are presented in the paper.
Numerical Modeling of Mixing of Chemically Reacting, Non-Newtonian Slurry for Tank Waste Retrieval
International Nuclear Information System (INIS)
Yuen, D.A.; Onishi, Y.
2001-01-01
In the U.S. Department of Energy (DOE) complex, 100 million gallons of radioactive and chemical wastes from plutonium production are stored in 281 underground storage tanks. Retrieval of the wastes from the tanks is the first step in its ultimate treatment and disposal. Because billions of dollars are being spent on this effort, waste retrieval demands a strong scientific basis for its successful completion. As will be discussed in Section 4.2, complex interactions among waste chemical reactions, rheology, and mixing of solid and liquid tank waste (and possibly with a solvent) will occur in DSTs during the waste retrieval (mixer pump) operations. The ultimate goal of this study was to develop the ability to simulate the complex chemical and rheological changes that occur in the waste during processing for retrieval. This capability would serve as a scientific assessment tool allowing a priori evaluation of the consequences of proposed waste retrieval operations. Hanford tan k waste is a multiphase, multicomponent, high-ionic strength, and highly basic mixture of liquids and solids. Wastes stored in the 4,000-m3 DSTs will be mixed by 300-hp mixer pumps that inject high-speed (18.3 m/s) jets to stir up the sludge and supernatant liquid for retrieval. During waste retrieval operations, complex interactions occur among waste mixing, chemical reactions, and associated rheology. Thus, to determine safe and cost-effective operational parameters for waste retrieval, decisions must rely on new scientific knowledge to account for physical mixing of multiphase flows, chemical reactions, and waste rheology. To satisfy this need, we integrated a computational fluid dynamics code with state-of-the-art equilibrium and kinetic chemical models and non-Newtonian rheology (Onishi (and others) 1999). This development is unique and holds great promise for addressing the complex phenomena of tank waste retrieval. The current model is, however, applicable only to idealized tank waste
Neural network modeling for near wall turbulent flow
International Nuclear Information System (INIS)
Milano, Michele; Koumoutsakos, Petros
2002-01-01
A neural network methodology is developed in order to reconstruct the near wall field in a turbulent flow by exploiting flow fields provided by direct numerical simulations. The results obtained from the neural network methodology are compared with the results obtained from prediction and reconstruction using proper orthogonal decomposition (POD). Using the property that the POD is equivalent to a specific linear neural network, a nonlinear neural network extension is presented. It is shown that for a relatively small additional computational cost nonlinear neural networks provide us with improved reconstruction and prediction capabilities for the near wall velocity fields. Based on these results advantages and drawbacks of both approaches are discussed with an outlook toward the development of near wall models for turbulence modeling and control
Computational Modeling of Turbulent Spray Combustion
Ma, L.
2016-01-01
The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,
Modeling Turbulence Generation in the Atmospheric Surface and Boundary Layers
2015-10-01
ZT ). The initial acceleration of the rising buoyant air will be a = g∆T/TA. This is simply Archimedes ’ principle applied to the buoyant air. The... applications . 1 Various rules are employed to model C2n in the surface layer, but a key question is how to extend this estimation technique into the lower...in terms of wind turbulence the structure of the fluctuations produces a Reynolds stress tensor whose principle axes are not equal, meaning that at the
Intermittency in MHD turbulence and coronal nanoflares modelling
Directory of Open Access Journals (Sweden)
P. Veltri
2005-01-01
Full Text Available High resolution numerical simulations, solar wind data analysis, and measurements at the edges of laboratory plasma devices have allowed for a huge progress in our understanding of MHD turbulence. The high resolution of solar wind measurements has allowed to characterize the intermittency observed at small scales. We are now able to set up a consistent and convincing view of the main properties of MHD turbulence, which in turn constitutes an extremely efficient tool in understanding the behaviour of turbulent plasmas, like those in solar corona, where in situ observations are not available. Using this knowledge a model to describe injection, due to foot-point motions, storage and dissipation of MHD turbulence in coronal loops, is built where we assume strong longitudinal magnetic field, low beta and high aspect ratio, which allows us to use the set of reduced MHD equations (RMHD. The model is based on a shell technique in the wave vector space orthogonal to the strong magnetic field, while the dependence on the longitudinal coordinate is preserved. Numerical simulations show that injected energy is efficiently stored in the loop where a significant level of magnetic and velocity fluctuations is obtained. Nonlinear interactions give rise to an energy cascade towards smaller scales where energy is dissipated in an intermittent fashion. Due to the strong longitudinal magnetic field, dissipative structures propagate along the loop, with the typical speed of the Alfvén waves. The statistical analysis on the intermittent dissipative events compares well with all observed properties of nanoflare emission statistics. Moreover the recent observations of non thermal velocity measurements during flare occurrence are well described by the numerical results of the simulation model. All these results naturally emerge from the model dynamical evolution without any need of an ad-hoc hypothesis.
Chemical Modeling for Large-Eddy Simulation of Turbulent Combustion
2009-03-31
Swirl Burner 11 2 Development of an Interactive Platform for Generation, Comparison, and Evaluation of Kinetic Models for JP-8 Surrogate Fuels 13...the refined mesh resolution is increased. Application of the RLSG to a turbulent bunsen flame, however, showed that the flame front solution remained... bunsen flame. A schematic of this LES is shown in Fig. 4. The contour cut plane shows the temperature field, while the isocontour shows the level
Atmospheric Turbulence Modeling for Aerospace Vehicles: Fractional Order Fit
Kopasakis, George (Inventor)
2015-01-01
An improved model for simulating atmospheric disturbances is disclosed. A scale Kolmogorov spectral may be scaled to convert the Kolmogorov spectral into a finite energy von Karman spectral and a fractional order pole-zero transfer function (TF) may be derived from the von Karman spectral. Fractional order atmospheric turbulence may be approximated with an integer order pole-zero TF fit, and the approximation may be stored in memory.
Application of two-equation turbulence models to turbulent gas flow heated by a high heat flux
International Nuclear Information System (INIS)
Kawamura, Hiroshi
1978-01-01
Heat transfer in heated turbulent gas flow is analyzed using two-equation turbulence models. Four kinds of two-equation models are examined; that is, k-epsilon model by Jones-Launder, k-w model by Wilcox-Traci, k-kL model by Rotta, k-ω model by Saffman-Wilcox. The results are compared with more than ten experiments by seven authors. The k-kL model proposed originally by Rotta and modified by the present author is found to give relatively the best results. It well predicts the decrease in the heat transfer coefficient found in the heated turbulent gas flow; however, it fails to predict the laminarization due to a strong heating. (author)
Spectral modeling of magnetohydrodynamic turbulent flows.
Baerenzung, J; Politano, H; Ponty, Y; Pouquet, A
2008-08-01
We present a dynamical spectral model for large-eddy simulation of the incompressible magnetohydrodynamic (MHD) equations based on the eddy damped quasinormal Markovian approximation. This model extends classical spectral large-eddy simulations for the Navier-Stokes equations to incorporate general (non-Kolmogorovian) spectra as well as eddy noise. We derive the model for MHD flows and show that the introduction of an eddy damping time for the dynamics of spectral tensors, in the absence of equipartition between the velocity and magnetic fields, leads to better agreement with direct numerical simulations, an important point for dynamo computations.
Towards CFD modeling of turbulent pipeline material transportation
Shahirpour, Amir; Herzog, Nicoleta; Egbers, Cristoph
2013-04-01
Safe and financially efficient pipeline transportation of carbon dioxide is a critical issue in the developing field of the CCS Technology. In this part of the process, carbon dioxide is transported via pipes with diameter of 1.5 m and entry pressure of 150 bar, with Reynolds number of 107 and viscosity of 8×10(-5) Pa.s as dense fluid [1]. Presence of large and small scale structures in the pipeline, high Reynolds numbers at which CO2 should be transferred, and 3 dimensional turbulence caused by local geometrical modifications, increase the importance of simulation of turbulent material transport through the individual components of the CO2 chain process. In this study, incompressible turbulent channel flow and pipe flow have been modeled using OpenFoam, an open source CFD software. In the first step, simulation of a turbulent channel flow has been considered using LES for shear Reynolds number of 395. A simple geometry has been chosen with cyclic fluid inlet and outlet boundary conditions to simulate a fully developed flow. The mesh is gradually refined towards the wall to provide values close enough to the wall for the wall coordinate (y+). Grid resolution study has been conducted for One-Equation model. The accuracy of the results is analyzed with respect to the grid smoothness in order to reach an optimized resolution for carrying out the next simulations. Furthermore, three LES models, One-Equation, Smagorinsky and Dynamic Smagorinsky are applied for the grid resolution of (60 × 100 × 80) in (x, y, z) directions. The results are then validated with reference to the DNS carried out by Moser et al.[2] for the similar geometry using logarithmic velocity profile (U+) and Reynolds stress tensor components. In the second step the similar flow is modeled using Reynolds averaged method. Several RANS models, like K-epsilon and Launder-Reece-Rodi are applied and validated against DNS and LES results in a similar fashion. In the most recent step, it has been intended
Energy Technology Data Exchange (ETDEWEB)
Toutant, A
2006-12-15
The complex interactions between interfaces and turbulence strongly impact the flow properties. Unfortunately, Direct Numerical Simulations (DNS) have to entail a number of degrees of freedom proportional to the third power of the Reynolds number to correctly describe the flow behaviour. This extremely hard constraint makes it impossible to use DNS for industrial applications. Our strategy consists in using and improving DNS method in order to develop the Interfaces and Sub-grid Scales concept. ISS is a two-phase equivalent to the single-phase Large Eddy Simulation (LES) concept. The challenge of ISS is to integrate the two-way coupling phenomenon into sub-grid models. Applying a space filter, we have exhibited correlations or sub-grid terms that require closures. We have shown that, in two-phase flows, the presence of a discontinuity leads to specific sub-grid terms. Comparing the maximum of the norm of the sub-grid terms with the maximum of the norm of the advection tensor, we have found that sub-grid terms related to interfacial forces and viscous effect are negligible. Consequently, in the momentum balance, only the sub-grid terms related to inertia have to be closed. Thanks to a priori tests performed on several DNS data, we demonstrate that the scale similarity hypothesis, reinterpreted near discontinuity, provides sub-grid models that take into account the two-way coupling phenomenon. These models correspond to the first step of our work. Indeed, in this step, interfaces are smooth and, interactions between interfaces and turbulence occur in a transition zone where each physical variable varies sharply but continuously. The next challenge has been to determine the jump conditions across the sharp equivalent interface corresponding to the sub-grid models of the transition zone. We have used the matched asymptotic expansion method to obtain the jump conditions. The first tests on the velocity of the sharp equivalent interface are very promising (author)
Gyrofluid turbulence models with kinetic effects
Energy Technology Data Exchange (ETDEWEB)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u[parallel], T[parallel], and T[perpendicular] along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These FLR phase-mixing'' terms introduce a hyperviscosity-like damping [proportional to] k[sub [perpendicular
Directory of Open Access Journals (Sweden)
Vincent Casseau
2016-10-01
Full Text Available A two-temperature CFD (computational fluid dynamics solver is a prerequisite to any spacecraft re-entry numerical study that aims at producing results with a satisfactory level of accuracy within realistic timescales. In this respect, a new two-temperature CFD solver, hy2Foam, has been developed within the framework of the open-source CFD platform OpenFOAM for the prediction of hypersonic reacting flows. This solver makes the distinct juncture between the trans-rotational and multiple vibrational-electronic temperatures. hy2Foam has the capability to model vibrational-translational and vibrational-vibrational energy exchanges in an eleven-species air mixture. It makes use of either the Park TTv model or the coupled vibration-dissociation-vibration (CVDV model to handle chemistry-vibration coupling and it can simulate flows with or without electronic energy. Verification of the code for various zero-dimensional adiabatic heat baths of progressive complexity has been carried out. hy2Foam has been shown to produce results in good agreement with those given by the CFD code LeMANS (The Michigan Aerothermodynamic Navier-Stokes solver and previously published data. A comparison is also performed with the open-source DSMC (direct simulation Monte Carlo code dsmcFoam. It has been demonstrated that the use of the CVDV model and rates derived from Quantum-Kinetic theory promote a satisfactory consistency between the CFD and DSMC chemistry modules.
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Energy Technology Data Exchange (ETDEWEB)
Borg, A.; Revstedt, J.
1996-04-01
The purpose of this work has been to do a preliminary study of how well numerical calculations with different turbulence models can predict the flow and temperature fields of a strongly swirling and combusting flow in an experimental combustion chamber and to see which parameters in the mathematical model are the most important. The combustion chamber on which we have done the calculations is called Validation Rig II and was designed by Volvo Aero Corporation. The main part of the study has been carried out on a non-reacting flow but some work has also been done on reacting flow. In most cases it has not been meaningful to compare the calculations with the measurements because they differ quite a lot from each other. For the non-reacting case the following investigations have been made: * How the solution differs for different turbulence models, * The solutions sensitivity to inlet boundary conditions, * How different types of leakage disturb the flow, and * The difference in results between two different CFD-codes, the commercial code CFDS-Flow3D and a code developed at the department of fluid mechanics. For the reacting cases we have studied the influence of: * one or two reaction steps, * the effects of a change in reaction rate, * the influence of thermal radiation, and * the effects of changing the boundary conditions for temperature on the walls. The results from these calculations show that the inlet turbulence intensity has very little effect on the values of the turbulent quantities as well as the velocity profiles at the outlet. Changing the turbulence model or the outlet boundary conditions gives some change in velocity profiles at the outlet but only marginal effects on the swirl number. 21 refs, 54 figs, 19 tabs
Eigenspace perturbations for structural uncertainty estimation of turbulence closure models
Jofre, Lluis; Mishra, Aashwin; Iaccarino, Gianluca
2017-11-01
With the present state of computational resources, a purely numerical resolution of turbulent flows encountered in engineering applications is not viable. Consequently, investigations into turbulence rely on various degrees of modeling. Archetypal amongst these variable resolution approaches would be RANS models in two-equation closures, and subgrid-scale models in LES. However, owing to the simplifications introduced during model formulation, the fidelity of all such models is limited, and therefore the explicit quantification of the predictive uncertainty is essential. In such scenario, the ideal uncertainty estimation procedure must be agnostic to modeling resolution, methodology, and the nature or level of the model filter. The procedure should be able to give reliable prediction intervals for different Quantities of Interest, over varied flows and flow conditions, and at diametric levels of modeling resolution. In this talk, we present and substantiate the Eigenspace perturbation framework as an uncertainty estimation paradigm that meets these criteria. Commencing from a broad overview, we outline the details of this framework at different modeling resolution. Thence, using benchmark flows, along with engineering problems, the efficacy of this procedure is established. This research was partially supported by NNSA under the Predictive Science Academic Alliance Program (PSAAP) II, and by DARPA under the Enabling Quantification of Uncertainty in Physical Systems (EQUiPS) project (technical monitor: Dr Fariba Fahroo).
Turbulent Boundary Layers - Experiments, Theory and Modelling
1980-01-01
1979 "Calcul des transferts thermiques entre film chaud et substrat par un modele ä deux dimensions", Int. J. Heat Mass Transfer ^2, p. 111-119...surface heat transfer a to the surface shear Cu/ ; here, corrections are compulsory because the wall shear,stress fluctuations are large (the r.m.s...technique is the mass transfer analogue of the constant temperature anemometer when the chemical reaction at the electrode embedded in the wall is
Gyrofluid turbulence models with kinetic effects
International Nuclear Information System (INIS)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u parallel, T parallel, and T perpendicular along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ''FLR phase-mixing'' terms introduce a hyperviscosity-like damping ∝ k perpendicular 2 |Φ rvec k rvec k x rvec k'| which should provide a physics-based damping mechanism at high k perpendicular ρ which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory
Gyrofluid turbulence models with kinetic effects
Energy Technology Data Exchange (ETDEWEB)
Dorland, W.; Hammett, G.W.
1992-12-01
Nonlinear gyrofluid equations are derived by taking moments of the nonlinear, electrostatic gyrokinetic equation. The principal model presented includes evolution equations for the guiding center n, u{parallel}, T{parallel}, and T{perpendicular} along with an equation expressing the quasineutrality constraint. Additional evolution equations for higher moments are derived which may be used if greater accuracy is desired. The moment hierarchy is closed with a Landau-damping model which is equivalent to a multi-pole approximation to the plasma dispersion function, extended to include finite Larmor radius effects. In particular, new dissipative, nonlinear terms are found which model the perpendicular phase-mixing of the distribution function along contours of constant electrostatic potential. These ``FLR phase-mixing`` terms introduce a hyperviscosity-like damping {proportional_to} k{sub {perpendicular}}{sup 2}{vert_bar}{Phi}{sub {rvec k}}{rvec k} {times}{rvec k}{prime}{vert_bar} which should provide a physics-based damping mechanism at high k{perpendicular}{rho} which is potentially as important as the usual polarization drift nonlinearity. The moments are taken in guiding center space to pick up the correct nonlinear FLR terms and the gyroaveraging of the shear. The equations are solved with a nonlinear, three dimensional initial value code. Linear results are presented, showing excellent agreement with linear gyrokinetic theory.
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Modelling thermal radiation in buoyant turbulent diffusion flames
Consalvi, J. L.; Demarco, R.; Fuentes, A.
2012-10-01
This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.
PDF modeling of turbulent flows on unstructured grids
Bakosi, J.
2010-06-01
In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Several newly developed algorithms are described that facilitate the numerical solution in complex flow geometries, including a stabilized mean-pressure projection scheme, the estimation of conditional and unconditional Eulerian statistics and their derivatives from stochastic particle fields, particle tracking through unstructured grids, an efficient particle redistribution procedure and techniques related to efficient random number generation. The solver has been parallelized and optimized for shared memory and multi-core architectures using the OpenMP standard. Relevant aspects of performance and parallelism on cache-based shared memory machines are discussed and presented in detail. The methodology shows great promise in the simulation of high-Reynolds-number incompressible inert or reactive turbulent flows in realistic configurations.
Turbulence and Self-Organization Modeling Astrophysical Objects
Marov, Mikhail Ya
2013-01-01
This book focuses on the development of continuum models of natural turbulent media. It provides a theoretical approach to the solutions of different problems related to the formation, structure and evolution of astrophysical and geophysical objects. A stochastic modeling approach is used in the mathematical treatment of these problems, which reflects self-organization processes in open dissipative systems. The authors also consider examples of ordering for various objects in space throughout their evolutionary processes. This volume is aimed at graduate students and researchers in the fields of mechanics, astrophysics, geophysics, planetary and space science.
An algebraic stress/flux model for two-phase turbulent flow
International Nuclear Information System (INIS)
Kumar, R.
1995-12-01
An algebraic stress model (ASM) for turbulent Reynolds stress and a flux model for turbulent heat flux are proposed for two-phase bubbly and slug flows. These mathematical models are derived from the two-phase transport equations for Reynolds stress and turbulent heat flux, and provide C μ , a turbulent constant which defines the level of eddy viscosity, as a function of the interfacial terms. These models also include the effect of heat transfer. When the interfacial drag terms and the interfacial momentum transfer terms are absent, the model reduces to a single-phase model used in the literature
Gasdynamic Model of Turbulent Combustion in TNT Explosions
Energy Technology Data Exchange (ETDEWEB)
Kuhl, A L; Bell, J B; Beckner, V E
2010-01-08
A model is proposed to simulate turbulent combustion in confined TNT explosions. It is based on: (i) the multi-component gasdynamic conservation laws, (ii) a fast-chemistry model for TNT-air combustion, (iii) a thermodynamic model for frozen reactants and equilibrium products, (iv) a high-order Godunov scheme providing a non-diffusive solution of the governing equations, and (v) an ILES approach whereby adaptive mesh refinement is used to capture the energy bearing scales of the turbulence on the grid. Three-dimensional numerical simulations of explosion fields from 1.5-g PETN/TNT charges were performed. Explosions in six different chambers were studied: three calorimeters (volumes of 6.6-l, 21.2-l and 40.5-l with L/D = 1), and three tunnels (L/D = 3.8, 4.65 and 12.5 with volumes of 6.3-l) - to investigate the influence of chamber volume and geometry on the combustion process. Predicted pressures histories were quite similar to measured pressure histories for all cases studied. Experimentally, mass fraction of products, Y{sub p}{sup exp}, reached a peak value of 88% at an excess air ratio of twice stoichiometric, and then decayed with increasing air dilution; mass fractions Y{sub p}{sup calc} computed from the numerical simulations followed similar trends. Based on this agreement, we conclude that the dominant effect that controls the rate of TNT combustion with air is the turbulent mixing rate; the ILES approach along with the fast-chemistry model used here adequately captures this effect.
Turbulent diffusion modelling for windflow and dispersion analysis
International Nuclear Information System (INIS)
Bartzis, J.G.
1988-01-01
The need for simple but reliable models for turbulent diffusion for windflow and atmospheric dispersion analysis is a necessity today if one takes into consideration the relatively high demand in computer time and costs for such an analysis, arising mainly from the often large solution domains needed, the terrain complexity and the transient nature of the phenomena. In the accident consequence assessment often there is a need for a relatively large number of cases to be analysed increasing further the computer time and costs. Within the framework of searching for relatively simple and universal eddy viscosity/diffusivity models, a new three dimensional non isotropic model is proposed applicable to any domain complexity and any atmospheric stability conditions. The model utilizes the transport equation for turbulent kinetic energy but introduces a new approach in effective length scale estimation based on the flow global characteristics and local atmospheric stability. The model is discussed in detail and predictions are given for flow field and boundary layer thickness. The results are compared with experimental data with satisfactory results
Assessment of closure coefficients for compressible-flow turbulence models
Huang, P. G.; Bradshaw, P.; Coakley, T. J.
1992-01-01
A critical assessment is made of the closure coefficients used for turbulence length scale in existing models of the transport equation, with reference to the extension of these models to compressible flow. It is shown that to satisfy the compressible 'law of the wall', the model coefficients must actually be functions of density gradients. The magnitude of the errors that result from neglecting this dependence on density varies with the variable used to specify the length scale. Among the models investigated, the k-omega model yields the best performance, although it is not completely free from errors associated with density terms. Models designed to reduce the density-gradient effect to an insignificant level are proposed.
Shih, Tsan-Hsing; Liu, nan-Suey
2010-01-01
A brief introduction of the temporal filter based partially resolved numerical simulation/very large eddy simulation approach (PRNS/VLES) and its distinct features are presented. A nonlinear dynamic subscale model and its advantages over the linear subscale eddy viscosity model are described. In addition, a guideline for conducting a PRNS/VLES simulation is provided. Results are presented for three turbulent internal flows. The first one is the turbulent pipe flow at low and high Reynolds numbers to illustrate the basic features of PRNS/VLES; the second one is the swirling turbulent flow in a LM6000 single injector to further demonstrate the differences in the calculated flow fields resulting from the nonlinear model versus the pure eddy viscosity model; the third one is a more complex turbulent flow generated in a single-element lean direct injection (LDI) combustor, the calculated result has demonstrated that the current PRNS/VLES approach is capable of capturing the dynamically important, unsteady turbulent structures while using a relatively coarse grid.
Non-Equilibrium Turbulence and Two-Equation Modeling
Rubinstein, Robert
2011-01-01
Two-equation turbulence models are analyzed from the perspective of spectral closure theories. Kolmogorov theory provides useful information for models, but it is limited to equilibrium conditions in which the energy spectrum has relaxed to a steady state consistent with the forcing at large scales; it does not describe transient evolution between such states. Transient evolution is necessarily through nonequilibrium states, which can only be found from a theory of turbulence evolution, such as one provided by a spectral closure. When the departure from equilibrium is small, perturbation theory can be used to approximate the evolution by a two-equation model. The perturbation theory also gives explicit conditions under which this model can be valid, and when it will fail. Implications of the non-equilibrium corrections for the classic Tennekes-Lumley balance in the dissipation rate equation are drawn: it is possible to establish both the cancellation of the leading order Re1/2 divergent contributions to vortex stretching and enstrophy destruction, and the existence of a nonzero difference which is finite in the limit of infinite Reynolds number.
Modeling turbulent compressible flows - The mass fluctuating velocity and squared density
Taulbee, D.; Vanosdol, J.
1991-01-01
This paper deals with single-point closure theory for compressible turbulent flow, including the effects of compressibility on the turbulence. In particular, the combination of the pressure dilatation and the dilatation dissipation, terms which appear on the turbulent kinetic energy equation, are modeled. Model parameters in these transport equations are determined by comparing predictions with boundary layer measurements. Finally, predictions with a k-epsilon model, including the new formulations, are presented for the compressible shear layer.
Turbulence modeling methods for the compressible Navier-Stokes equations
Coakley, T. J.
1983-01-01
Turbulence modeling methods for the compressible Navier-Stokes equations, including several zero- and two-equation eddy-viscosity models, are described and applied. Advantages and disadvantages of the models are discussed with respect to mathematical simplicity, conformity with physical theory, and numerical compatibility with methods. A new two-equation model is introduced which shows advantages over other two-equation models with regard to numerical compatibility and the ability to predict low-Reynolds-number transitional phenomena. Calculations of various transonic airfoil flows are compared with experimental results. A new implicit upwind-differencing method is used which enhances numerical stability and accuracy, and leads to rapidly convergent steady-state solutions.
Modeling of Atmospheric Turbulence Effect on Terrestrial FSO Link
Directory of Open Access Journals (Sweden)
A. Prokes
2009-04-01
Full Text Available Atmospheric turbulence results in many effects causing fluctuation in the received optical power. Terrestrial laser beam communication is affected above all by scintillations. The paper deals with modeling the influence of scintillation on link performance, using the modified Rytov theory. The probability of correct signal detection in direct detection system in dependence on many parameters such as link distance, power link margin, refractive-index structure parameter, etc. is discussed and different approaches to the evaluation of scintillation effect are compared. The simulations are performed for a horizontal-path propagation of the Gaussian-beam wave.
Status, Emerging Ideas and Future Directions of Turbulence Modeling Research in Aeronautics
Duraisamy, Karthik; Spalart, Philippe R.; Rumsey, Christopher L.
2017-01-01
In July 2017, a three-day Turbulence Modeling Symposium sponsored by the University of Michigan and NASA was held in Ann Arbor, Michigan. This meeting brought together nearly 90 experts from academia, government and industry, with good international participation, to discuss the state of the art in turbulence modeling, emerging ideas, and to wrestle with questions surrounding its future. Emphasis was placed on turbulence modeling in a predictive context in complex problems, rather than on turbulence theory or descriptive modeling. This report summarizes many of the questions, discussions, and conclusions from the symposium, and suggests immediate next steps.
National Research Council Canada - National Science Library
Calhoon, W. H; Kenzakowski, D. C
2000-01-01
... components and missile defense systems. Current engineering level models neglect turbulent-chemistry interactions and typically underpredict the intensity of plume afterburning and afterburning burnout...
Bayesian uncertainty analysis with applications to turbulence modeling
International Nuclear Information System (INIS)
Cheung, Sai Hung; Oliver, Todd A.; Prudencio, Ernesto E.; Prudhomme, Serge; Moser, Robert D.
2011-01-01
In this paper, we apply Bayesian uncertainty quantification techniques to the processes of calibrating complex mathematical models and predicting quantities of interest (QoI's) with such models. These techniques also enable the systematic comparison of competing model classes. The processes of calibration and comparison constitute the building blocks of a larger validation process, the goal of which is to accept or reject a given mathematical model for the prediction of a particular QoI for a particular scenario. In this work, we take the first step in this process by applying the methodology to the analysis of the Spalart-Allmaras turbulence model in the context of incompressible, boundary layer flows. Three competing model classes based on the Spalart-Allmaras model are formulated, calibrated against experimental data, and used to issue a prediction with quantified uncertainty. The model classes are compared in terms of their posterior probabilities and their prediction of QoI's. The model posterior probability represents the relative plausibility of a model class given the data. Thus, it incorporates the model's ability to fit experimental observations. Alternatively, comparing models using the predicted QoI connects the process to the needs of decision makers that use the results of the model. We show that by using both the model plausibility and predicted QoI, one has the opportunity to reject some model classes after calibration, before subjecting the remaining classes to additional validation challenges.
Modelling turbulent energy dissipation in the high-latitude mesosphere
Hall, C. M.; Brekke, A.; Martynenko, O. V.; Namgaladze, A. A.
1998-02-01
The global numerical model of the Earth's thermosphere, ionosphere and protonosphere constructed at the Kaliningrad Observatory of IZMIRAN and Polar Geophysical Institute in Murmansk, (Namgaladze et al., 1991), hereafter referred to as PGI97, is being extended to encompass modelling of the mesosphere. Here we report the first predictions of turbulent intensities in the height regime 80 to 90 km. Recently, Hall (1997) reported estimates of the turbulent energy dissipation rate, ɛ, using the EISCAT VHF radar located in Northern Norway (69°N, 19°E), which has, in turn, been compared to in situ measurements. Thus initial testing of PGI97 has concentrated on the same region. The agreements between PGI97 and EISCAT results for summer and winter solstice mesospheres are good. The general seasonal variation has been investigated, again showing good agreement with the EISCAT results. However, when examining the average energy dissipation in the 80-90 km height regime, the model shows less variability than the observations.
Entropic multirelaxation lattice Boltzmann models for turbulent flows.
Bösch, Fabian; Chikatamarla, Shyam S; Karlin, Ilya V
2015-10-01
We present three-dimensional realizations of a class of lattice Boltzmann models introduced recently by the authors [I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Phys. Rev. E 90, 031302(R) (2014)] and review the role of the entropic stabilizer. Both coarse- and fine-grid simulations are addressed for the Kida vortex flow benchmark. We show that the outstanding numerical stability and performance is independent of a particular choice of the moment representation for high-Reynolds-number flows. We report accurate results for low-order moments for homogeneous isotropic decaying turbulence and second-order grid convergence for most assessed statistical quantities. It is demonstrated that all the three-dimensional lattice Boltzmann realizations considered herein converge to the familiar lattice Bhatnagar-Gross-Krook model when the resolution is increased. Moreover, thanks to the dynamic nature of the entropic stabilizer, the present model features less compressibility effects and maintains correct energy and enstrophy dissipation. The explicit and efficient nature of the present lattice Boltzmann method renders it a promising candidate for both engineering and scientific purposes for highly turbulent flows.
Mathematical model for the calculation of internal turbulent flow
International Nuclear Information System (INIS)
Nicolau, V. de P.; Valle Pereira Filho, H. do
1981-01-01
The Navier-Stokes and the turbulent kinetic energy equations for the incompressible, turbulent and fully developed pipe flow, were solved by a finite difference procedure. The distributions of the mean velocity, turbulent shear stress and turbulent kinetic energy were obtained at different Reynolds numbers. Those numerical results were compared with experimental data and the agreement was good in whole cross section of the flow. (Author) [pt
PROSPECTS OF DESIGNING FLEXIBLE BUSINESS MODEL IN TURBULENT TIMES
Directory of Open Access Journals (Sweden)
Amalia DUTU
2014-06-01
Full Text Available The present study aims to analyze the current global context to capture the characteristics of the new type of volatile and turbulent business environment in which companies must operate nowdays and to bring some propositions in order to guide managers in designing or redesigning business models to achieve flexibility. The central message of this paper, that is a point of view one, is that, nowdays but also in the future, business models that are based on strategic, organizational and operational flexibility and on reaction speed will be those who will provide the greatest capacity to respond to change. Even if the international theory provides a multiple perspective analysis of business model concept, still how it can be achieved such flexibility remains an open issue in the academic debate, but also in the practice of companies. Thus, the paper contains some propositions in order to guide managers in the process of designing or redesigning the business model.
Improved model of quasi-particle turbulence (with applications to Alfven and drift wave turbulence)
International Nuclear Information System (INIS)
Mendonca, J. T.; Hizanidis, K.
2011-01-01
We consider the classical problem of wave stability and dispersion in a turbulent plasma background. We adopt a kinetic description for the quasi-particle turbulence. We describe an improved theoretical approach, which goes beyond the geometric optics approximation and retains the recoil effects associated with the emission and absorption of low frequency waves by nearly resonant quasi-particles. We illustrate the present approach by considering two particular examples. One is the excitation of zonal flows by drift wave turbulence or driftons. The other is the coupling between ion acoustic waves and Alfven wave turbulence, eventually leading to saturation of Alfven wave growth. Both examples are relevant to anomalous transport in magnetic fusion devices. Connection with previous results is established. We show that these results are recovered in the geometric optics approximation.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Energy Technology Data Exchange (ETDEWEB)
Gasenzer, Thomas [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany); McLerran, Larry [Physics Department, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Physics Department, China Central Normal University, Wuhan (China); Pawlowski, Jan M.; Sexty, Dénes [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany); ExtreMe Matter Institute EMMI, GSI, Planckstraße 1, D-64291 Darmstadt (Germany)
2014-10-15
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
International Nuclear Information System (INIS)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; Sexty, Dénes
2014-01-01
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixed point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates
Phenomenological modeling of turbulence in Z-pinch implosions
International Nuclear Information System (INIS)
Thornhill, J.W.; Whitney, K.G.; Deeney, C.; LePell, P.D.
1994-01-01
A phenomenological investigation into the effects of magnetohydrodynamic (MHD) turbulence on the initial stagnation dynamics of aluminum wire array and argon gas puff Z-pinch implosions is performed. The increases that turbulence produces in the plasma viscosity, heat conductivity, and electrical resistivity are modeled by using multipliers for these quantities in one-dimensional (1-D) MHD calculations. The major effect of these increases is to soften the 1-D implosions by decreasing the densities that are achieved on axis at stagnation. As a consequence, a set of multipliers can be found that reasonably duplicates the average electron temperatures, ion densities, and mass of the K-shell emission region that were measured at stagnation for a variety of Physics International aluminum wire array and argon gas puff experiments. It is determined that the dependence of these measured quantities on the multipliers is weak once a level of enhancement is reached, where agreement between calculations and experiments is attained. The scaling of K-shell yield with load mass for a fixed implosion velocity is then reexamined, and the minimum load mass needed to efficiently produce K-shell emission by thermalization of kinetic energy is calculated for aluminum and argon using this phenomenological soft implosion modeling. The results show an upward shift in the minimum mass by a factor of 6 when compared to the original nonturbulent hard implosion calculations
Youngs-Type Material Strength Model in the Besnard-Harlow-Rauenzahn Turbulence Equations
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plohr, Bradley J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-17
Youngs [AWE Report Number 96/96, 1992] has augmented a two-phase turbulence model to account for material strength. Here we adapt the model of Youngs to the turbulence model for the mixture developed by Besnard, Harlow, and Rauenzahn [LANL Report LA-10911, 1987].
Stability of model flocks in turbulent-like flow
International Nuclear Information System (INIS)
Khurana, Nidhi; Ouellette, Nicholas T
2013-01-01
We report numerical simulations of a simple model of flocking particles in the presence of an uncertain background environment. We consider two types of environmental perturbations: random noise applied separately to each particle, and spatiotemporally correlated ‘noise’ provided by a turbulent-like flow field. The effects of these two types of noise are very different; surprisingly, the applied flow field tends to destroy the global order of the flocking model even for vanishingly small flow amplitudes. Local order, however, is preserved in smaller sub-flocks, although their composition changes dynamically. Our results suggest that realistic perturbations must be considered in assessing the stability of models of collective animal behavior, and that random noise is not a sufficient proxy. (paper)
International Nuclear Information System (INIS)
Maroteaux, Fadila; Pommier, Pierre-Lin
2013-01-01
Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale
Interchange turbulence model for the edge plasma in SOLEDGE2D-EIRENE
Energy Technology Data Exchange (ETDEWEB)
Bufferand, H.; Marandet, Y. [Aix-Marseille Universite, CNRS, PIIM, Marseille (France); Ciraolo, G.; Ghendrih, P.; Bucalossi, J.; Fedorczak, N.; Gunn, J.; Tamain, P. [CEA, IRFM, Saint-Paul-Lez-Durance (France); Colin, C.; Galassi, D.; Leybros, R.; Serre, E. [Aix-Marseille Universite, CNRS, M2P2, Marseille (France)
2016-08-15
Cross-field transport in edge tokamak plasmas is known to be dominated by turbulent transport. A dedicated effort has been made to simulate this turbulent transport from first principle models but the numerical cost to run these simulations on the ITER scale remains prohibitive. Edge plasma transport study relies mostly nowadays on so-called transport codes where the turbulent transport is taken into account using effective ad-hoc diffusion coefficients. In this contribution, we propose to introduce a transport equation for the turbulence intensity in SOLEDGE2D-EIRENE to describe the interchange turbulence properties. Going beyond the empirical diffusive model, this system automatically generates profiles for the turbulent transport and hence reduces the number of degrees of freedom for edge plasma transport codes. We draw inspiration from the k-epsilon model widely used in the neutral fluid community. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Modelling of turbulence and combustion for simulation of gas explosions in complex geometries
Energy Technology Data Exchange (ETDEWEB)
Arntzen, Bjoern Johan
1998-12-31
This thesis analyses and presents new models for turbulent reactive flows for CFD (Computational Fluid Dynamics) simulation of gas explosions in complex geometries like offshore modules. The course of a gas explosion in a complex geometry is largely determined by the development of turbulence and the accompanying increased combustion rate. To be able to model the process it is necessary to use a CFD code as a starting point, provided with a suitable turbulence and combustion model. The modelling and calculations are done in a three-dimensional finite volume CFD code, where complex geometries are represented by a porosity concept, which gives porosity on the grid cell faces, depending on what is inside the cell. The turbulent flow field is modelled with a k-{epsilon} turbulence model. Subgrid models are used for production of turbulence from geometry not fully resolved on the grid. Results from laser doppler anemometry measurements around obstructions in steady and transient flows have been analysed and the turbulence models have been improved to handle transient, subgrid and reactive flows. The combustion is modelled with a burning velocity model and a flame model which incorporates the burning velocity into the code. Two different flame models have been developed: SIF (Simple Interface Flame model), which treats the flame as an interface between reactants and products, and the {beta}-model where the reaction zone is resolved with about three grid cells. The flame normally starts with a quasi laminar burning velocity, due to flame instabilities, modelled as a function of flame radius and laminar burning velocity. As the flow field becomes turbulent, the flame uses a turbulent burning velocity model based on experimental data and dependent on turbulence parameters and laminar burning velocity. The laminar burning velocity is modelled as a function of gas mixture, equivalence ratio, pressure and temperature in reactant. Simulations agree well with experiments. 139
DEFF Research Database (Denmark)
Anantpinijwatna, Amata; Kim, Sun H.; Sales-Cruz, Mauricio
2016-01-01
Biphasic reacting systems contain effectively immiscible aqueous and organic liquid phases in which reactants, products, and catalysts can partition. These conditions allow novel synthesis paths, higher yields, and faster reactions, as well as facilitate product(s) separation. A systematic modeli...... of epoxidation of palm oil and production of furan derivatives....
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Review of turbulence modelling for numerical simulation of nuclear reactor thermal-hydraulics
International Nuclear Information System (INIS)
Bernard, J.P.; Haapalehto, T.
1996-01-01
The report deals with the modelling of turbulent flows in nuclear reactor thermal-hydraulic applications. The goal is to give tools and knowledge about turbulent flows and their modelling in practical applications for engineers, and especially nuclear engineers. The emphasize is on the theory of turbulence, the existing different turbulence models, the state-of-art of turbulence in research centres, the available models in the commercial code CFD-FLOW3D, and the latest applications of turbulence modelling in nuclear reactor thermal-hydraulics. It turns out that it is difficult to elaborate an universal turbulence model and each model has its advantages and drawbacks in each application. However, the increasing power of computers can permit the emergence of new methods of turbulence modelling such as Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) which open new horizons in this field. These latter methods are beginning to be available in commercial codes and are used in different nuclear applications such as 3-D modelling of the nuclear reactor cores and the steam generators. (orig.) (22 refs.)
Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids
International Nuclear Information System (INIS)
Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai
2006-01-01
We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes
Diffusion Processes in the A-Model of Vector Admixture: Turbulent Prandtl Number
Jurčišinová, Eva; Jurčišin, Marián; Remecky, Richard
2018-02-01
Using analytical approach of the field theoretic renormalization-group technique in two-loop approximation we model a fully developed turbulent system with vector characteristics driven by stochastic Navier-Stokes equation. The behaviour of the turbulent Prandtl number PrA,t is investigated as a function of parameter A and spatial dimension d > 2 for three cases, namely, kinematic MHD turbulence (A = 1), the admixture of a vector impurity by the Navier-Stokes turbulent flow (A = 0) and the model of linearized Navier-Stokes equation (A = -1). It is shown that for A = -1 the turbulent Prandtl number is given already in the one-loop approximation and does not depend on d while turbulent Prandt numbers in first two cases show very similar behaviour as functions of dimension d in the two-loop approximation.
Subgrid models for mass and thermal diffusion in turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David H [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Li, Xiao - Lin [STONY BROOK UNIV; Gilmm, James G [STONY BROOK UNIV
2008-01-01
We are concerned with the chaotic flow fields of turbulent mixing. Chaotic flow is found in an extreme form in multiply shocked Richtmyer-Meshkov unstable flows. The goal of a converged simulation for this problem is twofold: to obtain converged solutions for macro solution features, such as the trajectories of the principal shock waves, mixing zone edges, and mean densities and velocities within each phase, and also for such micro solution features as the joint probability distributions of the temperature and species concentration. We introduce parameterized subgrid models of mass and thermal diffusion, to define large eddy simulations (LES) that replicate the micro features observed in the direct numerical simulation (DNS). The Schmidt numbers and Prandtl numbers are chosen to represent typical liquid, gas and plasma parameter values. Our main result is to explore the variation of the Schmidt, Prandtl and Reynolds numbers by three orders of magnitude, and the mesh by a factor of 8 per linear dimension (up to 3200 cells per dimension), to allow exploration of both DNS and LES regimes and verification of the simulations for both macro and micro observables. We find mesh convergence for key properties describing the molecular level of mixing, including chemical reaction rates between the distinct fluid species. We find results nearly independent of Reynolds number for Re 300, 6000, 600K . Methodologically, the results are also new. In common with the shock capturing community, we allow and maintain sharp solution gradients, and we enhance these gradients through use of front tracking. In common with the turbulence modeling community, we include subgrid scale models with no adjustable parameters for LES. To the authors' knowledge, these two methodologies have not been previously combined. In contrast to both of these methodologies, our use of Front Tracking, with DNS or LES resolution of the momentum equation at or near the Kolmogorov scale, but without
Estimation of Several Turbulent Fluctuation Quantities Using an Approximate Pulsatile Flow Model
Energy Technology Data Exchange (ETDEWEB)
Dechant, Lawrence J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-12-01
Turbulent fluctuation behavior is approximately modeled using a pulsatile flow model analogy.. This model follows as an extension to the turbulent laminar sublayer model developed by Sternberg (1962) to be valid for a fully turbulent flow domain. Here unsteady turbulent behavior is modeled via a sinusoidal pulsatile approach. While the individual modes of the turbulent flow fluctuation behavior are rather crudely modeled, approximate temporal integration yields plausible estimates for Root Mean Square (RMS) velocity fluctuations. RMS pressure fluctuations and spectra are of particular interest and are estimated via the pressure Poisson expression. Both RMS and Power Spectral Density (PSD), i.e. spectra are developed. Comparison with available measurements suggests reasonable agreement. An additional fluctuating quantity, i.e. RMS wall shear fluctuation is also estimated, yielding reasonable agreement with measurement.
Befrui, Bizhan A.
1995-01-01
This viewgraph presentation discusses the following: STAR-CD computational features; STAR-CD turbulence models; common features of industrial complex flows; industry-specific CFD development requirements; applications and experiences of industrial complex flows, including flow in rotating disc cavities, diffusion hole film cooling, internal blade cooling, and external car aerodynamics; and conclusions on turbulence modeling needs.
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E; Kuerten, Johannes G.M.; van der Geld, C.W.M.; Geurts, Bernardus J.
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an
International Nuclear Information System (INIS)
Tachimori, Shoichi; Kitamura, Tatsuaki.
1996-10-01
A computer code REACT-Mod which simulates various chemical reactions in an aqueous nitric acid solution involving uranium, plutonium, neptunium, technetium etc. e.g., redox, radiolytic and disproportionation reactions of 68, was developed based on the kinetics model. The numerical solution method adopted in the code are two, a kinetics model totally based on the rate law of which differential equations are solved by the modified Porsing method, and a two-step model based on both the rate law and equilibrium law. Only the former treats 27 radiolytic reactions. The latter is beneficially used to have a quick and approximate result by economical computation. The present report aims not only to explain the concept, chemical reactions treated and characteristics of the model but also to provide details of the program for users of the REACT-Mod code. (author)
Measurement in multiphase reacting flows
Chigier, N. A.
1979-01-01
A survey is presented of diagnostic techniques and measurements made in multiphase reacting flows. The special problems encountered by the presence of liquid droplets, soot and solid particles in high temperature chemically reacting turbulent environments are outlined. The principal measurement techniques that have been tested in spray flames are spark photography, laser anemometry, thermocouples and suction probes. Spark photography provides measurement of drop size, drop size distribution, drop velocity, and angle of flight. Photographs are analysed automatically by image analysers. Photographic techniques are reliable, inexpensive and proved. Laser anemometers have been developed for simultaneous measurement of velocity and size of individual particles in sprays under conditions of vaporization and combustion. Particle/gas velocity differentials, particle Reynolds numbers, local drag coefficients and direct measurement of vaporization rates can be made by laser anemometry. Gas temperature in sprays is determined by direct in situ measurement of time constants immediately prior to measurement with compensation and signal analysis by micro-processors. Gas concentration is measured by suction probes and gas phase chromatography. Measurements of particle size, particle velocity, gas temperature, and gas concentration made in airblast and pressure atomised liquid spray flames are presented.
Unconfined deflagrative explosions without turbulence: experiments and model
International Nuclear Information System (INIS)
Lannoy, A.
1989-01-01
This paper reviews laboratory, balloon and open field experiments which have been performed to study the deflagration regime in free air. In a first part, are considered different models available to estimate deflagrative unconfined explosions effects, without turbulence. Then, a description is given of the known performed tests, which indicate the effective scale of various experiments, their operating conditions and the type of measurements carried out. Results are presented and discussed. The influence on the explosion force of different parameters (fuel concentration gradients, flammable mixture shape and size, ignition energy) is estimated. The overall conclusion of this survey is that flammable mixtures drifting over open field and ignited, will burn with low flame speed and consequently will generate very weak pressure effects [fr
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
International Nuclear Information System (INIS)
Zhang, Fan
2011-01-01
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The second is the value of the ratio of the root
Numerical study of corner separation in a linear compressor cascade using various turbulence models
Directory of Open Access Journals (Sweden)
Liu Yangwei
2016-06-01
Full Text Available Three-dimensional corner separation is a common phenomenon that significantly affects compressor performance. Turbulence model is still a weakness for RANS method on predicting corner separation flow accurately. In the present study, numerical study of corner separation in a linear highly loaded prescribed velocity distribution (PVD compressor cascade has been investigated using seven frequently used turbulence models. The seven turbulence models include Spalart–Allmaras model, standard k–ɛ model, realizable k–ɛ model, standard k–ω model, shear stress transport k–ω model, v2–f model and Reynolds stress model. The results of these turbulence models have been compared and analyzed in detail with available experimental data. It is found the standard k–ɛ model, realizable k–ɛ model, v2–f model and Reynolds stress model can provide reasonable results for predicting three dimensional corner separation in the compressor cascade. The Spalart–Allmaras model, standard k–ω model and shear stress transport k–ω model overestimate corner separation region at incidence of 0°. The turbulence characteristics are discussed and turbulence anisotropy is observed to be stronger in the corner separating region.
The Modelling of Particle Resuspension in a Turbulent Boundary Layer
Energy Technology Data Exchange (ETDEWEB)
Zhang, Fan
2011-10-20
The work presented concerns the way small particles attached to a surface are resuspended when exposed to a turbulent flow. Of particular concern to this work is the remobilization of radioactive particles as a consequence of potential nuclear accidents. In this particular case the focus is on small particles, < 5 microns in diameter, where the principal force holding such particles onto a surface arises from van der Waals inter-molecular forces. Given its suitable treatment of the microphysics of small particles, it was decided here to aim to develop improved versions of the Rock'n'Roll (R'n'R) model; the R'n'R model is based on a statistical approach to resuspension involving the rocking and rolling of a particle about surface asperities induced by the moments of the fluctuating drag forces acting on the particle close to the surface. Firstly, a force (moment) balance model has been modified by including the distribution of the aerodynamic force instead of considering only its mean value. The R'n'R model is significantly improved by using realistic statistical fluctuations of both the stream-wise fluid velocity and acceleration close to the wall obtained from Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) of turbulent channel flow; in the standard model a major assumption is that these obey a Gaussian distribution. The flow conditions are translated into the moments of the drag force acting on the particle attached to the surface. In so doing the influence of highly non-Gaussian forces on the resuspension rate has been examined along with the sensitivity of the fluctuation statistics to LES and DNS. As a result of the analysis of our DNS/LES data 3 distinct features of the modified R'n'R model have emerged as playing an important part in the resuspension. The first is the typical forcing frequency due to the turbulent aerodynamic drag forces acting on the particle attached to a surface. The
Energy Technology Data Exchange (ETDEWEB)
Mueller, C.; Kremer, H. [Ruhr-Universitaet Bochum, Lehrstuhl fuer Energieanlagentechnik, Bochum (Germany); Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group
1997-12-31
The detailed modelling of turbulent reactive flows with CFD-codes is a major challenge in combustion science. One method of combining highly developed turbulence models and detailed chemistry in CFD-codes is the application of reactor based turbulence chemistry interaction models. In this work the influence of different reactor concepts on methane and NO{sub x} chemistry in turbulent reactive flows was investigated. Besides the classical reactor approaches, a plug flow reactor (PFR) and a perfectly stirred reactor (PSR), the Eddy-Dissipation Combustion Model (EDX) and the Eddy Dissipation Concept (EDC) were included. Based on a detailed reaction scheme and a simplified 2-step mechanism studies were performed in a simplified computational grid consisting of 5 cells. The investigations cover a temperature range from 1273 K to 1673 K and consider fuel-rich and fuel-lean gas mixtures as well as turbulent and highly turbulent flow conditions. All test cases investigated in this study showed a strong influence of the reactor residence time on the species conversion processes. Due to this characteristic strong deviations were found for the species trends resulting from the different reactor approaches. However, this influence was only concentrated on the `near burner region` and after 4-5 cells hardly any deviation and residence time dependence could be found. The importance of the residence time dependence increased when the species conversion was accelerated as it is the case for overstoichiometric combustion conditions and increased temperatures. The study focused furthermore on the fine structure in the EDC. Unlike the classical approach this part of the cell was modelled as a PFR instead of a PSR. For high temperature conditions there was hardly any difference between both reactor types. However, decreasing the temperature led to obvious deviations. Finally, the effect of the selective species transport between the cells on the conversion process was investigated
Hernández Pérez, Francisco E.
2018-03-29
A new direct numerical simulation (DNS) code for multi-component gaseous reacting flows has been developed at KAUST, with the state-of-the-art programming model for next generation high performance computing platforms. The code, named KAUST Adaptive Reacting Flows Solver (KARFS), employs the MPI+X programming, and relies on Kokkos for “X” for performance portability to multi-core, many-core and GPUs, providing innovative software development while maintaining backward compatibility with established parallel models and legacy code. The capability and potential of KARFS to perform DNS of reacting flows with large, detailed reaction mechanisms is demonstrated with various model problems involving ignition and turbulent flame propagations with varying degrees of chemical complexities.
Fatigue reliability and effective turbulence models in wind farms
DEFF Research Database (Denmark)
Sørensen, John Dalsgaard; Frandsen, Sten Tronæs; Tarp-Johansen, N.J.
2007-01-01
Offshore wind farms with 100 or more wind turbines are expected to be installed many places during the next years. Behind a wind turbine a wake is formed where the mean wind speed decreases slightly and the turbulence intensity increases significantly. This increase in turbulence intensity in wak...
A model for turbulent dissipation rate in a constant pressure ...
Indian Academy of Sciences (India)
J Dey
for measuring the Taylor microscale from two hot-wire measurements. Once the Taylor microscale is available, the turbulent dissipation rate can be estimated, at least for isotropic turbulence. .... Reynolds number based on the boundary layer thickness. While the ... the laminar skin-friction term in pipe and channel flows.
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Thermal Engineering
1996-12-01
The aim of the work was to study the combustion models taking into account the coupling between gas phase reactions and turbulence the modelling of emissions, especially of nitric oxide, when temperature and species concentrations are fluctuating by turbulence. The principal tools to model turbulent gas phase combustion were methods based on the probability density function (pdf) with {beta} and {gamma}-distributions the practice of which can take into consideration the stochastic nature of turbulence and, on the other hand, the models which also include the effect turbulence on the reaction rates in the flames e.g. the Eddy Dissipation Model (EDM), the Eddy Dissipation Concept (EDC), the kinetic mod and the combinations of those ones, respectively. Besides these models effect of the different turbulence models (standard, RNG and CHENKIM k-{epsilon} models) on the combustion phenomena, especially on the formation emissions was also studied. Same kind of modelling has been done by the teams in the Special Interest Group of ERCOFTAC (European Research Community On Flow Turbulence And Combustion) under the title of Aerodynamics and Steady State Combustion Chambers and Furnaces (A.S.C.F.) with which we have co-operated during some years with success. (author)
Litchford, Ron J.; Jeng, San-Mou
1992-01-01
The performance of a recently introduced statistical transport model for turbulent particle dispersion is studied here for rigid particles injected into a round turbulent jet. Both uniform and isosceles triangle pdfs are used. The statistical sensitivity to parcel pdf shape is demonstrated.
International Nuclear Information System (INIS)
Boudjemadi, R.
1996-03-01
The main objectives of this thesis are the direct numerical simulation of natural convection in a vertical differentially heated slot and the improvements of second-order turbulence modelling. A three-dimensional direct numerical simulation code has been developed in order to gain a better understanding of turbulence properties in natural convection flows. This code has been validated in several physical configurations: non-stratified natural convection flows (conduction solution), stratified natural convection flows (double boundary layer solution), transitional and turbulent Poiseuille flows. For the conduction solution, the turbulent regime was reached at a Rayleigh number of 1*10 5 and 5.4*10 5 . A detailed analysis of these results has revealed the principal qualities of the available models but has also pointed our their shortcomings. This data base has been used in order to improve the triple correlations transport models and to select the turbulent time scales suitable for such flows. (author). 122 refs., figs., tabs., 4 appends
National Research Council Canada - National Science Library
McRae, D. S; Xiao, Xudong; Hassan, Hassan A
2005-01-01
Development of the North Carolina State University (NCSU) adaptive high-resolution atmospheric model and the atmospheric version of the NCSU k-zeta turbulence model continued during this contract period...
A comparative study of turbulence models for dissolved air flotation flow analysis
Energy Technology Data Exchange (ETDEWEB)
Park, Min A; Lee, Kyun Ho; Chung, Jae Dong [School of Mechanical and Aerospace Engineering, Sejong University, Seoul (Korea, Republic of); Seo, Seung Ho [Tops Engineering Co, Ltd., Gwangmyeong (Korea, Republic of)
2015-07-15
The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models.
A comparative study of turbulence models for dissolved air flotation flow analysis
International Nuclear Information System (INIS)
Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho
2015-01-01
The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models
Development of bubble-induced turbulence model for advanced two-fluid model
International Nuclear Information System (INIS)
Hosoi, Hideaki; Yoshida, Hiroyuki
2011-01-01
A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small
Epps, Brenden; Cushman-Roisin, Benoit
2017-11-01
Fluid turbulence is an outstanding unsolved problem in classical physics, despite 120+ years of sustained effort. Given this history, we assert that a new mathematical framework is needed to make a transformative breakthrough. This talk offers one such framework, based upon kinetic theory tied to the statistics of turbulent transport. Starting from the Boltzmann equation and ``Lévy α-stable distributions'', we derive a turbulence model that expresses the turbulent stresses in the form of a fractional derivative, where the fractional order is tied to the transport behavior of the flow. Initial results are presented herein, for the cases of Couette-Poiseuille flow and 2D boundary layers. Among other results, our model is able to reproduce the logarithmic Law of the Wall in shear turbulence.
Navier-Stokes Computations With One-Equation Turbulence Model for Flows Along Concave Wall Surfaces
Wang, Chi R.
2005-01-01
This report presents the use of a time-marching three-dimensional compressible Navier-Stokes equation numerical solver with a one-equation turbulence model to simulate the flow fields developed along concave wall surfaces without and with a downstream extension flat wall surface. The 3-D Navier- Stokes numerical solver came from the NASA Glenn-HT code. The one-equation turbulence model was derived from the Spalart and Allmaras model. The computational approach was first calibrated with the computations of the velocity and Reynolds shear stress profiles of a steady flat plate boundary layer flow. The computational approach was then used to simulate developing boundary layer flows along concave wall surfaces without and with a downstream extension wall. The author investigated the computational results of surface friction factors, near surface velocity components, near wall temperatures, and a turbulent shear stress component in terms of turbulence modeling, computational mesh configurations, inlet turbulence level, and time iteration step. The computational results were compared with existing measurements of skin friction factors, velocity components, and shear stresses of the developing boundary layer flows. With a fine computational mesh and a one-equation model, the computational approach could predict accurately the skin friction factors, near surface velocity and temperature, and shear stress within the flows. The computed velocity components and shear stresses also showed the vortices effect on the velocity variations over a concave wall. The computed eddy viscosities at the near wall locations were also compared with the results from a two equation turbulence modeling technique. The inlet turbulence length scale was found to have little effect on the eddy viscosities at locations near the concave wall surface. The eddy viscosities, from the one-equation and two-equation modeling, were comparable at most stream-wise stations. The present one
Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model
El-Amin, Mohamed
2010-06-13
Through this paper, analyses of components of the unheated/heated turbulent confined jet are introduced and some models to describe them are developed. Turbulence realizable k-ε model is used to model the turbulence of this problem. Numerical simulations of 2D axisymmetric vertical hot water confined jet into a cylindrical tank have been done. Solutions are obtained for unsteady flow while velocity, pressure, temperature and turbulence distributions inside the water tank are analyzed. For seeking verification, an experiment was conducted for measuring of the temperature of the same system, and comparison between the measured and simulated temperature shows a good agreement. Using the simulated results, some models are developed to describe axial velocity, centerline velocity, radial velocity, dynamic pressure, mass flux, momentum flux and buoyancy flux for both unheated (non-buoyant) and heated (buoyant) jet. Finally, the dynamics of the heated jet in terms of the plume function which is a universal quantity and the source parameter are studied and therefore the maximum velocity can be predicted theoretically. © 2010 Springer-Verlag.
Lipkens, Bart
2002-01-01
In previous papers, we have shown that model experiments are successful in simulating the propagation of sonic booms through the atmospheric turbulent boundary layer. The results from the model experiment, pressure wave forms of spark-produced N waves and turbulence characteristics of the plane jet, are used to test various sonic boom models for propagation through turbulence. Both wave form distortion models and rise time prediction models are tested. Pierce's model [A. D. Pierce, "Statistical theory of atmospheric turbulence effects on sonic boom rise times," J. Acoust. Soc. Am. 49, 906-924 (1971)] based on the wave front folding mechanism at a caustic yields an accurate prediction for the rise time of the mean wave form after propagation through the turbulence.
Energy Technology Data Exchange (ETDEWEB)
NONE
1997-12-31
This workshop on turbulent viscosity models and on their experimental validation was organized by the `convection` section of the French society of thermal engineers. From the 9 papers presented during this workshop, 8 deal with the modeling of turbulent flows inside combustion chambers, turbo-machineries or in other energy-related applications, and have been selected for ETDE. (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant parameters before the fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of the mixing between two interpenetrating fluids to define the initial profiles for the turbulence model parameters. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted initial profiles for the turbulence model parameters and initial profiles of the parameters obtained from low Atwood number three dimensional simulations show reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
Rollin, Bertrand [Los Alamos National Laboratory; Andrews, Malcolm J [Los Alamos National Laboratory
2010-01-01
We present our progress toward setting initial conditions in variable density turbulence models. In particular, we concentrate our efforts on the BHR turbulence model for turbulent Rayleigh-Taylor instability. Our approach is to predict profiles of relevant variables before fully turbulent regime and use them as initial conditions for the turbulence model. We use an idealized model of mixing between two interpenetrating fluids to define the initial profiles for the turbulence model variables. Velocities and volume fractions used in the idealized mixing model are obtained respectively from a set of ordinary differential equations modeling the growth of the Rayleigh-Taylor instability and from an idealization of the density profile in the mixing layer. A comparison between predicted profiles for the turbulence model variables and profiles of the variables obtained from low Atwood number three dimensional simulations show reasonable agreement.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
Turbulence Measurements on a Flap-Edge Model
Moriarty, Patrick; Bradshaw, Peter; Cantwell, Brian; Ross, James
1998-01-01
Turbulence measurements have been made on a flap-edge and leading-edge slat model using hot-wire anemometry, and, later, particle image velocimetry. The properties of hot-wire anemometry were studied using facilities at NASA Ames Research Center. Hot-film probes were used because of their durability, but cross-films were limited by non-linear end effects. As a warm-up exercise, hot-film probes were used to measure velocities in the farfield wake of a cylinder with an airfoil in the near-field wake. The airfoil reduced the drag coefficient of the system by 10%. A single-wire hot-film probe was used to measure velocity profiles over the top of a NACA 63(sub 2)-215 Mod. B wing with a Fowler flap and leading,-edge slat. Results showed the size of slat wake was dependent upon the slat deflection angle. Velocity increased through the slat gap with increased deflection. The acoustically modified slat decreased the chance of separation. Measurements were taken at the flap edge with a single hot-film. Trends in the data indicate velocity and turbulence levels increase at the flap edge. The acoustically modified flap modifies the mean flow near the flap edge. Correlations were made between the hot-film signal and the unsteady pressure transducers on the wing which were published in a NASA CDTM. The principles of Particle Image Velocimetry (PIV) were studied at Florida State University. Spectral PIV was used to measure the spectra of a subsonic jet. Measured frequencies were close to the predicted frequency of jet shedding. Spectral PIV will be used to measure the spectra of the slat flow in the second 7 x lO-ft. wind tunnel test. PIV has an advantage that it can measure velocity and spectra of the entire flowfield instantaneously. However, problems arise when trying, to store this massive amount of PIV data. Support for this research has continued through a NASA Graduate Student Program Fellowship which will end in June 1999. The thesis should be completed by this time.
Influence of anisotropic turbulence on the long-range imaging system by the MTF model
Cui, Linyan; Xue, Bindang
2015-09-01
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this paper, new analytic expressions for the anisotropic non-Kolmogorov turbulence modulation transfer function (MTF) based on Rytov approximation theory have been derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. Compared with the previously published results where the turbulence inner and outer scales were set separately to zero and infinite for calculation convenience, the concept of anisotropy at different turbulence cell scales and finite turbulence inner and outer scales are introduced to study the MTF models. Also, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. To reduce the complexity and calculation time of the analytic results, the asymptotic-fit expressions are also derived and they fit well with the closed-form ones. Calculations are performed to analyze the anisotropic non-Kolmogorov turbulence's influence on the long-range imaging system.
A simple recipe for modeling reaction-rate in flows with turbulent-combustion
Girimaji, Sharath S.
1991-01-01
A computationally viable scheme to account for chemical reaction in turbulent flows is presented. The multivariate beta-pdf model for multiple scalar mixing forms the basis of this scheme. Using the model scalar joint pdf and a general form of the instantaneous reaction-rate, the unclosed chemical reaction terms are expressed as simple functions of scalar means and the turbulent scalar energy. The calculation procedure requires that the mean scalar equations and only one other transport equation - for the turbulent scalar energy - be solved.
Numerical investigation of turbulence models for shock separated boundary-layer flows
Viegas, J. R.; Coakley, T. J.
1977-01-01
Numerical solutions of the Navier-Stokes equations for shock separated turbulent boundary-layer flows are presented. Several turbulence models are investigated and assessed by their ability to predict the physical phenomena associated with two extensively documented experiments. The experimental flows consist of shock-wave boundary-layer interactions in axisymmetric internal and external geometries at Mach numbers of 1.5 and 7, respectively. Algebraic and one-equation eddy viscosity models are used to describe the Reynolds shear stress. Calculated values of skin friction, wall pressure distribution, kinetic energy of turbulence, and heat transfer are compared with measurements.
CFD simulations in the nuclear containment using the DES turbulence models
Energy Technology Data Exchange (ETDEWEB)
Ding, Peng [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Chen, Meilan [China Nuclear Power Technology Research Institute, Shenzhen (China); Li, Wanai, E-mail: liwai@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China); Liu, Yulan [School of Engineering, Sun Yat-Sen University, Guangzhou (China); Wang, Biao [Sino-French Institute of Nuclear Engineering & Technology, Sun Yat-Sen University, Guangzhou (China)
2015-06-15
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions.
CFD simulations in the nuclear containment using the DES turbulence models
International Nuclear Information System (INIS)
Ding, Peng; Chen, Meilan; Li, Wanai; Liu, Yulan; Wang, Biao
2015-01-01
Highlights: • The k-ε based DES model is used in the nuclear containment simulation. • The comparison of results between different turbulent models is obtained. • The superiority of DES models is analyzed. • The computational efficiency with the DES turbulence models is explained. - Abstract: Different species of gases would be released into the containment and cause unpredicted disasters during the nuclear severe accidents. It is important to accurately predict the transportation and stratification phenomena of these gas mixtures. CFD simulations of these thermal hydraulic issues in nuclear containment are investigated in this paper. The main work is to study the influence of turbulence model on the calculation of gas transportation and heat transfer. The k-ε based DES and other frequently used turbulence models are used in the steam and helium release simulation in THAI series experiment. This paper will show the superiority of the DES turbulence model in terms of computational efficiency and accuracy with the experimental results, and analyze the necessities of DES model to simulate the large-scale containment flows with both laminar and turbulence regions
Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows, Phase I
National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...
Turbulence Models: Shock Boundary Layer Interaction at M=2.05
National Aeronautics and Space Administration — Exp: Shock Boundary Layer Interaction at M=2.05. This web page provides data from experiments that may be useful for the validation of turbulence models. This...
Turbulent Scalar Transport Model Validation for High Speed Propulsive Flows Project
National Aeronautics and Space Administration — This effort entails the validation of a RANS turbulent scalar transport model (SFM) for high speed propulsive flows, using new experimental data sets and...
Turbulence Models: Data from Other Experiments: FAITH Hill 3-D Separated Flow
National Aeronautics and Space Administration — Exp: FAITH Hill 3-D Separated Flow. This web page provides data from experiments that may be useful for the validation of turbulence models. This resource is...
An implicit turbulence model for low-Mach Roe scheme using truncated Navier-Stokes equations
Li, Chung-Gang; Tsubokura, Makoto
2017-09-01
The original Roe scheme is well-known to be unsuitable in simulations of turbulence because the dissipation that develops is unsatisfactory. Simulations of turbulent channel flow for Reτ = 180 show that, with the 'low-Mach-fix for Roe' (LMRoe) proposed by Rieper [J. Comput. Phys. 230 (2011) 5263-5287], the Roe dissipation term potentially equates the simulation to an implicit large eddy simulation (ILES) at low Mach number. Thus inspired, a new implicit turbulence model for low Mach numbers is proposed that controls the Roe dissipation term appropriately. Referred to as the automatic dissipation adjustment (ADA) model, the method of solution follows procedures developed previously for the truncated Navier-Stokes (TNS) equations and, without tuning of parameters, uses the energy ratio as a criterion to automatically adjust the upwind dissipation. Turbulent channel flow at two different Reynold numbers and the Taylor-Green vortex were performed to validate the ADA model. In simulations of turbulent channel flow for Reτ = 180 at Mach number of 0.05 using the ADA model, the mean velocity and turbulence intensities are in excellent agreement with DNS results. With Reτ = 950 at Mach number of 0.1, the result is also consistent with DNS results, indicating that the ADA model is also reliable at higher Reynolds numbers. In simulations of the Taylor-Green vortex at Re = 3000, the kinetic energy is consistent with the power law of decaying turbulence with -1.2 exponents for both LMRoe with and without the ADA model. However, with the ADA model, the dissipation rate can be significantly improved near the dissipation peak region and the peak duration can be also more accurately captured. With a firm basis in TNS theory, applicability at higher Reynolds number, and ease in implementation as no extra terms are needed, the ADA model offers to become a promising tool for turbulence modeling.
Incompressible Turbulent Flow Simulation Using the κ-ɛ Model and Upwind Schemes
Directory of Open Access Journals (Sweden)
V. G. Ferreira
2007-01-01
Full Text Available In the computation of turbulent flows via turbulence modeling, the treatment of the convective terms is a key issue. In the present work, we present a numerical technique for simulating two-dimensional incompressible turbulent flows. In particular, the performance of the high Reynolds κ-ɛ model and a new high-order upwind scheme (adaptative QUICKEST by Kaibara et al. (2005 is assessed for 2D confined and free-surface incompressible turbulent flows. The model equations are solved with the fractional-step projection method in primitive variables. Solutions are obtained by using an adaptation of the front tracking GENSMAC (Tomé and McKee (1994 methodology for calculating fluid flows at high Reynolds numbers. The calculations are performed by using the 2D version of the Freeflow simulation system (Castello et al. (2000. A specific way of implementing wall functions is also tested and assessed. The numerical procedure is tested by solving three fluid flow problems, namely, turbulent flow over a backward-facing step, turbulent boundary layer over a flat plate under zero-pressure gradients, and a turbulent free jet impinging onto a flat surface. The numerical method is then applied to solve the flow of a horizontal jet penetrating a quiescent fluid from an entry port beneath the free surface.
Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows
Energy Technology Data Exchange (ETDEWEB)
Nguyen, V. T.; Yun, B. J.; Song, C. H. [University of Science and Technology, Daejeon (Korea, Republic of); Bae, B. U.; Euh, D. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-{epsilon} turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)
Assessment of Turbulence Models for Isothermal Vertical-upward Bubbly Flows
International Nuclear Information System (INIS)
Nguyen, V. T.; Yun, B. J.; Song, C. H.; Bae, B. U.; Euh, D. J.
2010-01-01
EAGLE (Elaborated Analysis of Gas-Liquid Evolution) code was developed by KAERI for a multi-dimensional analysis of two-phase flow with the implementations of non-drag force, turbulence models, and the interfacial area transport equation. The code structure was based on the two-fluid model and the Simplified Marker And Cell (SMAC) algorithm was modified to be available for an isothermal bubbly two-phase flow simulation. In the Euler/Eulerian approach simulating bubbly flow, the influence of the bubbles on the turbulence of the liquid has to be modeled correctly since the liquid turbulence strongly influences the models describing bubble coalescence and bubble breakup in any interfacial area transport equation. In the present paper, two common concepts for modeling the influence of bubbles on liquid turbulence quantities implemented in k-ε turbulence model are described and analyzed. Simulation were done using EAGLE code and compared with gas volume fraction distributions and turbulence parameters obtained from experimental data of Hibiki et al (2001)
Bogenschutz, Peter A.
Over the past few years a new type of general circulation model (GCM) has emerged that is known as the multiscale modeling framework (MMF). The Colorado State University (CSU) MMF represents a coupling between the Community Atmosphere Model (CAM) GCM and the System of Atmospheric Modeling (SAM) cloud resolving model (CRM). Within this MMF the embedded CRM replaces the traditionally used parameterized moist physics in CAM to represent subgrid-scale (SGS) convection. However, due to substantial increases of computational burden associated with the MMF, the embedded CRM is typically run with a horizontal grid size of 4 km. With a horizontal grid size of 4 km, a low-order closure CRM cannot adequately represent shallow convective processes, such as trade-wind cumulus or stratocumulus. A computationally inexpensive parameterization of turbulence and clouds is presented in this dissertation. An extensive a priori test is performed to determine which functional form of an assumed PDF is best suited for coarse-grid CRMs for both deep shallow and deep convection. The diagnostic approach to determine the input moments needed for the assumed PDFs uses the subgrid-scale (SGS) turbulent kinetic energy (TKE) as the basis for the parameterization. The term known as the turbulent length scale (L) is examined, as it is needed to parameterize the dissipation of turbulence and therefore is needed to better balance the budgets of SGS TKE. A new formulation of this term is added to the model code which appears to be able to partition resolved and SGS TKE fairly accurately. Results from "offline" tests of the simple diagnostic closure within SAM shows that the cloud and turbulence properties of shallow convection can be adequately represented when compared to large eddy simulation (LES) benchmark simulations. Results are greatly improved when compared to the standard version of SAM. The preliminary test of the scheme within the embedded CRM of the MMF shows promising results with the
Modified k-l model and its ability to simulate supersonic axisymmetric turbulent flows
International Nuclear Information System (INIS)
Ahmadikia, H.; Shirani, E.
2001-05-01
The k-l turbulence model is a promising two-equation model. In this paper, the k and l model equations were derived from k-kl incompressible and one-equation turbulent models. Then the model was modified for compressible and transitional flows, and was applied to simulate supersonic axisymmetric flows over Hollow cylinder flare an hyperboloid flare bodies. The results were compared with the results obtained for the same flows experimentally as well as k-ε, k-ω and Baldwin-Lomax models. It was shown that the k-l model produces good results compared with experimental data and numerical data obtained when other turbulence models were used. It gives better results than k-ω and k-ε models in some cases. (author)
One-dimensional Turbulence Models of Type I X-ray Bursts
International Nuclear Information System (INIS)
Hou, Chen
2016-01-01
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more 12 C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.
One-dimensional Turbulence Models of Type I X-ray Bursts
Energy Technology Data Exchange (ETDEWEB)
Hou, Chen [Univ. of Minnesota, Minneapolis, MN (United States)
2016-01-06
Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface of an accreting neutron star in a binary star system. Observations and simulations of these phenomena are of great importance for understanding the fundamental properties of neutron stars and dense matter because the equation of state for cold dense matter can be constrained by the mass-radius relationship of neutron stars. During the bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear burning process. This dissertation presents one-dimensional models of photospheric radius expansion bursts with a new approach to simulate turbulent advection. Compared with the traditional mixing length theory, the one-dimensional turbulence (ODT) model represents turbulent motions by a sequence of maps that are generated according to a stochastic process. The light curves I obtained with the ODT models are in good agreement with those of the KEPLER model in which the mixing length theory and various diffusive processes are applied. The abundance comparison, however, indicates that the differences in turbulent regions and turbulent diffusivities result in more ^{12}C survival during the bursts in the ODT models, which can make a difference in the superbursts phenomena triggered by unstable carbon burning.
Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows
Brown, Cameron Scott
Turbulence modeling remains a challenging problem in nuclear reactor applications, particularly for the turbulent multiphase flow conditions in nuclear reactor subchannels. Understanding the fundamental physics of turbulent multiphase flows is crucial for the improvement and further development of multiphase flow models used in reactor operation and safety calculations. Reactor calculations with Reynolds-averaged Navier-Stokes (RANS) approach continue to become viable tools for reactor analysis. The on-going increase in available computational resources allows for turbulence models that are more complex than the traditional two-equation models to become practical choices for nuclear reactor computational fluid dynamic (CFD) and multiphase computational fluid dynamic (M-CFD) simulations. Similarly, increased computational capabilities continue to allow for higher Reynolds numbers and more complex geometries to be evaluated using direct numerical simulation (DNS), thus providing more validation and verification data for turbulence model development. Spectral turbulence models are a promising approach to M-CFD simulations. These models resolve mean flow parameters as well as the turbulent kinetic energy spectrum, reproducing more physical details of the turbulence than traditional two-equation type models. Previously, work performed by other researchers on a spectral cascade-transport model has shown that the model behaves well for single and bubbly twophase decay of isotropic turbulence, single and two-phase uniform shear flow, and single-phase flow in a channel without resolving the near-wall boundary layer for relatively low Reynolds number. Spectral models are great candidates for multiphase RANS modeling since bubble source terms can be modeled as contributions to specific turbulence scales. This work focuses on the improvement and further development of the spectral cascadetransport model (SCTM) to become a three-dimensional (3D) turbulence model for use in M
Evaluation of Industry Standard Turbulence Models on an Axisymmetric Supersonic Compression Corner
DeBonis, James R.
2015-01-01
Reynolds-averaged Navier-Stokes computations of a shock-wave/boundary-layer interaction (SWBLI) created by a Mach 2.85 flow over an axisymmetric 30-degree compression corner were carried out. The objectives were to evaluate four turbulence models commonly used in industry, for SWBLIs, and to evaluate the suitability of this test case for use in further turbulence model benchmarking. The Spalart-Allmaras model, Menter's Baseline and Shear Stress Transport models, and a low-Reynolds number k- model were evaluated. Results indicate that the models do not accurately predict the separation location; with the SST model predicting the separation onset too early and the other models predicting the onset too late. Overall the Spalart-Allmaras model did the best job in matching the experimental data. However there is significant room for improvement, most notably in the prediction of the turbulent shear stress. Density data showed that the simulations did not accurately predict the thermal boundary layer upstream of the SWBLI. The effect of turbulent Prandtl number and wall temperature were studied in an attempt to improve this prediction and understand their effects on the interaction. The data showed that both parameters can significantly affect the separation size and location, but did not improve the agreement with the experiment. This case proved challenging to compute and should provide a good test for future turbulence modeling work.
Viswanathan, Sharadha; Pope, Stephen B.
2007-11-01
Probability density function (PDF) calculations are reported for the dispersion from line sources in isotropic turbulence. These flows pose a significant challenge to statistical models, because the scalar length scale (of the initial plume) is much smaller than the turbulence integral scale. The PDF calculations are based on a new near-neighbor implementation of the interaction by exchange with the conditional mean (IECM) mixing model. The calculations are compared to the experimental data of Warhaft (1984) on single and pairs of line sources, and with the previous calculations of Sawford (2004). This establishes the accuracy of the new implementation of IECM. An array of line sources is also considered with comparison to the experimental data of Warhaft & Lumley (1978), which show the dependence of the scalar variance decay rate on the array spacing relative to the turbulence integral scale. The near-neighbor implementation is applicable to other local mixing models, as arise, for example, in multiple mapping conditioning (Klimenko & Pope 2003). In the particle method used to solve the modeled PDF equation, the near-neighbor implementation results in a particle's mixing with just one or two near neighbors (in the relevant space), and hence maximizes the localness of mixing.
Numerical modeling of normal turbulent plane jet impingement on solid wall
Energy Technology Data Exchange (ETDEWEB)
Guo, C.Y.; Maxwell, W.H.C.
1984-10-01
Attention is given to a numerical turbulence model for the impingement of a well developed normal plane jet on a solid wall, by means of which it is possible to express different jet impingement geometries in terms of different boundary conditions. Examples of these jets include those issuing from VTOL aircraft, chemical combustors, etc. The two-equation, turbulent kinetic energy-turbulent dissipation rate model is combined with the continuity equation and the transport equation of vorticity, using an iterative finite difference technique in the computations. Peak levels of turbulent kinetic energy occur not only in the impingement zone, but also in the intermingling zone between the edges of the free jet and the wall jet. 20 references.
Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM
Yao, Mao-Sung; Cheng, Ye
2013-01-01
The response of cloud simulations to turbulence parameterizations is studied systematically using the GISS general circulation model (GCM) E2 employed in the Intergovernmental Panel on Climate Change's (IPCC) Fifth Assessment Report (AR5).Without the turbulence parameterization, the relative humidity (RH) and the low cloud cover peak unrealistically close to the surface; with the dry convection or with only the local turbulence parameterization, these two quantities improve their vertical structures, but the vertical transport of water vapor is still weak in the planetary boundary layers (PBLs); with both local and nonlocal turbulence parameterizations, the RH and low cloud cover have better vertical structures in all latitudes due to more significant vertical transport of water vapor in the PBL. The study also compares the cloud and radiation climatologies obtained from an experiment using a newer version of turbulence parameterization being developed at GISS with those obtained from the AR5 version. This newer scheme differs from the AR5 version in computing nonlocal transports, turbulent length scale, and PBL height and shows significant improvements in cloud and radiation simulations, especially over the subtropical eastern oceans and the southern oceans. The diagnosed PBL heights appear to correlate well with the low cloud distribution over oceans. This suggests that a cloud-producing scheme needs to be constructed in a framework that also takes the turbulence into consideration.
Directory of Open Access Journals (Sweden)
Pablo D. Mininni
2012-01-01
Full Text Available In the context of tackling the ill-posed inverse problem of motion estimation from image sequences, we propose to introduce prior knowledge on flow regularity given by turbulence statistical models. Prior regularity is formalised using turbulence power laws describing statistically self-similar structure of motion increments across scales. The motion estimation method minimises the error of an image observation model while constraining second-order structure function to behave as a power law within a prescribed range. Thanks to a Bayesian modelling framework, the motion estimation method is able to jointly infer the most likely power law directly from image data. The method is assessed on velocity fields of 2-D or quasi-2-D flows. Estimation accuracy is first evaluated on a synthetic image sequence of homogeneous and isotropic 2-D turbulence. Results obtained with the approach based on physics of fluids outperform state-of-the-art. Then, the method analyses atmospheric turbulence using a real meteorological image sequence. Selecting the most likely power law model enables the recovery of physical quantities, which are of major interest for turbulence atmospheric characterisation. In particular, from meteorological images we are able to estimate energy and enstrophy fluxes of turbulent cascades, which are in agreement with previous in situ measurements.
Implementation and Validation of the BHR Turbulence Model in the FLAG Hydrocode
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas A. [Los Alamos National Laboratory; Fung, Jimmy [Los Alamos National Laboratory; Reisner, Jon M. [Los Alamos National Laboratory; Andrews, Malcolm J. [Los Alamos National Laboratory
2012-08-29
The BHR-2 turbulence model, developed at Los Alamos National Laboratory for variable density and compressible flows, is implemented in an Arbitrary Lagrangian-Eulerian hydrocode, FLAG. The BHR-2 formulation is discussed, with emphasis on its connection to multi-component flow formulations that underlie FLAG's treatment of multi-species flow. One-dimensional and two-dimensional validation tests are performed and compared to experiment and Eulerian simulations. Turbulence is an often studied and ubiquitous phenomenon in nature, and modeling its effects is essential in many practical applications. Specifically the behavior of turbulence in the presence of strong density gradients and compressibility is of fundamental importance in applications ranging from Inertial Confinement Fusion (ICF) [1], supernovae [2], and atmospheric flows. The BHR closure approach [3] seeks to model the physical processes at work in variable density turbulence including Kelvin-Helmholtz (KH) [4], Rayleigh-Taylor (RT) [5], and Richtmyer-Meshkov (RM) [6], driven turbulence. The effectiveness of the BHR-2 implementation has been demonstrated for variable density mixing in the KH, RT, and RM cases in an Eulerian framework [7]. The primary motivation of the present work is to implement the BHR-2 turbulence model in the Arbitrary Lagrangian-Eulerian (ALE) hydrodynamics code FLAG. The goal is not only to demonstrate results in agreement with previous Eulerian calculations, but also document behavior that arises from the underlying differences in code philosophy.
Modeling the Emission from Turbulent Relativistic Jets in Active ...
Indian Academy of Sciences (India)
2014-07-12
Jul 12, 2014 ... that have either standard Kolmogorov or recently derived relativistic tur- bulence spectra. We also account .... to compare a relativistic turbulent spectrum with a standard Kolmogorov turbu- lence spectrum, since it provides a ..... Using 3300 timesteps, and accounting for a shift towards later times due to the ...
Numerical modeling of fine particle fractal aggregates in turbulent flow
Directory of Open Access Journals (Sweden)
Cao Feifeng
2015-01-01
Full Text Available A method for prediction of fine particle transport in a turbulent flow is proposed, the interaction between particles and fluid is studied numerically, and fractal agglomerate of fine particles is analyzed using Taylor-expansion moment method. The paper provides a better understanding of fine particle dynamics in the evolved flows.
Jiang, Zhou; Xia, Zhenhua; Shi, Yipeng; Chen, Shiyi
2018-04-01
A fully developed spanwise rotating turbulent channel flow has been numerically investigated utilizing large-eddy simulation. Our focus is to assess the performances of the dynamic variants of eddy viscosity models, including dynamic Vreman's model (DVM), dynamic wall adapting local eddy viscosity (DWALE) model, dynamic σ (Dσ ) model, and the dynamic volumetric strain-stretching (DVSS) model, in this canonical flow. The results with dynamic Smagorinsky model (DSM) and direct numerical simulations (DNS) are used as references. Our results show that the DVM has a wrong asymptotic behavior in the near wall region, while the other three models can correctly predict it. In the high rotation case, the DWALE can get reliable mean velocity profile, but the turbulence intensities in the wall-normal and spanwise directions show clear deviations from DNS data. DVSS exhibits poor predictions on both the mean velocity profile and turbulence intensities. In all three cases, Dσ performs the best.
A Hybrid Monte Carlo importance sampling of rare events in Turbulence and in Turbulent Models
Margazoglou, Georgios; Biferale, Luca; Grauer, Rainer; Jansen, Karl; Mesterhazy, David; Rosenow, Tillmann; Tripiccione, Raffaele
2017-11-01
Extreme and rare events is a challenging topic in the field of turbulence. Trying to investigate those instances through the use of traditional numerical tools turns to be a notorious task, as they fail to systematically sample the fluctuations around them. On the other hand, we propose that an importance sampling Monte Carlo method can selectively highlight extreme events in remote areas of the phase space and induce their occurrence. We present a brand new computational approach, based on the path integral formulation of stochastic dynamics, and employ an accelerated Hybrid Monte Carlo (HMC) algorithm for this purpose. Through the paradigm of stochastic one-dimensional Burgers' equation, subjected to a random noise that is white-in-time and power-law correlated in Fourier space, we will prove our concept and benchmark our results with standard CFD methods. Furthermore, we will present our first results of constrained sampling around saddle-point instanton configurations (optimal fluctuations). The research leading to these results has received funding from the EU Horizon 2020 research and innovation programme under Grant Agreement No. 642069, and from the EU Seventh Framework Programme (FP7/2007-2013) under ERC Grant Agreement No. 339032.
A study of key features of the RAE atmospheric turbulence model
Jewell, W. F.; Heffley, R. K.
1978-01-01
A complex atmospheric turbulence model for use in aircraft simulation is analyzed in terms of its temporal, spectral, and statistical characteristics. First, a direct comparison was made between cases of the RAE model and the more conventional Dryden turbulence model. Next the control parameters of the RAE model were systematically varied and the effects noted. The RAE model was found to possess a high degree of flexibility in its characteristics, but the individual control parameters are cross-coupled in terms of their effect on various measures of intensity, bandwidth, and probability distribution.
Heat Pinches in Electron-Heated Tokamak Plasmas: Theoretical Turbulence Models versus Experiments
Mantica, P.; Thyagaraja, A.; Weiland, J.; Hogeweij, G. M. D.; Knight, P. J.
2005-10-01
Two fluid turbulence models, the drift wave based quasilinear 1.5D Weiland model and the electromagnetic global 3D nonlinear model cutie, have been used to account for heat pinch evidence in off-axis modulated electron cyclotron heating experiments in the Rijnhuizen Tokamak Project. Both models reproduce the main features indicating inward heat convection in mildly off-axis cases. In far-off-axis cases with hollow electron temperature profiles, the existence of outward convection was reproduced only by cutie. Turbulence mechanisms driving heat convection in the two models are discussed.
International Nuclear Information System (INIS)
Zaichik, Leonid I; Alipchenkov, Vladimir M
2009-01-01
The purpose of this paper is twofold: (i) to advance and extend the statistical two-point models of pair dispersion and particle clustering in isotropic turbulence that were previously proposed by Zaichik and Alipchenkov (2003 Phys. Fluids15 1776-87; 2007 Phys. Fluids 19, 113308) and (ii) to present some applications of these models. The models developed are based on a kinetic equation for the two-point probability density function of the relative velocity distribution of two particles. These models predict the pair relative velocity statistics and the preferential accumulation of heavy particles in stationary and decaying homogeneous isotropic turbulent flows. Moreover, the models are applied to predict the effect of particle clustering on turbulent collisions, sedimentation and intensity of microwave radiation as well as to calculate the mean filtered subgrid stress of the particulate phase. Model predictions are compared with direct numerical simulations and experimental measurements.
Rumsey, Christopher L.
2009-01-01
In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.
Reynolds-Averaged Navier-Stokes Modeling of Turbulent Free Shear Layers
Schilling, Oleg
2017-11-01
Turbulent mixing of gases in free shear layers is simulated using a weighted essentially nonoscillatory implementation of ɛ- and L-based Reynolds-averaged Navier-Stokes models. Specifically, the air/air shear layer with velocity ratio 0.6 studied experimentally by Bell and Mehta (1990) is modeled. The detailed predictions of turbulent kinetic energy dissipation rate and lengthscale models are compared to one another, and to the experimental data. The role of analytical, self-similar solutions for model calibration and physical insights is also discussed. It is shown that turbulent lengthscale-based models are unable to predict both the growth parameter (spreading rate) and turbulent kinetic energy normalized by the square of the velocity difference of the streams. The terms in the K, ɛ, and L equation budgets are compared between the models, and it is shown that the production and destruction mechanisms are substantially different in the ɛ and L equations. Application of the turbulence models to the Brown and Roshko (1974) experiments with streams having various velocity and density ratios is also briefly discussed. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Statistical properties of a Laguerre-Gaussian Schell-model beam in turbulent atmosphere.
Chen, Rong; Liu, Lin; Zhu, Shijun; Wu, Gaofeng; Wang, Fei; Cai, Yangjian
2014-01-27
Laguerre-Gaussian Schell-model (LGSM) beam was proposed in theory [Opt. Lett.38, 91 (2013 Opt. Lett.38, 1814 (2013)] just recently. In this paper, we study the propagation of a LGSM beam in turbulent atmosphere. Analytical expressions for the cross-spectral density and the second-order moments of the Wigner distribution function of a LGSM beam in turbulent atmosphere are derived. The statistical properties, such as the degree of coherence and the propagation factor, of a LGSM beam in turbulent atmosphere are studied in detail. It is found that a LGSM beam with larger mode order n is less affected by turbulence than a LGSM beam with smaller mode order n or a GSM beam under certain condition, which will be useful in free-space optical communications.
Bardina, J. E.; Coakley, T. J.
1994-01-01
An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.
Chan, P. W.
2009-03-01
The Hong Kong International Airport (HKIA) is situated in an area of complex terrain. Turbulent flow due to terrain disruption could occur in the vicinity of HKIA when winds from east to southwest climb over Lantau Island, a mountainous island to the south of the airport. Low-level turbulence is an aviation hazard to the aircraft flying into and out of HKIA. It is closely monitored using remote-sensing instruments including Doppler LIght Detection And Ranging (LIDAR) systems and wind profilers in the airport area. Forecasting of low-level turbulence by numerical weather prediction models would be useful in the provision of timely turbulence warnings to the pilots. The feasibility of forecasting eddy dissipation rate (EDR), a measure of turbulence intensity adopted in the international civil aviation community, is studied in this paper using the Regional Atmospheric Modelling System (RAMS). Super-high resolution simulation (within the regime of large eddy simulation) is performed with a horizontal grid size down to 50 m for some typical cases of turbulent airflow at HKIA, such as spring-time easterly winds in a stable boundary layer and gale-force southeasterly winds associated with a typhoon. Sensitivity of the simulation results with respect to the choice of turbulent kinetic energy (TKE) parameterization scheme in RAMS is also examined. RAMS simulation with Deardorff (1980) TKE scheme is found to give the best result in comparison with actual EDR observations. It has the potential for real-time forecasting of low-level turbulence in short-term aviation applications (viz. for the next several hours).
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
Effects of turbulence model selection on the prediction of complex aerodynamic flows
Coakley, T. J.; Bergmann, M. Y.
1979-01-01
Numerical simulations of viscous transonic flow over a circular-arc airfoil and in a diffuser are described. The simulations are made with a new computer program designed to serve as a tool in the development of improved turbulence models for complex flows. The program incorporates zero-, one-, and two-equation eddy viscosity models and includes a variety of subsonic and supersonic boundary conditions. The airfoil flow contains a shock-separated boundary-layer interaction that has resisted previous attempts at simulation. The diffuser flow also contains a shock-boundary-layer interaction, which has not been simulated previously. Calculations using standard turbulence models, developed originally for incompressible unseparated flows, are described. Results indicate that although there are interesting differences in predictions between the various models, none of them predict the flows accurately. Suggestions for improved turbulence models are discussed.
A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization
DEFF Research Database (Denmark)
Luo, Hao; Lu, Bona; Zhang, Jingyuan
2017-01-01
The EMMS/bubbling drag model takes the effects of meso-scale structures (i.e. bubbles) into modeling of drag coefficient and thus improves coarse-grid simulation of bubbling and turbulent fluidized beds. However, its dependence on grid size has not been fully investigated. In this article, we adopt...... a periodic domain show the new drag model is less sensitive to grid size because of the additional dependence on local slip velocity. When applying the new drag model to simulations of realistic bubbling and turbulent fluidized beds, we find grid-independent results are easier to obtain for high......-velocity turbulent fluidized bed cases. The simulation results indicate that the extended EMMS/bubbling drag model is a potential method for coarse-grid simulations of large-scale fluidized beds....
Energy Technology Data Exchange (ETDEWEB)
Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Laviéville, Jérôme; Mimouni, Stéphane; Guingo, Mathieu; Baudry, Cyril
2016-04-01
Highlights: • NEPTUNE-CFD is used to model two-phase PTS. • k-ε model did produce some satisfactory results but also highlights some weaknesses. • A more advanced turbulence model has been developed, validated and applied for PTS. • Coupled with LIM, the first results confirmed the increased accuracy of the approach. - Abstract: Nuclear power plants are subjected to a variety of ageing mechanisms and, at the same time, exposed to potential pressurized thermal shock (PTS) – characterized by a rapid cooling of the internal Reactor Pressure Vessel (RPV) surface. In this context, NEPTUNE-CFD is used to model two-phase PTS and give an assessment on the structural integrity of the RPV. The first available choice was to use standard first order turbulence model (k-ε) to model high-Reynolds number flows encountered in Pressurized Water Reactor (PWR) primary circuits. In a first attempt, the use of k-ε model did produce some satisfactory results in terms of condensation rate and temperature field distribution on integral experiments, but also highlights some weaknesses in the way to model highly anisotropic turbulence. One way to improve the turbulence prediction – and consequently the temperature field distribution – is to opt for more advanced Reynolds Stress turbulence Model. After various verification and validation steps on separated effects cases – co-current air/steam-water stratified flows in rectangular channels, water jet impingements on water pool free surfaces – this Reynolds Stress turbulence Model (R{sub ij}-ε SSG) has been applied for the first time to thermal free surface flows under industrial conditions on COSI and TOPFLOW-PTS experiments. Coupled with the Large Interface Model, the first results confirmed the adequacy and increased accuracy of the approach in an industrial context.
DEFF Research Database (Denmark)
Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.
2017-01-01
A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...
Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Xin, Yu; Song, Minmin
2017-11-15
The general formulae for second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence are derived and validated by the Bessel-Gaussian Schell-model beams and cosine-Gaussian-correlated Schell-model beams. Our finding shows that the second-order moments of partially coherent Schell-model beams are related to the second-order partial derivatives of source spectral degree of coherence at the origin. The formulae we provide are much more convenient to analyze and research propagation problems in turbulence.
PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence
2014-12-23
amplitude and singular value. The SVD of the resolvent before Fourier decomposition is imposed would itself naturally result in a de- composition into the...the measurement location. The flow was conditioned by passing it through a perforated plate, a honey comb, three turbulence reducing screens and...and a small, well resolved, field from which a composite spectrum can be produced covering the whole wavenumber range, which is the focus of future
DEFF Research Database (Denmark)
Bloch, Paul; Blystad, Astrid; Byskov, Jens
The objectives of this study are to describe and evaluate district-level priority setting, to develop and implement improvement strategies guided by an explicit ethical framework Accountability for Reasonableness (AFR) and to measure their effect on quality, equity and trust indicators within...... decisions; and the provision of leadership and the enforcement of conditions. REACT - "REsponse to ACcountable priority setting for Trust in health systems" is an EU-funded five-year intervention study, which started in 2006 testing the application and effects of the AFR approach in one district each...... collaborations with an increasing range of actors, including the communities themselves, into a joint research and development process for priority setting for health. The AFR concept and the analysis of the baseline results will be presented and their broad applicability in terms of making sustainable...
First steps towards modeling of ion-driven turbulence in Wendelstein 7-X
Warmer, F.; Xanthopoulos, P.; Proll, J. H. E.; Beidler, C. D.; Turkin, Y.; Wolf, R. C.
2018-01-01
Due to foreseen improvement of neoclassical confinement in optimised stellarators—like the newly commissioned Wendelstein 7-X (W7-X) experiment in Greifswald, Germany—it is expected that turbulence will significantly contribute to the heat and particle transport, thus posing a limit to the performance of such devices. In order to develop discharge scenarios, it is thus necessary to develop a model which could reliably capture the basic characteristics of turbulence and try to predict the levels thereof. The outcome will not only be affordable, using only a fraction of the computational cost which is normally required for repetitive direct turbulence simulations, but would also highlight important physics. In this model, we seek to describe the ion heat flux caused by ion temperature gradient (ITG) micro-turbulence, which, in certain heating scenarios, can be a strong source of free energy. With the aid of a relatively small number of state-of-the-art nonlinear gyrokinetic simulations, an initial critical gradient model (CGM) is devised, with the aim to replace an empirical model, stemming from observations in prior stellarator experiments. The novel CGM, in its present form, encapsulates all available knowledge about ion-driven 3D turbulence to date, also allowing for further important extensions, towards an accurate interpretation and prediction of the ‘anomalous’ transport. The CGM depends on the stiffness of the ITG turbulence scaling in W7-X, and implicitly includes the nonlinear zonal flow response. It is shown that the CGM is suitable for a 1D framework turbulence modeling.
Using an atmospheric turbulence model for the stochastic model of geodetic VLBI data analysis
Halsig, Sebastian; Artz, Thomas; Iddink, Andreas; Nothnagel, Axel
2016-06-01
Space-geodetic techniques at radio wavelength, such as global navigation satellite systems and very long baseline interferometry (VLBI), suffer from refractivity of the Earth's atmosphere. These highly dynamic processes, particularly refractivity variations in the neutral atmosphere, contribute considerably to the error budget of these space-geodetic techniques. Here, microscale fluctuations in refractivity lead to elevation-dependent uncertainties and induce physical correlations between the observations. However, up to now such correlations are not considered routinely in the stochastic model of space-geodetic observations, which leads to very optimistic standard deviations of the derived target parameters, such as Earth orientation parameters and station positions. In this study, the standard stochastic model of VLBI observations, which only includes, almost exclusively, the uncertainties from the VLBI correlation process, is now augmented by a variance-covariance matrix derived from an atmospheric turbulence model. Thus, atmospheric refractivity fluctuations in space and time can be quantified. One of the main objectives is to realize a suitable stochastic model of VLBI observations in an operational way. In order to validate the new approach, the turbulence model is applied to several VLBI observation campaigns consisting of different network geometries leading the path for the next-generation VLBI campaigns. It is shown that the stochastic model of VLBI observations can be improved by using high-frequency atmospheric variations and, thus, refining the stochastic model leads to far more realistic standard deviations of the target parameters. The baseline length repeatabilities as a general measure of accuracy of baseline length determinations improve for the turbulence-based solution. Further, this method is well suited for routine VLBI data analysis with limited computational costs.
Dehaven, Martin R.; Vandersall, Kevin S.; Strickland, Shawn L.; Fried, Laurence E.; Tarver, Craig M.
2017-06-01
Experiments were performed at -55°C to measure the reacted state of LX-17 (92.5% TATB and 7.5% Kel-F by weight) using a double shock technique using two flyer materials (with known properties) mounted on a projectile that send an initial shock through the material close to the Chapman-Jouguet (CJ) state followed by a second shock at a higher magnitude into the detonated material. Information on the reacted state is obtained by measuring the relative timing and magnitude of the first and second shock waves. The LX-17 detonation reaction zone profiles plus the arrival times and amplitudes of reflected shocks in LX-17 detonation reaction products were measured using Photonic Doppler Velocimetry (PDV) probes and an aluminum foil coated LiF window. A discussion of this work will include a comparison to prior work at ambient temperature, the experimental parameters, velocimetry profiles, data interpretation, reactive CHEETAH and Ignition and Growth modeling, as well as detail on possible future experiments. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Performance evaluation of RANS-based turbulence models in simulating a honeycomb heat sink
Subasi, Abdussamet; Ozsipahi, Mustafa; Sahin, Bayram; Gunes, Hasan
2017-07-01
As well-known, there is not a universal turbulence model that can be used to model all engineering problems. There are specific applications for each turbulence model that make it appropriate to use, and it is vital to select an appropriate model and wall function combination that matches the physics of the problem considered. Therefore, in this study, performance of six well-known Reynolds-Averaged Navier-Stokes ( RANS) based turbulence models which are the Standard k {{-}} ɛ, the Renormalized Group k- ɛ, the Realizable k- ɛ, the Reynolds Stress Model, the k- ω and the Shear Stress Transport k- ω and accompanying wall functions which are the standard, the non-equilibrium and the enhanced are evaluated via 3D simulation of a honeycomb heat sink. The CutCell method is used to generate grid for the part including heat sink called test section while a hexahedral mesh is employed to discretize to inlet and outlet sections. A grid convergence study is conducted for verification process while experimental data and well-known correlations are used to validate the numerical results. Prediction of pressure drop along the test section, mean base plate temperature of the heat sink and temperature at the test section outlet are regarded as a measure of the performance of employed models and wall functions. The results indicate that selection of turbulence models and wall functions has a great influence on the results and, therefore, need to be selected carefully. Hydraulic and thermal characteristics of the honeycomb heat sink can be determined in a reasonable accuracy using RANS- based turbulence models provided that a suitable turbulence model and wall function combination is selected.
Modeling the pressure-strain correlation of turbulence: An invariant dynamical systems approach
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1990-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Modelling the pressure-strain correlation of turbulence - An invariant dynamical systems approach
Speziale, Charles G.; Sarkar, Sutanu; Gatski, Thomas B.
1991-01-01
The modeling of the pressure-strain correlation of turbulence is examined from a basic theoretical standpoint with a view toward developing improved second-order closure models. Invariance considerations along with elementary dynamical systems theory are used in the analysis of the standard hierarchy of closure models. In these commonly used models, the pressure-strain correlation is assumed to be a linear function of the mean velocity gradients with coefficients that depend algebraically on the anisotropy tensor. It is proven that for plane homogeneous turbulent flows the equilibrium structure of this hierarchy of models is encapsulated by a relatively simple model which is only quadratically nonlinear in the anisotropy tensor. This new quadratic model - the SSG model - is shown to outperform the Launder, Reece, and Rodi model (as well as more recent models that have a considerably more complex nonlinear structure) in a variety of homogeneous turbulent flows. Some deficiencies still remain for the description of rotating turbulent shear flows that are intrinsic to this general hierarchy of models and, hence, cannot be overcome by the mere introduction of more complex nonlinearities. It is thus argued that the recent trend of adding substantially more complex nonlinear terms containing the anisotropy tensor may be of questionable value in the modeling of the pressure-strain correlation. Possible alternative approaches are discussed briefly.
Energy Technology Data Exchange (ETDEWEB)
Arbeiter, F. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Gordeev, S. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)]. E-mail: gordeev@irs.fzk.de; Heinzel, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany); Slobodtchouk, V. [Forschungszentrum Karlsruhe GmbH, Postfach 3640, D-76021 Karlsruhe (Germany)
2006-02-15
The aim of the present work is to choose an optimal use of CFD codes for thermohydraulic calculation of the helium cooled fusion reactor components, such as divertor module, test blanket module and International Fusion Materials Irradiation Facility (IFMIF) test modules. In spite of common features (intense heat flux, nuclear heating of the structure, helium-cooling), all these components have different boundary conditions, such as helium temperature, pressure and heating rate and different geometries. It is the reason for the appearance of some effects in the flow influencing significantly the heat transfer. A number of turbulence models offered by the commercial STAR-CD code were tested on the experiments carried out in the Forschungszentrum Karlsruhe (FZK) and on the experimental data from the scientific publications. Results of different turbulence models are compared and analysed. For geometrically simple channel flows with significant gas property variation low-Re number k-{epsilon} models with damping functions give more accurate results and are more appropriate for the conditions of the IFMIF HFTM. The heat transfer in regions with flow impingement is well predicted by turbulence models, which include different limiters in the turbulence production. Most reliable turbulence models were chosen for the thermohydraulic analysis.
On a turbulent wall model to predict hemolysis numerically in medical devices
Lee, Seunghun; Chang, Minwook; Kang, Seongwon; Hur, Nahmkeon; Kim, Wonjung
2017-11-01
Analyzing degradation of red blood cells is very important for medical devices with blood flows. The blood shear stress has been recognized as the most dominant factor for hemolysis in medical devices. Compared to laminar flows, turbulent flows have higher shear stress values in the regions near the wall. In case of predicting hemolysis numerically, this phenomenon can require a very fine mesh and large computational resources. In order to resolve this issue, the purpose of this study is to develop a turbulent wall model to predict the hemolysis more efficiently. In order to decrease the numerical error of hemolysis prediction in a coarse grid resolution, we divided the computational domain into two regions and applied different approaches to each region. In the near-wall region with a steep velocity gradient, an analytic approach using modeled velocity profile is applied to reduce a numerical error to allow a coarse grid resolution. We adopt the Van Driest law as a model for the mean velocity profile. In a region far from the wall, a regular numerical discretization is applied. The proposed turbulent wall model is evaluated for a few turbulent flows inside a cannula and centrifugal pumps. The results present that the proposed turbulent wall model for hemolysis improves the computational efficiency significantly for engineering applications. Corresponding author.
The structure concept in the description of mixing turbulence: the 2SFK model
International Nuclear Information System (INIS)
Llor, A.; Poujade, O.; Lardjane, N.
2009-01-01
To meet our modelling needs on turbulent flows produced by gravitational instabilities (of Rayleigh-Taylor or Richtmyer-Meshkov type), we have developed an original approach, designated as 2SFK for '2-structure, 2-fluid, 2-turbulent'. We provide the physical elements, theoretical, experimental, and numerical, which support this choice. A full description being out of question here, we give the principles of the model derivation, which hinges around an averaging conditioned by presence functions of the large structures in the flow, and discuss its distinctive properties compared to usual 'single-fluid' models. Numerical 1-dimension results on elementary flows illustrate the satisfactory behaviour of the model. All along this article, emphasis is given on the peculiar characteristics of turbulence in the Rayleigh-Taylor flow (possibly under variable acceleration): energy balance, characteristic size of large eddies, directed transport, enhanced diffusion, etc. (authors)
Relevant Criteria for Testing the Quality of Models for Turbulent Wind Speed Fluctuations
DEFF Research Database (Denmark)
Frandsen, Sten Tronæs; Ejsing Jørgensen, Hans; Sørensen, John Dalsgaard
2008-01-01
10% smaller than the IEC model for wind turbine hub height levels. The mean is only marginally dependent on trends in time series. It is also found that the coefficient of variation of the measured length scales is about 50%. 3 s and 10 s preaveraging of wind speed data are relevant for megawatt......Seeking relevant criteria for testing the quality of turbulence models, the scale of turbulence and the gust factor have been estimated from data and compared with predictions from first-order models of these two quantities. It is found that the mean of the measured length scales is approximately...
Comparison of Turbulence Models in Simulation of Flow in Small-Size Centrifugal Compressor
Directory of Open Access Journals (Sweden)
B. B. Novickii
2015-01-01
Full Text Available The aim of the work is the choice of turbulence model for the closure of the Reynoldsaveraged Navier-Stokes equations for calculation of the characteristics of small-size centrifugal compressor. To this were built three-dimensional sectors (as the compressor axisymmetric blade impeller and the diffuser of the centrifugal compressor on the basis of which they were created two grid models. The dimension of the grid model for the calculation models of turbulence komega and SST was 1.4 million. Elements and the dimensionless parameter y + does not exceed 2. turbulence model family k-epsilon model grid was also 1.4 million. Elements, and the dimensionless parameter y + was greater than 20, which corresponds to recommended values. The next part of the work was the task of boundary conditions required for the correct ca lculation. When the impeller inlet pawned pressure working fluid and the total temperature at the outlet and the gas flow rate through the stage. On the side faces sectors pawned boundary cond ition «Periodic», allowing everything except the wheel, but only axisymmetric part, which significantly reduces the required computational time and resources. Accounting clearance in addition to the meridional geometry construction additionally taken into account boundary condition «Counter Rotating Wall», which allows you to leave the domain in the rotating disc fixed coa ting.The next step was to analyze the results of these calculations, which showed that the turbulence model k-epsilon and RNG does not show the velocity vectors in the boundary layer, and "pushes" the flow from the blade using wall functions. At the core of the flow turbulence model k-omega shown for the undisturbed flow, which is not typical for the compressor working on predpompazhnom mode. For viscous gas diffuser vane for turbulence models SST, k-omega, RNG k-epsilon and has a similar character.The paper compares the characteristics of pressure centrifugal compressor
Extension of a Kolmogorov Atmospheric Turbulence Model for Time-Based Simulation Implementation
McMinn, John D.
1997-01-01
The development of any super/hypersonic aircraft requires the interaction of a wide variety of technical disciplines to maximize vehicle performance. For flight and engine control system design and development on this class of vehicle, realistic mathematical simulation models of atmospheric turbulence, including winds and the varying thermodynamic properties of the atmosphere, are needed. A model which has been tentatively selected by a government/industry group of flight and engine/inlet controls representatives working on the High Speed Civil Transport is one based on the Kolmogorov spectrum function. This report compares the Dryden and Kolmogorov turbulence forms, and describes enhancements that add functionality to the selected Kolmogorov model. These added features are: an altitude variation of the eddy dissipation rate based on Dryden data, the mapping of the eddy dissipation rate database onto a regular latitude and longitude grid, a method to account for flight at large vehicle attitude angles, and a procedure for transitioning smoothly across turbulence segments.
Sadi, M; Dabir, B
2003-01-01
Monte Carlo Method is one of the most powerful techniques to model different processes, such as polymerization reactions. By this method, without any need to solve moment equations, a very detailed information on the structure and properties of polymers are obtained. The number of algorithm repetitions (selected volumes of reactor for modelling which represent the number of initial molecules) is very important in this method. In Monte Carlo method calculations are based on the random number of generations and reaction probability determinations. so the number of algorithm repetition is very important. In this paper, the initiation reaction was considered alone and the importance of number of initiator molecules on the result were studied. It can be concluded that Monte Carlo method will not give accurate results if the number of molecules is not satisfied to be big enough, because in that case , selected volume would not be representative of the whole system.
Transported PDF Modeling of Nonpremixed Turbulent CO/H-2/N-2 Jet Flames
Energy Technology Data Exchange (ETDEWEB)
Zhao, xinyu; Haworth, D. C.; Huckaby, E. David
2012-01-01
Turbulent CO/H{sub 2}/N{sub 2} (“syngas”) flames are simulated using a transported composition probability density function (PDF) method. A consistent hybrid Lagrangian particle/Eulerian mesh algorithm is used to solve the modeled PDF transport equation. The model includes standard k–ϵ turbulence, gradient transport for scalars, and Euclidean minimum spanning tree (EMST) mixing. Sensitivities of model results to variations in the turbulence model, the treatment of radiation heat transfer, the choice of chemical mechanism, and the PDF mixing model are explored. A baseline model reproduces the measured mean and rms temperature, major species, and minor species profiles reasonably well, and captures the scaling that is observed in the experiments. Both our results and the literature suggest that further improvements can be realized with adjustments in the turbulence model, the radiation heat transfer model, and the chemical mechanism. Although radiation effects are relatively small in these flames, consideration of radiation is important for accurate NO prediction. Chemical mechanisms that have been developed specifically for fuels with high concentrations of CO and H{sub 2} perform better than a methane mechanism that was not designed for this purpose. It is important to account explicitly for turbulence–chemistry interactions, although the details of the mixing model do not make a large difference in the results, within reasonable limits.
Numerical vs. turbulent diffusion in geophysical flow modelling
International Nuclear Information System (INIS)
D'Isidoro, M.; Maurizi, A.; Tampieri, F.
2008-01-01
Numerical advection schemes induce the spreading of passive tracers from localized sources. The effects of changing resolution and Courant number are investigated using the WAF advection scheme, which leads to a sub-diffusive process. The spreading rate from an instantaneous source is compared with the physical diffusion necessary to simulate unresolved turbulent motions. The time at which the physical diffusion process overpowers the numerical spreading is estimated, and is shown to reduce as the resolution increases, and to increase as the wind velocity increases.
A perspective on coherent structures and conceptual models for turbulent boundary layer physics
Robinson, Stephen K.
1990-01-01
Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
Meneveau, Charles; Yang, Yunke; Perlman, Eric; Wan, Minpin; Burns, Randal; Szalay, Alex; Chen, Shiyi; Eyink, Gregory
2008-11-01
A public database system archiving a direct numerical simulation (DNS) data set of isotropic, forced turbulence is used for studying basic turbulence dynamics. The data set consists of the DNS output on 1024-cubed spatial points and 1024 time-samples spanning about one large-scale turn-over timescale. This complete space-time history of turbulence is accessible to users remotely through an interface that is based on the Web-services model (see http://turbulence.pha.jhu.edu). Users may write and execute analysis programs on their host computers, while the programs make subroutine-like calls that request desired parts of the data over the network. The architecture of the database is briefly explained, as are some of the new functions such as Lagrangian particle tracking and spatial box-filtering. These tools are used to evaluate and compare subgrid stresses and models.
A study on the dependency between turbulent models and mesh configurations of CFD codes
International Nuclear Information System (INIS)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook
2015-01-01
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
Physically-consistent wall boundary conditions for the k-ω turbulence model
DEFF Research Database (Denmark)
Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl
2010-01-01
A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...
Oubei, Hassan M.
2017-12-13
Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.
A One-Dimensional Global-Scaling Erosive Burning Model Informed by Blowing Wall Turbulence
Kibbey, Timothy P.
2014-01-01
A derivation of turbulent flow parameters, combined with data from erosive burning test motors and blowing wall tests results in erosive burning model candidates useful in one-dimensional internal ballistics analysis capable of scaling across wide ranges of motor size. The real-time burn rate data comes from three test campaigns of subscale segmented solid rocket motors tested at two facilities. The flow theory admits the important effect of the blowing wall on the turbulent friction coefficient by using blowing wall data to determine the blowing wall friction coefficient. The erosive burning behavior of full-scale motors is now predicted more closely than with other recent models.
PDF Modeling of Evaporating Droplets in Isotropic Turbulence.
Mashayek, F.; Pandya, R. V. R.
2000-11-01
We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).
A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD
Energy Technology Data Exchange (ETDEWEB)
Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr
2017-02-15
The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.
Kim, Sanghyeon; Cheong, Cheolung; Park, Warn-Gyu
2017-06-01
In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier-Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k - ɛ turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.
Directory of Open Access Journals (Sweden)
Sanghyeon Kim
2017-06-01
Full Text Available In this study, cavitation flow of hydrofoils is numerically investigated to characterize the effects of turbulence models on cavitation-flow patterns and the corresponding radiated sound waves. The two distinct flow conditions are considered by varying the mean flow velocity and angle of attack, which are categorized under the experimentally observed unstable or stable cavitation flows. To consider the phase interchanges between the vapor and the liquid, the flow fields around the hydrofoil are analyzed by solving the unsteady compressible Reynolds-averaged Navier–Stokes equations coupled with a mass-transfer model, also referred to as the cavitation model. In the numerical solver, a preconditioning algorithm with dual-time stepping techniques is employed in generalized curvilinear coordinates. The following three types of turbulence models are employed: the laminar-flow model, standard k − ε turbulent model, and filter-based model. Hydro-acoustic field formed by the cavitation flow of the hydrofoil is predicted by applying the Ffowcs Williams and Hawkings equation to the predicted flow field. From the predicted results, the effects of the turbulences on the cavitation flow pattern and radiated flow noise are quantitatively assessed in terms of the void fraction, sound-pressure-propagation directivities, and spectrum.
Flock, Mario; Nelson, Richard P.; Turner, Neal J.; Bertrang, Gesa H.-M.; Carrasco-González, Carlos; Henning, Thomas; Lyra, Wladimir; Teague, Richard
2017-12-01
Planets are born in protostellar disks, which are now observed with enough resolution to address questions about internal gas flows. Magnetic forces are possibly drivers of the flows, but ionization state estimates suggest that much of the gas mass decouples from magnetic fields. Thus, hydrodynamical instabilities could play a major role. We investigate disk dynamics under conditions typical for a T Tauri system, using global 3D radiation-hydrodynamics simulations with embedded particles and a resolution of 70 cells per scale height. Stellar irradiation heating is included with realistic dust opacities. The disk starts in joint radiative balance and hydrostatic equilibrium. The vertical shear instability (VSI) develops into turbulence that persists up to at least 1600 inner orbits (143 outer orbits). Turbulent speeds are a few percent of the local sound speed at the midplane, increasing to 20%, or 100 m s-1, in the corona. These are consistent with recent upper limits on turbulent speeds from optically thin and thick molecular line observations of TW Hya and HD 163296. The predominantly vertical motions induced by the VSI efficiently lift particles upward. Grains 0.1 and 1 mm in size achieve scale heights greater than expected in isotropic turbulence. We conclude that while kinematic constraints from molecular line emission do not directly discriminate between magnetic and nonmagnetic disk models, the small dust scale heights measured in HL Tau and HD 163296 favor turbulent magnetic models, which reach lower ratios of the vertical kinetic energy density to the accretion stress.
A model of rotationally-sampled wind turbulence for predicting fatigue loads in wind turbines
Spera, David A.
1995-01-01
Empirical equations are presented with which to model rotationally-sampled (R-S) turbulence for input to structural-dynamic computer codes and the calculation of wind turbine fatigue loads. These equations are derived from R-S turbulence data which were measured at the vertical-plane array in Clayton, New Mexico. For validation, the equations are applied to the calculation of cyclic flapwise blade loads for the NASA/DOE Mod-2 2.5-MW experimental HAWT's (horizontal-axis wind turbines), and the results compared to measured cyclic loads. Good correlation is achieved, indicating that the R-S turbulence model developed in this study contains the characteristics of the wind which produce many of the fatigue loads sustained by wind turbines. Empirical factors are included which permit the prediction of load levels at specified percentiles of occurrence, which is required for the generation of fatigue load spectra and the prediction of the fatigue lifetime of structures.
Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes
Mongiovì, Maria Stella; Restuccia, Liliana
2018-02-01
This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K. [Department of Aerospace Engineering, Nagoya University, Nagoya (Japan)
2016-08-15
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Cloud-turbulence interactions: Sensitivity of a general circulation model to closure assumptions
International Nuclear Information System (INIS)
Brinkop, S.; Roeckner, E.
1993-01-01
Several approaches to parameterize the turbulent transport of momentum, heat, water vapour and cloud water for use in a general circulation model (GCM) have been tested in one-dimensional and three-dimensional model simulations. The schemes differ with respect to their closure assumptions (conventional eddy diffusivity model versus turbulent kinetic energy closure) and also regarding their treatment of cloud-turbulence interactions. The basis properties of these parameterizations are discussed first in column simulations of a stratocumulus-topped atmospheric boundary layer (ABL) under a strong subsidence inversion during the KONTROL experiment in the North Sea. It is found that the K-models tend to decouple the cloud layer from the adjacent layers because the turbulent activity is calculated from local variables. The higher-order scheme performs better in this respect because internally generated turbulence can be transported up and down through the action of turbulent diffusion. Thus, the TKE-scheme provides not only a better link between the cloud and the sub-cloud layer but also between the cloud and the inversion as a result of cloud-top entrainment. In the stratocumulus case study, where the cloud is confined by a pronounced subsidence inversion, increased entrainment favours cloud dilution through enhanced evaporation of cloud droplets. In the GCM study, however, additional cloud-top entrainment supports cloud formation because indirect cloud generating processes are promoted through efficient ventilation of the ABL, such as the enhanced moisture supply by surface evaporation and the increased depth of the ABL. As a result, tropical convection is more vigorous, the hydrological cycle is intensified, the whole troposphere becomes warmer and moister in general and the cloudiness in the upper part of the ABL is increased. (orig.)
Modeling studies of transport bifurcation phenomena in a collisional drift wave turbulence
Hajjar, Rima; Diamond, Patrick; Tynan, Georges; Ashourvan, Arash
2016-10-01
Self-organization of drift wave turbulence via particle transport and Reynolds stresses is a mechanism for turbulence suppression and reduction of cross field transport. This energy transfer mechanism between microscale drift waves and mesoscale zonal flows can create a transport bifurcation and trigger the formation of an internal transport barrier. We report here on studies investigating transport bifurcation dynamics in the CSDX linear device using a 1D reduced turbulence and mean field evolution model. This two-mixing scale Hasegawa-Wakatani based model evolves spatio-temporal variations of three plasma fields: the mean density n, the mean vorticity u and the turbulent potential enstrophy e. The model adopts inhomogeneous potential vorticity mixing on a mixing length the expression of which is related to the Rhines' scale and to the mode scale (i.e. is ∇n and ∇u dependent). The model is based on expressions for turbulent fluxes of n, u and e derived from mixing length concepts. Turbulent particle and enstrophy transport are written as diffusive, but a residual stress part is included in the expression for the vorticity flux. Mixed boundary conditions are used at both ends of the domain and an external boundary fueling source is added. Simulation results show a steepening in the particle density profiles with B along with the formation of a net flow shear layer resulting from the vorticity mixing. These results suggest that the system dynamic is capable of sustaining the plasma core by means of a purely diffusive particle flux, without any explicit inward particle pinch.
Inner-outer predictive wall model for wall-bounded turbulence in hypersonic flow
Martin, M. Pino; Helm, Clara M.
2017-11-01
The inner-outer predictive wall model of Mathis et al. is modified for hypersonic turbulent boundary layers. The model is based on a modulation of the energized motions in the inner layer by large scale momentum fluctuations in the logarithmic layer. Using direct numerical simulation (DNS) data of turbulent boundary layers with free stream Mach number 3 to 10, it is shown that the variation of the fluid properties in the compressible flows leads to large Reynolds number (Re) effects in the outer layer and facilitate the modulation observed in high Re incompressible flows. The modulation effect by the large scale increases with increasing free-stream Mach number. The model is extended to include spanwise and wall-normal velocity fluctuations and is generalized through Morkovin scaling. Temperature fluctuations are modeled using an appropriate Reynolds Analogy. Density fluctuations are calculated using an equation of state and a scaling with Mach number. DNS data are used to obtain the universal signal and parameters. The model is tested by using the universal signal to reproduce the flow conditions of Mach 3 and Mach 7 turbulent boundary layer DNS data and comparing turbulence statistics between the modeled flow and the DNS data. This work is supported by the Air Force Office of Scientific Research under Grant FA9550-17-1-0104.
On Developments of k-τ and k-ω Models for Near-Wall Turbulence of Engineering Duct Flows
DEFF Research Database (Denmark)
Rokni, Masoud; Sundén, Bengt
2009-01-01
The performance of a modified k-tau model is assessed in predicting the turbulent flow and forced convective heat transfer in ducts with arbitrary cross-sections, under fully developed conditions. The presented model is based on more physical grounds using bounded time-scale, local turbulent...
Hill, Jon; Piggott, M. D.; Ham, David A.; Popova, E. E.; Srokosz, M. A.
2012-10-01
Research into the use of unstructured mesh methods for ocean modelling has been growing steadily in the last few years. One advantage of using unstructured meshes is that one can concentrate resolution where it is needed. In addition, dynamic adaptive mesh optimisation (DAMO) strategies allow resolution to be concentrated when this is required. Despite the advantage that DAMO gives in terms of improving the spatial resolution where and when required, small-scale turbulence in the oceans still requires parameterisation. A two-equation, generic length scale (GLS) turbulence model (one equation for turbulent kinetic energy and another for a generic turbulence length-scale quantity) adds this parameterisation and can be used in conjunction with adaptive mesh techniques. In this paper, an implementation of the GLS turbulence parameterisation is detailed in a non-hydrostatic, finite-element, unstructured mesh ocean model, Fluidity-ICOM. The implementation is validated by comparing to both a laboratory-scale experiment and real-world observations, on both fixed and adaptive meshes. The model performs well, matching laboratory and observed data, with resolution being adjusted as necessary by DAMO. Flexibility in the prognostic fields used to construct the error metric used in DAMO is required to ensure best performance. Moreover, the adaptive mesh models perform as well as fixed mesh models in terms of root mean square error to observation or theoretical mixed layer depths, but uses fewer elements and hence has a reduced computational cost.
Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame
Energy Technology Data Exchange (ETDEWEB)
Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)
2017-04-26
Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.
DEFF Research Database (Denmark)
Sørensen, Niels N.
2009-01-01
When predicting the flow over airfoils and rotors, the laminar-turbulent transition process can be important for the aerodynamic performance. Today, the most widespread approach is to use fully turbulent computations, where the transitional process is ignored and the entire boundary layer...... on the wings or airfoils is handled by the turbulence model. The correlation based transition model has lately shown promising results, and the present paper describes the effort of deriving the two non-public empirical correlations of the model to make the model complete. To verify the model it is applied...... to flow over a flat plate, flow over the S809 and the NACA63-415 airfoils, flow over a prolate spheroid at zero and thirty degrees angle of attack, and finally to the NREL Phase VI wind turbine rotor for the zero yaw upwind cases from the NREL/NASA Ames wind tunnel test. Copyright © 2009 John Wiley & Sons...
Limitations of Hall MHD as a model for turbulence in weakly collisional plasmas
Directory of Open Access Journals (Sweden)
G. G. Howes
2009-03-01
Full Text Available The limitations of Hall MHD as a model for turbulence in weakly collisional plasmas are explored using quantitative comparisons to Vlasov-Maxwell kinetic theory over a wide range of parameter space. The validity of Hall MHD in the cold ion limit is shown, but spurious undamped wave modes exist in Hall MHD when the ion temperature is finite. It is argued that turbulence in the dissipation range of the solar wind must be one, or a mixture, of three electromagnetic wave modes: the parallel whistler, oblique whistler, or kinetic Alfvén waves. These modes are generally well described by Hall MHD. Determining the applicability of linear kinetic damping rates in turbulent plasmas requires a suite of fluid and kinetic nonlinear numerical simulations. Contrasting fluid and kinetic simulations will also shed light on whether the presence of spurious wave modes alters the nonlinear couplings inherent in turbulence and will illuminate the turbulent dynamics and energy transfer in the regime of the characteristic ion kinetic scales.
Fairhall, Chris; Garcia-Mayoral, Ricardo
2017-11-01
We present results from direct numerical simulations of turbulent flows over superhydrophobic surfaces. We assess the validity of simulations where the surface is modelled as homogeneous slip lengths, comparing them to simulations where the surface texture is resolved. Our results show that once the coherent flow induced by the texture is removed from the velocity fields, the remaining flow sees the surface as homogeneous. We then investigate how the overlying turbulence is modified by the presence of surface texture. For small textures, we show that turbulence is shifted closer to the wall due to the presence of slip, but otherwise remains essentially unmodified. For larger textures, the texture interacts with the turbulent lengthscales, thereby modifying the overlying turbulence. We also show that the saturation of the effect of the spanwise slip length (Fukagata et al. 2006, Busse & Sandham 2012, Seo & Mani 2016), which is drag increasing, is caused by the impermeability imposed at the surface. This work was supported by the Engineering and Physical Sciences Research Council.
DEFF Research Database (Denmark)
Xu, Chang; Han, Xingxing; Wang, Xin
2015-01-01
This paper presented an improved computational fluid dynamics (CFD) model for simulating a horizontal-axis wind turbine wake. The model used the actuator disk model to simplify the wind turbine effect on the aerodynamic field by adding an extra momentum source and an improved term to correct...... the underestimation issue of the wind speed deficit when applying the STD k-ε model. In addition, the model also introduced a radial distribution function to assess the non-uniform load on the actuator disk and a coefficient C4ε of the turbulent source. To validate the model, the wind turbines of Nibe `B' and Dawin...
Structure of turbulent non-premixed flames modeled with two-step chemistry
Chen, J. H.; Mahalingam, S.; Puri, I. K.; Vervisch, L.
1992-01-01
Direct numerical simulations of turbulent diffusion flames modeled with finite-rate, two-step chemistry, A + B yields I, A + I yields P, were carried out. A detailed analysis of the turbulent flame structure reveals the complex nature of the penetration of various reactive species across two reaction zones in mixture fraction space. Due to this two zone structure, these flames were found to be robust, resisting extinction over the parameter ranges investigated. As in single-step computations, mixture fraction dissipation rate and the mixture fraction were found to be statistically correlated. Simulations involving unequal molecular diffusivities suggest that the small scale mixing process and, hence, the turbulent flame structure is sensitive to the Schmidt number.
Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis
Czech Academy of Sciences Publication Activity Database
Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan
2009-01-01
Roč. 60, č. 2 (2009), s. 185-212 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009
Mathematical modeling of turbulent stratified flows. Application of liquid metal fast breeders
International Nuclear Information System (INIS)
Villand, M.; Grand, D.
1983-01-01
Mathematical model of turbulent stratified flow was proposed under the following assumptions: Newtonian fluid; incompressible fluid; coupling between temperature and momentum fields according to Boussinesq approximation; two-dimensional invariance for translation or rotation; coordinates cartesian or curvilinear. Solutions obtained by the proposed method are presented
Applications of Turbulence Models for Transport of Dissolved Pollutants and Particles
DEFF Research Database (Denmark)
Petersen, Ole
The present report concerns itself with numerical models of turbulent transport and mixing, with emphasis on the description of the mixing processes which occur in recipients and tanks. Consequently a part of the report is dedicated to a discussion of flows where differences in density play a sub...
Mathematical, physical and numerical principles essential for models of turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Sharp, David Howland [Los Alamos National Laboratory; Lim, Hyunkyung [STONY BROOK UNIV; Yu, Yan [STONY BROOK UNIV; Glimm, James G [STONY BROOK UNIV
2009-01-01
We propose mathematical, physical and numerical principles which are important for the modeling of turbulent mixing, especially the classical and well studied Rayleigh-Taylor and Richtmyer-Meshkov instabilities which involve acceleration driven mixing of a fluid discontinuity layer, by a steady accerleration or an impulsive force.
On two-dimensionalization of three-dimensional turbulence in shell models
DEFF Research Database (Denmark)
Chakraborty, Sagar; Jensen, Mogens Høgh; Sarkar, A.
2010-01-01
Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell...
Turbulence model comparisons for a low pressure 1.5 stage test turbine
CSIR Research Space (South Africa)
Dunn, Dwain I
2009-09-01
Full Text Available In a gas turbine engine secondary flows have a detrimental effect on efficiency. The current numerical study is aimed at determining which turbulence model in a commercially available CFD code is best suited to predicting the secondary flows...
Laminar and turbulent melt flow in computational modeling of crystal growth
Czech Academy of Sciences Publication Activity Database
Přikryl, Petr; Jelínek, Pavel; Černý, R.
2002-01-01
Roč. 3, - (2002), s. 201-208 ISSN 1108-7609 R&D Projects: GA ČR GA106/01/0648; GA ČR GA201/01/1200 Institutional research plan: CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : crystal growth * computational model * turbulent melt flow Subject RIV: BK - Fluid Dynamics
Model for transversal turbulent mixing in axial flow in rod bundles
International Nuclear Information System (INIS)
Carajilescov, P.
1990-01-01
The present work consists in the development of a model for the transversal eddy diffusivity to account for the effect of turbulent thermal mixing in axial flows in rod bundles. The results were compared to existing correlations that are currently being used in reactor thermalhydraulic analysis and considered satisfactory. (author)
SPH modelling of depth‐limited turbulent open channel flows over rough boundaries
Kazemi, Ehsan; Nichols, Andrew; Tait, Simon
2016-01-01
Summary A numerical model based on the smoothed particle hydrodynamics method is developed to simulate depth‐limited turbulent open channel flows over hydraulically rough beds. The 2D Lagrangian form of the Navier–Stokes equations is solved, in which a drag‐based formulation is used based on an effective roughness zone near the bed to account for the roughness effect of bed spheres and an improved sub‐particle‐scale model is applied to account for the effect of turbulence. The sub‐particle‐scale model is constructed based on the mixing‐length assumption rather than the standard Smagorinsky approach to compute the eddy‐viscosity. A robust in/out‐flow boundary technique is also proposed to achieve stable uniform flow conditions at the inlet and outlet boundaries where the flow characteristics are unknown. The model is applied to simulate uniform open channel flows over a rough bed composed of regular spheres and validated by experimental velocity data. To investigate the influence of the bed roughness on different flow conditions, data from 12 experimental tests with different bed slopes and uniform water depths are simulated, and a good agreement has been observed between the model and experimental results of the streamwise velocity and turbulent shear stress. This shows that both the roughness effect and flow turbulence should be addressed in order to simulate the correct mechanisms of turbulent flow over a rough bed boundary and that the presented smoothed particle hydrodynamics model accomplishes this successfully. © 2016 The Authors International Journal for Numerical Methods in Fluids Published by John Wiley & Sons Ltd PMID:28066121
Gauge-field model of superfluid turbulence in the zero-temperature limit
Mehrafarin, M.
2018-02-01
We present a gauge-field extension of the Bose condensate model that describes T≈0 superfluid turbulence generated by the macroscopic motion of the superfluid. We first establish that the condensate model is dual to the short-range interacting loop gas model, wherein the loops represent quantum vortex lines. Vortex lines form, interact and proliferate as a result of the superfluid motion. Our extension is based on incorporating the Biot–Savart interaction between vortex lines, which is lacking in the loop gas model. We show that the extended loop gas is dual to a Ginzburg–Landau model, wherein the gauge coupling is between the macroscopic velocity field of the superfluid and the condensate. Applying the model to cylindrical and pipe flows, we describe how turbulence transitions with and without intermediate vortex flow, respectively.
Energy Technology Data Exchange (ETDEWEB)
Pinson, F
2006-03-15
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - {epsilon} RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A
Energy Technology Data Exchange (ETDEWEB)
Reinhardt, B.; Duhamel, Ph.; Cordonnier, A. [FCB Centre de Recherches, 59 - Lille (France); Florent, P. [LAMIH/LMFE, 59 - Valenciennes (France)
1997-12-31
The cyclones used in cement industry generally have a diameter of 4 to 6 m. However, tests on cyclones bigger than 4 m can hardly be performed and thus, it is important to study the influence of the size of the apparatus on the development of the generated vortex. A study of the structure and characteristics of the suspension inside a cyclone has been carried out. The results of the characterization of two cyclones (400 and 800 mm diameter) running without load are presented first in order to study the vortex behaviour. In parallel with this experimental study, a numerical study has been carried out and a calculation code called CYCLOP has been developed. The code, the equations of the gas flow inside the cyclone and the modifications given to the turbulent model are presented. (J.S.) 4 refs.
International Nuclear Information System (INIS)
Laurence, D.
1997-01-01
The k-ε model and Reynolds stress transport model are set out in a few words. Limitations of models are shown, particularly for turbulence generation in the turbulent viscosity context, and, more generally, the uncertainties and miscellaneous changes made to the dissipation equation. The performances of models are then compared, using results of the three latest ERCOFTA/IAHR workshops. It is shown that algebraic constraints which can be derived exactly by assuming asymptotic limits (rapid distortion, homogeneous shear at infinite time, 2D turbulence) have inhibited a better tuning of the models for real life flow where these limits are not encountered. A more pragmatic approach could be taken by allowing the constants to be functions of invariant parameters. But these functions, making the models non-linear, can lead to bifurcations or instability. One essential parameter is the distance to the wall, which recent models have tried to eliminate, although this parameter appears indirectly through the Poisson equation for the fluctuating pressure. A possible indirect model is the elliptic relaxation. Progress was recently achieved in near-wall low Re modelling, but these advances do not always result in benefits to industry since only the 'wall function' approaches can be used in the high Re, 3D flows that we need to study. With the knowledge gained from near-wall modelling, it might be profitable to revisit the 'wall functions' devised 20 years ago. (author)
International Nuclear Information System (INIS)
Singh, Piyush; Biswas, Pankaj; Kore, Sachin D.
2016-01-01
In the present work a three dimensional model of self-reacting friction stir welding in aluminium alloy AA6061 has been developed based on the Computational Fluid Dynamics (CFD) approach using COMSOL Multiphysics software. The temperature dependent material properties have been incorporated in the model from available literature. A slip-stick contact between the workpiece and tool surface has been considered with the slip factor varying linearly with distance. The methodology adopted has been validated with experimental results available in the literature. The temperature distribution observed has been found to be asymmetric about the weld centre line. The maximum temperature has been observed on the advancing side of the weld. However, the temperature distribution across the thickness has been found to be almost symmetric about the mid thickness plane. An hourglass shaped temperature distribution has been observed across the cross-section of the weld. The material flow velocity distribution shows that the deformation zone is limited to a very small region around the tool. (paper)
Validation of unsteady flamelet models for non-premixed turbulent combustion with intermittency
International Nuclear Information System (INIS)
Bourlioux, A.; Volkov, O.
2003-01-01
Flamelets play an important role as subgrid models in large eddy simulations of turbulent flames: they are based on a one-dimensional steady asymptotic solution for the flame. The focus of the present study is to validate their use when unsteadiness and multidimensional effects are present, as to be expected for turbulent flows. To shortcut the prohibitively expansive step of solving the complete Navier-Stokes equations in the turbulent regime, a synthetic turbulent-like flow field is specified, which allows for extensive yet affordable simulations and analysis. The flow field consists of a simple steady horizontal shear with a time-periodic vertical sweep. Despite the simplicity of the flow field, the passive scalar response displays qualitatively many characteristics observed in experiments with fully turbulent flow, in particular, in terms of the strong departure from Gaussianity of its probability distribution function. The same set-up is utilized for the reactive case in order to generate challenging conditions to test the robustness of unsteady versions of the laminar flamelet models. We analyze the asymptotic behavior of the models for a large range of Damkoehler and Peclet numbers in the presence of intermittency and confirm for those demanding test-cases the good performance of the models that had been observed for less-demanding one-dimensional test-cases with smooth time behavior. In particular, the performance of the models is quite satisfactory in the intermediate regimes where neither the very fast nor the very slow chemistry asymptotic approximation would be appropriate. (author)
Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame
Directory of Open Access Journals (Sweden)
Manedhar Reddy Busupally
2016-06-01
Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.
Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.
2017-11-01
Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.
International Nuclear Information System (INIS)
Li Feng-Chen; Wang Lu; Cai Wei-Hua
2015-01-01
A mixed subgrid-scale (SGS) model based on coherent structures and temporal approximate deconvolution (MCT) is proposed for turbulent drag-reducing flows of viscoelastic fluids. The main idea of the MCT SGS model is to perform spatial filtering for the momentum equation and temporal filtering for the conformation tensor transport equation of turbulent flow of viscoelastic fluid, respectively. The MCT model is suitable for large eddy simulation (LES) of turbulent drag-reducing flows of viscoelastic fluids in engineering applications since the model parameters can be easily obtained. The LES of forced homogeneous isotropic turbulence (FHIT) with polymer additives and turbulent channel flow with surfactant additives based on MCT SGS model shows excellent agreements with direct numerical simulation (DNS) results. Compared with the LES results using the temporal approximate deconvolution model (TADM) for FHIT with polymer additives, this mixed SGS model MCT behaves better, regarding the enhancement of calculating parameters such as the Reynolds number. For scientific and engineering research, turbulent flows at high Reynolds numbers are expected, so the MCT model can be a more suitable model for the LES of turbulent drag-reducing flows of viscoelastic fluid with polymer or surfactant additives. (paper)
Model of wind shear conditional on turbulence and its impact on wind turbine loads
DEFF Research Database (Denmark)
Dimitrov, Nikolay Krasimirov; Natarajan, Anand; Kelly, Mark C.
2015-01-01
fatigue load is achieved. The proposed wind shear model based on the wind measurements is thereby probabilistic in definition, with shear jointly distributed with wind turbulence. A simplified model for the wind shear exponent is further derived from the full stochastic model. The fatigue loads over......We analyse high-frequency wind velocity measurements from two test stations over a period of several years and at heights ranging from 60 to 200 m, with the objective to validate wind shear predictions as used in load simulations for wind turbine design. A validated wind shear model is thereby...... different turbine components are evaluated under the full wind measurements, using the developed wind shear model and with standard wind conditions prescribed in the IEC 61400-1 ed. 3. The results display the effect of the Wöhler exponent and reveal that under moderate turbulence, the effect of wind shear...
Krueger, S. K.; Bogenschutz, P.
2011-12-01
The representation of boundary layer clouds in GCMs has long been a challenge to climate modelers. The Multiscale Modeling Framework (MMF) embeds a coarse-grid 2D cloud-resolving model (CRM) in every GCM grid column. In MMF, the challenge becomes improving boundary layer cloud representation in coarse-grid CRMs in an economical way. Our solution has been to integrate several existing components: a prognostic SGS TKE equation, the assumed joint PDF method of Golaz et al. (2002), the diagnostic second-moment closure of Redelsperger and Sommeria (1986), the diagnostic closure for /line{w'w'w'} by Canuto et al. (2001), and a turbulence length scale related to the square root of subgrid-scale (SGS) turbulence kinetic energy (TKE) (Teixeira and Cheinet 2004) and eddy length scales. In comparison to the implementation of Golaz et al. (2002), our turbulence closure requires only one extra prognostic instead of seven. This makes our closure more economical, more portable, and better behaved. Our closure also uses a novel turbulence length scale that produces excellent scalablity with horizontal resolution. We implemented our approach in a CRM and and tested it against large-eddy simulation (LES) results. We also implemented it in a MMF and evaluated the results using global observations. The CRM that we used is SAM (System for Atmospheric Modeling) developed by Marat Khairoutdinov (Khairoutdinov and Randall 2003). SAM-PDF incorporates our new turbulence closure model. In SAM-PDF, the SGS TKE is prognosed, the turbulence length scale is related to the SGS TKE and eddy length scales, SGS condensation is diagnosed from the assumed joint PDF, the SGS buoyancy flux is diagnosed from the assumed joint PDF, and additional moments required by the PDF closure are diagnosed, so no additional prognostic equations are needed. The turbulence length scale is needed to parameterize the TKE dissipation rate and the eddy diffusivity. Cheng et al. (2010) showed that eddy diffusivity schemes
Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna
2017-12-01
The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.
Directory of Open Access Journals (Sweden)
Korbut Vadim
2017-12-01
Full Text Available The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT. Сalculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it’s possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.
Directory of Open Access Journals (Sweden)
Muhammad Ahsan
2014-12-01
Full Text Available The aim of this study is to formulate a computational fluid dynamics (CFD model that can illustrate the fully turbulent flow in a pipe at higher Reynolds number. The flow of fluids in a pipe network is an important and widely studied problem in any engineering industry. It is always significant to see the development of a fluid flow and pressure drop in a pipe at higher Reynolds number. A finite volume method (FVM solver with k–ε turbulence model and enhanced wall treatment is used first time to investigate the flow of water at different velocities with higher Reynolds number in a 3D pipe. Numerical results have been presented to illustrate the effects of Reynolds number on turbulence intensity, average shear stress and friction factor. Friction factor is used to investigate the pressure drop along the length of the pipe. The contours of wall function are also presented to investigate the effect of enhanced wall treatment on a fluid flow. A maximum Reynolds number is also found for which the selected pipe length is sufficient to find a full developed turbulent flow at outlet. The results of CFD modeling are validated by comparing them with available data in literature. The model results have been shown good agreement with experimental and co-relation data.
Klewicki, J. C.; Chini, G. P.; Gibson, J. F.
2017-01-01
Recent and on-going advances in mathematical methods and analysis techniques, coupled with the experimental and computational capacity to capture detailed flow structure at increasingly large Reynolds numbers, afford an unprecedented opportunity to develop realistic models of high Reynolds number turbulent wall-flow dynamics. A distinctive attribute of this new generation of models is their grounding in the Navier–Stokes equations. By adhering to this challenging constraint, high-fidelity models ultimately can be developed that not only predict flow properties at high Reynolds numbers, but that possess a mathematical structure that faithfully captures the underlying flow physics. These first-principles models are needed, for example, to reliably manipulate flow behaviours at extreme Reynolds numbers. This theme issue of Philosophical Transactions of the Royal Society A provides a selection of contributions from the community of researchers who are working towards the development of such models. Broadly speaking, the research topics represented herein report on dynamical structure, mechanisms and transport; scale interactions and self-similarity; model reductions that restrict nonlinear interactions; and modern asymptotic theories. In this prospectus, the challenges associated with modelling turbulent wall-flows at large Reynolds numbers are briefly outlined, and the connections between the contributing papers are highlighted. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167585
International Nuclear Information System (INIS)
Wang Huhu; Lee Saya; Hassan, Yassin A.; Ruggles, Arthur E.
2014-01-01
The design of next generation (Gen. IV) high-temperature nuclear reactors including gas-cooled and sodium-cooled ones involves massive numerical works especially the Computational Fluid Dynamics (CFD) simulations. The high cost of large-scale experiments and the inherent uncertainties existing in the turbulent models and wall functions of any CFD codes solving Reynolds-averaged Navier-Stokes (RANS) equations necessitate the high-spacial experimental data sets for benchmarking the simulation results. In Gen. IV conceptual reactors, the high- temperature flows mix in the upper plenum before entering the secondary cooling system. The mixing condition should be accurately estimated and fully understood as it is related to the thermal stresses induced in the upper plenum and the magnitudes of output power oscillations due to any changes of primary coolant temperature. The purpose of this study is to use Laser Doppler Anemometry (LDA) technique to measure the flow field of two submerged parallel jets issuing from two rectangular channels. The LDA data sets can be used to validate the corresponding simulation results. The jets studied in this work were at room temperature. The turbulent characteristics including the distributions of mean velocities, turbulence intensities, Reynolds stresses were studied. Uncertainty analysis was also performed to study the errors involved in this experiment. The experimental results in this work are valid for benchmarking any steady-state numerical simulations using turbulence models to solve RANS equations. (author)
A Stationary One-Equation Turbulent Model with Applications in Porous Media
de Oliveira, H. B.; Paiva, A.
2017-05-01
A one-equation turbulent model is studied in this work in the steady-state and with homogeneous Dirichlet boundary conditions. The considered problem generalizes two distinct approaches that are being used with success in the applications to model different flows through porous media. The novelty of the problem relies on the consideration of the classical Navier-Stokes equations with a feedback forces field, whose presence in the momentum equation will affect the equation for the turbulent kinetic energy (TKE) with a new term that is known as the production and represents the rate at which TKE is transferred from the mean flow to the turbulence. By assuming suitable growth conditions on the feedback forces field and on the function that describes the rate of dissipation of the TKE, as well as on the production term, we will prove the existence of the velocity field and of the TKE. The proof of their uniqueness is made by assuming monotonicity conditions on the feedback forces field and on the turbulent dissipation function, together with a condition of Lipschitz continuity on the production term. The existence of a unique pressure, will follow by the application of a standard version of de Rham's lemma.
Numerical Study of Wavy Film Flow on Vertical Plate Using Different Turbulent Models
International Nuclear Information System (INIS)
Min, June Kee; Park, Il Seouk
2014-01-01
Film flows applied to shell-and-tube heat exchangers in various industrial fields have been studied for a long time. One boundary of the film flow interfaces with a fixed wall, and the other boundary interfaces with a gaseous region. Thus, the flows become so unstable that wavy behaviors are generated on free surfaces as the film Reynolds number increases. First, high-amplitude solitary waves are detected in a low Reynolds number laminar region; then, the waves transit to a low-amplitude, high frequency ripple in a turbulent region. Film thickness is the most significant factor governing heat transfer. Since the wave accompanied in the film flow results in temporal and spatial variations in film thickness, it can be of importance for numerically predicting the film's wavy behavior. In this study, various turbulent models are applied for predicting low-amplitude ripple flows in turbulent regions. The results are compared with existing experimental results, and finally, the applied turbulent models are appraised in from the viewpoint of wavy behaviors
The role of continuity in residual-based variational multiscale modeling of turbulence
Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.
2008-02-01
This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.
Directory of Open Access Journals (Sweden)
Wenrui Huang
2010-03-01
Full Text Available This paper presents an improvement of the Mellor and Yamada's 2nd order turbulence model in the Princeton Ocean Model (POM for better predictions of vertical stratifications of salinity in estuaries. The model was evaluated in the strongly stratified estuary, Apalachicola River, Florida, USA. The three-dimensional hydrodynamic model was applied to study the stratified flow and salinity intrusion in the estuary in response to tide, wind, and buoyancy forces. Model tests indicate that model predictions over estimate the stratification when using the default turbulent parameters. Analytic studies of density-induced and wind-induced flows indicate that accurate estimation of vertical eddy viscosity plays an important role in describing vertical profiles. Initial model revision experiments show that the traditional approach of modifying empirical constants in the turbulence model leads to numerical instability. In order to improve the performance of the turbulence model while maintaining numerical stability, a stratification factor was introduced to allow adjustment of the vertical turbulent eddy viscosity and diffusivity. Sensitivity studies indicate that the stratification factor, ranging from 1.0 to 1.2, does not cause numerical instability in Apalachicola River. Model simulations show that increasing the turbulent eddy viscosity by a stratification factor of 1.12 results in an optimal agreement between model predictions and observations in the case study presented in this study. Using the proposed stratification factor provides a useful way for coastal modelers to improve the turbulence model performance in predicting vertical turbulent mixing in stratified estuaries and coastal waters.
An improved turbulence model for separation flow in a centrifugal pump
Directory of Open Access Journals (Sweden)
Yun Ren
2016-06-01
Full Text Available For the stable and reliable operation of centrifugal pump, the transient flow must be studied and the separation region should be avoided. Three-dimensional, incompressible, steady, and transient flows in a centrifugal pump at specific speed within 74 were numerically studied using shear stress transport k-ω turbulence model, and an improved explicit algebraic Reynolds stress model–rotation-curvature turbulence model was proposed by considering the effects of rotation and curvature in the impeller passages in this work. Steady and transient computations were conducted to compare with the experiments. The comparison of pump hydraulic performance showed that the explicit algebraic Reynolds stress model–rotation-curvature turbulence model was better than the original model, especially between 0.6QBEP and 1.2QBEP; the improved model could enhance the head prediction of pump by about 1%–7% than that with the original model. Then, the visualization of the vortex evolution was observed to validate the unsteady simulations. Good agreement was investigated between calculations and visualizations. It is indicated that the explicit algebraic Reynolds stress model–rotation-curvature model can successfully capture the separation flow.
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors
VanOverbeke, Thomas J.
1998-01-01
The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except
Investigation of turbulence models with compressibility corrections for hypersonic boundary flows
Directory of Open Access Journals (Sweden)
Han Tang
2015-12-01
Full Text Available The applications of pressure work, pressure-dilatation, and dilatation-dissipation (Sarkar, Zeman, and Wilcox models to hypersonic boundary flows are investigated. The flat plate boundary layer flows of Mach number 5–11 and shock wave/boundary layer interactions of compression corners are simulated numerically. For the flat plate boundary layer flows, original turbulence models overestimate the heat flux with Mach number high up to 10, and compressibility corrections applied to turbulence models lead to a decrease in friction coefficients and heating rates. The pressure work and pressure-dilatation models yield the better results. Among the three dilatation-dissipation models, Sarkar and Wilcox corrections present larger deviations from the experiment measurement, while Zeman correction can achieve acceptable results. For hypersonic compression corner flows, due to the evident increase of turbulence Mach number in separation zone, compressibility corrections make the separation areas larger, thus cannot improve the accuracy of calculated results. It is unreasonable that compressibility corrections take effect in separation zone. Density-corrected model by Catris and Aupoix is suitable for shock wave/boundary layer interaction flows which can improve the simulation accuracy of the peak heating and have a little influence on separation zone.
Kaufman, J.; Blaes, O. M.; Hirose, S.
2018-03-01
Warm Comptonization models for the soft X-ray excess in AGN do not self-consistently explain the relationship between the Comptonizing medium and the underlying accretion disc. Because of this, they cannot directly connect the fitted Comptonization temperatures and optical depths to accretion disc parameters. Since bulk velocities exceed thermal velocities in highly radiation pressure dominated discs, in these systems bulk Comptonization by turbulence may provide a physical basis in the disc itself for warm Comptonization models. We model the dependence of bulk Comptonization on fundamental accretion disc parameters, such as mass, luminosity, radius, spin, inner boundary condition, and α. In addition to constraining warm Comptonization models, our model can help distinguish contributions from bulk Comptonization to the soft X-ray excess from those due to other physical mechanisms, such as absorption and reflection. By linking the time variability of bulk Comptonization to fluctuations in the disc vertical structure due to MRI turbulence, our results show that observations of the soft X-ray excess can be used to study disc turbulence in the radiation pressure dominated regime. Because our model connects bulk Comptonization to one dimensional vertical structure temperature profiles in a physically intuitive way, it will be useful for understanding this effect in future simulations run in new regimes.
Fitting a Turbulent Cloud Model to CO Observations of Starless Bok Globules
Hegmann, M.; Hengel, C.; Röllig, M.; Kegel, W. H.
We present observations of five starless Bok globules in transitions of 12CO (J=2-1 and {J=3-2}), 13CO (J=2-1), and C18O (J=2-1) which have been obtained at the Heinrich-Hertz-Telescope. For an analysis of the data we use the model of Kegel et al. (see e.g. Piehler & Kegel 1995, A&A 297, 841; Hegmann & Kegel 2000, A&A 359, 405) which describes an isothermal sphere stabilized by turbulent and thermal pressure. This approach deals with the full NLTE radiative transfer problem and accounts for a turbulent velocity field with finite correlation length. By a comparison of observed and calculated line profiles we are able not only to determine the kinetic temperature, hydrogen density and CO coloumn density of the globules, but also to study the properties of the turbulent velocity field, i.e. the variance of its one-point-distribution and its correlation length. We consider our model to be an alternative tool for the evaluation of molecular lines emitted by molecular clouds. The model assumptions are certainly closer to reality than the assumptions behind the standard evaluation models, as for example the LVG model. Our current study shows that that the results obtained from our model can differ significantly from those obtained from a LVG analysis.
A turbulence model for large interfaces in high Reynolds two-phase CFD
International Nuclear Information System (INIS)
Coste, P.; Laviéville, J.
2015-01-01
Highlights: • Two-phase CFD commonly involves interfaces much larger than the computational cells. • A two-phase turbulence model is developed to better take them into account. • It solves k–epsilon transport equations in each phase. • The special treatments and transfer terms at large interfaces are described. • Validation cases are presented. - Abstract: A model for two-phase (six-equation) CFD modelling of turbulence is presented, for the regions of the flow where the liquid–gas interface takes place on length scales which are much larger than the typical computational cell size. In the other regions of the flow, the liquid or gas volume fractions range from 0 to 1. Heat and mass transfer, compressibility of the fluids, are included in the system, which is used at high Reynolds numbers in large scale industrial calculations. In this context, a model based on k and ε transport equations in each phase was chosen. The paper describes the model, with a focus on the large interfaces, which require special treatments and transfer terms between the phases, including some approaches inspired from wall functions. The validation of the model is based on high Reynolds number experiments with turbulent quantities measurements of a liquid jet impinging a free surface and an air water stratified flow. A steam–water stratified condensing flow experiment is also used for an indirect validation in the case of heat and mass transfer
Global MHD Modelling of the ISM - From large towards small scale turbulence
de Avillez, M.; Breitschwerdt, D.
2005-06-01
Dealing numerically with the turbulent nature and non-linearity of the physical processes involved in the ISM requires the use of sophisticated numerical schemes coupled to HD and MHD mathematical models. SNe are the main drivers of the interstellar turbulence by transferring kinetic energy into the system. This energy is dissipated by shocks (which is more efficient) and by molecular viscosity. We carried out adaptive mesh refinement simulations (with a finest resolution of 0.625 pc) of the turbulent ISM embedded in a magnetic field with mean field components of 2 and 3 μG. The time scale of our run was 400 Myr, sufficiently long to avoid memory effects of the initial setup, and to allow for a global dynamical equilibrium to be reached in case of a constant energy input rate. It is found that the longitudinal and transverse turbulent length scales have a time averaged (over a period of 50 Myr) ratio of 0.52-0.6, almost similar to the one expected for isotropic homogeneous turbulence. The mean characteristic size of the larger eddies is found to be ˜ 75 pc in both runs. In order to check the simulations against observations, we monitored the OVI and HI column densities within a superbubble created by the explosions of 19 SNe having masses and velocities of the stars that exploded in vicinity of the Sun generating the Local Bubble. The model reproduces the FUSE absorption measurements towards 25 white dwarfs of the OVI column density as function of distance and of N(HI). In particular for lines of sight with lengths smaller than 120 pc it is found that there is no correlation between N(OVI) and N(HI).
Similarity reduction of a three-dimensional model of the far turbulent wake behind a towed body
Schmidt, Alexey
2011-12-01
Semi-empirical three-dimensional model of turbulence in the approximation of the far turbulent wake behind a towed body in a passively stratified medium is considered. The sought-for quantities of the model are the velocity defect, kinetic turbulent energy, kinetic energy dissipation rate, averaged density defect and density fluctuation variance. The full group of transformations admitted by this model is found. The governing equations are reduced into ordinary differential equations by similarity reduction and method of the B-determining equations (BDE method). System of ordinary differential equations was solved numerically. The obtained solutions agree with experimental data.
Implementation of a Mixing Length Turbulence Formulation Into the Dynamic Wake Meandering Model
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Veldkamp, Dick; Aagaard Madsen, Helge
2012-01-01
The work presented in this paper focuses on improving the description of wake evolution due to turbulent mixing in the dynamic wake meandering (DWM) model. From wake investigations performed with high-fidelity actuator line simulations carried out in ELLIPSYS3D, it is seen that the current DWM...... description, where the eddy viscosity is assumed to be constant in each cross-section of the wake, is insufficient. Instead, a two-dimensional eddy viscosity formulation is proposed to model the shear layer generated turbulence in the wake, based on the classical mixing length model. The performance...... from 3 to 12 diameters behind the rotor, is reduced by 27% by using the new eddy viscosity formulation. ©2012 American Society of Mechanical Engineers...
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
International Nuclear Information System (INIS)
Lopez-Bruna, D.
2012-01-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Fast Propagation in Fluid Transport Models with Evolution of Turbulence Saturation
Energy Technology Data Exchange (ETDEWEB)
Lopez-Bruna, D.
2012-07-01
This report compiles and extends two works on models that reproduce the experimental facts of non local transport and pulse propagation in magnetically confined fusion plasmas. The works are based on fluid transport models, originally designed to explain the formation of edge or internal transport barriers, that include fast evolution equations for the particle and heat fluxes. The heating of the plasma core in response to a sudden edge cooling or the propagation of turbulent fronts around transport barriers are a consequence of the competing roles of linear drive and non-linear reduction of the turbulent fluxes. Possibilities to use the models to interpret TJ-II plasmas are discussed. (Author) 62 refs.
Effect Of Turbulence Modelling In Numerical Analysis Of Melting Process In An Induction Furnace
Directory of Open Access Journals (Sweden)
Buliński P.
2015-09-01
Full Text Available In this paper, the velocity field and turbulence effects that occur inside a crucible of a typical induction furnace were investigated. In the first part of this work, a free surface shape of the liquid metal was measured in a ceramic crucible. Then a numerical model of aluminium melting process was developed. It took into account coupling of electromagnetic and thermofluid fields that was performed using commercial codes. In the next step, the sensitivity analysis of turbulence modelling in the liquid domain was performed. The obtained numerical results were compared with the measurement data. The performed analysis can be treated as a preliminary approach for more complex mathematical modelling for the melting process optimisation in crucible induction furnaces of different types.
COMPARISON BETWEEN 2D TURBULENCE MODEL ESEL AND EXPERIMENTAL DATA FROM AUG AND COMPASS TOKAMAKS
Directory of Open Access Journals (Sweden)
Peter Ondac
2015-04-01
Full Text Available In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained by reciprocating probe measurements from the two machines. Agreements were found in radial profiles of mean plasma potential and temperature, and in a level of density fluctuations. Disagreements, however, were found in the level of plasma potential and temperature fluctuations. This implicates a need for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath.
Majda, Andrew J.; Qi, Di
2016-02-01
Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models due to the lack of both physical understanding and the overwhelming computational demands of Monte Carlo simulation with a large-dimensional phase space. Thus, the systematic development of reduced low-order imperfect statistical models for UQ in turbulent dynamical systems is a grand challenge. This paper applies a recent mathematical strategy for calibrating imperfect models in a training phase and accurately predicting the response by combining information theory and linear statistical response theory in a systematic fashion. A systematic hierarchy of simple statistical imperfect closure schemes for UQ for these problems is designed and tested which are built through new local and global statistical energy conservation principles combined with statistical equilibrium fidelity. The forty mode Lorenz 96 (L-96) model which mimics forced baroclinic turbulence is utilized as a test bed for the calibration and predicting phases for the hierarchy of computationally cheap imperfect closure models both in the full phase space and in a reduced three-dimensional subspace containing the most energetic modes. In all of phase spaces, the nonlinear response of the true model is captured accurately for the mean and variance by the systematic closure model, while alternative methods based on the fluctuation-dissipation theorem alone are much less accurate. For reduced-order model for UQ in the three-dimensional subspace for L-96, the systematic low-order imperfect closure models coupled with the training strategy provide the highest predictive skill over other existing methods for general forced response yet have simple design principles based on a
Krol, M.C.; Molemaker, M.J.; Vilu-Guerau, de J.
2000-01-01
Photochemistry is studied in a convective atmospheric boundary layer. The essential reactions that account for the ozone formation and depletion are included in the chemical mechanism which, as a consequence, contains a wide range of timescales. The turbulent reacting flow is modeled with a
Evaluation of the Mountain Wave Forecast Model's Stratospheric Turbulence Simulations
National Research Council Canada - National Science Library
Allen, Mark
2003-01-01
.... The Air Force Weather Agency (AFWA) requested a product with the capability of forecasting Stratoturb at 30, 50, and 70 mb using model data currently available, To facilitate their request, the Mountain Wave Forecast Model (MWFM...
Higher-order RANS turbulence models for separated flows
National Aeronautics and Space Administration — Higher-order Reynolds-averaged Navier-Stokes (RANS) models are developed to overcome the shortcomings of second-moment RANS models in predicting separated flows....
Directory of Open Access Journals (Sweden)
Adolfo Ribeiro
2015-03-01
Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪ Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.
Bisetti, Fabrizio
2014-07-14
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.
Equilibrium-eulerian les model for turbulent poly-dispersed particle-laden flow
Icardi, Matteo
2013-04-01
An efficient Eulerian method for poly-dispersed particles in turbulent flows is implemented, verified and validated for a channel flow. The approach couples a mixture model with a quadrature-based moment method for the particle size distribution in a LES framework, augmented by an approximate deconvolution method to reconstructs the unfiltered velocity. The particle velocity conditioned on particle size is calculated with an equilibrium model, valid for low Stokes numbers. A population balance equation is solved with the direct quadrature method of moments, that efficiently represents the continuous particle size distribution. In this first study particulate processes are not considered and the capability of the model to properly describe particle transport is investigated for a turbulent channel flow. First, single-phase LES are validated through comparison with DNS. Then predictions for the two-phase system, with particles characterised by Stokes numbers ranging from 0.2 to 5, are compared with Lagrangian DNS in terms of particle velocity and accumulation at the walls. Since this phenomenon (turbophoresis) is driven by turbulent fluctuations and depends strongly on the particle Stokes number, the approximation of the particle size distribution, the choice of the sub-grid scale model and the use of an approximate deconvolution method are important to obtain good results. Our method can be considered as a fast and efficient alternative to classical Lagrangian methods or Eulerian multi-fluid models in which poly-dispersity is usually neglected.
Comparison of turbulent models in the case of a constricted tube
Directory of Open Access Journals (Sweden)
Elcner Jakub
2017-01-01
Full Text Available The validation of a proper solution is an indispensable phase of every numerical simulation. Nowadays, many turbulent models are available, whose application leads to slightly different solution of flow behaviour depending on the boundary conditions of a specific problem. It is essential to select the proper turbulence model appropriate for the given situation. The aim of this study is to select the most suitable two-equation eddy-viscosity model, which can be further used during calculations of airflow in human airways. For this purpose, geometry of a constricted tube with well-documented experimental measurements was chosen. The flow in the constricted tube was calculated using Spallart-Almaras, k-omega, k-epsilon and SST model approach using commercial software. The outcome of the comparison is a choice of the suitable model which is capable of simulating the transition of the boundary layer from laminar to turbulent flow. This transition typically arises in the upper part of the respiratory system, where the airways are constricted, specifically in the area, where the oral cavity continues through the glottis to trachea. The simulations were performed in a commercial solver Star-CCM+.
A new model for the structure function of integrated water vapor in turbulence
International Nuclear Information System (INIS)
Bobak, Justin P.; Ruf, Christopher S.
1999-01-01
Turbulent fluctuation of integrated water vapor in the troposphere is one of the major noise sources in radio interferometry. Processed integrated water vapor estimates from microwave radiometers colocated with interferometers have been used to set bounds on this uncertainty. The bound has been in the form of a calculated structure function, which is a measure of temporal or spatial decorrelation of fluctuations. In this paper a new model is presented for the estimation of the structure function in the absence of radiometer measurements. Using this model, the structure function can be estimated using measurements or estimates of a limited number of meteorological parameters. These parameters include boundary layer depth, surface heat and humidity fluxes, entrainment humidity flux, average virtual potential temperature in the boundary layer, and geostrophic wind speed. These parameters can be found or estimated from radiosonde and surface eddy correlation system data. The model is based on a framework of turbulence meteorology and provides excellent agreement when compared with state-of-the-art atmospheric turbulence simulations. Results of preliminary comparisons with ground truth show some excellent agreement, as well as some problems. The performance of the new model exceeds that of one current model. (c) 1999 American Geophysical Union
Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz
2014-08-13
Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Energy spectrum scaling in an agent-based model for bacterial turbulence
Mikel-Stites, Maxwell; Staples, Anne
2017-11-01
Numerous models have been developed to examine the behavior of dense bacterial swarms and to explore the visually striking phenomena of bacterial turbulence. Most models directly impose fluid dynamics physics, either by modeling the active matter as a fluid or by including interactions between the bacteria and a fluid. In this work, however, the `turbulence' is solely an emergent property of the collective behavior of the bacterial population, rather than a consequence of imposed fluid dynamics physical modeling. The system is simulated using a two dimensional Vicsek-style model, with the addition of individual repulsion to simulate bacterial collisions and physical interactions, and without the common flocking or sensing behaviors. Initial results indicate the presence of k-1 scaling in a portion of the kinetic energy spectrum that can be considered analogous to the inertial subrange in turbulent energy spectra. This result suggests that the interaction of large numbers of individual active bacteria may also be a contributing factor in the emergence of fluid dynamics phenomena, in addition to the physical interactions between bacteria and their fluid environment.
A model of the saturation of coupled electron and ion scale gyrokinetic turbulence
Staebler, G. M.; Howard, N. T.; Candy, J.; Holland, C.
2017-06-01
A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trapped gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. The shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.
A model for the effect of submerged aquatic vegetation on turbulence induced by an oscillating grid
Pujol, Dolors; Colomer, Jordi; Serra, Teresa; Casamitjana, Xavier
2012-12-01
The aim of this study is to model, under controlled laboratory conditions, the effect of submerged aquatic vegetation (SAV) on turbulence generated in a water column by an oscillating grid turbulence (OGT). Velocity profiles have been measured by an acoustic Doppler velocimeter (MicroADV). Experimental conditions are analysed in two canopy models (rigid and semi-rigid), using nine plant-to-plant distances (ppd), three stem diameters (d), four types of natural SAV (Cladium mariscus, Potamogeton nodosus, Myriophyllum verticillatum and Ruppia maritima) and two oscillation grid frequencies (f). To quantify this response, we have developed a non-dimensional model, with a specific turbulent kinetic energy (TKE), f, stroke (s), d, ppd, distance from the virtual origin to the measurement (zm) and space between grid bars (M). The experimental data show that, at zm/zc 1, TKE decreases faster with zm and scales to the model variables according to TKE/(f·s)∝(·(. Therefore, at zm/zc > 1 the TKE is affected by the geometric characteristics of the plants (both diameter and plant-to-plant distance), an effect called sheltering. Results from semi-rigid canopies and natural SAV are found to scale with the non-dimensional model proposed for rigid canopies. We also discuss the practical implications for field conditions (wind and natural SAV).
Kopasakis, George
2010-01-01
Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.
An improved k-ε model applied to a wind turbine wake in atmospheric turbulence
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2015-01-01
An improved k-ε turbulence model is developed and applied to a single wind turbine wake in a neutral atmospheric boundary layer using a Reynolds averaged Navier–Stokes solver. The proposed model includes a flow-dependent Cμ that is sensitive to high velocity gradients, e.g., at the edge of a wind...... turbine wake. The modified k-ε model is compared with the original k-ε eddy viscosity model, Large-Eddy Simulations and field measurements using eight test cases. The comparison shows that the velocity wake deficits, predicted by the proposed model are much closer to the ones calculated by the Large...
Energy Technology Data Exchange (ETDEWEB)
Ahlstedt, H. [Tampere Univ. of Technology (Finland). Energy and Process Engineering
1997-12-31
In this work three different turbulence models, the k - {epsilon}, RNG k - {epsilon} and Reynolds stress model, have been compared in the case of confined swirling flow. The flow geometries are the isothermal swirling flows measured by International Flame Research Foundation (IFRF). The inlet boundary profiles have been taken from the measurements. At the outlet the effect of furnace end contraction has been studied. The k - {epsilon} model falls to predict the correct flow field. The RNG k - {epsilon} model can provide improvements, although it has problems near the symmetry axis. The Reynolds stress model produces the best agreement with measured data. (author) 13 refs.
A simplified PDF parameterization of subgrid-scale clouds and turbulence for cloud-resolving models
Bogenschutz, Peter A.; Krueger, Steven K.
2013-06-01
Over the past decade a new type of global climate model (GCM) has emerged, which is known as a multiscale modeling framework (MMF). Colorado State University's MMF represents a coupling between the Community Atmosphere Model and the System for Atmospheric Modeling (SAM) to serve as the cloud-resolving model (CRM) that replaces traditionally parameterized convection in GCMs. However, due to the high computational expense of the MMF, the grid size of the embedded CRM is typically limited to 4 km for long-term climate simulations. With grid sizes this coarse, shallow convective processes and turbulence cannot be resolved and must still be parameterized within the context of the embedded CRM. This paper describes a computationally efficient closure that aims to better represent turbulence and shallow convective processes in coarse-grid CRMs. The closure is based on the assumed probability density function (PDF) technique to serve as the subgrid-scale (SGS) condensation scheme and turbulence closure that employs a diagnostic method to determine the needed input moments. This paper describes the scheme, as well as the formulation of the eddy length which is empirically determined from large eddy simulation (LES) data. CRM tests utilizing the closure yields good results when compared to LESs for two trade-wind cumulus cases, a transition from stratocumulus to cumulus, and continental cumulus. This new closure improves the representation of clouds through the use of SGS condensation scheme and turbulence due to better representation of the buoyancy flux and dissipation rates. In addition, the scheme reduces the sensitivity of CRM simulations to horizontal grid spacing. The improvement when compared to the standard low-order closure configuration of the SAM is especially striking.
Liu, Zhongqiu; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa
2015-04-01
An inhomogeneous Multiple Size Group (MUSIG) model based on the Eulerian-Eulerian approach has been developed to describe the polydispersed bubbly flow inside the continuous-casting mold. A laboratory scale mold has been simulated using four different turbulence closure models (modified k - ɛ, RNG k - ɛ, k - ω, and SST) with the purpose of critically comparing their predictions of bubble Sauter mean diameter distribution with previous experimental data. Furthermore, the influences of all the interfacial momentum transfer terms including drag force, lift force, virtual mass force, wall lubrication force, and turbulent dispersion force are investigated. The breakup and coalescence effects of the bubbles are modeled according to the bubble breakup by the impact of turbulent eddies while for bubble coalescence by the random collisions driven by turbulence and wake entrainment. It has been found that the modified k - ɛ model shows better agreement than other models in predicting the bubble Sauter mean diameter profiles. Further, simulations have also been performed to understand the sensitivity of different interfacial forces. The appropriate drag force coefficient, lift force coefficient, virtual mass force coefficient, and turbulent dispersion force coefficient are chosen in accordance with measurements of water model experiments. However, the wall lubrication force does not have much effect on the current polydispersed bubbly flow system. Finally, the MUSIG model is then used to estimate the argon bubble diameter in the molten steel of the mold. The argon bubble Sauter mean diameter generated in molten steel is predicted to be larger than air bubbles in water for the similar conditions.
Clifford, Corey; Kimber, Mark
2017-11-01
Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.
Qi, Di
Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are
Extremely rare collapse and build-up of turbulence in stochastic models of transitional wall flows
Rolland, Joran
2018-02-01
This paper presents a numerical and theoretical study of multistability in two stochastic models of transitional wall flows. An algorithm dedicated to the computation of rare events is adapted on these two stochastic models. The main focus is placed on a stochastic partial differential equation model proposed by Barkley. Three types of events are computed in a systematic and reproducible manner: (i) the collapse of isolated puffs and domains initially containing their steady turbulent fraction; (ii) the puff splitting; (iii) the build-up of turbulence from the laminar base flow under a noise perturbation of vanishing variance. For build-up events, an extreme realization of the vanishing variance noise pushes the state from the laminar base flow to the most probable germ of turbulence which in turn develops into a full blown puff. For collapse events, the Reynolds number and length ranges of the two regimes of collapse of laminar-turbulent pipes, independent collapse or global collapse of puffs, is determined. The mean first passage time before each event is then systematically computed as a function of the Reynolds number r and pipe length L in the laminar-turbulent coexistence range of Reynolds number. In the case of isolated puffs, the faster-than-linear growth with Reynolds number of the logarithm of mean first passage time T before collapse is separated in two. One finds that ln(T ) =Apr -Bp , with Ap and Bp positive. Moreover, Ap and Bp are affine in the spatial integral of turbulence intensity of the puff, with the same slope. In the case of pipes initially containing the steady turbulent fraction, the length L and Reynolds number r dependence of the mean first passage time T before collapse is also separated. The author finds that T ≍exp[L (A r -B )] with A and B positive. The length and Reynolds number dependence of T are then discussed in view of the large deviations theoretical approaches of the study of mean first passage times and multistability
Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing
International Nuclear Information System (INIS)
Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.
2015-01-01
Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.
Czech Academy of Sciences Publication Activity Database
Haslinger, J.; Stebel, Jan
2011-01-01
Roč. 63, č. 2 (2011), s. 277-308 ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x
Modelling turbulent vertical mixing sensitivity using a 1-D version of NEMO
Reffray, G.; Bourdalle-Badie, R.; Calone, C.
2015-01-01
Through two numerical experiments, a 1-D vertical model called NEMO1D was used to investigate physical and numerical turbulent-mixing behaviour. The results show that all the turbulent closures tested (k+l from Blanke and Delecluse, 1993, and two equation models: generic length scale closures from Umlauf and Burchard, 2003) are able to correctly reproduce the classical test of Kato and Phillips (1969) under favourable numerical conditions while some solutions may diverge depending on the degradation of the spatial and time discretization. The performances of turbulence models were then compared with data measured over a 1-year period (mid-2010 to mid-2011) at the PAPA station, located in the North Pacific Ocean. The modelled temperature and salinity were in good agreement with the observations, with a maximum temperature error between -2 and 2 °C during the stratified period (June to October). However, the results also depend on the numerical conditions. The vertical RMSE varied, for different turbulent closures, from 0.1 to 0.3 °C during the stratified period and from 0.03 to 0.15 °C during the homogeneous period. This 1-D configuration at the PAPA station (called PAPA1D) is now available in NEMO as a reference configuration including the input files and atmospheric forcing set described in this paper. Thus, all the results described can be recovered by downloading and launching PAPA1D. The configuration is described on the NEMO site (PAPA">http://www.nemo-ocean.eu/Using-NEMO/Configurations/C1D_PAPA). This package is a good starting point for further investigation of vertical processes.
Comparison Between 2D Turbulence Model ESEL and Experimental Data from AUG and Compass Tokamaks
Czech Academy of Sciences Publication Activity Database
Ondáč, Peter; Horáček, Jan; Seidl, Jakub; Vondráček, Petr; Müller, H.W.; Adámek, Jiří; Nielsen, A.H.
2015-01-01
Roč. 55, č. 2 (2015), s. 128-135 ISSN 1210-2709 R&D Projects: GA ČR(CZ) GAP205/12/2327; GA MŠk(CZ) LM2011021 Institutional support: RVO:61389021 Keywords : turbulence * tokamak * computer model * probe measurements Subject RIV: BL - Plasma and Gas Discharge Physics https://ojs.cvut.cz/ojs/index.php/ap/article/viewFile/2257/2816
Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+
DEFF Research Database (Denmark)
Le Dreau, Jerome; Heiselberg, Per; Nielsen, Peter V.
The purpose of this investigation is to compare the different flow patterns obtained for the 2D isothermal test case defined in Annex 20 (1990) using different turbulence models. The different results are compared with the existing experimental data. Similar study has already been performed by Ro...... et al. (2008) using Ansys CFX 11.0. In this report, the software Star-CCM+ has been used....
2008-06-01
la transition, la croissance des instabilités 3D et leurs mécanismes d’éclatement, les progrès effectués dans les méthodes Navier Stoke parabolisées...EN-AVT-151 Advances in Laminar Turbulent Transition Modelling (Les avancées dans la modélisation de la transition laminaire turbulente) Papers...
Wu, Binxin
2011-02-01
This study evaluates six turbulence models for mechanical agitation of non-Newtonian fluids in a lab-scale anaerobic digestion tank with a pitched blade turbine (PBT) impeller. The models studied are: (1) the standard k-ɛ model, (2) the RNG k-ɛ model, (3) the realizable k-ɛ model, (4) the standard k-ω model, (5) the SST k-ω model, and (6) the Reynolds stress model. Through comparing power and flow numbers for the PBT impeller obtained from computational fluid dynamics (CFD) with those from the lab specifications, the realizable k-ɛ and the standard k-ω models are found to be more appropriate than the other turbulence models. An alternative method to calculate the Reynolds number for the moving zone that characterizes the impeller rotation is proposed to judge the flow regime. To check the effect of the model setup on the predictive accuracy, both discretization scheme and numerical approach are investigated. The model validation is conducted by comparing the simulated velocities with experimental data in a lab-scale digester from literature. Moreover, CFD simulation of mixing in a full-scale digester with two side-entry impellers is performed to optimize the installation. Copyright © 2010 Elsevier Ltd. All rights reserved.
A new nonlinear turbulence model based on Partially-Averaged Navier-Stokes Equations
International Nuclear Information System (INIS)
Liu, J T; Wu, Y L; Cai, C; Liu, S H; Wang, L Q
2013-01-01
Partially-averaged Navier-Stokes (PANS) Model was recognized as a Reynolds-averaged Navier-Stokes (RANS) to direct numerical simulation (DNS) bridging method. PANS model was purported for any filter width-from RANS to DNS. PANS method also shared some similarities with the currently popular URANS (unsteady RANS) method. In this paper, a new PANS model was proposed, which was based on RNG k-ε turbulence model. The Standard and RNG k-ε turbulence model were both isotropic models, as well as PANS models. The sheer stress in those PANS models was solved by linear equation. The linear hypothesis was not accurate in the simulation of complex flow, such as stall phenomenon. The sheer stress here was solved by nonlinear method proposed by Ehrhard. Then, the nonlinear PANS model was set up. The pressure coefficient of the suction side of the NACA0015 hydrofoil was predicted. The result of pressure coefficient agrees well with experimental result, which proves that the nonlinear PANS model can capture the high pressure gradient flow. A low specific centrifugal pump was used to verify the capacity of the nonlinear PANS model. The comparison between the simulation results of the centrifugal pump and Particle Image Velocimetry (PIV) results proves that the nonlinear PANS model can be used in the prediction of complex flow field
National Aeronautics and Space Administration — The one CFD modeling area that has remained the most challenging, yet most critical to the success of integrated propulsion system simulations, is turbulence...
Energy Technology Data Exchange (ETDEWEB)
Oksanen, A.; Maeki-Mantila, E. [Tampere Univ. of Technology (Finland). Inst. of Energy and Process Technology
1997-10-01
The aim of the project has been to model and simulate gas phase combustion taking into account the interaction between the chemical reactions and turbulence, respectively. Especially the modelling of nitric oxide and carbon monoxide were included in the computations which were applied into two laboratory-scale test cases namely into the about 300 kW natural gas burner by International Flame Research Foundation and into the smaller natural gas jet flame by delft University of Technology. Both test cases were calculated in two dimensional axially symmetric chambers with the swirl numbers equal to 0.56 and zero in the IFRF and Delft flames, respectively. In this study it was necessary to take into account as well as possible the effect of turbulence on the chemical reactions. Therefore, the Eddy Dissipation Concept Model (EDC) together with the local extinction was chosen to describe both the combustion reactions of methane and carbon monoxide and the formation and reduction of nitric oxide, too. In this study two different turbulent time scales were used namely the Kolmogorov time scale in the fine structure conditions without and with the factor taking more into account the fine structure conditions, respectively. It can be noticed the computational results are more similar with the experimental data when the factor was used. The prediction of chemical time scale was based on the principle by Gran et Melaaen and Magnussen. (orig.)
Modeling and analysis of large-eddy simulations of particle-laden turbulent boundary layer flows
Rahman, Mustafa M.
2017-01-05
We describe a framework for the large-eddy simulation of solid particles suspended and transported within an incompressible turbulent boundary layer (TBL). For the fluid phase, the large-eddy simulation (LES) of incompressible turbulent boundary layer employs stretched spiral vortex subgrid-scale model and a virtual wall model similar to the work of Cheng, Pullin & Samtaney (J. Fluid Mech., 2015). This LES model is virtually parameter free and involves no active filtering of the computed velocity field. Furthermore, a recycling method to generate turbulent inflow is implemented. For the particle phase, the direct quadrature method of moments (DQMOM) is chosen in which the weights and abscissas of the quadrature approximation are tracked directly rather than the moments themselves. The numerical method in this framework is based on a fractional-step method with an energy-conservative fourth-order finite difference scheme on a staggered mesh. This code is parallelized based on standard message passing interface (MPI) protocol and is designed for distributed-memory machines. It is proposed to utilize this framework to examine transport of particles in very large-scale simulations. The solver is validated using the well know result of Taylor-Green vortex case. A large-scale sandstorm case is simulated and the altitude variations of number density along with its fluctuations are quantified.
New developments in isotropic turbulent models for FENE-P fluids
Resende, P. R.; Cavadas, A. S.
2018-04-01
The evolution of viscoelastic turbulent models, in the last years, has been significant due to the direct numeric simulation (DNS) advances, which allowed us to capture in detail the evolution of the viscoelastic effects and the development of viscoelastic closures. New viscoelastic closures are proposed for viscoelastic fluids described by the finitely extensible nonlinear elastic-Peterlin constitutive model. One of the viscoelastic closure developed in the context of isotropic turbulent models, consists in a modification of the turbulent viscosity to include an elastic effect, capable of predicting, with good accuracy, the behaviour for different drag reductions. Another viscoelastic closure essential to predict drag reduction relates the viscoelastic term involving velocity and the tensor conformation fluctuations. The DNS data show the high impact of this term to predict correctly the drag reduction, and for this reason is proposed a simpler closure capable of predicting the viscoelastic behaviour with good performance. In addition, a new relation is developed to predict the drag reduction, quantity based on the trace of the tensor conformation at the wall, eliminating the need of the typically parameters of Weissenberg and Reynolds numbers, which depend on the friction velocity. This allows future developments for complex geometries.
Burgess, Christopher; Westgate, Christopher
2017-10-01
Applications involving the outdoor use of pulsed lasers systems can be affected by atmospheric turbulence and scintillation. In particular, deterministic prediction of the risk of injury or damage due to pulsed laser radiation can be difficult due to uncertainty over the focal plane fluence of radiation that has traversed through a turbulent medium. In this study, focussed beam profiles of nanosecond laser pulses are recorded for visible laser pulses that have traversed 1400m paths through turbulent atmospheres. Beam profiles are also taken under laboratory conditions. These pulses are characterised in terms of their peak focal plane fluence, total collected energy and Strehl ratio. Measured pulses are then compared statistically to pulse profiles generated by a two-dimensional phase screen propagation model based on the Von Karman power spectrum distribution. The model takes into account the refractive index structure constant (𝐶𝑛2), the wavelength, the path geometry and macroscopic beam steering. Analysis shows good correlation between the measured and simulated data, inferring that the Von Karman phase screen model can be used to predict focal plane fluence distributions for outdoor applications.
Development of a Structure-Based Turbulence Model
National Research Council Canada - National Science Library
Reynolds, W
2000-01-01
Work in the current period was aimed at the construction of extensions of the structure-based Particle Representation and one-point models to flows with slow or moderate mean deformations and wall proximity effects...
Los, S.; Hipps, L.; Alfieri, J. G.; Prueger, J. H.; Kustas, W. P.
2017-12-01
Agriculture in semi-arid regions is globally facing increasing stress on water resources. Hence, knowledge of water used in irrigated crops is essential for water resource management. However, quantifying spatial and temporal distribution of evapotranspiration (ET) has proven difficult because of the inherent complexities involved. Understanding of the complex biophysical relationships that govern ET is incomplete, particularly for heterogeneous vegetation. The USDA-ARS is developing a remotely-sensed ET modeling system that utilizes a two-source energy balance (TSEB) model capable of simulating turbulent water and energy exchange from measurements of radiometric land surface temperature. The modeling system has been tested over a number of vegetated surfaces and is currently being validated for vineyard sites in the Central Valley of California through the Grape Remote sensing Atmospheric Profiling & Evapotranspiration eXperiment (GRAPEX). The highly variable, elevated canopy structure and semi-arid climatic conditions of these sites give the opportunity to gain knowledge of both turbulent exchange processes and the TSEB model's ability to simulate turbulent fluxes for heterogeneous vegetation. Analyzed are fast-response (20 Hz) 3-D velocity, temperature, and humidity measurements gathered over 4 years at two vineyard sites. These data were collected at a height of 5 m, within the surface layer but above the canopy, and at 1.5 m, below the canopy top. Power spectra and cross-spectra are used to study behavior of turbulent water vapor exchanges and coupling between the canopy layer and surface layer under various atmospheric conditions. Frequent light winds and unstable daytime conditions, combined with the complicated canopy structure, often induce intermittent and episodic turbulence transport. This resulted in a modal behavior alternating between periods of more continuous canopy venting and periods where water vapor fluxes are dominated by transient, low
NO concentration imaging in turbulent nonpremixed flames
Energy Technology Data Exchange (ETDEWEB)
Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Energy Technology Data Exchange (ETDEWEB)
Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen
2009-02-02
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry
Energy Technology Data Exchange (ETDEWEB)
Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories
2012-08-13
The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.
International Nuclear Information System (INIS)
Yılmaz, İlker; Taştan, Murat; İlbaş, Mustafa; Tarhan, Cevahir
2013-01-01
Highlights: • Numerical simulation of propane and propane–hydrogen blending fuel was performed. • The effects of turbulence and radiation model on combustion were examined. • Comparison showed that RNG and P–I models give a better agreement with measurements. • As burner and combustor fuel, hydrogen may be considered a good alternative. - Abstract: This paper presents numerical simulation results of propane, propane–hydrogen blending diffusion flames in a combustion chamber. The numerical simulations using Fluent CFD code were carried out by changing fuel blending from pure propane (100% C 3 H 8 ) to propane–hydrogen blending including 90% C 3 H 8 –10% H 2 , 80% C 3 H 8 –20% H 2 , 10% C 3 H 8 –90% H 2 , 20% C 3 H 8 –80% H 2 by volume. A two-dimensional axis-symmetric numerical model was solved to investigate the effects of the turbulence and radiation models on the combustion characteristics such as temperature, and gas concentration distributions. The combustion reaction scheme in the flame region was modeled using eddy dissipation model with global reaction scheme. The effects of two turbulence models including RNG k–ε, and Reynolds Stress Model, RSM, and two different radiation models including P–I and discrete transfer model were examined on combustion characteristics. The predictions are validated and compared with the published experimental and simulation results. Numerical results show that the velocity profiles, temperature gradients, CO 2 and O 2 concentrations profiles are overall agreement with published measurement and simulation results in the literature
Ha Minh, H.; Viegas, J. R.; Rubesin, M. W.; Spalart, P.; Vandromme, D. D.
1989-01-01
The turbulent boundary layer under a freestream whose velocity varies sinusoidally in time around a zero mean is computed using two second order turbulence closure models. The time or phase dependent behavior of the Reynolds stresses are analyzed and results are compared to those of a previous SPALART-BALDWIN direct simulation. Comparisons show that the second order modeling is quite satisfactory for almost all phase angles, except in the relaminarization period where the computations lead to a relatively high wall shear stress.
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
Energy Technology Data Exchange (ETDEWEB)
Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk [OCIAM, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG (United Kingdom)
2014-01-15
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
International Nuclear Information System (INIS)
Warneford, Emma S.; Dellar, Paul J.
2014-01-01
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their model does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune
Wu, Binxin
2010-12-01
In this paper, 12 turbulence models for single-phase non-newtonian fluid flow in a pipe are evaluated by comparing the frictional pressure drops obtained from computational fluid dynamics (CFD) with those from three friction factor correlations. The turbulence models studied are (1) three high-Reynolds-number k-ε models, (2) six low-Reynolds-number k-ε models, (3) two k-ω models, and (4) the Reynolds stress model. The simulation results indicate that the Chang-Hsieh-Chen version of the low-Reynolds-number k-ε model performs better than the other models in predicting the frictional pressure drops while the standard k-ω model has an acceptable accuracy and a low computing cost. In the model applications, CFD simulation of mixing in a full-scale anaerobic digester with pumped circulation is performed to propose an improvement in the effective mixing standards recommended by the U.S. EPA based on the effect of rheology on the flow fields. Characterization of the velocity gradient is conducted to quantify the growth or breakage of an assumed floc size. Placement of two discharge nozzles in the digester is analyzed to show that spacing two nozzles 180° apart with each one discharging at an angle of 45° off the wall is the most efficient. Moreover, the similarity rules of geometry and mixing energy are checked for scaling up the digester.
Turbulence Modelling and Cavitation Dynamics in Cryogenic Turbopumps
Mani, K.V.; Cervone, A.; Hickey, J.P.
2016-01-01
This paper presents a dynamic system approach for the modeling of fluid flow in microchannels to be used in thrust control applications. A micro-resistojet fabricated using MEMS (Microelectromechanical Systems) technology has been selected for the analysis. The device operates by vaporizing a liquid
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model
Energy Technology Data Exchange (ETDEWEB)
Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)
2015-06-15
On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)
Advances in the simulation of toroidal gyro Landau fluid model turbulence
International Nuclear Information System (INIS)
Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.
1994-12-01
The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons
Turbulence investigation of the NASA common research model wing tip vortex
Directory of Open Access Journals (Sweden)
Čantrak Đorđe S.
2017-01-01
Full Text Available The paper presents high-speed stereo particle image velocimetry investigation of the NASA Common Research Model wing tip vortex. A three-percent scaled semi–span model, without nacelle and pylon, was tested in the 32- by 48-inch Indraft tunnel, at the Fluid Mechanics Laboratory at the NASA Ames Research Center. Turbulence investigation of the wing tip vortex is presented. Measurements of the wing-tip vortex were performed in a vertical cross-stream plane three tip-chords downstream of the wing tip trailing edge with a 2 kHz sampling rate. Experimental data are analyzed in the invariant anisotropy maps for three various angles of attack (0°, 2°, and 4° and the same speed generated in the tunnel (V∞ = 50 m/s. This corresponds to a chord Reynolds number 2.68x105, where the chord length of 3” is considered the characteristic length. The region of interest was x = 220 mm and y = 90 mm. The 20 000 particle image velocimetry samples were acquired at each condition. Velocity fields and turbulence statistics are given for all cases, as well as turbulence structure in the light of the invariant theory. Prediction of the wing tip vortices is still a challenge for the computational fluid dynamics codes due to significant pressure and velocity gradients. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 35046
Modelling turbulent fluid flows in nuclear and fossil-fired power plants
International Nuclear Information System (INIS)
Viollet, P.L.
1995-06-01
The turbulent flows encountered in nuclear reactor thermal hydraulic studies or fossil-fired plant thermo-aerodynamic analyses feature widely varying characteristics, frequently entailing heat transfers and two-phase flows so that modelling these phenomena tends more and more to involve coupling between several branches of engineering. Multi-scale geometries are often encountered, with complex wall shapes, such as a PWR vessel, a reactor coolant pump impeller or a circulating fluidized bed combustion chamber. When it comes to validating physical models of these flows, the analytical process highlights the main descriptive parameters of local flow conditions: tensor characterizing the turbulence anisotropy, characteristic time scales for turbulent flow particle dynamics. Cooperative procedures implemented between national or international working parties can accelerate validation by sharing and exchanging results obtained by the various organizations involved. With this principle accepted, we still have to validate the products themselves, i.e. the software used for the studies. In this context, the ESTET, ASTRID and N3S codes have been subjected to a battery of test cases covering their respective fields of application. These test cases are re-run for each new version, so that the sets of test cases systematically benefit from the gradually upgraded functionalities of the codes. (author). refs., 3 figs., 6 tabs
Reduced-Order Modeling of 3D Rayleigh-Benard Turbulent Convection
Hassanzadeh, Pedram; Grover, Piyush; Nabi, Saleh
2017-11-01
Accurate Reduced-Order Models (ROMs) of turbulent geophysical flows have broad applications in science and engineering; for example, to study the climate system or to perform real-time flow control/optimization in energy systems. Here we focus on 3D Rayleigh-Benard turbulent convection at the Rayleigh number of 106 as a prototype for turbulent geophysical flows, which are dominantly buoyancy driven. The purpose of the study is to evaluate and improve the performance of different model reduction techniques using this setting. One-dimensional ROMs for horizontally averaged temperature are calculated using several methods. Specifically, the Linear Response Function (LRF) of the system is calculated from a large DNS dataset using Dynamic Mode Decomposition (DMD) and Fluctuation-Dissipation Theorem (FDT). The LRF is also calculated using the Green's function method of Hassanzadeh and Kuang (2016, J. Atmos. Sci.), which is based on using numerous forced DNS runs. The performance of these LRFs in estimating the system's response to weak external forcings or controlling the time-mean flow are compared and contrasted. The spectral properties of the LRFs and the scaling of the accuracy with the length of the dataset (for the data-driven methods) are also discussed.
Two-phase modeling of turbulence in dilute sediment-laden, open-channel flows
Jha, Sanjeev K.; Bombardelli, Fabián A.
2009-01-01
In this paper, we focus on assessing the performance of diverse turbulence closures in the simulation of dilute sediment-laden, open-channel flows. To that end, we base our analysis on a framework developed in a companion paper of this special issue, which puts forward a standard sediment transport model (SSTM), a partial two-fluid model (PTFM) and a complete two-fluid model (CTFM), in three- and one-dimensional (3D and 1D) versions. First, we propose in this paper extensions of the transport...
Oubei, Hassan M.
2017-06-16
In this Letter, we use laser beam intensity fluctuation measurements to model and describe the statistical properties of weak temperature-induced turbulence in underwater wireless optical communication (UWOC) channels. UWOC channels with temperature gradients are modeled by the generalized gamma distribution (GGD) with an excellent goodness of fit to the measured data under all channel conditions. Meanwhile, thermally uniform channels are perfectly described by the simple gamma distribution which is a special case of GGD. To the best of our knowledge, this is the first model that comprehensively describes both thermally uniform and gradient-based UWOC channels.
Enhanced Physics-Based Numerical Schemes for Two Classes of Turbulence Models
Directory of Open Access Journals (Sweden)
Leo G. Rebholz
2009-01-01
Full Text Available We present enhanced physics-based finite element schemes for two families of turbulence models, the NS- models and the Stolz-Adams approximate deconvolution models. These schemes are delicate extensions of a method created for the Navier-Stokes equations in Rebholz (2007, that achieve high physical fidelity by admitting balances of both energy and helicity that match the true physics. The schemes' development requires carefully chosen discrete curl, discrete Laplacian, and discrete filtering operators, in order to permit the necessary differential operator commutations.
Alvarez, L. V.; Grams, P.
2017-12-01
We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the
Forecasting turbulent modes with nonparametric diffusion models: Learning from noisy data
Berry, Tyrus; Harlim, John
2016-04-01
In this paper, we apply a recently developed nonparametric modeling approach, the "diffusion forecast", to predict the time-evolution of Fourier modes of turbulent dynamical systems. While the diffusion forecasting method assumes the availability of a noise-free training data set observing the full state space of the dynamics, in real applications we often have only partial observations which are corrupted by noise. To alleviate these practical issues, following the theory of embedology, the diffusion model is built using the delay-embedding coordinates of the data. We show that this delay embedding biases the geometry of the data in a way which extracts the most stable component of the dynamics and reduces the influence of independent additive observation noise. The resulting diffusion forecast model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and when the observation noise vanishes. As in any standard forecasting problem, the forecasting skill depends crucially on the accuracy of the initial conditions. We introduce a novel Bayesian method for filtering the discrete-time noisy observations which works with the diffusion forecast to determine the forecast initial densities. Numerically, we compare this nonparametric approach with standard stochastic parametric models on a wide-range of well-studied turbulent modes, including the Lorenz-96 model in weakly chaotic to fully turbulent regimes and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. We show that when the only available data is the low-dimensional set of noisy modes that are being modeled, the diffusion forecast is indeed competitive to the perfect model.
Moody, M.; Bailey, B.; Stoll, R., II
2017-12-01
Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.
Model for vortex turbulence with discontinuities in the solar wind
Directory of Open Access Journals (Sweden)
O. P. Verkhoglyadova
2003-01-01
Full Text Available A model of vortex with embedded discontinuities in plasma flow is developed in the framework of ideal MHD in a low b plasma. Vortex structures are considered as a result of 2-D evolution of nonlinear shear Alfvén waves in the heliosphere. Physical properties of the solutions and vector fields are analyzed and the observational aspects of the model are discussed. The ratio of normal components to the discontinuity Br /Vr can be close to -2. The alignment between velocity and magnetic field vectors takes place. Spacecraft crossing such vortices will typically observe a pair of discontinuities, but with dissimilar properties. Occurrence rate for different discontinuity types is estimated and agrees with observations in high-speed solar wind stream. Discontinuity crossing provides a backward rotation of magnetic field vector and can be observed as part of a backward arc. The Ulysses magnetometer data obtained in the fast solar wind are compared with the results of theoretical modelling.
SUNSPOT AND STARSPOT LIFETIMES IN A TURBULENT EROSION MODEL
Energy Technology Data Exchange (ETDEWEB)
Litvinenko, Yuri E. [Department of Mathematics, University of Waikato, P. B. 3105, Hamilton (New Zealand); Wheatland, M. S. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)
2017-01-10
Quantitative models of sunspot and starspot decay predict the timescale of magnetic diffusion and may yield important constraints in stellar dynamo models. Motivated by recent measurements of starspot lifetimes, we investigate the disintegration of a magnetic flux tube by nonlinear diffusion. Previous theoretical studies are extended by considering two physically motivated functional forms for the nonlinear diffusion coefficient D : an inverse power-law dependence D ∝ B {sup −ν} and a step-function dependence of D on the magnetic field magnitude B . Analytical self-similar solutions are presented for the power-law case, including solutions exhibiting “super fast” diffusion. For the step-function case, the heat-balance integral method yields approximate solutions, valid for moderately suppressed diffusion in the spot. The accuracy of the resulting solutions is confirmed numerically, using a method which provides an accurate description of long-time evolution by imposing boundary conditions at infinite distance from the spot. The new models may allow insight into the differences and similarities between sunspots and starspots.
Turbulence modeling of transverse flow on ship hulls in shallow water
Energy Technology Data Exchange (ETDEWEB)
Jakobsen, Ken-Robert Gjelstad
2010-09-15
The hydrodynamic forces acting on a ship that travels in restricted water vary greatly with water depth and the geometry of the ship hull. This will affect the ship maneuverability in terms of various flow effects like for instance squat, when the ship is sucked down towards the seabed due to a pressure drop on the hull at forward speed. It is, thus, important to gain detailed knowledge on these aspects of marine engineering. The problem is in the present work addressed through a numerical investigation of turbulent transverse flow on two-dimensional ship sections in shallow water. The numerical code is validated against traditional flow problems in the literature. Namely, the Backward-facing step (BFS) and the Smoothly-contoured ramp (SCR). 2D and 3D laminar flows and 2D low Reynolds number turbulent flows are calculated, and the results are found to be in good agreement with the previous numerical and experimental comparison data. The turbulence model used in the calculations is the one-equation Spalart-Allmaras model. The overall goal of achieving more efficient and accurate numerical schemes will always be in focus of code development. Adaptive mesh refinement (AMR) is then a very helpful tool to save both time for grid generation prior to the calculations in question and the CPU hours needed to solve the governing equations. The latter is even more evident in a parallel environment. These aspects are included in the present investigation as part of the process to adapt and investigate a CFD tool suitable to handle turbulent flows on a ship hull in shallow water. Several physical and numerical parameters are included in the present study and the Plackett-Burman screening design is utilized to efficiently analyze the results. With the latter method, a simple function for calculating the drag force on a two-dimensional ship section as function of the given parameters has been obtained. (Author)
Modelling of propagation and scintillation of a laser beam through atmospheric turbulence
Shugaev, Fedor V.; Shtemenko, Ludmila S.; Dokukina, Olga I.; Nikolaeva, Oxana A.; Suhareva, Natalia A.; Cherkasov, Dmitri Y.
2017-09-01
The investigation was fulfilled on the basis of the Navier-Stokes equations for viscous heat-conducting gas. The Helmholtz decomposition of the velocity field into a potential part and a solenoidal one was used. We considered initial vorticity to be small. So the results refer only to weak turbulence. The solution has been represented in the form of power series over the initial vorticity, the coefficients being multiple integrals. In such a manner the system of the Navier- Stokes equations was reduced to a parabolic system with constant coefficients at high derivatives. The first terms of the series are the main ones that determine the properties of acoustic radiation at small vorticity. We modelled turbulence with the aid of an ensemble of vortical structures (vortical rings). Two problems have been considered : (i) density oscillations (and therefore the oscillations of the refractive index) in the case of a single vortex ring; (ii) oscillations in the case of an ensemble of vortex rings (ten in number). We considered vortex rings with helicity, too. The calculations were fulfilled for a wide range of vortex sizes (radii from 0.1 mm to several cm). As shown, density oscillations arise. High-frequency oscillations are modulated by a low-frequency signal. The value of the high frequency remains constant during the whole process excluding its final stage. The amplitude of the low-frequency oscillations grows with time as compared to the high-frequency ones. The low frequency lies within the spectrum of atmospheric turbulent fluctuations, if the radius of the vortex ring is equal to several cm. The value of the high frequency oscillations corresponds satisfactorily to experimental data. The results of the calculations may be used for the modelling of the Gaussian beam propagation through turbulence (including beam distortion, scintillation, beam wandering). A method is set forth which describes the propagation of non-paraxial beams. The method admits generalization
Reynolds-Averaged Turbulence Model Assessment for a Highly Back-Pressured Isolator Flowfield
Baurle, Robert A.; Middleton, Troy F.; Wilson, L. G.
2012-01-01
The use of computational fluid dynamics in scramjet engine component development is widespread in the existing literature. Unfortunately, the quantification of model-form uncertainties is rarely addressed with anything other than sensitivity studies, requiring that the computational results be intimately tied to and calibrated against existing test data. This practice must be replaced with a formal uncertainty quantification process for computational fluid dynamics to play an expanded role in the system design, development, and flight certification process. Due to ground test facility limitations, this expanded role is believed to be a requirement by some in the test and evaluation community if scramjet engines are to be given serious consideration as a viable propulsion device. An effort has been initiated at the NASA Langley Research Center to validate several turbulence closure models used for Reynolds-averaged simulations of scramjet isolator flows. The turbulence models considered were the Menter BSL, Menter SST, Wilcox 1998, Wilcox 2006, and the Gatski-Speziale explicit algebraic Reynolds stress models. The simulations were carried out using the VULCAN computational fluid dynamics package developed at the NASA Langley Research Center. A procedure to quantify the numerical errors was developed to account for discretization errors in the validation process. This procedure utilized the grid convergence index defined by Roache as a bounding estimate for the numerical error. The validation data was collected from a mechanically back-pressured constant area (1 2 inch) isolator model with an isolator entrance Mach number of 2.5. As expected, the model-form uncertainty was substantial for the shock-dominated, massively separated flowfield within the isolator as evidenced by a 6 duct height variation in shock train length depending on the turbulence model employed. Generally speaking, the turbulence models that did not include an explicit stress limiter more closely
Markfort, C. D.
2017-12-01
Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport
The Modeling of Drop-Containing Turbulent Eddies
1989-11-01
Verdampfung becinfiussen. Es *ird gezeigt. daB die Verdampfungszeit mit diner Erhohung des Turbutenzgrades oder der An fangs- ReliNsesc hwi ndigkeit...OK t time, sec, u velocity, cm/sec VC cluster volume, cm 3 Yi mass fraction of species i z r/R 186 0.3 instant when R1 - 0.3 a at the edge of the...addressed the situation of dilute and/or non- evaporating particle dispersion in large vortices. Such models can be found in Chung and Troutt(5 ), Lazaro and
Iterative and non-iterative solutions of engine flows using ASM and k-ε turbulence models
International Nuclear Information System (INIS)
Khaleghi, H.; Fallah, E.
2003-01-01
Various turbulent models are widely developed in order to make a good prediction of turbulence phenomena in different applications. The standard k-ε model shows a poor prediction for some applications. The Reynolds Stress Model (RSM) is expected to give a better prediction of turbulent characteristics, because a separate differential equation for each Reynolds stress component is solved in this model. In order to save both time and memory in this calculation a new Algebraic Stress Model (ASM) which was developed by Lumly et al in 1995 is used for calculations of flow characteristics in the internal combustion engine chamber. With using turbulent realizability principles, this model becomes a powerful and reliable turbulence model. In this paper the abilities of the model is examined in internal combustion engine flows. The results of ASM and k-ε models are compared with the experimental data. It is shown that the poor predictions of k-ε model are modified by ASM model. Also in this paper non-iterative PISO and iterative SIMPLE solution algorithms are compared. The results show that the PISO solution algorithm is the preferred and more efficient procedure in the calculation of internal combustion engine. (author)
1991-07-01
Ingenieros Aeronauticos B- 1040 Brussels, Belgium Departansento de Mecanica de Fluidos Plaza del Cardenal Cisneros 3 M. l’ing. G~n~ral B. Monnerie 28040...ADVISORY REPORT 291 -; "TechniCal Status Review Appraisal of the Suitability of Turbulence Models in Flow Calculations (Revue Technique - L’Evaluation de ...IApplicabilitc des Mod~les de Turbulence dans Ic Ca lcul des Ecoulrments) , NORTH ATLANTIC TREATY ORGANIZATION +CWI/ Votmfa wyAfj Best Available Copy
Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations
El-Asrag, Hossam
2010-01-04
We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.
Directory of Open Access Journals (Sweden)
Zidouni Kendil Faiza
2010-01-01
Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.
Turbulence model choice for the calculation of drag forces when using the CFD method.
Zaïdi, H; Fohanno, S; Taïar, R; Polidori, G
2010-02-10
The aim of this work is to specify which model of turbulence is the most adapted in order to predict the drag forces that a swimmer encounters during his movement in the fluid environment. For this, a Computational Fluid Dynamics (CFD) analysis has been undertaken with a commercial CFD code (Fluent). The problem was modelled as 3D and in steady hydrodynamic state. The 3D geometry of the swimmer was created by means of a complete laser scanning of the swimmer's body contour. Two turbulence models were tested, namely the standard k-epsilon model with a specific treatment of the fluid flow area near the swimmer's body contour, and the standard k-omega model. The comparison of numerical results with experimental measurements of drag forces shows that the standard k-omega model accurately predicts the drag forces while the standard k-epsilon model underestimates their values. The standard k-omega model also enabled to capture the vortex structures developing at the swimmer's back and buttocks in underwater swimming; the same vortices had been visualized by flow visualization experiments carried out at the INSEP (National Institute for Sport and Physical Education in Paris) with the French national swimming team. Copyright 2009 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Yik Siang Pang
2018-01-01
Full Text Available This paper presents a Computational Fluid Dynamics (CFD study of a natural gas combustion burner focusing on the effect of combustion, thermal radiation and turbulence models on the temperature and chemical species concentration fields. The combustion was modelled using the finite rate/eddy dissipation (FR/EDM and partially premixed flame models. Detailed chemistry kinetics CHEMKIN GRI-MECH 3.0 consisting of 325 reactions was employed to model the methane combustion. Discrete ordinates (DO and spherical harmonics (P1 model were employed to predict the thermal radiation. The gas absorption coefficient dependence on the wavelength is resolved by the weighted-sum-of-gray-gases model (WSGGM. Turbulence flow was simulated using Reynolds-averaged Navier-Stokes (RANS based models. The findings showed that a combination of partially premixed flame, P1 and standard k-ε (SKE gave the most accurate prediction with an average deviation of around 7.8% of combustion temperature and 15.5% for reactant composition (methane and oxygen. The results show the multi-step chemistry in the partially premixed model is more accurate than the two-step FR/EDM. Meanwhile, inclusion of thermal radiation has a minor effect on the heat transfer and species concentration. SKE turbulence model yielded better prediction compared to the realizable k-ε (RKE and renormalized k-ε (RNG. The CFD simulation presented in this work may serve as a useful tool to evaluate a performance of a natural gas combustor. Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 9th October 2017; Accepted: 30th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Pang, Y.S., Law, W.P., Pung, K.Q., Gimbun, J. (2018. A Computational Fluid Dynamics Study of Turbulence, Radiation, and Combustion Models for Natural Gas Combustion Burner. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 155-169 (doi:10.9767/bcrec
Energy Technology Data Exchange (ETDEWEB)
Louahlia, H.; Panday, P.K. [Institut de Genie Energetique, 90 - Belfort (France)
1997-12-31
This paper presents a comparison between turbulence models based on Prandtl theory and applied to the problem of pure fluids condensation. A theoretical model is defined which allows to determine the physical characteristics of condensation between two vertical or horizontal flat plates. The total heat flux exchanged at the wall and the mean Nusselt number are calculated using several closure models in the liquid and vapor phases. Calculation results obtained for the R123 condensation between two vertical plates show that the Pletcher`s model or the Groenwald and Kroeger`s one applied to the vapor flow and the Von Karman`s model used for the liquid film predict thermal fluxes close to the measured ones. It has been noticed also that the condensation heat transfer is underestimated in the laminar model. In the case of the R113 condensation on an horizontal flat plate, the mean Nusselt numbers estimated in the Pletcher`s model applied to both phases are close to the measurements performed by Lu and Suryanarayana. (J.S.) 12 refs.
Analysis of the Numerical Modelling of Turbulence in the Conical Reverse-Flow Cyclone
Directory of Open Access Journals (Sweden)
Inga Jakštonienė
2011-02-01
Full Text Available The paper describes the numerical modelling of the swirling fluid flow in the Stairmand cyclone (conical reverse-flow – CRF with tangential inlet (equipment for separating solid particles from the gaseous fluid flow. A review of experimental and theoretical papers is conducted introducing three-dimensional differential equations for transfer processes. The numerical modelling of the Stairmand cyclone the height of which is 0.75 m, diameter – 0.17 m, the height of a cylindrical part – 0.290 m, a conical part – 0,39 m and an inlet area is 0,085×0,032 m is presented. When governing three-dimensional fluid flow, transfer equations Navje-Stokes and Reynolds are solved using the finite volume method in a body-fitted co-ordinate system using standard k– e and RNG k– e model of turbulence. Modelling is realised for inlet velocity 4.64, 9.0 and 14.8 m/s (flow rate was 0.0112, 0.0245 and 0.0388 m3/s. The results obtained from the numerical tests have demonstrated that the RNG k– e model of turbulence yields a reasonably good prediction for highly swirling flows in cyclones: the presented numerical results (tangential and radial velocity profiles are compared with numerical and experimental data obtained by other authors. The mean relative error of ± 7,5% is found. Keywords: cyclone, solid particles, numerical modelling, turbulence, one-phase flow.DOI: 10.3846/mla.2010.085
International Nuclear Information System (INIS)
Laval, Jean Philippe
1999-01-01
We developed a turbulent model based on asymptotic development of the Navier-Stokes equations within the hypothesis of non-local interactions at small scales. This model provides expressions of the turbulent Reynolds sub-grid stresses via estimates of the sub-grid velocities rather than velocities correlations as is usually done. The model involves the coupling of two dynamical equations: one for the resolved scales of motions, which depends upon the Reynolds stresses generated by the sub-grid motions, and one for the sub-grid scales of motions, which can be used to compute the sub-grid Reynolds stresses. The non-locality of interaction at sub-grid scales allows to model their evolution with a linear inhomogeneous equation where the forcing occurs via the energy cascade from resolved to sub-grid scales. This model was solved using a decomposition of sub-grid scales on Gabor's modes and implemented numerically in 2D with periodic boundary conditions. A particles method (PIC) was used to compute the sub-grid scales. The results were compared with results of direct simulations for several typical flows. The model was also applied to plane parallel flows. An analytical study of the equations allows a description of mean velocity profiles in agreement with experimental results and theoretical results based on the symmetries of the Navier-Stokes equation. Possible applications and improvements of the model are discussed in the conclusion. (author) [fr
International Nuclear Information System (INIS)
Gershgorin, B.; Majda, A.J.
2011-01-01
A statistically exactly solvable model for passive tracers is introduced as a test model for the authors' Nonlinear Extended Kalman Filter (NEKF) as well as other filtering algorithms. The model involves a Gaussian velocity field and a passive tracer governed by the advection-diffusion equation with an imposed mean gradient. The model has direct relevance to engineering problems such as the spread of pollutants in the air or contaminants in the water as well as climate change problems concerning the transport of greenhouse gases such as carbon dioxide with strongly intermittent probability distributions consistent with the actual observations of the atmosphere. One of the attractive properties of the model is the existence of the exact statistical solution. In particular, this unique feature of the model provides an opportunity to design and test fast and efficient algorithms for real-time data assimilation based on rigorous mathematical theory for a turbulence model problem with many active spatiotemporal scales. Here, we extensively study the performance of the NEKF which uses the exact first and second order nonlinear statistics without any approximations due to linearization. The role of partial and sparse observations, the frequency of observations and the observation noise strength in recovering the true signal, its spectrum, and fat tail probability distribution are the central issues discussed here. The results of our study provide useful guidelines for filtering realistic turbulent systems with passive tracers through partial observations.
Entropy-Based Modeling of Velocity Lag in Sediment-Laden Open Channel Turbulent Flow
Directory of Open Access Journals (Sweden)
Manotosh Kumbhakar
2016-08-01
Full Text Available In the last few decades, a wide variety of instruments with laser-based techniques have been developed that enable experimentally measuring particle velocity and fluid velocity separately in particle-laden flow. Experiments have revealed that stream-wise particle velocity is different from fluid velocity, and this velocity difference is commonly known as “velocity lag” in the literature. A number of experimental, as well as theoretical investigations have been carried out to formulate deterministic mathematical models of velocity lag, based on several turbulent features. However, a probabilistic study of velocity lag does not seem to have been reported, to the best of our knowledge. The present study therefore focuses on the modeling of velocity lag in open channel turbulent flow laden with sediment using the entropy theory along with a hypothesis on the cumulative distribution function. This function contains a parameter η, which is shown to be a function of specific gravity, particle diameter and shear velocity. The velocity lag model is tested using a wide range of twenty-two experimental runs collected from the literature and is also compared with other models of velocity lag. Then, an error analysis is performed to further evaluate the prediction accuracy of the proposed model, especially in comparison to other models. The model is also able to explain the physical characteristics of velocity lag caused by the interaction between the particles and the fluid.
Stochastic Modeling of Direct Radiation Transmission in Particle-Laden Turbulent Flows
Banko, Andrew; Villafane, Laura; Kim, Ji Hoon; Esmaily Moghadam, Mahdi; Eaton, John K.
2017-11-01
Direct radiation transmission in turbulent flows laden with heavy particles plays a fundamental role in systems such as clouds, spray combustors, and particle-solar-receivers. Owing to their inertia, the particles preferentially concentrate and the resulting voids and clusters lead to deviations in mean transmission from the classical Beer-Lambert law for exponential extinction. Additionally, the transmission fluctuations can exceed those of Poissonian media by an order of magnitude, which implies a gross misprediction in transmission statistics if the correlations in particle positions are neglected. On the other hand, tracking millions of particles in a turbulence simulation can be prohibitively expensive. This work presents stochastic processes as computationally cheap reduced order models for the instantaneous particle number density field and radiation transmission therein. Results from the stochastic processes are compared to Monte Carlo Ray Tracing (MCRT) simulations using the particle positions obtained from the point-particle DNS of isotropic turbulence at a Taylor Reynolds number of 150. Accurate transmission statistics are predicted with respect to MCRT by matching the mean, variance, and correlation length of DNS number density fields. Funded by the U.S. Department of Energy under Grant No. DE-NA0002373-1 and the National Science Foundation under Grant No. DGE-114747.
Multiphase integral reacting flow computer code (ICOMFLO): User`s guide
Energy Technology Data Exchange (ETDEWEB)
Chang, S.L.; Lottes, S.A.; Petrick, M.
1997-11-01
A copyrighted computational fluid dynamics computer code, ICOMFLO, has been developed for the simulation of multiphase reacting flows. The code solves conservation equations for gaseous species and droplets (or solid particles) of various sizes. General conservation laws, expressed by elliptic type partial differential equations, are used in conjunction with rate equations governing the mass, momentum, enthalpy, species, turbulent kinetic energy, and turbulent dissipation. Associated phenomenological submodels of the code include integral combustion, two parameter turbulence, particle evaporation, and interfacial submodels. A newly developed integral combustion submodel replacing an Arrhenius type differential reaction submodel has been implemented to improve numerical convergence and enhance numerical stability. A two parameter turbulence submodel is modified for both gas and solid phases. An evaporation submodel treats not only droplet evaporation but size dispersion. Interfacial submodels use correlations to model interfacial momentum and energy transfer. The ICOMFLO code solves the governing equations in three steps. First, a staggered grid system is constructed in the flow domain. The staggered grid system defines gas velocity components on the surfaces of a control volume, while the other flow properties are defined at the volume center. A blocked cell technique is used to handle complex geometry. Then, the partial differential equations are integrated over each control volume and transformed into discrete difference equations. Finally, the difference equations are solved iteratively by using a modified SIMPLER algorithm. The results of the solution include gas flow properties (pressure, temperature, density, species concentration, velocity, and turbulence parameters) and particle flow properties (number density, temperature, velocity, and void fraction). The code has been used in many engineering applications, such as coal-fired combustors, air
Bonan, Gordon B.; Patton, Edward G.; Harman, Ian N.; Oleson, Keith W.; Finnigan, John J.; Lu, Yaqiong; Burakowski, Elizabeth A.
2018-04-01
Land surface models used in climate models neglect the roughness sublayer and parameterize within-canopy turbulence in an ad hoc manner. We implemented a roughness sublayer turbulence parameterization in a multilayer canopy model (CLM-ml v0) to test if this theory provides a tractable parameterization extending from the ground through the canopy and the roughness sublayer. We compared the canopy model with the Community Land Model (CLM4.5) at seven forest, two grassland, and three cropland AmeriFlux sites over a range of canopy heights, leaf area indexes, and climates. CLM4.5 has pronounced biases during summer months at forest sites in midday latent heat flux, sensible heat flux, gross primary production, nighttime friction velocity, and the radiative temperature diurnal range. The new canopy model reduces these biases by introducing new physics. Advances in modeling stomatal conductance and canopy physiology beyond what is in CLM4.5 substantially improve model performance at the forest sites. The signature of the roughness sublayer is most evident in nighttime friction velocity and the diurnal cycle of radiative temperature, but is also seen in sensible heat flux. Within-canopy temperature profiles are markedly different compared with profiles obtained using Monin-Obukhov similarity theory, and the roughness sublayer produces cooler daytime and warmer nighttime temperatures. The herbaceous sites also show model improvements, but the improvements are related less systematically to the roughness sublayer parameterization in these canopies. The multilayer canopy with the roughness sublayer turbulence improves simulations compared with CLM4.5 while also advancing the theoretical basis for surface flux parameterizations.
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
THREE-DIMENSIONAL SIMULATION OF FLOW AT AN OPEN-CHANNEL CONFLUENCE WITH TURBULENCE MODELS
Dinh Thanh, Mung; Kimura, Ichiro; Shimizu, Yasuyuki
Open-channel confluence flows are common in natural river systems as well as in environmental and hydraulic engineering, such as in river engineering. Often, these flows are three-dimensional and complex,while numerical studies fully describing confluence flow are still few. This paper presents the results of investigation of confluence flow using a three-dimensional numerical model with the linear and nonlinear k-ε models. To treat the dynamic boundary condition at the free surface, non-hydrostatic pressure is included in the present model. The model is validated using the experimental data available. Adequacy of the present model with two turbulence models above is indicated based on the result analysis. The nonlinear model is indicated as the more advantageous one than the linear one.
Information Theory Analysis of Cascading Process in a Synthetic Model of Fluid Turbulence
Directory of Open Access Journals (Sweden)
Massimo Materassi
2014-02-01
Full Text Available The use of transfer entropy has proven to be helpful in detecting which is the verse of dynamical driving in the interaction of two processes, X and Y . In this paper, we present a different normalization for the transfer entropy, which is capable of better detecting the information transfer direction. This new normalized transfer entropy is applied to the detection of the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the Gledzer–Ohkitana–Yamada shell model. Indeed, this is a fully well-known model able to model the fully developed turbulence in the Fourier space, which is characterized by an energy cascade towards the small scales (large wavenumbers k, so that the application of the information-theory analysis to its outcome tests the reliability of the analysis tool rather than exploring the model physics. As a result, the presence of a direct cascade along the scales in the shell model and the locality of the interactions in the space of wavenumbers come out as expected, indicating the validity of this data analysis tool. In this context, the use of a normalized version of transfer entropy, able to account for the difference of the intrinsic randomness of the interacting processes, appears to perform better, being able to discriminate the wrong conclusions to which the “traditional” transfer entropy would drive.
Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.
2018-02-01
A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.
Evaluation of Turbulence Models Through Predictions of a Simple 3D Boundary Layer.
Jammalamadaka, A.
2005-11-01
Although a number of popular turbulence models are now commonly used to predict complex 3D flows, in particular for industrial applications, very limited full evaluation of their performance has been carried out using thoroughly documented experiments. One such experiment is that of Bruns, Fernholz and Monkewitz (JFM, vol. 393; 1999) in a boundary layer on the wall of an S-shaped duct, where the wall shear stress was measured accurately and independently in the original work and more recently with oil-film interferometry by Reudi et al. (Exp Fluids vol. 35; 2003). Results from various models including k-ɛ, Spalart-Alamaras, k-φ, Menter's SST, and RSM are compared with the experimental results to extract better understanding of strengths and limitations of the various models. In addition to the various pressure distributions along the S-duct and the shear stress development on the test surface, the various normal stresses are compared for all the models with some surprising results in reference to the difficulty in predicting even such a simple 3D turbulent flow. Comparisons of other Reynolds stresses with models that predict them directly also reveal interesting results. In general the predictions of models are more in agreement with each other than with the experiment, suggesting that they suffer from common shortcomings. Also, the deviations of the predictions from the experiment grow to significant levels just beyond the development of the cross-over transverse velocity profile.
Numerical Methods For Chemically Reacting Flows
Leveque, R. J.; Yee, H. C.
1990-01-01
Issues related to numerical stability, accuracy, and resolution discussed. Technical memorandum presents issues in numerical solution of hyperbolic conservation laws containing "stiff" (relatively large and rapidly changing) source terms. Such equations often used to represent chemically reacting flows. Usually solved by finite-difference numerical methods. Source terms generally necessitate use of small time and/or space steps to obtain sufficient resolution, especially at discontinuities, where incorrect mathematical modeling results in unphysical solutions.
Do Central Banks React to House Prices?
Finocchiaro, Daria; Queijo von Heideken, Virginia
2007-01-01
The substantial fluctuations in house prices recently experienced by many industrialized economies have stimulated a vivid debate on the possible implications for monetary policy. In this paper, we ask whether the U.S. Fed, the Bank of Japan and the Bank of England have reacted to house prices. We study the responses of these central banks by estimating a structural model for each country where credit constrained agents borrow against real estate. The main result is that house price movements...
Study of the equatorial Atlantic Ocean mixing layer using a one-dimensional turbulence model
Directory of Open Access Journals (Sweden)
Udo Tersiano Skielka
2010-06-01
Full Text Available The General Ocean Turbulence Model (GOTM is applied to the diagnostic turbulence field of the mixing layer (ML over the equatorial region of the Atlantic Ocean. Two situations were investigated: rainy and dry seasons, defined, respectively, by the presence of the intertropical convergence zone and by its northward displacement. Simulations were carried out using data from a PIRATA buoy located on the equator at 23º W to compute surface turbulent fluxes and from the NASA/GEWEX Surface Radiation Budget Project to close the surface radiation balance. A data assimilation scheme was used as a surrogate for the physical effects not present in the one-dimensional model. In the rainy season, results show that the ML is shallower due to the weaker surface stress and stronger stable stratification; the maximum ML depth reached during this season is around 15 m, with an averaged diurnal variation of 7 m depth. In the dry season, the stronger surface stress and the enhanced surface heat balance components enable higher mechanical production of turbulent kinetic energy and, at night, the buoyancy acts also enhancing turbulence in the first meters of depth, characterizing a deeper ML, reaching around 60 m and presenting an average diurnal variation of 30 m.O modelo General Ocean Turbulence Model (GOTM é aplicado para diagnosticar o campo de turbulência da camada de mistura oceânica (CM na região equatorial do Oceano Atlântico. Foram investigadas as estações chuvosa e seca, definidas, respectivamente, pela presença da zona de convergência intertropical e pelo seu deslocamento para norte. Simulações foram realizadas usando dados da bóia PIRATA (0º, 23ºW para o cálculo dos fluxos turbulentos de superfície e dados do Projeto NASA/GEWEX Surface Radiation Budget para "fechar" o balanço de radiação na superfície. Um esquema para assimilação de dados foi usado para considerar os mecanismos físicos não representados pelo modelo unidimensional
Some subtleties concerning fluid flow and turbulence modeling in 4.-valve engines
Directory of Open Access Journals (Sweden)
Jovanovic Zoran S.
2011-01-01
Full Text Available In this paper some results concerning the structure and evolution of fluid flow pattern during induction and compression in 4.- valve engines with tilted valves were presented. Results were obtained by dint of multidimensional modeling of non-reactive flows in arbitrary geometry with moving boundaries. During induction fluid flow pattern was characterized with organized tumble motion followed by small but clearly legible deterioration in the vicinity of BDC. During compression the fluid flow pattern is entirely three-dimensional and fully controlled by vortex motion located in the central part of the chamber. In order to annihilate negative effects of tumble deterioration and to enhance swirling motion one of the intake valves was deactivated. Some positive and negative effects of such attempt were elucidated. The effect of turbulence model alteration in the case of excessive macro flows was tackled as well. Namely, some results obtained with eddy-viscosity model i.e. standard k-ε model were compared with results obtained with k-ξ-f model of turbulence in domain of 4.-valve engine in-cylinder flow. Some interesting results emerged rendering impetus for further quest in the near future.
An Entropy-Assisted Shielding Function in DDES Formulation for the SST Turbulence Model
Directory of Open Access Journals (Sweden)
Ling Zhou
2017-02-01
Full Text Available The intent of shielding functions in delayed detached-eddy simulation methods (DDES is to preserve the wall boundary layers as Reynolds-averaged Navier–Strokes (RANS mode, avoiding possible modeled stress depletion (MSD or even unphysical separation due to grid refinement. An entropy function fs is introduced to construct a DDES formulation for the k-ω shear stress transport (SST model, whose performance is extensively examined on a range of attached and separated flows (flat-plate flow, circular cylinder flow, and supersonic cavity-ramp flow. Two more forms of shielding functions are also included for comparison: one that uses the blending function F2 of SST, the other which adopts the recalibrated shielding function fd_cor of the DDES version based on the Spalart-Allmaras (SA model. In general, all of the shielding functions do not impair the vortex in fully separated flows. However, for flows including attached boundary layer, both F2 and the recalibrated fd_cor are found to be too conservative to resolve the unsteady flow content. On the other side, fs is proposed on the theory of energy dissipation and independent on from any particular turbulence model, showing the generic priority by properly balancing the need of reserving the RANS modeled regions for wall boundary layers and generating the unsteady turbulent structures in detached areas.
Evaluation of turbulence models for flow and heat transfer in fuel rod bundle geometries
International Nuclear Information System (INIS)
Sofu, T.; Chun, T. H.; In, W. K.
2004-01-01
One of the objectives of the US-ROK collaborative I-NERI project known as the 'Numerical Reactor' is an assessment of commercial Computational Fluid Dynamics (CFD) analysis capabilities for high-fidelity thermal-hydraulic analysis of current and advanced reactor designs. More specifically, the work involves evaluation of common turbulence models in terms of their ability to calculate the flow and heat transfer for simple fuel rod bundle configurations. The evaluations have so far focused mostly on Reynolds-Averaged Navier-Stokes (RANS) models - including the standard k-ε model, non-linear (quadratic and cubic) k-ε models, and the renormalization-group (RNG) variant. The second-order moment closure models such as the differential Reynolds stress model (RSM) have also been considered. (authors)
A Model for Jet-Surface Interaction Noise Using Physically Realizable Upstream Turbulence Conditions
Afsar, Mohammed Z.; Leib, Stewart J.; Bozak, Richard F.
2016-01-01
This paper is a continuation of previous work in which a generalized Rapid Distortion Theory (RDT) formulation was used to model low-frequency trailing-edge noise. The research was motivated by proposed next-generation aircraft configurations where the exhaust system is tightly integrated with the airframe. Data from recent experiments at NASA on the interaction between high-Reynolds-number subsonic jet flows and an external flat plate showed that the power spectral density (PSD) of the far-field pressure underwent considerable amplification at low frequencies. For example, at the 90deg observation angle, the low-frequency noise could be as much as 10 dB greater than the jet noise itself. In this paper, we present predictions of the noise generated by the interaction of a rectangular jet with the trailing edge of a semi-infinite flat plate. The calculations are based on a formula for the acoustic spectrum of this noise source derived from an exact formal solution of the linearized Euler equations involving (in this case) one arbitrary convected scalar quantity and a Rayleigh equation Green's function. A low-frequency asymptotic approximation for the Green's function based on a two-dimensional mean flow is used in the calculations along with a physically realizable upstream turbulence spectrum, which includes a finite decorrelation region. Numerical predictions of the sound field, based on three-dimensional RANS solutions to determine the mean flow, turbulent kinetic energy and turbulence length and time scales, for a range of subsonic acoustic Mach number jets and nozzle aspect ratios are compared with experimental data. Comparisons of the RANS results with flow data are also presented for selected cases. We find that a finite decorrelation region in the turbulence spectrum increases the low-frequency algebraic decay (the low frequency "roll-off") of the acoustic spectrum with angular frequency thereby producing much closer agreement with noise data for Strouhal
Velluet, Marie-Thérèse
2017-10-01
In the framework of a European collaborative research project called ALWS (Airborne platform effects on lasers and Warning Sensors), the effects of platform-related turbulence on MAWS (missile approach warning systems) and DIRCM (directed infrared countermeasures) performance are investigated. Field trials have been conducted to study the turbulence effects around a hovering helicopter and behind a turboprop aircraft on the ground, with engines running. The time dependence of the power in the bucket and the amplitude of the angle of arrival have been characterized during the trial. Temporal spectra of these two parameters present an asymptotic behavior typical of optical beams propagating through developed turbulence (Kolmogorov). Based on the formalism developed in the case of propagation through atmospheric turbulence, we have first estimated turbulence strength and wind velocity inside plume for different flight conditions. We have then proposed an approach to simulate times series of these two quantities in the same conditions. These simulated time series have been compared with the recorded data to assess their validity domain. This model will be integrated in a simulator to estimate the impact of the turbulence induced by the platform and calculate the system performance. In this model dedicated to plume and downwash effects, aero-optical effects are not taken into account.
Energy Technology Data Exchange (ETDEWEB)
Bidart, A.; Caltagirone, J.P.; Parneix, S. [Laboratoire MASTER-ENSCPB, 33 - Talence (France)
1997-12-31
The MASTER laboratory has been involved since several years in the creation and utilization of modeling tools for the prediction of 3-D turbulent flows and heat transfers in turbine blades in order to optimize the cooling systems of turbo-machineries. This paper describes one of the test-cases that has been used for the validation of the `Aquilon` calculation code developed in this aim. Then, the modeling performed with the `Fluent` industrial code in order to evaluate the possible improvements of the Aquilon code, is presented. (J.S.) 5 refs.
AlQuwaiee, Hessa
2016-11-01
One of the potential solutions to the radio frequency (RF) spectrum scarcity problem is optical wireless communications (OWC), which utilizes the unlicensed optical spectrum. Long-range outdoor OWC are usually referred to in the literature as free-space optical (FSO) communications. Unlike RF systems, FSO is immune to interference and multi-path fading. Also, the deployment of FSO systems is flexible and much faster than optical fibers. These attractive features make FSO applicable for broadband wireless transmission such as optical fiber backup, metropolitan area network, and last mile access. Although FSO communication is a promising technology, it is negatively affected by two physical phenomenon, namely, scintillation due to atmospheric turbulence and pointing errors. These two critical issues have prompted intensive research in the last decade. To quantify the effect of these two factors on FSO system performance, we need effective mathematical models. In this work, we propose and study a generalized pointing error model based on the Beckmann distribution. Then, we aim to generalize the FSO channel model to span all turbulence conditions from weak to strong while taking pointing errors into consideration. Since scintillation in FSO is analogous to the fading phenomena in RF, diversity has been proposed too to overcome the effect of irradiance fluctuations. Thus, several combining techniques of not necessarily independent dual-branch free-space optical links were investigated over both weak and strong turbulence channels in the presence of pointing errors. On another front, improving the performance, enhancing the capacity and reducing the delay of the communication link has been the motivation of any newly developed schemes, especially for backhauling. Recently, there has been a growing interest in practical systems to integrate RF and FSO technologies to solve the last mile bottleneck. As such, we also study in this thesis asymmetric an RF-FSO dual-hop relay
A solvable model of Vlasov-kinetic plasma turbulence in Fourier-Hermite phase space
Adkins, T.; Schekochihin, A. A.
2018-02-01
A class of simple kinetic systems is considered, described by the one-dimensional Vlasov-Landau equation with Poisson or Boltzmann electrostatic response and an energy source. Assuming a stochastic electric field, a solvable model is constructed for the phase-space turbulence of the particle distribution. The model is a kinetic analogue of the Kraichnan-Batchelor model of chaotic advection. The solution of the model is found in Fourier-Hermite space and shows that the free-energy flux from low to high Hermite moments is suppressed, with phase mixing cancelled on average by anti-phase-mixing (stochastic plasma echo). This implies that Landau damping is an ineffective route to dissipation (i.e. to thermalisation of electric energy via velocity space). The full Fourier-Hermite spectrum is derived. Its asymptotics are -3/2$ at low wavenumbers and high Hermite moments ( ) and -1/2k-2$ at low Hermite moments and high wavenumbers ( ). These conclusions hold at wavenumbers below a certain cutoff (analogue of Kolmogorov scale), which increases with the amplitude of the stochastic electric field and scales as inverse square of the collision rate. The energy distribution and flows in phase space are a simple and, therefore, useful example of competition between phase mixing and nonlinear dynamics in kinetic turbulence, reminiscent of more realistic but more complicated multi-dimensional systems that have not so far been amenable to complete analytical solution.
Separated shear-layer instability reproduction by a Reynolds stress model of turbulence
Jakirlic, Suad; Maduta, Robert
2013-11-01
A boundary layer separating from a solid wall transforms into a `separated shear layer' exhibiting a broader frequency range. Such a highly-unsteady shear layer separating the mean stream from the flow reversal is dominated by the organized, large-scale coherent structures, influencing to a large extent the overall flow behavior. Unlike in the case of a flat-plate boundary layer separating at a fixed point characterizing a backward-facing step geometry, which can be reasonably well captured by a statistical model of turbulence, the separation process pertinent to continuous curved surfaces as well as some fence- or rib-shaped configurations is beyond the reach of any RANS (Reynolds-Averaged Navier Stokes) model independent of the modeling level. The latter issue motivated the present work, dealing with an appropriate extension of a near-wall Second-Moment Closure (SMC) model towards an instability-sensitive formulation. The production term in the corresponding scale-supplying equation is selectively enhanced through introduction of the ratio of the first to the second derivative of the velocity field, the latter representing the integral part of the von Karman length scale, enabling appropriate capturing of the fluctuating turbulence and accordingly the reproduction of the separated shear-layer instability. The analysis is performed by simulating the flow separated from a fence, an axisymmetric hill and a cylinder configuration.
Implementation of a Model of Turbulence into a System Code, GAMMA+
International Nuclear Information System (INIS)
Kim, Hyeonil; Lim, Hong-Sik; No, Hee-Cheon
2015-01-01
The Launder-Sharma model was selected as the best model to predict the heat transfer performance while offsetting the lack of accuracy in even recently updated empirical correlations from both the extensive review of numerical analyses and the validation process. An application of the Launder-Sharma model into the system analysis code GAMMA+ for gas-cooled reactors is presented: 1) governing equations, discretization, and algebraic equations, 2) an application result of GAMMA''T, an integrated GAMMA+ code with CFD capability of low-Re resolution incorporated. The numerical foundation was formulated and implemented in a way such that the capability of the LS model was incorporated into GAMMA+, a system code for gas-cooled reactors, based on the same backbone of the ICE scheme on stagger mesh, that is, the code structure and numerical schemes used in the original code. The GAMMA''T code, an integrated system code with low-Re CFD capability on board, was suitably verified using an available set of data covering a turbulent flow and turbulent forced convection. In addition, a much better solution with the same quality of prediction with fewer meshes was given. This is a considerable advantage of the application into the system code
Large-eddy simulation of a turbulent flow over the DrivAer fastback vehicle model
Ruettgers, Mario; Park, Junshin; You, Donghyun
2017-11-01
In 2012 the Technical University of Munich (TUM) made realistic generic car models called DrivAer available to the public. These detailed models allow a precise calculation of the flow around a lifelike car which was limited to simplified geometries in the past. In the present study, the turbulent flow around one of the models, the DrivAer Fastback model, is simulated using large-eddy simulation (LES). The goal of the study is to give a deeper physical understanding of highly turbulent regions around the car, like at the side mirror or at the rear end. For each region the contribution to the total drag is worked out. The results have shown that almost 35% of the drag is generated from the car wheels whereas the side mirror only contributes 4% of the total drag. Detailed frequency analysis on velocity signals in each wake region have also been conducted and found 3 dominant frequencies which correspond to the dominant frequency of the total drag. Furthermore, vortical structures are visualized and highly energetic points are identified. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).
Lagrangian stochastic modelling in Large-Eddy Simulation of turbulent particle-laden flows
Chibbaro, Sergio; Innocenti, Alessio; Marchioli, Cristian
2017-11-01
Large-Eddy Simulation (LES) in Eulerian-Lagrangian studies of particle-laden flows is one of the most promising and viable approaches when Direct Numerical Simulation (DNS) is not affordable. However applicability of LES to particle-laden flows is limited by the modeling of the Sub-Grid Scale (SGS) turbulence effects on particle dynamics. These effects may be taken into account through a stochastic SGS model for the Equations of Particle Motion (EPM) that extends the Velocity Filtered Density Function method originally developed for reactive flows, to two-phase flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure, where a set of Stochastic Differential Equations (SDE) is solved along the trajectory of a particle. The resulting Lagrangian stochastic model has been tested for the reference case of turbulent channel flow. Tests with inertial particles have been performed focusing on particle preferential concentration and segregation in the near-wall region: upon comparison with DNS-based statistics, our results show improved accuracy with respect to LES with no SGS model in the EPM for different Stokes numbers. Furthermore, statistics of the particle velocity recover well DNS levels.
Modelling and simulation of the compressible turbulence in supersonic shear flows
International Nuclear Information System (INIS)
Guezengar, Dominique
1997-02-01
This research thesis addresses the modelling of some specific physical problems of fluid mechanics: compressibility (issue of mixing layers), large variations of volumetric mass (boundary layers), and anisotropy (compression ramps). After a presentation of the chosen physical modelling and numerical approximation, the author pays attention to flows at the vicinity of a wall, and to boundary conditions. The next part addresses existing compressibility models and their application to the calculation of supersonic mixing layers. A critical assessment is also performed through calculations of boundary layers and of compression ramps. The next part addresses problems related to large variations of volumetric mass which are not taken by compressibility models into account. A modification is thus proposed for the diffusion term, and is tested for the case of supersonic boundary layers and of mixing layers with high density rates. Finally, anisotropy effects are addressed through the implementation of Explicit Algebraic Stress k-omega Turbulence models (EARSM), and their tests on previously studied cases [fr
Evaluation of turbulence models for three primary types of shock-separated boundary layers
Coakley, T. J.; Viegas, J. R.; Horstman, C. C.
1977-01-01
Zero-equation (algebraic), one-equation (kinetic energy), and two-equation (kinetic energy plus length scale) turbulence eddy viscosity models were used in computing three basic types of shock-separated boundary-layer flows. The three basic types of shock boundary-layer interaction discussed are: (1) a normal shock wave at transonic speeds, (2) a compression corner shock at supersonic speeds, and (3) an incident oblique shock at hypersonic speeds. The models tested are simple, unmodified models used extensively for incompressible, unseparated flows. A comparison of computed and measured results for the compressible, separated flows described herein indicates that model performance is dependent on flow configuration with no distinct superiority of one model over the other for all three flow configurations.
Turbulence Model Sensitivity and Scour Gap Effect of Unsteady Flow around Pipe: A CFD Study
Directory of Open Access Journals (Sweden)
Abbod Ali
2014-01-01
Full Text Available A numerical investigation of incompressible and transient flow around circular pipe has been carried out at different five gap phases. Flow equations such as Navier-Stokes and continuity equations have been solved using finite volume method. Unsteady horizontal velocity and kinetic energy square root profiles are plotted using different turbulence models and their sensitivity is checked against published experimental results. Flow parameters such as horizontal velocity under pipe, pressure coefficient, wall shear stress, drag coefficient, and lift coefficient are studied and presented graphically to investigate the flow behavior around an immovable pipe and scoured bed.
Optimization of the Turbulence Model on Numerical Simulations of Flow Field within a Hydrocyclone
Directory of Open Access Journals (Sweden)
Yan Xu
2015-01-01
Full Text Available Reynolds Stress Model and Large Eddy Simulation are used to respectively perform numerical simulation for the flow field of a hydrocyclone. The three-dimensional hexahedral computational grids were generated. Turbulence intensity, vorticity, and the velocity distribution of different cross sections were gained. The velocity simulation results were compared with the LDV test results, and the results indicated that Large Eddy Simulation was more close to LDV experimental data. Large Eddy Simulation was a relatively appropriate method for simulation of flow field within a hydrocyclone.
Defibrillation via the Elimination of Spiral Turbulence in a Model for Ventricular Fibrillation
Sinha, Sitabhra; Pande, Ashwin; Pandit, Rahul
2001-04-01
Ventricular fibrillation, the major reason behind sudden cardiac death, is turbulent cardiac electrical activity in which rapid, irregular disturbances in the spatiotemporal electrical activation of the heart make it incapable of any concerted pumping action. Methods of controlling ventricular fibrillation include electrical defibrillation as well as injected medication. Electrical defibrillation, though widely used, involves subjecting the whole heart to massive, and often counterproductive, electrical shocks. We propose a defibrillation method that uses a very low-amplitude shock (of order mV) applied for a brief duration (of order 100 ms) and over a coarse mesh of lines on our model ventricle.
Energy Technology Data Exchange (ETDEWEB)
Myung, H. K.; Yang, S. Y.; Kim, B. H.; Song, J. H.; Oh, J. Z. [Kookmin University, Seoul (Korea)
2002-03-01
The flow through a nuclear rod bundle with mixing vanes is very complex and so required a suitable turbulence model for its accurate prediction. Subchannel flow in a nuclear bundle having vanes to mix flow appears complex turbulent flow. Objective of this study is to investigate performance of prediction about turbulence model contained in STAR-CD code and to develop suitable turbulence model which can predict complex flow in nuclear assembly. For several nonlinear {kappa}-{epsilon} turbulence models, their performance were investigated in the prediction of the flow in nuclear fuel assembly, and also their problems were discussed in detail. The results obtained from the present research would give a help for the development of turbulence model which can accurately predict the flow through the rod bundles with mixing vanes. 19 refs., 32 figs., 3 tabs. (Author)
Cho, S. Y.; Yetter, R. A.; Dryer, F. L.
1992-01-01
Various chemically reacting flow problems highlighting chemical and physical fundamentals rather than flow geometry are presently investigated by means of a comprehensive mathematical model that incorporates multicomponent molecular diffusion, complex chemistry, and heterogeneous processes, in the interest of obtaining sensitivity-related information. The sensitivity equations were decoupled from those of the model, and then integrated one time-step behind the integration of the model equations, and analytical Jacobian matrices were applied to improve the accuracy of sensitivity coefficients that are calculated together with model solutions.
Stevens, Richard Johannes Antonius Maria; Gayme, Dennice F.; Meneveau, Charles
2015-01-01
We use the recently introduced coupled wake boundary layer (CWBL) model to predict the e ect of turbulence intensity on the performance of a wind farm. The CWBL model combines a standard wake model with a \\top-down" approach to get improved predictions for the power output compared to a stand-alone
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan
2010-08-26
This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.
Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes
International Nuclear Information System (INIS)
Faranda, Davide; Dubrulle, Bérengère; Daviaud, François; Pons, Flavio Maria Emanuele; Saint-Michel, Brice; Herbert, Éric; Cortet, Pierre-Philippe
2014-01-01
We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system
Evans, John; Coley, Christopher; Aronson, Ryan; Nelson, Corey
2017-11-01
In this talk, a large eddy simulation methodology for turbulent incompressible flow will be presented which combines the best features of divergence-conforming discretizations and the residual-based variational multiscale approach to large eddy simulation. In this method, the resolved motion is represented using a divergence-conforming discretization, that is, a discretization that preserves the incompressibility constraint in a pointwise manner, and the unresolved fluid motion is explicitly modeled by subgrid vortices that lie within individual grid cells. The evolution of the subgrid vortices is governed by dynamical model equations driven by the residual of the resolved motion. Consequently, the subgrid vortices appropriately vanish for laminar flow and fully resolved turbulent flow. As the resolved velocity field and subgrid vortices are both divergence-free, the methodology conserves mass in a pointwise sense and admits discrete balance laws for energy, enstrophy, and helicity. Numerical results demonstrate the methodology yields improved results versus state-of-the-art eddy viscosity models in the context of transitional, wall-bounded, and rotational flow when a divergence-conforming B-spline discretization is utilized to represent the resolved motion.
Fast numerical simulations of 2D turbulence using a dynamic model for subfilter motions
International Nuclear Information System (INIS)
Laval, J.-P.; Dubrulle, B.; Nazarenko, S.V.
2004-01-01
We present numerical simulations of 2D turbulent flow using a new model for the subfilter scales which are computed using a dynamic equation linking the subfilter scales with the resolved velocity. This equation is not postulated, but derived from the constitutive equations under the assumption that the non-linear interactions of subfilter scales between themselves are small compared to their distortions by the resolved scales. Such an assumption results in a linear stochastic equation for the subfilter scales, which can be numerically solved by a decomposition of the subfilter scales into localized wave packets. The wave packets are randomly produced by the smallest of the resolved scales. They are further transported by the resolved-scale velocity and they have wavenumbers and amplitudes which evolve according to the resolved strain. Performance of our model is compared with direct numerical simulations of decaying and forced turbulence. For the same resolution, numerical simulations using our model allow for a significant reduction of the computational time (of the order of 100 in the case we consider), and allow to achieve of significantly larger Reynolds number than the direct method
Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes
Energy Technology Data Exchange (ETDEWEB)
Faranda, Davide, E-mail: davide.faranda@cea.fr; Dubrulle, Bérengère; Daviaud, François [Laboratoire SPHYNX, Service de Physique de l' Etat Condensé, DSM, CEA Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette (France); Pons, Flavio Maria Emanuele [Dipartimento di Scienze Statistiche, Universitá di Bologna, Via delle Belle Arti 41, 40126 Bologna (Italy); Saint-Michel, Brice [Institut de Recherche sur les Phénomènes Hors Equilibre, Technopole de Chateau Gombert, 49 rue Frédéric Joliot Curie, B.P. 146, 13 384 Marseille (France); Herbert, Éric [Université Paris Diderot - LIED - UMR 8236, Laboratoire Interdisciplinaire des Énergies de Demain, Paris (France); Cortet, Pierre-Philippe [Laboratoire FAST, CNRS, Université Paris-Sud (France)
2014-10-15
We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system.
Energy Technology Data Exchange (ETDEWEB)
Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-02-01
The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)
DEFF Research Database (Denmark)
Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob
as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry...... evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented......This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling...
Energy Technology Data Exchange (ETDEWEB)
Vermorel, O.
2003-11-15
This work is devoted to the numerical and theoretical study of turbulence modulation by particles using direct numerical simulation for the continuous phase coupled with a Lagrangian prediction of trajectories of discrete particles. The configuration corresponds to a slab of particles injected at high velocity into an isotropic decaying turbulence. The motion of a particle is supposed to be governed only by the drag force. The particle mass loading is large so that momentum exchange between particles and fluid results in a significant modulation of the turbulence. Collisions are neglected. The momentum transfer between particles and gas causes a strong acceleration of the gas in the slab. In the periphery of the slab, the turbulence is enhanced due to the production by the mean gas velocity gradients. The analysis of the interphase transfer terms in the gas turbulent kinetic energy equation shows that the direct effect of the particles is to damp the turbulence in the core of the slab but to enhance it in the periphery. This last effect is due to a strong correlation between the particle distribution and the instantaneous gas velocity. Another issue concerns the k-{epsilon} model and the validity of its closure assumptions in two phase flows. A new eddy viscosity expression, function of particle parameters, is used to model the Reynolds stress tensor. The modelling of the gas turbulent dissipation rate is questioned. A two-phase Langevin equation is also tested to model drift velocity and fluid-particles velocity covariance equations. (author)
DEFF Research Database (Denmark)
Visser, Andre
1997-01-01
Random walk simulation has the potential to be an extremely powerful tool in the investigation of turbulence in environmental processes. However, care must be taken in applying such simulations to the motion of particles in turbulent marine systems where turbulent diffusivity is commonly spatiall...
Fundamental Physics and Model Assumptions in Turbulent Combustion Models for Aerospace Propulsion
2014-06-01
University, 2012. 9U.Piomelli, W. H. Cabot , P. Moin, and S. Lee, Subgridscale backscatter in turbulent and transitional flows. Physics of Fluids A, 3:1766...primitive equations. I. The basic experiment. Mon Weather Rev, 91:99-164, 1963. 15M. Germano, U. Piomelli, P. Moin, and W. Cabot . A dynamic subgrid-scale
Directory of Open Access Journals (Sweden)
Zhaoliang Bai
2017-01-01
Full Text Available V-shaped stepped spillway is a new shaped stepped spillway, and the pressure distribution is quite different from that of the traditional stepped spillway. In this paper, five turbulence models were used to simulate the pressure distribution in the skimming flow regimes. Through comparing with the physical value, the realizable k-ε model had better precision in simulating the pressure distribution. Then, the flow pattern of V-shaped and traditional stepped spillways was given to illustrate the unique pressure distribution using realizable k-ε turbulence model.
Kumar, Mayank
2012-01-19
In this two-part paper, we describe the construction, validation, and application of a multiscale model of entrained flow gasification. The accuracy of the model is demonstrated by (1) rigorously constructing and validating the key constituent submodels against relevant canonical test cases from the literature and (2) validating the integrated model against experimental data from laboratory scale and commercial scale gasifiers. In part I, the flow solver and particle turbulent dispersion models are validated against experimental data from nonswirling flow and swirling flow test cases in an axisymmetric sudden expansion geometry and a two-phase flow test case in a cylindrical bluff body geometry. Results show that while the large eddy simulation (LES) performs best among all tested models in predicting both swirling and nonswirling flows, the shear stress transport (SST) k-ω model is the best choice among the commonly used Reynolds-averaged Navier-Stokes (RANS) models. The particle turbulent dispersion model is accurate enough in predicting particle trajectories in complex turbulent flows when the underlying turbulent flow is well predicted. Moreover, a commonly used modeling constant in the particle dispersion model is optimized on the basis of comparisons with particle-phase experimental data for the two-phase flow bluff body case. © 2011 American Chemical Society.
Advection diffusion model for particles deposition in Rayleigh-Benard turbulent flows
International Nuclear Information System (INIS)
Oresta, P.; Lippolis, A.; Verzicco, R.; Soldati, A.
2005-01-01
In this paper, Direct Numerical Simulation (DNS) and Lagrangian Particle Tracking are used to precisely investigate the turbulent thermally driven flow and particles dispersion in a closed, slender cylindrical domain. The numerical simulations are carried out for Rayleigh (Ra) and Prandtl numbers (Pr) equal to Ra = 2X10 8 and Pr = 0.7, considering three sets of particles with Stokes numbers, based on Kolmogorov scale, equal to St k 1.3, St k 0.65 and St k = 0.13. This data are used to calculate a priori the drift velocity and the turbulent diffusion coefficient for the Advection Diffusion model. These quantities are function of the Stokes, Froude, Rayleigh and Prandtl numbers only. One dimensional, time dependent, Advection- Diffusion Equation (ADE) is presented to predict particles deposition in Rayleigh-Benard flow in the cylindrical domain. This archetype configuration models flow and aerosol dynamics, produced in case of accident in the passive containment cooling system (PCCS) of a nuclear reactor. ADE results show a good agreement with DNS data for all the sets of particles investigated. (author)
Joint PDF Modelling of Turbulent Flow and Dispersion in an Urban Street Canyon
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2009-05-01
The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent the boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios.
A turbulent transport network model in MULTIFLUX coupled with TOUGH2
International Nuclear Information System (INIS)
Danko, G.; Bahrami, D.; Birkholzer, J.T.
2011-01-01
A new numerical method is described for the fully iterated, conjugate solution of two discrete submodels, involving (a) a transport network model for heat, moisture, and airflows in a high-permeability, air-filled cavity; and (b) a variably saturated fractured porous medium. The transport network submodel is an integrated-parameter, computational fluid dynamics solver, describing the thermal-hydrologic transport processes in the flow channel system of the cavity with laminar or turbulent flow and convective heat and mass transport, using MULTIFLUX. The porous medium submodel, using TOUGH2, is a solver for the heat and mass transport in the fractured rock mass. The new model solution extends the application fields of TOUGH2 by integrating it with turbulent flow and transport in a discrete flow network system. We present demonstrational results for a nuclear waste repository application at Yucca Mountain with the most realistic model assumptions and input parameters including the geometrical layout of the nuclear spent fuel and waste with variable heat load for the individual containers. The MULTIFLUX and TOUGH2 model elements are fully iterated, applying a programmed reprocessing of the Numerical Transport Code Functionalization model-element in an automated Outside Balance Iteration loop. The natural, convective airflow field and the heat and mass transport in a representative emplacement drift during postclosure are explicitly solved in the new model. The results demonstrate that the direction and magnitude of the air circulation patterns and all transport modes are strongly affected by the heat and moisture transport processes in the surrounding rock, justifying the need for a coupled, fully iterated model solution such as the one presented in the paper.
The ecology of flows and drift wave turbulence in CSDX: A model
Hajjar, R. J.; Diamond, P. H.; Tynan, G. R.
2018-02-01
This paper describes the ecology of drift wave turbulence and mean flows in the coupled drift-ion acoustic wave plasma of a CSDX linear device. A 1D reduced model that studies the spatiotemporal evolution of plasma mean density n ¯ , and mean flows v¯ y and v¯ z , in addition to fluctuation intensity ε, is presented. Here, ε=n˜ 2+ (∇⊥ϕ˜ 2+ v˜z2> is the conserved energy field. The model uses a mixing length lmix inversely proportional to both axial and azimuthal flow shear. This form of lmix closes the loop on total energy. The model self-consistently describes variations in plasma profiles, including mean flows and