WorldWideScience

Sample records for modeling trihalomethane formation

  1. Formation of brominated trihalomethanes in chlorinated drinking-water from Lake Constance

    International Nuclear Information System (INIS)

    Petri, M.; Stabel, H.H.

    1994-01-01

    The formation of trihalomethanes (THMs) in raw water and drinking water from Lake Constance containing low amounts of DOC and bromide was studied with special emphasis on brominated trihalomethanes (Br-THMs). If the raw water was ozonated prior to chlorination, the formation of THMs was reduced by 37%, and if a rapid sandfiltration was interposed, the THM-formation was again slightly enhanced. The percentage of Br-THMs on total-THMs increased from 16% to 35% during the treatment process. In the drinking water distribution system of BWV the formation of Br-THMs and CHCl 3 was studied with respect to residence time and post-chlorination. Unless the post-chlorination was performed, the THM-formation in the distribution system resembled that obtained from laboratory studies, except for small amounts of THMs being purged due to transport in the mains and residence in the reservoirs. Post-chlorination increased CHCl 3 - and the CHBrCl 2 -formation, but there was no effect on the formation of CHBr 2 Cl and CHBr 3 . However, the total THM-concentration in the drinking water never exceeded the German drinking water standard of 10 μg/L. (orig.) [de

  2. Investigating the role of biofilms in trihalomethane formation in water distribution systems with a multicomponent model.

    Science.gov (United States)

    Abokifa, Ahmed A; Yang, Y Jeffrey; Lo, Cynthia S; Biswas, Pratim

    2016-11-01

    Biofilms are ubiquitous in the pipes of drinking water distribution systems (DWDSs), and recent experimental studies revealed that the chlorination of the microbial carbon associated with the biofilm contributes to the total disinfection by-products (DBPs) formation with distinct mechanisms from those formed from precursors derived from natural organic matter (NOM). A multiple species reactive-transport model was developed to explain the role of biofilms in DBPs formation by accounting for the simultaneous transport and interactions of disinfectants, organic compounds, and biomass. Using parameter values from experimental studies in the literature, the model equations were solved to predict chlorine decay and microbial regrowth dynamics in an actual DWDS, and trihalomethanes (THMs) formation in a pilot-scale distribution system simulator. The model's capability of reproducing the measured concentrations of free chlorine, suspended biomass, and THMs under different hydrodynamic and temperature conditions was demonstrated. The contribution of bacteria-derived precursors to the total THMs production was found to have a significant dependence on the system's hydraulics, seasonal variables, and the quality of the treated drinking water. Under system conditions that promoted fast bacterial re-growth, the transformation of non-microbial into microbial carbon DBP precursors by the biofilms showed a noticeable effect on the kinetics of THMs formation, especially when a high initial chlorine dose was applied. These conditions included elevated water temperature and high concentrations of nutrients in the influent water. The fraction of THMs formed from microbial sources was found to reach a peak of 12% of the total produced THMs under the investigated scenarios. The results demonstrated the importance of integrating bacterial regrowth dynamics in predictive DBPs formation models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effect of powdered activated carbon (PAC) on MBR performance and effluent trihalomethane formation: At the initial stage of PAC addition.

    Science.gov (United States)

    Gao, Yue; Ma, Defang; Yue, Qinyan; Gao, Baoyu; Huang, Xia

    2016-09-01

    In this study, the MBR was used to treat municipal wastewater for reuse. Effects of powdered activated carbon (PAC) addition on MBR system in terms of effluent water quality, trihalomethane (THM) formation and membrane organic fouling tendency of MBR sludge supernatant at the initial stage of PAC addition were investigated. Effects of chlorine dose and contact time on THM formation and speciation were also studied. PAC addition enhanced the removal of organic matters, especially aromatic components, which improved the UV254 removal rate from 34% to 83%. PAC addition greatly reduced the membrane organic fouling tendency of MBR sludge supernatant. PAC addition reduced the MBR effluent trihalomethane formation potential (THMFP) from 351.29 to 241.95μg/L, while increased THM formation reactivity by 42%. PAC addition enhanced the formation of higher toxic bromine-containing THMs. High chlorine dose and contact time resulted in higher THM formation but lower proportion of bromine-containing THMs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Formation of trihalomethanes as disinfection byproducts in herbal spa pools.

    Science.gov (United States)

    Fakour, Hoda; Lo, Shang-Lien

    2018-04-09

    Herbal spa treatments are favorite recreational activities throughout the world. The water in spas is often disinfected to control pathogenic microorganisms and guarantee hygiene. However, chlorinated water may cause the formation of disinfection byproducts (DBPs). Although there have been many studies on DBP formation in swimming pools, the role of organic matter derived from herbal medicines applied in herbal spa water has been largely neglected. Accordingly, the present study investigated the effect of herbal medicines on the formation of trihalomethanes (THMs) in simulated herbal spa water. Water samples were collected from a spa pool, and then, disinfection and herbal addition experiments were performed in a laboratory. The results showed that the organic molecules introduced by the herbal medicines are significant precursors to the formation of THMs in spa pool water. Since at least 50% of THMs were produced within the first six hours of the reaction time, the presence of herbal medicines in spa water could present a parallel route for THM exposure. Therefore, despite the undeniable benefits of herbal spas, the effect of applied herbs on DBP formation in chlorinated water should be considered to improve the water quality and health benefits of spa facilities.

  5. Factorial analysis of the trihalomethanes formation in water disinfection using chlorine

    International Nuclear Information System (INIS)

    Rodrigues, Pedro M.S.M.; Esteves da Silva, Joaquim C.G.; Antunes, Maria Cristina G.

    2007-01-01

    The factors that affect trihalomethane (THM) (chloroform, bromodichloromethane, chlorodibromomethane and bromoform) formation from the chlorination of aqueous solutions of hydrophobic fulvic acids (FA) were investigated in a prototype laboratorial simulation using factorial analysis. This strategy involved a fractional factorial design (16 plus 5 center experiments) of five factors (fulvic acids concentration, chlorine dose, temperature, pH and bromide concentration) and a Box Behnken design (12 plus 3 center experiments) for the detailed analysis of three factors (FA concentration, chlorine dose and temperature). The concentration of THM was determined by headspace analysis by GC-ECD. The most significant factors that affect the four THM productions were the following: chloroform-FA concentration and temperature; bromodichloromethane-FA concentration and chlorine dose; chlorodibromomethane-chlorine dose; and, bromoform-chlorine dose and bromide concentration. Moreover, linear models were obtained for the four THM concentrations in the disinfection solution as function of the FA concentration, chlorine dose and temperature, and it was observed that the complexity of the models (number of significant factors and interactions) increased with increasing bromine atoms in the THM. Also, this study shows that reducing the FA concentration the relative amount of bromated THM increases

  6. Factors affecting the formation of iodo-trihalomethanes during oxidation with chlorine dioxide.

    Science.gov (United States)

    Guo, Wanhong; Shan, Yingchun; Yang, Xin

    2014-01-15

    Effects of water characteristics, reaction time, temperature, bromide and iodide ion concentrations, oxidant doses, and pH on formation of iodinated trihalomethanes (I-THM) during oxidation of iodide-containing water with chlorine dioxide (ClO2) were investigated. Among the water samples collected from ten water sources, iodoform (CHI3) was the predominant I-THM and trace amount of chlorodiiodomethane (CHClI2) was occasionally found. CHI3 yields correlated moderately with specific UV absorbance (SUVA) (R(2)=0.79), indicating that hydrophobic aromatic content were important precursors. Longer reaction time led to continued formation of CHI3. I-THM containing bromide was also found in waters containing both bromide and iodide, but CHI3 was dominant. The formation of CHI3 was higher at 25°C than 5°C and 35°C. CHI3 formation showed an increase followed by a decrease trend with increasing ClO2 doses and iodide concentrations and the highest yields occurred at iodide to ClO2 molar ratios of 1-2. pH 8 resulted in the highest CHI3 formation. It should be noted that a high iodide concentration was spiked to waters before adding ClO2 and the results may not reflect the formation yields of iodinated THMs in real conditions, but they provide information about formation trend of I-THM during oxidation of ClO2. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantum Chemical Examination of the Sequential Halogen Incorporation Scheme for the Modeling of Speciation of I/Br/Cl-Containing Trihalomethanes.

    Science.gov (United States)

    Zhang, Chenyang; Li, Maodong; Han, Xuze; Yan, Mingquan

    2018-02-20

    The recently developed three-step ternary halogenation model interprets the incorporation of chlorine, bromine, and iodine ions into natural organic matter (NOM) and formation of iodine-, bromine-, and chlorine-containing trihalomethanes (THMs) based on the competition of iodine, bromine, and chlorine species at each node of the halogenation sequence. This competition is accounted for using the dimensionless ratios (denoted as γ) of kinetic rates of reactions of the initial attack sites or halogenated intermediates with chlorine, bromine, and iodine ions. However, correlations between the model predictions made and mechanistic aspects of the incorporation of halogen species need to be ascertained in more detail. In this study, quantum chemistry calculations were first used to probe the formation mechanism of 10 species of Cl-/Br-/I- THMs. The HOMO energy (E HOMO ) of each mono-, bi-, or trihalomethanes were calculated by B3LYP method in Gaussian 09 software. Linear correlations were found to exist between the logarithms of experimentally determined kinetic preference coefficients γ reported in prior research and, on the other hand, differences of E HOMO values between brominated/iodinated and chlorinated halomethanes. One notable exception from this trend was that observed for the incorporation of iodine into mono- and di-iodinated intermediates. These observations confirm the three-step halogen incorporation sequence and the factor γ in the statistical model. The combined use of quantum chemistry calculations and the ternary sequential halogenation model provides a new insight into the microscopic nature of NOM-halogen interactions and the trends seen in the behavior of γ factors incorporated in the THM speciation models.

  8. Trihalomethanes formation in marine environment in front of Nuweibaa desalination plant as a result of effluents loaded by chlorine residual

    Directory of Open Access Journals (Sweden)

    Mohamed A. Hamed

    2017-03-01

    Full Text Available Trihalomethanes have been identified as the most important disinfection byproducts resulted from using chlorine in desalination plants. Nuweibaa desalination plant was chosen to study their effluents impacts on the marine environment in front of the plant in the coastal area of Gulf of Aqaba. Surface and bottom Water Samples were collected from nine locations in the outfall area of this desalination plant during spring and autumn 2014, and analyzed for water temperature, pH value, Salinity, Dissolved Oxygen, Biological oxygen demand, Oxidizible organic matter, Total, fixed and volatile suspended matter, residual chlorine (free and combined and trihalomethanes. High total chlorine dosage discharged from the desalination plant achieved high levels of trihalomethanes in the receiving seawater of the outfall area. It has been estimated that about 14524.65671 kg of BOD, 74123.4 kg of OOM, 166896.4375 kg of total suspended solids, 623.634 kg of free chlorine, 469.21 kg of combined chlorine, 206.64 kg of chloroform and 76.48 kg of bromoform are discharged annually from this plant into the Gulf of Aqaba affecting the marine ecosystems. The results of THMs showed that the two main forms of THMs formed in the receiving seawater were chloroform and bromoform and ranged between (5.09–156.59, (2.82–566.06 μg/L respectively. High pH and High combined chlorine concentrations favored the formation of high concentrations of chloroform.

  9. The formation of trihalomethanes in the potabilization of natural and synthetic waters; Formacion de trihalometanos en la potabilizacion de aguas naturales y sinteticas

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F.J.; Perez Serrano, A.; Orozco Barrenetxea, C.; Sanllorente, M.C.; Garcia Valverde, M. [Universidad de Burgos. Burgos (Spain)

    1998-12-01

    One of the main aspects in the control drinking water treatment is the formation of disinfection by-pro-ducts (DBPs), some of the most important are the trihalomethanes (THMs). In order to predict and control the THMs formation is necessary to know the influence of the different parameters involved in their formation and the influence of the different techniques used in drinking water treatment. The objective of this study is to investigate these effects on natural waters (Uzquiza reservoir-Burgos) and synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 21 refs.

  10. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    Energy Technology Data Exchange (ETDEWEB)

    Spiliotopoulou, Aikaterini [Water ApS, Farum Gydevej 64, 3520 Farum (Denmark); Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Hansen, Kamilla M.S., E-mail: kmsh@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark); Andersen, Henrik R. [Department of Environmental Engineering, Technical University of Denmark, Miljøvej, Building 113, 2800 Kongens Lyngby (Denmark)

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  11. Secondary formation of disinfection by-products by UV treatment of swimming pool water

    International Nuclear Information System (INIS)

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M.S.; Andersen, Henrik R.

    2015-01-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  12. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.

    Science.gov (United States)

    Criquet, Justine; Allard, Sebastien; Salhi, Elisabeth; Joll, Cynthia A; Heitz, Anna; von Gunten, Urs

    2012-07-03

    The kinetics of iodate formation is a critical factor in mitigation of the formation of potentially toxic and off flavor causing iodoorganic compounds during chlorination. This study demonstrates that the formation of bromine through the oxidation of bromide by chlorine significantly enhances the oxidation of iodide to iodate in a bromide-catalyzed process. The pH-dependent kinetics revealed species specific rate constants of k(HOBr + IO(-)) = 1.9 × 10(6) M(-1) s(-1), k(BrO(-) + IO(-)) = 1.8 × 10(3) M(-1) s(-1), and k(HOBr + HOI) < 1 M(-1) s(-1). The kinetics and the yield of iodate formation in natural waters depend mainly on the naturally occurring bromide and the type and concentration of dissolved organic matter (DOM). The process of free chlorine exposure followed by ammonia addition revealed that the formation of iodo-trihalomethanes (I-THMs), especially iodoform, was greatly reduced by an increase of free chlorine exposure and an increase of the Br(-)/I(-) ratio. In water from the Great Southern River (with a bromide concentration of 200 μg/L), the relative I-incorporation in I-THMs decreased from 18 to 2% when the free chlorine contact time was increased from 2 to 20 min (chlorine dose of 1 mg Cl(2)/L). This observation is inversely correlated with the conversion of iodide to iodate, which increased from 10 to nearly 90%. Increasing bromide concentration also increased the conversion of iodide to iodate: from 45 to nearly 90% with a bromide concentration of 40 and 200 μg/L, respectively, and a prechlorination time of 20 min, while the I-incorporation in I-THMs decreased from 10 to 2%.

  13. Ozonation of humic substances: Effects on molecular weight distributions of organic carbon and trihalomethane formation potential

    International Nuclear Information System (INIS)

    Amy, G.L.; Kuo, C.J.; Sierka, R.A.

    1988-01-01

    Four different sources of humic substances were studied to determine the effects of ozonation on molecular weight distributions, based on dissolved organic carbon (DOC) and trihalomethane formation potential (THMFP). Solutions of two soil-derived fulvic acids and a one soil-derived humic acid, as well as dissolved organic matter (DOM) associated with a natural water source were studied. Both gel permeation chromatography (GPC) and ultrafiltration (UF) were employed to define apparent molecular weight (AMW). Applied ozone doses ranged from 2.0 to 2.5 mg O 3 /mg DOC. Overall samples of untreated and ozonated waters, as well as individual molecular weight fractions, were characterized according to DOC, uv absorbance, and THMFP. Ozonation resulted in a significant disappearance of higher AMW material with a corresponding increase in lower AMW material. Although little overall reduction in DOC concentration was observed, significant overall reductions in UV absorbance and THMFP levels were observed

  14. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network.

    Science.gov (United States)

    Samios, Stelios A; Golfinopoulos, Spyros K; Andrzejewski, Przemyslaw; Świetlik, Joanna

    2017-08-24

    Samples from the two main watersheds that provide Athens Water Supply and Sewerage Company (AWSSC) with raw water were examined for Dissolved Organic Carbon (DOC) and for their molecular weight distribution (MWD). In addition, water samples from water treatment plants (WTPs) and from the water supply network were examined for trihalomethane (THMs) levels. The main purpose of this study was to reveal the molecular composition of natural organic matter (NOM) and identify the individual differences between NOM from the two main Athens watersheds. High-performance size exclusion chromatography (HPSEC), a relatively simple technique, was applied to determine different NOM fractions' composition according to molecular weight. Various THM levels in the supply network of Athens are illustrated as a result of the different reservoirs' water qualities, and a suggestion for a limited application of chlorine dioxide is made in order to minimize THM formation.

  15. EFFICIENCY OF DOMESTIC REVERSE OSMOSIS IN REMOVAL OF TRIHALOMETHANES FROM DRINKING WATER

    Directory of Open Access Journals (Sweden)

    S. Mazloomi ، R. Nabizadeh ، S. Nasseri ، K. Naddafi ، S. Nazmara ، A. H. Mahvi

    2009-10-01

    Full Text Available The reaction of disinfectants with natural organic matters existing in water lead to the formation of Disinfection By-Products. Potentially hazardous and carcinogenic characteristics of trihalomethanes (THMs are recognized. Thus removal of THMs or its precursors are necessary for human health. The aim of this study was to study the efficiency of domestic reverse osmosis (RO in removal of trihalomethanes from drinking water. A pilot scale of RO system with Polyamide membrane as Spiral-Wound, Tape wrapping module was used. Feed solution was made by using of pure chloroform. The samples containing chloroform were analyzed using a gas chromatograph equipped with a flame ionization detector. By increasing the flow, the removal rate of chloroform decreased and with declining removal of EC, the removal of chloroform declined too. In this research, at the worst condition, the efficiency of the pilot scale reverse osmosis reached to 80 % removal of chloroform.

  16. Identification of dissolved organic matter in raw water supply from reservoirs and canals as precursors to trihalomethanes formation.

    Science.gov (United States)

    Musikavong, Charongpun; Wattanachira, Suraphong

    2013-01-01

    The characteristic and quantity of dissolved organic matter (DOM) as trihalomethanes precursors in water from the U-Tapao Basin, Songkhla, Thailand was investigated. The sources of water in the basin consisted of two reservoirs and the U-Tapao canal. The canal receives water discharge from reservoirs, treated and untreated wastewater from agricultural processes, communities and industries. Water downstream of the canal is utilized as a raw water supply. Water samples were collected from two reservoirs, upstream and midstream of the canal, and the raw water supply in the rainy season and summer. The DOM level in the canal water was higher than that of the reservoir water. The highest trihalomethane formation potential (THMFP) was formed in the raw water supply. Fourier-transform infrared peaks of the humic acid were detected in the reservoir and canal waters. Aliphatic hydrocarbon and organic nitrogen were the major chemical classes in the reservoir and canal water characterized by a pyrolysis gas chromatography mass spectrometer. The optimal condition of the poly aluminum chloride (PACl) coagulation was obtained at a dosage of 40 mg/L at pH 7. This condition could reduce the average UV-254 to 57%, DOC to 64%, and THMFP to 42%. In the coagulated water, peaks of O-H groups or H-bonded NH, C˭O of cyclic and acyclic compounds, ketones and quinines, aromatic C˭C, C-O of alcohols, ethers, and carbohydrates, deformation of COOH, and carboxylic acid salts were detected. The aliphatic hydrocarbon, organic nitrogen and aldehydes and ketones were the major chemical classes. These DOM could be considered as the prominent DOM for the water supply plant that utilized PACl as a coagulant.

  17. Investigation of Trihalomethanes in Drinking Water of Abbas Abad Water Treatment Plant

    Directory of Open Access Journals (Sweden)

    Kiani R

    2017-06-01

    Full Text Available Introduction: Chlorination is the most common and successful method for disinfection of drinking water, especially in developing countries. However, due to the probability of formation of disinfection by-products especially Trihalomethanes (THMs that are known as hazardous and usually carcinogenic compounds, this study was conducted to assess the investigation of THMs in drinking water of Abbas Abad water treatment plant in 2015. Methods: In this study, 81 water samples were gathered during autumn season of 2015. Temperature, pH, Ec, turbidity, and residual chlorine were measured on site. After samples preparation in the laboratory, THMs concentrations were determined using gas chromatography. All statistical analyses were performed using the SPSS statistical package. Results: The results showed that the minimum and maximum mean concentrations (µg/l for bromodichloromethane were 1.47 ± 0.57 and 1.90 ± 0.26, for bromoform were 1.47 ± 0.35 and 2.36 ± 1.10, for dibromochloromethane were 1.47 ± 0.42 and 1.53 ± 0.55, and for chloroform were 3.40 ± 0.70 and 7.53 ± 1.00, and all compounds were determined for stations 1 and 3, respectively. Also comparing the mean concentrations of assessed THMs with ISIRI and World Health Organization (WHO Maximum Permissible Limits (MPL showed significant differences (P < 0.05. Thus, the mean concentrations of all Trihalomethanes compounds were significantly lower than the maximum permissible limits. Conclusions: Although the mean concentrations of THMs were lower than MPL, yet due to discharge of restaurants and gardens’ wastewater into the Abbas Abad River, pre-chlorination process of water in Abbas Abad water treatment plant, high retention time and increasing loss of foliage into the water, especially in autumn season, the formation of Trihalomethanes compounds could increase. Therefore, periodic monitoring of THMs in drinking water distribution network is recommended.

  18. TRIHALOMETHANE LEVELS AND SEMEN QUALITY

    Science.gov (United States)

    Trihalomethanes (THMs) are common byproducts of chlorinating drinking water. The effects of disinfection byproducts on semen quality have not yet been studied in humans, despite animal studies linking exposure to sperm abnormalities. We are currently analyzing the relationship of...

  19. Trihalomethanes in potable water

    International Nuclear Information System (INIS)

    Ahmad, M.; Bajahalan, A.S.

    2005-01-01

    These experiments were conducted to evaluate the quality of potable water in Yanbu AI-Sinaiyah, one of the leading industrial city in the Kingdom of Saudi Arabia. The major source of water is Redsea. Desalinated water is distributed in the whole city for domestic uses. At the treatment plant chlorine is being used as disinfectant in pre and post desalination. The present study was conducted to determine the presence of disinfection by-products in potable water. Trihalomethanes are the major disinfection by-products found in the chlorinated water. Trihalomethanes identified in these experiments are chloroform, dichlorobromomethane, dibromochloromethane and tribromomethane. Thichloromethanes are considered to be carcinogenic, hence it is very important to investigate the presence of these compounds in potable water. Samples were collected from consumers tap and preserved at the site for analysis. In the laboratory samples were extracted by Tekmar Velocity XPT purge and trap unit. High purity nitrogen was purged through a sparger in the samples and purged volatiles were trapped in a carbo trap at room temperature. Then trapped components were desorbed with high purity helium and transferred to gas chromatograph injector and analysed by Varian Saturn 2200 GC-MS using 30 m long factor four capillary column. The effect of temperature and seasonal variation (winter and summer) was also monitored. Mean trihalomethane level was higher in summer (8.617 micro g/L) than in winter (5.173 micro g/L). Mean concentration of all the four THMs was 6.9 micro g/L, much less than prescribed EPA limits (80 micro g/L). About 13 brands of bottled water were also analysed for THMs. Only tribromomethane and dibromochloromethane were detected in few brands. Experiments were also conducted to remove THMs from chlorinated water and found that passing through activated charcoal and boiling the water for couple of minutes were sufficient to remove all the THMs from chlorinated water. (author)

  20. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids

    Science.gov (United States)

    Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...

  1. A device for fully automated on-site process monitoring and control of trihalomethane concentrations in drinking water

    International Nuclear Information System (INIS)

    Brown, Aaron W.; Simone, Paul S.; York, J.C.; Emmert, Gary L.

    2015-01-01

    Highlights: • Commercial device for on-line monitoring of trihalomethanes in drinking water. • Method detection limits for individual trihalomethanes range from 0.01–0.04 μg L –1 . • Rugged and robust device operates automatically for on-site process control. • Used for process mapping and process optimization to reduce treatment costs. • Hourly measurements of trihalomethanes made continuously for ten months. - Abstract: An instrument designed for fully automated on-line monitoring of trihalomethane concentrations in chlorinated drinking water is presented. The patented capillary membrane sampling device automatically samples directly from a water tap followed by injection of the sample into a gas chromatograph equipped with a nickel-63 electron capture detector. Detailed studies using individual trihalomethane species exhibited method detection limits ranging from 0.01–0.04 μg L −1 . Mean percent recoveries ranged from 77.1 to 86.5% with percent relative standard deviation values ranging from 1.2 to 4.6%. Out of more than 5200 samples analyzed, 95% of the concentration ranges were detectable, 86.5% were quantifiable. The failure rate was less than 2%. Using the data from the instrument, two different treatment processes were optimized so that total trihalomethane concentrations were maintained at acceptable levels while reducing treatment costs significantly. This ongoing trihalomethane monitoring program has been operating for more than ten months and has produced the longest continuous and most finely time-resolved data on trihalomethane concentrations reported in the literature

  2. A device for fully automated on-site process monitoring and control of trihalomethane concentrations in drinking water

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Aaron W. [The University of Memphis, Department of Chemistry, Memphis, TN 38152 (United States); Simone, Paul S. [The University of Memphis, Department of Chemistry, Memphis, TN 38152 (United States); Foundation Instruments, Inc., Collierville, TN 38017 (United States); York, J.C. [City of Lebanon, TN Water Treatment Plant, 7 Gilmore Hill Rd., Lebanon, TN 37087 (United States); Emmert, Gary L., E-mail: gemmert@memphis.edu [The University of Memphis, Department of Chemistry, Memphis, TN 38152 (United States); Foundation Instruments, Inc., Collierville, TN 38017 (United States)

    2015-01-01

    Highlights: • Commercial device for on-line monitoring of trihalomethanes in drinking water. • Method detection limits for individual trihalomethanes range from 0.01–0.04 μg L{sup –1}. • Rugged and robust device operates automatically for on-site process control. • Used for process mapping and process optimization to reduce treatment costs. • Hourly measurements of trihalomethanes made continuously for ten months. - Abstract: An instrument designed for fully automated on-line monitoring of trihalomethane concentrations in chlorinated drinking water is presented. The patented capillary membrane sampling device automatically samples directly from a water tap followed by injection of the sample into a gas chromatograph equipped with a nickel-63 electron capture detector. Detailed studies using individual trihalomethane species exhibited method detection limits ranging from 0.01–0.04 μg L{sup −1}. Mean percent recoveries ranged from 77.1 to 86.5% with percent relative standard deviation values ranging from 1.2 to 4.6%. Out of more than 5200 samples analyzed, 95% of the concentration ranges were detectable, 86.5% were quantifiable. The failure rate was less than 2%. Using the data from the instrument, two different treatment processes were optimized so that total trihalomethane concentrations were maintained at acceptable levels while reducing treatment costs significantly. This ongoing trihalomethane monitoring program has been operating for more than ten months and has produced the longest continuous and most finely time-resolved data on trihalomethane concentrations reported in the literature.

  3. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.

    Science.gov (United States)

    Xue, Runmiao; Shi, Honglan; Ma, Yinfa; Yang, John; Hua, Bin; Inniss, Enos C; Adams, Craig D; Eichholz, Todd

    2017-12-01

    Free chlorine is a commonly used disinfectant in drinking water treatment. However, disinfection by-products (DBPs) are formed during water disinfection. Haloacetic acids (HAAs) and trihalomethanes (THMs) are two major groups of DBPs. Iodo-HAAs and iodo-THMs (I-HAAs and I-THMs) are formed during the disinfection of the water containing high levels of iodide and are much more toxic than their chlorinated and brominated analogs. Peracetic acid (PAA) is a strong antimicrobial disinfectant that is expected to reduce the formation of HAAs and THMs during disinfection. In this study, the formations of thirteen HAAs and ten THMs, including the iodinated forms, have been investigated during PAA disinfection and chlorination as the comparison. The DBP formations under different iodide concentrations, pHs, and contact times were systematically investigated. Two types of commercial PAAs containing different concentrations of PAA and hydrogen peroxide (H 2 O 2 ) were studied. A solid-phase microextraction gas chromatography-mass spectrometry method was upgraded for THM analysis including I-THMs. HAAs were analyzed by following a recently developed high performance ion chromatography-tandem mass spectrometry method. Results show that the ratio of PAA and H 2 O 2 concentration significantly affect the formation of I-THMs and I-HAAs. During PAA disinfection with lower PAA than H 2 O 2 , no detectable levels of THMs and HAAs were observed. During PAA disinfection with higher PAA than H 2 O 2 , low levels of monoiodoacetic acid, diiodoacetic acid, and iodoform were formed, and these levels were enhanced with the increase of iodide concentration. No significant quantities of chloro- or bromo-THMs and HAAs were formed during PAA disinfection treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Radiolytic removal of trihalomethane in chlorinated seawater

    International Nuclear Information System (INIS)

    Rajamohan, R.; Rajesh, Puspalata; Venugopalan, V.P.; Rangarajan, S.; Natesan, Usha

    2015-01-01

    Biofouling is one of the major operational problems in seawater cooling systems. It is controlled by application of chlorine based biocides in the range of 0.5-2.0 mg L -1 . The bromide in seawater reacts with the added chlorine and forms hypobromous acid. The brominated residual biocides react with natural organic matter present in the seawater, resulting in the formation of trihalomethanes (THM) such as bromoform (CHBr 3 ), dibromochloromethane (CHBr 2 Cl) bromodichloromethane (CHBrCl 2 ). Though THMs represent a small fraction of the added chlorine, they are relatively more persistent than residual chlorine, and hence pose a potential hazard to marine life because of their reported mutagenicity. There have been few reports on removal of THMs from chlorinated seawater. In this work, the efficacy of gamma irradiation technique for the removal of THMs from chlorine-dosed seawater was investigated. Experiments were carried out using seawater collected from Kalpakkam. Irradiation study was conducted in chlorinated (1, 3, and 5 mg L -1 of Cl 2 ) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation using a 60 Co Gamma Chamber 5000. Bromoform showed a faster rate of degradation as compared to other halocarbons like bromodichloromethane and dibromochloromethane. This shows the change in total THM concentration with variation in the radiation dose and initial Cl 2 dosing. When the percentage degradation of all the three trihalomethane species was compared with applied doses, it was found that the maximum reduction occurred at a dose of 2.5 kGy. The reduction was almost similar for all the three doses (1, 3, 5 ppm of Cl 2 ) used for chlorination. With a further increase in radiation dose to 5.0 kGy, a slight increase in reduction was observed

  5. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.

    Science.gov (United States)

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G

    2010-09-01

    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  6. Determination of Bacteria and Trihalomethane Compounds in Sachet

    African Journals Online (AJOL)

    Nwokem et al.

    Portable water is essential to humans and other forms of life. Poor treatment of .... between two principal habitats- intestines of warm blooded animals and water ... contaminant. Trihalomethane is formed when water is disinfected with chlorine,.

  7. Chlorination or monochloramination: Balancing the regulated trihalomethane formation and microbial inactivation in marine aquaculture waters

    KAUST Repository

    Sanawar, Huma

    2017-08-15

    Disinfection methods like chlorination are increasingly used to sanitize the water, equipment, tools and surfaces in aquaculture facilities. This is to improve water quality, and to maintain a hygienic environment for the well-being of aquatic organisms. However, chlorination can result in formation of regulated disinfection byproducts (DBPs) that can be carcinogenic and toxic. This study aims to evaluate if an optimal balance can be achieved between minimal regulated DBP formation and effective microbial inactivation with either chlorination or monochloramination for application in the Red Sea aquaculture waters. Upon chlorination, the concentration of total trihalomethanes (THMs), primarily bromoform, exceeded the regulatory limit of 80μg/L even at the lowest tested concentration of chlorine (1mg/L) and contact time (1h). Comparatively, regulated THMs concentration was only detectable at 30μg/L level in one of the three sets of monochloraminated marine aquaculture waters. The average log reduction of antibiotic-resistant bacteria (ARB) by chlorine ranged from 2.3-log to 3.2-log with different contact time. The average log reduction of ARB by monochloramine was comparatively lower at 1.9 to 2.9-log. Although viable Staphylococcus aureus was recovered from monochloraminated samples as opposed to chlorinated samples, the abundance of S. aureus was not high enough to result in any significant microbial risks. Both chlorination and monochloramination did not provide any significant improvement in the reduction of antibiotic resistance genes (ARGs). This study demonstrates that a systematic evaluation is needed to determine the optimal disinfectant required to balance both microbial and chemical risks. Compared to chlorine, monochloramine may be a more appropriate disinfection strategy for the treatment of aquaculture effluents prior to discharge or for recirculatory use in the aquaculture facility.

  8. The impact of changes in source water quality on trihalomethane and haloacetonitrile formation in chlorinated drinking water.

    Science.gov (United States)

    Xue, Chonghua; Wang, Qi; Chu, Wenhai; Templeton, Michael R

    2014-12-01

    This study examined the formation of disinfection by-products (DBPs), including nitrogenous DBPs, haloacetonitriles (HANs), and carbonaceous DBPs, trihalomethanes (THMs), upon chlorination of water samples collected from a conventional Chinese surface water treatment plant (i.e. applying coagulation, sedimentation, and filtration). Reductions in the average concentrations (and range, shown in brackets) of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) from 4.8 (3.0-7.3) μg/L and 0.52 (0.20-0.81) μg/L in 2010 to 2.4 (1.4-3.7) μg/L and 0.17 (0.11-0.31) μg/L in 2012, respectively, led to a decrease in HANs and THMs from 5.3 and 28.5 μg/L initially to 0.85 and 8.2 μg/L, as average concentrations, respectively. The bromide concentration in the source water also decreased from 2010 to 2012, but the bromine incorporation factor (BIF) for the THMs did not change significantly; however, for HAN the BIFs increased because the reduction in DON was higher than that of bromide. There was good linear relationship between DOC and THM concentrations, but not between DON and HANs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Phototransformation of iodate by UV irradiation: Kinetics and iodinated trihalomethane formation during subsequent chlor(am)ination

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fu-Xiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Hu, Xiao-Jun, E-mail: hu-xj@mail.tsinghua.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Bin; Zhang, Tian-Yang; Gao, Yu-Qiong [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-03-15

    Highlights: • IO{sub 3}{sup −} can be photodegraded by UV irradiation with pseudo-first order kinetics. • Solution pH has no remarkable influence on the photodegradation rate of IO{sub 3}{sup −}. • The I{sup −} and HOI derived from the photoreduction of IO{sub 3}{sup −} were determined. • The presence of NOM greatly enhanced the photolysis rate of IO{sub 3}{sup −}. • NOM sources can affect the formation of I-THMs in UV-chlor(am)ination of IO{sub 3}{sup −}. - Abstract: The photodegradation of IO{sub 3}{sup −} at 254 nm and the formation of iodinated trihalomethanes (I-THMs) during subsequent chlorination or chloramination in the presence of natural organic matter (NOM) were investigated in this study. The thermodynamically stable IO{sub 3}{sup −} can be degraded by UV irradiation with pseudo-first order kinetics and the quantum yield was calculated as 0.0591 mol einstein{sup −1}. Solution pH posed no remarkable influence on the photolysis rate of IO{sub 3}{sup −}. The UV phototransformation of IO{sub 3}{sup −} was evidenced by the determination of iodide (I{sup −}) and hypoiodous acid (HOI) in solution. NOM sources not only enhanced the photodegradation rate of IO{sub 3}{sup −} by photoejecting solvated electrons, but also greatly influenced the production I-THMs in subsequent chlor(am)ination processes. In UV irradiation and sequential oxidation processes by chlorine or chloramine, the I-THMs formation was susceptible to NOM sources, especially the two major fractions of aqueous humic substances (humic acid and fulvic acid). The toxicity of disinfected waters greatly increased in chloramination over chlorination of the UV photodecomposed IO{sub 3}{sup −}, as far more I-THMs especially CHI{sub 3}, were formed. As “the fourth iodine source” of iodinated disinfection by-products, the occurrence, transportation and fate of IO{sub 3}{sup −} in aquatic environment should be of concern instead of being considered a desired

  10. Desorption of trihalomethanes in gas liquid contactors

    International Nuclear Information System (INIS)

    Ramirez Quesada, Kenneth

    2000-01-01

    Updated studies show that gastric cancer is related with the existence of trihalomethanes (THMs) in the drinking water. The trihalomethanes are sub products from the degradation of humic acids and your reaction with chlorine and bromine used like decontaminates. The desorption process is used to eliminate the THMs with air in contact with the water. The experimental design was used in three contactors. The contactors selected were: the bubbling's column, the packed column and the shaken tank without screen. There were selected three variable: initial concentration of THMs, the residence time and the turbulence degree (measured with the Reynolds number). The concentrations were made with a gas chromatograph. The objective of this project is to do a comparison with the gas liquid contactors more used in the industrial level to determinate which ones are the best in the desorption process. The conclusion of the experimental design is that the tank is the equipment with the best capacity to eliminate THMs. Too it includes other techniques to eliminate THMs of the water and your treatment [es

  11. A two-stage predictive model to simultaneous control of trihalomethanes in water treatment plants and distribution systems: adaptability to treatment processes.

    Science.gov (United States)

    Domínguez-Tello, Antonio; Arias-Borrego, Ana; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2017-10-01

    The trihalomethanes (TTHMs) and others disinfection by-products (DBPs) are formed in drinking water by the reaction of chlorine with organic precursors contained in the source water, in two consecutive and linked stages, that starts at the treatment plant and continues in second stage along the distribution system (DS) by reaction of residual chlorine with organic precursors not removed. Following this approach, this study aimed at developing a two-stage empirical model for predicting the formation of TTHMs in the water treatment plant and subsequently their evolution along the water distribution system (WDS). The aim of the two-stage model was to improve the predictive capability for a wide range of scenarios of water treatments and distribution systems. The two-stage model was developed using multiple regression analysis from a database (January 2007 to July 2012) using three different treatment processes (conventional and advanced) in the water supply system of Aljaraque area (southwest of Spain). Then, the new model was validated using a recent database from the same water supply system (January 2011 to May 2015). The validation results indicated no significant difference in the predictive and observed values of TTHM (R 2 0.874, analytical variance distribution systems studied, proving the adaptability of the new model to the boundary conditions. Finally the predictive capability of the new model was compared with 17 other models selected from the literature, showing satisfactory results prediction and excellent adaptability to treatment processes.

  12. Method for removing trihalomethanes and/or emerging pollutants using plasma

    OpenAIRE

    Bayona Termens, Josep María; Molina, Ricardo; Erra Serrabasa, Pilar; Bertrán, Enric; Jover Comas, Eric; Reyes Contreras, Carolina

    2009-01-01

    [EN] The invention relates to a method for removing trihalomethanes and refractory pollutants from aqueous environments by the direct application ofplasma in order to break down the polluting compounds in the water.

  13. TRIHALOMETHANE LEVELS IN HOME TAP WATER AND SEMEN QUALITY

    Science.gov (United States)

    Trihalomethane Levels in Home Tap Water and Semen QualityLaura Fenster, 1 Kirsten Waller, 2 Gayle Windham, 1 Tanya Henneman, 2 Meredith Anderson, 2 Pauline Mendola, 3 James W. Overstreet, 4 Shanna H. Swan51California Department of Health Services, Division of Environm...

  14. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    International Nuclear Information System (INIS)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S.; Makris, Konstantinos C.

    2016-01-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L"−"1, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L"−"1. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L"−"1). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L"−"1 and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system

  15. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks

    Energy Technology Data Exchange (ETDEWEB)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S. [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.cy [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States)

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n = 37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L{sup −1}, respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L{sup −1}. The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 – 0.848 μg L{sup −1}). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L{sup −1} and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. - Highlights: • Iodinated trihalomethanes were studied in two water distribution systems. • Low levels of iodinated trihalomethanes in tap water • Large variability of iodinated trihalomethanes within the water distribution system.

  16. Removal of trihalomethane from chlorinated seawater using gamma radiation.

    Science.gov (United States)

    Rajamohan, R; Natesan, Usha; Venugopalan, V P; Rajesh, Puspalata; Rangarajan, S

    2015-12-01

    Chlorine addition as a biocide in seawater results in the formation of chlorination by-products such as trihalomethanes (THMs). Removal of THMs is of importance as they are potential mutagenic and carcinogenic agents. In this context, a study was conducted that used ionizing radiation to remove THMs from chlorinated (1, 3, and 5 mg/L) seawater by applying various dosages (0.4-5.0 kGy) of gamma radiation. Bromoform (BF) showed a faster rate of degradation as compared to other halocarbons such as bromodichloromethane (BDCM) and dibromochloromethane (DBCM). In chlorine-dosed seawater, total irradiation dose of 0.4 to 5 kGy caused percentage reduction in the range of 6.9 to 76.7%, 2.3 to 99.6%, and 45.7 to 98.3% for BDCM, DBCM, and BF, respectively. During the irradiation process, pH of the chlorinated seawater decreased with increase in the absorbed dose; however, no change in total organic carbon (TOC) was observed. The results show that gamma dose of 2.5 kGy was adequate for maximum degradation of THM; but for complete mineralization, higher dose would be required.

  17. INDUCTION OF DNA STRAND BREAKS BY TRIHALOMETHANES IN PRIMARY HUMAN LUNG EPITHELIAL CELLS

    Science.gov (United States)

    Abstract Trihalomethanes (TEMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocyte...

  18. Comparison between HPSEC-OCD and F-EEMs for assessing DBPs formation in water.

    Science.gov (United States)

    Hidayah, Euis Nurul; Chou, Yung-Chen; Yeh, Hsuan-Hsien

    2017-03-21

    In this study, natural organic matter (NOM) in source water, as well as the treated water after coagulation with or without potassium permanganate (KMnO 4 ) preoxidation, was characterized by using high performance size exclusion chromatography with organic carbon detector (HPSEC-OCD) and fluorescence excitation emission matrices (F-EEMs) with parallel factor (PARAFAC) analysis. Bulk parameters, such as dissolved organic carbon (DOC) and ultraviolet light absorbance at 254 nm (UV 254 ), were also analyzed. The results show that KMnO 4 preoxidation caused the breakdown of high molecular weight (MW) organics into low MW organics. All organics, whether those that existed in the source water or those generated by KMnO 4 preoxidation, could be partly removed by coagulation. Combining the derived organic fractions obtained from HPSEC-OCD with peak-fitting and from F-EEMs with PARAFAC on the same sample, humic substances have been specified as the main organic composition. Further, the predictive models for trihalomethanes formation potential (THMFP) and haloacetic acids formation potential (HAAFP) based on organic fractions from HPSEC-OCD have higher accuracy than those based on the components from PARAFAC modeling. These models provide useful tools to specify the organic fractions from HPSEC-OCD and F-EEMs that constitute active precursors towards trihalomethanes (THMs) or haloacetic acids (HAAs) formation in water. Further, by knowing the major organic precursors, it would facilitate choosing the appropriate water treatment process for disinfection by-products (DBPs) control.

  19. Field assessment of bacterial communities and total trihalomethanes: Implications for drinking water networks.

    Science.gov (United States)

    Montoya-Pachongo, Carolina; Douterelo, Isabel; Noakes, Catherine; Camargo-Valero, Miller Alonso; Sleigh, Andrew; Escobar-Rivera, Juan-Carlos; Torres-Lozada, Patricia

    2018-03-01

    Operation and maintenance (O&M) of drinking water distribution networks (DWDNs) in tropical countries simultaneously face the control of acute and chronic risks due to the presence of microorganisms and disinfection by-products, respectively. In this study, results from a detailed field characterization of microbiological, chemical and infrastructural parameters of a tropical-climate DWDN are presented. Water physicochemical parameters and the characteristics of the network were assessed to evaluate the relationship between abiotic and microbiological factors and their association with the presence of total trihalomethanes (TTHMs). Illumina sequencing of the bacterial 16s rRNA gene revealed significant differences in the composition of biofilm and planktonic communities. The highly diverse biofilm communities showed the presence of methylotrophic bacteria, which suggest the presence of methyl radicals such as THMs within this habitat. Microbiological parameters correlated with water age, pH, temperature and free residual chlorine. The results from this study are necessary to increase the awareness of O&M practices in DWDNs required to reduce biofilm formation and maintain appropriate microbiological and chemical water quality, in relation to biofilm detachment and DBP formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reduction of DOM fractions and their trihalomethane formation potential in surface river water by in-line coagulation with ceramic membrane filtration.

    Science.gov (United States)

    Rakruam, Pharkphum; Wattanachira, Suraphong

    2014-03-01

    This research was aimed at investigating the reduction of DOM fractions and their trihalomethane formation potential (THMFP) by in-line coagulation with 0.1 μm ceramic membrane filtration. The combination of ceramic membrane filtration with a coagulation process is an alternative technology which can be applied to enhance conventional coagulation processes in the field of water treatment and drinking water production. The Ping River water (high turbidity water) was selected as the raw surface water because it is currently the main raw water source for water supply production in the urban and rural areas of Chiang Mai Province. From the investigation, the results showed that the highest percent reductions of DOC, UV-254, and THMFP (47.6%, 71.0%, and 67.4%, respectively) were achieved from in-line coagulation with ceramic membrane filtration at polyaluminum chloride dosage 40 mg/L. Resin adsorption techniques were employed to characterize the DOM in raw surface water and filtered water. The results showed that the use of a ceramic membrane with in-line coagulation was able to most efficiently reduce the hydrophobic fraction (HPOA) (68.5%), which was then followed by the hydrophilic fraction (HPIA) (49.3%). The greater mass DOC reduction of these two fractions provided the highest THMFP reductions (55.1% and 37.2%, respectively). Furthermore, the in-line coagulation with ceramic membrane filtration was able to reduce the hydrophobic (HPOB) fraction which is characterized by high reactivity toward THM formation. The percent reduction of mass DOC and THMFP of HPOB by in-line coagulation with ceramic membrane filtration was 45.9% and 48.0%, respectively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  1. Health risk assessment of trihalomethanes from tap water in Karachi, Pakistan

    International Nuclear Information System (INIS)

    Karim, Z.; Mumtaz, M.; Kamal, T.

    2011-01-01

    Risk assessment study of trihalomethanes (THMs) through different exposure pathways is based on the results of THMs concentration in tap water samples collected from various locations of Karachi city. The lifetime cancer risk and hazard index of each THM species were used to estimate the health risk from THM exposure through oral ingestion and dermal absorption. Exposure to CHCl/sub 3/ either through ingestion or dermal contact was found to be the most important pathway for cancer risks from THMs. It was also found that the residents of Karachi have a higher risk of cancer through oral ingestion than through the dermal absorption. The mean hazard index value of Total trihalomethanes (TTHMs) through oral ingestion and dermal absorption was calculated to be 8.84 X 10/sup -2/ and 4.39 X 10/sup -3/, respectively. The results of hazard index were found lower than unity, which did not indicate the non-cancer effects of THMs. On the basis of cancer risk analysis, it is expected that approximately 2 of the 18 million population of Karachi could get cancer each year due to exposure to the THMs. (author)

  2. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation

    KAUST Repository

    Le Roux, Julien; Gallard, Hervé ; Croue, Jean-Philippe

    2011-01-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N

  3. Identification of Trihalomethanes (THMs Levels in Water Supply: A Case Study in Perlis, Malaysia

    Directory of Open Access Journals (Sweden)

    Ab Jalil Mohd Faizal

    2018-01-01

    Full Text Available In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs. THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS. The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  4. Identification of Trihalomethanes (THMs) Levels in Water Supply: A Case Study in Perlis, Malaysia

    Science.gov (United States)

    Jalil, Mohd Faizal Ab; Hamidin, Nasrul; Anas Nagoor Gunny, Ahmad; Nihla Kamarudzaman, Ain

    2018-03-01

    In Malaysia, chlorination is used for drinking water disinfection at water treatment plants due to its cost-effectiveness and efficiency. However, the use of chlorine poses potential health risks due to the formation of disinfection by-products such as trihalomethanes (THMs). THMs are formed due to the reaction between chlorine and some natural organic matter. The objective of the study is to analyze the level of THMs in the water supply in Perlis, Malaysia. The water samples were collected from end-user tap water near the water treatment plant (WTP) located in Perlis, including Timah Tasoh WTP, Kampung Sungai Baru WTP, Arau Phase I, II, III, and IV WTPs. The THMs were analyzed using a Gas Chromatography-Mass Spectrometry (GC/MS). The results showed that the water supply from Timah Tasoh WTP generates the most THMs, whereas Kuala Sungai Baru shows the fewest amounts of total THMs. In conclusion, the presence of THMs in tap water has caused great concern since these components can cause cancer in humans. Therefore, the identification of THM formation is crucial in order to make sure that the tap water quality remains at acceptable safety levels.

  5. Optimal pH in chlorinated swimming pools - balancing formation of by-products

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Albrechtsen, Hans-Jørgen; Andersen, Henrik Rasmus

    2013-01-01

    In order to identify the optimal pH range for chlorinated swimming pools the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products....... The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH but haloacetonitrile and trichloramine formation increased....... To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6...

  6. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    Science.gov (United States)

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  7. Modeling Trihalomethane Formation Potential from Wastewater Chlorination

    Science.gov (United States)

    1994-09-01

    Aerated Lagoon Chlor/Dechlor - - - King Salmon River Luke, AZ Tertiary Ultraviolet 1.2 MGD Agua Fria River / Irrigation MacDD, FL Activated Sludge...November 1988). Tchobanoglous, George and Burton, Franklin L. Wastewater engineering: treatment, disposal, and reuse / Metcalf & Eddy, Inc. -3rd ed

  8. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006

    Science.gov (United States)

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle

    2014-01-01

    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R

  9. INFLUENCE OF EXPOSURE ASSESSMENT METHOD IN AN EPIDEMIOLOGIC STUDY OF TRIHALOMETHANE EXPOSURE AND SPONTANEOUS ABORTION

    Science.gov (United States)

    Trihalomethanes are common contaminants of chlorinated drinking water. Studies of their health effects have been hampered by exposure misclassification, due in part to limitations inherent in using utility sampling records. We used two exposure assessment methods, one based on ut...

  10. Disinfection byproduct formation from chlorination of pure bacterial cells and pipeline biofilms.

    Science.gov (United States)

    Wang, Jun-Jian; Liu, Xin; Ng, Tsz Wai; Xiao, Jie-Wen; Chow, Alex T; Wong, Po Keung

    2013-05-15

    Disinfection byproduct (DBP) formation is commonly attributed to the reaction between natural organic matters and disinfectants, yet few have considered the contribution from disinfecting bacterial materials - the essential process of water disinfection. Here, we explored the DBP formation from chlorination and chloramination of Escherichia coli and found that most selected DBPs were detectable, including trihalomethanes, haloacetonitriles, chloral hydrate, chloropicrin, and 1,1,1-trichloro-2-propanone. A positive correlation (P = 0.08-0.09) between DBP formation and the log reduction of E. coli implied that breaking down of bacterial cells released precursors for DBP formation. As Pseudomonas aeruginosa is a dominant bacterial species in pipeline biofilms, the DBP formation potentials (DBPFPs) from its planktonic cells and biofilms were characterized. Planktonic cells formed 7-11 times greater trihalomethanes per carbon of those from biofilms but significantly lower (P biofilms on polyvinyl chloride compared to that on galvanized zinc. This study revealed both the in situ disinfection of bacterial planktonic cells in source water and ex situ reaction between biofilms and residual chlorine in pipeline networks as hitherto unknown DBP sources in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Formation of Toxic Iodinated Disinfection By-Products from Compounds Used in Medical Imaging

    Science.gov (United States)

    Iodinated X-ray contrast media (ICM) were investigated as a source of iodine in the formation of iodo-trihalomethane (iodo-THM) and iodo-acid disinfection byproducts (DBPs), both of which are highly genotoxic and/or cytotoxic in mammalian cells. ICM are widely used at medical cen...

  12. Seasonal and spatial evolution of trihalomethanes in a drinking water distribution system according to the treatment process.

    Science.gov (United States)

    Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L

    2015-11-01

    This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.

  13. Occurrence and simulation of trihalomethanes in swimming pool water: A simple prediction method based on DOC and mass balance.

    Science.gov (United States)

    Peng, Di; Saravia, Florencia; Abbt-Braun, Gudrun; Horn, Harald

    2016-01-01

    Trihalomethanes (THM) are the most typical disinfection by-products (DBPs) found in public swimming pool water. DBPs are produced when organic and inorganic matter in water reacts with chemical disinfectants. The irregular contribution of substances from pool visitors and long contact time with disinfectant make the forecast of THM in pool water a challenge. In this work occurrence of THM in a public indoor swimming pool was investigated and correlated with the dissolved organic carbon (DOC). Daily sampling of pool water for 26 days showed a positive correlation between DOC and THM with a time delay of about two days, while THM and DOC didn't directly correlate with the number of visitors. Based on the results and mass-balance in the pool water, a simple simulation model for estimating THM concentration in indoor swimming pool water was proposed. Formation of THM from DOC, volatilization into air and elimination by pool water treatment were included in the simulation. Formation ratio of THM gained from laboratory analysis using native pool water and information from field study in an indoor swimming pool reduced the uncertainty of the simulation. The simulation was validated by measurements in the swimming pool for 50 days. The simulated results were in good compliance with measured results. This work provides a useful and simple method for predicting THM concentration and its accumulation trend for long term in indoor swimming pool water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Particles in swimming pool filters – Does pH determine the DBP formation?

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Mosbæk, Hans

    2012-01-01

    The formation was investigated for different groups of disinfection byproducts (DBPs) during chlorination of filter particles from swimming pools at different pH-values and the toxicity was estimated. Specifically, the formation of the DBP group trihalomethanes (THMs), which is regulated in many...... or initial free chlorine concentrations the particles were chlorinated at different pH-values in the relevant range for swimming pools. THM and HAA formations were reduced by decreasing pH while HAN formation increased with decreasing pH. Based on the organic content the relative DBP formation from...

  15. Blood trihalomethane levels and the risk of total cancer mortality in US adults

    International Nuclear Information System (INIS)

    Min, Jin-Young; Min, Kyoung-Bok

    2016-01-01

    Background: Although animal data have suggested the carcinogenic activity of trihalomethanes (THMs), there is inconsistent evidence supporting the link between THM exposure and cancers in humans. Objectives: We investigated the association between specific and total blood THM levels with the risk of total cancer mortality in adults. Methods: We analyzed data from the 1999–2004 Third National Health and Nutrition Examination Survey and the Linked Mortality File of the United States. A total of 933 adults (20–59 years of age) with available blood THM levels and no missing data for other variables were included. Four different THM species (chloroform, bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform) were included, and the codes associated with cancer (malignant neoplasm) were C00 through C97, based on the underlying causes of death listed in the International Classification of Disease 10the Revision. Results: Compared with adults in the lowest DBCM, bromoform, and total brominated THM tertiles, those in the highest DBCM, bromoform, and total brominated THM tertiles exhibited adjusted hazard ratios (HR) of total cancer mortality of 4.97 (95% confidence interval (CI) = 1.59–15.50), 4.94 (95% CI = 1.56–15.61), and 3.42 (95% CI = 1.21–15.43) respectively. The risk of total cancer mortality was not associated with increases in blood chloroform and total THM levels. Conclusions: We found that the baseline blood THM species, particularly brominated THMs, were significantly associated with total cancer mortality in adults. Although this study should be confirm by other studies, our findings suggest a possible link between THM exposures and cancer. - Highlights: • Trihalomethanes (THM) are classified as either probable or possible carcinogens. • Limited evidence on the link between THM and the incidence of cancer in humans. • We investigated the association between blood THM levels and the risk of total cancer mortality. • High

  16. Exposição humana a trialometanos presentes em água tratada Human exposure to trihalomethanes in drinking water

    Directory of Open Access Journals (Sweden)

    Maria Y Tominaga

    1999-08-01

    Full Text Available Realizou-se uma revisão bibliográfica do período de 1974-1998, no MEDLINE, sobre compostos orgânicos halogenados derivados de hidrocarbonetos denominados de trialometanos. Muitos deles, reconhecidamente carcinogênicos para diferentes espécies animais, podem ser encontrados freqüentemente, inclusive entre nós, em águas tratadas e enviadas à população urbana. É o caso de compostos como o clorofórmio, bromodiclorometano, clorodibromometano e bromofórmio, resultantes da halogenação de precursores, principalmente substâncias húmicas e fúlvicas presentes na água que será tratada (clorada. Assim, descreve-se sua formação, fontes de exposição humana bem como os aspectos toxicológicos de maior importância: disposição cinética e espectro dos efeitos tóxicos (carcinogênicos, mutagênicos e teratogênicos decorrentes de exposições a longo prazo e baixas concentrações. Níveis seguros de exposição propostos são também fornecidos.Halogenated hydrocarbon compounds, some of them recognized as carcinogenic to different animal species can be found in drinking water. Chloroform, bromodichloromethane, dibromochloromethane and bromoform are the most important trihalomethanes found in potable water. They are produced in natural waters during chlorinated desinfection by the halogenation of precursors, specially humic and fulvic compounds. The review, in the MEDLINE covers the period from 1974 to 1998, presents the general aspects of the formation of trihalomethanes, sources of human exposure and their toxicological meaning for exposed organisms: toxicokinetic disposition and spectrum of toxic effects (carcinogenic, mutagenic and teratogenic.

  17. Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)

    Energy Technology Data Exchange (ETDEWEB)

    Bellah, W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-08

    The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the design of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.

  18. Formation of iodo-trihalomethanes, iodo-acetic acids, and iodo-acetamides during chloramination of iodide-containing waters: Factors influencing formation and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shaogang [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Li, Zhenlin [Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, 530006, Guangxi (China); Dong, Huiyu [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China); Goodman, Bernard A. [College of Physical Science and Engineering, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 520004, Guangxi (China); Qiang, Zhimin, E-mail: qiangz@rcees.ac.cn [Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085 (China)

    2017-01-05

    This study investigated systematically the factors influencing the formation of iodinated disinfection by-products (I-DBPs) during chloramination of I{sup −}-containing waters, including reaction time, NH{sub 2}Cl dose, I{sup −} concentration, pH, natural organic matter (NOM) concentration, Br{sup −}/I{sup −} molar ratio, and water matrix. Among the I-DBPs detected, iodoform (CHI{sub 3}), iodoacetic acid (IAA), diiodoacetic acid (DIAA), triiodoacetic acid (TIAA), and diiodoacetamide (DIAcAm) were the major species produced from reactions between reactive iodine species (HOI/I{sub 2}) and NOM. A kinetic model involving the reactions of NH{sub 2}Cl auto-decomposition, iodine species transformation and NOM consumption was developed, which could well describe NH{sub 2}Cl decay and HOI/I{sub 2} evolution. Higher concentrations of CHI{sub 3}, IAA, DIAA, TIAA, and DIAcAm were observed in chloramination than in chlorination, whereas IO{sub 3}{sup −} was only formed significantly in chlorination. Maximum formation of I-DBPs occurred at pH 8.0, but acidic conditions favored the formation of iodinated haloacetic acids and DIAcAm. Increasing Br{sup −}/I{sup −} molar ratio from 1 to 10 did not increase the total amount of I-DBPs, but produced more bromine-substituting species. In addition, chloramination of 18 model compounds indicated that low-SUVA{sub 254} (specific ultraviolet absorbance at 254 nm) NOM generally favored the formation of I-DBPs compared to high-SUVA{sub 254} NOM. Finally, potential pathways for I-DBPs formation from chloramination of NOM were proposed.

  19. Valores de trihalometanos en agua de consumo de la provincia de Granada, España Trihalomethane levels in drinking water in the province of Granada (Spain

    Directory of Open Access Journals (Sweden)

    Carmen Freire

    2008-12-01

    Full Text Available Objetivos: La cloración del agua da lugar a la formación de subproductos potencialmente dañinos para la salud, entre ellos los trihalometanos, que se han hallado elevados en algunas zonas de España. En este estudio se investigan los valores de trihalometanos en el agua de consumo suministrada por varios sistemas de abastecimiento de la provincia de Granada, en el área de actuación de la cohorte madres-hijos de la Red INMA (Infancia y Medio Ambiente. Métodos: Se analizaron 82 muestras de agua de consumo en dos campañas de muestreo en invierno y verano de 2006. Se determinó la concentración de cloroformo, bromodiclorometano, dibromoclorometano y bromoformo, siguiendo un procedimiento optimizado basado en cromatografía de gases y espectrometría de masas. Resultados: El rango de concentración de trihalometanos totales se situó entre 0,14 y 18,75 μg/l en la campaña de invierno y entre 0,01 y 31,87 μg/l en la de verano. El compuesto mayoritario fue cloroformo. La concentración media de trihalometanos en agua de origen superficial y subterráneo fue de 10,13 y 1,41 μg/l, respectivamente. Conclusiones: Los valores de trihalometanos encontrados son muy inferiores a la concentración máxima admisible (100 μg/l establecida por la Uniσn Europea para estos compuestos. Estos valores varνan significativamente segϊn el origen del agua, con mayores concentraciones en αreas urbana y semiurbana, donde el agua es mayoritariamente de origen superficial. La presencia de trihalometanos en la zona es menor a la descrita en otras regiones espaρolas.Objectives: Drinking water chlorination generates potentially harmful by-products, such as trihalomethanes. Trihalomethane levels are high in some parts of Spain. The aim of the present study was to investigate trihalomethane concentrations in drinking water from distinct water supplies in the province of Granada, within the framework of the Childhood and Environment (INMA study. Methods: Eighty

  20. Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

    Science.gov (United States)

    Pellerin, Brian A.; Hernes, Peter J.; Saraceno, John Franco; Spencer, Robert G.M.; Bergamaschi, Brian A.

    2010-01-01

    Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.

  1. Determination of trihalomethanes in water samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pavon, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)], E-mail: jlpp@usal.es; Herrero Martin, Sara; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)

    2008-11-23

    This article reviews the most recent literature addressing the analytical methods applied for trihalomethanes (THMs) determination in water samples. This analysis is usually performed with gas chromatography (GC) combined with a preconcentration step. The detectors most widely used in this type of analyses are mass spectrometers (MS) and electron capture detectors (ECD). Here, we review the analytical characteristics, the time required for analysis, and the simplicity of the optimised methods. The main difference between these methods lies in the sample pretreatment step; therefore, special emphasis is placed on this aspect. The techniques covered are direct aqueous injection (DAI), liquid-liquid extraction (LLE), headspace (HS), and membrane-based techniques. We also review the main chromatographic columns employed and consider novel aspects of chromatographic analysis, such as the use of fast gas chromatography (FGC). Concerning the detection step, besides the common techniques, the use of uncommon detectors such as fluorescence detector, pulsed discharge photoionization detector (PDPID), dry electrolytic conductivity detector (DELCD), atomic emission detector (AED) and inductively coupled plasma-mass spectrometry (ICP-MS) for this type of analysis is described.

  2. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    Science.gov (United States)

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Impact of Commercially Treated Oil and Gas Produced Water Discharges on Bromide Concentrations and Modeled Brominated Trihalomethane Disinfection Byproducts at two Downstream Municipal Drinking Water Plants in the Upper Allegheny River, Pennsylvania, USA

    Science.gov (United States)

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species were observed in finished water at several Western Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in br...

  4. Exposure to brominated trihalomethanes in water during pregnancy and micronuclei frequency in maternal and cord blood lymphocytes

    DEFF Research Database (Denmark)

    Stayner, Leslie Thomas; Pedersen, Marie; Patelarou, Evridiki

    2014-01-01

    BACKGROUND: Water disinfection by-products have been associated with an increased cancer risk. Micronuclei (MN) frequency in lymphocytes is a marker of genomic damage and can predict adult cancer risk. OBJECTIVE: We evaluated maternal exposure to drinking water brominated trihalomethanes (BTHM......) in relation to MN frequency in maternal and cord blood lymphocytes. METHODS: MN frequency was examined in 214 mothers and 223 newborns from the Rhea mother-child cohort in Crete, Greece, in 2007-2008. Residential BTHM water concentrations were estimated during pregnancy using tap water analyses and modeling....... Questionnaires on water related habits were used to estimate BTHM exposure from all routes. Associations between BTHM and MN frequency were estimated using negative binomial regression. RESULTS: BTHM concentrations in residential tap water during pregnancy ranged from 0.06 to 7.1 μg/L. MN frequency in maternal...

  5. Presença de trialometanos na água e efeitos adversos na gravidez Trihalomethanes in drinking water and adverse effects on pregnancy

    Directory of Open Access Journals (Sweden)

    Sônia Maria dos Santos

    2011-03-01

    Full Text Available Este trabalho constituiu um estudo do tipo transversal, que objetivou avaliar a possível associação entre a exposição a trialometanos presentes na rede pública de abastecimento de água da região metropolitana de São Paulo e a ocorrência de desfechos adversos na gravidez. Para a realização deste estudo, foram selecionados 19 municípios da região metropolitana de São Paulo que eram abastecidos por apenas uma estação de tratamento de água, no período de 1998 a 2002. Partiu-se da verificação dos níveis de trialometanos na água de abastecimento e da análise da prevalência de baixo peso ao nascer, prematuridade, anomalias congênitas, defeitos no tubo neural e no sistema nervoso central, nos recém-nascidos dos municípios estudados, para se analisar a associação entre a exposição a trialometanos e a ocorrência de desfechos adversos na gravidez. A população estudada consistiu em todas as mulheres grávidas e seus filhos recém-nascidos, residentes nos municípios selecionados durante o período de estudo, que tiveram suas declarações de nascido vivo registradas no Sistema de Informações sobre Nascidos Vivos (SINASC. Os níveis de trialometanos foram tratados como categorias. A análise descritiva foi seguida pela análise univariada, e esta pela análise multivariada. Para expressar as possíveis associações dos desfechos pesquisados com os trialometanos foi utilizado o teste qui-quadrado, seguido da estimativa das razões de chance (odds ratio - OR com intervalos de 95% de confiança. O controle das variáveis de confusão se deu através da análise de regressão logística múltipla não condicional, seguindo os procedimentos de Hosmer e Lemeshow (2000. As variáveis que apresentaram nível de significância estatística (p This paper describes a cross-sectional study that aimed to evaluate the possible association between exposure to trihalomethanes present in public water supplies in the metropolitan region

  6. Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water.

    Science.gov (United States)

    Pan, Yang; Zhang, Xiangru

    2013-02-05

    Bromide is naturally present in source waters worldwide. Chlorination of drinking water can generate a variety of chlorinated and brominated disinfection byproducts (DBPs). Although substantial efforts have been made to examine the effect of bromide concentration on the formation and speciation of halogenated DBPs, almost all previous studies have focused on trihalomethanes and haloacetic acids. Given that about 50% of total organic halogen formed in chlorination remains unknown, it is still unclear how bromide concentration affects the formation and speciation of the new/unknown halogenated DBPs. In this study, chlorinated drinking water samples with different bromide concentrations were prepared, and a novel approach-precursor ion scan using ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry-was adopted for the detection and identification of polar halogenated DBPs in these water samples. With this approach, 11 new putative aromatic halogenated DBPs were identified, and they were classified into four groups: dihalo-4-hydroxybenzaldehydes, dihalo-4-hydroxybenzoic acids, dihalo-salicylic acids, and trihalo-phenols. A mechanism for the formation of the four groups of new aromatic halogenated DBPs was proposed. It was found that increasing the bromide concentration shifted the entire polar halogenated DBPs as well as the four groups of new DBPs from being less brominated to being more brominated; these new aromatic halogenated DBPs might be important intermediate DBPs formed in drinking water chlorination. Moreover, the speciation of the four groups of new DBPs was modeled: the speciation patterns of the four groups of new DBPs well matched those determined from the model equations, and the reactivity differences between HOBr and HOCl in reactions forming the four groups of new DBPs were larger than those in reactions forming trihalomethanes and haloacetic acids.

  7. RISK ASSOCIATED WITH HUMAN EXPOSURE TO TRIHALOMETHANES (THMs IN THE WATER DISTRIBUTION NETWORK OF CLUJ-NAPOCA

    Directory of Open Access Journals (Sweden)

    CORNELIA DIANA ROMAN

    2013-03-01

    Full Text Available Trihalomethanes (THMs, as disinfection by-products resulted from water chlorination, can get into the body through ingestion of beverages, food or drinking water. This paper discusses the relationship between the use of drinking water from the public distribution network of Cluj-Napoca and exposure to trihalomethanes. To better characterize individual water consumption, at home and at work, we applied a questionnaire to a group of 211 subjects from Cluj-Napoca, while assessing their current exposure to THMs by collecting and analyzing water from different points of the distribution network. The data obtained were statistically processed and then used to calculate the exposure dose and cancer risk for both adults and children. The results showed that subjects consumed for drinking both bottled water and water from the distribution network, but for preparing food and beverages (tea, coffee they used only water from the public distribution network. The average daily consumption of drinking water from the distribution network, is 1.4 l/day for adults, including beverages prepared with treated water. The surveyed subjects declared that they consume coffee or tea, in percentage of 88%, 94.4% respectively. The calculation of the exposure dose, daily intake and risk of cancer was achieved by using a model developed by the Agency for Toxic Substances and Disease Registry (ATSDR from the USA to calculate the dose and assess the risk of cancer. Our study shows that the cancer risk to THMs is increasing related to the higher daily intake of the drinking water, being higher for chloroform compared to dibromochloroform. For the measured concentrations of chloroform and dibromochloroform in drinking water and the average daily consumption of 1.4 l water/day, the probability of new cancers occurrence is at least 2.4 additional cases for 25 years of exposure and maximum 4.61 cases for 35 years of exposure in the existing background of a 1 million people.

  8. Trihalomethanes in public drinking water and stillbirth and low birth weight rates: an intervention study.

    Science.gov (United States)

    Iszatt, Nina; Nieuwenhuijsen, Mark J; Bennett, James E; Toledano, Mireille B

    2014-12-01

    During 2003-2004, United Utilities water company in North West England introduced enhanced coagulation (EC) to four treatment works to mitigate disinfection by-product (DBP) formation. This enabled examination of the relation between DBPs and birth outcomes whilst reducing socioeconomic confounding. We compared stillbirth, and low and very low birth weight rates three years before (2000-2002) with three years after (2005-2007) the intervention, and in relation to categories of THM change. We created exposure metrics for EC and trihalomethane (THM) concentration change (n=258 water zones). We linked 429,599 live births and 2279 stillbirths from national birth registers to the water zone at birth. We used Poisson regression to model the differences in birth outcome rates with an interaction between before/after the intervention and EC or THM change. EC treatment reduced chloroform concentrations more than non-treatment (mean -29.7 µg/l vs. -14.5 µg/l), but not brominated THM concentrations. Only 6% of EC water zones received 100% EC water, creating exposure misclassification concerns. EC intervention was not associated with a statistically significant reduction in birth outcome rates. Areas with the highest chloroform decrease (30 - 65 μg/l) had the greatest percentage decrease in low -9 % (-12, -5) and very low birth weight -16% (-24, -8) rates. The interaction between before/after intervention and chloroform change was statistically significant only for very low birth weight, p=0.02. There were no significant decreases in stillbirth rates. In a novel approach for studying DBPs and adverse reproductive outcomes, the EC intervention to reduce DBPs did not affect birth outcome rates. However, a measured large decrease in chloroform concentrations was associated with statistically significant reductions in very low birth weight rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Enhanced formation of disinfection byproducts in shale gas wastewater-impacted drinking water supplies.

    Science.gov (United States)

    Parker, Kimberly M; Zeng, Teng; Harkness, Jennifer; Vengosh, Avner; Mitch, William A

    2014-10-07

    The disposal and leaks of hydraulic fracturing wastewater (HFW) to the environment pose human health risks. Since HFW is typically characterized by elevated salinity, concerns have been raised whether the high bromide and iodide in HFW may promote the formation of disinfection byproducts (DBPs) and alter their speciation to more toxic brominated and iodinated analogues. This study evaluated the minimum volume percentage of two Marcellus Shale and one Fayetteville Shale HFWs diluted by fresh water collected from the Ohio and Allegheny Rivers that would generate and/or alter the formation and speciation of DBPs following chlorination, chloramination, and ozonation treatments of the blended solutions. During chlorination, dilutions as low as 0.01% HFW altered the speciation toward formation of brominated and iodinated trihalomethanes (THMs) and brominated haloacetonitriles (HANs), and dilutions as low as 0.03% increased the overall formation of both compound classes. The increase in bromide concentration associated with 0.01-0.03% contribution of Marcellus HFW (a range of 70-200 μg/L for HFW with bromide = 600 mg/L) mimics the increased bromide levels observed in western Pennsylvanian surface waters following the Marcellus Shale gas production boom. Chloramination reduced HAN and regulated THM formation; however, iodinated trihalomethane formation was observed at lower pH. For municipal wastewater-impacted river water, the presence of 0.1% HFW increased the formation of N-nitrosodimethylamine (NDMA) during chloramination, particularly for the high iodide (54 ppm) Fayetteville Shale HFW. Finally, ozonation of 0.01-0.03% HFW-impacted river water resulted in significant increases in bromate formation. The results suggest that total elimination of HFW discharge and/or installation of halide-specific removal techniques in centralized brine treatment facilities may be a better strategy to mitigate impacts on downstream drinking water treatment plants than altering

  10. Colorectal Cancer and Long-Term Exposure to Trihalomethanes in Drinking Water: A Multicenter Case-Control Study in Spain and Italy

    OpenAIRE

    Villanueva, Cristina M.; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Pérez Gómez, Beatriz; Pollán, Marina; Gómez Acebo, Inés; Altzibar, Jone M.; Jiménez Zabala, Ana; Ardanaz, Eva; Peiró, Rosana

    2016-01-01

    Background: Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. Objectives: We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. Methods: A multicenter case?control study was conducted in Spain and Italy in 2008?2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) cont...

  11. Predictors of blood trihalomethane concentrations in NHANES 1999-2006.

    Science.gov (United States)

    Riederer, Anne M; Dhingra, Radhika; Blount, Benjamin C; Steenland, Kyle

    2014-07-01

    Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999-2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%-76% in blood and 38%-52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002-2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study.

  12. Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment.

    Science.gov (United States)

    Xu, Zhifa; Li, Xia; Hu, Xialin; Yin, Daqiang

    2017-10-01

    Distribution and relevance of iodinated X-ray contrast media (ICM) and iodinated disinfection byproducts (I-DBPs) in a real aquatic environment have been rarely documented. In this paper, some ICM were proven to be strongly correlated with I-DBPs through investigation of five ICM and five iodinated trihalomethanes (I-THMs) in surface water and two drinking water treatment plants (DWTPs) of the Yangtze River Delta, China. The total ICM concentrations in Taihu Lake and the Huangpu River ranged from 88.7 to 131 ng L -1 and 102-252 ng L -1 , respectively. While the total I-THM concentrations ranged from 128 to 967 ng L -1 in Taihu Lake and 267-680 ng L -1 in the Huangpu River. Iohexol, the dominant ICM, showed significant positive correlation (p < 0.01) with CHClI 2 in Taihu Lake. Iopamidol and iomeprol correlated positively (p < 0.01) with some I-THMs in the Huangpu River. The observed pronounced correlations between ICM and I-THMs indicated that ICM play an important role in the formation of I-THMs in a real aquatic environment. Characteristics of the I-THM species distributions indicated that I-THMs may be transformed by natural conditions. Both DWTPs showed negligible removal efficiencies for total ICM (<20%). Strikingly high concentrations of total I-THMs were observed in the finished water (2848 ng L -1 in conventional DWTP and 356 ng L -1 in advanced DWTP). Obvious transformation of ICM to I-THMs was observed during the chlorination and ozonization processes in DWTPs. We suggest that ICM is an important source for I-DBP formation in the real aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Permanganate Preoxidation to Natural Organic Matter and Disinfection by-Products Formation Potential Removal

    Science.gov (United States)

    Hidayah, E. N.; Yeh, H. H.

    2018-01-01

    Laboratory scale experiments was conducted to examine effect of permanganate (KMnO4) peroxidation in characterizing and to remove natural organic matter (NOM) in source water. The experimental results shows that increasing permanganate dosage could decreased aromatic matter, as indicated by decreasing UV254 and SUVA value about 23% and 28%, respectively. It seems that permanganate preoxidation caused the breakdown of high molecular weight (MW) organics into low MW ones, as represented by increasing NPDOC about 10%. Further, disinfection by-products formation potential (DBPFP) in terms of trihalomethanes formation potential (THMFP) and haloacetic acid formation potential (HAAP) decreased about 15% and 23%, respectively. HAAFP removal is higher than THMFP removal and that DPBFP removal is consistent with UV254 and NPDOC removal.

  14. Improving Student Understanding of Qualitative and Quantitative Analysis via GC/MS Using a Rapid SPME-Based Method for Determination of Trihalomethanes in Drinking Water

    Science.gov (United States)

    Huang, Shu Rong; Palmer, Peter T.

    2017-01-01

    This paper describes a method for determination of trihalomethanes (THMs) in drinking water via solid-phase microextraction (SPME) GC/MS as a means to develop and improve student understanding of the use of GC/MS for qualitative and quantitative analysis. In the classroom, students are introduced to SPME, GC/MS instrumentation, and the use of MS…

  15. Trihalometanos en el agua de piscinas en cuatro zonas de España participantes en el proyecto INMA Trihalomethanes in swimming pool water in four areas of Spain participating in the INMA project

    Directory of Open Access Journals (Sweden)

    Laia Font-Ribera

    2010-12-01

    Full Text Available Objetivo: La natación es uno de los deportes más practicados en España, por personas de todas las edades y condiciones físicas. También es una vía de exposición a subproductos de la desinfección, compuestos potencialmente tóxicos. Su concentración en el agua de las piscinas no está legislada y es poco conocida. El objetivo de este trabajo es describir la concentración de trihalometanos en el agua de piscinas de los municipios de cuatro cohortes del estudio INMA. Métodos: En julio de 2009 se analizaron los trihalometanos en el agua de piscinas (n=27 de Asturias, Granada, Valencia y Sabadell. Resultados: La concentración media de trihalometanos totales fue de 42,7µg/l (desviación estándar [DE]=19,1 en las piscinas interiores y de 151,2µg/l (DE=80,7 en las exteriores, predominando siempre el cloroformo. Granada tuvo los valores más bajos. Conclusión: La concentración de trihalometanos en el agua de piscinas presenta una gran variabilidad. Las piscinas exteriores tienen valores más altos, superando mayoritariamente los límites legales establecidos para el agua de consumo.Objective: Swimming is one of the most widely practiced sports in Spain among people of all ages and physical conditions. This activity is also a source of exposure to disinfection by-products (DBP, which are potentially toxic. The DBP concentration in swimming pool water is not regulated and is poorly known. The aim of this study was to describe trihalomethane concentrations in swimming pool water in the municipalities of four cohorts of the INMA project. Methods: In July 2009, trihalomethanes were analyzed in water from 27 swimming pools in Asturias, Granada, Valencia and Sabadell. Results: The mean total trihalomethane concentration was 42.7µg/L (standard deviation [SD]=19.1 in indoor pools and 151.2µg/L (SD=80.7 in outdoor pools. In all pools, the most abundant trihalomethane was always chloroform. The lowest levels were found in Granada. Conclusion

  16. [Formation and changes of regulated trihalomethanes and haloacetic acids in raw water of Yangtze River, Huangpu River and different treatment processes and pipelines network].

    Science.gov (United States)

    Chen, Xin; Zhang, Dong; Lu, Yin-hao; Zheng, Wei-wei; Wu, Yu-xin; Wei, Xiao; Tian, Da-jun; Wang, Xia; Zhang, Hao; Guo, Shuai; Jiang, Song-hui; Qu, Wei-dong

    2010-10-01

    To investigate the pollutant levels of regulated disinfection by-products trihalomethanes (THMs) and haloacetic acids (HAAs) in raw water from the Huangpu River, the Yangtze River and different treatment processes and finished water, and to explore the changes tendency in transmission and distribution pipeline network. A total of 65 ml water samples with two replicates were collected from different raw water, corresponding treatment processes, finished water and six national surveillance points in main network of transmission and distribution, water source for A water plant and B, C water plant was the Huangpu River and the Yangtze River, respectively. Regulated THMs and HAAs above water samples were detected by gas chromatography. The total trihalomethanes (THM(4)) concentration in different treatment processes of A water plant was ND-9.64 µg/L, dichlorobromomethane was the highest (6.43 µg/L). The THM(4) concentration in B and C water plant was ND to 38.06 µg/L, dibromochloromethane (12.24 µg/L) and bromoform (14.07 µg/L) were the highest in the B and the C water plant respectively. In addition to trichloroacetic acid in A water plant from the raw water, the other HAAs came from different treatment processes. The total haloacetic acids (HAA(6)) concentration of different treated processes in A water plant was 3.21 - 22.97 µg/L, mobromoacetic acid (10.40 µg/L) was the highest. Dibromoacetic acid was the highest both in B (8.25 µg/L) and C (8.84 µg/L) water plant, HAA(6) concentration was ND to 27.18 µg/L. The highest and the lowest concentration of THM(4) were found from the main distribution network of C and A water plant respectively, but the concentration of HAA(6) in the main water pipes network of A water plant was the highest, and the lowest in C water plant. The THMs concentration was 21.11 - 31.18 µg/L in C water plant and 6.72 - 8.51 µg/L in A water plant. The concentration of HAA(6) was 25.02 - 37.31 µg/L in A water plant and 18.69 - 23

  17. O uso de cloro na desinfecção de águas, a formação de trihalometanos e os riscos potenciais à saúde pública Chlorine use in water disinfection, trihalomethane formation, and potential risks to public health

    Directory of Open Access Journals (Sweden)

    Sheila T. Meyer

    1994-03-01

    Full Text Available Antes do desenvolvimento da teoria dos microorganismos como causadores de doenças (1880, acreditava-se que estas eram transmitidas através de odores. A desinfecção, tanto da água de abastecimento como dos esgotos, surgiu como uma tentativa da eliminação desses odores. Existem muitos agentes desinfetantes, mas, em geral, o cloro é o principal produto utilizado na desinfecção de águas de abastecimento. A presença de compostos orgânicos em águas que sofrem o processo de cloração resulta na formação dos trihalometanos, compostos formados por um átomo de carbono, um de hidrogênio e três de halogênio (cloro, bromo, iôdo. Os trihalometanos são considerados compostos carcinogênicos e sua presença na água deve ser evitada. Levantamentos epidemiológicos relacionando a concentração dos trihalometanos com a morbidade e a mortalidade por câncer evidenciaram associações positivas em alguns casos de carcinomas. Entretanto, a substituição do cloro por outro desinfetante no tratamento da água pode trazer mais riscos do que benefícios, considerando-se que a diminuição da incidência de doenças transmissíveis pela água somente foi alcançada com a difusão do emprego da técnica de cloração.Before the development of the germ theory relating microorganisms with disease transmission (1880 people believed that diseases were transmitted by odours. Water and sewage disinfection emerged as a method for elimination of odours. There are many disinfecting agents, but chlorine is the main product used to disinfect water. Organic compounds present in water that is chlorinated can result in the formation of trihalomethanes. The latter are basically one atom of carbon, one of hydrogen, and three of a halogen (chlorine, bromine, or iodine. These are considered carcinogenic compounds and their presence in drinking water should therefore be avoided. Epidemiological research has shown an association between trihalomethane concentration

  18. Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins.

    Science.gov (United States)

    Beita-Sandí, Wilson; Karanfil, Tanju

    2017-11-01

    Drinking water utilities are relying more than ever on water sources impacted by wastewater effluents. Disinfection/oxidation of these waters during water treatment may lead to the formation of several disinfection by-products, including the probable human carcinogen N-nitrosodimethylamine (NDMA) and the regulated trihalomethanes (THMs). In this study, the potential of ion exchange resins to control both NDMA and THMs precursors in a single treatment is presented. Two ion exchange resins were examined, a cation exchange resin (Plus) to target NDMA precursors and an anion exchange resin (MIEX) for THMs precursors control. We applied the resins, individually and combined, in the treatment of surface and wastewater effluent samples. The treatment with both resins removed simultaneously NDMA (43-85%) and THMs (39-65%) precursors. However, no removal of NDMA precursors was observed in the surface water with low initial NDMA FP (14 ng/L). The removals of NDMA FP and THMs FP with Plus and MIEX resins applied alone were (49-90%) and (41-69%), respectively. These results suggest no interaction between the resins, and thus the feasibility of effectively controlling NDMA and THMs precursors concomitantly. Additionally, the effects of the wastewater impact and the natural attenuation of precursors were studied. The results showed that neither the wastewater content nor the attenuation of the precursor affected the removals of NDMA and THMs precursors. Finally, experiments using a wastewater effluent sample showed that an increase in the calcium concentration resulted in a reduction in the removal of NDMA precursors of about 50%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Ozone regeneration of granular activated carbon for trihalomethane control.

    Science.gov (United States)

    He, Xuexiang; Elkouz, Mark; Inyang, Mandu; Dickenson, Eric; Wert, Eric C

    2017-03-15

    Spatial and temporal variations of trihalomethanes (THMs) in distribution systems have challenged water treatment facilities to comply with disinfection byproduct rules. In this study, granular activated carbon (GAC) and modified GAC (i.e., Ag-GAC and TiO 2 -GAC) were used to treat chlorinated tap water containing CHCl 3 (15-21μg/L), CHBrCl 2 (13-16μg/L), CHBr 2 Cl (13-14μg/L), and CHBr 3 (3μg/L). Following breakthrough of dissolved organic carbon (DOC), GAC were regenerated using conventional and novel methods. GAC regeneration efficiency was assessed by measuring adsorptive (DOC, UV absorbance at 254nm, and THMs) and physical (surface area and pore volume) properties. Thermal regeneration resulted in a brief period of additional DOC adsorption (bed volume, BV, ∼6000), while ozone regeneration was ineffective regardless of the GAC type. THM adsorption was restored by either method (e.g., BV for ≥80% breakthrough, CHBr 3  ∼44,000>CHBr 2 Cl ∼35,000>CHBrCl 2  ∼31,000>CHCl 3  ∼7000). Cellular and attached adenosine triphosphate measurements illustrated the antimicrobial effects of Ag-GAC, which may have allowed for the extended THM adsorption compared to the other GAC types. The results illustrate that ozone regeneration may be a viable in-situ alternative for the adsorption of THMs during localized treatment in drinking water distribution systems. Published by Elsevier B.V.

  20. Effect of pH on the formation of disinfection byproducts in swimming pool water – Is less THM better?

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Willach, Sarah; Antoniou, Maria

    2012-01-01

    This study investigated the formation and predicted toxicity of different groups of disinfection byproducts (DBPs) from human exudates in relation to chlorination of pool water at different pH values. Specifically, the formation of the DBP groups trihalomethanes (THMs), haloacetic acids (HAAs......), haloacetonitriles (HANs) and trichloramine (NCl3), resulting from the chlorination of body fluid analog, were investigated at 6.0 ≤ pH ≤ 8.0. Either the initial concentration of active chorine or free chlorine was kept constant in the tested pH range. THM formation was reduced by decreasing pH but HAN, and NCl3...... formation was investigated and found to follow the same pH dependency as without bromide present, with the overall DBP formation increasing, except for HAAs. Estimation of genotoxicity and cytotoxicity of the chlorinated human exudates showed that among the quantified DBP groups, HAN formation were...

  1. Availability, quality and relevance of toxicogenomics data for human health risk assessment: A scoping review of the literature on trihalomethanes.

    Science.gov (United States)

    Vachon, Julien; Pagé-Larivière, Florence; Sirard, Marc-André; Rodriguez, Manuel J; Levallois, Patrick; Campagna, Céline

    2018-03-05

    Human health risk assessment (HHRA) must be adapted to the challenges of the 21st century, and the use of toxicogenomics data in HHRA is among the changes that regulatory agencies worldwide are trying to implement. However, the use of toxicogenomics data in HHRA is still limited. The purpose of this study was to explore the availability, quality and relevance to HHRA of toxicogenomics publications as potential barriers to their use in HHRA. We conducted a scoping review of available toxicogenomics literature, using trihalomethanes as a case study. Four bibliographic databases (including the Comparative Toxicogenomics Database) were assessed. An evaluation table was developed to characterise quality and relevance of studies included on the basis of criteria proposed in the literature. Studies were selected and analysed by two independent reviewers. Only nine studies, published between 1997 and 2015, were included in the analysis. Based on the selected criteria, critical methodological details were often missing; in fact, only three out of nine studies were considered to be of adequate quality for HHRA. No studies met more than three (out of seven) criteria of relevance to HHRA (e.g. adequate number of doses and sample size, etc.). This first scoping review of toxicogenomics publications on trihalomethanes shows that low availability, quality and relevance to HHRA of toxicogenomics publications presents potential barriers to their use in HHRA. Improved reporting of methodological details and study design is needed in the future so that toxicogenomics studies can be appropriately assessed regarding their quality and value for HHRA.

  2. Effect of Pre-ozonation on Haloacetic Acids Formation in Ganga River Water at Kanpur, India

    Science.gov (United States)

    Naladala, Nagasrinivasa Rao; Singh, Rambabu; Katiyar, Kumud Lata Devi; Bose, Purnendu; Dutta, Venkatesh

    2017-11-01

    Almost all natural water bodies which are considered to be sustainable sources of drinking water contain organic matter in dissolved form and pathogens. This dissolved organic matter and pathogens cannot be removed effectively through traditional filtering processes in drinking water treatment plants. Chlorination of such water for disinfection results in large amounts of disinfection by-products (DBPs), mainly trihalomethanes and haloacetic acids (HAAs), which showed many health effects like cancer and reproductive problems in lab animals and in human beings as well. Complete removal of dissolved organic carbon (DOC), which is a precursor compound for HAAs formation, is impossible from a practical point of view; hence, it will be better if DOC activity towards DBPs formation can be reduced via some process. The present article describes the process of pre-ozonating post-coagulated Ganga River water at Kanpur in a continuous flow mode and its effect on HAAs formation. Nearly 58% reduction in HAAs formation was observed during this study at higher doses of ozone.

  3. Exposure assessment and the risk associated with trihalomethanes compounds in drinking water - doi: 10.5020/18061230.2012.p5

    Directory of Open Access Journals (Sweden)

    Aldo Pacheco Ferreira

    2012-03-01

    Full Text Available To measure the concentrations of trihalomethanes (THMs in marshland of Jacarepaguá drinking water, Rio de Janeiro-RJ, Brazil, and their associated risks. Methods: Two hundred houses were visited and samples were collected from consumer taps water. Risks estimates based on exposures were projected by employing deterministic and probabilistic approaches. Results: The THMs (dibromochloromethane, bromoform, chloroform, and bromodichloromethane ranged from 3.08 μg/l to 129.31 μg/l. Non-carcinogenic risks induced by ingestion of THMs were below the tolerable level (10 -6 . Conclusion: Data obtained in this research demonstrate that exposure to drinking water contaminants and associated risks were higher than the acceptable level.

  4. Presence of Trihalomethanes in ready-to-eat vegetables disinfected with chlorine.

    Science.gov (United States)

    Coroneo, Valentina; Carraro, Valentina; Marras, Barbara; Marrucci, Alessandro; Succa, Sara; Meloni, Barbara; Pinna, Antonella; Angioni, Alberto; Sanna, Adriana; Schintu, Marco

    2017-12-01

    Trihalomethanes (THMs) - CHCl 3 , CHCl 2 Br, CHClBr 2 and CHBr 3 - are drinking water disinfection by-products (DBPs). These compounds can also be absorbed by different types of foods, including ready-to-eat (RTE) fresh vegetables. The potential absorption of THMs during washing of RTE vegetables could pose a potential risk to consumers' health. The concentration of THMs in the water used in the manufacturing process of these products shall not exceed the limit of 100 or 80 µgL -1 according to European Union (EU) and United States legislation, respectively. By contrast, there is little information about the presence of such compounds in the final product. This study evaluated the concentration of THMs in different types of RTE vegetables (carrots, iceberg lettuce, lettuce, mixed salad, parsley, parsley and garlic, rocket salad, valerian) after washing with chlorinated water. In the 115 samples analysed, the average value of total THMs was equal to 76.7 ng g -1 . Chloroform was the THM present in the largest percentage in all the RTE vegetables. These results show that the process of washing RTE vegetables should be optimised in order to reduce the risk for consumers associated with the presence of DBPs.

  5. Disinfection aboard cruise liners and naval units: formation of disinfection by-products using chlorine dioxide in different qualities of drinking water.

    Science.gov (United States)

    Ufermann, Petra; Petersen, Hauke; Exner, Martin

    2011-12-01

    The world-wide deployment of cruise liners and naval units has caused an increased need for the disinfection of drinking water. The main cause for this is the unknown quality of drinking water in foreign harbours--besides the formation of bio-films due to the climatically disadvantageous conditions in the operational area. Water conduits on board are currently disinfected with calcium hypochlorite in case of microbiological contamination. Chemical and physical analyses after disinfection with calcium hypochlorite have shown that organic by-products consisting of trihalomethanes develop in considerable amounts during disinfection. Furthermore, the method is susceptible to handling errors and thus often leads to insufficient disinfection results. Hitherto, the use of other disinfection methods allowed by government regulations, especially chlorine dioxide, is not widely spread. Unlike disinfection with calcium hypochlorite, chlorine dioxide does not lead to the formation of trihalomethanes. Typical disinfection by-products (DBP) are the anions chlorite and chlorate, which are formed in oxidative processes. The formation conditions of these anions have not yet been elucidated. For this reason, the probability of the generation of inorganic by-products after disinfection with chlorine dioxide has been determined, and their occurrence in drinking water on board has been examined with respect to a possible correlation between water quality and the formation of chlorate and chlorite. Therefore, a chromatographic method was developed and validated in order to determine the periodical development of chlorate and chlorite from chorine dioxide in purified water at different pH-values as well as in actual drinking water samples from water conduits on board. The formation of the by-products chlorite and chlorate after disinfection with chlorine dioxide is influenced neither by pH-value nor by chemical properties of the disinfected water. Considering the examined conditions

  6. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    Science.gov (United States)

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  7. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    Science.gov (United States)

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  8. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    Science.gov (United States)

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO 2 /IrO 2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO 2 /IrO 2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  9. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.

    Science.gov (United States)

    Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min

    2016-04-15

    Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation.

    Science.gov (United States)

    Le Roux, Julien; Gallard, Hervé; Croué, Jean-Philippe

    2011-05-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH(2)Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl(2)) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e

  11. Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation

    KAUST Repository

    Le Roux, Julien

    2011-05-01

    Disinfection with chloramines is often used to reduce the production of regulated disinfection by-products (DBPs) such as trihalomethanes (THMs) and haloacetic acids (HAAs). However, chloramination can lead to the formation of N-nitrosamines, including N-nitrosodimethylamine (NDMA), a probable human carcinogen. Previous research used dimethylamine (DMA) as a model precursor of NDMA, but certain widely used tertiary dimethylamines (e.g. the pharmaceutical ranitidine) show much higher conversion rates to NDMA than DMA. This study investigates the NDMA formation potential of several tertiary amines including pharmaceuticals and herbicides. The reactivity of these molecules with monochloramine (NH2Cl) is studied through the formation of NDMA, and other halogenated DBPs such as haloacetonitriles (HANs) and AOX (Adsorbable Organic Halides). Several compounds investigated formed NDMA in greater amounts than DMA, revealing the importance of structural characteristics of tertiary amines for NDMA formation. Among these compounds, the pharmaceutical ranitidine showed the highest molar conversion to NDMA. The pH and dissolved oxygen content of the solution were found to play a major role for the formation of NDMA from ranitidine. NDMA was formed in higher amounts at pH around pH 8 and a lower concentration of dissolved oxygen dramatically decreased NDMA yields. These findings seem to indicate that dichloramine (NHCl2) is not the major oxidant involved in the formation of NDMA from ranitidine, results in contradiction with the reaction mechanisms proposed in the literature. Dissolved oxygen was also found to influence the formation of other oxygen-containing DBPs (i.e. trichloronitromethane and haloketones). The results of this study identify several anthropogenic precursors of NDMA, indicating that chloramination of waters impacted by these tertiary amines could lead to the formation of significant amounts of NDMA and other non-regulated DBPs of potential health concern (e

  12. A green strategy for desorption of trihalomethanes adsorbed by humin and reuse of the fixed bed column.

    Science.gov (United States)

    Cunha, G C; Romão, L P C; Santos, M C; Costa, A S; Alexandre, M R

    2012-03-30

    The objective of the present work was to develop a thermal desorption method for the removal of trihalomethanes (THM) adsorbed by humin, followed by multiple recycling of the fixed bed column in order to avoid excessive consumption of materials and reduce operating costs. The results obtained for adsorption on a fixed bed column confirmed the effectiveness of humin as an adsorbent, extracting between 45.9% and 90.1% of the total THM (TTHM). In none of the tests was the column fully saturated after 10h. Experiments involving thermal desorption were used to evaluate the potential of the technique for column regeneration. The adsorptive capacity of the humin bed increased significantly (p<0.05) between the first and fifth desorption cycle, by 18.9%, 18.1%, 24.2%, 20.2% and 24.2% for CHBr(3), CHBr(2)Cl, CHBrCl(2), CHCl(3) and TTHM, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao; Croue, Jean-Philippe

    2015-01-01

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  14. Formation of bromate and halogenated disinfection byproducts during chlorination of bromide-containing waters in the presence of dissolved organic matter and CuO

    KAUST Repository

    Liu, Chao

    2015-12-02

    Previous studies showed that significant bromate (BrO3-) can be formed via the CuO-catalyzed disproportionation of hypobromous acid (HOBr) pathway. In this study, the influence of CuO on the formation of BrO3- and halogenated disinfection byproducts (DBPs) (e.g., trihalomethanes, THMs and haloacetic acids, HAAs) during chlorination of six dissolved organic matter (DOM) isolates was investigated. Only in the presence of slow reacting DOM (from treated Colorado River water, i.e., CRW-BF-HPO), significant BrO3- formation is observed, which competes with bromination of DOM (i.e., THM and HAA formation). Reactions between HOBr and 12 model compounds in the presence of CuO indicates that CuO-catalyzed HOBr disproportionation is completely inhibited by fast reacting phenols, while it predominates in the presence of practically unreactive compounds (acetone, butanol, propionic, and butyric acids). In the presence of slow reacting di- and tri-carboxylic acids (oxalic, malonic, succinic, and citric acids), BrO3- formation varies, depending on its competition with bromoform and dibromoacetic acid formation (i.e., bromination pathway). The latter pathway can be enhanced by CuO due to the activation of HOBr. Therefore, increasing CuO dose (0-0.2 g L-1) in a reaction system containing chlorine, bromide, and CRW-BF-HPO enhances the formation of BrO3-, total THMs and HAAs. Factors including pH and initial reactant concentrations influence the DBP formation. These novel findings have implications for elevated DBP formation during transportation of chlorinated waters in copper-containing distribution systems.

  15. Disinfection byproduct formation during biofiltration cycle: Implications for drinking water production.

    Science.gov (United States)

    Delatolla, R; Séguin, C; Springthorpe, S; Gorman, E; Campbell, A; Douglas, I

    2015-10-01

    The goal of this study was to investigate the potential of biofiltration to reduce the formation potential of disinfection byproducts (DBPs). Particularly, the work investigates the effect of the duration of the filter cycle on the formation potential of total trihalomethanes (TTHM) and five species of haloacetic acids (HAA5), dissolved oxygen (DO), organic carbon, nitrogen and total phosphorous concentrations along with biofilm coverage of the filter media and biomass viability of the attached cells. The study was conducted on a full-scale biologically active filter, with anthracite and sand media, at the Britannia water treatment plant (WTP), located in Ottawa, Ontario, Canada. The formation potential of both TTHMs and HAA5s decreased due to biofiltration. However the lowest formation potentials for both groups of DBPs and or their precursors were observed immediately following a backwash event. Hence, the highest percent removal of DBPs was observed during the early stages of the biofiltration cycle, which suggests that a higher frequency of backwashing will reduce the formation of DBPs. Variable pressure scanning electron microscopy (VPSEM) analysis shows that biofilm coverage of anthracite and sand media increases as the filtration cycle progressed, while biomass viability analysis demonstrates that the percentage of cells attached to the anthracite and sand media also increases as the filtration cycle progresses. These results suggest that the development and growth of biofilm on the filters increases the DPB formation potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim

    2014-12-03

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  17. Coevolutionary modeling in network formation

    KAUST Repository

    Al-Shyoukh, Ibrahim; Chasparis, Georgios; Shamma, Jeff S.

    2014-01-01

    Network coevolution, the process of network topology evolution in feedback with dynamical processes over the network nodes, is a common feature of many engineered and natural networks. In such settings, the change in network topology occurs at a comparable time scale to nodal dynamics. Coevolutionary modeling offers the possibility to better understand how and why network structures emerge. For example, social networks can exhibit a variety of structures, ranging from almost uniform to scale-free degree distributions. While current models of network formation can reproduce these structures, coevolutionary modeling can offer a better understanding of the underlying dynamics. This paper presents an overview of recent work on coevolutionary models of network formation, with an emphasis on the following three settings: (i) dynamic flow of benefits and costs, (ii) transient link establishment costs, and (iii) latent preferential attachment.

  18. Relationship between THMs/NDMA formation potential and molecular weight of organic compounds for source and treated water in Shanghai, China.

    Science.gov (United States)

    An, Dong; Gu, Bin; Sun, Sainan; Zhang, Han; Chen, Yanan; Zhu, Huifeng; Shi, Jian; Tong, Jun

    2017-12-15

    Molecular weight (MW) distributions in source and treated water in Shanghai, China were investigated to understand the relationship between trihalomethanes formation potential/N-nitrosodimethylamine formation potential (THMFP/NDMAFP) and dissolved organic carbon (DOC) for different MW ranges (30KDa). The result of MW distributions in source water indicated a relationship between THMFP/NDMAFP and DOC such that DOC for 30KDa THMFP was totally removed whereas NDMA according to the results for treated water between DOC and NDMAFP (R 2 =0.94 and 0.93 for sand and GAC filtration, respectively). The results may provide researchers with targeted treatment strategies to destroy, remove, or reduce the occurrence of THMs and NDMA precursors. The findings presented in this study will be of great value in future work for selecting suitable drinking water treatment processes to minimize the formation of disinfection by-products using chlorine or chloramine disinfection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Trihalomethanes and associated potential cancer risks in the water supply in Ankara, Turkey

    International Nuclear Information System (INIS)

    Tokmak, Burcu; Capar, Goksen; Dilek, F.B.; Yetis, Ulku

    2004-01-01

    The occurrence of trihalomethanes (THMs) in the water supply in the Ankara, Turkey was investigated. Total THMs and total organic carbon measurements were carried seasonally in the samples collected form 22 different districts along with the samples taken from the Ivedik Water Treatment Plant serving 90% of the city. The average summer nonpurgeable organic carbon (NPOC) concentration in the raw water was 4.2 mg/L, and the NPOC removal achieved in the treatment plant was 31%. The concentration of total THMs ranged from 25 to 74 μg/L, from 28 to 73 μg/L, and from 25 to 110 μg/L in winter, spring, and summer, respectively. In all of the samples chloroform existed at the highest concentrations, while bromoform was almost absent. The total THM concentrations were highest in summer for all districts. However, none of the concentrations detected exceeded the USEPA's Stage I limit of 80 μg/L and the EU's limit of 100 μg/L. However, the total THM level in 64% of the districts exceeded the USEPA's Stage II limit of 40 μg/L. The risk estimations carried out indicated that each year 1 of the 5 million Ankara residents could get cancer from the daily intake of water, mainly because of exposure to chloroform through oral ingestion

  20. Drinking water and pregnancy outcome in central North Carolina: source, amount, and trihalomethane levels.

    Science.gov (United States)

    Savitz, D A; Andrews, K W; Pastore, L M

    1995-01-01

    In spite of the recognition of potentially toxic chemicals in chlorinated drinking water, few studies have evaluated reproductive health consequences of such exposure. Using data from a case-control study of miscarriage, preterm delivery, and low birth weight in central North Carolina, we evaluated risk associated with water source, amount, and trihalomethane (THM) concentration. Water source was not related to any of those pregnancy outcomes, but an increasing amount of ingested water was associated with decreased risks of all three outcomes (odds ratios around 1.5 for 0 glasses per day relative to 1-3 glasses per day, falling to 0.8 for 4+ glasses per day). THM concentration and dose (concentration x amount) were not related to pregnancy outcome, with the possible exception of an increased risk of miscarriage in the highest sextile of THM concentration (adjusted odds ratio = 2.8, 95% confidence interval = 1.1-2.7), which was not part of an overall dose-response gradient. These data do not indicate a strong association between chlorination by-products and adverse pregnancy outcome, but given the limited quality of our exposure assessment and the increased miscarriage risk in the highest exposure group, more refined evaluation is warranted. PMID:7556013

  1. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yingxue; Wu Qianyuan [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Hu Hongying, E-mail: hyhu@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Tian Jie [Environmental Simulation and Pollution Control State Key Joint Laboratory, Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2009-09-15

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  2. Effects of operating conditions on THMs and HAAs formation during wastewater chlorination

    International Nuclear Information System (INIS)

    Sun Yingxue; Wu Qianyuan; Hu Hongying; Tian Jie

    2009-01-01

    Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. However, the chlorination process results in the formation of mutagenic/carcinogenic disinfection by-products (DBPs) deriving from the reaction of the chlorine with organic compounds in wastewater. The effects of operating conditions (chlorine dose, contact time, reaction temperature and pH value) of chlorination on the formation of trihalomethanes (THMs) and haloacetic acids (HAAs) in biologically treated wastewater samples were investigated in this study. The results indicated that the total THMs (TTHM) and total HAAs (THAA) increased exponentially with increasing chlorine dose, but there are discrepancies between the formation rates of TTHM and THAA. The THAA reached a peak at contact time of 2 h and thereafter decreased with extended time. The formation time of THMs depends on the wastewater content of quick or slow formers. The yields of bromated HAAs (as MBAA, BCAA, and BDCAA) would decrease markedly after the contact time over 2 h during wastewater chlorination, and were favored in low pH values of 4 and high pH values of 9 under certain contact time. In addition, the formation of MBAA, BCAA, BDCAA decreased gradually as reaction temperature increased from 4 to 30 deg. C in the chlorination of wastewater containing a certain concentration of bromide. The effects of operating conditions on THMs and HAAs formation during wastewater chlorination were completely different from those of surface water disinfection.

  3. The study of interrelationship between raw water quality parameters, chlorine demand and the formation of disinfection by-products

    Science.gov (United States)

    Abdullah, Md. Pauzi; Yee, Lim Fang; Ata, Sadia; Abdullah, Abass; Ishak, Basar; Abidin, Khairul Nidzham Zainal

    Disinfection is the most crucial process in the treatment of drinking water supply and is the final barrier against bacteriological impurities in drinking water. Chlorine is the primary disinfectant used in the drinking water treatment process throughout Malaysia. However, the occurrence of various disinfection by-products such as trihalomethanes (THM) and haloacetic acids created a major issue on the potential health hazards which may pose adverse health effects in both human and animals. To simulate real water treatment conditions and to represent the conditions inherent in a tropical country, this study was performed at an urbanized water treatment plant with a daily production of about 549,000 m 3 of treated water. The purpose of this work is to examine the relationship between the water quality parameters in the raw water with chlorine demand and the formation of disinfection by-products. This study also investigated the possibility of the statistical model applications for the prediction of chlorine demand and the THM formation. Two models were developed to estimate the chlorine demand and the THM formation. For the statistical evaluation, correlation and simple linear regression analysis were conducted using SPSS. The results of Kolmogorov-Smirnov test for the estimation of goodness-of-fit of the dependent variables of the models to the normal distribution showed that all the dependent variables followed the normal distribution at significance level of 0.05. Good linear correlations were observed between the independent parameters and formation of THM and the chlorine demand. This study also revealed that ammonia and the specific ultraviolet absorbent (SUVA) were the function of chlorine consumption in the treatment process. Chlorine dosage and SUVA increase the yield of THM. Chlorine demand and THM formation was moderately sensitive, but significant to the pH. The level of significance ( α) for the statistical tests and the inclusion of a variable in the

  4. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    Science.gov (United States)

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  5. Spur Reaction Model of Positronium Formation

    DEFF Research Database (Denmark)

    Mogensen, O. E.

    1974-01-01

    A new model of positronium (Ps) formation is proposed. Positronium is assumed to be formed by a reaction between a positron and an electron in the positron spur. Ps formation must compete with electron‐ion recombination and electron or positron reactions with solvent molecules and scavenger...

  6. Effects of ozone as a stand-alone and coagulation-aid treatment on the reduction of trihalomethanes precursors from high DOC and hardness water.

    Science.gov (United States)

    Sadrnourmohamadi, Mehrnaz; Gorczyca, Beata

    2015-04-15

    This study investigates the effect of ozone as a stand-alone and coagulation aid on the removal of dissolved organic carbon (DOC) from the water with a high level of DOC (13.8 mgL(-1)) and calcium hardness (270 mgL(-1)) CaCO3. Natural water collected from the Assiniboine River (Manitoba, Canada) was used in this study. Effectiveness of ozone treatment was evaluated by measurement of DOC, DOC fractions, UV254, and trihalomethane formation potential (THMFP). Additionally, zeta potential and dissolved calcium concentration were measured to discern the mechanism of ozone reactions. Results indicated that 0.8 mg O3/mg DOC ozone stand-alone can cause up to 86% UV254 reduction and up to 27% DOC reduction. DOC fractionation results showed that ozone can change the composition of DOC in the water samples, converting the hydrophobic fractions into hydrophilic ones and resulting in the reduction of THMFP. Also, ozone caused a decrease in particle stability and dissolved calcium concentration. These simultaneous ozonation effects caused improved water flocculation and enhanced removal of DOC. This resulted in reduction of the coagulant dosage when ozone doses higher than 0.2 mg O3/mg DOC were applied prior to coagulation with ferric sulfate. Also, pre-ozonation-coagulation process achieved preferential THMFP removal for all of the ozone doses tested (0-0.8 mg O3/mg DOC), leading to a lower specific THMFP in pre-ozonated-coagulated waters than in the corresponding ozonated waters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Micro versus macro solid phase extraction for monitoring water contaminants: a preliminary study using trihalomethanes.

    Science.gov (United States)

    Alexandrou, Lydon D; Spencer, Michelle J S; Morrison, Paul D; Meehan, Barry J; Jones, Oliver A H

    2015-04-15

    Solid phase extraction is one of the most commonly used pre-concentration and cleanup steps in environmental science. However, traditional methods need electrically powered pumps, can use large volumes of solvent (if multiple samples are run), and require several hours to filter a sample. Additionally, if the cartridge is open to the air volatile compounds may be lost and sample integrity compromised. In contrast, micro cartridge based solid phase extraction can be completed in less than 2 min by hand, uses only microlitres of solvent and provides comparable concentration factors to established methods. It is also an enclosed system so volatile components are not lost. The sample can also be eluted directly into a detector (e.g. a mass spectrometer) if required. However, the technology is new and has not been much used for environmental analysis. In this study we compare traditional (macro) and the new micro solid phase extraction for the analysis of four common volatile trihalomethanes (trichloromethane, bromodichloromethane, dibromochloromethane and tribromomethane). The results demonstrate that micro solid phase extraction is faster and cheaper than traditional methods with similar recovery rates for the target compounds. This method shows potential for further development in a range of applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo; Burger, Martin; Haskovec, Jan; Markowich, Peter A.; Schlottbom, Matthias

    2017-01-01

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes

  9. A possible formation scenario for dwarf spheroidal galaxies - III. Adding star formation histories to the fiducial model

    Science.gov (United States)

    Alarcón Jara, A. G.; Fellhauer, M.; Matus Carrillo, D. R.; Assmann, P.; Urrutia Zapata, F.; Hazeldine, J.; Aravena, C. A.

    2018-02-01

    Dwarf spheroidal galaxies are regarded as the basic building blocks in the formation of larger galaxies and are the most dark matter dominated systems in the Universe, known so far. There are several models that attempt to explain their formation and evolution, but they have problems modelling the formation of isolated dwarf spheroidal galaxies. Here, we will explain a possible formation scenario in which star clusters form inside the dark matter halo of a dwarf spheroidal galaxy. These star clusters suffer from low star formation efficiency and dissolve while orbiting inside the dark matter halo. Thereby, they build the faint luminous components that we observe in dwarf spheroidal galaxies. In this paper, we study this model by adding different star formation histories to the simulations and compare the results with our previous work and observational data to show that we can explain the formation of dwarf spheroidal galaxies.

  10. Passive exposures of children to volatile trihalomethanes during domestic cleaning activities of their parents

    Energy Technology Data Exchange (ETDEWEB)

    Andra, Syam S. [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Harvard-Cyprus Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA (United States); Charisiadis, Pantelis [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus); Karakitsios, Spyros; Sarigiannis, Denis A. [Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, University Campus, Bldg. D, Rm 318, 54124 Thessaloniki (Greece); Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thessaloniki-Thermi (Greece); Makris, Konstantinos C., E-mail: konstantinos.makris@cut.ac.cy [Water and Health Laboratory, Cyprus International Institute for Environmental and Public Health in association with Harvard School of Public Health, Cyprus University of Technology, Limassol (Cyprus)

    2015-01-15

    Domestic cleaning has been proposed as a determinant of trihalomethanes (THMs) exposure in adult females. We hypothesized that parental housekeeping activities could influence children's passive exposures to THMs from their mere physical presence during domestic cleaning. In a recent cross-sectional study (n=382) in Cyprus [41 children (<18y) and 341 adults (≥18y)], we identified 29 children who met the study's inclusion criteria. Linear regression models were applied to understand the association between children sociodemographic variables, their individual practices influencing ingestion and noningestion exposures to ΣTHMs, and their urinary THMs levels. Among the children-specific variables, age alone showed a statistically significant inverse association with their creatinine-adjusted urinary ΣTHMs (r{sub S}=−0.59, p<0.001). A positive correlation was observed between urinary ΣTHMs (ng g{sup −1}) of children and matched-mothers (r{sub S}=0.52, p=0.014), but this was not the case for their matched-fathers (r{sub S}=0.39, p=0.112). Time spent daily by the matched-mothers for domestic mopping, toilet and other cleaning activities using chlorine-based cleaning products was associated with their children's urinary THMs levels (r{sub S}=0.56, p=0.007). This trend was not observed between children and their matched-fathers urinary ΣTHMs levels, because of minimum amount of time spent by the latter in performing domestic cleaning. The proportion of variance of creatinine-unadjusted and adjusted urinary ΣTHMs levels in children that was explained by the matched-mothers covariates was 76% and 74% (p<0.001), respectively. A physiologically-based pharmacokinetic model adequately predicted urinary chloroform excretion estimates, being consistent with the corresponding measured levels. Our findings highlighted the influence of mothers' domestic cleaning activities towards enhancing passive THMs exposures of their children. The duration of such

  11. Passive exposures of children to volatile trihalomethanes during domestic cleaning activities of their parents

    International Nuclear Information System (INIS)

    Andra, Syam S.; Charisiadis, Pantelis; Karakitsios, Spyros; Sarigiannis, Denis A.; Makris, Konstantinos C.

    2015-01-01

    Domestic cleaning has been proposed as a determinant of trihalomethanes (THMs) exposure in adult females. We hypothesized that parental housekeeping activities could influence children's passive exposures to THMs from their mere physical presence during domestic cleaning. In a recent cross-sectional study (n=382) in Cyprus [41 children (<18y) and 341 adults (≥18y)], we identified 29 children who met the study's inclusion criteria. Linear regression models were applied to understand the association between children sociodemographic variables, their individual practices influencing ingestion and noningestion exposures to ΣTHMs, and their urinary THMs levels. Among the children-specific variables, age alone showed a statistically significant inverse association with their creatinine-adjusted urinary ΣTHMs (r S =−0.59, p<0.001). A positive correlation was observed between urinary ΣTHMs (ng g −1 ) of children and matched-mothers (r S =0.52, p=0.014), but this was not the case for their matched-fathers (r S =0.39, p=0.112). Time spent daily by the matched-mothers for domestic mopping, toilet and other cleaning activities using chlorine-based cleaning products was associated with their children's urinary THMs levels (r S =0.56, p=0.007). This trend was not observed between children and their matched-fathers urinary ΣTHMs levels, because of minimum amount of time spent by the latter in performing domestic cleaning. The proportion of variance of creatinine-unadjusted and adjusted urinary ΣTHMs levels in children that was explained by the matched-mothers covariates was 76% and 74% (p<0.001), respectively. A physiologically-based pharmacokinetic model adequately predicted urinary chloroform excretion estimates, being consistent with the corresponding measured levels. Our findings highlighted the influence of mothers' domestic cleaning activities towards enhancing passive THMs exposures of their children. The duration of such activities could be

  12. Pair formation models for sexually transmitted infections: A primer

    Directory of Open Access Journals (Sweden)

    Mirjam Kretzschmar

    2017-08-01

    Full Text Available For modelling sexually transmitted infections, duration of partnerships can strongly influence the transmission dynamics of the infection. If partnerships are monogamous, pairs of susceptible individuals are protected from becoming infected, while pairs of infected individuals delay onward transmission of the infection as long as they persist. In addition, for curable infections re-infection from an infected partner may occur. Furthermore, interventions based on contact tracing rely on the possibility of identifying and treating partners of infected individuals. To reflect these features in a mathematical model, pair formation models were introduced to mathematical epidemiology in the 1980's. They have since been developed into a widely used tool in modelling sexually transmitted infections and the impact of interventions. Here we give a basic introduction to the concepts of pair formation models for a susceptible-infected-susceptible (SIS epidemic. We review some results and applications of pair formation models mainly in the context of chlamydia infection. Keywords: Pair formation, Mathematical model, Partnership duration, Sexually transmitted infections, Basic reproduction number

  13. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    Science.gov (United States)

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. New method for determination of trihalomethanes in exhaled breath: Applications to swimming pool and bath environments

    International Nuclear Information System (INIS)

    Lourencetti, Carolina; Ballester, Clara; Fernandez, Pilar; Marco, Esther; Prado, Celia; Periago, Juan F.; Grimalt, Joan O.

    2010-01-01

    A method for the estimation of the human intake of trihalomethanes (THMs), namely chloroform, bromodichloromethane, dibromochloromethane and bromoform, during showering and bathing is reported. The method is based on the determination of these compounds in exhaled breath that is collected by solid adsorption on Tenax using a device specifically designed for this purpose. Instrumental measurements were performed by automatic thermal desorption coupled to gas chromatography with electron capture detection. THMs in exhaled breath samples were determined during showering and swimming pool attendance. The levels of these compounds in indoor air and water were also determined as reference for interpretation of the exhaled breath results. The THM concentrations in exhaled breath of the volunteers measured before the exposure experiments showed a close correspondence with the THMs levels in indoor air where the sampler was located. Limits of detection in exhaled breath were dependent on THM analytes and experimental sites. They ranged between 170 and 710 ng m -3 in the swimming pool studies and between 97 and 460 ng m -3 in the showering studies. Application of this method to THMs determination during showering and swimming pool activities revealed statistically significant increases in THMs concentrations when comparing exhaled breath before and after exposure.

  15. A mathematical model of star formation in the Galaxy

    Directory of Open Access Journals (Sweden)

    M.A. Sharaf

    2012-06-01

    Full Text Available This paper is generally concerned with star formation in the Galaxy, especially blue stars. Blue stars are the most luminous, massive and the largest in radius. A simple mathematical model of the formation of the stars is established and put in computational algorithm. This algorithm enables us to know more about the formation of the star. Some real and artificial examples had been used to justify this model.

  16. BioModels: expanding horizons to include more modelling approaches and formats.

    Science.gov (United States)

    Glont, Mihai; Nguyen, Tung V N; Graesslin, Martin; Hälke, Robert; Ali, Raza; Schramm, Jochen; Wimalaratne, Sarala M; Kothamachu, Varun B; Rodriguez, Nicolas; Swat, Maciej J; Eils, Jurgen; Eils, Roland; Laibe, Camille; Malik-Sheriff, Rahuman S; Chelliah, Vijayalakshmi; Le Novère, Nicolas; Hermjakob, Henning

    2018-01-04

    BioModels serves as a central repository of mathematical models representing biological processes. It offers a platform to make mathematical models easily shareable across the systems modelling community, thereby supporting model reuse. To facilitate hosting a broader range of model formats derived from diverse modelling approaches and tools, a new infrastructure for BioModels has been developed that is available at http://www.ebi.ac.uk/biomodels. This new system allows submitting and sharing of a wide range of models with improved support for formats other than SBML. It also offers a version-control backed environment in which authors and curators can work collaboratively to curate models. This article summarises the features available in the current system and discusses the potential benefit they offer to the users over the previous system. In summary, the new portal broadens the scope of models accepted in BioModels and supports collaborative model curation which is crucial for model reproducibility and sharing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Comparison of two validated gas-chromatographic methods for the determination of trihalomethanes in drinking water Comparação de dois métodos cromatográficos validados para a dosagem de trialometanos em água potável

    OpenAIRE

    Maria Yumiko Tominaga; Antonio Flavio Mídio

    2003-01-01

    In this paper the results obtained using two validated gas-chromatographic procedures on drinking water for the determination of trihalomethanes are compared. The volatile compounds, chloroform (CF), bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF) were detected by purge and trap capillary column gas-chromatography with electrolytic conductivity detector ( ELCD) and the simple and rapid gas-chromatographic method by electron capture detector (ECD) after liquid-liqui...

  18. Galactic chemical evolution in hierarchical formation models

    Science.gov (United States)

    Arrigoni, Matias

    2010-10-01

    The chemical properties and abundance ratios of galaxies provide important information about their formation histories. Galactic chemical evolution has been modelled in detail within the monolithic collapse scenario. These models have successfully described the abundance distributions in our Galaxy and other spiral discs, as well as the trends of metallicity and abundance ratios observed in early-type galaxies. In the last three decades, however, the paradigm of hierarchical assembly in a Cold Dark Matter (CDM) cosmology has revised the picture of how structure in the Universe forms and evolves. In this scenario, galaxies form when gas radiatively cools and condenses inside dark matter haloes, which themselves follow dissipationless gravitational collapse. The CDM picture has been successful at predicting many observed properties of galaxies (for example, the luminosity and stellar mass function of galaxies, color-magnitude or star formation rate vs. stellar mass distributions, relative numbers of early and late-type galaxies, gas fractions and size distributions of spiral galaxies, and the global star formation history), though many potential problems and open questions remain. It is therefore interesting to see whether chemical evolution models, when implemented within this modern cosmological context, are able to correctly predict the observed chemical properties of galaxies. With the advent of more powerfull telescopes and detectors, precise observations of chemical abundances and abundance ratios in various phases (stellar, ISM, ICM) offer the opportunity to obtain strong constraints on galaxy formation histories and the physics that shapes them. However, in order to take advantage of these observations, it is necessary to implement detailed modeling of chemical evolution into a modern cosmological model of hierarchical assembly.

  19. Empirical soot formation and oxidation model

    Directory of Open Access Journals (Sweden)

    Boussouara Karima

    2009-01-01

    Full Text Available Modelling internal combustion engines can be made following different approaches, depending on the type of problem to be simulated. A diesel combustion model has been developed and implemented in a full cycle simulation of a combustion, model accounts for transient fuel spray evolution, fuel-air mixing, ignition, combustion, and soot pollutant formation. The models of turbulent combustion of diffusion flame, apply to diffusion flames, which one meets in industry, typically in the diesel engines particulate emission represents one of the most deleterious pollutants generated during diesel combustion. Stringent standards on particulate emission along with specific emphasis on size of emitted particulates have resulted in increased interest in fundamental understanding of the mechanisms of soot particulate formation and oxidation in internal combustion engines. A phenomenological numerical model which can predict the particle size distribution of the soot emitted will be very useful in explaining the above observed results and will also be of use to develop better particulate control techniques. A diesel engine chosen for simulation is a version of the Caterpillar 3406. We are interested in employing a standard finite-volume computational fluid dynamics code, KIVA3V-RELEASE2.

  20. Occurrence and variability of iodinated trihalomethanes concentrations within two drinking-water distribution networks.

    Science.gov (United States)

    Ioannou, Panagiotis; Charisiadis, Pantelis; Andra, Syam S; Makris, Konstantinos C

    2016-02-01

    Non-iodo-containing trihalomethanes (TTHM) are frequently detected in chlorinated tap water and currently regulated against their carcinogenic potential. Iodinated THM (ITHM) may also form in disinfected with chlorine waters that are high in iodine content, but little is known about their magnitude and variability within the drinking-water pipe distribution network of urban areas. The main objective of this study was to determine the magnitude and variability of ITHM and TTHM levels and their corresponding daily intake estimates within the drinking water distribution systems of Limassol and Nicosia cities of Cyprus, using tap samples collected from individual households (n=37). In Limassol, mean household tap water ITHM and TTHM levels was 0.58 and 38 μg L(-1), respectively. Dichloroiodomethane (DCIM) was the dominant species of the two measured ITHM compounds accounting for 77% of total ITHM and in the range of 0.032 and 1.65 μg L(-1). The range of DCIM concentrations in Nicosia tap water samples was narrower (0.032 - 0.848 μg L(-1)). Mean total iodine concentration in tap water samples from the seaside city of Limassol was 15 μg L(-1) and approximately twice to those observed in samples from the mainland Nicosia city. However, iodine concentrations did not correlate with the ITHM levels. The calculated chronic daily intake rates of ITHM were low when compared with those of TTHM, but because of their widespread occurrence in tap water and their enhanced mammalian cell toxicity, additional research is warranted to assess the magnitude and variability of human ITHM exposures. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Vibration acceleration promotes bone formation in rodent models.

    Directory of Open Access Journals (Sweden)

    Ryohei Uchida

    Full Text Available All living tissues and cells on Earth are subject to gravitational acceleration, but no reports have verified whether acceleration mode influences bone formation and healing. Therefore, this study was to compare the effects of two acceleration modes, vibration and constant (centrifugal accelerations, on bone formation and healing in the trunk using BMP 2-induced ectopic bone formation (EBF mouse model and a rib fracture healing (RFH rat model. Additionally, we tried to verify the difference in mechanism of effect on bone formation by accelerations between these two models. Three groups (low- and high-magnitude vibration and control-VA groups were evaluated in the vibration acceleration study, and two groups (centrifuge acceleration and control-CA groups were used in the constant acceleration study. In each model, the intervention was applied for ten minutes per day from three days after surgery for eleven days (EBF model or nine days (RFH model. All animals were sacrificed the day after the intervention ended. In the EBF model, ectopic bone was evaluated by macroscopic and histological observations, wet weight, radiography and microfocus computed tomography (micro-CT. In the RFH model, whole fracture-repaired ribs were excised with removal of soft tissue, and evaluated radiologically and histologically. Ectopic bones in the low-magnitude group (EBF model had significantly greater wet weight and were significantly larger (macroscopically and radiographically than those in the other two groups, whereas the size and wet weight of ectopic bones in the centrifuge acceleration group showed no significant difference compared those in control-CA group. All ectopic bones showed calcified trabeculae and maturated bone marrow. Micro-CT showed that bone volume (BV in the low-magnitude group of EBF model was significantly higher than those in the other two groups (3.1±1.2mm3 v.s. 1.8±1.2mm3 in high-magnitude group and 1.3±0.9mm3 in control-VA group, but

  2. Tensegrity Models and Shape Control of Vehicle Formations

    OpenAIRE

    Nabet, Benjamin; Leonard, Naomi Ehrich

    2009-01-01

    Using dynamic models of tensegrity structures, we derive provable, distributed control laws for stabilizing and changing the shape of a formation of vehicles in the plane. Tensegrity models define the desired, controlled, multi-vehicle system dynamics, where each node in the tensegrity structure maps to a vehicle and each interconnecting strut or cable in the structure maps to a virtual interconnection between vehicles. Our method provides a smooth map from any desired planar formation shape ...

  3. Modeling biological gradient formation: combining partial differential equations and Petri nets.

    Science.gov (United States)

    Bertens, Laura M F; Kleijn, Jetty; Hille, Sander C; Heiner, Monika; Koutny, Maciej; Verbeek, Fons J

    2016-01-01

    Both Petri nets and differential equations are important modeling tools for biological processes. In this paper we demonstrate how these two modeling techniques can be combined to describe biological gradient formation. Parameters derived from partial differential equation describing the process of gradient formation are incorporated in an abstract Petri net model. The quantitative aspects of the resulting model are validated through a case study of gradient formation in the fruit fly.

  4. A model of partnership formation

    NARCIS (Netherlands)

    Talman, A.J.J.; Yang, Z.F.

    2011-01-01

    This paper presents a model of partnership formation. A number of agents want to conduct some business or other activities. Agents may act alone or seek a partner for cooperation and need in the latter case to consider with whom to cooperate and how to share the profit in a collaborative and

  5. A Model of Partnership Formation

    NARCIS (Netherlands)

    Talman, A.J.J.; Yang, Z.F.

    2008-01-01

    This paper presents a model of partnership formation. A set of agents wants to conduct some business or other activities. Agents may act alone or seek a partner for cooperation and need in the latter case to consider with whom to cooperate and how to share the profit in a collaborative and

  6. Modeling of metastable phase formation diagrams for sputtered thin films.

    Science.gov (United States)

    Chang, Keke; Music, Denis; To Baben, Moritz; Lange, Dennis; Bolvardi, Hamid; Schneider, Jochen M

    2016-01-01

    A method to model the metastable phase formation in the Cu-W system based on the critical surface diffusion distance has been developed. The driver for the formation of a second phase is the critical diffusion distance which is dependent on the solubility of W in Cu and on the solubility of Cu in W. Based on comparative theoretical and experimental data, we can describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation. Metastable phase formation diagrams for Cu-W and Cu-V thin films are predicted and validated by combinatorial magnetron sputtering experiments. The correlative experimental and theoretical research strategy adopted here enables us to efficiently describe the relationship between the solubilities and the critical diffusion distances in order to model the metastable phase formation during magnetron sputtering.

  7. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    Science.gov (United States)

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  8. Modelling the star formation histories of nearby elliptical galaxies

    Science.gov (United States)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  9. A model for the origin of bursty star formation in galaxies

    Science.gov (United States)

    Faucher-Giguère, Claude-André

    2018-01-01

    We propose a simple analytic model to understand when star formation is time steady versus bursty in galaxies. Recent models explain the observed Kennicutt-Schmidt relation between star formation rate and gas surface densities in galaxies as resulting from a balance between stellar feedback and gravity. We argue that bursty star formation occurs when such an equilibrium cannot be stably sustained, and identify two regimes in which galaxy-scale star formation should be bursty: (i) at high redshift (z ≳ 1) for galaxies of all masses, and (ii) at low masses (depending on gas fraction) for galaxies at any redshift. At high redshift, characteristic galactic dynamical time-scales become too short for supernova feedback to effectively respond to gravitational collapse in galactic discs (an effect recently identified for galactic nuclei), whereas in dwarf galaxies star formation occurs in too few bright star-forming regions to effectively average out. Burstiness is also enhanced at high redshift owing to elevated gas fractions in the early Universe. Our model can thus explain the bursty star formation rates predicted in these regimes by recent high-resolution galaxy formation simulations, as well as the bursty star formation histories observationally inferred in both local dwarf and high-redshift galaxies. In our model, bursty star formation is associated with particularly strong spatiotemporal clustering of supernovae. Such clustering can promote the formation of galactic winds and our model may thus also explain the much higher wind mass loading factors inferred in high-redshift massive galaxies relative to their z ∼ 0 counterparts.

  10. Water-Quality Constituents, Dissolved-Organic-Carbon Fractions, and Disinfection By-Product Formation in Water from Community Water-Supply Wells in New Jersey, 1998-99

    Science.gov (United States)

    Hopple, Jessica A.; Barringer, Julia L.; Koleis, Janece

    2007-01-01

    Water samples were collected from 20 community water-supply wells in New Jersey to assess the chemical quality of the water before and after chlorination, to characterize the types of organic carbon present, and to determine the disinfection by-product formation potential. Water from the selected wells previously had been shown to contain concentrations of dissolved organic carbon (DOC) that were greater than 0.2 mg/L. Of the selected wells, five are completed in unconfined (or semi-confined) glacial-sediment aquifers of the Piedmont and Highlands (New England) Physiographic Provinces, five are completed in unconfined bedrock aquifers of the Piedmont Physiographic Province, and ten are completed in unconsolidated sediments of the Coastal Plain Physiographic Province. Four of the ten wells in the Coastal Plain are completed in confined parts of the aquifers; the other six are in unconfined aquifers. One or more volatile organic compounds (VOCs) were detected in untreated water from all of the 16 wells in unconfined aquifers, some at concentrations greater than maximum contaminant levels. Those compounds detected included aliphatic compounds such as trichloroethylene and 1,1,1-trichloroethane, aromatic compounds such as benzene, the trihalomethane compound, chloroform, and the gasoline additive methyl tert-butyl ether (MTBE). Concentrations of sodium and chloride in water from one well in a bedrock aquifer and sulfate in water from another exceeded New Jersey secondary standards for drinking water. The source of the sulfate was geologic materials, but the sodium and chloride probably were derived from human inputs. DOC fractions were separated by passing water samples through XAD resin columns to determine hydrophobic fractions from hydrophilic fractions. Concentrations of hydrophobic acids were slightly lower than those of combined hydrophilic acids, neutral compounds, and low molecular weight compounds in most samples. Water samples from the 20 wells were adjusted

  11. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta

    2012-06-01

    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  12. Model format for a vaccine stability report and software solutions.

    Science.gov (United States)

    Shin, Jinho; Southern, James; Schofield, Timothy

    2009-11-01

    A session of the International Association for Biologicals Workshop on Stability Evaluation of Vaccine, a Life Cycle Approach was devoted to a model format for a vaccine stability report, and software solutions. Presentations highlighted the utility of a model format that will conform to regulatory requirements and the ICH common technical document. However, there need be flexibility to accommodate individual company practices. Adoption of a model format is premised upon agreement regarding content between industry and regulators, and ease of use. Software requirements will include ease of use and protections against inadvertent misspecification of stability design or misinterpretation of program output.

  13. Disinfection byproduct formation in drinking water sources: A case study of Yuqiao reservoir.

    Science.gov (United States)

    Zhai, Hongyan; He, Xizhen; Zhang, Yan; Du, Tingting; Adeleye, Adeyemi S; Li, Yao

    2017-08-01

    This study investigated the potential formation of disinfection byproducts (DBPs) during chlorination and chloramination of 20 water samples collected from different points of Yuqiao reservoir in Tianjin, China. The concentrations of dissolved organic matter and ammonia decreased downstream the reservoir, while the specific UV absorbance (SUVA: the ratio of UV 254 to dissolved organic carbon) increased [from 0.67 L/(mg*m) upstream to 3.58 L/(mg*m) downstream]. The raw water quality played an important role in the formation of DBPs. During chlorination, haloacetic acids (HAAs) were the major DBPs formed in most of the water samples, followed by trihalomethanes (THMs). CHCl 3 and CHCl 2 Br were the major THM species, while trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were the major HAA species. Chloramination, on the other hand, generally resulted in lower concentrations of THMs (CHCl 3 ), HAAs (TCAA and DCAA), and haloacetonitriles (HANs). All the species of DBPs formed had positive correlations with the SUVA values, and HANs had the highest one (R 2  = 0.8). The correlation coefficients between the analogous DBP yields and the SUVA values in chlorinated samples were close to those in chloraminated samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  15. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  16. Formation of Ice Giant Satellites During Thommes Model Mirgration

    Science.gov (United States)

    Fuse, Christopher; Spiegelberg, Josephine

    2018-01-01

    Inconsistencies between ice giant planet characteristics and classic planet formation theories have led to a re-evaluation of the formation of the outer Solar system. Thommes model migration delivers proto-Uranus and Neptune from orbits interior to Saturn to their current locations. The Thommes model has also been able to reproduce the large Galilean and Saturnian moons via interactions between the proto-ice giants and the gas giant moon disks.As part of a series of investigations examining the effects of Thommes model migration on the formation of moons, N-body simulations of the formation of the Uranian and Neptunian satellite systems were performed. Previous research has yielded conflicting results as to whether satellite systems are stable during planetary migration. Some studies, such as Beaugé (2002) concluded that the system was not stable over the proposed duration of migration. Conversely, Fuse and Neville (2011) and Yokoyama et al. (2011) found that moons were retained, though the nature of the resulting system was heavily influenced by interactions with planetesimals and other large objects. The results of the current study indicate that in situ simulations of the Uranus and Neptune systems can produce stable moons. Whether with current orbital parameters or located at pre-migration, inner Solar system semi-major axes, the simulations end with 5.8 ± 0.15 or 5.9 ± 0.7 regular satellites around Uranus and Neptune, respectively. Preliminary simulations of a proto-moon disk around a single planet migrating via the Thommes model have failed to retain moons. Furthermore, simulations of ejection of the current Uranian satellite system retained at most one moon. Thus, for the Thommes model to be valid, it is likely that moon formation did not begin until after migration ended. Future work will examine the formation of gas and ice giant moons through other migration theories, such as the Nice model (Tsiganis et al. 2006).

  17. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    Science.gov (United States)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  18. Modeling for Stellar Feedback in Galaxy Formation Simulations

    Science.gov (United States)

    Núñez, Alejandro; Ostriker, Jeremiah P.; Naab, Thorsten; Oser, Ludwig; Hu, Chia-Yu; Choi, Ena

    2017-02-01

    Various heuristic approaches to model unresolved supernova (SN) feedback in galaxy formation simulations exist to reproduce the formation of spiral galaxies and the overall inefficient conversion of gas into stars. Some models, however, require resolution-dependent scalings. We present a subresolution model representing the three major phases of supernova blast wave evolution—free expansion, energy-conserving Sedov-Taylor, and momentum-conserving snowplow—with energy scalings adopted from high-resolution interstellar-medium simulations in both uniform and multiphase media. We allow for the effects of significantly enhanced SN remnant propagation in a multiphase medium with the cooling radius scaling with the hot volume fraction, {f}{hot}, as {(1-{f}{hot})}-4/5. We also include winds from young massive stars and AGB stars, Strömgren sphere gas heating by massive stars, and a mechanism that limits gas cooling that is driven by radiative recombination of dense H II regions. We present initial tests for isolated Milky Way-like systems simulated with the Gadget-based code SPHgal with improved SPH prescription. Compared to pure thermal SN input, the model significantly suppresses star formation at early epochs, with star formation extended both in time and space in better accord with observations. Compared to models with pure thermal SN feedback, the age at which half the stellar mass is assembled increases by a factor of 2.4, and the mass-loading parameter and gas outflow rate from the galactic disk increase by a factor of 2. Simulation results are converged for a variation of two orders of magnitude in particle mass in the range (1.3-130) × 104 solar masses.

  19. PageRank model of opinion formation on Ulam networks

    Science.gov (United States)

    Chakhmakhchyan, L.; Shepelyansky, D.

    2013-12-01

    We consider a PageRank model of opinion formation on Ulam networks, generated by the intermittency map and the typical Chirikov map. The Ulam networks generated by these maps have certain similarities with such scale-free networks as the World Wide Web (WWW), showing an algebraic decay of the PageRank probability. We find that the opinion formation process on Ulam networks has certain similarities but also distinct features comparing to the WWW. We attribute these distinctions to internal differences in network structure of the Ulam and WWW networks. We also analyze the process of opinion formation in the frame of generalized Sznajd model which protects opinion of small communities.

  20. PROBLEMS OF VALUE-ORIENTED FORMATION OF PROJECT PRODUCT’S MODEL

    Directory of Open Access Journals (Sweden)

    Тигран Георгиевич ГРИГОРЯН

    2015-06-01

    Full Text Available Problems of formation of the project output model related to the complexity of information transmission in the communication between the project participants and stakeholders are considered. The concept of forming a project output model based on allocation of stages of model developing and specification and efficiency of the formation of a model that takes into account the need to plan the project output value creation and transferring to the sponsor and consumers is proposed.

  1. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  2. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  3. FORMATIVE AND REFLECTIVE MODELS IN MARKETING RESEARCH

    Directory of Open Access Journals (Sweden)

    Claudia Ioana CIOBANU

    2017-06-01

    Full Text Available Compliance with the construct validity criteria is necessary for the correct assessment of the research in terms of quality and for further development of the marketing models. The identification of formative and reflective constructs as well as the correct testing of their validity and reliability are important methodological steps for marketing research as described in this article. The first part defines the reflective and the formative constructs and highlighst their particularities by analysing the theoretical criteria that differentiate them. In the second part of the study aspects of validity and trust for the formative and reflective constructs are presented as well as some empirical considerations from research literature regarding their measurement.

  4. Health Risk Assessment for Trace Metals, Polycyclic Aromatic Hydrocarbons and Trihalomethanes in Drinking Water of Cankiri, Turkey

    Directory of Open Access Journals (Sweden)

    Emrah Caylak

    2012-01-01

    Full Text Available Lifetime exposure to trace metals, pesticides, polycyclic aromatic hydrocarbons (PAHs, trihalomethanes (THMs, and the other chemicals in drinking water through ingestion, and dermal contact may pose risks to human health. In this study, drinking water samples were collected from 50 sampling sites from Cankiri and its towns during 2010. The concentrations of all pollutants were analyzed, and then compared with permissible limits set by Turkish and WHO. For health risk assessment of trace metals, chronic daily intakes (CDIs via ingestion and dermal contact, hazard quotient (HQ, and hazard index (HI were calculated by using statistical formulas. For ingestion pathway, the maximum HQ values of As-non cancer in central Cankiri and Kursunlu town were higher than one. Considering dermal adsorption pathway, the mean and maximum HQ values were below one. HI values of As-non cancer in central Cankiri and Kursunlu town were also higher than one. Each trace metal (As-non cancer, B, Cd, Cr, Pb, and Sb of the mean HI values were slightly below unity. Risks of As, PAHs, THMs, and benzene on human health were then evaluated using carcinogenic risk (CR. It is indicated that CRs of As and THMs were also found >10−5 in drinking water of Cankiri might exert potential carcinogenic risk for people. These assessments would point out required drinking water treatment strategy to ensure safety of consumers.

  5. Experimental and modeling investigation on structure H hydrate formation kinetics

    International Nuclear Information System (INIS)

    Mazraeno, M. Seyfi; Varaminian, F.; Vafaie sefti, M.

    2013-01-01

    Highlights: • Applying affinity model for the formation kinetics of sH hydrate and two stage kinetics. • Performing the experiments of hydrate formation of sH with MCP. • A unique path for the SH hydrate formation. - Abstract: In this work, the kinetics of crystal H hydrate and two stage kinetics formation is modeled by using the chemical affinity model for the first time. The basic idea is that there is a unique path for each experiment by which the crystallization process decays the affinity. The experiments were performed at constant temperatures of 274.15, 275.15, 275.65, 276.15 and 277.15 K. The initial pressure of each experiment is up to 25 bar above equilibrium pressure of sI. Methylcyclohexane (MCH), methylcyclopentane (MCP) and tert-butyl methyl ether (TBME) are used as sH former and methane is used as a help gas. The parameters of the affinity model (A r and t k ) are determined and the results show that the parameter of (A r )/(RT) has not a constant value when temperature changes in each group of experiments. The results indicate that this model can predict experimental data very well at several conditions

  6. Business Models, transparency and efficient stock price formation

    DEFF Research Database (Denmark)

    Nielsen, Christian; Vali, Edward; Hvidberg, Rene

    has an impact on a company's price formation. In this respect, we analysed whether those companies that publish a lot of information that may support a business model description tend to have a more efficient price formation. Next, we turned to our sample of companies, and via interview-based case...... studies, we managed to draw conclusions on how to construct a comprehensible business model description. The business model explains how the company intends to compete in its market, and thus it gives an account of the characteristics that make the company unique. The business model constitutes...... the platform from which the company prepares and unfolds its strategy. In order to explain this platform and its particular qualities to external interested parties, the description must provide a clear and explicit account of the main determinants of the company's value creation and explain how...

  7. Formation of assimilable organic carbon during oxidation of natural waters with ozone, chlorine dioxide, chlorine, permanganate, and ferrate.

    Science.gov (United States)

    Ramseier, Maaike K; Peter, Andreas; Traber, Jacqueline; von Gunten, Urs

    2011-02-01

    Five oxidants, ozone, chlorine dioxide, chlorine, permanganate, and ferrate were studied with regard to the formation of assimilable organic carbon (AOC) and oxalate in absence and presence of cyanobacteria in lake water matrices. Ozone and ferrate formed significant amounts of AOC, i.e. more than 100 μg/L AOC were formed with 4.6 mg/L ozone and ferrate in water with 3.8 mg/L dissolved organic carbon. In the same water samples chlorine dioxide, chlorine, and permanganate produced no or only limited AOC. When cyanobacterial cells (Aphanizomenon gracile) were added to the water, an AOC increase was detected with ozone, permanganate, and ferrate, probably due to cell lysis. This was confirmed by the increase of extracellular geosmin, a substance found in the selected cyanobacterial cells. AOC formation by chlorine and chlorine dioxide was not affected by the presence of the cells. The formation of oxalate upon oxidation was found to be a linear function of the oxidant consumption for all five oxidants. The following molar yields were measured in three different water matrices based on oxidant consumed: 2.4-4.4% for ozone, 1.0-2.8% for chlorine dioxide and chlorine, 1.1-1.2% for ferrate, and 11-16% for permanganate. Furthermore, oxalate was formed in similar concentrations as trihalomethanes during chlorination (yield ∼ 1% based on chlorine consumed). Oxalate formation kinetics and stoichiometry did not correspond to the AOC formation. Therefore, oxalate cannot be used as a surrogate for AOC formation during oxidative water treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Numerical Modeling of Diesel Spray Formation and Combustion

    NARCIS (Netherlands)

    Bekdemir, C.; Somers, L.M.T.; Goey, de L.P.H.

    2009-01-01

    A study is presented on the modeling of fuel sprays in diesel engines. The objective of this study is in the first place to accurately and efficiently model non-reacting diesel spray formation, and secondly to include ignition and combustion. For that an efficient 1D Euler-Euler spray model [21] is

  9. The Effect of Computer Models as Formative Assessment on Student Understanding of the Nature of Models

    Science.gov (United States)

    Park, Mihwa; Liu, Xiufeng; Smith, Erica; Waight, Noemi

    2017-01-01

    This study reports the effect of computer models as formative assessment on high school students' understanding of the nature of models. Nine high school teachers integrated computer models and associated formative assessments into their yearlong high school chemistry course. A pre-test and post-test of students' understanding of the nature of…

  10. Theoretical model for ultracold molecule formation via adaptive feedback control

    International Nuclear Information System (INIS)

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P; Kosloff, Ronnie

    2006-01-01

    We theoretically investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose, a perturbative model for light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85 Rb 2 molecules in a magneto-optical trap. We find that optimized pulse shapes may maximize the formation of ground state molecules in a specific vibrational state at a pump-dump delay time for which unshaped pulses lead to a minimum of the formation rate. Compared to the maximum formation rate obtained for unshaped pulses at the optimum pump-dump delay, the optimized pulses lead to a significant improvement of about 40% for the target level population. Since our model yields the spectral amplitudes and phases of the optimized pulses, the results are directly applicable in pulse shaping experiments

  11. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    Full Text Available Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  12. Novel multiscale modeling tool applied to Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Biggs, Matthew B; Papin, Jason A

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid model correctly recapitulates oxygen-limited biofilm metabolic activity and predicts increased growth rate via anaerobic respiration with the addition of nitrate to the growth media. In addition, a genome-wide survey of metabolic mutants and biofilm formation exemplifies the powerful analyses that are enabled by this computational modeling tool.

  13. Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control

    Directory of Open Access Journals (Sweden)

    Huma Ilyas

    2018-06-01

    Full Text Available This paper presents a comprehensive and critical comparison of 10 disinfection methods of swimming pool water: chlorination, electrochemically generated mixed oxidants (EGMO, ultraviolet (UV irradiation, UV/chlorine, UV/hydrogen peroxide (H2O2, UV/H2O2/chlorine, ozone (O3/chlorine, O3/H2O2/chlorine, O3/UV and O3/UV/chlorine for the formation, control and elimination of potentially toxic disinfection byproducts (DBPs: trihalomethanes (THMs, haloacetic acids (HAAs, haloacetonitriles (HANs, trihaloacetaldehydes (THAs and chloramines (CAMs. The statistical comparison is carried out using data on 32 swimming pools accumulated from the reviewed studies. The results indicate that O3/UV and O3/UV/chlorine are the most promising methods, as the concentration of the studied DBPs (THMs and HANs with these methods was reduced considerably compared with chlorination, EGMO, UV irradiation, UV/chlorine and O3/chlorine. However, the concentration of the studied DBPs including HAAs and CAMs remained much higher with O3/chlorine compared with the limits set by the WHO for drinking water quality. Moreover, the enhancement in the formation of THMs, HANs and CH with UV/chlorine compared with UV irradiation and the increase in the level of HANs with O3/UV/chlorine compared with O3/UV indicate the complexity of the combined processes, which should be optimized to control the toxicity and improve the quality of swimming pool water.

  14. Early models of DNA damage formation

    International Nuclear Information System (INIS)

    Śmiałek, Małgorzata A

    2012-01-01

    Quantification of DNA damage, induced by various types of incident radiation as well as chemical agents, has been the subject of many theoretical and experimental studies, supporting the development of modern cancer therapy. The primary observations showed that many factors can lead to damage of DNA molecules. It became clear that the development of experimental techniques for exploring this phenomenon is required. Another problem was simultaneously dealt with, anticipating on how the damage is distributed within the double helix of the DNA molecule and how the single strand break formation and accumulation can influence the lethal double strand break formation. In this work the most important probabilistic models for DNA strand breakage and damage propagation are summarized and compared.

  15. Nonlinear flow model for well production in an underground formation

    Directory of Open Access Journals (Sweden)

    J. C. Guo

    2013-05-01

    Full Text Available Fluid flow in underground formations is a nonlinear process. In this article we modelled the nonlinear transient flow behaviour of well production in an underground formation. Based on Darcy's law and material balance equations, we used quadratic pressure gradients to deduce diffusion equations and discuss the origins of nonlinear flow issues. By introducing an effective-well-radius approach that considers skin factor, we established a nonlinear flow model for both gas and liquid (oil or water. The liquid flow model was solved using a semi-analytical method, while the gas flow model was solved using numerical simulations because the diffusion equation of gas flow is a stealth function of pressure. For liquid flow, a series of standard log-log type curves of pressure transients were plotted and nonlinear transient flow characteristics were analyzed. Qualitative and quantitative analyses were used to compare the solutions of the linear and nonlinear models. The effect of nonlinearity upon pressure transients should not be ignored. For gas flow, pressure transients were simulated and compared with oil flow under the same formation and well conditions, resulting in the conclusion that, under the same volume rate production, oil wells demand larger pressure drops than gas wells. Comparisons between theoretical data and field data show that nonlinear models will describe fluid flow in underground formations realistically and accurately.

  16. Degradation of natural organic matter by UV/chlorine oxidation: Molecular decomposition, formation of oxidation byproducts and cytotoxicity.

    Science.gov (United States)

    Wang, Wen-Long; Zhang, Xue; Wu, Qian-Yuan; Du, Ye; Hu, Hong-Ying

    2017-11-01

    The degradation of natural organic matters (NOMs) by the combination of UV and chlorine (UV/chlorine) was investigated in this study. UV/chlorine oxidation can effectively degrade NOMs, with the degradation of chromophores (∼80%) and fluorophores (76.4-80.8%) being more efficient than that of DOC (15.1-18.6%). This effect was attributed to the chromophores and fluorophores (double bonds, aromatic groups and phenolic groups) being preferentially degraded by UV/chlorine oxidation, particularly reactive groups with high electron donating capacity. Radical species •OH and •Cl were generated during UV/chlorine oxidation, with the contribution of •OH 1.4 times as high as that of •Cl. The degradation kinetics of different molecular weight (MW) fractions suggests that UV/chlorine oxidation degrades high MW fractions into low MW fractions, with the degradation rates of high MW fractions (>3000 Da) 4.5 times of those of medium MW fractions (1000-3000 Da). In comparison with chlorination alone, UV/chlorine oxidation did not increase the formation (30 min) and formation potential (24 h) of trihalomethanes, but instead promoted the formation and formation potential of haloacetic acids and chloral hydrate. Adsorbable organic halogen (AOX) formed from UV/chlorine oxidation of NOM were 0.8 times higher than those formed from chlorination. Cytotoxicity studies indicated that the cytotoxicity of NOM increased after both chlorination and UV/chlorine oxidation, which may be due to the formation of AOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Stochastic Models of Molecule Formation on Dust

    Science.gov (United States)

    Charnley, Steven; Wirstroem, Eva

    2011-01-01

    We will present new theoretical models for the formation of molecules on dust. The growth of ice mantles and their layered structure is accounted for and compared directly to observations through simulation of the expected ice absorption spectra

  18. Opinion formation models on a gradient.

    Directory of Open Access Journals (Sweden)

    Michael T Gastner

    Full Text Available Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4, not proportional g(-4/7 as in independent percolation, and the cluster size distribution is consistent with first-order percolation.

  19. Colorectal Cancer and Long-Term Exposure to Trihalomethanes in Drinking Water: A Multicenter Case–Control Study in Spain and Italy

    Science.gov (United States)

    Villanueva, Cristina M.; Gracia-Lavedan, Esther; Bosetti, Cristina; Righi, Elena; Molina, Antonio José; Martín, Vicente; Boldo, Elena; Aragonés, Nuria; Perez-Gomez, Beatriz; Pollan, Marina; Acebo, Ines Gomez; Altzibar, Jone M.; Zabala, Ana Jiménez; Ardanaz, Eva; Peiró, Rosana; Tardón, Adonina; Chirlaque, Maria Dolores; Tavani, Alessandra; Polesel, Jerry; Serraino, Diego; Pisa, Federica; Castaño-Vinyals, Gemma; Espinosa, Ana; Espejo-Herrera, Nadia; Palau, Margarita; Moreno, Victor; La Vecchia, Carlo; Aggazzotti, Gabriella; Nieuwenhuijsen, Mark J; Kogevinas, Manolis

    2016-01-01

    Background: Evidence on the association between colorectal cancer and exposure to disinfection by-products in drinking water is inconsistent. Objectives: We assessed long-term exposure to trihalomethanes (THMs), the most prevalent group of chlorination by-products, to evaluate the association with colorectal cancer. Methods: A multicenter case–control study was conducted in Spain and Italy in 2008–2013. Hospital-based incident cases and population-based (Spain) and hospital-based (Italy) controls were interviewed to ascertain residential histories, type of water consumed in each residence, frequency and duration of showering/bathing, and major recognized risk factors for colorectal cancer. We estimated adjusted odds ratios (OR) for colorectal cancer in association with quartiles of estimated average lifetime THM concentrations in each participant’s residential tap water (micrograms/liter; from age 18 to 2 years before the interview) and estimated average lifetime THM ingestion from drinking residential tap water (micrograms/day). Results: We analyzed 2,047 cases and 3,718 controls. Median values (ranges) for average lifetime residential tap water concentrations of total THMs, chloroform, and brominated THMs were 30 (0–174), 17 (0–63), and 9 (0–145) μg/L, respectively. Total THM concentration in residential tap water was not associated with colorectal cancer (OR = 0.92, 95% CI: 0.66, 1.28 for highest vs. lowest quartile), but chloroform concentrations were inversely associated (OR = 0.31, 95% CI: 0.24, 0.41 for highest vs. lowest quartile). Brominated THM concentrations showed a positive association among men in the highest versus the lowest quartile (OR = 1.43, 95% CI: 0.83, 2.46). Patterns of association were similar for estimated average THM ingestion through residential water consumption. Conclusions: We did not find clear evidence of an association between detailed estimates of lifetime total THM exposure and colorectal cancer in our large case

  20. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starte......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage.......A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter...... cultures Pediococcus pentosaceus and Staphylococcus xylosus. Volatiles were collected and analysed by dynamic headspace sampling and GC MS. The analysis was primarily focused on volatiles arising from amino acid degradation and a total of 24 compounds, of which 19 were quantified, were used...

  1. Galaxy Formation in Sterile Neutrino Dark Matter Models

    Science.gov (United States)

    Menci, N.; Grazian, A.; Lamastra, A.; Calura, F.; Castellano, M.; Santini, P.

    2018-02-01

    We investigate galaxy formation in models with dark matter (DM) constituted by sterile neutrinos. Given their large parameter space, defined by the combinations of sterile neutrino mass {m}ν and mixing parameter {\\sin }2(2θ ) with active neutrinos, we focus on models with {m}ν =7 {keV}, consistent with the tentative 3.5 keV line detected in several X-ray spectra of clusters and galaxies. We consider (1) two resonant production models with {\\sin }2(2θ )=5 × {10}-11 and {\\sin }2(2θ )=2 × {10}-10, to cover the range of mixing parameters consistent with the 3.5 keV line; (2) two scalar-decay models, representative of the two possible cases characterizing such a scenario: a freeze-in and a freeze-out case. We also consider thermal warm DM with particle mass {m}X=3 {keV}. Using a semianalytic model, we compare the predictions for the different DM scenarios with a wide set of observables. We find that comparing the predicted evolution of the stellar mass function, the abundance of satellites of Milky Way–like galaxies, and the global star formation history of galaxies with observations does not allow us to disentangle the effects of the baryonic physics from those related to the different DM models. On the other hand, the distribution of the stellar-to-halo mass ratios, the abundance of faint galaxies in the UV luminosity function at z≳ 6, and the specific star formation and age distribution of local, low-mass galaxies constitute potential probes for the DM scenarios considered. We discuss how future observations with upcoming facilities will enable us to rule out or to strongly support DM models based on sterile neutrinos.

  2. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin; Caffarelli, Luis A.; Markowich, Peter A.; Wolfram, Marie Therese

    2013-01-01

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  3. On a Boltzmann-type price formation model

    KAUST Repository

    Burger, Martin

    2013-06-26

    In this paper, we present a Boltzmann-type price formation model, which is motivated by a parabolic free boundary model for the evolution of price presented by Lasry and Lions in 2007. We discuss the mathematical analysis of the Boltzmann-type model and show that its solutions converge to solutions of the model by Lasry and Lions as the transaction rate tends to infinity. Furthermore, we analyse the behaviour of the initial layer on the fast time scale and illustrate the price dynamics with various numerical experiments. © 2013 The Author(s) Published by the Royal Society. All rights reserved.

  4. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.

    2016-10-04

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present results on the long time asymptotic behavior and numerical evidence and conjectures on periodic, almost periodic, and stochastic uctuations. The numerical simulations extend the theoretical statements and give further insights into price formation dynamics.

  5. Modeling the Formation of Giant Planet Cores I: Evaluating Key Processes

    OpenAIRE

    Levison, H. F.; Thommes, E.; Duncan, M. J.

    2009-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the the solar nebula dispersed. The most popular model of giant planet formation is the so-called 'core accretion' model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very...

  6. An alternative model of the formation of political coalitions

    NARCIS (Netherlands)

    van der Rijt, J.W.

    Most models of the formation of political coalitions use either Euclidean spaces or rely purely on game theory. This limits their applicability. In this article, a single model is presented which is more broadly applicable. In principle any kind of set can be used as a policy space. The model is

  7. Dynamical and photometric models of star formation in tidal tails

    International Nuclear Information System (INIS)

    Wallin, J.F.

    1990-01-01

    An investigation into the causes of star formation in tidal tails has been conducted using a restricted three-body dynamical model in conjunction with a broadband photometric evolutionary code. Test particles are initially placed in circular orbits around a softened point mass and then perturbed by a companion passing in a parabotic orbit. During the passage, the density evolution of the galaxy is examined both in regions within the disk and in selected comoving regions in the tidal features. Even without the inclusion of self-gravity and hydrodynamics, regions of compression form inside the disk, along the tidal tail, and in the tidal bridge causing local density increases of up to 500 percent. By assuming that the density changes relate to the star-formation rate via a Schmidt (1959) law, limits on the density changes needed to make detectable changes in the colors are calculated. A spiral galaxy population is synthesized and the effects of modest changes in the star-formation rate are explored using a broadband photometric evolutionary code. Density changes similar to those found in the dynamical models will cause detectable changes in the colors of a stellar population. From these models, it is determined that the blue colors and knotty features observed in the tidal features of some galaxies result from increased rates of star formation induced by tidally produced density increases. Limitations of this model are discussed along with photometric evolutionary models based on the density evolution in the tails. 52 refs

  8. Reconnection–Condensation Model for Solar Prominence Formation

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Takafumi [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Yokoyama, Takaaki, E-mail: kaneko@isee.nagoya-u.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2017-08-10

    We propose a reconnection–condensation model in which topological change in a coronal magnetic field via reconnection triggers radiative condensation, thereby resulting in prominence formation. Previous observational studies have suggested that reconnection at a polarity inversion line of a coronal arcade field creates a flux rope that can sustain a prominence; however, they did not explain the origin of cool dense plasmas of prominences. Using three-dimensional magnetohydrodynamic simulations, including anisotropic nonlinear thermal conduction and optically thin radiative cooling, we demonstrate that reconnection can lead not only to flux rope formation but also to radiative condensation under a certain condition. In our model, this condition is described by the Field length, which is defined as the scale length for thermal balance between radiative cooling and thermal conduction. This critical condition depends weakly on the artificial background heating. The extreme ultraviolet emissions synthesized with our simulation results have good agreement with observational signatures reported in previous studies.

  9. Theoretical model for ultracold molecule formation via adaptive feedback control

    OpenAIRE

    Poschinger, Ulrich; Salzmann, Wenzel; Wester, Roland; Weidemueller, Matthias; Koch, Christiane P.; Kosloff, Ronnie

    2006-01-01

    We investigate pump-dump photoassociation of ultracold molecules with amplitude- and phase-modulated femtosecond laser pulses. For this purpose a perturbative model for the light-matter interaction is developed and combined with a genetic algorithm for adaptive feedback control of the laser pulse shapes. The model is applied to the formation of 85Rb2 molecules in a magneto-optical trap. We find for optimized pulse shapes an improvement for the formation of ground state molecules by more than ...

  10. Modeling jet and outflow feedback during star cluster formation

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, VIC 3800 (Australia); Schrön, Martin [Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research-UFZ, Permoserstr. 15, D-04318 Leipzig (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Klessen, Ralf S., E-mail: christoph.federrath@monash.edu [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2014-08-01

    Powerful jets and outflows are launched from the protostellar disks around newborn stars. These outflows carry enough mass and momentum to transform the structure of their parent molecular cloud and to potentially control star formation itself. Despite their importance, we have not been able to fully quantify the impact of jets and outflows during the formation of a star cluster. The main problem lies in limited computing power. We would have to resolve the magnetic jet-launching mechanism close to the protostar and at the same time follow the evolution of a parsec-size cloud for a million years. Current computer power and codes fall orders of magnitude short of achieving this. In order to overcome this problem, we implement a subgrid-scale (SGS) model for launching jets and outflows, which demonstrably converges and reproduces the mass, linear and angular momentum transfer, and the speed of real jets, with ∼1000 times lower resolution than would be required without the SGS model. We apply the new SGS model to turbulent, magnetized star cluster formation and show that jets and outflows (1) eject about one-fourth of their parent molecular clump in high-speed jets, quickly reaching distances of more than a parsec, (2) reduce the star formation rate by about a factor of two, and (3) lead to the formation of ∼1.5 times as many stars compared to the no-outflow case. Most importantly, we find that jets and outflows reduce the average star mass by a factor of ∼ three and may thus be essential for understanding the characteristic mass of the stellar initial mass function.

  11. Modeling of Hydrate Formation Mode in Raw Natural Gas Air Coolers

    Science.gov (United States)

    Scherbinin, S. V.; Prakhova, M. Yu; Krasnov, A. N.; Khoroshavina, E. A.

    2018-05-01

    Air cooling units (ACU) are used at all the gas fields for cooling natural gas after compressing. When using ACUs on raw (wet) gas in a low temperature condition, there is a danger of hydrate plug formation in the heat exchanging tubes of the ACU. To predict possible hydrate formation, a mathematical model of the air cooler thermal behavior used in the control system shall adequately calculate not only gas temperature at the cooler's outlet, but also a dew point value, a temperature at which condensation, as well as the gas hydrate formation point, onsets. This paper proposes a mathematical model allowing one to determine the pressure in the air cooler which makes hydrate formation for a given gas composition possible.

  12. A model for the biological precipitation of Precambrian iron-formation

    Science.gov (United States)

    Laberge, G. L.

    1986-01-01

    A biological model for the precipitation of Precambrian iron formations is presented. Assuming an oxygen deficient atmosphere and water column to allow sufficient Fe solubility, it is proposed that local oxidizing environments, produced biologically, led to precipitation of iron formations. It is further suggested that spheroidal structures about 30 mm in diameter, which are widespread in low grade cherty rion formations, are relict forms of the organic walled microfossil Eosphaera tylerii. The presence of these structures suggests that the organism may have had a siliceous test, which allowed sufficient rigidity for accumulation and preservation. The model involves precipitation of ferric hydrates by oxidation of iron in the photic zone by a variety of photosynthetic organisms. Silica may have formed in the frustules of silica secreting organisms, including Eosphaera tylerii. Iron formates formed, therefore, by a sediment rain of biologically produced ferric hydrates and silica and other organic material. Siderite and hematite formed diagenetically on basin floors, and subsequent metamorphism produced magnetite and iron silicates.

  13. Developing a model of adolescent friendship formation on the internet.

    Science.gov (United States)

    Peter, Jochen; Valkenburg, Patti M; Schouten, Alexander P

    2005-10-01

    Previous research has been largely silent about what precisely influences online friendship formation and has ignored motives for online communication as potential explanations. Drawing on a sample of 493 adolescents, this study tested a path model of adolescent friendship formation including as predictors introversion/extraversion, online self-disclosure, motive for social compensation, and frequency of online communication. Our path analysis showed that extraverted adolescents self-disclosed and communicated online more frequently, which, in turn, facilitated the formation of online friendships. Introverted adolescents, by contrast, were more strongly motivated to communicate online to compensate for lacking social skills. This increased their chances of making friends online. Among introverted adolescents, a stronger motive for social compensation also led to more frequent online communication and online self-disclosure, resulting in more online friendships. The model suggests that the antecedents of online friendship formation are more complex than previously assumed and that motives for online communication should be studied more closely.

  14. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    Science.gov (United States)

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  15. Ozonization effects on trihalo methane formation during the disinfection of drinking water with chlorine; Efectos de la ozonizacion sobre la formacion de trihalometanos durante la desinfeccion final del agua potable con cloro

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Vidal, F. J.; Perez Serrano, A.; Orozco Barrentxea, C.; Sanllorente Santamaria, M. C.; Ibeas Reoyo, M. V.

    2001-07-01

    One of the main aspects in the control of drinking water treatment is the formation of disinfection by-products (DBP), some of the most important are the trihalomethanes (THM). The use of ozone as primary disinfectant in drinking water treatment plants reduces noticeably the amount of THM generated after the chlorination at the end of the treatment. The aim of this work is to study the main factors influencing the ozone effect in this process: the delay between the time of ozonization and chlorination, the applied ozone dose and the presence of bromide ion ind the raw water. These factors have been studied on natural waters (Uzquiza Reservoir-Burgos) and on synthetic waters (fulvic and humic acids extracted from the mentioned reservoir). (Author) 36 refs.

  16. A new model of spiral galaxies based on propagating star formation

    Science.gov (United States)

    Sleath, John

    1996-01-01

    Many models exist in the literature of either star formation or galactic structure, but the former concentrate on small-scale details, whilst the latter, if they include star formation at all, adopt a very simple approach, for example by assuming a power law relationship between the rate of star formation and the gas density (a Schmidt Law). The new model described in this dissertation bridges the gap between these two extremes by adopting a simple, but not simplistic, approach to the detailed physics, allowing the effects of star formation on the broader scale to be investigated. 'Propagating star formation' considers the collapse of molecular clouds (and subsequent creation of new stars) to be triggered by the passage of a shock wave resulting from the supernovae explosions of members of the previous generation of stars. The approach taken is a stochastic one, i.e. we determine from the mass of a cloud the probability of star formation occurring, given that it has been shocked. Models using a similar approach have been described before, but the new model is unique in that it uses a particulate representation of the gas clouds and stellar associations. This permits us to simulate collisions between the particles as they orbit in a realistic galactic gravitational potential and more importantly, to impose a spiral density wave perturbation in a natural way. Such waves arise naturally in N-body simulations where the collective forces between particles are considered explicitly, but we are more interested in its effect on the star formation rate, and hence to make the code more manageable, impose the perturbation by hand. The model has been extremely successful; for example, predicting accurately, with no free parameters, the cluster formation rate for the Milky Way. A Schmidt Law arises as a natural consequence and with a power law index which is consistent with observational constraints. A wide range of galactic morphologies can be produced, including long

  17. Self-consistent atmosphere modeling with cloud formation for low-mass stars and exoplanets

    Science.gov (United States)

    Juncher, Diana; Jørgensen, Uffe G.; Helling, Christiane

    2017-12-01

    Context. Low-mass stars and extrasolar planets have ultra-cool atmospheres where a rich chemistry occurs and clouds form. The increasing amount of spectroscopic observations for extrasolar planets requires self-consistent model atmosphere simulations to consistently include the formation processes that determine cloud formation and their feedback onto the atmosphere. Aims: Our aim is to complement the MARCS model atmosphere suit with simulations applicable to low-mass stars and exoplanets in preparation of E-ELT, JWST, PLATO and other upcoming facilities. Methods: The MARCS code calculates stellar atmosphere models, providing self-consistent solutions of the radiative transfer and the atmospheric structure and chemistry. We combine MARCS with a kinetic model that describes cloud formation in ultra-cool atmospheres (seed formation, growth/evaporation, gravitational settling, convective mixing, element depletion). Results: We present a small grid of self-consistently calculated atmosphere models for Teff = 2000-3000 K with solar initial abundances and log (g) = 4.5. Cloud formation in stellar and sub-stellar atmospheres appears for Teff day-night energy transport and no temperature inversion.

  18. The formation of Dwarf Spheroidal galaxies by the dissolving star cluster model.

    Science.gov (United States)

    Alarcon, Alex; Theory and Star Formation Group

    2018-01-01

    Dwarf spheroidal (dSph) galaxies are regarded as key object in the formation of larger galaxies and are believed to be the most dark matter dominated systems known. There are several model that attempt to explain their formation, but they have problems to model the formation of isolated dSph. Here we will explain a possible formation scenario in which star clusters form in the dark matter halo of a dSph. these cluster suffer from low star formation efficiency and dissolve while orbiting inside the halo. Thereby they build the faint luminous components that we observe in dSph galaxies. Here we will show the main results of this simulations and how they would be corroborated using observational data.

  19. Continuum Modeling of Biological Network Formation

    KAUST Repository

    Albi, Giacomo

    2017-04-10

    We present an overview of recent analytical and numerical results for the elliptic–parabolic system of partial differential equations proposed by Hu and Cai, which models the formation of biological transportation networks. The model describes the pressure field using a Darcy type equation and the dynamics of the conductance network under pressure force effects. Randomness in the material structure is represented by a linear diffusion term and conductance relaxation by an algebraic decay term. We first introduce micro- and mesoscopic models and show how they are connected to the macroscopic PDE system. Then, we provide an overview of analytical results for the PDE model, focusing mainly on the existence of weak and mild solutions and analysis of the steady states. The analytical part is complemented by extensive numerical simulations. We propose a discretization based on finite elements and study the qualitative properties of network structures for various parameter values.

  20. A fermented meat model system for studies of microbial aroma formation

    DEFF Research Database (Denmark)

    Tjener, Karsten; Stahnke, Louise Heller; Andersen, L.

    2003-01-01

    A fermented meat model system was developed, by which microbial formation of volatiles could be examined The model was evaluated against dry, fermented sausages with respect to microbial growth, pH and volatile profiles. Fast and slowly acidified sausages and models were produced using the starter......H, microbial growth and volatile profiles was similar to sausage production. Based on these findings, the model system was considered valid for studies of aroma formation of meat cultures for fermented sausage....... for multivariate data analysis. Growth of lactic acid bacteria was comparable for model and sausages, whereas survival of S. xylosus was better in the model. Multivariate analysis of volatiles showed that differences between fast and slowly acidified samples were identical for model and sausage. For both sausage...

  1. Kinetic modeling studies of SOA formation from α-pinene ozonolysis

    Science.gov (United States)

    Gatzsche, Kathrin; Iinuma, Yoshiteru; Tilgner, Andreas; Mutzel, Anke; Berndt, Torsten; Wolke, Ralf

    2017-11-01

    This paper describes the implementation of a kinetic gas-particle partitioning approach used for the simulation of secondary organic aerosol (SOA) formation within the SPectral Aerosol Cloud Chemistry Interaction Model (SPACCIM). The kinetic partitioning considers the diffusion of organic compounds into aerosol particles and the subsequent chemical reactions in the particle phase. The basic kinetic partitioning approach is modified by the implementation of chemical backward reaction of the solute within the particle phase as well as a composition-dependent particle-phase bulk diffusion coefficient. The adapted gas-phase chemistry mechanism for α-pinene oxidation has been updated due to the recent findings related to the formation of highly oxidized multifunctional organic compounds (HOMs). Experimental results from a LEAK (Leipziger Aerosolkammer) chamber study for α-pinene ozonolysis were compared with the model results describing this reaction system.The performed model studies reveal that the particle-phase bulk diffusion coefficient and the particle-phase reactivity are key parameters for SOA formation. Using the same particle-phase reactivity for both cases, we find that liquid particles with higher particle-phase bulk diffusion coefficients have 310 times more organic material formed in the particle phase compared to higher viscous semi-solid particles with lower particle-phase bulk diffusion coefficients. The model results demonstrate that, even with a moderate particle-phase reactivity, about 61 % of the modeled organic mass consists of reaction products that are formed in the liquid particles. This finding emphasizes the potential role of SOA processing. Moreover, the initial organic aerosol mass concentration and the particle radius are of minor importance for the process of SOA formation in liquid particles. A sensitivity study shows that a 22-fold increase in particle size merely leads to a SOA increase of less than 10 %.Due to two additional

  2. Model of the macrostructure formation of plasma sprayed coatings

    International Nuclear Information System (INIS)

    Gnedovets, A.G.; Kalita, V.I.

    2007-01-01

    A 3D discrete ballistic model of plasma sprayed coatings structure formation is presented. The effect of a spraying angle on porous macrostructure of coatings is investigated by numerical computations.Computer simulation results as well as experimental data show that at a sputtering angle less than 45 deg the mechanism of surface relief formation is changed and the relief consists of valleys and ridges under such conditions of plasma spraying [ru

  3. Volatile particles formation during PartEmis: a modelling study

    Directory of Open Access Journals (Sweden)

    X. Vancassel

    2004-01-01

    Full Text Available A modelling study of the formation of volatile particles in a combustor exhaust has been carried out in the frame of the PartEmis European project. A kinetic model has been used in order to investigate nucleation efficiency of the H2O-H2SO4 binary mixture in the sampling system. A value for the fraction of the fuel sulphur S(IV converted into S(VI has been indirectly deduced from comparisons between model results and measurements. In the present study, ranges between roughly 2.5% and 6%, depending on the combustor settings and on the value assumed for the parameter describing sulphuric acid wall losses. Soot particles hygroscopicity has also been investigated as their activation is a key parameter for contrail formation. Growth factors of monodisperse particles exposed to high relative humidity (95% have been calculated and compared with experimental results. The modelling study confirms that the growth factor increases as the soot particle size decreases.

  4. Physical-chemical model of nanodiamond formation at explosion

    International Nuclear Information System (INIS)

    Chernyshev, A.P.; Lukyanchikov, L.A.; Lyakhov, N.Z.; Pruuel, E.R.; Sheromov, M.A.; Ten, K.A.; Titov, V.M.; Tolochko, B.P.; Zhogin, I.L.; Zubkov, P.I.

    2007-01-01

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state

  5. Physical-chemical model of nanodiamond formation at explosion

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, A.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Novosibirsk State Technical University, Novosibirsk 630092 (Russian Federation); Lukyanchikov, L.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Lyakhov, N.Z. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Pruuel, E.R. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Sheromov, M.A. [Budker Institute of Nuclear Physics, Novosibirsk 630090 (Russian Federation); Ten, K.A. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Titov, V.M. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation); Tolochko, B.P. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)]. E-mail: b.p.tolochko@inp.nsk.su; Zhogin, I.L. [Institute of Solid State Chemistry and Mechanochemistry SB RAS, ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation); Zubkov, P.I. [Lavrentiev Institute of Hydrodynamics, Novosibirsk 630090 (Russian Federation)

    2007-05-21

    This article presents a principally new physical-chemical model of nanodiamond formation at explosion, which describes adequately all the existing experimental data on detonation synthesis of diamonds. According to this model, the detonation wave (DW) performs activation rapidly; then the reaction mixture composition keeps varying. In the diagram C-H-O, this process results in continual motion of the point imaging the reaction mixture composition. The ratio of the diamond phase amount to the condensed carbon (CC) quantity in the explosion products is defined by the width of the section this point passes over in the diamond formation zone. Motion of the point in the area below the line H-CO results in decrease of the CC amount. Diamonds are formed by the free-radical mechanism in the unloading wave, beyond the Chapman-Jouguet plane, in a media close to a liquid state.

  6. Impact of Nitrification on the Formation of N-Nitrosamines and Halogenated Disinfection Byproducts within Distribution System Storage Facilities.

    Science.gov (United States)

    Zeng, Teng; Mitch, William A

    2016-03-15

    Distribution system storage facilities are a critical, yet often overlooked, component of the urban water infrastructure. This study showed elevated concentrations of N-nitrosodimethylamine (NDMA), total N-nitrosamines (TONO), regulated trihalomethanes (THMs) and haloacetic acids (HAAs), 1,1-dichloropropanone (1,1-DCP), trichloroacetaldehyde (TCAL), haloacetonitriles (HANs), and haloacetamides (HAMs) in waters with ongoing nitrification as compared to non-nitrifying waters in storage facilities within five different chloraminated drinking water distribution systems. The concentrations of NDMA, TONO, HANs, and HAMs in the nitrifying waters further increased upon application of simulated distribution system chloramination. The addition of a nitrifying biofilm sample collected from a nitrifying facility to its non-nitrifying influent water led to increases in N-nitrosamine and halogenated DBP formation, suggesting the release of precursors from nitrifying biofilms. Periodic treatment of two nitrifying facilities with breakpoint chlorination (BPC) temporarily suppressed nitrification and reduced precursor levels for N-nitrosamines, HANs, and HAMs, as reflected by lower concentrations of these DBPs measured after re-establishment of a chloramine residual within the facilities than prior to the BPC treatment. However, BPC promoted the formation of halogenated DBPs while a free chlorine residual was maintained. Strategies that minimize application of free chlorine while preventing nitrification are needed to control DBP precursor release in storage facilities.

  7. A critical analysis of shock models for chondrule formation

    Science.gov (United States)

    Stammler, Sebastian M.; Dullemond, Cornelis P.

    2014-11-01

    In recent years many models of chondrule formation have been proposed. One of those models is the processing of dust in shock waves in protoplanetary disks. In this model, the dust and the chondrule precursors are overrun by shock waves, which heat them up by frictional heating and thermal exchange with the gas. In this paper we reanalyze the nebular shock model of chondrule formation and focus on the downstream boundary condition. We show that for large-scale plane-parallel chondrule-melting shocks the postshock equilibrium temperature is too high to avoid volatile loss. Even if we include radiative cooling in lateral directions out of the disk plane into our model (thereby breaking strict plane-parallel geometry) we find that for a realistic vertical extent of the solar nebula disk the temperature decline is not fast enough. On the other hand, if we assume that the shock is entirely optically thin so that particles can radiate freely, the cooling rates are too high to produce the observed chondrules textures. Global nebular shocks are therefore problematic as the primary sources of chondrules.

  8. Ice formation in model biological membranes in the presence of cryoprotectors

    Energy Technology Data Exchange (ETDEWEB)

    Kiselev, M.A. E-mail: kiselev@nf.jinr.ru; Lesieur, P.; Kisselev, A.M.; Ollivon, M

    2000-06-21

    Ice formation in model biological membranes is studied by SAXS and WAXS in the presence of cryoprotectors: dimethyl sulfoxide and glycerol. Three types of phospholipid membranes: DPPC, DMPC, DSPC are chosen for the investigation as well-studied model biological membranes. A special cryostat is used for sample cooling from 14.1 deg. C to -55.4 deg. C. The ice formation is detected only by WAXS in binary phospholipid/water and ternary phospholipid/cryoprotector/water systems in the condition of excess solvent. Ice formation in a binary phospholipid/water system creates an abrupt decrease of the membrane repeat distance by {delta}d, the so-called ice-induced dehydration of intermembrane space. The value of {delta}d decreases as the cryoprotector concentration increases. The formation of ice does not influence the membrane structure ({delta}d=0) for cryoprotector mole fractions higher than 0.05.

  9. Numerical modeling of experimental observations on gas formation and multi-phase flow of carbon dioxide in subsurface formations

    Science.gov (United States)

    Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.

    2011-12-01

    One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.

  10. Component simulation in problems of calculated model formation of automatic machine mechanisms

    Directory of Open Access Journals (Sweden)

    Telegin Igor

    2017-01-01

    Full Text Available The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gaps in kinematic pairs, friction forces, design and technological loads. As an example in the paper there are considered a formalization of stages in the computer model formation of the cutting mechanism in cold stamping automatic machine AV1818 and methods of for the computation of their parameters on the basis of its solid-state model.

  11. Analytical characterization and optimization in the determination of trihalomethanes on drinking water by purge and trap coupled to a gas chromatography

    International Nuclear Information System (INIS)

    Costa Junior, Nelson Vicente da

    2010-01-01

    This work shows an analytical methodology developed and optimized to determine trihalomethanes level THMs, in drinking water samples, using purge and trap coupled to gas chromatography (GC-PT). THMs are byproducts water chlorination, these compounds must have a maximum of 100 μg.L -1 under Brazilian law, due these compounds be suspected human carcinogens base on studies in laboratory animals. The technique of purge and trap efficiently extracts these compounds from water, and the gas chromatograph separates the THMs. The GC uses a light polarity column and electron capture detector. This detector is selective and more sensitive in the detection of these compounds. The methodology was validated in terms of: linearity, selectivity, accuracy, precision, quantification limit, detection limit and robustness. The detection limit was less than 0,5 μg.L -1 . The accuracy and precision were adequate for testing the trace compounds. The drinking water samples were collected in the city of Suzano-SP, which belongs to 'Alto do Tiete', in this region lay 'Tiete' river with predominant vegetation. The THMs compound found in drinking water at higher concentrations was chloroform where the spread of values found between 15,9 to 111,0 μg.L -1 in drinking water. (author)

  12. Analysis of in vivo and in vitro DNA strand breaks from trihalomethane exposure

    Directory of Open Access Journals (Sweden)

    DeAngelo Anthony

    2004-01-01

    Full Text Available Abstract Background Epidemiological studies have linked the consumption of chlorinated surface waters to an increased risk of two major causes of human mortality, colorectal and bladder cancer. Trihalomethanes (THMs are by-products formed when chlorine is used to disinfect drinking water. The purpose of this study was to examine the ability of the THMs, trichloromethane (TCM, bromodichloromethane (BDCM, dibromochloromethane (DBCM, and tribromomethane (TBM, to induce DNA strand breaks (SB in (1 CCRF-CEM human lymphoblastic leukemia cells, (2 primary rat hepatocytes (PRH exposed in vitro, and (3 rats exposed by gavage or drinking water. Methods DNA SB were measured by the DNA alkaline unwinding assay (DAUA. CCRF-CEM cells were exposed to individual THMs for 2 hr. Half of the cells were immediately analyzed for DNA SB and half were transferred into fresh culture medium and incubated for an additional 22 hr before testing for DNA SB. PRH were exposed to individual THMs for 4 hr then assayed for DNA SB. F344/N rats were exposed to individual THMs for 4 hr, 2 weeks, and to BDCM for 5 wk then tested for DNA SB. Results CCRF-CEM cells exposed to 5- or 10-mM brominated THMs for 2 hr produced DNA SB. The order of activity was TBM>DBCM>BDCM; TCM was inactive. Following a 22-hr recovery period, all groups had fewer SB except 10-mM DBCM and 1-mM TBM. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity was detected. No DNA SB, unassociated with cytotoxicity, were observed in PRH or F344/N rats exposed to individual THMs. Conclusion CCRF-CEM cells exposed to the brominated THMs at 5 or 10 mM for 2 hr showed a significant increase in DNA SB when compared to control cells. Additionally, CCRF-CEM cells exposed to DBCM and TBM appeared to have compromised DNA repair capacity as demonstrated by an increased amount of DNA SB at 22 hr following exposure. CCRF-CEM cells were found to be positive for the GSTT1-1 gene, however no activity

  13. Autonomous formation flight of helicopters: Model predictive control approach

    Science.gov (United States)

    Chung, Hoam

    Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected

  14. Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

    DEFF Research Database (Denmark)

    Pang, Kar Mun; Poon, Hiew Mun; Ng, Hoon Kiat

    2015-01-01

    This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised...

  15. The SOA/VOC/NOx system: an explicit model of secondary organic aerosol formation

    Directory of Open Access Journals (Sweden)

    S. Madronich

    2007-11-01

    Full Text Available Our current understanding of secondary organic aerosol (SOA formation is limited by our knowledge of gaseous secondary organics involved in gas/particle partitioning. The objective of this study is to explore (i the potential for products of multiple oxidation steps contributing to SOA, and (ii the evolution of the SOA/VOC/NOx system. We developed an explicit model based on the coupling of detailed gas-phase oxidation schemes with a thermodynamic condensation module. Such a model allows prediction of SOA mass and speciation on the basis of first principles. The SOA/VOC/NOx system is studied for the oxidation of 1-octene under atmospherically relevant concentrations. In this study, gaseous oxidation of octene is simulated to lead to SOA formation. Contributors to SOA formation are shown to be formed via multiple oxidation steps of the parent hydrocarbon. The behaviour of the SOA/VOC/NOx system simulated using the explicit model agrees with general tendencies observed during laboratory chamber experiments. This explicit modelling of SOA formation appears as a useful exploratory tool to (i support interpretations of SOA formation observed in laboratory chamber experiments, (ii give some insights on SOA formation under atmospherically relevant conditions and (iii investigate implications for the regional/global lifetimes of the SOA.

  16. Effects of conventional ozonation and electro-peroxone pretreatment of surface water on disinfection by-product formation during subsequent chlorination.

    Science.gov (United States)

    Mao, Yuqin; Guo, Di; Yao, Weikun; Wang, Xiaomao; Yang, Hongwei; Xie, Yuefeng F; Komarneni, Sridhar; Yu, Gang; Wang, Yujue

    2018-03-01

    The electro-peroxone (E-peroxone) process is an emerging ozone-based electrochemical advanced oxidation process that combines conventional ozonation with in-situ cathodic hydrogen peroxide (H 2 O 2 ) production for oxidative water treatment. In this study, the effects of the E-peroxone pretreatment on disinfection by-product (DBP) formation from chlorination of a synthetic surface water were investigated and compared to conventional ozonation. Results show that due to the enhanced transformation of ozone (O 3 ) to hydroxyl radicals (OH) by electro-generated H 2 O 2 , the E-peroxone process considerably enhanced dissolved organic carbon (DOC) abatement and significantly reduced bromate (BrO 3 - ) formation compared to conventional ozonation. However, natural organic matter (NOM) with high UV 254 absorbance, which is the major precursors of chlorination DBPs, was less efficiently abated during the E-peroxone process than conventional ozonation. Consequently, while both conventional ozonation and the E-peroxone process substantially reduced the formation of DBPs (trihalomethanes and haloacetic acids) during post-chlorination, higher DBP concentrations were generally observed during chlorination of the E-peroxone pretreated waters than conventional ozonation treated. In addition, because of conventional ozonation or the E-peroxone treatment, DBPs formed during post-chlorination shifted to more brominated species. The overall yields of brominated DBPs exhibited strong correlations with the bromide concentrations in water. Therefore, while the E-peroxone process can effectively suppress bromide transformation to bromate, it may lead to higher formation of brominated DBPs during post-chlorination compared to conventional ozonation. These results suggest that the E-peroxone process can lead to different DBP formation and speciation during water treatment trains compared to conventional ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Novel Multiscale Modeling Tool Applied to Pseudomonas aeruginosa Biofilm Formation

    OpenAIRE

    Biggs, Matthew B.; Papin, Jason A.

    2013-01-01

    Multiscale modeling is used to represent biological systems with increasing frequency and success. Multiscale models are often hybrids of different modeling frameworks and programming languages. We present the MATLAB-NetLogo extension (MatNet) as a novel tool for multiscale modeling. We demonstrate the utility of the tool with a multiscale model of Pseudomonas aeruginosa biofilm formation that incorporates both an agent-based model (ABM) and constraint-based metabolic modeling. The hybrid mod...

  18. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    Science.gov (United States)

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  19. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water.

    Science.gov (United States)

    Carter, Janet M; Moran, Michael J; Zogorski, John S; Price, Curtis V

    2012-08-07

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  20. Cloud fluid models of gas dynamics and star formation in galaxies

    Science.gov (United States)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  1. Numerical approaches to model perturbation fire in turing pattern formations

    Science.gov (United States)

    Campagna, R.; Brancaccio, M.; Cuomo, S.; Mazzoleni, S.; Russo, L.; Siettos, K.; Giannino, F.

    2017-11-01

    Turing patterns were observed in chemical, physical and biological systems described by coupled reaction-diffusion equations. Several models have been formulated proposing the water as the causal mechanism of vegetation pattern formation, but this isn't an exhaustive hypothesis in some natural environments. An alternative explanation has been related to the plant-soil negative feedback. In Marasco et al. [1] the authors explored the hypothesis that both mechanisms contribute in the formation of regular and irregular vegetation patterns. The mathematical model consists in three partial differential equations (PDEs) that take into account for a dynamic balance between biomass, water and toxic compounds. A numerical approach is mandatory also to investigate on the predictions of this kind of models. In this paper we start from the mathematical model described in [1], set the model parameters such that the biomass reaches a stable spatial pattern (spots) and present preliminary studies about the occurrence of perturbing events, such as wildfire, that can affect the regularity of the biomass configuration.

  2. Parabolic Free Boundary Price Formation Models Under Market Size Fluctuations

    KAUST Repository

    Markowich, Peter A.; Teichmann, Josef; Wolfram, Marie Therese

    2016-01-01

    In this paper we propose an extension of the Lasry-Lions price formation model which includes uctuations of the numbers of buyers and vendors. We analyze the model in the case of deterministic and stochastic market size uctuations and present

  3. Modelling Global Pattern Formations for Collaborative Learning Environments

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Cheong, Yun-Gyung; Khaled, Rilla

    2012-01-01

    We present our research towards the design of a computational framework capable of modelling the formation and evolution of global patterns (i.e. group structures) in a population of social individuals. The framework is intended to be used in collaborative environments, e.g. social serious games...

  4. Modeling generic aspects of ideal fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Michel, D., E-mail: denis.michel@live.fr [Universite de Rennes1-IRSET, Campus de Beaulieu Bat. 13, 35042 Rennes (France)

    2016-01-21

    Many different proteins self-aggregate into insoluble fibrils growing apically by reversible addition of elementary building blocks. But beyond this common principle, the modalities of fibril formation are very disparate, with various intermediate forms which can be reshuffled by minor modifications of physico-chemical conditions or amino-acid sequences. To bypass this complexity, the multifaceted phenomenon of fibril formation is reduced here to its most elementary principles defined for a linear prototype of fibril. Selected generic features, including nucleation, elongation, and conformational recruitment, are modeled using minimalist hypotheses and tools, by separating equilibrium from kinetic aspects and in vitro from in vivo conditions. These reductionist approaches allow to bring out known and new rudiments, including the kinetic and equilibrium effects of nucleation, the dual influence of elongation on nucleation, the kinetic limitations on nucleation and fibril numbers, and the accumulation of complexes in vivo by rescue from degradation. Overlooked aspects of these processes are also pointed: the exponential distribution of fibril lengths can be recovered using various models because it is attributable to randomness only. It is also suggested that the same term “critical concentration” is used for different things, involved in either nucleation or elongation.

  5. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  6. Cavity Formation Modeling of Fiber Fuse in Single-Mode Optical Fibers

    Directory of Open Access Journals (Sweden)

    Yoshito Shuto

    2017-01-01

    Full Text Available The evolution of a fiber-fuse phenomenon in a single-mode optical fiber was studied theoretically. To clarify both the silica-glass densification and cavity formation, which have been observed in fiber fuse propagation, we investigated a nonlinear oscillation model using the Van Der Pol equation. This model was able to phenomenologically explain both the densification of the core material and the formation of periodic cavities in the core layer as a result of a relaxation oscillation.

  7. Dynamics of biofilm formation in a model drinking water distribution system

    DEFF Research Database (Denmark)

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik

    2002-01-01

    The dynamics of biofilm formation in non-chlorinated groundwater-based drinking water was studied in a model distribution system. The formation of biofilm was closely monitored for a period of 522 days by total bacterial counts (AODC), heterotrophic plate counts (R2A media), and ATP content...

  8. Elemental abundances in Milky Way-like galaxies from a hierarchical galaxy formation model

    NARCIS (Netherlands)

    De Lucia, Gabriella; Tornatore, Luca; Frenk, Carlos S.; Helmi, Amina; Navarro, Julio F.; White, Simon D. M.

    We develop a new method to account for the finite lifetimes of stars and trace individual abundances within a semi-analytic model of galaxy formation. At variance with previous methods, based on the storage of the (binned) past star formation history of model galaxies, our method projects the

  9. Pattern Formation in Predator-Prey Model with Delay and Cross Diffusion

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2013-01-01

    Full Text Available We consider the effect of time delay and cross diffusion on the dynamics of a modified Leslie-Gower predator-prey model incorporating a prey refuge. Based on the stability analysis, we demonstrate that delayed feedback may generate Hopf and Turing instability under some conditions, resulting in spatial patterns. One of the most interesting findings is that the model exhibits complex pattern replication: the model dynamics exhibits a delay and diffusion controlled formation growth not only to spots, stripes, and holes, but also to spiral pattern self-replication. The results indicate that time delay and cross diffusion play important roles in pattern formation.

  10. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    International Nuclear Information System (INIS)

    Takehisa, M.; Arai, H.; Arai, M.

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down of a fermentor of composting plant and the process reduces a health risk from the workers as well as final users. (author)

  11. Inhibition of trihalomethane formation in city water by radiation-ozone treatment and rapid composting of radiation disinfected sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Takehisa, M; Arai, H; Arai, M

    1985-01-01

    Humic acid and Fulvic acid in natural water are precursors of carcinogenic THM which is formed during chlorine disinfection in city water processing. The radiation-oxidation process in the presence of ozone is effective to remove the precursors. The THM formation was reduced more than the decrease in TOC by the combination treatment. This is mainly due to a change in the chemical structure of the oxidation products. A composting of radiation disinfected sludge cake for agricultural reuse could be achieved within 3 days primary fermentation in a sewage plant. The rapid fermentation with use of radiation is effective to scale down a fermentor of a composting plant and the process reduces health risk for the workers as well as final users.

  12. A Simple model for breach formation by overtopping

    Energy Technology Data Exchange (ETDEWEB)

    Trousseau, P. [Hydro-Quebec, Montreal, PQ (Canada); Kahawita, R. [Ecole Polytechnique, Montreal, PQ (Canada)

    2006-07-01

    Failures in earth or rockfill dams are often caused by overtopping of the crest, leading to initiation and uncontrolled progression of a breach. Overtopping may occur because of large inflows into the reservoir caused by excessive rainfall or by the failure of an upstream dam that causes a large volume of water to suddenly arrive at the downstream reservoir thus rapidly exceeding the storage and spillway evacuation capacity. Breach formation in a rockfill or earthfill dike due to overtopping of the crest is a complex process as it involves interaction between the hydraulics of the flow and the erosion characteristics of the fill material. This paper presented a description and validation of a simple parametric model for breach formation due to overtopping. A study was conducted to model, as closely as possible, the physical processes involved within the restriction of the simplified analysis. The objective of the study was to predict the relevant timescales for the phenomenon leading to a prediction of the outflow hydrograph. The model has been validated on the Oros dam failure in Brazil as well as on embankment tests conducted at Rosvatn, Norway. It was concluded that the major impediment to the development of breach erosion models for use as predictive tools is in the characterization of the erosion behaviour. 19 refs., 2 tabs., 9 figs.

  13. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations

    Science.gov (United States)

    Ward, Logan; Liu, Ruoqian; Krishna, Amar; Hegde, Vinay I.; Agrawal, Ankit; Choudhary, Alok; Wolverton, Chris

    2017-07-01

    While high-throughput density functional theory (DFT) has become a prevalent tool for materials discovery, it is limited by the relatively large computational cost. In this paper, we explore using DFT data from high-throughput calculations to create faster, surrogate models with machine learning (ML) that can be used to guide new searches. Our method works by using decision tree models to map DFT-calculated formation enthalpies to a set of attributes consisting of two distinct types: (i) composition-dependent attributes of elemental properties (as have been used in previous ML models of DFT formation energies), combined with (ii) attributes derived from the Voronoi tessellation of the compound's crystal structure. The ML models created using this method have half the cross-validation error and similar training and evaluation speeds to models created with the Coulomb matrix and partial radial distribution function methods. For a dataset of 435 000 formation energies taken from the Open Quantum Materials Database (OQMD), our model achieves a mean absolute error of 80 meV/atom in cross validation, which is lower than the approximate error between DFT-computed and experimentally measured formation enthalpies and below 15% of the mean absolute deviation of the training set. We also demonstrate that our method can accurately estimate the formation energy of materials outside of the training set and be used to identify materials with especially large formation enthalpies. We propose that our models can be used to accelerate the discovery of new materials by identifying the most promising materials to study with DFT at little additional computational cost.

  14. Structure formation in inhomogeneous Early Dark Energy models

    International Nuclear Information System (INIS)

    Batista, R.C.; Pace, F.

    2013-01-01

    We study the impact of Early Dark Energy fluctuations in the linear and non-linear regimes of structure formation. In these models the energy density of dark energy is non-negligible at high redshifts and the fluctuations in the dark energy component can have the same order of magnitude of dark matter fluctuations. Since two basic approximations usually taken in the standard scenario of quintessence models, that both dark energy density during the matter dominated period and dark energy fluctuations on small scales are negligible, are not valid in such models, we first study approximate analytical solutions for dark matter and dark energy perturbations in the linear regime. This study is helpful to find consistent initial conditions for the system of equations and to analytically understand the effects of Early Dark Energy and its fluctuations, which are also verified numerically. In the linear regime we compute the matter growth and variation of the gravitational potential associated with the Integrated Sachs-Wolf effect, showing that these observables present important modifications due to Early Dark Energy fluctuations, though making them more similar to the ΛCDM model. We also make use of the Spherical Collapse model to study the influence of Early Dark Energy fluctuations in the nonlinear regime of structure formation, especially on δ c parameter, and their contribution to the halo mass, which we show can be of the order of 10%. We finally compute how the number density of halos is modified in comparison to the ΛCDM model and address the problem of how to correct the mass function in order to take into account the contribution of clustered dark energy. We conclude that the inhomogeneous Early Dark Energy models are more similar to the ΛCDM model than its homogeneous counterparts

  15. Modelling sea ice formation in the Terra Nova Bay polynya

    Science.gov (United States)

    Sansiviero, M.; Morales Maqueda, M. Á.; Fusco, G.; Aulicino, G.; Flocco, D.; Budillon, G.

    2017-02-01

    Antarctic sea ice is constantly exported from the shore by strong near surface winds that open leads and large polynyas in the pack ice. The latter, known as wind-driven polynyas, are responsible for significant water mass modification due to the high salt flux into the ocean associated with enhanced ice growth. In this article, we focus on the wind-driven Terra Nova Bay (TNB) polynya, in the western Ross Sea. Brine rejected during sea ice formation processes that occur in the TNB polynya densifies the water column leading to the formation of the most characteristic water mass of the Ross Sea, the High Salinity Shelf Water (HSSW). This water mass, in turn, takes part in the formation of Antarctic Bottom Water (AABW), the densest water mass of the world ocean, which plays a major role in the global meridional overturning circulation, thus affecting the global climate system. A simple coupled sea ice-ocean model has been developed to simulate the seasonal cycle of sea ice formation and export within a polynya. The sea ice model accounts for both thermal and mechanical ice processes. The oceanic circulation is described by a one-and-a-half layer, reduced gravity model. The domain resolution is 1 km × 1 km, which is sufficient to represent the salient features of the coastline geometry, notably the Drygalski Ice Tongue. The model is forced by a combination of Era Interim reanalysis and in-situ data from automatic weather stations, and also by a climatological oceanic dataset developed from in situ hydrographic observations. The sensitivity of the polynya to the atmospheric forcing is well reproduced by the model when atmospheric in situ measurements are combined with reanalysis data. Merging the two datasets allows us to capture in detail the strength and the spatial distribution of the katabatic winds that often drive the opening of the polynya. The model resolves fairly accurately the sea ice drift and sea ice production rates in the TNB polynya, leading to

  16. Equilibrium star formation in a constant Q disc: model optimization and initial tests

    Science.gov (United States)

    Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.

    2013-10-01

    We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.

  17. Neo: an object model for handling electrophysiology data in multiple formats

    Directory of Open Access Journals (Sweden)

    Samuel eGarcia

    2014-02-01

    Full Text Available Neuroscientists use many different software tools to acquire, analyse and visualise electrophysiological signals. However, incompatible data models and file formats make it difficult to exchange data between these tools. This reduces scientific productivity, renders potentially useful analysis methods inaccessible and impedes collaboration between labs.A common representation of the core data would improve interoperability and facilitate data-sharing.To that end, we propose here a language-independent object model, named Neo, suitable for representing data acquired from electroencephalographic, intracellular, or extracellular recordings, or generated from simulations. As a concrete instantiation of this object model we have developed an open source implementation in the Python programming language.In addition to representing electrophysiology data in memory for the purposes of analysis and visualisation, the Python implementation provides a set of input/output (IO modules for reading/writing the data from/to a variety of commonly used file formats.Support is included for formats produced by most of the major manufacturers of electrophysiology recording equipment and also for more generic formats such as MATLAB.Data representation and data analysis are conceptually separate: it is easier to write robust analysis code if it is focused on analysis and relies on an underlying package to handle data representation.For that reason, and also to be as lightweight as possible, the Neo object model and the associated Python package are deliberately limited to representation of data, with no functions for data analysis or visualisation.Software for neurophysiology data analysis and visualisation built on top of Neo automatically gains the benefits of interoperability, easier data sharing and automatic format conversion; there is already a burgeoning ecosystem of such tools. We intend that Neo should become the standard basis for Python tools in

  18. Development of Web-Based Formative Assessment Model to Enhance Physics Concepts of Students

    Directory of Open Access Journals (Sweden)

    Ediyanto Ediyanto

    2015-03-01

    Full Text Available Pengembangan Model Penilaian Formatif Berbasis Web untuk Meningkatkan Pemahaman Konsep Fisika Siswa   Abstract: There are two approaches of learning assessment, called formative and summative. The formative assessment is applicable because it involves students directly during the process, may im-prove these students perceptive. The limited time in class makes this process difficult, then the de-velopment of both online and offline formative assessment, provide responsive feedback for teachers and students, is definitely needed. This research goal is to produce a model of web-based formative assessment for physics. This study used research design and development of the formative assess-ment-model. Questionnaire is used for product validation, consist of validation of textbook,  instrument of pre and post-learning quizzes and web product.The result of quantitative analysis shows that the developed product is valid without any revision. Based on qualitative data, the product revision follows comments and suggestions from expert’s validation, teachers and students. The product testing shows that the formative assessment-model may improve students’ conceptual comprehension. Key Words: formatice assessment-model, students’ conceptual comprehension of physics, web-based   Abstrak: Penilaian terbagi menjadi dua macam yaitu penilaian formatif dan penilaian sumatif. Penilaian formatif tepat digunakan karena prosesnya melibatkan siswa secara langsung di dalam proses pembelajaran dan mampu meningkatkan pemahaman konsep siswa. Keterbatasan waktu di kelas menyebabkan proses ini sulit dilakukan, maka perlu dikembangkan model penilaian formatif secara online dan off-line yang dapat memberikan umpan balik yang cepat bagi siswa dan guru. Tujuan dari penelitian adalah menghasilkan model web-based penilaian formatif untuk pembelajaran fisika. Penelitian menggunakan rancangan penelitian dan pengembangan model penilaian formatif. Instrumen yang digunakan

  19. Component simulation in problems of calculated model formation of automatic machine mechanisms

    OpenAIRE

    Telegin Igor; Kozlov Alexander; Zhirkov Alexander

    2017-01-01

    The paper deals with the problems of the component simulation method application in the problems of the automation of the mechanical system model formation with the further possibility of their CAD-realization. The purpose of the investigations mentioned consists in the automation of the CAD-model formation of high-speed mechanisms in automatic machines and in the analysis of dynamic processes occurred in their units taking into account their elasto-inertial properties, power dissipation, gap...

  20. Multi-agent simulation of the von Thunen model formation mechanism

    Science.gov (United States)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  1. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  2. Numerical simulation of the hair formation -modeling of hair cycle

    Science.gov (United States)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  3. Political economy models and agricultural policy formation : empirical applicability and relevance for the CAP

    OpenAIRE

    Zee, van der, F.A.

    1997-01-01

    This study explores the relevance and applicability of political economy models for the explanation of agricultural policies. Part I (chapters 4-7) takes a general perspective and evaluates the empirical applicability of voting models and interest group models to agricultural policy formation in industrialised market economics. Part II (chapters 8-11) focuses on the empirical applicability of political economy models to agricultural policy formation and agricultural policy developmen...

  4. A review of mathematical models for the formation of vascular networks

    KAUST Repository

    Scianna, M.

    2013-09-01

    Two major mechanisms are involved in the formation of blood vasculature: vasculogenesis and angiogenesis. The former term describes the formation of a capillary-like network from either a dispersed or a monolayered population of endothelial cells, reproducible also in vitro by specific experimental assays. The latter term describes the sprouting of new vessels from an existing capillary or post-capillary venule. Similar mechanisms are also involved in the formation of the lymphatic system through a process generally called lymphangiogenesis. A number of mathematical approaches have been used to analyze these phenomena. In this paper, we review the different types of models, with special emphasis on their ability to reproduce different biological systems and to predict measurable quantities which describe the overall processes. Finally, we highlight the advantages specific to each of the different modelling approaches. © 2013 Elsevier Ltd.

  5. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  6. FROM CAD MODEL TO 3D PRINT VIA “STL” FILE FORMAT

    Directory of Open Access Journals (Sweden)

    Cătălin IANCU

    2010-06-01

    Full Text Available The paper work presents the STL file format, which is now used for transferring information from CAD software to a 3D printer, for obtaining the solid model in Rapid prototyping and Computer Aided Manufacturing. It’s presented also the STL format structure, its history, limitations and further development, as well as its new version to arrive and other similar file formats. As a conclusion, STL files used to transfer data from CAD package to 3D printers has a series of limitations and therefore new formats will replace it soon.

  7. Mathematical modeling of porosity formation in die cast A356 wheels

    International Nuclear Information System (INIS)

    Maijer, D.; Cockcroft, S.L.; Wells, M.A.; Luciuk, T.; Hermesmann, C.

    2000-01-01

    In an effort to leverage recent advances in modeling and process simulation tools, a mathematical model has been developed to predict porosity formation in die cast A356 wheels as part of a collaborative research agreement between researchers at the University of British Columbia and Canadian Autoparts Toyota Incorporated. The heat transfer model represents a three-dimensional, 30 o , slice of the wheel and die and is based on the commercial finite element code ABAQUS. Extensive temperature measurements in the die and in the wheel taken over several cycles in the casting process were used to fine tune and validate the model. Initial work on predicting porosity formation has focused on using the Niyama parameter as a measure of the probability of porosity. To date Niyama porosity predictions agree well with plant experience and show promise for reducing losses associated with porosity. (author)

  8. Model for UV induced formation of gold nanoparticles in solid polymeric matrices

    Science.gov (United States)

    Sapogova, N.; Bityurin, N.

    2009-09-01

    UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.

  9. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    Science.gov (United States)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  10. Cell Competition Drives the Formation of Metastatic Tumors in a Drosophila Model of Epithelial Tumor Formation

    DEFF Research Database (Denmark)

    Eichenlaub, Teresa; Cohen, Stephen M; Herranz, Héctor

    2016-01-01

    . The mechanisms that allow for ongoing cell competition during adult life could, in principle, contribute to tumorigenesis. However, direct evidence supporting this hypothesis has been lacking. Here, we provide evidence that cell competition drives tumor formation in a Drosophila model of epithelial cancer. Cells...

  11. A comparison of disinfection by-products formation during sequential or simultaneous disinfection of surface waters with chlorine dioxide and chlor(am)ine.

    Science.gov (United States)

    Shi, Yanwei; Ling, Wencui; Qiang, Zhimin

    2013-01-01

    The effect of chlorine dioxide (ClO2) oxidation on the formation of disinfection by-products (DBPs) during sequential (ClO2 pre-oxidation for 30 min) and simultaneous disinfection processes with free chlorine (FC) or monochloramine (MCA) was investigated. The formation of DBPs from synthetic humic acid (HA) water and three natural surface waters containing low bromide levels (11-27 microg/L) was comparatively examined in the FC-based (single FC, sequential ClO2-FC, and simultaneous ClO2/FC) and MCA-based (single MCA, ClO2-MCA, and ClO2/MCA) disinfection processes. The results showed that much more DBPs were formed from the synthetic HA water than from the three natural surface waters with comparative levels of dissolved organic carbon. In the FC-based processes, ClO2 oxidation could reduce trihalomethanes (THMs) by 27-35% and haloacetic acids (HAAs) by 14-22% in the three natural surface waters, but increased THMs by 19% and HAAs by 31% in the synthetic HA water after an FC contact time of 48 h. In the MCA-based processes, similar trends were observed although DBPs were produced at a much lower level. There was an insignificant difference in DBPs formation between the sequential and simultaneous processes. The presence of a high level of bromide (320 microg/L) remarkably promoted the DBPs formation in the FC-based processes. Therefore, the simultaneous disinfection process of ClO2/MCA is recommended particularly for waters with a high bromide level.

  12. Models for predicting disinfection byproduct (DBP) formation in drinking waters: a chronological review.

    Science.gov (United States)

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2009-07-01

    Disinfection for the supply of safe drinking water forms a variety of known and unknown byproducts through reactions between the disinfectants and natural organic matter. Chronic exposure to disinfection byproducts through the ingestion of drinking water, inhalation and dermal contact during regular indoor activities (e.g., showering, bathing, cooking) may pose cancer and non-cancer risks to human health. Since their discovery in drinking water in 1974, numerous studies have presented models to predict DBP formation in drinking water. To date, more than 48 scientific publications have reported 118 models to predict DBP formation in drinking waters. These models were developed through laboratory and field-scale experiments using raw, pretreated and synthetic waters. This paper aims to review DBP predictive models, analyze the model variables, assess the model advantages and limitations, and to determine their applicability to different water supply systems. The paper identifies the current challenges and future research needs to better control DBP formation. Finally, important directions for future research are recommended to protect human health and to follow the best management practices.

  13. The performance model of dynamic virtual organization (VO) formations within grid computing context

    International Nuclear Information System (INIS)

    Han Liangxiu

    2009-01-01

    Grid computing aims to enable 'resource sharing and coordinated problem solving in dynamic, multi-institutional virtual organizations (VOs)'. Within the grid computing context, successful dynamic VO formations mean a number of individuals and institutions associated with certain resources join together and form new VOs in order to effectively execute tasks within given time steps. To date, while the concept of VOs has been accepted, few research has been done on the impact of effective dynamic virtual organization formations. In this paper, we develop a performance model of dynamic VOs formation and analyze the effect of different complex organizational structures and their various statistic parameter properties on dynamic VO formations from three aspects: (1) the probability of a successful VO formation under different organizational structures and statistic parameters change, e.g. average degree; (2) the effect of task complexity on dynamic VO formations; (3) the impact of network scales on dynamic VO formations. The experimental results show that the proposed model can be used to understand the dynamic VO formation performance of the simulated organizations. The work provides a good path to understand how to effectively schedule and utilize resources based on the complex grid network and therefore improve the overall performance within grid environment.

  14. Understanding the geographic distribution of tropical cyclone formation for applications in climate models

    Science.gov (United States)

    Tory, Kevin J.; Ye, H.; Dare, R. A.

    2018-04-01

    Projections of Tropical cyclone (TC) formation under future climate scenarios are dependent on climate model simulations. However, many models produce unrealistic geographical distributions of TC formation, especially in the north and south Atlantic and eastern south Pacific TC basins. In order to improve confidence in projections it is important to understand the reasons behind these model errors. However, considerable effort is required to analyse the many models used in projection studies. To address this problem, a novel diagnostic is developed that provides compelling insight into why TCs form where they do, using a few summary diagrams. The diagnostic is developed after identifying a relationship between seasonal climatologies of atmospheric variables in 34 years of ECMWF reanalysis data, and TC detection distributions in the same data. Geographic boundaries of TC formation are constructed from four threshold quantities. TCs form where Emanuel's Maximum Potential Intensity, V_{{PI}}, exceeds 40 {ms}^{{ - 1}}, 700 hPa relative humidity, RH_{{700}}, exceeds 40%, and the magnitude of the difference in vector winds between 850 and 200 hPa, V_{{sh}}, is less than 20 {ms}^{{ - 1}}. The equatorial boundary is best defined by a composite quantity containing the ratio of absolute vorticity (η ) to the meridional gradient of absolute vorticity (β ^{*}), rather than η alone. {β ^*} is also identified as a potentially important ingredient for TC genesis indices. A comparison of detected Tropical Depression (TD) and Tropical Storm (TS) climatologies revealed TDs more readily intensify further to TS where {V_{PI}} is elevated and {V_{sh}} is relatively weak. The distributions of each threshold quantity identify the factors that favour and suppress TC formation throughout the tropics in the real world. This information can be used to understand why TC formation is poorly represented in some climate models, and shows potential for understanding anomalous TC formation

  15. Development and validation of method for the determination of organochlorine pesticides and trihalomethanes in the water by HRGC-ECD = Desenvolvimento e validação de método para a determinação de pesticidas organoclorados e trihalometanos em água usando HRGC-ECD

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ribeiro Alves

    2010-10-01

    Full Text Available The development and validation of a simultaneous liquid-liquid extraction method for organochlorine pesticides and trihalomethanes in surface and drinking water by HRGC-ECD is described. The method presents acceptable recovery, with detection ranging from 2.7 to 49.0 ng L-1 for organochlorine pesticides and from 18.0 to 860.0 ng L-1for trihalomethanes. The extraction method also presents excellent linearity for all the analytes, with excellent repeatability. Extraction is simple, fast, and low cost, uses small amounts of solvent and aqueous sample, and is suitable for routine analyses.O presente trabalho trata do desenvolvimento e validação de um método de extração para a determinação simultânea de trihalometanos e pesticidas organoclorados em água superficial e água potável por HRGC-ECD. O método apresenta recuperação aceitável, com limites dedetecção que variam de 2,7 a 49,0 ng L-1 para pesticidas organoclorados e de 18,0 a 860,0 ng L-1 para trihalometanos. O método de extração apresenta também excelente linearidade para todos os analitos e boa repetibilidade. A extração é simples, rápida, de baixo custo, além de utilizar pequenas quantidades de solvente e de amostra aquosa, sendo, portanto, de alta aplicabilidade em análises de rotina.

  16. Galaxy modelling. II. Multi-wavelength faint counts from a semi-analytic model of galaxy formation

    Science.gov (United States)

    Devriendt, J. E. G.; Guiderdoni, B.

    2000-11-01

    This paper predicts self-consistent faint galaxy counts from the UV to the submm wavelength range. The stardust spectral energy distributions described in Devriendt et al. \\citeparyear{DGS99} (Paper I) are embedded within the explicit cosmological framework of a simple semi-analytic model of galaxy formation and evolution. We begin with a description of the non-dissipative and dissipative collapses of primordial perturbations, and plug in standard recipes for star formation, stellar evolution and feedback. We also model the absorption of starlight by dust and its re-processing in the IR and submm. We then build a class of models which capture the luminosity budget of the universe through faint galaxy counts and redshift distributions in the whole wavelength range spanned by our spectra. In contrast with a rather stable behaviour in the optical and even in the far-IR, the submm counts are dramatically sensitive to variations in the cosmological parameters and changes in the star formation history. Faint submm counts are more easily accommodated within an open universe with a low value of Omega_0 , or a flat universe with a non-zero cosmological constant. We confirm the suggestion of Guiderdoni et al. \\citeparyear{GHBM98} that matching the current multi-wavelength data requires a population of heavily-extinguished, massive galaxies with large star formation rates ( ~ 500 M_sun yr-1) at intermediate and high redshift (z >= 1.5). Such a population of objects probably is the consequence of an increase of interaction and merging activity at high redshift, but a realistic quantitative description can only be obtained through more detailed modelling of such processes. This study illustrates the implementation of multi-wavelength spectra into a semi-analytic model. In spite of its simplicity, it already provides fair fits of the current data of faint counts, and a physically motivated way of interpolating and extrapolating these data to other wavelengths and fainter flux

  17. Occurrence of regulated and emerging iodinated DBPs in the Shanghai drinking water.

    Directory of Open Access Journals (Sweden)

    Xiao Wei

    Full Text Available Drinking water chlorination plays a pivotal role in preventing pathogen contamination against water-borne disease. However, chemical disinfection leads to the formation of halogenated disinfection by products (DBPs. Many DBPs are highly toxic and are of health concern. In this study, we conducted a comprehensive measurements of DBPs, including iodoacetic acid (IAA, iodoform (IF, nine haloacetic acids and four trihalomethanes in drinking waters from 13 water plants in Shanghai, China. The results suggested that IAA and IF were found in all the water treatment plants, with maximum levels of 1.66 µg/L and 1.25 µg/L for IAA and IF, respectively. Owing to deterioration of water quality, the Huangpu River has higher IAA and IF than the Yangtze River. Our results also demonstrated that low pH, high natural organic matter, ammonia nitrogen, and iodide in source waters increased IAA and IF formation. Compared to chlorine, chloramines resulted in higher concentration of iodinated DBP, but reduced the levels of trihalomethanes. This is the first study to reveal the widespread occurrence of IAA and IF in drinking water in China. The data provide a better understanding on the formation of iodinated disinfection byproducts and the findings should be useful for treatment process improvement and disinfection byproducts controls.

  18. Rosuvastatin reduces neointima formation in a rat model of balloon injury

    Directory of Open Access Journals (Sweden)

    Preusch MR

    2010-11-01

    Full Text Available Abstract Background Processes of restenosis, following arterial injury, are complex involving different cell types producing various cytokines and enzymes. Among those enzymes, smooth muscle cell-derived matrix metalloproteinases (MMPs are thought to take part in cell migration, degrading of extracellular matrix, and neointima formation. MMP-9, also known as gelatinase B, is expressed immediately after vascular injury and its expression and activity can be inhibited by statins. Using an established in vivo model of vascular injury, we investigated the effect of the HMG-CoA reductase inhibitor rosuvastatin on MMP-9 expression and neointima formation. Materials and methods 14-week old male Sprague Dawley rats underwent balloon injury of the common carotid artery. Half of the animals received rosuvastatin (20 mg/kg body weight/day via oral gavage, beginning 3 days prior to injury. Gelatinase activity and neointima formation were analyzed 3 days and 14 days after balloon injury, respectively. 14 days after vascular injury, proliferative activity was assessed by staining for Ki67. Results After 14 days, animals in the rosuvastatin group showed a decrease in total neointima formation (0.194 ± 0.01 mm2 versus 0.124 ± 0.02 mm2, p Conclusions Rosuvastatin attenuates neointima formation without affecting early MMP-9 activity in a rat model of vascular injury.

  19. A Hydromechanic-Electrokinetic Model for CO2 Sequestration in Geological Formations

    NARCIS (Netherlands)

    Al-Khoury, R.I.N.; Talebian, M.; Sluys, L.J.

    2013-01-01

    In this contribution, a finite element model for simulating coupled hydromechanic and electrokinetic flow in a multiphase domain is outlined. The model describes CO2 flow in a deformed, unsaturated geological formation and its associated streaming potential flow. The governing field equations are

  20. Model and calculation of in situ stresses in anisotropic formations

    Energy Technology Data Exchange (ETDEWEB)

    Yuezhi, W.; Zijun, L.; Lixin, H. [Jianghan Petroleum Institute, (China)

    1997-08-01

    In situ stresses in transversely isotropic material in relation to wellbore stability have been investigated. Equations for three horizontal in- situ stresses and a new formation fracture pressure model were described, and the methodology for determining the elastic parameters of anisotropic rocks in the laboratory was outlined. Results indicate significantly smaller differences between theoretically calculated pressures and actual formation pressures than results obtained by using the isotropic method. Implications for improvements in drilling efficiency were reviewed. 13 refs., 6 figs.

  1. Energy-saving management modelling and optimization for lead-acid battery formation process

    Science.gov (United States)

    Wang, T.; Chen, Z.; Xu, J. Y.; Wang, F. Y.; Liu, H. M.

    2017-11-01

    In this context, a typical lead-acid battery producing process is introduced. Based on the formation process, an efficiency management method is proposed. An optimization model with the objective to minimize the formation electricity cost in a single period is established. This optimization model considers several related constraints, together with two influencing factors including the transformation efficiency of IGBT charge-and-discharge machine and the time-of-use price. An example simulation is shown using PSO algorithm to solve this mathematic model, and the proposed optimization strategy is proved to be effective and learnable for energy-saving and efficiency optimization in battery producing industries.

  2. Cellular automaton modeling of biological pattern formation characterization, examples, and analysis

    CERN Document Server

    Deutsch, Andreas

    2017-01-01

    This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In ...

  3. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes

    Directory of Open Access Journals (Sweden)

    J. Lee-Taylor

    2012-08-01

    Full Text Available The chemical mechanism leading to SOA formation and ageing is expected to be a multigenerational process, i.e. a successive formation of organic compounds with higher oxidation degree and lower vapor pressure. This process is here investigated with the explicit oxidation model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere. Gas phase oxidation schemes are generated for the C8–C24 series of n-alkanes. Simulations are conducted to explore the time evolution of organic compounds and the behavior of secondary organic aerosol (SOA formation for various preexisting organic aerosol concentration (COA. As expected, simulation results show that (i SOA yield increases with the carbon chain length of the parent hydrocarbon, (ii SOA yield decreases with decreasing COA, (iii SOA production rates increase with increasing COA and (iv the number of oxidation steps (i.e. generations needed to describe SOA formation and evolution grows when COA decreases. The simulated oxidative trajectories are examined in a two dimensional space defined by the mean carbon oxidation state and the volatility. Most SOA contributors are not oxidized enough to be categorized as highly oxygenated organic aerosols (OOA but reduced enough to be categorized as hydrocarbon like organic aerosols (HOA, suggesting that OOA may underestimate SOA. Results show that the model is unable to produce highly oxygenated aerosols (OOA with large yields. The limitations of the model are discussed.

  4. Cosmic CARNage I: on the calibration of galaxy formation models

    Science.gov (United States)

    Knebe, Alexander; Pearce, Frazer R.; Gonzalez-Perez, Violeta; Thomas, Peter A.; Benson, Andrew; Asquith, Rachel; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J.; Cattaneo, Andrea; Cora, Sofía A.; Croton, Darren J.; Cui, Weiguang; Cunnama, Daniel; Devriendt, Julien E.; Elahi, Pascal J.; Font, Andreea; Fontanot, Fabio; Gargiulo, Ignacio D.; Helly, John; Henriques, Bruno; Lee, Jaehyun; Mamon, Gary A.; Onions, Julian; Padilla, Nelson D.; Power, Chris; Pujol, Arnau; Ruiz, Andrés N.; Srisawat, Chaichalit; Stevens, Adam R. H.; Tollet, Edouard; Vega-Martínez, Cristian A.; Yi, Sukyoung K.

    2018-04-01

    We present a comparison of nine galaxy formation models, eight semi-analytical, and one halo occupation distribution model, run on the same underlying cold dark matter simulation (cosmological box of comoving width 125h-1 Mpc, with a dark-matter particle mass of 1.24 × 109h-1M⊙) and the same merger trees. While their free parameters have been calibrated to the same observational data sets using two approaches, they nevertheless retain some `memory' of any previous calibration that served as the starting point (especially for the manually tuned models). For the first calibration, models reproduce the observed z = 0 galaxy stellar mass function (SMF) within 3σ. The second calibration extended the observational data to include the z = 2 SMF alongside the z ˜ 0 star formation rate function, cold gas mass, and the black hole-bulge mass relation. Encapsulating the observed evolution of the SMF from z = 2 to 0 is found to be very hard within the context of the physics currently included in the models. We finally use our calibrated models to study the evolution of the stellar-to-halo mass (SHM) ratio. For all models, we find that the peak value of the SHM relation decreases with redshift. However, the trends seen for the evolution of the peak position as well as the mean scatter in the SHM relation are rather weak and strongly model dependent. Both the calibration data sets and model results are publicly available.

  5. Drinking Water Disinfection By-products, Genetic Polymorphisms, and Birth Outcomes in a European Mother-Child Cohort Study.

    Science.gov (United States)

    Kogevinas, Manolis; Bustamante, Mariona; Gracia-Lavedán, Esther; Ballester, Ferran; Cordier, Sylvaine; Costet, Nathalie; Espinosa, Ana; Grazuleviciene, Regina; Danileviciute, Asta; Ibarluzea, Jesus; Karadanelli, Maria; Krasner, Stuart; Patelarou, Evridiki; Stephanou, Euripides; Tardón, Adonina; Toledano, Mireille B; Wright, John; Villanueva, Cristina M; Nieuwenhuijsen, Mark

    2016-11-01

    We examined the association between exposure during pregnancy to trihalomethanes, the most common water disinfection by-products, and birth outcomes in a European cohort study (Health Impacts of Long-Term Exposure to Disinfection By-Products in Drinking Water). We took into account exposure through different water uses, measures of water toxicity, and genetic susceptibility. We enrolled 14,005 mothers (2002-2010) and their children from France, Greece, Lithuania, Spain, and the UK. Information on lifestyle- and water-related activities was recorded. We ascertained residential concentrations of trihalomethanes through regulatory records and ad hoc sampling campaigns and estimated route-specific trihalomethane uptake by trimester and for whole pregnancy. We examined single nucleotide polymorphisms and copy number variants in disinfection by-product metabolizing genes in nested case-control studies. Average levels of trihalomethanes ranged from around 10 μg/L to above the regulatory limits in the EU of 100 μg/L between centers. There was no association between birth weight and total trihalomethane exposure during pregnancy (β = 2.2 g in birth weight per 10 μg/L of trihalomethane, 95% confidence interval = 3.3, 7.6). Birth weight was not associated with exposure through different routes or with specific trihalomethane species. Exposure to trihalomethanes was not associated with low birth weight (odds ratio [OR] per 10 μg/L = 1.02, 95% confidence interval = 0.95, 1.10), small-for-gestational age (OR = 0.99, 0.94, 1.03) and preterm births (OR = 0.98, 0.9, 1.05). We found no gene-environment interactions for mother or child polymorphisms in relation to preterm birth or small-for-gestational age. In this large European study, we found no association between birth outcomes and trihalomethane exposures during pregnancy in the total population or in potentially genetically susceptible subgroups. (See video abstract at http://links.lww.com/EDE/B104.).

  6. An improved model for nucleation-limited ice formation in living cells during freezing.

    Directory of Open Access Journals (Sweden)

    Jingru Yi

    Full Text Available Ice formation in living cells is a lethal event during freezing and its characterization is important to the development of optimal protocols for not only cryopreservation but also cryotherapy applications. Although the model for probability of ice formation (PIF in cells developed by Toner et al. has been widely used to predict nucleation-limited intracellular ice formation (IIF, our data of freezing Hela cells suggest that this model could give misleading prediction of PIF when the maximum PIF in cells during freezing is less than 1 (PIF ranges from 0 to 1. We introduce a new model to overcome this problem by incorporating a critical cell volume to modify the Toner's original model. We further reveal that this critical cell volume is dependent on the mechanisms of ice nucleation in cells during freezing, i.e., surface-catalyzed nucleation (SCN and volume-catalyzed nucleation (VCN. Taken together, the improved PIF model may be valuable for better understanding of the mechanisms of ice nucleation in cells during freezing and more accurate prediction of PIF for cryopreservation and cryotherapy applications.

  7. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.

    Science.gov (United States)

    Glawdel, Tomasz; Elbuken, Caglar; Ren, Carolyn L

    2012-01-01

    This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating in the transition regime. In the preceding paper [Phys. Rev. E 85, 016322 (2012)], we presented our experimental observations of droplet formation and decomposed the process into three sequential stages defined as the lag, filling, and necking stages. Here we develop a model that describes the performance of microfluidic T-junction generators working in the squeezing to transition regimes where confinement of the droplet dominates the formation process. The model incorporates a detailed geometric description of the drop shape during the formation process combined with a force balance and necking criteria to define the droplet size, production rate, and spacing. The model inherently captures the influence of the intersection geometry, including the channel width ratio and height-to-width ratio, capillary number, and flow ratio, on the performance of the generator. The model is validated by comparing it to speed videos of the formation process for several T-junction geometries across a range of capillary numbers and viscosity ratios.

  8. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  9. Crystal structure representations for machine learning models of formation energies

    Energy Technology Data Exchange (ETDEWEB)

    Faber, Felix [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Lindmaa, Alexander [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden; von Lilienfeld, O. Anatole [Department of Chemistry, Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, University of Basel Switzerland; Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Avenue Lemont Illinois 60439; Armiento, Rickard [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping Sweden

    2015-04-20

    We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a dataset of 3938 crystal structures obtained from the Materials Project. For training sets consisting of 3000 crystals, the generalization error in predicting formation energies of new structures corresponds to (i) 0.49, (ii) 0.64, and (iii) 0.37eV/atom for the respective representations.

  10. Modeling human intention formation for human reliability assessment

    International Nuclear Information System (INIS)

    Woods, D.D.; Roth, E.M.; Pople, H. Jr.

    1988-01-01

    This paper describes a dynamic simulation capability for modeling how people form intentions to act in nuclear power plant emergency situations. This modeling tool, Cognitive Environment Simulation or CES, was developed based on techniques from artificial intelligence. It simulates the cognitive processes that determine situation assessment and intention formation. It can be used to investigate analytically what situations and factors lead to intention failures, what actions follow from intention failures (e.g. errors of omission, errors of commission, common mode errors), the ability to recover from errors or additional machine failures, and the effects of changes in the NPP person machine system. One application of the CES modeling environment is to enhance the measurement of the human contribution to risk in probabilistic risk assessment studies. (author)

  11. Network formation under heterogeneous costs: The multiple group model

    NARCIS (Netherlands)

    Kamphorst, J.J.A.; van der Laan, G.

    2007-01-01

    It is widely recognized that the shape of networks influences both individual and aggregate behavior. This raises the question which types of networks are likely to arise. In this paper we investigate a model of network formation, where players are divided into groups and the costs of a link between

  12. Modeling the formation of N-nitrosodimethylamine (NDMA) from the reaction of natural organic matter (NOM) with monochloramine.

    Science.gov (United States)

    Chen, Zhuo; Valentine, Richard L

    2006-12-01

    This paper presents mechanistic studies on the formation of NDMA, a newly identified chloramination disinfection byproduct, from reactions of monochloramine with natural organic matter. A kinetic model was developed to validate proposed reactions and to predict NDMA formation in chloraminated water during the time frame of 1-5 days. This involved incorporating NDMA formation reactions into an established comprehensive model describing the oxidation of humic-type natural organic matter by monochloramine. A rate-limiting step involving the oxidation of NOM is theorized to control the rate of NDMA formation which is assumed to be proportional to the rate of NOM oxidized by monochloramine. The applicability of the model to describe NDMA formation in the presence of three NOM sources over a wide range in water quality (i.e., pH, DOC, and ammonia concentrations) was evaluated. Results show that with accurate measurement of monochloramine demand for a specific supply, NDMA formation could be modeled over an extended range of experimental conditions by considering a single NOM source-specific value of thetaNDMA, a stoichiometric coefficient relating the amount of NDMA produced to the amount of NOM oxidized, and several kinetic parameters describing NOM oxidation. Furthermore, the oxidation of NOM is the rate-limiting step governing NDMA formation. This suggests that NDMA formation over a 1-5 day time frame may be estimated from information on the chloramine or free chlorine demand of the NOM and the source-specific linear relationship between this demand and NDMA formation. Although the proposed model has not yet been validated for shorter time periods that may better characterize the residence time in some distribution systems, the improved understanding of the important reactions governing NDMA formation and the resulting model should benefit the water treatment industry as a tool in developing strategies that minimize NDMA formation.

  13. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.

    Science.gov (United States)

    Bond, Tom; Huang, Jin; Graham, Nigel J D; Templeton, Michael R

    2014-02-01

    During drinking water treatment aqueous chlorine and bromine compete to react with natural organic matter (NOM). Among the products of these reactions are potentially harmful halogenated disinfection by-products, notably four trihalomethanes (THM4) and nine haloacetic acids (HAAs). Previous research has concentrated on the role of bromide in chlorination reactions under conditions of a given NOM type and/or concentration. In this study different concentrations of dissolved organic carbon (DOC) from U.K. lowland water were reacted with varying amounts of bromide and chlorine in order to examine the interrelationship between the three reactants in the formation of THM4, dihaloacetic acids (DHAAs) and trihaloacetic acids (THAAs). Results showed that, in general, molar yields of THM4 increased with DOC, bromide and chlorine concentrations, although yields did fluctuate versus chlorine dose. In contrast both DHAA and THAA yields were mainly independent of changes in bromide and chlorine dose at low DOC (1 mg·L(-1)), but increased with chlorine dose at higher DOC concentrations (4 mg·L(-1)). Bromine substitution factors reached maxima of 0.80, 0.67 and 0.65 for the THM4, DHAAs and THAAs, respectively, at the highest bromide/chlorine ratio studied. These results suggest that THM4 formation kinetics depend on both oxidation and halogenation steps, whereas for DHAAs and THAAs oxidation steps are more important. Furthermore, they indicate that high bromide waters may prove more problematic for water utilities with respect to THM4 formation than for THAAs or DHAAs. While mass concentrations of all three groups increased in response to increased bromide incorporation, only the THMs also showed an increase in molar yield. Overall, the formation behaviour of DHAA and THAA was more similar than that of THM4 and THAA. © 2013.

  14. A formative model for student nurse development and evaluation

    Directory of Open Access Journals (Sweden)

    A. S. van der Merwe

    1996-03-01

    Full Text Available Preparing student nurses for the profession is a complex task for nurse educators; especially when dealing with the development of personal and interpersonal skills, qualities and values held in high esteem by the nursing profession and the community they serve. These researchers developed a model for formative evaluation of students by using the principles of inductive and deductive reasoning. This model was implemented in clinical practice situations and evaluated for its usefulness. It seems that the model enhanced the standards of nursing care because it had a positive effect on the behaviour of students and they were better motivated; the model also improved interpersonal relationships and communication between practising nurses and students.

  15. Panel Data Models of New Firm Formation in New England

    Directory of Open Access Journals (Sweden)

    Jitendra Parajuli

    2017-10-01

    Full Text Available This study examines the impact of the determinants of new firm formation in New England at the county level from 1999 to 2009. Based on the Spatial Durbin panel model that accounts for spillover effects, it is found that population density and human capital positively affect single-unit firm births within a county and its neighbors. Population growth rate also exerts a significant positive impact on new firm formation, but most of the effect is from spatial spillovers. On the contrary, the ratio of large to small firm in terms of employment size and unemployment rate negatively influence single-unit firm births both within counties and among neighbors. However, there is no significant impact of local financial capital and personal income growth on new firm formation.

  16. Massive quiescent galaxies at z > 3 in the Millennium simulation populated by a semi-analytic galaxy formation model

    Science.gov (United States)

    Rong, Yu; Jing, Yingjie; Gao, Liang; Guo, Qi; Wang, Jie; Sun, Shuangpeng; Wang, Lin; Pan, Jun

    2017-10-01

    We take advantage of the statistical power of the large-volume dark-matter-only Millennium simulation (MS), combined with a sophisticated semi-analytic galaxy formation model, to explore whether the recently reported z = 3.7 quiescent galaxy ZF-COSMOS-20115 (ZF) can be accommodated in current galaxy formation models. In our model, a population of quiescent galaxies with stellar masses and star formation rates comparable to those of ZF naturally emerges at redshifts z 3.5 massive QGs are rare (about 2 per cent of the galaxies with the similar stellar masses), the existing AGN feedback model implemented in the semi-analytic galaxy formation model can successfully explain the formation of the high-redshift QGs as it does on their lower redshift counterparts.

  17. Comparison of Spot and Time Weighted Averaging (TWA Sampling with SPME-GC/MS Methods for Trihalomethane (THM Analysis

    Directory of Open Access Journals (Sweden)

    Don-Roger Parkinson

    2016-02-01

    Full Text Available Water samples were collected and analyzed for conductivity, pH, temperature and trihalomethanes (THMs during the fall of 2014 at two monitored municipal drinking water source ponds. Both spot (or grab and time weighted average (TWA sampling methods were assessed over the same two day sampling time period. For spot sampling, replicate samples were taken at each site and analyzed within 12 h of sampling by both Headspace (HS- and direct (DI- solid phase microextraction (SPME sampling/extraction methods followed by Gas Chromatography/Mass Spectrometry (GC/MS. For TWA, a two day passive on-site TWA sampling was carried out at the same sampling points in the ponds. All SPME sampling methods undertaken used a 65-µm PDMS/DVB SPME fiber, which was found optimal for THM sampling. Sampling conditions were optimized in the laboratory using calibration standards of chloroform, bromoform, bromodichloromethane, dibromochloromethane, 1,2-dibromoethane and 1,2-dichloroethane, prepared in aqueous solutions from analytical grade samples. Calibration curves for all methods with R2 values ranging from 0.985–0.998 (N = 5 over the quantitation linear range of 3–800 ppb were achieved. The different sampling methods were compared for quantification of the water samples, and results showed that DI- and TWA- sampling methods gave better data and analytical metrics. Addition of 10% wt./vol. of (NH42SO4 salt to the sampling vial was found to aid extraction of THMs by increasing GC peaks areas by about 10%, which resulted in lower detection limits for all techniques studied. However, for on-site TWA analysis of THMs in natural waters, the calibration standard(s ionic strength conditions, must be carefully matched to natural water conditions to properly quantitate THM concentrations. The data obtained from the TWA method may better reflect actual natural water conditions.

  18. Synergy of cell-cell repulsion and vacuolation in a computational model of lumen formation.

    Science.gov (United States)

    Boas, Sonja E M; Merks, Roeland M H

    2014-03-06

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell-cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types.

  19. Synergy of cell–cell repulsion and vacuolation in a computational model of lumen formation

    Science.gov (United States)

    Boas, Sonja E. M.; Merks, Roeland M. H.

    2014-01-01

    A key step in blood vessel development (angiogenesis) is lumen formation: the hollowing of vessels for blood perfusion. Two alternative lumen formation mechanisms are suggested to function in different types of blood vessels. The vacuolation mechanism is suggested for lumen formation in small vessels by coalescence of intracellular vacuoles, a view that was extended to extracellular lumen formation by exocytosis of vacuoles. The cell–cell repulsion mechanism is suggested to initiate extracellular lumen formation in large vessels by active repulsion of adjacent cells, and active cell shape changes extend the lumen. We used an agent-based computer model, based on the cellular Potts model, to compare and study both mechanisms separately and combined. An extensive sensitivity analysis shows that each of the mechanisms on its own can produce lumens in a narrow region of parameter space. However, combining both mechanisms makes lumen formation much more robust to the values of the parameters, suggesting that the mechanisms may work synergistically and operate in parallel, rather than in different vessel types. PMID:24430123

  20. Consistent partnership formation: application to a sexually transmitted disease model.

    Science.gov (United States)

    Artzrouni, Marc; Deuchert, Eva

    2012-02-01

    We apply a consistent sexual partnership formation model which hinges on the assumption that one gender's choices drives the process (male or female dominant model). The other gender's behavior is imputed. The model is fitted to UK sexual behavior data and applied to a simple incidence model of HSV-2. With a male dominant model (which assumes accurate male reports on numbers of partners) the modeled incidences of HSV-2 are 77% higher for men and 50% higher for women than with a female dominant model (which assumes accurate female reports). Although highly stylized, our simple incidence model sheds light on the inconsistent results one can obtain with misreported data on sexual activity and age preferences. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Controlling acrylamide in French fry and potato chip models and a mathematical model of acrylamide formation: acrylamide: acidulants, phytate and calcium.

    Science.gov (United States)

    Park, Yeonhwa; Yang, Heewon; Storkson, Jayne M; Albright, Karen J; Liu, Wei; Lindsay, Robert C; Pariza, Michael W

    2005-01-01

    We previously reported that in potato chip and French fry models, the formation of acrylamide can be reduced by controlling pH during processing steps, either by organic (acidulants) or inorganic acids. Use of phytate, a naturally occurring chelator, with or without Ca++ (or divalent ions), can reduce acrylamide formation in both models. However, since phytate itself is acidic, the question remains as to whether the effect of phytate is due to pH alone or to additional effects. In the French fry model, the effects on acrylamide formation of pH, phytate, and/or Ca++ in various combinations were tested in either blanching or soaking (after blanching) steps. All treatments significantly reduced acrylamide levels compared to control. Among variables tested, pH may be the single most important factor for reducing acrylamide levels, while there were independent effects of phytate and/or Ca++ in this French fry model. We also developed a mathematical formula to estimate the final concentration of acrylamide in a potato chip model, using variables that can affect acrylamide formation: glucose and asparagine concentrations, cut potato surface area and shape, cooking temperature and time, and other processing conditions.

  2. Modeling the geometric formation and powder deposition mass in laser induction hybrid cladding

    International Nuclear Information System (INIS)

    Huang, Yong Jun; Yuan, Sheng Fa

    2012-01-01

    A new laser induction hybrid cladding technique on cylinder work piece is presented. Based on a series of laser induction hybrid experiments by off axial powder feeding, the predicting models of individual clad geometric formation and powder catchment were developed in terms of powder feeding rate, laser special energy and induction energy density using multiple regression analysis. In addition, confirmation tests were performed to make a comparison between the predicting results and measured ones. Via the experiments and analysis, the conclusions can be lead to that the process parameters have crucial influence on the clad geometric formation and powder catchment, and that the predicting model reflects well the relationship between the clad geometric formation and process parameters in laser induction hybrid cladding

  3. Model-aided optimization of delta-endotoxin-formation in continuous culture systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, V; Schorcht, R; Ignatenko, Yu N; Sakharova, Z V; Khovrychev, M P

    1985-01-01

    A mathematical model of growth, sporulation and delta-endotoxin-formation of bac. thuringiensis is given. The results of model-aided optimization of steady-state continuous culture systems indicate that the productivity in the one-stage system is 1.9% higher and in the two-stage system is 18.5% higher than in the batch process.

  4. Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model

    International Nuclear Information System (INIS)

    Wang, Buyu; Mosbach, Sebastian; Schmutzhard, Sebastian; Shuai, Shijin; Huang, Yaqing; Kraft, Markus

    2016-01-01

    Highlights: • Soot formation from a wall film in a GDI engine is simulated. • Spray impingement and wall film evaporation models are added to SRM Engine Suite. • Soot is modelled using a highly detailed population balance model. • Particle size distributions are measured experimentally. • Evolution of wall region is shown in equivalence ratio-temperature diagrams. - Abstract: In this study, soot formation in a Gasoline Direct Injection (GDI) engine is simulated using a Stochastic Reactor Model (SRM Engine Suite) which contains a detailed population balance soot model capable of describing particle morphology and chemical composition. In order to describe the soot formation originating from the wall film, the SRM Engine Suite is extended to include spray impingement and wall film evaporation models. The cylinder is divided into a wall and a bulk zone to resolve the equivalence ratio and temperature distributions of the mixture near the wall. The combustion chamber wall is assumed to exchange heat directly only with the wall zone. The turbulent mixing within each zone and between the two zones are simulated with different mixing models. The effects of key parameters on the temperature and equivalence ratio in the two zones are investigated. The mixing rate between the wall and bulk zone has a significant effect on the wall zone, whilst the mixing rate in the wall zone only has a negligible impact on the temperature and equivalence ratio below a certain threshold. Experimental data are obtained from a four-cylinder, gasoline-fuelled direct injection spark ignition engine operated stoichiometrically. An injection timing sweep, ranging from 120 CAD BTDC to 330 CAD BTDC, is conducted in order to investigate the effect of spray impingement on soot formation. The earliest injection case (330 CAD BTDC), which produces significantly higher levels of particle emissions than any other case, is simulated by the current model. It is found that the in-cylinder pressure

  5. A new generation of models for water-in-oil emulsion formation

    International Nuclear Information System (INIS)

    Fingas, M.

    2009-01-01

    Water-in-oil emulsions form after oil or petroleum products are spilled, and can make the cleanup of oil spills difficult. This paper discussed new modelling schemes designed for the formation of water-in-oil emulsions. Density, viscosity, asphaltene and resin contents were used to compute a class index for unstable, entrained water-in-oil states, meso-stable, or stable emulsions. Prediction schemes were used to estimate the water content and viscosity of the water-in-oil states and the time to formation with wave height inputs. A numerical values was used for each type of water-in-oil type. The properties of the starting oil were correlated with the numerical scheme. New regressions were then performed using a Gaussian-style regression expansion technique. Data obtained from the models suggested that water-in-oil types are stabilized by both asphaltenes and resins. The optimized model was then compared with earlier models. The study showed that the new model has the capacity to accurately predict oil-in-water types approximately 90 per cent of the time using only resin, saturate, asphaltene, viscosity, and density data. 17 refs., 8 tabs., 8 figs

  6. EMERGE - an empirical model for the formation of galaxies since z ˜ 10

    Science.gov (United States)

    Moster, Benjamin P.; Naab, Thorsten; White, Simon D. M.

    2018-06-01

    We present EMERGE, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ˜ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Galaxies that are quenched at z = 0 typically have a higher peak star formation rate compared to their star-forming counterparts. EMERGE predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intracluster mass in massive haloes can be up to eight times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.

  7. Modelling of crater formation on anode surface by high-current vacuum arcs

    Science.gov (United States)

    Tian, Yunbo; Wang, Zhenxing; Jiang, Yanjun; Ma, Hui; Liu, Zhiyuan; Geng, Yingsan; Wang, Jianhua; Nordlund, Kai; Djurabekova, Flyura

    2016-11-01

    Anode melting and crater formation significantly affect interruption of high-current vacuum arcs. The primary objective of this paper is to theoretically investigate the mechanism of anode surface crater formation, caused by the combined effect of surface heating during the vacuum arc and pressure exerted on the molten surface by ions and electrons from the arc plasma. A model of fluid flow and heat transfer in the arc anode is developed and combined with a magnetohydrodynamics model of the vacuum arc plasma. Crater formation is observed in simulation for a peak arcing current higher than 15 kA on 40 mm diam. Cu electrodes spaced 10 mm apart. The flow of liquid metal starts after 4 or 5 ms of arcing, and the maximum velocities are 0.95 m/s and 1.39 m/s for 20 kA and 25 kA arcs, respectively. This flow redistributes thermal energy, and the maximum temperature of the anode surface does not remain in the center. Moreover, the condition for the liquid droplet formation on the anode surfaces is developed. The solidification process after current zero is also analyzed. The solidification time has been found to be more than 3 ms after 25 kA arcing. The long solidification time and sharp features on crater rims induce Taylor cone formation.

  8. Family support and acceptance, gay male identity formation, and psychological adjustment: a path model.

    Science.gov (United States)

    Elizur, Y; Ziv, M

    2001-01-01

    While heterosexist family undermining has been demonstrated to be a developmental risk factor in the life of persons with same-gender orientation, the issue of protective family factors is both controversial and relatively neglected. In this study of Israeli gay males (N = 114), we focused on the interrelations of family support, family acceptance and family knowledge of gay orientation, and gay male identity formation, and their effects on mental health and self-esteem. A path model was proposed based on the hypotheses that family support, family acceptance, family knowledge, and gay identity formation have an impact on psychological adjustment, and that family support has an effect on gay identity formation that is mediated by family acceptance. The assessment of gay identity formation was based on an established stage model that was streamlined for cross-cultural practice by defining three basic processes of same-gender identity formation: self-definition, self-acceptance, and disclosure (Elizur & Mintzer, 2001). The testing of our conceptual path model demonstrated an excellent fit with the data. An alternative model that hypothesized effects of gay male identity on family acceptance and family knowledge did not fit the data. Interpreting these results, we propose that the main effect of family support/acceptance on gay identity is related to the process of disclosure, and that both general family support and family acceptance of same-gender orientation play a significant role in the psychological adjustment of gay men.

  9. Formation of nitrogenous disinfection by-products in 10 chlorinated and chloraminated drinking water supply systems.

    Science.gov (United States)

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A

    2016-09-01

    The presence of nitrogenous disinfection by-products (N-DBPs) in drinking water supplies is a public health concern, particularly since some N-DBPs have been reported to be more toxic than the regulated trihalomethanes and haloacetic acids. In this paper, a comprehensive evaluation of the presence of N-DBPs in 10 drinking water supply systems in Western Australia is presented. A suite of 28 N-DBPs, including N-nitrosamines, haloacetonitriles (HANs), haloacetamides (HAAms) and halonitromethanes (HNMs), were measured and evaluated for relationships with bulk parameters in the waters before disinfection. A number of N-DBPs were frequently detected in disinfected waters, although at generally low concentrations (water, N-DBP concentrations were significantly correlated with dissolved organic carbon (DOC) and ammonia, and these, in addition to high bromide in one of the waters, led to elevated concentrations of brominated HANs (26.6 μg/L of dibromoacetonitrile). There were significant differences in the occurrence of all classes of N-DBPs between chlorinated and chloraminated waters, except for HNMs, which were detected at relatively low concentrations in both water types. Trends observed in one large distribution system suggest that N-DBPs can continue to form or degrade within distribution systems, and redosing of disinfectant may cause further by-product formation.

  10. MODELING OF QUALITY FORMATION OF PIG IRON BILLET SURFACE AT WIRE BRUSH MILLING

    Directory of Open Access Journals (Sweden)

    I. L. Barshaj

    2009-01-01

    Full Text Available Formation of topography, geometrical structure and micro-hardness of pig iron billet surface is considered in the paper. Mathematical models pertaining to formation of the above-mentioned characteristics of surface quality according to parameters of machining regime have been developed on the basis of the executed investigations.

  11. Modelling a deep water oil/gas spill under conditions of gas hydrate formation and decomposition

    International Nuclear Information System (INIS)

    Zheng, L.; Yapa, P.D.

    2000-01-01

    A model for the behavior of oil and gas spills at deepwater locations was presented. Such spills are subjected to pressures and temperatures that can convert gases to gas hydrates which are lighter than water. Knowing the state of gases as they rise with the plume is important in predicting the fate of an oil or gas plume released in deepwater. The objective of this paper was to develop a comprehensive jet/plume model which includes computational modules that simulate the gas hydrate formation/decomposition of gas bubbles. This newly developed model is based on the kinetics of hydrate formation and decomposition coupled with mass and heat transfer phenomena. The numerical model was successfully tested using results of experimental data from the Gulf of Mexico. Hydrate formation and decomposition are integrated with an earlier model by Yapa and Zheng for underwater oil or gas jets and plumes. The effects of hydrate on the behavior of an oil or gas plume was simulated to demonstrate the models capabilities. The model results indicate that in addition to thermodynamics, the kinetics of hydrate formation/decomposition should be considered when studying the behavior of oil and gas spills. It was shown that plume behavior changes significantly depending on whether or not the local conditions force the gases to form hydrates. 25 refs., 4 tabs., 12 figs

  12. Observations and models of star formation in the tidal features of interacting galaxies

    International Nuclear Information System (INIS)

    Wallin, J.F.; Schombert, J.M.; Struck-Marcell, C.

    1990-01-01

    Multi-color surface photometry (BVri) is presented for the tidal features in a sample of interacting galaxies. Large color variations are found between the morphological components and within the individual components. The blue colors in the primary and the tidal features are most dramatic in B-V, and not in V-i, indicating that star formation instead of metallicity or age dominates the colors. Color variations between components is larger in systems shortly after interaction begins and diminishes to a very low level in systems which are merged. Photometric models for interacting systems are presented which suggest that a weak burst of star formation in the tidal features could cause the observed color distributions. Dynamical models indicate that compression occurs during the development of tidal features causing an increase in the local density by a factor of between 1.5 and 5. Assuming this density increase can be related to the star formation rate by a Schmidt law, the density increases observed in the dynamical models may be responsible for the variations in color seen in some of the interacting systems. Limitations of the dynamical models are also discussed

  13. [Effects of attitude formation, persuasive message, and source expertise on attitude change: an examination based on the Elaboration Likelihood Model and the Attitude Formation Theory].

    Science.gov (United States)

    Nakamura, M; Saito, K; Wakabayashi, M

    1990-04-01

    The purpose of this study was to investigate how attitude change is generated by the recipient's degree of attitude formation, evaluative-emotional elements contained in the persuasive messages, and source expertise as a peripheral cue in the persuasion context. Hypotheses based on the Attitude Formation Theory of Mizuhara (1982) and the Elaboration Likelihood Model of Petty and Cacioppo (1981, 1986) were examined. Eighty undergraduate students served as subjects in the experiment, the first stage of which involving manipulating the degree of attitude formation with respect to nuclear power development. Then, the experimenter presented persuasive messages with varying combinations of evaluative-emotional elements from a source with either high or low expertise on the subject. Results revealed a significant interaction effect on attitude change among attitude formation, persuasive message and the expertise of the message source. That is, high attitude formation subjects resisted evaluative-emotional persuasion from the high expertise source while low attitude formation subjects changed their attitude when exposed to the same persuasive message from a low expertise source. Results exceeded initial predictions based on the Attitude Formation Theory and the Elaboration Likelihood Model.

  14. Simulating discrete models of pattern formation by ion beam sputtering

    International Nuclear Information System (INIS)

    Hartmann, Alexander K; Kree, Reiner; Yasseri, Taha

    2009-01-01

    A class of simple, (2+1)-dimensional, discrete models is reviewed, which allow us to study the evolution of surface patterns on solid substrates during ion beam sputtering (IBS). The models are based on the same assumptions about the erosion process as the existing continuum theories. Several distinct physical mechanisms of surface diffusion are added, which allow us to study the interplay of erosion-driven and diffusion-driven pattern formation. We present results from our own work on evolution scenarios of ripple patterns, especially for longer timescales, where nonlinear effects become important. Furthermore we review kinetic phase diagrams, both with and without sample rotation, which depict the systematic dependence of surface patterns on the shape of energy depositing collision cascades after ion impact. Finally, we discuss some results from more recent work on surface diffusion with Ehrlich-Schwoebel barriers as the driving force for pattern formation during IBS and on Monte Carlo simulations of IBS with codeposition of surfactant atoms.

  15. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  16. Numerical modeling of batch formation in waste incineration plants

    Directory of Open Access Journals (Sweden)

    Obroučka Karel

    2015-03-01

    Full Text Available The aim of this paper is a mathematical description of algorithm for controlled assembly of incinerated batch of waste. The basis for formation of batch is selected parameters of incinerated waste as its calorific value or content of pollutants or the combination of both. The numerical model will allow, based on selected criteria, to compile batch of wastes which continuously follows the previous batch, which is a prerequisite for optimized operation of incinerator. The model was prepared as for waste storage in containers, as well as for waste storage in continuously refilled boxes. The mathematical model was developed into the computer program and its functionality was verified either by practical measurements or by numerical simulations. The proposed model can be used in incinerators for hazardous and municipal waste.

  17. Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.

    Science.gov (United States)

    Li, Chang; Jia, Hanbing; Shen, Mingyue; Wang, Yuting; Nie, Shaoping; Chen, Yi; Zhou, Yongqiang; Wang, Yuanxing; Xie, Mingyong

    2015-11-11

    The capacities of six antioxidants to inhibit the formation of 3-monochloropropane-1,2 diol (3-MCPD) esters were examined in this study. Inhibitory capacities of the antioxidants were investigated both in chemical models containing the precursors (tripalmitoyl glycerol, 1,2-dipalmitoyl-sn-glycerol, monopalmitoyl glycerol, and sodium chloride) of 3-MCPD esters and in oil models (rapeseed oil and sodium chloride). Six antioxidants, butylated hydroxytoluene (BHT), butylated hydroxy anisole (BHA), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), L-ascorbyl palmitate (AP), and α-tocopherol (VE), were found to exhibit inhibiting capacities on 3-MCPD ester formation both in chemical models and in oil models. TBHQ provided the highest inhibitory capacity both in chemical models and in oil models; 44% of 3-MCPD ester formation was inhibited in the presence of TBHQ (66 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min, followed by PG and AP. BHT, BHA, and VE appeared to have weaker inhibitory abilities in both models. VE exhibited the lowest inhibition rate; 22% of 3-MCPD esters were inhibited in the presence of VE (172 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min. In addition, the inhibition rates of PG and VE decreased dramatically with an increase in temperature or heating time. The results suggested that some antioxidants, such as TBHQ, PG, and AP, could be the potential inhibitors of 3-MCPD esters in practice.

  18. Source rock formation evaluation using TOC & Ro log model based on well-log data procesing: study case of Ngimbang formation, North East Java basin

    Directory of Open Access Journals (Sweden)

    Fatahillah Yosar

    2017-01-01

    Full Text Available Ngimbang Formation is known as one major source of hydrocarbon supply in the North Eastern Java Basin. Aged Mid-Eocene, Ngimbang is dominated by sedimentary clastic rocks mostly shale, shaly sandstone, and thick layers of limestone (CD Limestone, with thin layers of coal. Although, laboratory analyses show the Ngimbang Formation to be a relatively rich source-rocks, such data are typically too limited to regionally quantify the distribution of organic matter. To adequately sample the formation both horizontally and vertically on a basin–wide scale, large number of costly and time consuming laboratory analyses would be required. Such analyses are prone to errors from a number of sources, and core data are frequently not available at key locations. In this paper, the authors established four TOC (Total Organic Carbon Content logging calculation models; Passey, Schmoker-Hester, Meyer-Nederloff, and Decker/Density Model by considering the geology of Ngimbang. Well data along with its available core data was used to determine the most suitable model to be applied in the well AFA-1, as well as to compare the accuracy of these TOC model values. The result shows good correlation using Decker (TOC Model and Mallick-Raju (Ro- Vitrinite Reflectance Model. Two source rocks potential zones were detected by these log models.

  19. Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation.

    Science.gov (United States)

    Yang, Liyang; Hur, Jin; Lee, Sonmin; Chang, Soon-Woong; Shin, Hyun-Sang

    2015-06-01

    Dynamics of river dissolved organic matter (DOM) during storm events have profound influences on the downstream aquatic ecosystem and drinking water safety. This study investigated temporal variations in DOM during four storm events in two forest headwater streams (the EH and JH brooks, South Korea) and the impacts on the disinfection byproducts (DBPs) formation potential. The within-event variations of most DOM quantity parameters were similar to the flow rate in the EH but not in the larger JH brook. The dissolved organic carbon (DOC) showed clockwise and counterclockwise hysteresis with the flow rate in the EH and JH brooks, respectively, indicating the importance of both flow path and DOM source pool size in determining the effects of storm events. The stream DOM became less aromatic/humified from the first to the last event in both brooks, probably due to the increasing fresh plant pool and the decreasing leaf litter pool during the course of rainy season. The DOC export during each event increased 1.3-2.7- and 1.1-7.0-fold by stormflows in the EH and JH brooks, respectively. The leaf litter and soil together was the major DOM source, particularly during early events. The enhanced DOM export probably increases the risks of DBPs formation in disinfection, as indicated by a strong correlation observed between DOC and trihalomethanes formation potential (THMFP). High correlations between two humic-like fluorescent components and THMFP further suggested the potential of assessing THMFP with in situ fluorescence sensors during storms.

  20. Dissecting galaxy formation models with sensitivity analysis—a new approach to constrain the Milky Way formation history

    International Nuclear Information System (INIS)

    Gómez, Facundo A.; O'Shea, Brian W.; Coleman-Smith, Christopher E.; Tumlinson, Jason; Wolpert, Robert L.

    2014-01-01

    We present an application of a statistical tool known as sensitivity analysis to characterize the relationship between input parameters and observational predictions of semi-analytic models of galaxy formation coupled to cosmological N-body simulations. We show how a sensitivity analysis can be performed on our chemo-dynamical model, ChemTreeN, to characterize and quantify its relationship between model input parameters and predicted observable properties. The result of this analysis provides the user with information about which parameters are most important and most likely to affect the prediction of a given observable. It can also be used to simplify models by identifying input parameters that have no effect on the outputs (i.e., observational predictions) of interest. Conversely, sensitivity analysis allows us to identify what model parameters can be most efficiently constrained by the given observational data set. We have applied this technique to real observational data sets associated with the Milky Way, such as the luminosity function of the dwarf satellites. The results from the sensitivity analysis are used to train specific model emulators of ChemTreeN, only involving the most relevant input parameters. This allowed us to efficiently explore the input parameter space. A statistical comparison of model outputs and real observables is used to obtain a 'best-fitting' parameter set. We consider different Milky-Way-like dark matter halos to account for the dependence of the best-fitting parameter selection process on the underlying merger history of the models. For all formation histories considered, running ChemTreeN with best-fitting parameters produced luminosity functions that tightly fit their observed counterpart. However, only one of the resulting stellar halo models was able to reproduce the observed stellar halo mass within 40 kpc of the Galactic center. On the basis of this analysis, it is possible to disregard certain models, and their

  1. A Model of Digital Payment Infrastructure Formation and Development

    DEFF Research Database (Denmark)

    Staykova, Kalina; Damsgaard, Jan

    2014-01-01

    in the regulatory environment and combining it with the disruptive and innovative nature of the mobile phone, the result is a market that is rapidly transforming from well-established structure into a state of flux. We build a model to understand and explain this transformation of the digital payment infrastructure....... The model captures the formation and development of the digital payment infrastructure with a particular emphasis on the regulator´s and innovator’s perspective. It consists of four stages characterized by slow incremental change which are followed by short and rapid bursts of discontinuity. Each stage...

  2. PHYSICAL MODELLING OF TERRAIN DIRECTLY FROM SURFER GRID AND ARC/INFO ASCII DATA FORMATS#

    Directory of Open Access Journals (Sweden)

    Y.K. Modi

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Additive manufacturing technology is used to make physical models of terrain using GIS surface data. Attempts have been made to understand several other GIS file formats, such as the Surfer grid and the ARC/INFO ASCII grid. The surface of the terrain in these file formats has been converted into an STL file format that is suitable for additive manufacturing. The STL surface is converted into a 3D model by making the walls and the base. In this paper, the terrain modelling work has been extended to several other widely-used GIS file formats. Terrain models can be created in less time and at less cost, and intricate geometries of terrain can be created with ease and great accuracy.

    AFRIKAANSE OPSOMMING: Laagvervaardigingstegnologie word gebruik om fisiese modelle van terreine vanaf GIS oppervlakdata te maak. Daar is gepoog om verskeie ander GIS lêerformate, soos die Surfer rooster en die ARC/INFO ASCII rooster, te verstaan. Die oppervlak van die terrein in hierdie lêerformate is omgeskakel in 'n STL lêerformaat wat geskik is vir laagvervaardiging. Verder is die STL oppervlak omgeskakel in 'n 3D model deur die kante en die basis te modelleer. In hierdie artikel is die terreinmodelleringswerk uitgebrei na verskeie ander algemeen gebruikte GIS lêerformate. Terreinmodelle kan so geskep word in korter tyd en teen laer koste, terwyl komplekse geometrieë van terreine met gemak en groot akkuraatheid geskep kan word.

  3. Rates of star formation

    International Nuclear Information System (INIS)

    Larson, R.B.

    1977-01-01

    It is illustrated that a theoretical understanding of the formation and evolution of galaxies depends on an understanding of star formation, and especially of the factors influencing the rate of star formation. Some of the theoretical problems of star formation in galaxies, some approaches that have been considered in models of galaxy evolution, and some possible observational tests that may help to clarify which processes or models are most relevant are reviewed. The material is presented under the following headings: power-law models for star formation, star formation processes (conditions required, ways of achieving these conditions), observational indications and tests, and measures of star formation rates in galaxies. 49 references

  4. Formation and reduction of furan in a soy sauce model system.

    Science.gov (United States)

    Kim, Min Yeop; Her, Jae-Young; Kim, Mina K; Lee, Kwang-Geun

    2015-12-15

    The formation and reduction of furan using a soy sauce model system were investigated in the present study. The concentration of furan fermented up to 30 days increased by 211% after sterilization compared to without sterilization. Regarding fermentation temperature, furan level after 30 days' fermentation was the highest at 30°C (86.21 ng/mL). The furan levels in the soy sauce fermentation at 20°C and 40°C were reduced by 45% and 88%, respectively compared to 30°C fermentation. Five metal ions (iron sulfate, zinc sulfate, manganese sulfate, magnesium sulfate, and calcium sulfate), sodium sulfite, ascorbic acid, dibutyl hydroxyl toluene (BHT), and butylated hydroxyanisole (BHA) were added in a soy sauce model system. The addition of metal ions such as magnesium sulfate and calcium sulfate reduced the furan concentration significantly by 36-90% and 27-91%, respectively in comparison to furan level in the control sample (psauce model system by 278% and 87%, respectively. In the case of the BHT and BHA, furan formation generally was reduced in the soy sauce model system by 84%, 56%, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Novel model for end-neuroma formation in the amputated rabbit forelimb

    Directory of Open Access Journals (Sweden)

    Kuiken Todd A

    2010-03-01

    Full Text Available Abstract Background The forelimb amputee poses many reconstructive challenges in the clinical setting, and there is a paucity of established surgical models for study. To further elucidate the pathogenic process in amputation neuroma formation, we created a reproducible, well-tolerated rabbit forelimb amputation model. Methods Upon approval from the Institutional Animal Care and Use Committee, 5 New Zealand White rabbits underwent left forelimb amputation. During this initial surgery, the median, radial and ulnar nerves were transected 1.6-2.5 (mean 2.0 cm distal to the brachial plexus, transposed onto the anterior chest wall and preserved at length. Six weeks subsequent to the amputation, the distal 5 mm of each neuroma was excised, and the remaining stump underwent histomorphometric analysis. Results The nerve cross sectional areas increased by factors of 1.99, 3.17, and 2.59 in the median (p = 0.077, radial (p Conclusion Given that the surgical model appears well-tolerated by the rabbits and that patterns of morphologic change are consistent and reproducible, we are encouraged to further investigate the utility of this model in the pathogenesis of neuroma formation.

  6. Comet formation

    Science.gov (United States)

    Blum, J.

    2014-07-01

    There has been vast progress in our understanding of planetesimal formation over the past decades, owing to a number of laboratory experiments as well as to refined models of dust and ice agglomeration in protoplanetary disks. Coagulation rapidly forms cm-sized ''pebbles'' by direct sticking in collisions at low velocities (Güttler et al. 2010; Zsom et al. 2010). For the further growth, two model approaches are currently being discussed: (1) Local concentration of pebbles in nebular instabilities until gravitational instability occurs (Johansen et al. 2007). (2) A competition between fragmentation and mass transfer in collisions among the dusty bodies, in which a few ''lucky winners'' make it to planetesimal sizes (Windmark et al. 2012a,b; Garaud et al. 2013). Predictions of the physical properties of the resulting bodies in both models allow a distinction of the two formation scenarios of planetesimals. In particular, the tensile strength (i.e, the inner cohesion) of the planetesimals differ widely between the two models (Skorov & Blum 2012; Blum et al. 2014). While model (1) predicts tensile strengths on the order of ˜ 1 Pa, model (2) results in rather compactified dusty bodies with tensile strengths in the kPa regime. If comets are km-sized survivors of the planetesimal-formation era, they should in principle hold the secret of their formation process. Water ice is the prime volatile responsible for the activity of comets. Thermophysical models of the heat and mass transport close to the comet-nucleus surface predict water-ice sublimation temperatures that relate to maximum sublimation pressures well below the kPa regime predicted for formation scenario (2). Model (1), however, is in agreement with the observed dust and gas activity of comets. Thus, a formation scenario for cometesimals involving gravitational instability is favored (Blum et al. 2014).

  7. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    Science.gov (United States)

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  8. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    Science.gov (United States)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    /MS. Especially the acidic lakes are sources for trihalomethanes in agreement with laboratory studies on model compounds like catechol [3]. Other compounds that are formed are chloromethane, -butane, -hexane and heptane as well as monocyclic terpenes and furan derivatives. Additionally, there are different sulphur compounds such as thiophene derivatives, carbon disulfide and dimethyl sulfide. Western Australia offers a variety of hypersaline environments with various hydrogeochemical parameters that will help to understand the abiotic formation of different volatile organic compounds. The field of research includes the complex relationships between agriculture, secondary salinisation and particle formation from volatile organic compounds emitted from the salt lakes. [1] Williams, 2001, Hydrobiologia, 466, 329-337. [2] Junkermann et al., 2009, Atmos. Chem. Phys., 9, 6531-6539. [3] Huber et al., 2009, Environ. Sci. Technol., 43 (13), 4934-4939.

  9. Parametric studies of contrail ice particle formation in jet regime using microphysical parcel modeling

    Directory of Open Access Journals (Sweden)

    H.-W. Wong

    2010-04-01

    Full Text Available Condensation trails (contrails formed from water vapor emissions behind aircraft engines are the most uncertain components of the aviation impacts on climate change. To gain improved knowledge of contrail and contrail-induced cirrus cloud formation, understanding of contrail ice particle formation immediately after aircraft engines is needed. Despite many efforts spent in modeling the microphysics of ice crystal formation in jet regime (with a plume age <5 s, systematic understanding of parametric effects of variables affecting contrail ice particle formation is still limited. In this work, we apply a microphysical parcel modeling approach to study contrail ice particle formation in near-field aircraft plumes up to 1000 m downstream of an aircraft engine in the soot-rich regime (soot number emission index >1×1015 (kg-fuel−1 at cruise. The effects of dilution history, ion-mediated nucleation, ambient relative humidity, fuel sulfur contents, and initial soot emissions were investigated. Our simulation results suggest that ice particles are mainly formed by water condensation on emitted soot particles. The growth of ice coated soot particles is driven by water vapor emissions in the first 1000 m and by ambient relative humidity afterwards. The presence of chemi-ions does not significantly contribute to the formation of ice particles in the soot-rich regime, and the effect of fuel sulfur contents is small over the range typical of standard jet fuels. The initial properties of soot emissions play the most critical role, and our calculations suggest that higher number concentration and smaller size of contrail particle nuclei may be able to effectively suppress the formation of contrail ice particles. Further modeling and experimental studies are needed to verify if our findings can provide a possible approach for contrail mitigation.

  10. High-Burnup-Structure (HBS): Model Development in MARMOT for HBS Formation and Stability Under Radiation and High Temperature

    International Nuclear Information System (INIS)

    Ahmed, K.; Bai, X.; Zhang, Y.; Biner, B.

    2016-01-01

    A detailed phase field model for the formation of High Burnup Structure (HBS) was developed and implemented in MARMOT. The model treats the HBS formation as an irradiation-induced recrystallization. The model takes into consideration the stored energy associated with dislocations formed under irradiation. The accumulation of radiation damage, hence, increases the system free energy and triggers recrystallization. The increase in the free energy due to the formation of new grain boundaries is offset by the reduction in the free energy by creating dislocation-free grains at the expense of the deformed grains. The model was first used to study the growth of recrystallized flat and circular grains. The model results were shown to agree well with theoretical predictions. The case of HBS formation in UO2 was then investigated. It was found that a threshold dislocation density of (or equivalently a threshold burn-up of 33-40 GWd/t) is required for HBS formation at 1200K, which is in good agreement with theory and experiments. In future studies, the presence of gas bubbles and their effect on the formation and evolution of HBS will be considered.

  11. Effect of Ozonation and Biological Activated Carbon Treatment of Wastewater Effluents on Formation of N-nitrosamines and Halogenated Disinfection Byproducts.

    Science.gov (United States)

    Chuang, Yi-Hsueh; Mitch, William A

    2017-02-21

    Ozonation followed by biological activated carbon (O 3 /BAC) is being considered as a key component of reverse osmosis-free advanced treatment trains for potable wastewater reuse. Using a laboratory-scale O 3 /BAC system treating two nitrified wastewater effluents, this study characterized the effect of different ozone dosages (0-1.0 mg O 3 /mg dissolved organic carbon) and BAC empty bed contact times (EBCT; 15-60 min) on the formation after chlorination or chloramination of 35 regulated and unregulated halogenated disinfection byproducts (DBPs), 8 N-nitrosamines, and bromate. DBP concentrations were remarkably similar between the two wastewaters across O 3 /BAC conditions. Ozonation increased bromate, TCNM, and N-nitrosodimethylamine, but ozonation was less significant for other DBPs. DBP formation generally decreased significantly with BAC treatment at 15 min EBCT, but little further reduction was observed at higher EBCT where low dissolved oxygen concentrations may have limited biological activity. The O 3 /BAC-treated wastewaters met regulatory levels for trihalomethanes (THMs), haloacetic acids (HAAs), and bromate, although N-nitrosodimethylamine exceeded the California Notification Level in one case. Regulated THMs and HAAs dominated by mass. When DBP concentrations were weighted by measures of their toxic potencies, unregulated haloacetonitriles, haloacetaldehydes, and haloacetamides dominated. Assuming toxicity is additive, the calculated DBP-associated toxicity of the O 3 /BAC-treated chloraminated effluents were comparable or slightly higher than those calculated in a recent evaluation of Full Advanced Treatment trains incorporating reverse osmosis.

  12. Optimised formation of blue Maillard reaction products of xylose and glycine model systems and associated antioxidant activity.

    Science.gov (United States)

    Yin, Zi; Sun, Qian; Zhang, Xi; Jing, Hao

    2014-05-01

    A blue colour can be formed in the xylose (Xyl) and glycine (Gly) Maillard reaction (MR) model system. However, there are fewer studies on the reaction conditions for the blue Maillard reaction products (MRPs). The objective of this study is to investigate characteristic colour formation and antioxidant activities in four different MR model systems and to determine the optimum reaction conditions for the blue colour formation in a Xyl-Gly MR model system, using the random centroid optimisation program. The blue colour with an absorbance peak at 630 nm appeared before browning in the Xyl-Gly MR model system, while no blue colour formation but only browning was observed in the xylose-alanine, xylose-aspartic acid and glucose-glycine MR model systems. The Xyl-Gly MR model system also showed higher antioxidant activity than the other three model systems. The optimum conditions for blue colour formation were as follows: xylose and glycine ratio 1:0.16 (M:M), 0.20 mol L⁻¹ NaHCO₃, 406.1 mL L⁻¹ ethanol, initial pH 8.63, 33.7°C for 22.06 h, which gave a much brighter blue colour and a higher peak at 630 nm. A characteristic blue colour could be formed in the Xyl-Gly MR model system and the optimum conditions for the blue colour formation were proposed and confirmed. © 2013 Society of Chemical Industry.

  13. An in vitro model of Mycobacterium leprae induced granuloma formation.

    Science.gov (United States)

    Wang, Hongsheng; Maeda, Yumi; Fukutomi, Yasuo; Makino, Masahiko

    2013-06-20

    Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy.

  14. Electrical Resistivity Models in Geological Formations in the Southern Area of the East of Cuba

    Directory of Open Access Journals (Sweden)

    José Antonio García-Gutiérrez

    2017-04-01

    Full Text Available The purpose of this study is to develop electrical resistivity models in geological formations of greater interest for geological engineering in the southern area of the East of Cuba. A procedure for the generalization of the geo-electrical database was prepared to generate the referred geo-electrical models. A total of 38 works with 895 vertical electrical surveys, of which 317 (35.4% located near (parametrical drills. Three models for the Paso Real formation and one for the Capdevila, the most distributed in the region under investigation were defined. The surface quartz sands from the municipality of Sandino were identified to have higher electrical resistivity averages (1241 Ω•m, while they do not exceed 86 Ω•m in the lower horizons to resolve basic tasks of the geological engineering investigations. The assessment of the cover clayey sandy soils was satisfactory in both geological formations while the determination of the water table depth was unfavorable. The remaining tasks varied between relatively favorable to unfavorable according to the geological formations.

  15. The Next Generation of Numerical Modeling in Mergers- Constraining the Star Formation Law

    Science.gov (United States)

    Chien, Li-Hsin

    2010-09-01

    Spectacular images of colliding galaxies like the "Antennae", taken with the Hubble Space Telescope, have revealed that a burst of star/cluster formation occurs whenever gas-rich galaxies interact. A?The ages and locations of these clusters reveal the interaction history and provide crucial clues to the process of star formation in galaxies. A?We propose to carry out state-of-the-art numerical simulations to model six nearby galaxy mergers {Arp 256, NGC 7469, NGC 4038/39, NGC 520, NGC 2623, NGC 3256}, hence increasing the number with this level of sophistication by a factor of 3. These simulations provide specific predictions for the age and spatial distributions of young star clusters. The comparison between these simulation results and the observations will allow us to answer a number of fundamental questions including: 1} is shock-induced or density-dependent star formation the dominant mechanism; 2} are the demographics {i.e. mass and age distributions} of the clusters in different mergers similar, i.e. "universal", or very different; and 3} will it be necessary to include other mechanisms, e.g., locally triggered star formation, in the models to better match the observations?

  16. A cellular automata model of bone formation.

    Science.gov (United States)

    Van Scoy, Gabrielle K; George, Estee L; Opoku Asantewaa, Flora; Kerns, Lucy; Saunders, Marnie M; Prieto-Langarica, Alicia

    2017-04-01

    Bone remodeling is an elegantly orchestrated process by which osteocytes, osteoblasts and osteoclasts function as a syncytium to maintain or modify bone. On the microscopic level, bone consists of cells that create, destroy and monitor the bone matrix. These cells interact in a coordinated manner to maintain a tightly regulated homeostasis. It is this regulation that is responsible for the observed increase in bone gain in the dominant arm of a tennis player and the observed increase in bone loss associated with spaceflight and osteoporosis. The manner in which these cells interact to bring about a change in bone quality and quantity has yet to be fully elucidated. But efforts to understand the multicellular complexity can ultimately lead to eradication of metabolic bone diseases such as osteoporosis and improved implant longevity. Experimentally validated mathematical models that simulate functional activity and offer eventual predictive capabilities offer tremendous potential in understanding multicellular bone remodeling. Here we undertake the initial challenge to develop a mathematical model of bone formation validated with in vitro data obtained from osteoblastic bone cells induced to mineralize and quantified at 26 days of culture. A cellular automata model was constructed to simulate the in vitro characterization. Permutation tests were performed to compare the distribution of the mineralization in the cultures and the distribution of the mineralization in the mathematical models. The results of the permutation test show the distribution of mineralization from the characterization and mathematical model come from the same probability distribution, therefore validating the cellular automata model. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Pattern formation in superdiffusion Oregonator model

    Science.gov (United States)

    Feng, Fan; Yan, Jia; Liu, Fu-Cheng; He, Ya-Feng

    2016-10-01

    Pattern formations in an Oregonator model with superdiffusion are studied in two-dimensional (2D) numerical simulations. Stability analyses are performed by applying Fourier and Laplace transforms to the space fractional reaction-diffusion systems. Antispiral, stable turing patterns, and travelling patterns are observed by changing the diffusion index of the activator. Analyses of Floquet multipliers show that the limit cycle solution loses stability at the wave number of the primitive vector of the travelling hexagonal pattern. We also observed a transition between antispiral and spiral by changing the diffusion index of the inhibitor. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Research Foundation of Education Bureau of Hebei Province, China (Grant Nos. Y2012009 and ZD2015025), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project.

  18. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas

    2015-01-01

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  19. Modeling the formation of globular cluster systems in the Virgo cluster

    International Nuclear Information System (INIS)

    Li, Hui; Gnedin, Oleg Y.

    2014-01-01

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 10 12 to 7 × 10 13 M ☉ and match them to 19 Virgo galaxies with K-band luminosity between 3 × 10 10 and 3 × 10 11 L ☉ . To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  20. MODELING THE FORMATION OF GIANT PLANET CORES. I. EVALUATING KEY PROCESSES

    International Nuclear Information System (INIS)

    Levison, Harold F.; Thommes, Edward; Duncan, Martin J.

    2010-01-01

    One of the most challenging problems we face in our understanding of planet formation is how Jupiter and Saturn could have formed before the solar nebula dispersed. The most popular model of giant planet formation is the so-called core accretion model. In this model a large planetary embryo formed first, mainly by two-body accretion. This is then followed by a period of inflow of nebular gas directly onto the growing planet. The core accretion model has an Achilles heel, namely the very first step. We have undertaken the most comprehensive study of this process to date. In this study, we numerically integrate the orbits of a number of planetary embryos embedded in a swarm of planetesimals. In these experiments, we have included a large number of physical processes that might enhance accretion. In particular, we have included (1) aerodynamic gas drag, (2) collisional damping between planetesimals, (3) enhanced embryo cross sections due to their atmospheres, (4) planetesimal fragmentation, and (5) planetesimal-driven migration. We find that the gravitational interaction between the embryos and the planetesimals leads to the wholesale redistribution of material-regions are cleared of material and gaps open near the embryos. Indeed, in 90% of our simulations without fragmentation, the region near those embryos is cleared of planetesimals before much growth can occur. Thus, the widely used assumption that the surface density distribution of planetesimals is smooth can lead to misleading results. In the remaining 10% of our simulations, the embryos undergo a burst of outward migration that significantly increases growth. On timescales of ∼10 5 years, the outer embryo can migrate ∼6 AU and grow to roughly 30 M + . This represents a largely unexplored mode of core formation. We also find that the inclusion of planetesimal fragmentation tends to inhibit growth except for a narrow range of fragment migration rates.

  1. Modelling Contribution of Biogenic VOCs to New Particle Formation in the Jülich Plant Atmosphere Chamber

    Science.gov (United States)

    Liao, L.; Boy, M.; Mogensen, D.; Mentel, T. F.; Kleist, E.; Kiendler-Scharr, A.; Tillman, R.; Kulmala, M. T.; Dal Maso, M.

    2012-12-01

    Biogenic VOCs are substantially emitted from vegetation to atmosphere. The oxidation of BVOCs by OH, O3, and NO3 in air generating less volatile compounds may lead to the formation and growth of secondary organic aerosol, and thus presents a link to the vegetation, aerosol, and climate interaction system (Kulmala et al, 2004). Studies including field observations, laboratory experiments and modelling have improved our understanding on the connection between BVOCs and new particle formation mechanism in some extent (see e.g. Tunved et al., 2006; Mentel et al., 2009). Nevertheless, the exact formation process still remains uncertain, especially from the perspective of BVOC contributions. The purpose of this work is using the MALTE aerosol dynamics and air chemistry box model to investigate aerosol formation from reactions of direct tree emitted VOCs in the presence of ozone, UV light and artificial solar light in an atmospheric simulation chamber. This model employs up to date air chemical reactions, especially the VOC chemistry, which may potentially allow us to estimate the contribution of BVOCs to secondary aerosol formation, and further to quantify the influence of terpenes to the formation rate of new particles. Experiments were conducted in the plant chamber facility at Forschungszentrum Jülich, Germany (Jülich Plant Aerosol Atmosphere Chamber, JPAC). The detail regarding to the chamber facility has been written elsewhere (Mentel et al., 2009). During the experiments, sulphuric acid was measured by CIMS. VOC mixing ratios were measured by two GC-MS systems and PTR-MS. An Airmodus Particle size magnifier coupled with a TSI CPC and a PH-CPC were used to count the total particle number concentrations with a detection limit close to the expected size of formation of fresh nanoCN. A SMPS measured the particle size distribution. Several other parameters including ozone, CO2, NO, Temperature, RH, and flow rates were also measured. MALTE is a modular model to predict

  2. Modeling of aerosol formation during biomass combustion in grate furnaces and comparison with measurements

    NARCIS (Netherlands)

    Joeller, M.; Brunner, T.; Obernberger, I.

    2005-01-01

    Results from mathematical modeling of aerosol formation during combustion of woody biomass fuels were compared with results from particle size distribution (PSD) measurements at a pilot-scale biomass combustion unit with moving grate and flame tube boiler. The mathematical model is a plug flow model

  3. Star formation

    International Nuclear Information System (INIS)

    Woodward, P.R.

    1978-01-01

    Theoretical models of star formation are discussed beginning with the earliest stages and ending in the formation of rotating, self-gravitating disks or rings. First a model of the implosion of very diffuse gas clouds is presented which relies upon a shock at the edge of a galactic spiral arm to drive the implosion. Second, models are presented for the formation of a second generation of massive stars in such a cloud once a first generation has formed. These models rely on the ionizing radiation from massive stars or on the supernova shocks produced when these stars explode. Finally, calculations of the gravitational collapse of rotating clouds are discussed with special focus on the question of whether rotating disks or rings are the result of such a collapse. 65 references

  4. Pesticide nonextractable residue formation in soil: insights from inverse modeling of degradation time series.

    Science.gov (United States)

    Loos, Martin; Krauss, Martin; Fenner, Kathrin

    2012-09-18

    Formation of soil nonextractable residues (NER) is central to the fate and persistence of pesticides. To investigate pools and extent of NER formation, an established inverse modeling approach for pesticide soil degradation time series was evaluated with a Monte Carlo Markov Chain (MCMC) sampling procedure. It was found that only half of 73 pesticide degradation time series from a homogeneous soil source allowed for well-behaved identification of kinetic parameters with a four-pool model containing a parent compound, a metabolite, a volatile, and a NER pool. A subsequent simulation indeed confirmed distinct parameter combinations of low identifiability. Taking the resulting uncertainties into account, several conclusions regarding NER formation and its impact on persistence assessment could nonetheless be drawn. First, rate constants for transformation of parent compounds to metabolites were correlated to those for transformation of parent compounds to NER, leading to degradation half-lives (DegT50) typically not being larger than disappearance half-lives (DT50) by more than a factor of 2. Second, estimated rate constants were used to evaluate NER formation over time. This showed that NER formation, particularly through the metabolite pool, may be grossly underestimated when using standard incubation periods. It further showed that amounts and uncertainties in (i) total NER, (ii) NER formed from the parent pool, and (iii) NER formed from the metabolite pool vary considerably among data sets at t→∞, with no clear dominance between (ii) and (iii). However, compounds containing aromatic amine moieties were found to form significantly more total NER when extrapolating to t→∞ than the other compounds studied. Overall, our study stresses the general need for assessing uncertainties, identifiability issues, and resulting biases when using inverse modeling of degradation time series for evaluating persistence and NER formation.

  5. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  6. A-DROP: A predictive model for the formation of oil particle aggregates (OPAs)

    Science.gov (United States)

    Zhao, Lin; Boufadel, Michel C.; Geng, Xiaolong; Lee, Kenneth; King, Thomas; Robinson, Brian; Fitzpatrick, Faith A.

    2016-01-01

    Oil–particle interactions play a major role in removal of free oil from the water column. We present a new conceptual–numerical model, A-DROP, to predict oil amount trapped in oil–particle aggregates. A new conceptual formulation of oil–particle coagulation efficiency is introduced to account for the effects of oil stabilization by particles, particle hydrophobicity, and oil–particle size ratio on OPA formation. A-DROP was able to closely reproduce the oil trapping efficiency reported in experimental studies. The model was then used to simulate the OPA formation in a typical nearshore environment. Modeling results indicate that the increase of particle concentration in the swash zone would speed up the oil–particle interaction process; but the oil amount trapped in OPAs did not correspond to the increase of particle concentration. The developed A-DROP model could become an important tool in understanding the natural removal of oil and developing oil spill countermeasures by means of oil–particle aggregation.

  7. Modelling dewatering behaviour through an understanding of solids formation processes. Part II--solids separation considerations.

    Science.gov (United States)

    Dustan, A C; Cohen, B; Petrie, J G

    2005-05-30

    An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.

  8. The Impact of Varied Discrimination Parameters on Mixed-Format Item Response Theory Model Selection

    Science.gov (United States)

    Whittaker, Tiffany A.; Chang, Wanchen; Dodd, Barbara G.

    2013-01-01

    Whittaker, Chang, and Dodd compared the performance of model selection criteria when selecting among mixed-format IRT models and found that the criteria did not perform adequately when selecting the more parameterized models. It was suggested by M. S. Johnson that the problems when selecting the more parameterized models may be because of the low…

  9. The trends of modeling the ways of formation, distribution and exploitation of megapolis lands using geo-information systems

    Directory of Open Access Journals (Sweden)

    Kostyantyn Mamonov

    2017-10-01

    Full Text Available The areas of need for ways of modeling the formation, distribution and use of land metropolis using GIS are identified. The article is to define the areas of modeling ways of formation, distribution and use of land metropolis using GIS. In the study, the following objectives are set: to develop an algorithm process data base (Data System creation for pecuniary valuation of land settlements with the use of GIS; to offer process model taking into account the influence of one factor modules using geographic information systems; to identify components of geo providing expert money evaluation of land metropolis; to describe the general procedure for expert money assessment of land and property by using geographic information system software; to develop an algorithm methods for expert evaluation of land. Identified tools built algorithms used for modeling the ways of formation, distribution and use of land metropolis using GIS. Directions ways of modeling the formation, distribution and use of land metropolis using GIS.

  10. Are reflective models appropriate for very short scales? Proofs of concept of formative models using the Ten-Item Personality Inventory.

    Science.gov (United States)

    Myszkowski, Nils; Storme, Martin; Tavani, Jean-Louis

    2018-04-27

    Because of their length and objective of broad content coverage, very short scales can show limited internal consistency and structural validity. We argue that it is because their objectives may be better aligned with formative investigations than with reflective measurement methods that capitalize on content overlap. As proofs of concept of formative investigations of short scales, we investigate the Ten Item Personality Inventory (TIPI). In Study 1, we administered the TIPI and the Big Five Inventory (BFI) to 938 adults, and fitted a formative Multiple Indicator Multiple Causes model, which consisted of the TIPI items forming 5 latent variables, which in turn predicted the 5 BFI scores. These results were replicated in Study 2, on a sample of 759 adults, with, this time, the Revised NEO Personality Inventory (NEO-PI-R) as the external criterion. The models fit the data adequately, and moderate to strong significant effects (.37<|β|<.69, all p<.001) of all 5 latent formative variables on their corresponding BFI and NEOPI-R scores were observed. This study presents a formative approach that we propose to be more consistent with the aims of scales with broad content and short length like the TIPI. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  11. Dynamic-stochastic modeling of snow cover formation on the European territory of Russia

    OpenAIRE

    A. N. Gelfan; V. M. Moreido

    2014-01-01

    A dynamic-stochastic model, which combines a deterministic model of snow cover formation with a stochastic weather generator, has been developed. The deterministic snow model describes temporal change of the snow depth, content of ice and liquid water, snow density, snowmelt, sublimation, re-freezing of melt water, and snow metamorphism. The model has been calibrated and validated against the long-term data of snow measurements over the territory of the European Russia. The model showed good ...

  12. Protogalaxy formation from inhomogeneities in cosmological models

    International Nuclear Information System (INIS)

    Rankin, J.R.

    1977-01-01

    Equations governing the growth of protogalaxies in general homogeneous cosmological models were derived. Both non-relativistic Newtonian theory and general relativistic theory were covered. For the Newtonian case, by means of the concept of comoving Fourier analysis, the perturbation equations became coupled first order ordinary differential equations and were then further simplified. Bonnor's equation of galaxy formation in isotropic Newtonian cosmologies was generalized to anisotropic cases. The growth equations were solved for various background Newtonian models and gravitationally unstable solutions were found. By an approach analogous to Bonnor's non-relativistic approach, a relativistic version of the galaxy growth equation for the homogeneous isotropic cosmologies was derived. Galaxy growth in the anisotropic homogeneous Bianchi type I cosmologies was also considered. The full set of Einstein equations in synchronous coordinates was perturbed then simplified. The resulting equation was discussed in special cases of dust, axial symmetry and Kasner backgrounds. Finally the tetrad equations for perturbations in steady state cosmologies was set up with a view to considering the effect of rotation

  13. Water disinfection agents and disinfection by-products

    Science.gov (United States)

    Ilavský, J.; Barloková, D.; Kapusta, O.; Kunštek, M.

    2017-10-01

    The aim of this work is to describe factors of water quality change in the distribution network and legislative requirements in Slovakia for disinfectants and disinfection byproducts (DBPs). In the experimental part, the time dependence of the application of the chlorine dioxide and sodium hypochlorite on the formation of some by-products of disinfection for drinking water from WTP Hriňová is studied. We monitored trihalomethanes, free chlorine, chlorine dioxide and chlorites.

  14. The annual course of TCA formation in the lower troposphere: a modeling study

    International Nuclear Information System (INIS)

    Folberth, Gerd; Pfister, Gabriele; Baumgartner, Dietmar; Putz, Erich; Weissflog, Ludwig; Elansky, Nikolai P.

    2003-01-01

    The Caspian Catchment Area is affected by many pollutants and prevailing climate conditions. - We present a modeling study investigating the influence of climate conditions and solar radiation intensity on gas-phase trichloroacetic acid (TCA) formation. As part of the ECCA-project (Ecotoxicological Risk in the Caspian Catchment Area), this modeling study uses climate data specific for the two individual climate regimes, namely 'Kalmykia' and 'Kola Peninsula'. A third regime has also been included in this study, namely 'Central Europe', which serves as a reference to somehow more moderate climate conditions. The simulations have been performed with a box modeling package (SBOX, photoRACM), which uses Regional Atmospheric Chemistry Mechanism (RACM) as its chemistry scheme. For this model a mechanism supplement has been developed including the reaction pathways of methyl chloroform photooxidation. The investigations are completed by a detailed sensitivity study addressing the impact of temperature and relative humidity. Atmospheric OH and HO 2 concentrations and the NO x /HO 2 ratio were identified as the governing quantities controlling the TCA formation trough methyl chloroform oxidation in the gas phase. Model calculations show a TCA production rate ranging between almost zero and 6.5x10 3 molecules cm -3 day -1 depending on location and season. In the Kalmykia regime the model predicts mean TCA production rates of 1.3x10 -4 and 5.4x10 -5 μg m -3 year -1 for the urban and rural environment, respectively. From the comparison of model calculations with measured TCA burdens in the soil ranging between 130 μg m -3 and 1750 μg m -3 we conclude that TCA formation through methyl chloroform photooxidation in the gas-phase is probably not the principal atmospheric TCA source in this region

  15. The study of chloroform levels during water disinfection by chlorination reference to health risk in drinking water of karachi (pakistan)

    International Nuclear Information System (INIS)

    Khawaja, H.A.; Khattak, I.

    2008-01-01

    This study presents the levels of the chloroform formation during water disinfiction treatment by chlorination with the subsequent formation of by-products like trihalomethanes (THMs) are formed. These THMs in drinking water are found in the form of chloroform, bromodichloromethane, Chlorodibromomethane and bromoform. Out of these four compounds chloroform is the major culprit and Contribute 9.0% of the total THMs concentration (I). Therefore the present work was focused on the Estimation of levels of chloroform in the drinking water samples of Karachi city (Pakistan) by using Bootstrapping statistical technique with regards to the average cancer risk in the community. (author)

  16. A Model Formative Assessment Strategy to Promote Student-Centered Self-Regulated Learning in Higher Education

    Science.gov (United States)

    Bose, Jayakumar; Rengel, Zed

    2009-01-01

    Adult learners are already involved in the process of self-regulation; hence, higher education institutions should focus on strengthening students' self-regulatory skills. Self-regulation can be facilitated through formative assessment. This paper proposes a model formative assessment strategy that would complement existing university teaching,…

  17. Monte Carlo simulations of a model for opinion formation

    Science.gov (United States)

    Bordogna, C. M.; Albano, E. V.

    2007-04-01

    A model for opinion formation based on the Theory of Social Impact is presented and studied by means of numerical simulations. Individuals with two states of opinion are impacted due to social interactions with: i) members of the society, ii) a strong leader with a well-defined opinion and iii) the mass media that could either support or compete with the leader. Due to that competition, the average opinion of the social group exhibits phase-transition like behaviour between different states of opinion.

  18. Simplified Modeling of Tropospheric Ozone Formation Considering Alternative Fuels Using

    Directory of Open Access Journals (Sweden)

    Leonardo Aragão Ferreira da Silva

    2014-07-01

    Full Text Available Brazilian cities have been constantly exposed to air quality episodes of high ozone concentrations (O3 . Known for not be emitted directly into the environment, O3 is a result of several chemical reactions of other pollutants emitted to atmosphere. The growth of vehicle fleet and government incentives for using alternative fuels like ethanol and Compressed Natural Gas (CNG are changing the Brazilian Metropolitan Areas in terms of acetaldehyde and formaldehyde emissions, Volatile Organic Compounds (VOC's present in the atmosphere and known to act on the kinetics of ozone. Driven by high concentrations of tropospheric ozone in urban/industry centers and its implications for environment and population health, the target of this work is understand the kinetics of ozone formation through the creation of a mathematical model in FORTRAN 90, describing a system of coupled ordinary differential equations able to represent a simplified mechanism of photochemical reactions in the Brazilian Metropolitan Area. Evaluating the concentration results of each pollutant were possible to observe the precursor’s influence on tropospheric ozone formation, which seasons were more conducive to this one and which are the influences of weather conditions on formation of photochemical smog.

  19. From Cell to Tissue Properties-Modeling Skin Electroporation With Pore and Local Transport Region Formation.

    Science.gov (United States)

    Dermol-Cerne, Janja; Miklavcic, Damijan

    2018-02-01

    Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.

  20. A rigorous mechanistic model for predicting gas hydrate formation kinetics: The case of CO2 recovery and sequestration

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Mottahedin, Mona

    2012-01-01

    Highlights: ► A mechanistic model for predicting gas hydrate formation kinetics is presented. ► A secondary nucleation rate model is proposed for the first time. ► Crystal–crystal collisions and crystal–impeller collisions are distinguished. ► Simultaneous determination of nucleation and growth kinetics are established. ► Important for design of gas hydrate based energy storage and CO 2 recovery systems. - Abstract: A rigorous mechanistic model for predicting gas hydrate formation crystallization kinetics is presented and the special case of CO 2 gas hydrate formation regarding CO 2 recovery and sequestration processes has been investigated by using the proposed model. A physical model for prediction of secondary nucleation rate is proposed for the first time and the formation rates of secondary nuclei by crystal–crystal collisions and crystal–impeller collisions are formulated. The objective functions for simultaneous determination of nucleation and growth kinetics are presented and a theoretical framework for predicting the dynamic behavior of gas hydrate formation is presented. Predicted time variations of CO 2 content, total number and surface area of produced hydrate crystals are in good agreement with the available experimental data. The proposed approach can have considerable application for design of gas hydrate converters regarding energy storage and CO 2 recovery processes.

  1. Comprehensive modelling study on observed new particle formation at the SORPES station in Nanjing, China

    Directory of Open Access Journals (Sweden)

    X. Huang

    2016-03-01

    Full Text Available New particle formation (NPF has been investigated intensively during the last 2 decades because of its influence on aerosol population and the possible contribution to cloud condensation nuclei. However, intensive measurements and modelling activities on this topic in urban metropolitan areas in China with frequent high-pollution episodes are still very limited. This study provides results from a comprehensive modelling study on the occurrence of NPF events in the western part of the Yangtze River Delta (YRD region, China. The comprehensive modelling system, which combines the WRF-Chem (the Weather Research and Forecasting model coupled with Chemistry regional chemical transport model and the MALTE-BOX sectional box model (the model to predict new aerosol formation in the lower troposphere, was shown to be capable of simulating atmospheric nucleation and subsequent growth. Here we present a detailed discussion of three typical NPF days, during which the measured air masses were notably influenced by either anthropogenic activities, biogenic emissions, or mixed ocean and continental sources. Overall, simulated NPF events were generally in good agreement with the corresponding measurements, enabling us to get further insights into NPF processes in the YRD region. Based on the simulations, we conclude that biogenic organic compounds, particularly monoterpenes, play an essential role in the initial condensational growth of newly formed clusters through their low-volatility oxidation products. Although some uncertainties remain in this modelling system, this method provides a possibility to better understand particle formation and growth processes.

  2. An individual-based model for biofilm formation at liquid surfaces.

    Science.gov (United States)

    Ardré, Maxime; Henry, Hervé; Douarche, Carine; Plapp, Mathis

    2015-12-10

    The bacterium Bacillus subtilis frequently forms biofilms at the interface between the culture medium and the air. We present a mathematical model that couples a description of bacteria as individual discrete objects to the standard advection-diffusion equations for the environment. The model takes into account two different bacterial phenotypes. In the motile state, bacteria swim and perform a run-and-tumble motion that is biased toward regions of high oxygen concentration (aerotaxis). In the matrix-producer state they excrete extracellular polymers, which allows them to connect to other bacteria and to form a biofilm. Bacteria are also advected by the fluid, and can trigger bioconvection. Numerical simulations of the model reproduce all the stages of biofilm formation observed in laboratory experiments. Finally, we study the influence of various model parameters on the dynamics and morphology of biofilms.

  3. Thermodynamic analysis and kinetic modelling of dioxin formation and emissions from power boilers firing salt-laden hog fuel.

    Science.gov (United States)

    Duo, Wenli; Leclerc, Denys

    2007-04-01

    Both organic chlorine (e.g. PVC) and inorganic chlorides (e.g. NaCl) can be significant chlorine sources for dioxin and furan (PCDD/F) formation in combustion processes. This paper presents a thermodynamic analysis of high temperature salt chemistry. Its influence on PCDD/F formation in power boilers burning salt-laden wood waste is examined through the relationships between Cl2, HCl, NaCl(g) and NaCl(c). These analyses show that while HCl is a product of combustion of PVC-laden municipal solid waste, NaCl can be converted to HCl in hog fuel boilers by reactions with SO2 or alumino-silicate materials. Cl2 is a strong chlorinating agent for PCDD/F formation. HCl can be oxidized to Cl2 by O2, and Cl2 can be reduced back to HCl by SO2. The presence of sulphur at low concentrations thus enhances PCDD/F formation by increasing HCl concentrations. At high concentrations, sulphur inhibits de novo formation of PCDD/Fs through Cl2 reduction by excess SO2. The effect of NH3, CO and NOx on PCDD/F formation is also discussed. A semi-empirical kinetic model is proposed. This model considers both precursor and de novo formation mechanisms. A simplified version is used as a stack emission model. The kinetic model indicates that stack dioxin emissions will increase linearly with decreasing electrostatic precipitator (ESP) efficiency and exponentially with increasing ESP temperature.

  4. Compositional Models of Hematite-Rich Spherules (Blueberries) at Meridiani Planum, Mars and Constraints on Their Formation

    Science.gov (United States)

    Schneider, A.; Mittlefehldt, D.

    2006-10-01

    The Mars Exploration Rover Opportunity discovered hematite-rich spherules (``blueberries'') believed to be diagenetic concretions formed in the bedrock in stagnant or slow-moving groundwater. These spherules likely precipitated from solution, but their origins are poorly understood. Three formation mechanisms are possible: inclusive, replacive and displacive. The first would result in a distinct spherule composition compared to the other two. We propose that chemical clues may help to constrain the nature of blueberry formation. We used Alpha Particle X-ray Spectrometer data for undisturbed soils that were blueberry-free and with visible blueberries at the surface in Microscopic Imager images. We made plots of the elements versus iron for the spherule-rich soils and compared them to a mixing line representative of a pure hematite end member spherule (called ``the zero model''). This modeled the replacive formation mechanism, in which pure hematite would replace all of the original material. If the spherules grew inclusively, chemical data should reflect a compositional component of the rock grains included during formation. Four models were developed to test for possible compositions of a rock component. These models could not easily explain the APXS data and thus demonstrate that the most plausible rock compositions are not components of blueberries.

  5. A conceptual and calculational model for gas formation from impure calcined plutonium oxides

    International Nuclear Information System (INIS)

    Lyman, John L.; Eller, P. Gary

    2000-01-01

    Safe transport and storage of pure and impure plutonium oxides requires an understanding of processes that may generate or consume gases in a confined storage vessel. We have formulated conceptual and calculational models for gas formation from calcined materials. The conceptual model for impure calcined plutonium oxides is based on the data collected to date

  6. On the Appearance of Thresholds in the Dynamical Model of Star Formation

    Science.gov (United States)

    Elmegreen, Bruce G.

    2018-02-01

    The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.

  7. Formation of multiple networks

    DEFF Research Database (Denmark)

    Magnani, Matteo; Rossi, Luca

    2013-01-01

    we introduce the first network formation model for multiple networks. Network formation models are among the most popular tools in traditional network studies, because of both their practical and theoretical impact. However, existing models are not sufficient to describe the generation of multiple...

  8. Evaluation of a new model system for studying the formation of heterocyclic amines.

    Science.gov (United States)

    Messner, C; Murkovic, M

    2004-03-25

    Heterocyclic amines (HAs) are an important class of food mutagens and carcinogens, which can be found in cooked meat and fish. Increasing heating temperatures and times usually increase mutagenic activity in meat and meat extracts during cooking. We developed a model system, which allows to examine the effects of precursor composition and heating conditions (time and temperature) on the formation of HAs in meat. Homogenized and freeze dried meat samples (beef, pork chops, chicken breast and turkey breast) are heated with diethylene glycol in closed vials under stirring in a thermostated heating block. After an appropriate sample preparation (extraction and clean-up) ten different HAs were measured by HPLC analyses with gradient elution and mass selective detection. The time courses of HA-formation in the different kinds of meat at varying heating temperatures were determined up to heating times of 30 min. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was the most abundant HA in these experiments and reached the highest concentrations in the beef meat samples, as did the other HAs (MeIQ, AalphaC) at 220 degrees C in the heating block under stirred conditions. Additionally the influence of the antioxidant TBHQ (t-butylhydroquinone) on the formation of HAs in the model system was tested. However TBHQ effected only slight reductions of HA formation in all kinds of meat.

  9. Preformed template fluctuations promote fibril formation: Insights from lattice and all-atom models

    Energy Technology Data Exchange (ETDEWEB)

    Kouza, Maksim, E-mail: mkouza@chem.uw.edu.pl; Kolinski, Andrzej [Faculty of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warszaw (Poland); Co, Nguyen Truong [Department of Physics, Institute of Technology, National University of HCM City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City (Viet Nam); Nguyen, Phuong H. [Laboratoire de Biochimie Theorique, UPR 9080 CNRS, IBPC, Universite Paris 7, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan, E-mail: masli@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2015-04-14

    Fibril formation resulting from protein misfolding and aggregation is a hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Despite the fact that the fibril formation process is very slow and thus poses a significant challenge for theoretical and experimental studies, a number of alternative pictures of molecular mechanisms of amyloid fibril formation have been recently proposed. What seems to be common for the majority of the proposed models is that fibril elongation involves the formation of pre-nucleus seeds prior to the creation of a critical nucleus. Once the size of the pre-nucleus seed reaches the critical nucleus size, its thermal fluctuations are expected to be small and the resulting nucleus provides a template for sequential (one-by-one) accommodation of added monomers. The effect of template fluctuations on fibril formation rates has not been explored either experimentally or theoretically so far. In this paper, we make the first attempt at solving this problem by two sets of simulations. To mimic small template fluctuations, in one set, monomers of the preformed template are kept fixed, while in the other set they are allowed to fluctuate. The kinetics of addition of a new peptide onto the template is explored using all-atom simulations with explicit water and the GROMOS96 43a1 force field and simple lattice models. Our result demonstrates that preformed template fluctuations can modulate protein aggregation rates and pathways. The association of a nascent monomer with the template obeys the kinetics partitioning mechanism where the intermediate state occurs in a fraction of routes to the protofibril. It was shown that template immobility greatly increases the time of incorporating a new peptide into the preformed template compared to the fluctuating template case. This observation has also been confirmed by simulation using lattice models and may be invoked to understand the role of template fluctuations in

  10. Formation and Inhibition of Nε-(Carboxymethyllysine in Saccharide-Lysine Model Systems during Microwave Heating

    Directory of Open Access Journals (Sweden)

    Bing Li

    2012-10-01

    Full Text Available  Nε-(carboxymethyl lysine (CML is the most abundant advanced glycation end product (AGE, and frequently selected as an AGEs marker in laboratory studies. In this paper, the formation and inhibition of Nε-(carboxymethyllysine in saccharide-lysine model systems during microwave heating have been studied. The microwave heating treatment significantly promoted the formation of CML during Maillard reactions, which was related to the reaction temperature, time and type of saccharide. The order of CML formation for different saccharides was lactose > glucose > sucrose. Then, the inhibition effect on CML by five inhibitors was further examined. According to the results, ascorbic acid and tocopherol did not affect inhibition of CML, in contrast, thiamin, rutin and quercetin inhibited CML formation, and the inhibitory effects were concentration dependent.

  11. Mathematical modelling of CRISPR-Cas system effects on biofilm formation.

    Science.gov (United States)

    Ali, Qasim; Wahl, Lindi M

    2017-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR), linked with CRISPR associated (Cas) genes, can confer adaptive immunity to bacteria, against bacteriophage infections. Thus from a therapeutic standpoint, CRISPR immunity increases biofilm resistance to phage therapy. Recently, however, CRISPR-Cas genes have been implicated in reducing biofilm formation in lysogenized cells. Thus CRISPR immunity can have complex effects on phage-host-lysogen interactions, particularly in a biofilm. In this contribution, we develop and analyse a series of dynamical systems to elucidate and disentangle these interactions. Two competition models are used to study the effects of lysogens (first model) and CRISPR-immune bacteria (second model) in the biofilm. In the third model, the effect of delivering lysogens to a CRISPR-immune biofilm is investigated. Using standard analyses of equilibria, stability and bifurcations, our models predict that lysogens may be able to displace CRISPR-immune bacteria in a biofilm, and thus suggest strategies to eliminate phage-resistant biofilms.

  12. A modelling study of the effects of different CCN on contrail formation

    Energy Technology Data Exchange (ETDEWEB)

    Gleitsmann, G; Zellner, R [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Physikalische und Theoretische Chemie

    1998-12-31

    The formation of cloud condensation nuclei (CCN) in the jet regime of a B747 airliner at cruise has been investigated by modelling calculations using the BOAT model. Both homogeneous condensation of H{sub 2}O/H{sub 2}SO{sub 4}-mixtures and heterogeneous deposition of H{sub 2}O on soot surfaces activated by H{sub 2}SO{sub 4} were taken into account. Whereas the heterogeneous condensation leads to particles with average diameters of about 1.3 {mu}m, the homogeneously condensed H{sub 2}O/H{sub 2}SO{sub 4} particles are much smaller ({<=} 7 nm) and do not contribute to visible contrail formation. Nevertheless, they contribute to the atmospheric background aerosol. Using different SO{sub 2} emission indices, it is concluded that the contrail onset is essentially independent of this quantity and depends mainly on ambient temperature and soot activation kinetics. (author) 15 refs.

  13. A modelling study of the effects of different CCN on contrail formation

    Energy Technology Data Exchange (ETDEWEB)

    Gleitsmann, G.; Zellner, R. [Essen Univ. (Gesamthochschule) (Germany). Inst. fuer Physikalische und Theoretische Chemie

    1997-12-31

    The formation of cloud condensation nuclei (CCN) in the jet regime of a B747 airliner at cruise has been investigated by modelling calculations using the BOAT model. Both homogeneous condensation of H{sub 2}O/H{sub 2}SO{sub 4}-mixtures and heterogeneous deposition of H{sub 2}O on soot surfaces activated by H{sub 2}SO{sub 4} were taken into account. Whereas the heterogeneous condensation leads to particles with average diameters of about 1.3 {mu}m, the homogeneously condensed H{sub 2}O/H{sub 2}SO{sub 4} particles are much smaller ({<=} 7 nm) and do not contribute to visible contrail formation. Nevertheless, they contribute to the atmospheric background aerosol. Using different SO{sub 2} emission indices, it is concluded that the contrail onset is essentially independent of this quantity and depends mainly on ambient temperature and soot activation kinetics. (author) 15 refs.

  14. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T.; Kilpinen, P.; Hupa, M. [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1996-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  15. Soot formation in a blast furnace - Prediction via a parametric study, using detailed kinetic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Nordstroem, T; Kilpinen, P; Hupa, M [Aabo Akademi, Turku (Finland). Combustion Chemistry Group

    1997-12-31

    The objective of this work has been to investigate the soot formation in a blast furnace fired with heavy fuel oil, using detailed kinetic modelling. This work has been concentrated on parameter studies that could explain under which conditions soot is formed and how that formation could be avoided. The parameters investigated were temperature, pressure, stoichiometric ratio, pyrolysis gas composition and reactor model. The calculations were based on a reaction mechanism that consists of 100 species and 446 reactions including polyaromatic hydrocarbons (PAM) up to 7 aromatic rings SULA 2 Research Programme; 4 refs.

  16. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  17. ART-ML - a novel XML format for the biological procedures modeling and the representation of blood flow simulation.

    Science.gov (United States)

    Karvounis, E C; Tsakanikas, V D; Fotiou, E; Fotiadis, D I

    2010-01-01

    The paper proposes a novel Extensible Markup Language (XML) based format called ART-ML that aims at supporting the interoperability and the reuse of models of blood flow, mass transport and plaque formation, exported by ARTool. ARTool is a platform for the automatic processing of various image modalities of coronary and carotid arteries. The images and their content are fused to develop morphological models of the arteries in easy to handle 3D representations. The platform incorporates efficient algorithms which are able to perform blood flow simulation. In addition atherosclerotic plaque development is estimated taking into account morphological, flow and genetic factors. ART-ML provides a XML format that enables the representation and management of embedded models within the ARTool platform and the storage and interchange of well-defined information. This approach influences in the model creation, model exchange, model reuse and result evaluation.

  18. Model of heap formation in vibrated gravitational suspensions.

    Science.gov (United States)

    Ebata, Hiroyuki; Sano, Masaki

    2015-11-01

    In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.

  19. Item Response Theory Models for Wording Effects in Mixed-Format Scales

    Science.gov (United States)

    Wang, Wen-Chung; Chen, Hui-Fang; Jin, Kuan-Yu

    2015-01-01

    Many scales contain both positively and negatively worded items. Reverse recoding of negatively worded items might not be enough for them to function as positively worded items do. In this study, we commented on the drawbacks of existing approaches to wording effect in mixed-format scales and used bi-factor item response theory (IRT) models to…

  20. Modeling the influence of interaction layer formation on thermal conductivity of U–Mo dispersion fuel

    International Nuclear Information System (INIS)

    Burkes, Douglas E.; Casella, Andrew M.; Huber, Tanja K.

    2015-01-01

    Highlights: • Hsu equation provides best thermal conductivity estimate of U–Mo dispersion fuel. • Simple model considering interaction layer formation was coupled with Hsu equation. • Interaction layer thermal conductivity is not the most important attribute. • Effective thermal conductivity is mostly influenced by interaction layer formation. • Fuel particle distribution also influences the effective thermal conductivity. - Abstract: The Global Threat Reduction Initiative Program continues to develop existing and new test reactor fuels to achieve the maximum attainable uranium loadings to support the conversion of a number of the world’s remaining high-enriched uranium fueled reactors to low-enriched uranium fuel. Currently, the program is focused on assisting with the development and qualification of a fuel design that consists of a uranium–molybdenum (U–Mo) alloy dispersed in an aluminum matrix. Thermal conductivity is an important consideration in determining the operational temperature of the fuel and can be influenced by interaction layer formation between the dispersed phase and matrix, porosity that forms during fabrication of the fuel plates or rods, and upon the concentration of the dispersed phase within the matrix. This paper develops and validates a simple model to study the influence of interaction layer formation, dispersed particle size, and volume fraction of dispersed phase in the matrix on the effective conductivity of the composite. The model shows excellent agreement with results previously presented in the literature. In particular, the thermal conductivity of the interaction layer does not appear to be as important in determining the effective conductivity of the composite, while formation of the interaction layer and subsequent consumption of the matrix reveals a rather significant effect. The effective thermal conductivity of the composite can be influenced by the dispersed particle distribution by minimizing interaction

  1. Reduction of trihalomethane (THM) formation with potassium permanganate in potable water treatment; Aplicacion del permanganato potasico y la formacion de trihalometanos (THM) en los procesos de potabilizacion del agua

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre Pascual, G.; Monforte de Monleon, L.; Tos Boix, s.

    1996-04-01

    Replacing prechlorination with a preoxidation with potassium permanganate in potable water treatment has proved to be an effective way to reduce the formation of THM, organochlorinated compounds known to be carcinogenic. It has been proved that the use of potassium permanganate to reduce the formation of THM is a simple and economic treatment process, having the added affect of improving the taste of the treated water. (Author) 21 refs.

  2. Numerical Analysis of Diaphragm Wall Model Executed in Poznań Clay Formation Applying Selected Fem Codes

    Directory of Open Access Journals (Sweden)

    Superczyńska M.

    2016-09-01

    Full Text Available The paper presents results of numerical calculations of a diaphragm wall model executed in Poznań clay formation. Two selected FEM codes were applied, Plaxis and Abaqus. Geological description of Poznań clay formation in Poland as well as geotechnical conditions on construction site in Warsaw city area were presented. The constitutive models of clay implemented both in Plaxis and Abaqus were discussed. The parameters of the Poznań clay constitutive models were assumed based on authors’ experimental tests. The results of numerical analysis were compared taking into account the measured values of horizontal displacements.

  3. Study of Heat Flux Threshold and Perturbation Effect on Transport Barrier Formation Based on Bifurcation Model

    International Nuclear Information System (INIS)

    Chatthong, B.; Onjun, T.; Imbeaux, F.; Sarazin, Y.; Strugarek, A.; Picha, R.; Poolyarat, N.

    2011-06-01

    Full text: Formation of transport barrier in fusion plasma is studied using a simple one-field bistable S-curve bifurcation model. This model is characterized by an S-line with two stable branches corresponding to the low (L) and high (H) confinement modes, connected by an unstable branch. Assumptions used in this model are such that the reduction in anomalous transport is caused by v E velocity shear effect and also this velocity shear is proportional to pressure gradient. In this study, analytical and numerical approaches are used to obtain necessary conditions for transport barrier formation, i.e. the ratio of anomalous over neoclassical coefficients and heat flux thresholds which must be exceeded. Several profiles of heat sources are considered in this work including constant, Gaussian, and hyperbolic tangent forms. Moreover, the effect of perturbation in heat flux is investigated with respect to transport barrier formation

  4. ON THE FORMATION OF DIPEPTIDES IN INTERSTELLAR MODEL ICES

    International Nuclear Information System (INIS)

    Kaiser, R. I.; Kim, Y. S.; Stockton, A. M.; Jensen, E. C.; Mathies, R. A.

    2013-01-01

    The hypothesis of an exogenous origin and delivery of biologically important molecules to early Earth presents an alternative route to their terrestrial in situ formation. Dipeptides like Gly-Gly detected in the Murchison meteorite are considered as key molecules in prebiotic chemistry because biofunctional dipeptides present the vital link in the evolutionary transition from prebiotic amino acids to early proteins. However, the processes that could lead to the exogenous abiotic synthesis of dipeptides are unknown. Here, we report the identification of two proteinogenic dipeptides—Gly-Gly and Leu-Ala—formed via electron-irradiation of interstellar model ices followed by annealing the irradiated samples to 300 K. Our results indicate that the radiation-induced, non-enzymatic formation of proteinogenic dipeptides in interstellar ice analogs is facile. Once synthesized and incorporated into the ''building material'' of solar systems, biomolecules at least as complex as dipeptides could have been delivered to habitable planets such as early Earth by meteorites and comets, thus seeding the beginning of life as we know it.

  5. Model of Formation of the Enterprise Business Portfolio in the Context of Ensuring Strategic Flexibility

    Directory of Open Access Journals (Sweden)

    Shatilova Olena V.

    2014-01-01

    Full Text Available The article considers urgent problems of enterprise management under conditions of external environment instability, studies problems of the enterprise strategic flexibility management. It shows that one of the efficient mechanisms of ensuring strategic flexibility is restructuring of the enterprise business portfolio in accordance with the change of the situation in the target market of enterprise functioning. The goal of the article is development of a model of formation of enterprise business portfolio in the context of ensuring strategic flexibility. The main method of optimisation of the enterprise business portfolio in the context of ensuring strategic flexibility is the use of modification of the Markowitz model of investment portfolio formation. The offered model of the enterprise business portfolio formation allows taking into account changes of external and internal environments and conducting portfolio restructuring in the event of the change of the enterprise target market situation. Prospects of further studies in this direction are detailed elaboration and formalisation of the organisational and economic mechanism of realisation of strategic flexibility at an enterprise.

  6. Experimentally validated multiphysics computational model of focusing and shock wave formation in an electromagnetic lithotripter.

    Science.gov (United States)

    Fovargue, Daniel E; Mitran, Sorin; Smith, Nathan B; Sankin, Georgy N; Simmons, Walter N; Zhong, Pei

    2013-08-01

    A multiphysics computational model of the focusing of an acoustic pulse and subsequent shock wave formation that occurs during extracorporeal shock wave lithotripsy is presented. In the electromagnetic lithotripter modeled in this work the focusing is achieved via a polystyrene acoustic lens. The transition of the acoustic pulse through the solid lens is modeled by the linear elasticity equations and the subsequent shock wave formation in water is modeled by the Euler equations with a Tait equation of state. Both sets of equations are solved simultaneously in subsets of a single computational domain within the BEARCLAW framework which uses a finite-volume Riemann solver approach. This model is first validated against experimental measurements with a standard (or original) lens design. The model is then used to successfully predict the effects of a lens modification in the form of an annular ring cut. A second model which includes a kidney stone simulant in the domain is also presented. Within the stone the linear elasticity equations incorporate a simple damage model.

  7. Formation of calcareous nodules in loess-paleosol sequences: Reviews of existing models with a proposed new "per evapotranspiration model"

    Science.gov (United States)

    Li, Yanrong; Zhang, Weiwei; Aydin, Adnan; Deng, Xiaohong

    2018-04-01

    Loess is a product of aeolian deposition during Quaternary glaciation cycles. Loess-paleosol sequences are rich in calcareous nodules (CNs). In the literature, two models are widely cited for the formation of CNs, namely "per descendum" and "per ascendum". However, there has been no direct testing or monitoring to support either of these contradictory models. This paper reviews a large number of multidisciplinary literature to evaluate the consistency, reliability and rationality of these two models. Three main conclusions are drawn: (1) the causative factors (variation of pH value along loess-paleosol sequence, decrease of CO2 partial pressure, and reduction of solvent water) that are used to support the per descendum model do not completely explain the supersaturation of infiltration solution with CaCO3, thereby making this model questionable; (2) the per ascendum model explains the formation of CNs along narrow horizons through upward evaporation; however, it fails to produce sporadic distributions and irregular shapes of nodules on loess slope faces and the frequent appearance of nodules around plant roots. In order to reconcile these deficiencies, we conducted an extensive field survey in various parts of Shanxi province. Based on this new set of observations, it was concluded that the "per ascendum" model can be extended to explain all occurrences of CNs. This extended model is called "per evapotranspiration".

  8. [Mechanistic modelling allows to assess pathways of DNA lesion interactions underlying chromosome aberration formation].

    Science.gov (United States)

    Eĭdel'man, Iu A; Slanina, S V; Sal'nikov, I V; Andreev, S G

    2012-12-01

    The knowledge of radiation-induced chromosomal aberration (CA) mechanisms is required in many fields of radiation genetics, radiation biology, biodosimetry, etc. However, these mechanisms are yet to be quantitatively characterised. One of the reasons is that the relationships between primary lesions of DNA/chromatin/chromosomes and dose-response curves for CA are unknown because the pathways of lesion interactions in an interphase nucleus are currently inaccessible for direct experimental observation. This article aims for the comparative analysis of two principally different scenarios of formation of simple and complex interchromosomal exchange aberrations: by lesion interactions at chromosome territories' surface vs. in the whole space of the nucleus. The analysis was based on quantitative mechanistic modelling of different levels of structures and processes involved in CA formation: chromosome structure in an interphase nucleus, induction, repair and interactions of DNA lesions. It was shown that the restricted diffusion of chromosomal loci, predicted by computational modelling of chromosome organization, results in lesion interactions in the whole space of the nucleus being impossible. At the same time, predicted features of subchromosomal dynamics agrees well with in vivo observations and does not contradict the mechanism of CA formation at the surface of chromosome territories. On the other hand, the "surface mechanism" of CA formation, despite having certain qualities, proved to be insufficient to explain high frequency of complex exchange aberrations observed by mFISH technique. The alternative mechanism, CA formation on nuclear centres is expected to be sufficient to explain frequent complex exchanges.

  9. Investigation of acrylamide formation on bakery products using a crust-like model.

    Science.gov (United States)

    Açar, Ozge C; Gökmen, Vural

    2009-12-01

    Baking is a complex process where a temperature gradient occurs within the product as a result of simultaneous heat and mass transfers. This behaviour makes the physical parameters (baking temperature and product dimensions) as effective as the chemical parameters on the rate of acrylamide formation in bakery foods. In this study, the change of temperature in different locations of the sample was shown as influenced by the product thickness. The temperature values were close to each other in the sample having thickness of 1 mm (crust model). The product temperature rapidly increased to the oven temperature. A temperature gradient was recorded in the sample having a thickness of 10 mm. As a result, the product temperature did not exceed 100 degrees C within a baking time of 30 min. The product thickness significantly influenced the rate of acrylamide formation during baking. Acrylamide concentration rapidly increased to 411+/-49 ng/g within 8 min in the crust model sample. However, no acrylamide was detected in the thicker sample within 15 min under the same conditions, because the moisture content was still above 10%. The crust model was considered useful to test the effectiveness of different mitigation strategies in bakery foods.

  10. A semi-empirical model for the formation and depletion of the high burnup structure in UO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pizzocri, D. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Cappia, F. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany); Technische Universität München, Boltzmannstraße 15, 85747, Garching bei München (Germany); Luzzi, L., E-mail: lelio.luzzi@polimi.it [Politecnico di Milano, Department of Energy, Nuclear Engineering Division, Via La Masa 34, 20156, Milan (Italy); Pastore, G. [Idaho National Laboratory, Fuel Modeling and Simulation Department, 2525 Fremont Avenue, 83415, Idaho Falls (United States); Rondinella, V.V.; Van Uffelen, P. [European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, PO Box 2340, 76125, Karlsruhe (Germany)

    2017-04-15

    In the rim zone of UO{sub 2} nuclear fuel pellets, the combination of high burnup and low temperature drives a microstructural change, leading to the formation of the high burnup structure (HBS). In this work, we propose a semi-empirical model to describe the formation of the HBS, which embraces the polygonisation/recrystallization process and the depletion of intra-granular fission gas, describing them as inherently related. For this purpose, we performed grain-size measurements on samples at radial positions in which the restructuring was incomplete. Based on these new experimental data, we infer an exponential reduction of the average grain size with local effective burnup, paired with a simultaneous depletion of intra-granular fission gas driven by diffusion. The comparison with currently used models indicates the applicability of the herein developed model within integral fuel performance codes. - Highlights: •Development of a new model for the formation and depletion of the high burnup structure. •New average grain-size measurements to support model development. •Formation threshold of the high burnup structure based on the concept of effective burnup. •Coupled description of grain recrystallization/polygonisation and depletion of intra-granular fission gas. •Model suitable for application in fuel performance codes.

  11. OpenClimateGIS - A Web Service Providing Climate Model Data in Commonly Used Geospatial Formats

    Science.gov (United States)

    Erickson, T. A.; Koziol, B. W.; Rood, R. B.

    2011-12-01

    The goal of the OpenClimateGIS project is to make climate model datasets readily available in commonly used, modern geospatial formats used by GIS software, browser-based mapping tools, and virtual globes.The climate modeling community typically stores climate data in multidimensional gridded formats capable of efficiently storing large volumes of data (such as netCDF, grib) while the geospatial community typically uses flexible vector and raster formats that are capable of storing small volumes of data (relative to the multidimensional gridded formats). OpenClimateGIS seeks to address this difference in data formats by clipping climate data to user-specified vector geometries (i.e. areas of interest) and translating the gridded data on-the-fly into multiple vector formats. The OpenClimateGIS system does not store climate data archives locally, but rather works in conjunction with external climate archives that expose climate data via the OPeNDAP protocol. OpenClimateGIS provides a RESTful API web service for accessing climate data resources via HTTP, allowing a wide range of applications to access the climate data.The OpenClimateGIS system has been developed using open source development practices and the source code is publicly available. The project integrates libraries from several other open source projects (including Django, PostGIS, numpy, Shapely, and netcdf4-python).OpenClimateGIS development is supported by a grant from NOAA's Climate Program Office.

  12. Comment on self-consistent model of black hole formation and evaporation

    International Nuclear Information System (INIS)

    Ho, Pei-Ming

    2015-01-01

    In an earlier work, Kawai et al. proposed a model of black-hole formation and evaporation, in which the geometry of a collapsing shell of null dust is studied, including consistently the back reaction of its Hawking radiation. In this note, we illuminate the implications of their work, focusing on the resolution of the information loss paradox and the problem of the firewall.

  13. Microfacies models and sequence stratigraphic architecture of the Oligocene–Miocene Qom Formation, south of Qom City, Iran

    Directory of Open Access Journals (Sweden)

    Mahnaz Amirshahkarami

    2015-07-01

    Full Text Available The Oligocene–Miocene Qom Formation has different depositional models in the Central Iran, Sanandaj–Sirjan and Urumieh-Dokhtar magmatic arc provinces in Iran. The Kahak section of the Qom Formation in the Urumieh-Dokhtar magmatic arc has been studied, in order to determinate its microfacies, depositional model and sequence stratigraphy. The textural analysis and faunal assemblages reveal ten microfacies. These microfacies are indicative of five depositional settings of open marine, patch reef, lagoon, tidal flat and beach of the inner and middle ramp. On the basis of the vertical succession architecture of depositional system tracts, four third-order sequences have been recognized in the Oligocene–Miocene Kahak succession of Qom Formation. Based on the correlation charts, the transgression of the Qom Sea started from the southeast and continued gradually towards the north. This resulted in widespread northward development of the lagoon paleoenvironment in the Aquitanian-Burdigalian stages. Also, the sequence stratigraphic model of the Oligocene–Miocene Qom Formation has an architecture similar to those that have developed from Oligocene–Miocene global sea level changes.

  14. PADME – new code for modeling of planet georesources formation on heterogeneous computing systems

    Directory of Open Access Journals (Sweden)

    Protasov Viktor

    2018-01-01

    Full Text Available Many planets were detected in last few years, but there is no clear understanding of how they are formed. The fairly clear understanding of Solar system formation was founded with time, but there are some doubts yet because we don’t know what was at the beginning of the process, and what was acquired afterward. Moreover, formed ideas often couldn’t explain some features of other systems. Searching for Earth-like terrestrial planets is another very important problem. Even if any of found exoplanets will be similar to Earth, we couldn’t say that it is a “second Earth” exactly because its internal, geological, composition could be different – Venus is a vivid example. A new method for modelling of the planet formation process in a 3D2V formulation based on two-phase approach is presented in the paper. Fluids-in-cells method by Belotserkovskii-Davydov, modified with using the Godunov’s scheme, is used to model the gas component. The dust component is described by N-body system solved with the Particle-Mesh method. The method was accelerated by using of Nvidia CUDA technology. Gas-dust disk modelling results with the formation of sealing of gas and dust that could be interpreted as potential exoplanet are given.

  15. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage.

    Science.gov (United States)

    Oral, Rasim Alper; Dogan, Mahmut; Sarioglu, Kemal

    2014-01-01

    Using a glucose-glycine and asparagine-fructose system as a Maillard reaction model, the effects of seven polyphenols and solid phase extracts of three plants on the formation of furans and acrylamide were investigated. The polyphenols and extracts were used in biscuit formulation and acrylamide formation was observed. They were used for the storage of the glycine-glucose model system at three different temperatures. The addition of some of the extracts and polyphenols significantly decreased furan formation to different extents. All phenolic compounds and plant extracts decreased in the range of 30.8-85% in the model system except for oleuropein, and all of them decreased in the range of 10.3-19.2% in biscuit. Total furan formation was inhibited by caffeic acid, punicalagin, epicatechin, ECE and PPE during storage. This study evaluated and found the inhibitory effect on the formation of furans and acrylamide in Maillard reactions by the use of some plant extracts and polyphenols. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Multistage Core Formation in Planetesimals Revealed by Numerical Modeling and Hf-W Chronometry of Iron Meteorites

    Science.gov (United States)

    Neumann, W.; Kruijer, T. S.; Breuer, D.; Kleine, T.

    2018-02-01

    Iron meteorites provide some of the most direct insights into the processes and timescales of core formation in planetesimals. Of these, group IVB irons stand out by having one of the youngest 182Hf-182W model ages for metal segregation (2.9 ± 0.6 Ma after solar system formation), as well as the lowest bulk sulfur content and hence highest liquidus temperature. Here, using a new model for the internal evolution of the IVB parent body, we show that a single stage of metal-silicate separation cannot account for the complete melting of pure Fe metal at the relatively late time given by the Hf-W model age. Instead, a complex metal-silicate separation scenario is required that includes migration of partial silicate melts, formation of a shallow magma ocean, and core formation in two distinct stages of metal segregation. In the first stage, a protocore formed at ≈1.5 Ma via settling of metal particles in a mantle magma ocean, followed by metal segregation from a shallow magma ocean at ≈5.4 Ma. As these stages of metal segregation occurred at different times, the two metal fractions had different 182W compositions. Consequently, the final 182W composition of the IVB core does not correspond to a single differentiation event, but represents the average composition of early- and late-segregated core fractions. Our best fit model indicates an ≈100 km radius for the IVB parent body and provides an accretion age of ≈0.1-0.5 Ma after solar system formation. The computed solidification time is, furthermore, consistent with the Re-Os age for crystallization of the IVB core.

  17. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    Science.gov (United States)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  18. Textured digital elevation model formation from low-cost UAV LADAR/digital image data

    Science.gov (United States)

    Bybee, Taylor C.; Budge, Scott E.

    2015-05-01

    Textured digital elevation models (TDEMs) have valuable use in precision agriculture, situational awareness, and disaster response. However, scientific-quality models are expensive to obtain using conventional aircraft-based methods. The cost of creating an accurate textured terrain model can be reduced by using a low-cost (processing step and enables both 2D- and 3D-image registration techniques to be used. This paper describes formation of TDEMs using simulated data from a small UAV gathering swaths of texel images of the terrain below. Being a low-cost UAV, only a coarse knowledge of position and attitude is known, and thus both 2D- and 3D-image registration techniques must be used to register adjacent swaths of texel imagery to create a TDEM. The process of creating an aggregate texel image (a TDEM) from many smaller texel image swaths is described. The algorithm is seeded with the rough estimate of position and attitude of each capture. Details such as the required amount of texel image overlap, registration models, simulated flight patterns (level and turbulent), and texture image formation are presented. In addition, examples of such TDEMs are shown and analyzed for accuracy.

  19. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...

  20. On singularity formation of a 3D model for incompressible Navier–Stokes equations

    OpenAIRE

    Hou, Thomas Y.; Shi, Zuoqiang; Wang, Shu

    2012-01-01

    We investigate the singularity formation of a 3D model that was recently proposed by Hou and Lei (2009) in [15] for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. This model shares many properties of the 3D incompressible Navier–Stokes equations. One of the main results of this paper is that we prove rigorously th...

  1. Is Cass's Model of Homosexual Identity Formation Relevant to Today's Society?

    Science.gov (United States)

    Kenneady, Donna Ann; Oswalt, Sara B.

    2014-01-01

    Cass's Homosexual Identity Formation Model (1979) is one of the most well-known and well-referenced models of identity development for gay males and lesbians. This article provides a review of Cass's six steps of the model, as well as research support for and critiques of the model. As the model was developed more than 30 years ago, the…

  2. Production and distribution of chlorination by-products in the cooling water system of a coastal power station

    International Nuclear Information System (INIS)

    Vinnitha, E.; Rajamohan, R.; Venugopalan, V.P.; Narasimhan, S.V.

    2008-01-01

    Employing chlorination as antifouling agent in cooling water circuits of coastal power plants can lead to the production of chlorination by-products (CBP), mainly due to chlorine's reactions with the organic compounds present in natural seawater. Important among the by products are trihalomethane, haloacetonitriles, halo acetic acids, halo phenols etc., with trihalomethanes (THM) generally being the predominant compounds. The THM species that are commonly observed are chloroform, mono bromodichloromethane, dibromochloro-methane and bromoform. The present work was carried out to understand the production and distribution of chlorination by products (mainly trihalomethanes) in the cooling water systems of Madras Atomic Power Station (MAPS). Field studies were carried out in which samples collected from the intake, forebay pump house, out fall point and mixing point were analysed for THM using gas chromatograph with electron capture detector. The results showed that bromoform was the dominant THM formed as a result of chlorination, followed by dibromochloromethane. Mono bromodichloromethane and chloroform were not observed in seawater throughout the study period. Moreover, no THM could be detected at the intake point. The total THM values at other stations ranged between 25-250 μgL -1 , the highest values were observed at the process seawater pump outlet and the lowest at the mixing point. The concentrations of CBP's formed were found to be related to the chlorine residuals measured. In addition, laboratory experiments were carried out to understand CBP formation as a function of chlorine dose and contact time. Chlorine doses ranging from 1 to 10 mgL -1 were added to unfiltered seawater and the various THMs formed were analysed after different time intervals. The results confirmed that bromoform was the dominant THM species, followed by dibromochloromethane, as observed in the field studies. As the chlorine doses increased, the other THMs, namely, mono

  3. Europan double ridge morphometry as a test of formation models

    Science.gov (United States)

    Dameron, Ashley C.; Burr, Devon M.

    2018-05-01

    Double ridges on the Jovian satellite Europa consist of two parallel ridges with a central trough. Although these features are nearly ubiquitous on Europa, their formation mechanism(s) is (are) not yet well-understood. Previous hypotheses for their formation can be divided into two groups based on 1) the expected interior slope angles and 2) the magnitude of interior/exterior slope symmetry. The published hypotheses in the first ("fracture") group entail brittle deformation of the crust, either by diapirism, shear heating, or buckling due to compression. Because these mechanisms imply uplift of near-vertical fractures, their predicted interior slopes are steeper than the angle of repose (AOR) with shallower exterior slopes. The second ("flow") group includes cryosedimentary and cryovolcanic processes - explosive or effusive cryovolcanism and tidal squeezing -, which are predicted to form ridge slopes at or below the AOR. Explosive cryovolcanism would form self-symmetric ridges, whereas effusive cryolavas and cryo-sediments deposited during tidal squeezing would likely not exhibit slope symmetry. To distinguish between these two groups of hypothesized formation mechanisms, we derived measurements of interior slope angle and interior/exterior slope symmetry at multiple locations on Europa through analysis of data from the Galileo Solid State Imaging (SSI) camera. Two types of data were used: i) elevation data from five stereo-pair digital elevation models (DEMs) covering four ridges (580 individual measurements), and ii) ridge shadow length measurements taken on individual images over 40 ridges (200 individual measurements). Our results shows that slopes measured on our DEMs, located in the Cilix and Banded Plains regions, typically fall below the AOR, and slope symmetry is dominant. Two different shadow measurement techniques implemented to calculate interior slopes yielded slope angles that also fall below the AOR. The shallow interior slopes derived from both

  4. Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model

    Science.gov (United States)

    Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.

    2016-12-01

    During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.

  5. Galactic chemical evolution in hierarchical formation models - I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matías; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  6. Galactic chemical evolution in hierarchical formation models : I. Early-type galaxies in the local Universe

    NARCIS (Netherlands)

    Arrigoni, Matias; Trager, Scott C.; Somerville, Rachel S.; Gibson, Brad K.

    2010-01-01

    We study the metallicities and abundance ratios of early-type galaxies in cosmological semi-analytic models (SAMs) within the hierarchical galaxy formation paradigm. To achieve this we implemented a detailed galactic chemical evolution model and can now predict abundances of individual elements for

  7. Model of two-dimensional electron gas formation at ferroelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Aguado-Puente, P.; Bristowe, N. C.; Yin, B.; Shirasawa, R.; Ghosez, Philippe; Littlewood, P. B.; Artacho, Emilio

    2015-07-01

    The formation of a two-dimensional electron gas at oxide interfaces as a consequence of polar discontinuities has generated an enormous amount of activity due to the variety of interesting effects it gives rise to. Here, we study under what circumstances similar processes can also take place underneath ferroelectric thin films. We use a simple Landau model to demonstrate that in the absence of extrinsic screening mechanisms, a monodomain phase can be stabilized in ferroelectric films by means of an electronic reconstruction. Unlike in the LaAlO3/SrTiO3 heterostructure, the emergence with thickness of the free charge at the interface is discontinuous. This prediction is confirmed by performing first-principles simulations of free-standing slabs of PbTiO3. The model is also used to predict the response of the system to an applied electric field, demonstrating that the two-dimensional electron gas can be switched on and off discontinuously and in a nonvolatile fashion. Furthermore, the reversal of the polarization can be used to switch between a two-dimensional electron gas and a two-dimensional hole gas, which should, in principle, have very different transport properties. We discuss the possible formation of polarization domains and how such configuration competes with the spontaneous accumulation of free charge at the interfaces.

  8. Unravelling the kinetics of the formation of acrylamide in the Maillard reaction of fructose and asparagine by multiresponse modelling

    NARCIS (Netherlands)

    Knol, J.J.; Linssen, J.P.H.; Boekel, van M.A.J.S.

    2010-01-01

    A kinetic model for the formation of acrylamide in a fructose–asparagine reaction system at initial pH 5.5 is proposed, based on an approach called multiresponse kinetic modelling. The formation of acetic acid and formic acid from the degradation of fructose and its isomer glucose was included in

  9. Testing models for the formation of the equatorial ridge on Iapetus via crater counting

    Science.gov (United States)

    Damptz, Amanda L.; Dombard, Andrew J.; Kirchoff, Michelle R.

    2018-03-01

    Iapetus's equatorial ridge, visible in global views of the moon, is unique in the Solar System. The formation of this feature is likely attributed to a key event in the evolution of Iapetus, and various models have been proposed as the source of the ridge. By surveying imagery from the Cassini and Voyager missions, this study aims to compile a database of the impact crater population on and around Iapetus's equatorial ridge, assess the relative age of the ridge from differences in cratering between on ridge and off ridge, and test the various models of ridge formation. This work presents a database that contains 7748 craters ranging from 0.83 km to 591 km in diameter. The database includes the study area in which the crater is located, the latitude and longitude of the crater, the major and minor axis lengths, and the azimuthal angle of orientation of the major axis. Analysis of crater orientation over the entire study area reveals that there is no preference for long-axis orientation, particularly in the area with the highest resolution. Comparison of the crater size-frequency distributions show that the crater distribution on the ridge appears to be depleted in craters larger than 16 km with an abruptly enhanced crater population less than 16 km in diameter up to saturation. One possible interpretation is that the ridge is a relatively younger surface with an enhanced small impactor population. Finally, the compiled results are used to examine each ridge formation hypothesis. Based on these results, a model of ridge formation via a tidally disrupted sub-satellite appears most consistent with our interpretation of a younger ridge with an enhanced small impactor population.

  10. A probabilistic model of brittle crack formation

    Science.gov (United States)

    Chudnovsky, A.; Kunin, B.

    1987-01-01

    Probability of a brittle crack formation in an elastic solid with fluctuating strength is considered. A set Omega of all possible crack trajectories reflecting the fluctuation of the strength field is introduced. The probability P(X) that crack penetration depth exceeds X is expressed as a functional integral over Omega of a conditional probability of the same event taking place along a particular path. Various techniques are considered to evaluate the integral. Under rather nonrestrictive assumptions, the integral is reduced to solving a diffusion-type equation. A new characteristic of fracture process, 'crack diffusion coefficient', is introduced. An illustrative example is then considered where the integration is reduced to solving an ordinary differential equation. The effect of the crack diffusion coefficient and of the magnitude of strength fluctuations on probability density of crack penetration depth is presented. Practical implications of the proposed model are discussed.

  11. Individual exposures to drinking water trihalomethanes, low birth weight and small for gestational age risk: a prospective Kaunas cohort study

    Science.gov (United States)

    2011-01-01

    Background Evidence for an association between exposure during pregnancy to trihalomethanes (THMs) in drinking water and impaired fetal growth is still inconsistent and inconclusive, in particular, for various exposure routes. We examined the relationship of individual exposures to THMs in drinking water on low birth weight (LBW), small for gestational age (SGA), and birth weight (BW) in singleton births. Methods We conducted a cohort study of 4,161 pregnant women in Kaunas (Lithuania), using individual information on drinking water, ingestion, showering and bathing, and uptake factors of THMs in blood, to estimate an internal dose of THM. We used regression analysis to evaluate the relationship between internal THM dose and birth outcomes, adjusting for family status, education, smoking, alcohol consumption, body mass index, blood pressure, ethnic group, previous preterm, infant gender, and birth year. Results The estimated internal dose of THMs ranged from 0.0025 to 2.40 mg/d. We found dose-response relationships for the entire pregnancy and trimester-specific THM and chloroform internal dose and risk for LBW and a reduction in BW. The adjusted odds ratio for third tertile vs. first tertile chloroform internal dose of entire pregnancy was 2.17, 95% CI 1.19-3.98 for LBW; the OR per every 0.1 μg/d increase in chloroform internal dose was 1.10, 95% CI 1.01-1.19. Chloroform internal dose was associated with a slightly increased risk of SGA (OR 1.19, 95% CI 0.87-1.63 and OR 1.22, 95% CI 0.89-1.68, respectively, for second and third tertile of third trimester); the risk increased by 4% per every 0.1 μg/d increase in chloroform internal dose (OR 1.04, 95% CI 1.00-1.09). Conclusions THM internal dose in pregnancy varies substantially across individuals, and depends on both water THM levels and water use habits. Increased internal dose may affect fetal growth. PMID:21501533

  12. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  13. Modeling of Diesel Fuel Spray Formation and Combustion in OpenFOAM

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Anne

    2012-07-01

    The formation, ignition, and combustion of fuel sprays are highly complex processes and the available models have various shortcomings. The development and application of multidimensional CFD models, that describe the different phenomena have rapidly increased through the use of commercial and public software (e.g. Star-CD, KIVA, FIRE and OpenFOAM). The general approach to spray modeling is given by the Eulerian-Lagrangian method, where the gas phase is modeled as a continuum and the droplets are tracked in a Lagrangian way. The accuracy and robustness of today's spray models vary substantially and spray penetration simulations and the levels of spray-generated turbulence are dependent on the discretization. The work presented here deals with the prediction of spray formation and combustion with improved models implemented in the free, open source software package OpenFOAM. The VSB2 spray model was implemented and tested under varying ambient conditions. The design criteria of the model were to be unconditionally robust, have a minimal number of tuning parameters, and be implementable in any CFD software package supporting particle tracking. The main difference between the VSB2 spray model and standard spray models is how the interaction between the liquid fuel and hot gas phase is modeled. In the VSB2 spray model, a 'blob' is defined, containing differently sized droplets; instead of a parcel containing equally sized droplets. Another feature is the definition of a bubble surrounding the blob. The blob just interacts with the gas phase in the bubble instead of with the gas phase in the whole grid cell. The idea is to reduce grid dependency. Furthermore, equilibrium between the blob and the bubble is ensured, which makes the model very robust. Results of spray penetration simulations are compared with data obtained from experiments done at Chalmers Univ. of Technology and with experimental data published by Siebers and Naber from Sandia National

  14. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  15. A variational study of the self-trapped magnetic polaron formation in double-exchange model

    International Nuclear Information System (INIS)

    Liu Tao; Feng Mang; Wang Kelin

    2005-01-01

    We study the formation of self-trapped magnetic polaron (STMP) in an antiferro/ferromagnetic double-exchange model semi-analytically by variational solutions. It is shown that the Jahn-Teller effect is not essential to the STMP formation and the STMP forms in the antiferromagnetic material within the region of the order of the lattice constant. We also confirm that no ground state STMP exists in the ferromagnetic background, but the ground state bound MP could appear due to the impurity potential

  16. Development and validation of a dynamical atmosphere-vegetation-soil HTO transport and OBT formation model

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Masakazu, E-mail: ohta.masakazu@jaea.go.jp [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan); Nagai, Haruyasu [Research Group for Environmental Science, Division of Environment and Radiation, Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency (Japan)

    2011-09-15

    A numerical model simulating transport of tritiated water (HTO) in atmosphere-soil-vegetation system, and, accumulation of organically bound tritium (OBT) in vegetative leaves was developed. Characteristic of the model is, for calculating tritium transport, it incorporates a dynamical atmosphere-soil-vegetation model (SOLVEG-II) that calculates transport of heat and water, and, exchange of CO{sub 2}. The processes included for calculating tissue free water tritium (TFWT) in leaves are HTO exchange between canopy air and leaf cellular water, root uptake of aqueous HTO in soil, photosynthetic assimilation of TFWT into OBT, and, TFWT formation from OBT through respiration. Tritium fluxes at the last two processes are input to a carbohydrate compartment model in leaves that calculates OBT translocation from leaves and allocation in them, by using photosynthesis and respiration rate in leaves. The developed model was then validated through a simulation of an existing experiment of acute exposure of grape plants to atmospheric HTO. Calculated TFWT concentration in leaves increased soon after the start of HTO exposure, reaching to equilibrium with the atmospheric HTO within a few hours, and then rapidly decreased after the end of the exposure. Calculated non-exchangeable OBT amount in leaves linearly increased during the exposure, and after the exposure, rapidly decreased in daytime, and, moderately nighttime. These variations in the calculated TFWT concentrations and OBT amounts, each mainly controlled by HTO exchange between canopy air and leaf cellular water and by carbohydrates translocation from leaves, fairly agreed with the observations within average errors of a factor of two. - Highlights: > TFWT retention and OBT formation in leaves were modeled > The model fairly well calculates TFWT concentration after an acute HTO exposure > The model well assesses OBT formation and attenuation of OBT amount in leaves.

  17. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.

    Science.gov (United States)

    Fernández, J R; García-Aznar, J M; Martínez, R

    2012-01-07

    We have developed a mathematical approach for modelling the piezoelectric behaviour of bone tissue in order to evaluate the electrical surface charges in bone under different mechanical conditions. This model is able to explain how bones change their curvature, where osteoblasts or osteoclasts could detect in the periosteal/endosteal surfaces the different electrical charges promoting bone formation or resorption. This mechanism also allows to understand the BMU progression in function of the electro-mechanical bone behaviour. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. From lag synchronization to pattern formation in one-dimensional open flow models

    International Nuclear Information System (INIS)

    Liu Zengrong; Luo Jigui

    2006-01-01

    In this paper, the relation between synchronization and pattern formation in one-dimensional discrete and continuous open flow models is investigated in detail. Firstly a sufficient condition for globally asymptotical stability of lag/anticipating synchronization among lattices of these models is proved by analytic method. Then, by analyzing and simulating lag/anticipating synchronization in discrete case, three kinds of pattern of wave (it is called wave pattern) travelling in the lattices are discovered. Finally, a proper definition for these kinds of pattern is proposed

  19. How To Model Supernovae in Simulations of Star and Galaxy Formation

    Science.gov (United States)

    Hopkins, Philip F.; Wetzel, Andrew; Kereš, Dušan; Faucher-Giguére, Claude-André; Quataert, Eliot; Boylan-Kolchin, Michael; Murray, Norman; Hayward, Christopher C.; El-Badry, Kareem

    2018-03-01

    We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, which can be applied to any hydrodynamics method (e.g. fixed-grid, moving-mesh, and mesh-less methods), and black hole as well as stellar feedback. This algorithm ensures manifest conservation of mass, energy, and momentum, and avoids imprinting "preferred directions" on the ejecta. We show that it is critical to incorporate both momentum and thermal energy of mechanical ejecta in a self-consistent manner, accounting for SNe cooling radii when they are not resolved. Using idealized simulations of single SN explosions, we show that the FIRE-2 algorithm, independent of resolution, reproduces converged solutions in both energy and momentum. In contrast, common "fully-thermal" (energy-dump) or "fully-kinetic" (particle-kicking) schemes in the literature depend strongly on resolution: when applied at mass resolution ≳ 100 M⊙, they diverge by orders-of-magnitude from the converged solution. In galaxy-formation simulations, this divergence leads to orders-of-magnitude differences in galaxy properties, unless those models are adjusted in a resolution-dependent way. We show that all models that individually time-resolve SNe converge to the FIRE-2 solution at sufficiently high resolution (simulations and cosmological galaxy-formation simulations, the FIRE-2 algorithm converges much faster than other sub-grid models without re-tuning parameters.

  20. A global model of thunderstorm electricity and the prediction of whistler duct formation

    International Nuclear Information System (INIS)

    Stansbery, E.K.

    1989-01-01

    A two-dimensional numerical model is created to calculate the electric field and current that flow from a thunderstorm source into the global electrical circuit. The model includes a hemisphere in which the thunderstorm is located, an equalization layer, and a passive magnetic conjugate hemisphere. To maintain the fair weather electric field, the output current from the thunderstorm is allowed to spread out in the ionosphere or flow along the magnetic field lines into the conjugate hemisphere. The vertical current is constant up to approximately 65 km, decays and is redirected horizontally in the ionosphere. Approximately half of the current that reaches the ionosphere flows along magnetic field lines into the conjugate hemisphere while the rest is spread out in the ionosphere and redirected to the fair weather portion of the storm hemisphere. Our results show that it is important to include a realistic model of the equalization layer to evaluate the role of thunderstorm charging of the global circuit. The mapping of thunderstorm electric fields at middle and subauroral latitudes into the magnetic equatorial plane is studied. The geomagnetic field lines are assumed to be dipolar above approximately 150 km. The horizontal electric field computed in the ionosphere by our model is of sufficient size and shape for the formation of electron density irregularities in the magnetosphere. The mechanism involves a localized convection of ionization tubes by ExB drift. It is shown that the horizontal range of the electric field disturbance in the ionosphere must be within approximately 160 km to produce density irregularities necessary for the formation of whistler ducts. Although the electric field strength at ionospheric heights depends sensitively on the conductivity profile, the results presented show that whistler duct formation is possible by thunderstorm generated electric fields.*

  1. Pizza or Pancake? Formation Models of Gas Escape Biosignatures in Terrestrial and Martian Sediments

    Science.gov (United States)

    Bonaccorsi, R.; Fairen, A. G.; Baker, L.; McKay, C. P.; Willson, D.

    2016-05-01

    Fine-grained sedimentary hollowed structures were imaged in Gale Crater, but no biomarkers identified to support biology. Our observation-based (gas escape) terrestrial model could inform on possible martian paleoenvironments at time of formation.

  2. An attempt to model the timing of magma formation by means of radioactive disequilibria

    International Nuclear Information System (INIS)

    Cortini, M.

    1985-01-01

    In order to quantitatively determine the timing of magma formation, the Th series radioactive disequilibria for the Etna and Stromboli volcanoes have been re-examined in the light of new isotopic evidence that shows that magma formation is a chemically open-system process. This aim was but partially reached. It is shown that single-stage models of magma formation are not consistent with the experimental data. Short-life disequilibria require that magma formation undergoes: (1) a Th and Ra enrichment stage (a few years long); (2) a closed-system stage (a few tens to some hundreds years long); (3) a second Th and Ra enrichment stage (a few years long), different from the former in terms of Ra/Th ratio. The whole process can be described by a group of equations, derived from open-system non-equilibrium thermodynamics, which were integrated with numerical methods. However, too many unknowns are involved to allow a one-to-one solution based on the available data. (orig.)

  3. Modelling and mapping the suitability of European forest formations at 1-km resolution

    DEFF Research Database (Denmark)

    Casalegno, Stefano; Amatulli, Giuseppe; Bastrup-Birk, Annemarie

    2011-01-01

    factors. Here, we used the bootstrap-aggregating machine-learning ensemble classifier Random Forest (RF) to derive a 1-km resolution European forest formation suitability map. The statistical model use as inputs more than 6,000 field data forest inventory plots and a large set of environmental variables...

  4. Modeling the influence of storms on sand wave formation : A linear stability approach

    NARCIS (Netherlands)

    Campmans, G.H.P.; Roos, P.C.; de Vriend, H.J.; Hulscher, S.J.M.H.

    2017-01-01

    We present an idealized process-based morphodynamic model to study the effect of storms on sand wave formation. To this end, we include wind waves, wind-driven flow and, in addition to bed load transport, suspended load sediment transport. A linear stability analysis is applied to systematically

  5. Phase Transitions in a Social Impact Model for Opinion Formation

    Science.gov (United States)

    Bordogna, Clelia M.; Albano, Ezequiel V.

    A model for opinion formation in a social group, based on the Theory of Social Impact developed by Latané, is studied by means of numerical simulations. Interactions among the members of the group, as well as with a strong leader competing with the mass media, are considered. The model exhibits first-order transitions between two different states of opinion, which are supported by the leader and the mass media, respectively. The social inertia of the group becomes evident when the opinion of the leader changes periodically. In this case two dynamic states are identified: for long periods of time, the group follows the changes of the leader but, decreasing the period, the opinion of the group remains unchanged. This scenery is suitable for the ocurrence of dynamic phase transitions.

  6. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.

    Science.gov (United States)

    Brandt-Pollmann, U; Lebiedz, D; Diehl, M; Sager, S; Schlöder, J

    2005-09-01

    Theoretical and experimental studies related to manipulation of pattern formation in self-organizing reaction-diffusion processes by appropriate control stimuli become increasingly important both in chemical engineering and cellular biochemistry. In a model study, we demonstrate here exemplarily the application of an efficient nonlinear model predictive control (NMPC) algorithm to real-time optimal feedback control of pattern formation in a bacterial chemotaxis system modeled by nonlinear partial differential equations. The corresponding drift-diffusion model type is representative for many (bio)chemical systems involving nonlinear reaction dynamics and nonlinear diffusion. We show how the computed optimal feedback control strategy exploits the system inherent physical property of wave propagation to achieve desired control aims. We discuss various applications of our approach to optimal control of spatiotemporal dynamics.

  7. Formation of a vesicovaginal fistula in a pig model

    Directory of Open Access Journals (Sweden)

    Lindberg J

    2015-08-01

    Full Text Available Jennifer Lindberg,1 Emilie Rickardsson,1 Margrethe Andersen,2 Lars Lund1,2 1Clinical Institute, University of Southern Denmark, Odense, 2Department of Urology, Odense University Hospital, Odense C, Denmark Objective: To establish an animal model of a vesicovaginal fistula that can later be used in the development of new treatment modalities.Materials and methods: Six female pigs of Landrace/Yorkshire breed were used. Vesicotomy was performed through open surgery. An standardized incision between the bladder and the vagina was made, and the mucosa between them was sutured together with absorbable sutures. A durometer ureteral stent was introduced into the fistula, secured with sutures to the bladder wall, allowing for the formation of a persistent fistula tract. Six weeks postoperatively cysto-scopy was performed to examine the fistula in vivo. Thereafter, the pigs were euthanized with intravenous pentobarbital.Results: Two out of four (50% pigs developed persistent fistulas. No per- or postoperative complications occurred.Conclusion: This study indicates that this pig model of vesicovaginal fistula can be an effective and cheap way to create a fistula between the bladder and vagina. Keywords: vesicovaginal fistula, urinary fistula, animal model

  8. C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging.

    Directory of Open Access Journals (Sweden)

    Tjakko J van Ham

    2008-03-01

    Full Text Available Inclusions in the brain containing alpha-synuclein are the pathological hallmark of Parkinson's disease, but how these inclusions are formed and how this links to disease is poorly understood. We have developed a C. elegans model that makes it possible to monitor, in living animals, the formation of alpha-synuclein inclusions. In worms of old age, inclusions contain aggregated alpha- synuclein, resembling a critical pathological feature. We used genome-wide RNA interference to identify processes involved in inclusion formation, and identified 80 genes that, when knocked down, resulted in a premature increase in the number of inclusions. Quality control and vesicle-trafficking genes expressed in the ER/Golgi complex and vesicular compartments were overrepresented, indicating a specific role for these processes in alpha-synuclein inclusion formation. Suppressors include aging-associated genes, such as sir-2.1/SIRT1 and lagr-1/LASS2. Altogether, our data suggest a link between alpha-synuclein inclusion formation and cellular aging, likely through an endomembrane-related mechanism. The processes and genes identified here present a framework for further study of the disease mechanism and provide candidate susceptibility genes and drug targets for Parkinson's disease and other alpha-synuclein related disorders.

  9. Tolerance-based interaction: a new model targeting opinion formation and diffusion in social networks

    Directory of Open Access Journals (Sweden)

    Alexandru Topirceanu

    2016-01-01

    Full Text Available One of the main motivations behind social network analysis is the quest for understanding opinion formation and diffusion. Previous models have limitations, as they typically assume opinion interaction mechanisms based on thresholds which are either fixed or evolve according to a random process that is external to the social agent. Indeed, our empirical analysis on large real-world datasets such as Twitter, Meme Tracker, and Yelp, uncovers previously unaccounted for dynamic phenomena at population-level, namely the existence of distinct opinion formation phases and social balancing. We also reveal that a phase transition from an erratic behavior to social balancing can be triggered by network topology and by the ratio of opinion sources. Consequently, in order to build a model that properly accounts for these phenomena, we propose a new (individual-level opinion interaction model based on tolerance. As opposed to the existing opinion interaction models, the new tolerance model assumes that individual’s inner willingness to accept new opinions evolves over time according to basic human traits. Finally, by employing discrete event simulation on diverse social network topologies, we validate our opinion interaction model and show that, although the network size and opinion source ratio are important, the phase transition to social balancing is mainly fostered by the democratic structure of the small-world topology.

  10. GMC Collisions as Triggers of Star Formation. III. Density and Magnetically Regulated Star Formation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Benjamin [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Tan, Jonathan C. [Department of Physics, University of Florida, Gainesville, FL 32611 (United States); Christie, Duncan [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Collins, David, E-mail: ben.wu@nao.ac.jp [Department of Physics, Florida State University, Tallahassee, FL 32306-4350 (United States)

    2017-06-01

    We study giant molecular cloud (GMC) collisions and their ability to trigger star cluster formation. We further develop our three-dimensional magnetized, turbulent, colliding GMC simulations by implementing star formation subgrid models. Two such models are explored: (1) “Density-Regulated,” i.e., fixed efficiency per free-fall time above a set density threshold and (2) “Magnetically Regulated,” i.e., fixed efficiency per free-fall time in regions that are magnetically supercritical. Variations of parameters associated with these models are also explored. In the non-colliding simulations, the overall level of star formation is sensitive to model parameter choices that relate to effective density thresholds. In the GMC collision simulations, the final star formation rates and efficiencies are relatively independent of these parameters. Between the non-colliding and colliding cases, we compare the morphologies of the resulting star clusters, properties of star-forming gas, time evolution of the star formation rate (SFR), spatial clustering of the stars, and resulting kinematics of the stars in comparison to the natal gas. We find that typical collisions, by creating larger amounts of dense gas, trigger earlier and enhanced star formation, resulting in 10 times higher SFRs and efficiencies. The star clusters formed from GMC collisions show greater spatial substructure and more disturbed kinematics.

  11. Investigación de trihalometanos en agua potable del Estado Carabobo, Venezuela Trihalomethanes in the drinking water of Carabobo State, Venezuela

    Directory of Open Access Journals (Sweden)

    A. Sarmiento

    2003-04-01

    Full Text Available Objetivo: La desinfección del agua con cloro en las plantas de potabilización da lugar a la formación de trihalometanos (THM. Estos compuestos están asociados a efectos adversos para la salud. En este estudio se determinó la concentración de THM en el agua para consumo humano suministrada por las redes de distribución de los dos principales sistemas de potabilización de agua del Estado Carabobo, la planta Alejo Zuloaga y el embalse Pao-Cachinche que forman el Sistema Regional del Centro I (SRC-I y la planta Lucio Baldo Soules y el embalse Pao-La Balsa que forman el Sistema Regional del Centro II (SRC-II. Métodos: Se analizaron un total de 144 muestras recolectadas durante 6 muestreos que se realizaron durante los años 2000 y 2001. La concentración de THM se determinó por cromatografía de gases, mediante la técnica de headspace. Se determinaron las concentraciones para los siguientes THM: cloroformo (CHCl3, bromoformo (CHBr3, dibromoclorometano (CHBr2Cl y diclorobromometano (CHCl2Br. Resultados: La concentración de THM totales estuvo entre 47,84 y 93,23 μg/l. El CHCl3 fue el compuesto predominante, representando el 83% de total de THM para el SRC-I y el 82% en el SRC-II. Se encontró que las concentraciones de THM totales en el SRC-I (Red Baja y Red San Diego son significativamente superiores (p Objective: Disinfection of water with chlorine in water treatment plants leads to the formation of trihalomethanes (THMs. These compounds are associated with adverse health effects. The aim of this study was to analyze THM concentrations in the water provided for human consumption in the two main water treatment systems of Carabobo State: the Alejo Zuloaga plant and the Pao-Cachinche reservoir, which form the Central Regional System I (CRS I, and the Lucio Baldo Soules plant and the Pao-La Balsa reservoir, which form the Central Regional System II (CRS II. Methods: We analyzed 144 water samples collected in 6 samplings carried out in 2000

  12. Modeling the legal field of formation of socially responsible conduct among pharmacy specialists

    Directory of Open Access Journals (Sweden)

    N. O. Tkachenko

    2018-03-01

    Full Text Available Observation of legal and legislative standards of the company activities is the fundamental principle of social responsibility (SR. The results of the literature analysis show the lack of fundamental research of regulatory and legal support of formation of socially responsible conduct of pharmacists (SRCPh. AIM: modeling the legal framework and determining the completeness and content of the current regulatory and legal framework on formation of a system of SRCPh throughout the professional lifespan development. Materials and methods. The materials of the study were national and international regulatory legal acts, regulating SR, the activities of pharmaceutical organizations (PhO and getting a pharmaceutical education. During the work, such methods as searching information, systematization, content analysis, comparison and generalization were used. During the investigation, we summarized the legal framework that in various aspects forms the socially responsible conduct of the pharmacists throughout the lifespan professional development; and a model of the legal field of this process was formed. A content analysis of this regulatory framework in aspect of responsibility of the PhO and pharmacists with a description of the problem legal questions in the context of SR was carried out. In this article, attention is paid to the basic level of the legal field, within which general principles of social relations are formed in all spheres of the economy. Conclusions. We have formed a model of the legal field formation of a SRCPh system throughout the professional lifespan development. The model is a complex, multilevel system. The regulatory framework in the model is distributed according to two criteria (hierarchical and regulating relations in the system of socially responsible conduct of the pharmacists and includes 27 basic normative legal acts. We have identified problems in the legal field of the basic level of SRCPh formation: the indistinctness

  13. A genetic algorithm for a bi-objective mathematical model for dynamic virtual cell formation problem

    Science.gov (United States)

    Moradgholi, Mostafa; Paydar, Mohammad Mahdi; Mahdavi, Iraj; Jouzdani, Javid

    2016-09-01

    Nowadays, with the increasing pressure of the competitive business environment and demand for diverse products, manufacturers are force to seek for solutions that reduce production costs and rise product quality. Cellular manufacturing system (CMS), as a means to this end, has been a point of attraction to both researchers and practitioners. Limitations of cell formation problem (CFP), as one of important topics in CMS, have led to the introduction of virtual CMS (VCMS). This research addresses a bi-objective dynamic virtual cell formation problem (DVCFP) with the objective of finding the optimal formation of cells, considering the material handling costs, fixed machine installation costs and variable production costs of machines and workforce. Furthermore, we consider different skills on different machines in workforce assignment in a multi-period planning horizon. The bi-objective model is transformed to a single-objective fuzzy goal programming model and to show its performance; numerical examples are solved using the LINGO software. In addition, genetic algorithm (GA) is customized to tackle large-scale instances of the problems to show the performance of the solution method.

  14. Fine element (F.E.) modelling of hydrogen migration and blister formation in PHWR coolant channels

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Sinha, R.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    The formation of a cold spot in pressure tube due to its contact with calandria tube of PHWR coolant results in the migration of Hydrogen in pressure tube towards contact zone from its surrounding material. A 3-D finite element code SPARSH is developed to model the hydrogen redistribution and consequent hydride blister formation due to thermal and Hydrogen concentration gradients. In the present paper, the details and performance of this code are presented. (author). 6 refs., 2 figs

  15. Formation of double layers

    International Nuclear Information System (INIS)

    Leung, P.; Wong, A.Y.; Quon, B.H.

    1981-01-01

    Experiments on both stationary and propagating double layers and a related analytical model are described. Stationary double layers were produced in a multiple plasma device, in which an electron drift current was present. An investigation of the plasma parameters for the stable double layer condition is described. The particle distribution in the stable double layer establishes a potential profile, which creates electron and ion beams that excite plasma instabilities. The measured characteristics of the instabilities are consistent with the existence of the double layer. Propagating double layers are formed when the initial electron drift current is large. Ths slopes of the transition region increase as they propagate. A physical model for the formation of a double layer in the experimental device is described. This model explains the formation of the low potential region on the basis of the space charge. This space charge is created by the electron drift current. The model also accounts for the role of ions in double layer formation and explains the formation of moving double layers. (Auth.)

  16. Toward a Kinetic Model for Acrylamide Formation in a Glucose-Asparagine Reaction System

    NARCIS (Netherlands)

    Knol, J.J.; Loon, W.A.M.; Linssen, J.P.H.; Ruck, A.L.; Boekel, van M.A.J.S.

    2005-01-01

    A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different tempera-tures (120-200 C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after

  17. On the asymptotic behavior of a boltzmann-type price formation model

    KAUST Repository

    Burger, Martin; Caffarelli, Luis A.; Markowich, Peter A.; Wolfram, Marie-Therese

    2014-01-01

    In this paper we study the asymptotic behavior of a Boltzmann-type price formation model, which describes the trading dynamics in a financial market. In many of these markets trading happens at high frequencies and low transaction costs. This observation motivates the study of the limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka=const. Furthermore we illustrate the price dynamics with numerical simulations © 2014 International Press.

  18. Explaining formation of Astronomical Jets using Dynamic Universe Model

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    2016-07-01

    Astronomical jets are observed from the centres of many Galaxies including our own Milkyway. The formation of such jet is explained using SITA simulations of Dynamic Universe Model. For this purpose the path traced by a test neutron is calculated and depicted using a set up of one densemass of the mass equivalent to mass of Galaxy center, 90 stars with similar masses of stars near Galaxy center, mass equivalents of 23 Globular Cluster groups, 16 Milkyway parts, Andromeda and Triangulum Galaxies at appropriate distances. Five different kinds of theoretical simulations gave positive results The path travelled by this test neutron was found to be an astronomical jet emerging from Galaxy center. This is another result from Dynamic Universe Model. It solves new problems like a. Variable Mass Rocket Trajectory Problem b. Explaining Very long baseline interferometry (VLBI) observations c. Astronomical jets observed from Milkyway Center d. Prediction of Blue shifted Galaxies e. Explaining Pioneer Anomaly f. Prediction of New Horizons satellite trajectory etc. Dynamic Universe Model never reduces to General relativity on any condition. It uses a different type of mathematics based on Newtonian physics. This mathematics used here is simple and straightforward. As there are no differential equations present in Dynamic Universe Model, the set of equations give single solution in x y z Cartesian coordinates for every point mass for every time step

  19. Formation of model-free motor memories during motor adaptation depends on perturbation schedule.

    Science.gov (United States)

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2015-04-01

    Motor adaptation to an external perturbation relies on several mechanisms such as model-based, model-free, strategic, or repetition-dependent learning. Depending on the experimental conditions, each of these mechanisms has more or less weight in the final adaptation state. Here we focused on the conditions that lead to the formation of a model-free motor memory (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011), i.e., a memory that does not depend on an internal model or on the size or direction of the errors experienced during the learning. The formation of such model-free motor memory was hypothesized to depend on the schedule of the perturbation (Orban de Xivry JJ, Ahmadi-Pajouh MA, Harran MD, Salimpour Y, Shadmehr R. J Neurophysiol 109: 124-136, 2013). Here we built on this observation by directly testing the nature of the motor memory after abrupt or gradual introduction of a visuomotor rotation, in an experimental paradigm where the presence of model-free motor memory can be identified (Huang VS, Haith AM, Mazzoni P, Krakauer JW. Neuron 70: 787-801, 2011). We found that relearning was faster after abrupt than gradual perturbation, which suggests that model-free learning is reduced during gradual adaptation to a visuomotor rotation. In addition, the presence of savings after abrupt introduction of the perturbation but gradual extinction of the motor memory suggests that unexpected errors are necessary to induce a model-free motor memory. Overall, these data support the hypothesis that different perturbation schedules do not lead to a more or less stabilized motor memory but to distinct motor memories with different attributes and neural representations. Copyright © 2015 the American Physiological Society.

  20. Quantum-Size Dependence of the Energy for Vacancy Formation in Charged Small Metal Clusters. Drop Model

    Science.gov (United States)

    Pogosov, V. V.; Reva, V. I.

    2018-04-01

    Self-consistent computations of the monovacancy formation energy are performed for Na N , Mg N , and Al N (12 < N ≤ 168) spherical clusters in the drop model for stable jelly. Scenarios of the Schottky vacancy formation and "bubble vacancy blowing" are considered. It is shown that the asymptotic behavior of the size dependences of the energy for the vacancy formation by these two mechanisms is different and the difference between the characteristics of a charged and neutral cluster is entirely determined by the difference between the ionization potentials of clusters and the energies of electron attachment to them.

  1. Formation and Evolution of Lakshmi Planum (V-7), Venus: Assessment of Models using Observations from Geological Mapping

    Science.gov (United States)

    Ivanov, M. A.; Head, James W.

    2008-01-01

    Lakshmi Planum is a high-standing plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing crustal plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes and played an important role in Venus geologic history. Lakshmi was studied with Venera-15/16 and Magellan data, resulting in two classes of models, divergent and convergent, to explain its unusual topographic and morphologic characteristics. Divergent models explain Lakshmi as a site of mantle upwelling due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50-75degN, 300-360degE; scale 1:5M) that allows testing the proposed models for Lakshmi.

  2. Formation region and amplitude of colour superconductivity in an instanton-induced model

    CERN Document Server

    Liao Jin Feng

    2002-01-01

    Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity

  3. Model of formation of low-risk stock portfolio in modern financial markets

    Directory of Open Access Journals (Sweden)

    Дмитро Сергійович Богач

    2016-03-01

    Full Text Available The basic principles of formation of an investment portfolio in modern financial markets are determined. A method of forming stock portfolio due to the statistical properties of stationary process and relations between the behavior of stocks and economic sector, characterizing these actions, is proposed. Optimal points of recalculation of model depends on changes in current trends in the financial market is described

  4. Experimental design, modeling and optimization of polyplex formation between DNA oligonucleotides and branched polyethylenimine.

    Science.gov (United States)

    Clima, Lilia; Ursu, Elena L; Cojocaru, Corneliu; Rotaru, Alexandru; Barboiu, Mihail; Pinteala, Mariana

    2015-09-28

    The complexes formed by DNA and polycations have received great attention owing to their potential application in gene therapy. In this study, the binding efficiency between double-stranded oligonucleotides (dsDNA) and branched polyethylenimine (B-PEI) has been quantified by processing of the images captured from the gel electrophoresis assays. The central composite experimental design has been employed to investigate the effects of controllable factors on the binding efficiency. On the basis of experimental data and the response surface methodology, a multivariate regression model has been constructed and statistically validated. The model has enabled us to predict the binding efficiency depending on experimental factors, such as concentrations of dsDNA and B-PEI as well as the initial pH of solution. The optimization of the binding process has been performed using simplex and gradient methods. The optimal conditions determined for polyplex formation have yielded a maximal binding efficiency close to 100%. In order to reveal the mechanism of complex formation at the atomic-scale, a molecular dynamic simulation has been carried out. According to the computation results, B-PEI amine hydrogen atoms have interacted with oxygen atoms from dsDNA phosphate groups. These interactions have led to the formation of hydrogen bonds between macromolecules, stabilizing the polyplex structure.

  5. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed; Rakha, Ihsan Allah; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.

    2015-01-01

    , coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled

  6. Formative Constructs Implemented via Common Factors

    Science.gov (United States)

    Treiblmaier, Horst; Bentler, Peter M.; Mair, Patrick

    2011-01-01

    Recently there has been a renewed interest in formative measurement and its role in properly specified models. Formative measurement models are difficult to identify, and hence to estimate and test. Existing solutions to the identification problem are shown to not adequately represent the formative constructs of interest. We propose a new two-step…

  7. Formation of shatter cones by symmetric fracture bifurcation: Phenomenological modeling and validation

    Science.gov (United States)

    Kenkmann, Thomas; Hergarten, Stefan; Kuhn, Thomas; Wilk, Jakob

    2016-08-01

    Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so-called horse-tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex-curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse-tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse-tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different

  8. Formation of spin-polarons in the ferromagnetic Kondo lattice model away from half-filling

    International Nuclear Information System (INIS)

    Arredondo, Y; Navarro, O; Vallejo, E; Avignon, M

    2012-01-01

    Even though realistic one-dimensional experiments in the field of half-metallic semiconductors are not at hand yet, we are interested in the underlying fundamental physics. In this regard we study a one-dimensional ferromagnetic Kondo lattice model, a model in which a conduction band is coupled ferromagnetically to a background of localized d moments with coupling constant J H , and investigate the T = 0 phase diagram as a function of the antiferromagnetic interaction J between the localized moments and the band-filling n, since it has been observed that doping of the compounds has led to formation of magnetic domains. We explore the spin-polaron formation by looking at the nearest-neighbour correlation functions in the spin and charge regimes for which we use the density matrix renormalization group method, which is a highly efficient method to investigate quasi-one-dimensional strongly correlated systems. (paper)

  9. CHARACTERIZING THE FORMATION HISTORY OF MILKY WAY LIKE STELLAR HALOS WITH MODEL EMULATORS

    International Nuclear Information System (INIS)

    Gómez, Facundo A.; O'Shea, Brian W.; Coleman-Smith, Christopher E.; Tumlinson, Jason; Wolpert, Robert L.

    2012-01-01

    We use the semi-analytic model ChemTreeN, coupled to cosmological N-body simulations, to explore how different galaxy formation histories can affect observational properties of Milky Way like galaxies' stellar halos and their satellite populations. Gaussian processes are used to generate model emulators that allow one to statistically estimate a desired set of model outputs at any location of a p-dimensional input parameter space. This enables one to explore the full input parameter space orders of magnitude faster than could be done otherwise. Using mock observational data sets generated by ChemTreeN itself, we show that it is possible to successfully recover the input parameter vectors used to generate the mock observables if the merger history of the host halo is known. However, our results indicate that for a given observational data set, the determination of 'best-fit' parameters is highly susceptible to the particular merger history of the host. Very different halo merger histories can reproduce the same observational data set, if the 'best-fit' parameters are allowed to vary from history to history. Thus, attempts to characterize the formation history of the Milky Way using these kind of techniques must be performed statistically, analyzing large samples of high-resolution N-body simulations.

  10. Monitoring benzene formation from benzoate in model systems by proton transfer reaction-mass spectrometry

    Science.gov (United States)

    Aprea, Eugenio; Biasioli, Franco; Carlin, Silvia; Märk, Tilmann D.; Gasperi, Flavia

    2008-08-01

    The presence of benzene in food and in particular in soft drinks has been reported in several studies and should be considered in fundamental investigations about formation of this carcinogen compound as well as in quality control. Proton transfer reaction-mass spectrometry (PTR-MS) has been used here for rapid, direct quantification of benzene and to monitor its formation in model systems related to the use of benzoate, a common preservative, in presence of ascorbic acid: a widespread situation that yields benzene in, e.g., soft drinks and fruit juices. Firstly, we demonstrate here that PTR-MS allows a rapid determination of benzene that is in quantitative agreement with independent solid phase micro-extraction/gas chromatography (SPME/GC) analysis. Secondly, as a case study, the effect of different sugars (sucrose, fructose and glucose) on benzene formation is investigated indicating that they inhibit its formation and that this effect is enhanced for reducing sugars. The sugar-induced inhibition of benzene formation depends on several parameters (type and concentration of sugar, temperature, time) but can be more than 80% in situations that can be expected in the storage of commercial soft drinks. This is consistent with the reported observations of higher benzene concentrations in sugar-free soft drinks.

  11. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  12. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  13. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models.

    Science.gov (United States)

    Jiang, Ting-Xin; Widelitz, Randall B; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2004-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions ( de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically colocalize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  14. A Model of Electron-Positron Pair Formation

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2008-01-01

    Full Text Available The elementary electron-positron pair formation process is consideredin terms of a revised quantum electrodynamic theory, with specialattention to the conservation of energy, spin, and electric charge.The theory leads to a wave-packet photon model of narrow line widthand needle-radiation properties, not being available from conventionalquantum electrodynamics which is based on Maxwell's equations. Themodel appears to be consistent with the observed pair productionprocess, in which the created electron and positron form two raysthat start within a very small region and have original directionsalong the path of the incoming photon. Conservation of angular momentum requires the photon to possess a spin, as given by the present theory but not by the conventional one. The nonzero electric field divergence further gives rise to a local intrinsic electric charge density within the photon body, whereas there is a vanishing total charge of the latter. This may explain the observed fact that the photon decays on account of the impact from an external electric field. Such a behaviour should not become possible for a photon having zero local electric charge density.

  15. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    International Nuclear Information System (INIS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-01-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  16. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Matt, E-mail: matt.a.thompson@anu.edu.au [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Sakamoto, Ryuichi [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Bernard, Elodie [Aix-Marseille University, Marseille 13288 (France); Kirby, Nigel [SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168 (Australia); Kluth, Patrick [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Corr, Cormac [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia)

    2016-05-15

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  17. A Formative Evaluation of the Children, Youth, and Families at Risk Coaching Model

    Science.gov (United States)

    Olson, Jonathan R.; Smith, Burgess; Hawkey, Kyle R.; Perkins, Daniel F.; Borden, Lynne M.

    2016-01-01

    In this article, we describe the results of a formative evaluation of a coaching model designed to support recipients of funding through the Children, Youth, and Families at Risk (CYFAR) initiative. Results indicate that CYFAR coaches draw from a variety of types of coaching and that CYFAR principle investigators (PIs) are generally satisfied with…

  18. Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss.

    Directory of Open Access Journals (Sweden)

    Mathilde Doyard

    Full Text Available Osteoporosis may complicate iron overload diseases such as genetic hemochromatosis. However, molecular mechanisms involved in the iron-related osteoporosis remains poorly understood. Recent in vitro studies support a role of osteoblast impairment in iron-related osteoporosis. Our aim was to analyse the impact of excess iron in Hfe-/- mice on osteoblast activity and on bone microarchitecture. We studied the bone formation rate, a dynamic parameter reflecting osteoblast activity, and the bone phenotype of Hfe-/- male mice, a mouse model of human hemochromatosis, by using histomorphometry. Hfe-/- animals were sacrificed at 6 months and compared to controls. We found that bone contains excess iron associated with increased hepatic iron concentration in Hfe-/- mice. We have shown that animals with iron overload have decreased bone formation rate, suggesting a direct impact of iron excess on active osteoblasts number. For bone mass parameters, we showed that iron deposition was associated with bone loss by producing microarchitectural impairment with a decreased tendency in bone trabecular volume and trabecular number. A disorganization of trabecular network was found with marrow spaces increased, which was confirmed by enhanced trabecular separation and star volume of marrow spaces. These microarchitectural changes led to a loss of connectivity and complexity in the trabecular network, which was confirmed by decreased interconnectivity index and increased Minkowski's fractal dimension. Our results suggest for the first time in a genetic hemochromatosis mouse model, that iron overload decreases bone formation and leads to alterations in bone mass and microarchitecture. These observations support a negative effect of iron on osteoblast recruitment and/or function, which may contribute to iron-related osteoporosis.

  19. Fate of bone marrow stromal cells in a syngenic model of bone formation.

    Science.gov (United States)

    Boukhechba, Florian; Balaguer, Thierry; Bouvet-Gerbettaz, Sébastien; Michiels, Jean-François; Bouler, Jean-Michel; Carle, Georges F; Scimeca, Jean-Claude; Rochet, Nathalie

    2011-09-01

    Bone marrow stromal cells (BMSCs) have been demonstrated to induce bone formation when associated to osteoconductive biomaterials and implanted in vivo. Nevertheless, their role in bone reconstruction is not fully understood and rare studies have been conducted to follow their destiny after implantation in syngenic models. The aim of the present work was to use sensitive and quantitative methods to track donor and recipient cells after implantation of BMSCs in a syngenic model of ectopic bone formation. Using polymerase chain reaction (PCR) amplification of the Sex determining Region Y (Sry) gene and in situ hybridization of the Y chromosome in parallel to histological analysis, we have quantified within the implants the survival of the donor cells and the colonization by the recipient cells. The putative migration of the BMSCs in peripheral organs was also analyzed. We show here that grafted cells do not survive more than 3 weeks after implantation and might migrate in peripheral lymphoid organs. These cells are responsible for the attraction of host cells within the implants, leading to the centripetal colonization of the biomaterial by new bone.

  20. Ising-based model of opinion formation in a complex network of interpersonal interactions

    Science.gov (United States)

    Grabowski, A.; Kosiński, R. A.

    2006-03-01

    In our work the process of opinion formation in the human population, treated as a scale-free network, is modeled and investigated numerically. The individuals (nodes of the network) are characterized by their authorities, which influence the interpersonal interactions in the population. Hierarchical, two-level structures of interpersonal interactions and spatial localization of individuals are taken into account. The effect of the mass media, modeled as an external stimulation acting on the social network, on the process of opinion formation is investigated. It was found that in the time evolution of opinions of individuals critical phenomena occur. The first one is observed in the critical temperature of the system TC and is connected with the situation in the community, which may be described by such quantifiers as the economic status of people, unemployment or crime wave. Another critical phenomenon is connected with the influence of mass media on the population. As results from our computations, under certain circumstances the mass media can provoke critical rebuilding of opinions in the population.

  1. Reconsidering formative measurement.

    Science.gov (United States)

    Howell, Roy D; Breivik, Einar; Wilcox, James B

    2007-06-01

    The relationship between observable responses and the latent constructs they are purported to measure has received considerable attention recently, with particular focus on what has become known as formative measurement. This alternative to reflective measurement in the area of theory-testing research is examined in the context of the potential for interpretational confounding and a construct's ability to function as a point variable within a larger model. Although these issues have been addressed in the traditional reflective measurement context, the authors suggest that they are particularly relevant in evaluating formative measurement models. On the basis of this analysis, the authors conclude that formative measurement is not an equally attractive alternative to reflective measurement and that whenever possible, in developing new measures or choosing among alternative existing measures, researchers should opt for reflective measurement. In addition, the authors provide guidelines for researchers dealing with existing formative measures. Copyright 2007 APA, all rights reserved.

  2. The conceptualization and measurement of cognitive reserve using common proxy indicators: Testing some tenable reflective and formative models.

    Science.gov (United States)

    Ikanga, Jean; Hill, Elizabeth M; MacDonald, Douglas A

    2017-02-01

    The examination of cognitive reserve (CR) literature reveals a lack of consensus regarding conceptualization and pervasive problems with its measurement. This study aimed at examining the conceptual nature of CR through the analysis of reflective and formative models using eight proxies commonly employed in the CR literature. We hypothesized that all CR proxies would significantly contribute to a one-factor reflective model and that educational and occupational attainment would produce the strongest loadings on a single CR factor. The sample consisted of 149 participants (82 male/67 female), with 18.1 average years of education and ages of 45-99 years. Participants were assessed for eight proxies of CR (parent socioeconomic status, intellectual functioning, level of education, health literacy, occupational prestige, life leisure activities, physical activities, and spiritual and religious activities). Primary statistical analyses consisted of confirmatory factor analysis (CFA) to test reflective models and structural equation modeling (SEM) to evaluate multiple indicators multiple causes (MIMIC) models. CFA did not produce compelling support for a unitary CR construct when using all eight of our CR proxy variables in a reflective model but fairly cogent evidence for a one-factor model with four variable proxies. A second three-factor reflective model based upon an exploratory principal components analysis of the eight proxies was tested using CFA. Though all eight indicators significantly loaded on their assigned factors, evidence in support of overall model fit was mixed. Based upon the results involving the three-factor reflective model, two alternative formative models were developed and evaluated. While some support was obtained for both, the model in which the formative influences were specified as latent variables appeared to best account for the contributions of all eight proxies to the CR construct. While the findings provide partial support for our

  3. Model of formation of droplets during electric arc surfacing of functional coatings

    Science.gov (United States)

    Sarychev, Vladimir D.; Granovskii, Alexei Yu; Nevskii, Sergey A.; Gromov, Victor E.

    2016-01-01

    The mathematical model was developed for the initial stage of formation of an electrode metal droplet in the process of arc welding. Its essence lies in the fact that the presence of a temperature gradient in the boundary layer of the molten metal causes thermo-capillary instability, which leads to the formation of electrode metal droplets. A system of equations including Navier-Stokes equations, heat conduction and Maxwell's equations was solved as well as the boundary conditions for the system electrodes-plasma. Dispersion equation for thermo-capillary waves in the linear approximation for the plane layer was received and analyzed. The values of critical wavelengths, at which thermo-capillary instability appears in the nanometer wavelength range, were found. The parameters at which the mode of a fine-droplet transfer of the material takes place were theoretically defined.

  4. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  5. FORMATION CONSTANTS AND THERMODYNAMIC ...

    African Journals Online (AJOL)

    KEY WORDS: Metal complexes, Schiff base ligand, Formation constant, DFT calculation ... best values for the formation constants of the proposed equilibrium model by .... to its positive charge distribution and the ligand deformation geometry.

  6. A FORMATIVE ASSESSMENT MODEL OF CRITICAL THINKING IN MATHEMATICS LEARNING IN JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    R. Rosnawati

    2015-12-01

    Full Text Available This study aims to obtain a valid and reliable formative evaluation model of critical thinking. The method used in this research was the research and development by integrating Borg & Gall's model and  Plomp's development model. The ten steps Borg & Gall’s model were modified into five stages as the stages in the Plomp's model. The subjects in this study were 1,446 students of junior high schools in DIY, 14 mathematics teacher, and six experts. The content validity employed was expert judgment, the empirical validity and reliability used were loading factor, item analysis used PCM 1PL, and the relationship between disposition and critical thinking skill used was structural equation modeling (SEM. The developed formative evaluation model is the procedural model. There are five aspects of critical thinking skill: mathematic reasoning, interpretation, analysis, evaluation, and inference, which entirely composed of 42 items. The validity of the critical thinking skill instruments achieves a significance degree as indicated by the lowest and the highest loading factors of 0.38 and 0.74 subsequently, the reliability of every aspect in a good category. The average level of difficulty is 0.00 with the standard deviation of 0.45 which is in a good category. The peer assessment questionnaire of critical thinking disposition consists of seven aspects: truth-seeking, open-minded, analysis, systematic, self-confidence, inquisitiveness, and maturity with 23 items. The critical thinking disposition validity achieves the significance degree as indicated by the lowest and the high factor loading of 0.66 and 0.76 subsequently, and the reliability of every aspect in a good category. Based on the analysis of the structural equation model, the model fits the data.

  7. Connecting the Cosmic Star Formation Rate with the Local Star Formation

    Science.gov (United States)

    Gribel, Carolina; Miranda, Oswaldo D.; Williams Vilas-Boas, José

    2017-11-01

    We present a model that unifies the cosmic star formation rate (CSFR), obtained through the hierarchical structure formation scenario, with the (Galactic) local star formation rate (SFR). It is possible to use the SFR to generate a CSFR mapping through the density probability distribution functions commonly used to study the role of turbulence in the star-forming regions of the Galaxy. We obtain a consistent mapping from redshift z˜ 20 up to the present (z = 0). Our results show that the turbulence exhibits a dual character, providing high values for the star formation efficiency ( ˜ 0.32) in the redshift interval z˜ 3.5{--}20 and reducing its value to =0.021 at z = 0. The value of the Mach number ({{ M }}{crit}), from which rapidly decreases, is dependent on both the polytropic index (Γ) and the minimum density contrast of the gas. We also derive Larson’s first law associated with the velocity dispersion ( ) in the local star formation regions. Our model shows good agreement with Larson’s law in the ˜ 10{--}50 {pc} range, providing typical temperatures {T}0˜ 10{--}80 {{K}} for the gas associated with star formation. As a consequence, dark matter halos of great mass could contain a number of halos of much smaller mass, and be able to form structures similar to globular clusters. Thus, Larson’s law emerges as a result of the very formation of large-scale structures, which in turn would allow the formation of galactic systems, including our Galaxy.

  8. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Science.gov (United States)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  9. Avaliação em escala laboratorial da utilização do processo eletrolítico no tratamento de águas Laboratory scale assessment of an electrolytic process for water treatment

    Directory of Open Access Journals (Sweden)

    Marcelo Henrique Otenio

    2008-01-01

    Full Text Available Water treatment uses chlorine for disinfection causing formation of trihalomethanes. In this work, an electrolytic water pre-treatment was studied and applied to the water from a fountainhead. The action against microorganisms was evaluated using cast-iron and aluminum electrodes. Assays were made in laboratory using the electrolytic treatment. After 5 min of electrolysis the heterotrophic bacteria count was below 500 cfu/mL and complete elimination of total and fecal coliforms was observed. Using electrolytic treatment as a pretreatment of conventional tap water treatment is proposed.

  10. Structure formation in the Deser-Woodard nonlocal gravity model: a reappraisal

    Energy Technology Data Exchange (ETDEWEB)

    Nersisyan, Henrik; Cid, Adrian Fernandez; Amendola, Luca, E-mail: h.nersisyan@thphys.uni-heidelberg.de, E-mail: fernandez@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)

    2017-04-01

    In this work, we extend previous analyses of the structure formation in the f (□{sup −1} R ) model of nonlocal gravity proposed by Deser and Woodard (DW), which reproduces the background expansion of ΛCDM with no need of a cosmological constant nor of any dimensional constant beside Newton's one. A previous analysis based on redshift-space distortions (RSD) data concluded that the model was ruled out. In this work we revisit the issue and find that, when recast in a localized model, the DW model is not ruled out and actually gives a better fit to RSD data than ΛCDM. In fact, the DW model presents a suppressed growth of matter perturbations with respect to ΛCDM and a slightly lower value of σ{sub 8}, as favored by observations. We also produce analytical approximations of the two modified gravity functions, i.e. the anisotropic stress η and the relative change of Newton's constant Y , and of f σ{sub 8}( z ) as a function of redshift. Finally, we also show how much the fit depends on initial conditions when these are generalized with respect to a standard matter-dominated era.

  11. Structure formation in the Deser-Woodard nonlocal gravity model: a reappraisal

    International Nuclear Information System (INIS)

    Nersisyan, Henrik; Cid, Adrian Fernandez; Amendola, Luca

    2017-01-01

    In this work, we extend previous analyses of the structure formation in the f (□ −1 R ) model of nonlocal gravity proposed by Deser and Woodard (DW), which reproduces the background expansion of ΛCDM with no need of a cosmological constant nor of any dimensional constant beside Newton's one. A previous analysis based on redshift-space distortions (RSD) data concluded that the model was ruled out. In this work we revisit the issue and find that, when recast in a localized model, the DW model is not ruled out and actually gives a better fit to RSD data than ΛCDM. In fact, the DW model presents a suppressed growth of matter perturbations with respect to ΛCDM and a slightly lower value of σ 8 , as favored by observations. We also produce analytical approximations of the two modified gravity functions, i.e. the anisotropic stress η and the relative change of Newton's constant Y , and of f σ 8 ( z ) as a function of redshift. Finally, we also show how much the fit depends on initial conditions when these are generalized with respect to a standard matter-dominated era.

  12. MATHEMATICAL MODEL OF ICE FORMATION ON TEPLOOBMENNOGO SIDE OF THETHERMOELECTRIC DESALINATION PLANT

    Directory of Open Access Journals (Sweden)

    A. M. Gajiyev

    2016-01-01

    Full Text Available Abstract. The necessity of the use of technology and analytically summarizes the methods of desalination of seawater and brackish waters. Tasked to investigate the processes occurring in the desalination plant with the continuous process of freezing of ice on heat transfer surface with a film mode of fluid motion.To solve this problem the article deals with mathematical cal model of ice formation on heat transfer surfaces and thermo-electric distiller. The model allows us to estimate the rise time and the thickness of the ice under specified conditions of temperature and flow of water. It is shown that the use of thermoelectric converters allows the flexibility to adjust the mode of ice formation. Solved the problem of determining the maximum thickness of the ice at which freezing is possible film of water flowing through it at a predetermined temperature of the cooling plate and the cooling capacity of the thermoelectric battery.It is established that the performance of thermoelectric opreznitive of the system increases due to the increase in the number of cooled surfaces, and the use of the heat from the hot junction of the converters for melting of ice increases the energy efficiency of the system as a whole. 

  13. Local effect of zoledronic acid on new bone formation in posterolateral spinal fusion with demineralized bone matrix in a murine model.

    Science.gov (United States)

    Zwolak, Pawel; Farei-Campagna, Jan; Jentzsch, Thorsten; von Rechenberg, Brigitte; Werner, Clément M

    2018-01-01

    Posterolateral spinal fusion is a common orthopaedic surgery performed to treat degenerative and traumatic deformities of the spinal column. In posteriolateral spinal fusion, different osteoinductive demineralized bone matrix products have been previously investigated. We evaluated the effect of locally applied zoledronic acid in combination with commercially available demineralized bone matrix putty on new bone formation in posterolateral spinal fusion in a murine in vivo model. A posterolateral sacral spine fusion in murine model was used to evaluate the new bone formation. We used the sacral spine fusion model to model the clinical situation in which a bone graft or demineralized bone matrix is applied after dorsal instrumentation of the spine. In our study, group 1 received decortications only (n = 10), group 2 received decortication, and absorbable collagen sponge carrier, group 3 received decortication and absorbable collagen sponge carrier with zoledronic acid in dose 10 µg, group 4 received demineralized bone matrix putty (DBM putty) plus decortication (n = 10), and group 5 received DBM putty, decortication and locally applied zoledronic acid in dose 10 µg. Imaging was performed using MicroCT for new bone formation assessment. Also, murine spines were harvested for histopathological analysis 10 weeks after surgery. The surgery performed through midline posterior approach was reproducible. In group with decortication alone there was no new bone formation. Application of demineralized bone matrix putty alone produced new bone formation which bridged the S1-S4 laminae. Local application of zoledronic acid to demineralized bone matrix putty resulted in significant increase of new bone formation as compared to demineralized bone matrix putty group alone. A single local application of zoledronic acid with DBM putty during posterolateral fusion in sacral murine spine model increased significantly new bone formation in situ in our model. Therefore, our

  14. A model of jam formation in congested traffic

    Science.gov (United States)

    Bunzarova, N. Zh; Pesheva, N. C.; Priezzhev, V. B.; Brankov, J. G.

    2017-12-01

    We study a model of irreversible jam formation in congested vehicular traffic on an open segment of a single-lane road. The vehicles obey a stochastic discrete-time dynamics which is a limiting case of the generalized Totally Asymmetric Simple Exclusion Process. Its characteristic features are: (a) the existing clusters of jammed cars cannot break into parts; (b) when the leading vehicle of a cluster hops to the right, the whole cluster follows it deterministically, and (c) any two clusters of vehicles, occupying consecutive positions on the chain, may become nearest-neighbors and merge irreversibly into a single cluster. The above dynamics was used in a one-dimensional model of irreversible aggregation by Bunzarova and Pesheva [Phys. Rev. E 95, 052105 (2017)]. The model has three stationary non-equilibrium phases, depending on the probabilities of injection (α), ejection (β), and hopping (p) of particles: a many-particle one, MP, a completely jammed phase CF, and a mixed MP+CF phase. An exact expression for the stationary probability P(1) of a completely jammed configuration in the mixed MP+CF phase is obtained. The gap distribution between neighboring clusters of jammed cars at large lengths L of the road is studied. Three regimes of evolution of the width of a single gap are found: (i) growing gaps with length of the order O(L) when β > p; (ii) shrinking gaps with length of the order O(1) when β < p; and (iii) critical gaps at β = p, of the order O(L 1/2). These results are supported by extensive Monte Carlo calculations.

  15. Kinetic Monte Carlo simulation of three-dimensional shape evolution with void formation using Solid-by-Solid model: Application to via and trench filling

    International Nuclear Information System (INIS)

    Kaneko, Yutaka; Hiwatari, Yasuaki; Ohara, Katsuhiko; Asa, Fujio

    2013-01-01

    In this paper we present the Kinetic Monte Carlo simulation system for the simulation of three-dimensional shape evolution with void formation as a model for electrodeposition. The basic system is the Solid-by-Solid model which is an extension of the conventional Solid-on-Solid model for crystal growth to include void formation. The advantage of the Solid-by-Solid model is that complex three-dimensional shape evolution accompanying void formation (from point defects to macro voids) can be simulated without the difficulty of treating moving boundaries. This model has been extended to include the solution part in which the migration of ions is simulated by the coarse-grained random walk. A multi-scale method is employed to generate the concentration gradient in the diffusion layer. The extended model is applied to the simulation of via and trench fillings by copper electrodeposition. Three kinds of additives are included: suppressors, accelerators and chloride ions. The mechanism of void formation, effects of additives and their influence on the bottom-up filling are discussed within the framework of this model

  16. Modelling pollutant emissions in diesel engines, influence of biofuel on pollutant formation.

    Science.gov (United States)

    Petranović, Zvonimir; Bešenić, Tibor; Vujanović, Milan; Duić, Neven

    2017-12-01

    In order to reduce the harmful effect on the environment, European Union allowed using the biofuel blends as fuel for the internal combustion engines. Experimental studies have been carried on, dealing with the biodiesel influence on the emission concentrations, showing inconclusive results. In this paper numerical model for pollutant prediction in internal combustion engines is presented. It describes the processes leading towards the pollutant emissions, such as spray particles model, fuel disintegration and evaporation model, combustion and the chemical model for pollutant formation. Presented numerical model, implemented in proprietary software FIRE ® , is able to capture chemical phenomena and to predict pollutant emission concentration trends. Using the presented model, numerical simulations of the diesel fuelled internal combustion engine have been performed, with the results validated against the experimental data. Additionally, biodiesel has been used as fuel and the levels of pollutant emissions have been compared to the diesel case. Results have shown that the biodiesel blends release lower nitrogen oxide emissions than the engines powered with the regular diesel. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Explicit modelling of SOA formation from α-pinene photooxidation: sensitivity to vapour pressure estimation

    Directory of Open Access Journals (Sweden)

    R. Valorso

    2011-07-01

    Full Text Available The sensitivity of the formation of secondary organic aerosol (SOA to the estimated vapour pressures of the condensable oxidation products is explored. A highly detailed reaction scheme was generated for α-pinene photooxidation using the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A. Vapour pressures (Pvap were estimated with three commonly used structure activity relationships. The values of Pvap were compared for the set of secondary species generated by GECKO-A to describe α-pinene oxidation. Discrepancies in the predicted vapour pressures were found to increase with the number of functional groups borne by the species. For semi-volatile organic compounds (i.e. organic species of interest for SOA formation, differences in the predicted Pvap range between a factor of 5 to 200 on average. The simulated SOA concentrations were compared to SOA observations in the Caltech chamber during three experiments performed under a range of NOx conditions. While the model captures the qualitative features of SOA formation for the chamber experiments, SOA concentrations are systematically overestimated. For the conditions simulated, the modelled SOA speciation appears to be rather insensitive to the Pvap estimation method.

  18. First-Principles Modeling of Polaron Formation in TiO2 Polymorphs.

    Science.gov (United States)

    Elmaslmane, A R; Watkins, M B; McKenna, K P

    2018-06-21

    We present a computationally efficient and predictive methodology for modeling the formation and properties of electron and hole polarons in solids. Through a nonempirical and self-consistent optimization of the fraction of Hartree-Fock exchange (α) in a hybrid functional, we ensure the generalized Koopmans' condition is satisfied and self-interaction error is minimized. The approach is applied to model polaron formation in known stable and metastable phases of TiO 2 including anatase, rutile, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B). Electron polarons are predicted to form in rutile, TiO 2 (H), and TiO 2 (R) (with trapping energies ranging from -0.02 eV to -0.35 eV). In rutile the electron localizes on a single Ti ion, whereas in TiO 2 (H) and TiO 2 (R) the electron is distributed across two neighboring Ti sites. Hole polarons are predicted to form in anatase, brookite, TiO 2 (H), TiO 2 (R), and TiO 2 (B) (with trapping energies ranging from -0.16 eV to -0.52 eV). In anatase, brookite, and TiO 2 (B) holes localize on a single O ion, whereas in TiO 2 (H) and TiO 2 (R) holes can also be distributed across two O sites. We find that the optimized α has a degree of transferability across the phases, with α = 0.115 describing all phases well. We also note the approach yields accurate band gaps, with anatase, rutile, and brookite within six percent of experimental values. We conclude our study with a comparison of the alignment of polaron charge transition levels across the different phases. Since the approach we describe is only two to three times more expensive than a standard density functional theory calculation, it is ideally suited to model charge trapping at complex defects (such as surfaces and interfaces) in a range of materials relevant for technological applications but previously inaccessible to predictive modeling.

  19. Stringy models of modified gravity: space-time defects and structure formation

    International Nuclear Information System (INIS)

    Mavromatos, Nick E.; Sakellariadou, Mairi; Yusaf, Muhammad Furqaan

    2013-01-01

    Starting from microscopic models of space-time foam, based on brane universes propagating in bulk space-times populated by D0-brane defects (''D-particles''), we arrive at effective actions used by a low-energy observer on the brane world to describe his/her observations of the Universe. These actions include, apart from the metric tensor field, also scalar (dilaton) and vector fields, the latter describing the interactions of low-energy matter on the brane world with the recoiling point-like space-time defect (D-particle). The vector field is proportional to the recoil velocity of the D-particle and as such it satisfies a certain constraint. The vector breaks locally Lorentz invariance, which however is assumed to be conserved on average in a space-time foam situation, involving the interaction of matter with populations of D-particle defects. In this paper we clarify the role of fluctuations of the vector field on structure formation and galactic growth. In particular we demonstrate that, already at the end of the radiation era, the (constrained) vector field associated with the recoil of the defects provides the seeds for a growing mode in the evolution of the Universe. Such a growing mode survives during the matter dominated era, provided the variance of the D-particle recoil velocities on the brane is larger than a critical value. We note that in this model, as a result of specific properties of D-brane dynamics in the bulk, there is no issue of overclosing the brane Universe for large defect densities. Thus, in these models, the presence of defects may be associated with large-structure formation. Although our string inspired models do have (conventional, from a particle physics point of view) dark matter components, nevertheless it is interesting that the role of ''extra'' dark matter is also provided by the population of massive defects. This is consistent with the weakly interacting character of the D-particle defects, which predominantly interact only

  20. HI-Selected Galaxies in Hierarchical Models of Galaxy Formation and Evolution

    Science.gov (United States)

    Zoldan, Anna

    2017-07-01

    This poster presents the main results of a statistical study of HI-selected galaxies based on six different semi-analytic models, all run on the same cosmological N-body simulation. One of these models includes an explicit treatment for the partition of cold gas into atomic and molecular hydrogen. All models considered agree nicely with the measured HI mass function in the local Universe and with the measured scaling relations between HI and galaxy stellar mass. Most models also reproduce the observed 2-point correlation function for HI rich galaxies, with the exception of one model that predicts very little HI associated with galaxies in haloes above 10^12 Msun. We investigated the influence of satellite treatment on the final HI content and found that it introduces large uncertainties at low HI masses. We found that the assumption of instantaneous stripping of hot gas in satellites does not translate necessarily in lower HI masses. We demonstrate that the assumed stellar feedback, combined with star formation, also affect significantly the gas content of satellite galaxies. Finally, we also analyse the origin of the correlation between HI content of model galaxies and the spin of the parent haloes. Zoldan et al., 2016, MNRAS, 465, 2236

  1. Models for formation of macroheterogeneous structure in radiation-grafted polymers

    International Nuclear Information System (INIS)

    Babkin, I.Yu.; Burukhin, S.B.; Maksimov, A.F.

    1994-01-01

    Mathematical models, which describe the formation of grafted polymer layer with respect to variations in sorption and kinetic characteristics due to the changes in composition of the modified polymer and grafted polymer under variable boundary conditions were obtained. The influence of heat effect of polymerization reaction on concentration profiles was estimated. Taking into account the nonlinear diffusion kinetics, the conditions providing diffuse and step profiles of concentration of grafted polymer in polymer matrix were revealed. Step concentration profiles were shown to be associated with a nonlinear dependence of diffusion and kinetic parameters of polymerization on the composition of modified polymer. 22 refs.; 11 figs.; 2 tabs

  2. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba)

    Science.gov (United States)

    Domènech, Cristina; Galí, Salvador; Villanova-de-Benavent, Cristina; Soler, Josep M.; Proenza, Joaquín A.

    2017-10-01

    Oxide-type Ni-laterite deposits are characterized by a dominant limonite zone with goethite as the economically most important Ni ore mineral and a thin zone of hydrous Mg silicate-rich saprolite beneath the magnesium discontinuity. Fe, less soluble, is mainly retained forming goethite, while Ni is redeposited at greater depth in a Fe(III) and Ni-rich serpentine (serpentine II) or in goethite, where it adsorbs or substitutes for Fe in the mineral structure. Here, a 1D reactive transport model, using CrunchFlow, of Punta Gorda oxide-type Ni-laterite deposit (Moa Bay, Cuba) formation is presented. The model reproduces the formation of the different laterite horizons in the profile from an initial, partially serpentinized peridotite, in 106 years, validating the conceptual model of the formation of this kind of deposits in which a narrow saprolite horizon rich in Ni-bearing serpentine is formed above peridotite parent rock and a thick limonite horizon is formed over saprolite. Results also confirm that sorption of Ni onto goethite can explain the weight percent of Ni found in the Moa goethite. Sensitivity analyses accounting for the effect of key parameters (composition, dissolution rate, carbonate concentration, quartz precipitation) on the model results are also presented. It is found that aqueous carbonate concentration and quartz precipitation significantly affects the laterization process rate, while the effect of the composition of secondary serpentine or of mineral dissolution rates is minor. The results of this reactive transport modeling have proven useful to validate the conceptual models derived from field observations.

  3. Spatial Distributions of Metal Atoms During Carbon SWNTs Formation: Measurements and Modelling

    Science.gov (United States)

    Cau, M.; Dorval, N.; Attal-Tretout, B.; Cochon, J. L.; Loiseau, A.; Farhat, S.; Hinkov, I.; Scott, C. D.

    2004-01-01

    Experiments and modelling have been undertaken to clarify the role of metal catalysts during single-wall carbon nanotube formation. For instance, we wonder whether the metal catalyst is active as an atom, a cluster, a liquid or solid nanoparticle [1]. A reactor has been developed for synthesis by continuous CO2-laser vaporisation of a carbon-nickel-cobalt target in laminar helium flow. The laser induced fluorescence technique [2] is applied for local probing of gaseous Ni, Co and CZ species throughout the hot carbon flow of the target heated up to 3500 K. A rapid depletion of C2 in contrast to the spatial extent of metal atoms is observed in the plume (Fig. 1). This asserts that C2 condenses earlier than Ni and Co atoms.[3, 4]. The depletion is even faster when catalysts are present. It may indicate that an interaction between metal atoms and carbon dimers takes place in the gas as soon as they are expelled from the target surface. Two methods of modelling are used: a spatially I-D calculation developed originally for the arc process [5], and a zero-D time dependent calculation, solving the chemical kinetics along the streamlines [6]. The latter includes Ni cluster formation. The peak of C2 density is calculated close to the target surface where the temperature is the highest. In the hot region, C; is dominant. As the carbon products move away from the target and mix with the ambient helium, they recombine into larger clusters, as demonstrated by the peak of C5 density around 1 mm. The profile of Ni-atom density compares fairly well with the measured one (Fig. 2). The early increase is due to the drop of temperature, and the final decrease beyond 6 mm results from Ni cluster formation at the eutectic temperature (approx.1600 K).

  4. GALAXY FORMATION WITH SELF-CONSISTENTLY MODELED STARS AND MASSIVE BLACK HOLES. I. FEEDBACK-REGULATED STAR FORMATION AND BLACK HOLE GROWTH

    International Nuclear Information System (INIS)

    Kim, Ji-hoon; Abel, Tom; Wise, John H.; Alvarez, Marcelo A.

    2011-01-01

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10 11 M sun galactic halo and its 10 5 M sun embedded MBH at redshift 3 in a cosmological ΛCDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10 6 K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  5. Evolutionary-Hierarchical Bases of the Formation of Cluster Model of Innovation Economic Development

    Directory of Open Access Journals (Sweden)

    Yuliya Vladimirovna Dubrovskaya

    2016-10-01

    Full Text Available The functioning of a modern economic system is based on the interaction of objects of different hierarchical levels. Thus, the problem of the study of innovation processes taking into account the mutual influence of the activities of these economic actors becomes important. The paper dwells evolutionary basis for the formation of models of innovation development on the basis of micro and macroeconomic analysis. Most of the concepts recognized that despite a big number of diverse models, the coordination of the relations between economic agents is of crucial importance for the successful innovation development. According to the results of the evolutionary-hierarchical analysis, the authors reveal key phases of the development of forms of business cooperation, science and government in the domestic economy. It has become the starting point of the conception of the characteristics of the interaction in the cluster models of innovation development of the economy. Considerable expectancies on improvement of the national innovative system are connected with the development of cluster and network structures. The main objective of government authorities is the formation of mechanisms and institutions that will foster cooperation between members of the clusters. The article explains that the clusters cannot become the factors in the growth of the national economy, not being an effective tool for interaction between the actors of the regional innovative systems.

  6. TOWARD A DETERMINISTIC MODEL OF PLANETARY FORMATION. VII. ECCENTRICITY DISTRIBUTION OF GAS GIANTS

    International Nuclear Information System (INIS)

    Ida, S.; Lin, D. N. C.; Nagasawa, M.

    2013-01-01

    The ubiquity of planets and diversity of planetary systems reveal that planet formation encompasses many complex and competing processes. In this series of papers, we develop and upgrade a population synthesis model as a tool to identify the dominant physical effects and to calibrate the range of physical conditions. Recent planet searches have led to the discovery of many multiple-planet systems. Any theoretical models of their origins must take into account dynamical interactions between emerging protoplanets. Here, we introduce a prescription to approximate the close encounters between multiple planets. We apply this method to simulate the growth, migration, and dynamical interaction of planetary systems. Our models show that in relatively massive disks, several gas giants and rocky/icy planets emerge, migrate, and undergo dynamical instability. Secular perturbation between planets leads to orbital crossings, eccentricity excitation, and planetary ejection. In disks with modest masses, two or less gas giants form with multiple super-Earths. Orbital stability in these systems is generally maintained and they retain the kinematic structure after gas in their natal disks is depleted. These results reproduce the observed planetary mass-eccentricity and semimajor axis-eccentricity correlations. They also suggest that emerging gas giants can scatter residual cores to the outer disk regions. Subsequent in situ gas accretion onto these cores can lead to the formation of distant (∼> 30 AU) gas giants with nearly circular orbits

  7. Evaluation of maillard reaction variables and their effect on heterocyclic amine formation in chemical model systems.

    Science.gov (United States)

    Dennis, Cara; Karim, Faris; Smith, J Scott

    2015-02-01

    Heterocyclic amines (HCAs), highly mutagenic and potentially carcinogenic by-products, form during Maillard browning reactions, specifically in muscle-rich foods. Chemical model systems allow examination of in vitro formation of HCAs while eliminating complex matrices of meat. Limited research has evaluated the effects of Maillard reaction parameters on HCA formation. Therefore, 4 essential Maillard variables (precursors molar concentrations, water amount, sugar type, and sugar amounts) were evaluated to optimize a model system for the study of 4 HCAs: 2-amino-3-methylimidazo-[4,5-f]quinoline, 2-amino-3-methylimidazo[4,5-f]quinoxaline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, and 2-amino-3,4,8-trimethyl-imidazo[4,5-f]quinoxaline. Model systems were dissolved in diethylene glycol, heated at 175 °C for 40 min, and separated using reversed-phase liquid chromatography. To define the model system, precursor amounts (threonine and creatinine) were adjusted in molar increments (0.2/0.2, 0.4/0.4, 0.6/0.6, and 0.8/0.8 mmol) and water amounts by percentage (0%, 5%, 10%, and 15%). Sugars (lactose, glucose, galactose, and fructose) were evaluated in several molar amounts proportional to threonine and creatinine (quarter, half, equi, and double). The precursor levels and amounts of sugar were significantly different (P < 0.05) in regards to total HCA formation, with 0.6/0.6/1.2 mmol producing higher levels. Water concentration and sugar type also had a significant effect (P < 0.05), with 5% water and lactose producing higher total HCA amounts. A model system containing threonine (0.6 mmol), creatinine (0.6 mmol), and glucose (1.2 mmol), with 15% water was determined to be the optimal model system with glucose and 15% water being a better representation of meat systems. © 2015 Institute of Food Technologists®

  8. On a price formation free boundary model by Lasry and Lions

    KAUST Repository

    Caffarelli, Luis A.

    2011-06-01

    We discuss global existence and asymptotic behaviour of a price formation free boundary model introduced by Lasry and Lions in 2007. Our results are based on a construction which transforms the problem into the heat equation with specially prepared initial datum. The key point is that the free boundary present in the original problem becomes the zero level set of this solution. Using the properties of the heat operator we can show global existence, regularity and asymptotic results of the free boundary. 2011 Académie des sciences.

  9. On a price formation free boundary model by Lasry and Lions

    KAUST Repository

    Caffarelli, Luis A.; Markowich, Peter A.; Pietschmann, Jan-F.

    2011-01-01

    We discuss global existence and asymptotic behaviour of a price formation free boundary model introduced by Lasry and Lions in 2007. Our results are based on a construction which transforms the problem into the heat equation with specially prepared initial datum. The key point is that the free boundary present in the original problem becomes the zero level set of this solution. Using the properties of the heat operator we can show global existence, regularity and asymptotic results of the free boundary. 2011 Académie des sciences.

  10. Kinetics modeling of delta-ferrite formation and retainment during casting of supermartensitic stainless steel

    DEFF Research Database (Denmark)

    Nießen, Frank; Tiedje, Niels Skat; Hald, John

    2017-01-01

    The kinetics model for multi-component diffusion DICTRA was applied to analyze the formation and retainment of δ-ferrite during solidification and cooling of GX4-CrNiMo-16-5-1 cast supermartensitic stainless steel. The obtained results were compared with results from the Schaeffler diagram......, equilibrium calculations and the Scheil model in Thermo-Calc, and validated by using microscopy and energy dispersive X-ray spectroscopy for chemical analysis on a cast ingot. The kinetics model showed that micro-segregation from solidification homogenizes within 2–3 s (70 °C) of cooling, and that retained δ...

  11. North Atlantic deep water formation and AMOC in CMIP5 models

    Directory of Open Access Journals (Sweden)

    C. Heuzé

    2017-07-01

    Full Text Available Deep water formation in climate models is indicative of their ability to simulate future ocean circulation, carbon and heat uptake, and sea level rise. Present-day temperature, salinity, sea ice concentration and ocean transport in the North Atlantic subpolar gyre and Nordic Seas from 23 CMIP5 (Climate Model Intercomparison Project, phase 5 models are compared with observations to assess the biases, causes and consequences of North Atlantic deep convection in models. The majority of models convect too deep, over too large an area, too often and too far south. Deep convection occurs at the sea ice edge and is most realistic in models with accurate sea ice extent, mostly those using the CICE model. Half of the models convect in response to local cooling or salinification of the surface waters; only a third have a dynamic relationship between freshwater coming from the Arctic and deep convection. The models with the most intense deep convection have the warmest deep waters, due to a redistribution of heat through the water column. For the majority of models, the variability of the Atlantic Meridional Overturning Circulation (AMOC is explained by the volumes of deep water produced in the subpolar gyre and Nordic Seas up to 2 years before. In turn, models with the strongest AMOC have the largest heat export to the Arctic. Understanding the dynamical drivers of deep convection and AMOC in models is hence key to realistically forecasting Arctic oceanic warming and its consequences for the global ocean circulation, cryosphere and marine life.

  12. The influence of spectral nudging on typhoon formation in regional climate models

    Science.gov (United States)

    Feser, Frauke; Barcikowska, Monika

    2012-03-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  13. The influence of spectral nudging on typhoon formation in regional climate models

    International Nuclear Information System (INIS)

    Feser, Frauke; Barcikowska, Monika

    2012-01-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden–Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  14. Mechanistic Model for Ash Deposit Formation in Biomass Suspension Firing. Part 1: Model Verification by Use of Entrained Flow Reactor Experiments

    DEFF Research Database (Denmark)

    Hansen, Stine Broholm; Jensen, Peter Arendt; Jappe Frandsen, Flemming

    2017-01-01

    used to describe the deposit formation rates and deposit chemistry observed in a series of entrained flow reactor (EFR) experiments using straw and wood as fuels. It was found that model #1 was not able to describe the observed influence of temperature on the deposit buildup rates, predicting a much...... differ in the description of the sticking probability of impacted particles: model #1 employs a reference viscosity in the description of the sticking probability, while model #2 combines impaction of viscoelastic particles on a solid surface with particle capture by a viscous surface. Both models were...

  15. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  16. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  17. Planetesimals and Planet Formation

    Science.gov (United States)

    Chambers, John

    The first step in the standard model for planet formation is the growth of gravitationally bound bodies called ``planetesimals'' from dust grains in a protoplanetary disk. Currently, we do not know how planetesimals form, how long they take to form, or what their sizes and mechanical properties are. The goal of this proposal is to assess how these uncertainties affect subsequent stages of planetary growth and the kind of planetary systems that form. The work will address three particular questions: (i) Can the properties of small body populations in the modern Solar System constrain the properties of planetesimals? (ii) How do the properties of planetesimals affect the formation of giant planets? (iii) How does the presence of a water ice condensation front (the ``snow line'') in a disk affect planetesimal formation and the later stages of planetary growth? These questions will be examined with computer simulations of planet formation using new computer codes to be developed as part of the proposal. The first question will be addressed using a statistical model for planetesimal coagulation and fragmentation. This code will be merged with the proposer's Mercury N-body integrator code to model the dynamics of large protoplanets in order to address the second question. Finally, a self- consistent model of disk evolution and the radial transport of water ice and vapour will be added to examine the third question. A theoretical understanding of how planets form is one of the key goals of NASA and the Origins of Solar Systems programme. Researchers have carried out many studies designed to address this goal, but the questions of how planetesimals form and how their properties affect planet formation have received relatively little attention. The proposed work will help address these unsolved questions, and place other research in context by assessing the importance of planetesimal origins and properties for planet formation.

  18. Star formation in the multiverse

    International Nuclear Information System (INIS)

    Bousso, Raphael; Leichenauer, Stefan

    2009-01-01

    We develop a simple semianalytic model of the star formation rate as a function of time. We estimate the star formation rate for a wide range of values of the cosmological constant, spatial curvature, and primordial density contrast. Our model can predict such parameters in the multiverse, if the underlying theory landscape and the cosmological measure are known.

  19. On the internal model principle in formation control and in output synchronization of nonlinear systems

    NARCIS (Netherlands)

    Persis, Claudio De; Jayawardhana, Bayu

    2012-01-01

    The role of internal model principle is investigated in this paper in the context of collective synchronization and formation control problems. In the collective synchronization problem for nonlinear systems, we propose distributed control laws for passive systems which synchronize to the solution

  20. Uranium logging in earth formations

    International Nuclear Information System (INIS)

    Givens, W.W.

    1979-01-01

    A technique is provided for assaying the formations surrounding a borehole for uranium. A borehole logging tool cyclically irradiates the formations with neutrons and responds to neutron fluxes produced during the period of time that prompt neutrons are being produced by the neutron fission of uranium in the formations. A borehole calibration tool employs a steady-state (continuous output) neutron source, firstly, to produce a response to neutron fluxes in models having known concentrations of uranium and, secondly, to to produce a response to neutron fluxes in the formations surrounding the borehole. The neutron flux responses of the borehole calibration tool in both the model and the formations surrounding the borehole are utilized to correct the neutron flux response of the borehole logging tool for the effects of epithermal/thermal neutron moderation, scattering, and absorption within the borehole itself

  1. Classical Michaelis-Menten and system theory approach to modeling metabolite formation kinetics.

    Science.gov (United States)

    Popović, Jovan

    2004-01-01

    When single doses of drug are administered and kinetics are linear, techniques, which are based on the compartment approach and the linear system theory approach, in modeling the formation of the metabolite from the parent drug are proposed. Unlike the purpose-specific compartment approach, the methodical, conceptual and computational uniformity in modeling various linear biomedical systems is the dominant characteristic of the linear system approach technology. Saturation of the metabolic reaction results in nonlinear kinetics according to the Michaelis-Menten equation. The two compartment open model with Michaelis-Menten elimination kinetics is theorethicaly basic when single doses of drug are administered. To simulate data or to fit real data using this model, one must resort to numerical integration. A biomathematical model for multiple dosage regimen calculations of nonlinear metabolic systems in steady-state and a working example with phenytoin are presented. High correlation between phenytoin steady-state serum levels calculated from individual Km and Vmax values in the 15 adult epileptic outpatients and the observed levels at the third adjustment of phenytoin daily dose (r=0.961, p<0.01) were found.

  2. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    KAUST Repository

    Bisetti, Fabrizio

    2014-07-14

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. © 2014 The Author(s) Published by the Royal Society.

  3. Core Flooding Experiments and Reactive Transport Modeling of Seasonal Heat Storage in the Hot Deep Gassum Sandstone Formation

    DEFF Research Database (Denmark)

    Holmslykke, Hanne D.; Kjøller, Claus; Fabricius, Ida Lykke

    2017-01-01

    Seasonal storage of excess heat in hot deep aquifers is considered to optimize the usage of commonly available energy sources. The chemical effects of heating the Gassum Sandstone Formation to up to 150 degrees C is investigated by combining laboratory core flooding experiments with petrographic...... analysis and geochemical modeling. Synthetic formation water is injected into two sets of Gassum Formation samples at 25, 50 (reservoir temperature), 100, and 150 degrees C with a velocity of 0.05 and 0.1 PV/h, respectively. Results show a significant increase in the aqueous concentration of silicium...

  4. Thermodynamic modeling of the formation and stability of small tin clusters and their ions

    International Nuclear Information System (INIS)

    Kodlaa, A.; Suliman, A.

    2005-01-01

    Based on the results of previous quantum-chemical study of electronic structure properties for neutral and single positively and negatively charged thin clusters in the size range of N 2-17 atoms, and on the thermodynamic laws, we have studied the thermodynamic properties of tin clusters and their ions. The characteristic amounts (cohesive enthalpy, formation enthalpy, fragmentation enthalpy, entropy and free enthalpy) for the formation and stability of these clusters at different temperatures were calculated. From the results, which are presented and discussed in this work, one can observe the following: The tin clusters Sn N (N=2-17) and their cations Sn + N and anions Sn - N are formed in the gas phase, and this agrees with experimental results. The clusters Sn 3 and Sn 1 0 are the most stable clusters of all. Here we also, find a correspondence with the results of the experimental studies. Our results go beyond that since we have found Sn 1 5 is also specially stable. By this thermodynamic study we could evaluate approximately the formation and stability of small neutral, single positively and negatively charged tin clusters. It has also allowed us to study the effects of the temperature on the formation and stability of these clusters. The importance of such study is not only what mentioned above, but it is also the first thermodynamic study for modeling the formation and stability of small tin clusters. (author)

  5. Predictive modeling of multicellular structure formation by using Cellular Particle Dynamics simulations

    Science.gov (United States)

    McCune, Matthew; Shafiee, Ashkan; Forgacs, Gabor; Kosztin, Ioan

    2014-03-01

    Cellular Particle Dynamics (CPD) is an effective computational method for describing and predicting the time evolution of biomechanical relaxation processes of multicellular systems. A typical example is the fusion of spheroidal bioink particles during post bioprinting structure formation. In CPD cells are modeled as an ensemble of cellular particles (CPs) that interact via short-range contact interactions, characterized by an attractive (adhesive interaction) and a repulsive (excluded volume interaction) component. The time evolution of the spatial conformation of the multicellular system is determined by following the trajectories of all CPs through integration of their equations of motion. CPD was successfully applied to describe and predict the fusion of 3D tissue construct involving identical spherical aggregates. Here, we demonstrate that CPD can also predict tissue formation involving uneven spherical aggregates whose volumes decrease during the fusion process. Work supported by NSF [PHY-0957914]. Computer time provided by the University of Missouri Bioinformatics Consortium.

  6. Bioburden Increases Heterotopic Ossification Formation in an Established Rat Model.

    Science.gov (United States)

    Pavey, Gabriel J; Qureshi, Ammar T; Hope, Donald N; Pavlicek, Rebecca L; Potter, Benjamin K; Forsberg, Jonathan A; Davis, Thomas A

    2015-09-01

    Heterotopic ossification (HO) develops in a majority of combat-related amputations wherein early bacterial colonization has been considered a potential early risk factor. Our group has recently developed a small animal model of trauma-induced HO that incorporates many of the multifaceted injury patterns of combat trauma in the absence of bacterial contamination and subsequent wound colonization. We sought to determine if (1) the presence of bioburden (Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus [MRSA]) increases the magnitude of ectopic bone formation in traumatized muscle after amputation; and (2) what persistent effects bacterial contamination has on late microbial flora within the amputation site. Using a blast-related HO model, we exposed 48 rats to blast overpressure, femur fracture, crush injury, and subsequent immediate transfemoral amputation through the zone of injury. Control injured rats (n = 8) were inoculated beneath the myodesis with phosphate-buffered saline not containing bacteria (vehicle) and treatment rats were inoculated with 1 × 10(6) colony-forming units of A baumannii (n = 20) or MRSA (n = 20). All animals formed HO. Heterotopic ossification was determined by quantitative volumetric measurements of ectopic bone at 12-weeks postinjury using micro-CT and qualitative histomorphometry for assessment of new bone formation in the residual limb. Bone marrow and muscle tissue biopsies were collected from the residual limb at 12 weeks to quantitatively measure the bioburden load and to qualitatively determine the species-level identification of the bacterial flora. At 12 weeks, we observed a greater volume of HO in rats infected with MRSA (68.9 ± 8.6 mm(3); 95% confidence interval [CI], 50.52-85.55) when compared with A baumannii (20.9 ± 3.7 mm(3); 95% CI, 13.61-28.14; p infection but were positive for other strains of bacteria (1.33 × 10(2) ± 0.89 × 10(2); 95% CI, -0.42 × 10(2)-3.08 × 10(2) and 1.25 × 10(6) ± 0

  7. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation.

    Science.gov (United States)

    Barilla, Jiří; Lokajíček, Miloš; Pisaková, Hana; Simr, Pavel

    2013-03-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  8. Analytical model of chemical phase and formation of DSB in chromosomes by ionizing radiation

    International Nuclear Information System (INIS)

    Barilla, Jiři; Simr, Pavel; Lokajíček, Miloš; Pisaková, Hana

    2013-01-01

    Mathematical analytical model of the processes running in individual radical clusters during the chemical phase (under the presence of radiomodifiers) proposed by us earlier has been further developed and improved. It has been applied to the data presented by Blok and Loman characterizing the oxygen effect in SSB and DSB formation (in water solution and at low-LET radiation) also in the region of very small oxygen concentrations, which cannot be studied with the help of experiments done with living cells. In this new analysis the values of all reaction rates and diffusion parameters known from literature have been made use of. The great increase of SSB and DSB at zero oxygen concentration may follow from the fact that at small oxygen concentrations the oxygen absorbs other radicals while at higher concentrations the formation of oxygen radicals prevails. It explains the double oxygen effect found already earlier by Ewing. The model may be easily extended to include also the effects of other radiomodifiers present in medium during irradiation.

  9. Impact of biogenic emissions on ozone formation in the Mediterranean area - a BEMA modelling study

    International Nuclear Information System (INIS)

    Thunis, P.; Cuvelier, C.

    2000-01-01

    The aim of this modelling study is to understand and quantify the influence of biogenic volatile organic compound (BVOC) emissions on the formation of tropospheric ozone in the Burriana area (north of Valencia) on the east coast of Spain. The mesoscale modelling system used consists of the meteorology/transport module TVM and the chemical reaction mechanism RACM. The results of the model simulations are validated and compared with the data collected during the biogenic emissions in the mediterranean area (BEMA) field campaign that took place in June 1997. Anthropogenic and biogenic emission inventories have been constructed with an hourly resolution. Averaged (over the land area and over 24 h) emission fluxes for AVOC, anthropogenic NO x , BVOC and biogenic NO x are given by 16.0, 9.9, 6.2, and 0.7 kg km -2 day -1 , respectively. The impact of biogenic emissions is investigated on peak ozone values by performing simulations with and without biogenic emissions; while keeping anthropogenic emissions constant. The impact on ozone formation is also studied in combination with some anthropogenic emissions reduction strategies, i.e. when anthropogenic VOC emissions and/or NO x emissions are reduced. A factor separation technique is applied to isolate the impact due to biogenic emissions from the overall impact due to biogenic and anthropogenic emissions together. The results indicate that the maximum impact of biogenic emissions on ozone formation represents at the most 10 ppb, while maximum ozone values are of the order of 100 ppb. At different locations the maximum impact is reached at different times of the day depending on the arrival time of the sea breeze. It is also shown that this impact does not coincide in time with the maximum simulated ozone concentrations that are reached over the day. By performing different emission reduction scenarios, BVOC impacts are found to be sensitive mainly to NO x , and not to AVOC. Finally, it is shown that amongst the various

  10. Interoperability format translation and transformation between IFC architectural design file and simulation file formats

    Science.gov (United States)

    Chao, Tian-Jy; Kim, Younghun

    2015-01-06

    Automatically translating a building architecture file format (Industry Foundation Class) to a simulation file, in one aspect, may extract data and metadata used by a target simulation tool from a building architecture file. Interoperability data objects may be created and the extracted data is stored in the interoperability data objects. A model translation procedure may be prepared to identify a mapping from a Model View Definition to a translation and transformation function. The extracted data may be transformed using the data stored in the interoperability data objects, an input Model View Definition template, and the translation and transformation function to convert the extracted data to correct geometric values needed for a target simulation file format used by the target simulation tool. The simulation file in the target simulation file format may be generated.

  11. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(l-Lysine): Experimental Study and Modeling Approach

    Science.gov (United States)

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-01-01

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(l-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4. PMID:28629130

  12. Optimization of Polyplex Formation between DNA Oligonucleotide and Poly(ʟ-Lysine): Experimental Study and Modeling Approach.

    Science.gov (United States)

    Vasiliu, Tudor; Cojocaru, Corneliu; Rotaru, Alexandru; Pricope, Gabriela; Pinteala, Mariana; Clima, Lilia

    2017-06-17

    The polyplexes formed by nucleic acids and polycations have received a great attention owing to their potential application in gene therapy. In our study, we report experimental results and modeling outcomes regarding the optimization of polyplex formation between the double-stranded DNA (dsDNA) and poly(ʟ-Lysine) (PLL). The quantification of the binding efficiency during polyplex formation was performed by processing of the images captured from the gel electrophoresis assays. The design of experiments (DoE) and response surface methodology (RSM) were employed to investigate the coupling effect of key factors (pH and N/P ratio) affecting the binding efficiency. According to the experimental observations and response surface analysis, the N/P ratio showed a major influence on binding efficiency compared to pH. Model-based optimization calculations along with the experimental confirmation runs unveiled the maximal binding efficiency (99.4%) achieved at pH 5.4 and N/P ratio 125. To support the experimental data and reveal insights of molecular mechanism responsible for the polyplex formation between dsDNA and PLL, molecular dynamics simulations were performed at pH 5.4 and 7.4.

  13. Galaxy Formation with Self-Consistently Modeled Stars and Massive Black Holes. I: Feedback-Regulated Star Formation and Black Hole Growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji-hoon; Wise, John H.; /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Princeton U., Astrophys. Sci. Dept.; Alvarez, Marcelo A.; /Canadian Inst. Theor. Astrophys.; Abel, Tom; /KIPAC, Menlo Park /Stanford U., Phys. Dept.

    2011-11-04

    There is mounting evidence for the coevolution of galaxies and their embedded massive black holes (MBHs) in a hierarchical structure formation paradigm. To tackle the nonlinear processes of galaxy-MBH interaction, we describe a self-consistent numerical framework which incorporates both galaxies and MBHs. The high-resolution adaptive mesh refinement (AMR) code Enzo is modified to model the formation and feedback of molecular clouds at their characteristic scale of 15.2 pc and the accretion of gas onto an MBH. Two major channels of MBH feedback, radiative feedback (X-ray photons followed through full three-dimensional adaptive ray tracing) and mechanical feedback (bipolar jets resolved in high-resolution AMR), are employed. We investigate the coevolution of a 9.2 x 10{sup 11} M {circle_dot} galactic halo and its 10{sup 5} {circle_dot} M embedded MBH at redshift 3 in a cosmological CDM simulation. The MBH feedback heats the surrounding interstellar medium (ISM) up to 10{sup 6} K through photoionization and Compton heating and locally suppresses star formation in the galactic inner core. The feedback considerably changes the stellar distribution there. This new channel of feedback from a slowly growing MBH is particularly interesting because it is only locally dominant and does not require the heating of gas globally on the disk. The MBH also self-regulates its growth by keeping the surrounding ISM hot for an extended period of time.

  14. Food-grade titanium dioxide exposure exacerbates tumor formation in colitis associated cancer model.

    Science.gov (United States)

    Urrutia-Ortega, Ismael M; Garduño-Balderas, Luis G; Delgado-Buenrostro, Norma L; Freyre-Fonseca, Verónica; Flores-Flores, José O; González-Robles, Arturo; Pedraza-Chaverri, José; Hernández-Pando, Rogelio; Rodríguez-Sosa, Miriam; León-Cabrera, Sonia; Terrazas, Luis I; van Loveren, Henk; Chirino, Yolanda I

    2016-07-01

    Colorectal cancer is the fourth worldwide cause of death and even if some dietary habits are consider risk factors, the contribution of food additives including foodgrade titanium dioxide (TiO2), designated as E171, has been poorly investigated. We hypothesized that oral E171 intake could have impact on the enhancement of colorectal tumor formation and we aimed to investigate if E171 administration could enhance tumor formation in a colitis associated cancer (CAC) model. BALB/c male mice were grouped as follows: a) control, b) E171, c) CAC and d) CAC + E171 group (n = 6). E171 used in this study formed agglomerates of 300 nm in water. E171 intragastric administration (5 mg/kg body weight/5 days/10 weeks) was unable to induce tumor formation but dysplastic alterations were observed in the distal colon but enhanced the tumor formation in distal colon (CAC + E171 group) measured by tumor progression markers. Some E171 particles were internalized in colonic cells of the E171 and CAC + E171 groups and both groups showed a decrease in goblet cells in the distal colon. However the CAC + E171 group showed a higher decrease of these cells that act as protection barrier in colon. These results suggest that E171 could worsen pre-existent intestinal diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Mackie, D.; Robson, J.D.; Withers, P.J. [School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Turski, M. [Magnesium Elektron UK, Rake Lane, Manchester, M27 8BF (United Kingdom)

    2015-06-15

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al{sub 8}Mn{sub 5} in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets.

  16. Characterisation and modelling of defect formation in direct-chill cast AZ80 alloy

    International Nuclear Information System (INIS)

    Mackie, D.; Robson, J.D.; Withers, P.J.; Turski, M.

    2015-01-01

    Wrought magnesium alloys for demanding structural applications require high quality defect free cast feedstock. The aim of this study was to first identify and characterise typical defects in direct chill cast magnesium–aluminium–zinc (AZ) alloy billet and then use modelling to understand the origins of these defects so they can be prevented. Defects were first located using ultrasonic inspection and were then characterised using X-ray computed tomography (XCT) and serial sectioning, establishing the presence of oxide films and intermetallic particles Al 8 Mn 5 in all defects. A model was developed to predict the flow patterns and growth kinetics of the intermetallic phases during casting, which influence the formation of defects. Simulation of the growth of the intermetallic particles demonstrated that precipitation from the liquid occurs in the mould. The combination of the entrained oxide films and intermetallic particles recirculates in the liquid metal and continues to grow, until large enough to settle, which is predicted to occur at the centre of the mould where the flow is the slowest. Based on these predictions, strategies to reduce the susceptibility to defect formation are suggested. - Highlights: • Casting defects in magnesium direct chill casting have been imaged and characterised in 3-dimensions. • The occurrences of co-located clusters of particles and oxide films have been characterised and explained. • A coupled model has been developed to help interpret the observed trend for defects located towards the centre of billets

  17. Formation-evolution model of uranium-productive basin and its recognition criteria

    Energy Technology Data Exchange (ETDEWEB)

    Zuyi, Chen; Ziying, Li [Beijing Research Inst. of Uranium Geology, Beijing (China); Weixun, Zhou; Taiyang, Guan [East China Inst. of Technology, Fuzhou (China)

    2004-11-15

    Based on geologic-tectonic setting and dynamic evolution of important U-productive basins both at home and abroad, authors distinguish six type of U-productive basins, and nominate each type by typical representative of this type, namely Chu-Sarysu and Syr-Darya type, Central Kyzylkum type, Zaural and West-Siberia type, Zabaikal type, Bohemia type, and South Texas type. The formation-evolution model of each type of U-productive basin has been established and recognition criteria have been proposed. Finially, the difference between each type U-productive basin is discussed and some assumption on prospecting for U-productive basins is proposed. (authors)

  18. Formation-evolution model of uranium-productive basin and its recognition criteria

    International Nuclear Information System (INIS)

    Chen Zuyi; Li Ziying; Zhou Weixun; Guan Taiyang

    2004-11-01

    Based on geologic-tectonic setting and dynamic evolution of important U-productive basins both at home and abroad, authors distinguish six type of U-productive basins, and nominate each type by typical representative of this type, namely Chu-Sarysu and Syr-Darya type, Central Kyzylkum type, Zaural and West-Siberia type, Zabaikal type, Bohemia type, and South Texas type. The formation-evolution model of each type of U-productive basin has been established and recognition criteria have been proposed. Finially, the difference between each type U-productive basin is discussed and some assumption on prospecting for U-productive basins is proposed. (authors)

  19. Simbol-X Formation Flight and Image Reconstruction

    Science.gov (United States)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  20. Formation of intermediate shocks in both two-fluid and hybrid models

    International Nuclear Information System (INIS)

    Wu, C.C.; Hada, T.

    1991-01-01

    Intermediate shocks are shocks with shock frame fluid velocities greater than the Alfven speed ahead and less than the Alfven speed behind, or equivalently, across intermediate shocks the sign of the transverse component of the magnetic field changes. These shocks had been considered extraneous, or nonevolutionary, or unstable, and they had been thought not to correspond to physical reality [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowitz and Petschek, 1966]. However, it has been shown that intermediate shocks can be formed from continuous waves according to dissipative magnetohydrodynamics (MHD) [Wu, 1987, 1988a, b, 1990]. Thus according to the formation argument which requires that physical shocks be formed by the wave steepening process, the intermediate shocks should be considered physical. Here, intermediate shocks are studied in a two-fluid model that includes finite ion inertia dispersion and in a hybrid model in which the full ion dynamics is retained while the electrons are treated as a massless fluid. The authors show that in both models intermediate shocks can be formed through wave steepening, meaning that they are stable and possess shock structures

  1. Formation enthalpies of Al–Fe–Zr–Nd system calculated by using geometric and Miedema's models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei [Department of Mathematics and Information Science, Guangxi College of Education, Nanning 530023 (China); Wang, Rongcheng; Tao, Xiaoma; Guo, Hui; Chen, Hongmei [College of Physical Science and Technology, Guangxi University, Nanning 530004 (China); Ouyang, Yifang, E-mail: ouyangyf@gxu.edu.cn [College of Physical Science and Technology, Guangxi University, Nanning 530004 (China)

    2015-04-15

    Formation enthalpy is important for the phase stability and amorphous forming ability of alloys. The formation enthalpies of Fe{sub 17}RE{sub 2} (RE=Ce, Pr, Nd, Gd and Er) obtained by Miedema's theory are in good agreement with those of the experiments. The dependence of formation enthalpy on concentration of Al for intermetallic (Al{sub x}Fe{sub 1−x}){sub 17}Nd{sub 2} have been calculated by Miedema's theory and the geometric model. The solid solubility of Al in (Al{sub x}Fe{sub 1−x}){sub 17}Nd{sub 2} is coincident with the concentration dependence of formation enthalpy. The mixing enthalpies of liquid alloys and formation enthalpies of alloys for Al–Fe–Zr–Nd system have been predicted. The calculated mixing enthalpy indicates that the adding of Fe or Nd decreases monotonously the magnitude of enthalpy. The formation enthalpies of Al–Fe–Zr–Nd system indicate that the shape of the enthalpy contour map changes when the content of Al is less than 50.0 at% and then it remains unchanged except the decrease of magnitude. The formation enthalpy of Al–Fe–Zr–Nd increases with the increase of Fe and/or Nd content. The negative formation enthalpy indicates that Al–Fe–Zr–Nd system has higher amorphous forming ability and wide amorphous forming range. The certain contents of Zr and/or Al are beneficial for the formation of Al–Fe–Zr–Nd intermetallics.

  2. Formation and reduction of carcinogenic furan in various model systems containing food additives.

    Science.gov (United States)

    Kim, Jin-Sil; Her, Jae-Young; Lee, Kwang-Geun

    2015-12-15

    The aim of this study was to analyse and reduce furan in various model systems. Furan model systems consisting of monosaccharides (0.5M glucose and ribose), amino acids (0.5M alanine and serine) and/or 1.0M ascorbic acid were heated at 121°C for 25 min. The effects of food additives (each 0.1M) such as metal ions (iron sulphate, magnesium sulphate, zinc sulphate and calcium sulphate), antioxidants (BHT and BHA), and sodium sulphite on the formation of furan were measured. The level of furan formed in the model systems was 6.8-527.3 ng/ml. The level of furan in the model systems of glucose/serine and glucose/alanine increased 7-674% when food additives were added. In contrast, the level of furan decreased by 18-51% in the Maillard reaction model systems that included ribose and alanine/serine with food additives except zinc sulphate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Hybrid equation/agent-based model of ischemia-induced hyperemia and pressure ulcer formation predicts greater propensity to ulcerate in subjects with spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Alexey Solovyev

    Full Text Available Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI. People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation.

  4. Habit formation, work ethics, and technological progress

    OpenAIRE

    Faria, João Ricardo; León-Ledesma, Miguel A.

    2002-01-01

    Work ethics affects labor supply. This idea is modeled assuming that work is habit forming. This paper introduces working habits in a neoclassical growth model and compares its outcomes with a model without habit formation. In addition, it analyzes the impact of different forms of technical progress. The findings are that i) labor supply in the habit formation case is higher than in the neoclassical case; ii) unlike in the neoclassical case, labor supply in the presence of habit formation wil...

  5. Probabilistic Modeling of the Renal Stone Formation Module

    Science.gov (United States)

    Best, Lauren M.; Myers, Jerry G.; Goodenow, Debra A.; McRae, Michael P.; Jackson, Travis C.

    2013-01-01

    The Integrated Medical Model (IMM) is a probabilistic tool, used in mission planning decision making and medical systems risk assessments. The IMM project maintains a database of over 80 medical conditions that could occur during a spaceflight, documenting an incidence rate and end case scenarios for each. In some cases, where observational data are insufficient to adequately define the inflight medical risk, the IMM utilizes external probabilistic modules to model and estimate the event likelihoods. One such medical event of interest is an unpassed renal stone. Due to a high salt diet and high concentrations of calcium in the blood (due to bone depletion caused by unloading in the microgravity environment) astronauts are at a considerable elevated risk for developing renal calculi (nephrolithiasis) while in space. Lack of observed incidences of nephrolithiasis has led HRP to initiate the development of the Renal Stone Formation Module (RSFM) to create a probabilistic simulator capable of estimating the likelihood of symptomatic renal stone presentation in astronauts on exploration missions. The model consists of two major parts. The first is the probabilistic component, which utilizes probability distributions to assess the range of urine electrolyte parameters and a multivariate regression to transform estimated crystal density and size distributions to the likelihood of the presentation of nephrolithiasis symptoms. The second is a deterministic physical and chemical model of renal stone growth in the kidney developed by Kassemi et al. The probabilistic component of the renal stone model couples the input probability distributions describing the urine chemistry, astronaut physiology, and system parameters with the physical and chemical outputs and inputs to the deterministic stone growth model. These two parts of the model are necessary to capture the uncertainty in the likelihood estimate. The model will be driven by Monte Carlo simulations, continuously

  6. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models.

    Science.gov (United States)

    Rodgers, K; Cohn, D; Hotovely, A; Pines, E; Diamond, M P; diZerega, G

    1998-03-01

    To assess the efficacy of bioresorbable films consisting of various polyethylene glycol 6000 and polylactic acid block copolymers on the formation and reformation of adhesions in rabbit models of adhesion development between the sidewall to the adjacent cecum and bowel. The composition of the different polymers was expressed by the number of monomeric units in the block, namely, ethylene oxide (EO) and lactic acid (LA), respectively. Studies of the efficacy of EO/LA films were conducted in rabbit sidewall adhesion formation studies in the presence and absence of blood and in rabbit adhesion reformation studies. REPEL (Life Medical Sciences, Edison, NJ), a film of EO/LA ratio 3.0 manufactured under commercial conditions, was also tested in these animal models. University-based laboratory. New Zealand white rabbits. Placement of films of various EO/LA ratios at the site of injury to the parietal peritoneum. Adhesion formation and reformation. Films of various EO/LA ratios, Seprafilm (Genzyme, Cambridge, MA) and Interceed (Johnson and Johnson Medical, Arlington, TX) placed over an area of excised sidewall at the time of initial injury were highly efficacious in the prevention of adhesion formation. A film of EO/LA ratio 3.7, in contrast with Interceed, was also shown to maintain maximal efficacy in the reduction of adhesion formation in the presence of blood. Further, a film of EO/LA ratio 3.0 produced under commercial conditions, REPEL, was highly efficacious in reducing adhesion development in the rabbit models of adhesion and reformation. These studies suggest that bioresorbable EO/LA films reduced adhesion development in rabbit models of adhesion formation and reformation.

  7. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    Science.gov (United States)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before

  8. From good intentions to healthy habits: towards integrated computational models of goal striving and habit formation.

    Science.gov (United States)

    Pirolli, Peter

    2016-08-01

    Computational models were developed in the ACT-R neurocognitive architecture to address some aspects of the dynamics of behavior change. The simulations aim to address the day-to-day goal achievement data available from mobile health systems. The models refine current psychological theories of self-efficacy, intended effort, and habit formation, and provide an account for the mechanisms by which goal personalization, implementation intentions, and remindings work.

  9. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  10. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Abdelgadir, Ahmed

    2015-03-30

    A set of coflow diffusion flames are simulated to study the formation, growth, and oxidation of soot in flames of diluted hydrocarbon fuels, with focus on the effects of pressure. Firstly, we assess the ability of a high performance CFD solver, coupled with detailed transport and kinetic models, to reproduce experimental measurements of a series of ethylene-air coflow flames. Detailed finite rate chemistry describing the formation of Polycyclic Aromatic Hydro-carbons is used. Soot is modeled with a moment method and the resulting moment transport equations are solved with a Lagrangian numerical scheme. Numerical and experimental results are compared for various pressures. Finally, a sensitivity study is performed assessing the effect of the boundary conditions and kinetic mechanisms on the flame structure and stabilization properties.

  11. A numerical model for aggregations formation and magnetic driving of spherical particles based on OpenFOAM®.

    Science.gov (United States)

    Karvelas, E G; Lampropoulos, N K; Sarris, I E

    2017-04-01

    This work presents a numerical model for the formation of particle aggregations under the influence of a permanent constant magnetic field and their driving process under a gradient magnetic field, suitably created by a Magnetic Resonance Imaging (MRI) device. The model is developed in the OpenFOAM platform and it is successfully compared to the existing experimental and numerical results in terms of aggregates size and their motion in water solutions. Furthermore, several series of simulations are performed for two common types of particles of different diameter in order to verify their aggregation and flow behaviour, under various constant and gradient magnetic fields in the usual MRI working range. Moreover, the numerical model is used to measure the mean length of aggregations, the total time needed to form and their mean velocity under different permanent and gradient magnetic fields. The present model is found to predict successfully the size, velocity and distribution of aggregates. In addition, our simulations showed that the mean length of aggregations is proportional to the permanent magnetic field magnitude and particle diameter according to the relation : l¯ a =7.5B 0 d i 3/2 . The mean velocity of the aggregations is proportional to the magnetic gradient, according to : u¯ a =6.63G˜B 0 and seems to reach a steady condition after a certain period of time. The mean time needed for particles to aggregate is proportional to permanent magnetic field magnitude, scaled by the relationship : t¯ a ∝7B 0 . A numerical model to predict the motion of magnetic particles for medical application is developed. This model is found suitable to predict the formation of aggregations and their motion under the influence of permanent and gradient magnetic fields, respectively, that are produced by an MRI device. The magnitude of the external constant magnetic field is the most important parameter for the aggregations formation and their driving. Copyright © 2017

  12. Interplay between social debate and propaganda in an opinion formation model

    Science.gov (United States)

    Gimenez, M. C.; Revelli, J. A.; Lama, M. S. de la; Lopez, J. M.; Wio, H. S.

    2013-01-01

    We introduce a simple model of opinion dynamics in which a two-state agent modified Sznajd model evolves due to the simultaneous action of stochastic driving and a periodic signal. The stochastic effect mimics a social temperature, so the agents may adopt decisions in support for or against some opinion or position, according to a modified Sznajd rule with a varying probability. The external force represents a simplified picture by which society feels the influence of the external effects of propaganda. By means of Monte Carlo simulations we have shown the dynamical interplay between the social condition or mood and the external influence, finding a stochastic resonance-like phenomenon when we depict the noise-to-signal ratio as a function of the social temperature. In addition, we have also studied the effects of the system size and the external signal strength on the opinion formation dynamics.

  13. Models of the plasma corona formation and stratification of exploding micro-wires

    International Nuclear Information System (INIS)

    Volkov, N.B.; Sarkisov, G.S.; Struve, K.W.; McDaniel, D.H.

    2005-01-01

    There are proposed the models pf plasma corona formation and stratification of a gas-plasma core of exploding micro-wire. The opportunity of use for the description of physical processes in a formed plasma corona of an electronic magnetohydrodynamics is generalized in view of change of particle number as a result of evaporation, ionization and a leaving of electrons on a wire surface. Necessity of the account of influence of a hot plasma corona on stratification of a gas-plasma core was grounded [ru

  14. Kinetic modeling of sporulation and product formation in stationary phase by Bacillus coagulans RK-02 vis-à-vis other Bacilli.

    Science.gov (United States)

    Das, Subhasish; Sen, Ramkrishna

    2011-10-01

    A logistic kinetic model was derived and validated to characterize the dynamics of a sporogenous bacterium in stationary phase with respect to sporulation and product formation. The kinetic constants as determined using this model are particularly important for describing intrinsic properties of a sporogenous bacterial culture in stationary phase. Non-linear curve fitting of the experimental data into the mathematical model showed very good correlation with the predicted values for sporulation and lipase production by Bacillus coagulans RK-02 culture in minimal media. Model fitting of literature data of sporulation and product (protease and amylase) formation in the stationary phase by some other Bacilli and comparison of the results of model fitting with those of Bacillus coagulans helped validate the significance and robustness of the developed kinetic model. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. COMBINE archive and OMEX format: one file to share all information to reproduce a modeling project.

    Science.gov (United States)

    Bergmann, Frank T; Adams, Richard; Moodie, Stuart; Cooper, Jonathan; Glont, Mihai; Golebiewski, Martin; Hucka, Michael; Laibe, Camille; Miller, Andrew K; Nickerson, David P; Olivier, Brett G; Rodriguez, Nicolas; Sauro, Herbert M; Scharm, Martin; Soiland-Reyes, Stian; Waltemath, Dagmar; Yvon, Florent; Le Novère, Nicolas

    2014-12-14

    With the ever increasing use of computational models in the biosciences, the need to share models and reproduce the results of published studies efficiently and easily is becoming more important. To this end, various standards have been proposed that can be used to describe models, simulations, data or other essential information in a consistent fashion. These constitute various separate components required to reproduce a given published scientific result. We describe the Open Modeling EXchange format (OMEX). Together with the use of other standard formats from the Computational Modeling in Biology Network (COMBINE), OMEX is the basis of the COMBINE Archive, a single file that supports the exchange of all the information necessary for a modeling and simulation experiment in biology. An OMEX file is a ZIP container that includes a manifest file, listing the content of the archive, an optional metadata file adding information about the archive and its content, and the files describing the model. The content of a COMBINE Archive consists of files encoded in COMBINE standards whenever possible, but may include additional files defined by an Internet Media Type. Several tools that support the COMBINE Archive are available, either as independent libraries or embedded in modeling software. The COMBINE Archive facilitates the reproduction of modeling and simulation experiments in biology by embedding all the relevant information in one file. Having all the information stored and exchanged at once also helps in building activity logs and audit trails. We anticipate that the COMBINE Archive will become a significant help for modellers, as the domain moves to larger, more complex experiments such as multi-scale models of organs, digital organisms, and bioengineering.

  16. A grid of one-dimensional low-mass star formation collapse models

    Science.gov (United States)

    Vaytet, N.; Haugbølle, T.

    2017-02-01

    Context. Numerical simulations of star formation are becoming ever more sophisticated, incorporating new physical processes in increasingly realistic set-ups. These models are being compared to the latest observations through state-of-the-art synthetic renderings that trace the different chemical species present in the protostellar systems. The chemical evolution of the interstellar and protostellar matter is very topical, with more and more chemical databases and reaction solvers available online to the community. Aims: The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modelling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. Methods: A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert-like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 M⊙, temperatures of 5-30 K, and radii 3000 ≤ R0 ≤ 30 000 AU. Results: A spread due to differing initial conditions and optical depths, was found in the thermal evolutionary tracks of the runs. Within less than an order of magnitude, all first and second Larson cores had masses and radii essentially independent of the initial conditions. Radial profiles of the gas density, velocity, and temperature were found to vary much more outside of the first core than inside. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years before the onset of

  17. N-nitrosodimethylamine (NDMA) formation from the ozonation of model compounds.

    Science.gov (United States)

    Marti, Erica J; Pisarenko, Aleksey N; Peller, Julie R; Dickenson, Eric R V

    2015-04-01

    Nitrosamines are a class of toxic disinfection byproducts commonly associated with chloramination, of which several were included on the most recent U.S. EPA Contaminant Candidate List. Nitrosamine formation may be a significant barrier to ozonation in water reuse applications, particularly for direct or indirect potable reuse, since recent studies show direct formation during ozonation of natural water and treated wastewaters. Only a few studies have identified precursors which react with ozone to form N-nitrosodimethylamine (NDMA). In this study, several precursor compound solutions, prepared in ultrapure water and treated wastewater, were subjected to a 10 M excess of ozone. In parallel experiments, the precursor solutions in ultrapure water were exposed to gamma radiation to determine NDMA formation as a byproduct of reactions of precursor compounds with hydroxyl radicals. The results show six new NDMA precursor compounds that have not been previously reported in the literature, including compounds with hydrazone and carbamate moieties. Molar yields in deionized water were 61-78% for 3 precursors, 12-23% for 5 precursors and NDMA formation for the other precursors. NDMA formation due to chloramination was minimal compared to formation due to ozonation, suggesting distinct groups of precursor compounds for these two oxidants. Hydroxyl radical reactions with the precursors will produce NDMA, but formation is much greater in the presence of molecular ozone. Also, hydroxyl radical scavenging during ozonation leads to increased NDMA formation. Molar conversion yields were higher for several precursors in wastewater as compared to deionized water, which could be due to catalyzed reactions with constituents found in wastewater or hydroxyl radical scavenging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Observsational Planet Formation

    Science.gov (United States)

    Dong, Ruobing; Zhu, Zhaohuan; Fung, Jeffrey

    2017-06-01

    Planets form in gaseous protoplanetary disks surrounding newborn stars. As such, the most direct way to learn how they form from observations, is to directly watch them forming in disks. In the past, this was very difficult due to a lack of observational capabilities; as such, planet formation was largely a subject of pure theoretical astrophysics. Now, thanks to a fleet of new instruments with unprecedented resolving power that have come online recently, we have just started to unveil features in resolve images of protoplanetary disks, such as gaps and spiral arms, that are most likely associated with embedded (unseen) planets. By comparing observations with theoretical models of planet-disk interactions, the masses and orbits of these still forming planets may be constrained. Such planets may help us to directly test various planet formation models. This marks the onset of a new field — observational planet formation. I will introduce the current status of this field.

  19. HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Meidt, Sharon E. [Max-Planck-Institut für Astronomie/Königstuhl 17 D-69117 Heidelberg (Germany)

    2016-02-10

    In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itself inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.

  20. The Role of Trust in Costly Network Formation

    NARCIS (Netherlands)

    Gilles, R.P.; Sarangi, S.

    2003-01-01

    We consider game theoretic models of social network formation.In this paper we limit our investigation to game theoretic models of network formation that are based on individual actions only.Our approach is based on three simple and realistic principles: (1) Link formation is a binary process of