WorldWideScience

Sample records for modeling tools based

  1. Agent Based Modeling as an Educational Tool

    Science.gov (United States)

    Fuller, J. H.; Johnson, R.; Castillo, V.

    2012-12-01

    Motivation is a key element in high school education. One way to improve motivation and provide content, while helping address critical thinking and problem solving skills, is to have students build and study agent based models in the classroom. This activity visually connects concepts with their applied mathematical representation. "Engaging students in constructing models may provide a bridge between frequently disconnected conceptual and mathematical forms of knowledge." (Levy and Wilensky, 2011) We wanted to discover the feasibility of implementing a model based curriculum in the classroom given current and anticipated core and content standards.; Simulation using California GIS data ; Simulation of high school student lunch popularity using aerial photograph on top of terrain value map.

  2. A tool for model based diagnostics of the AGS Booster

    International Nuclear Information System (INIS)

    Luccio, A.

    1993-01-01

    A model-based algorithmic tool was developed to search for lattice errors by a systematic analysis of orbit data in the AGS Booster synchrotron. The algorithm employs transfer matrices calculated with MAD between points in the ring. Iterative model fitting of the data allows one to find and eventually correct magnet displacements and angles or field errors. The tool, implemented on a HP-Apollo workstation system, has proved very general and of immediate physical interpretation

  3. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...... need to be integrated with work-flows and data-flows for specific product-process synthesis-design problems within a computer-aided framework. The framework therefore should be able to manage knowledge-data, models and the associated methods and tools needed by specific synthesis-design work...... of model based methods and tools within a computer aided framework for product-process synthesis-design will be highlighted....

  4. MTK: An AI tool for model-based reasoning

    Science.gov (United States)

    Erickson, William K.; Schwartz, Mary R.

    1987-01-01

    A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Center is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control and trend analysis of the space station Thermal Management System (TMS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined, along with examples from the thermal system to highlight the motivating factors behind them. An overview of the capabilities of MTK is given.

  5. Port performance evaluation tool based on microsimulation model

    Directory of Open Access Journals (Sweden)

    Tsavalista Burhani Jzolanda

    2017-01-01

    Full Text Available As port performance is becoming correlative to national competitiveness, the issue of port performance evaluation has significantly raised. Port performances can simply be indicated by port service levels to the ship (e.g., throughput, waiting for berthing etc., as well as the utilization level of equipment and facilities within a certain period. The performances evaluation then can be used as a tool to develop related policies for improving the port’s performance to be more effective and efficient. However, the evaluation is frequently conducted based on deterministic approach, which hardly captures the nature variations of port parameters. Therefore, this paper presents a stochastic microsimulation model for investigating the impacts of port parameter variations to the port performances. The variations are derived from actual data in order to provide more realistic results. The model is further developed using MATLAB and Simulink based on the queuing theory.

  6. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  7. QUALITY SERVICES EVALUATION MODEL BASED ON DEDICATED SOFTWARE TOOL

    Directory of Open Access Journals (Sweden)

    ANDREEA CRISTINA IONICĂ

    2012-10-01

    Full Text Available In this paper we introduced a new model, called Service Quality (SQ, which combines QFD and SERVQUAL methods. This model takes from the SERVQUAL method the five dimensions of requirements and three of characteristics and from the QFD method the application methodology. The originality of the SQ model consists in computing a global index that reflects the customers’ requirements accomplishment level by the quality characteristics. In order to prove the viability of the SQ model, there was developed a software tool that was applied for the evaluation of a health care services provider.

  8. Agent-Based Modeling: A Powerful Tool for Tourism Researchers

    NARCIS (Netherlands)

    Nicholls, Sarah; Amelung, B.; Student, Jillian

    2017-01-01

    Agent-based modeling (ABM) is a way of representing complex systems of autonomous agents or actors, and of simulating the multiple potential outcomes of these agents’ behaviors and interactions in the form of a range of alternatives or futures. Despite the complexity of the tourism system, and the

  9. Software tools for object-based audio production using the Audio Definition Model

    OpenAIRE

    Matthias , Geier; Carpentier , Thibaut; Noisternig , Markus; Warusfel , Olivier

    2017-01-01

    International audience; We present a publicly available set of tools for the integration of the Audio Definition Model (ADM) in production workflows. ADM is an open metadata model for the description of channel-, scene-, and object-based media within a Broadcast Wave Format (BWF) container. The software tools were developed within the European research project ORPHEUS (https://orpheus-audio.eu/) that aims at developing new end-to-end object-based media chains for broadcast. These tools allow ...

  10. Software Quality Assessment Tool Based on Meta-Models

    OpenAIRE

    Doneva Rositsa; Gaftandzhieva Silvia; Doneva Zhelyana; Staevsky Nevena

    2015-01-01

    In the software industry it is indisputably essential to control the quality of produced software systems in terms of capabilities for easy maintenance, reuse, portability and others in order to ensure reliability in the software development. But it is also clear that it is very difficult to achieve such a control through a ‘manual’ management of quality.There are a number of approaches for software quality assurance based typically on software quality models (e.g. ISO 9126, McCall’s, Boehm’s...

  11. Tool-Body Assimilation Model Based on Body Babbling and Neurodynamical System

    Directory of Open Access Journals (Sweden)

    Kuniyuki Takahashi

    2015-01-01

    Full Text Available We propose the new method of tool use with a tool-body assimilation model based on body babbling and a neurodynamical system for robots to use tools. Almost all existing studies for robots to use tools require predetermined motions and tool features; the motion patterns are limited and the robots cannot use novel tools. Other studies fully search for all available parameters for novel tools, but this leads to massive amounts of calculations. To solve these problems, we took the following approach: we used a humanoid robot model to generate random motions based on human body babbling. These rich motion experiences were used to train recurrent and deep neural networks for modeling a body image. Tool features were self-organized in parametric bias, modulating the body image according to the tool in use. Finally, we designed a neural network for the robot to generate motion only from the target image. Experiments were conducted with multiple tools for manipulating a cylindrical target object. The results show that the tool-body assimilation model is capable of motion generation.

  12. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this Phase I project is to prove the feasibility of using model-based design (MBD) tools to predict the performance and useful life of...

  13. Model-Based Design Tools for Extending COTS Components To Extreme Environments, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation in this project is model-based design (MBD) tools for predicting the performance and useful life of commercial-off-the-shelf (COTS) components and...

  14. Physics-based Modeling Tools for Life Prediction and Durability Assessment of Advanced Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objectives of this program are: (1) to develop a set of physics-based modeling tools to predict the initiation of hot corrosion and to address pit and...

  15. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    Science.gov (United States)

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  16. Model-based development of a course of action scheduling tool

    DEFF Research Database (Denmark)

    Kristensen, Lars Michael; Mechlenborg, Peter; Zhang, Lin

    2008-01-01

    This paper shows how a formal method in the form of Coloured Petri Nets (CPNs) and the supporting CPN Tools have been used in the development of the Course of Action Scheduling Tool (COAST). The aim of COAST is to support human planners in the specification and scheduling of tasks in a Course...... of Action. CPNs have been used to develop a formal model of the task execution framework underlying COAST. The CPN model has been extracted in executable form from CPN Tools and embedded directly into COAST, thereby automatically bridging the gap between the formal specification and its implementation....... The scheduling capabilities of COAST are based on state space exploration of the embedded CPN model. Planners interact with COAST using a domain-specific graphical user interface (GUI) that hides the embedded CPN model and analysis algorithms. This means that COAST is based on a rigorous semantical model...

  17. Next-Generation Model-based Variability Management: Languages and Tools

    OpenAIRE

    Acher , Mathieu; Heymans , Patrick; Collet , Philippe; Lahire , Philippe

    2012-01-01

    International audience; Variability modelling and management is a key activity in a growing number of software engineering contexts, from software product lines to dynamic adaptive systems. Feature models are the defacto standard to formally represent and reason about commonality and variability of a software system. This tutorial aims at presenting next generation of feature modelling languages and tools, directly applicable to a wide range of model-based variability problems and application...

  18. Force Sensor Based Tool Condition Monitoring Using a Heterogeneous Ensemble Learning Model

    Directory of Open Access Journals (Sweden)

    Guofeng Wang

    2014-11-01

    Full Text Available Tool condition monitoring (TCM plays an important role in improving machining efficiency and guaranteeing workpiece quality. In order to realize reliable recognition of the tool condition, a robust classifier needs to be constructed to depict the relationship between tool wear states and sensory information. However, because of the complexity of the machining process and the uncertainty of the tool wear evolution, it is hard for a single classifier to fit all the collected samples without sacrificing generalization ability. In this paper, heterogeneous ensemble learning is proposed to realize tool condition monitoring in which the support vector machine (SVM, hidden Markov model (HMM and radius basis function (RBF are selected as base classifiers and a stacking ensemble strategy is further used to reflect the relationship between the outputs of these base classifiers and tool wear states. Based on the heterogeneous ensemble learning classifier, an online monitoring system is constructed in which the harmonic features are extracted from force signals and a minimal redundancy and maximal relevance (mRMR algorithm is utilized to select the most prominent features. To verify the effectiveness of the proposed method, a titanium alloy milling experiment was carried out and samples with different tool wear states were collected to build the proposed heterogeneous ensemble learning classifier. Moreover, the homogeneous ensemble learning model and majority voting strategy are also adopted to make a comparison. The analysis and comparison results show that the proposed heterogeneous ensemble learning classifier performs better in both classification accuracy and stability.

  19. Agent-based modeling as a tool for program design and evaluation.

    Science.gov (United States)

    Lawlor, Jennifer A; McGirr, Sara

    2017-12-01

    Recently, systems thinking and systems science approaches have gained popularity in the field of evaluation; however, there has been relatively little exploration of how evaluators could use quantitative tools to assist in the implementation of systems approaches therein. The purpose of this paper is to explore potential uses of one such quantitative tool, agent-based modeling, in evaluation practice. To this end, we define agent-based modeling and offer potential uses for it in typical evaluation activities, including: engaging stakeholders, selecting an intervention, modeling program theory, setting performance targets, and interpreting evaluation results. We provide demonstrative examples from published agent-based modeling efforts both inside and outside the field of evaluation for each of the evaluative activities discussed. We further describe potential pitfalls of this tool and offer cautions for evaluators who may chose to implement it in their practice. Finally, the article concludes with a discussion of the future of agent-based modeling in evaluation practice and a call for more formal exploration of this tool as well as other approaches to simulation modeling in the field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cloud-Based Tools to Support High-Resolution Modeling (Invited)

    Science.gov (United States)

    Jones, N.; Nelson, J.; Swain, N.; Christensen, S.

    2013-12-01

    The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482

  1. Visual Basic, Excel-based fish population modeling tool - The pallid sturgeon example

    Science.gov (United States)

    Moran, Edward H.; Wildhaber, Mark L.; Green, Nicholas S.; Albers, Janice L.

    2016-02-10

    The model presented in this report is a spreadsheet-based model using Visual Basic for Applications within Microsoft Excel (http://dx.doi.org/10.5066/F7057D0Z) prepared in cooperation with the U.S. Army Corps of Engineers and U.S. Fish and Wildlife Service. It uses the same model structure and, initially, parameters as used by Wildhaber and others (2015) for pallid sturgeon. The difference between the model structure used for this report and that used by Wildhaber and others (2015) is that variance is not partitioned. For the model of this report, all variance is applied at the iteration and time-step levels of the model. Wildhaber and others (2015) partition variance into parameter variance (uncertainty about the value of a parameter itself) applied at the iteration level and temporal variance (uncertainty caused by random environmental fluctuations with time) applied at the time-step level. They included implicit individual variance (uncertainty caused by differences between individuals) within the time-step level.The interface developed for the model of this report is designed to allow the user the flexibility to change population model structure and parameter values and uncertainty separately for every component of the model. This flexibility makes the modeling tool potentially applicable to any fish species; however, the flexibility inherent in this modeling tool makes it possible for the user to obtain spurious outputs. The value and reliability of the model outputs are only as good as the model inputs. Using this modeling tool with improper or inaccurate parameter values, or for species for which the structure of the model is inappropriate, could lead to untenable management decisions. By facilitating fish population modeling, this modeling tool allows the user to evaluate a range of management options and implications. The goal of this modeling tool is to be a user-friendly modeling tool for developing fish population models useful to natural resource

  2. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    Energy Technology Data Exchange (ETDEWEB)

    Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bonvini, Marco [Whisker Labs, Oakland, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lin, Guanjing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hu, R. Lilly [Univ. of California, Berkeley, CA (United States)

    2017-08-11

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and building behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.

  3. Rapid evaluation of machine tools with position-dependent milling stability based on response surface model

    Directory of Open Access Journals (Sweden)

    Li Zhang

    2016-03-01

    Full Text Available The milling stability is one of the important evaluation criterions of dynamic characteristics of machine tools, and it is of great importance for machine tools’ design and manufacturing. The milling stability of machine tools generally varies with the position combinations of moving parts. The traditional milling stability analysis of machine tools is based on some specific positions in the whole workspace of machine tools, and the results are not comprehensive. Furthermore, it is very time-consuming for operation and calculation to complete analysis of multiple positions. A new method to rapidly evaluate the stability of machine tools with position dependence is developed in this article. In this method, the key position combinations of moving parts are set as the samples of calculation to calculate the dynamic characteristics of machine tools with SAMCEF finite element simulation analysis software. Then the minimum critical axial cutting depth of each sample is obtained. The relationship between the position and the value of minimum critical axial cutting depth at any position in the whole workspace can be obtained through established response surface model. The precision of the response surface model is evaluated and the model could be used to rapidly evaluate the milling stability of machine tools with position dependence. With a precision horizontal machining center with box-in-box structure as an example, the value of minimum critical axial cutting depth at any position is shown. This method of rapid evaluation of machine tools with position-dependent stability avoids complicated theoretical calculation, so it can be easily adopted by engineers and technicians in the phase of design process of machine tools.

  4. Teaching Integrated Scope-Cost Methods with Model-based Tools

    OpenAIRE

    Peterson, Forest; Fischer, Martin; Wingate, Thomas; Seppänen, Olli; Tutti, Tomi; See, Richard

    2009-01-01

    The purpose of this paper is to outline teaching integrated scope-cost methods in a course on fabrication and construction planning using model-based tools. Through project-based active discovery using project documents students create an integrated takeoff, schedule and cost estimate. The goal is to illustrate the processes and interrelation between professions required to effectively obtain the scope, schedule and cost of a proposed project. Students who are provided with a scope-time-cost ...

  5. Hot metal temperature prediction in blast furnace using advanced model based on fuzzy logic tools

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.D.; Obeso, F.; Mochon, J.; Barea, R.; Jimenez, J.

    2007-05-15

    The present work presents a model based on fuzzy logic tools to predict and simulate the hot metal temperature in a blast furnace (BF). As input variables this model uses the control variables of a current BF such as moisture, pulverised coal injection, oxygen addition, mineral/coke ratio and blast volume, and it yields as a result of the hot metal temperature. The variables employed to develop the model have been obtained from data supplied by current sensors of a Spanish BF In the model training stage the adaptive neurofuzzy inference system and the subtractive clustering algorithms have been used.

  6. A new web-based modelling tool (Websim-MILQ) aimed at optimisation of thermal treatments in the dairy industry

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Straatsma, J.; Keijzer, P.M.; Verschueren, M.; Jong, de P.

    2008-01-01

    In the framework of a cooperative EU research project (MILQ-QC-TOOL) a web-based modelling tool (Websim-MILQ) was developed for optimisation of thermal treatments in the dairy industry. The web-based tool enables optimisation of thermal treatments with respect to product safety, quality and costs.

  7. An Innovative Interactive Modeling Tool to Analyze Scenario-Based Physician Workforce Supply and Demand

    Science.gov (United States)

    Gupta, Saurabh; Black-Schaffer, W. Stephen; Crawford, James M.; Gross, David; Karcher, Donald S.; Kaufman, Jill; Knapman, Doug; Prystowsky, Michael B.; Wheeler, Thomas M.; Bean, Sarah; Kumar, Paramhans; Sharma, Raghav; Chamoli, Vaibhav; Ghai, Vikrant; Gogia, Vineet; Weintraub, Sally; Cohen, Michael B.

    2015-01-01

    Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply) of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories), service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models. PMID:28725751

  8. An Innovative Interactive Modeling Tool to Analyze Scenario-Based Physician Workforce Supply and Demand

    Directory of Open Access Journals (Sweden)

    Saurabh Gupta BPharm

    2015-10-01

    Full Text Available Effective physician workforce management requires that the various organizations comprising the House of Medicine be able to assess their current and future workforce supply. This information has direct relevance to funding of graduate medical education. We describe a dynamic modeling tool that examines how individual factors and practice variables can be used to measure and forecast the supply and demand for existing and new physician services. The system we describe, while built to analyze the pathologist workforce, is sufficiently broad and robust for use in any medical specialty. Our design provides a computer-based software model populated with data from surveys and best estimates by specialty experts about current and new activities in the scope of practice. The model describes the steps needed and data required for analysis of supply and demand. Our modeling tool allows educators and policy makers, in addition to physician specialty organizations, to assess how various factors may affect demand (and supply of current and emerging services. Examples of factors evaluated include types of professional services (3 categories with 16 subcategories, service locations, elements related to the Patient Protection and Affordable Care Act, new technologies, aging population, and changing roles in capitated, value-based, and team-based systems of care. The model also helps identify where physicians in a given specialty will likely need to assume new roles, develop new expertise, and become more efficient in practice to accommodate new value-based payment models.

  9. Model-based fault diagnosis techniques design schemes, algorithms, and tools

    CERN Document Server

    Ding, Steven

    2008-01-01

    The objective of this book is to introduce basic model-based FDI schemes, advanced analysis and design algorithms, and the needed mathematical and control theory tools at a level for graduate students and researchers as well as for engineers. This is a textbook with extensive examples and references. Most methods are given in the form of an algorithm that enables a direct implementation in a programme. Comparisons among different methods are included when possible.

  10. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    Science.gov (United States)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  11. DAE Tools: equation-based object-oriented modelling, simulation and optimisation software

    Directory of Open Access Journals (Sweden)

    Dragan D. Nikolić

    2016-04-01

    Full Text Available In this work, DAE Tools modelling, simulation and optimisation software, its programming paradigms and main features are presented. The current approaches to mathematical modelling such as the use of modelling languages and general-purpose programming languages are analysed. The common set of capabilities required by the typical simulation software are discussed, and the shortcomings of the current approaches recognised. A new hybrid approach is introduced, and the modelling languages and the hybrid approach are compared in terms of the grammar, compiler, parser and interpreter requirements, maintainability and portability. The most important characteristics of the new approach are discussed, such as: (1 support for the runtime model generation; (2 support for the runtime simulation set-up; (3 support for complex runtime operating procedures; (4 interoperability with the third party software packages (i.e. NumPy/SciPy; (5 suitability for embedding and use as a web application or software as a service; and (6 code-generation, model exchange and co-simulation capabilities. The benefits of an equation-based approach to modelling, implemented in a fourth generation object-oriented general purpose programming language such as Python are discussed. The architecture and the software implementation details as well as the type of problems that can be solved using DAE Tools software are described. Finally, some applications of the software at different levels of abstraction are presented, and its embedding capabilities and suitability for use as a software as a service is demonstrated.

  12. A GUI-based Tool for Bridging the Gap between Models and Process-Oriented Studies

    Science.gov (United States)

    Kornfeld, A.; Van der Tol, C.; Berry, J. A.

    2014-12-01

    Models used for simulation of photosynthesis and transpiration by canopies of terrestrial plants typically have subroutines such as STOMATA.F90, PHOSIB.F90 or BIOCHEM.m that solve for photosynthesis and associated processes. Key parameters such as the Vmax for Rubisco and temperature response parameters are required by these subroutines. These are often taken from the literature or determined by separate analysis of gas exchange experiments. It is useful to note however that subroutines can be extracted and run as standalone models to simulate leaf responses collected in gas exchange experiments. Furthermore, there are excellent non-linear fitting tools that can be used to optimize the parameter values in these models to fit the observations. Ideally the Vmax fit in this way should be the same as that determined by a separate analysis, but it may not because of interactions with other kinetic constants and the temperature dependence of these in the full subroutine. We submit that it is more useful to fit the complete model to the calibration experiments rather as disaggregated constants. We designed a graphical user interface (GUI) based tool that uses gas exchange photosynthesis data to directly estimate model parameters in the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model and, at the same time, allow researchers to change parameters interactively to visualize how variation in model parameters affect predicted outcomes such as photosynthetic rates, electron transport, and chlorophyll fluorescence. We have also ported some of this functionality to an Excel spreadsheet, which could be used as a teaching tool to help integrate process-oriented and model-oriented studies.

  13. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  14. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system

    Directory of Open Access Journals (Sweden)

    Daniel Brüderle

    2009-06-01

    Full Text Available Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  15. Model-based reasoning: using visual tools to reveal student learning.

    Science.gov (United States)

    Luckie, Douglas; Harrison, Scott H; Ebert-May, Diane

    2011-03-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept Connector enables students in large introductory science courses to visualize their thinking through online model building. The Concept Connector's flexible scoring system, based on tested grading schemes as well as instructor input, has enabled >1,000 physiology students to build maps of their ideas about plant and animal physiology with the guidance of automatic and immediate online scoring of homework. Criterion concept maps developed by instructors in this project contain numerous expert-generated or "correct" propositions connecting two concept words together with a linking phrase. In this study, holistic algorithms were used to test automated methods of scoring concept maps that might work as well as a human grader.

  16. Multirule Based Diagnostic Approach for the Fog Predictions Using WRF Modelling Tool

    Directory of Open Access Journals (Sweden)

    Swagata Payra

    2014-01-01

    Full Text Available The prediction of fog onset remains difficult despite the progress in numerical weather prediction. It is a complex process and requires adequate representation of the local perturbations in weather prediction models. It mainly depends upon microphysical and mesoscale processes that act within the boundary layer. This study utilizes a multirule based diagnostic (MRD approach using postprocessing of the model simulations for fog predictions. The empiricism involved in this approach is mainly to bridge the gap between mesoscale and microscale variables, which are related to mechanism of the fog formation. Fog occurrence is a common phenomenon during winter season over Delhi, India, with the passage of the western disturbances across northwestern part of the country accompanied with significant amount of moisture. This study implements the above cited approach for the prediction of occurrences of fog and its onset time over Delhi. For this purpose, a high resolution weather research and forecasting (WRF model is used for fog simulations. The study involves depiction of model validation and postprocessing of the model simulations for MRD approach and its subsequent application to fog predictions. Through this approach model identified foggy and nonfoggy days successfully 94% of the time. Further, the onset of fog events is well captured within an accuracy of 30–90 minutes. This study demonstrates that the multirule based postprocessing approach is a useful and highly promising tool in improving the fog predictions.

  17. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  18. Model-Based Fault Diagnosis Techniques Design Schemes, Algorithms and Tools

    CERN Document Server

    Ding, Steven X

    2013-01-01

    Guaranteeing a high system performance over a wide operating range is an important issue surrounding the design of automatic control systems with successively increasing complexity. As a key technology in the search for a solution, advanced fault detection and identification (FDI) is receiving considerable attention. This book introduces basic model-based FDI schemes, advanced analysis and design algorithms, and mathematical and control-theoretic tools. This second edition of Model-Based Fault Diagnosis Techniques contains: ·         new material on fault isolation and identification, and fault detection in feedback control loops; ·         extended and revised treatment of systematic threshold determination for systems with both deterministic unknown inputs and stochastic noises; addition of the continuously-stirred tank heater as a representative process-industrial benchmark; and ·         enhanced discussion of residual evaluation in stochastic processes. Model-based Fault Diagno...

  19. Green Infrastructure Modeling Tools

    Science.gov (United States)

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  20. Population Density Modeling Tool

    Science.gov (United States)

    2012-06-26

    194 POPULATION DENSITY MODELING TOOL by Davy Andrew Michael Knott David Burke 26 June 2012 Distribution...MARYLAND NAWCADPAX/TR-2012/194 26 June 2012 POPULATION DENSITY MODELING TOOL by Davy Andrew Michael Knott David Burke...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 26

  1. Stoffenmanager : a web-based control banding tool using an exposure process model

    NARCIS (Netherlands)

    Marquart, H.; Heussen, H.; Feber, M. Le; Noy, D.; Tielemans, E.; Schinkel, J.; West, J.; Schaaf, D. van der

    2008-01-01

    In the scope of a Dutch programme to reinforce the working conditions policy on hazardous substances, an internet-based tool was developed to help small- and medium-sized companies to handle hazardous substances with more care. The heart of this tool, called the Stoffenmanager, is a risk banding

  2. MbT-Tool: An open-access tool based on Thermodynamic Electron Equivalents Model to obtain microbial-metabolic reactions to be used in biotechnological process

    Directory of Open Access Journals (Sweden)

    Pablo Araujo Granda

    2016-01-01

    Full Text Available Modelling cellular metabolism is a strategic factor in investigating microbial behaviour and interactions, especially for bio-technological processes. A key factor for modelling microbial activity is the calculation of nutrient amounts and products generated as a result of the microbial metabolism. Representing metabolic pathways through balanced reactions is a complex and time-consuming task for biologists, ecologists, modellers and engineers. A new computational tool to represent microbial pathways through microbial metabolic reactions (MMRs using the approach of the Thermodynamic Electron Equivalents Model has been designed and implemented in the open-access framework NetLogo. This computational tool, called MbT-Tool (Metabolism based on Thermodynamics can write MMRs for different microbial functional groups, such as aerobic heterotrophs, nitrifiers, denitrifiers, methanogens, sulphate reducers, sulphide oxidizers and fermenters. The MbT-Tool's code contains eighteen organic and twenty inorganic reduction-half-reactions, four N-sources (NH4+, NO3−, NO2−, N2 to biomass synthesis and twenty-four microbial empirical formulas, one of which can be determined by the user (CnHaObNc. MbT-Tool is an open-source program capable of writing MMRs based on thermodynamic concepts, which are applicable in a wide range of academic research interested in designing, optimizing and modelling microbial activity without any extensive chemical, microbiological and programing experience.

  3. A spatially distributed and physically based tool to modelling rainfall-triggered landslides

    Science.gov (United States)

    Arnone, E.; Noto, L. V.; Lepore, C.; Bras, R. L.

    2009-09-01

    Landslides are a serious threat to lives and property throughout the world. Over the last few years the need to provide consistent tools and support to decision-makers and land managers have led to significant progress in the analysis and understanding of the occurrence of landslides. The causes of landslides are varied. Multiple dynamic processes are involved in driving slope failures. One of these causes is prolonged rainfall, which affect slope stability in different ways. Water entering the ground beneath a slope always causes a rise of the piezometric surface, which in turn involves an increase of the pore-water pressure and a decrease of the soil shear resistance. For this reason, knowledge of spatio-temporal dynamics of soil water content, groundwater and infiltration processes is of considerable importance in the understanding and prediction of landslides dynamics. Many methods and techniques have been proposed to estimate when and where rainfall could trigger slope failure. In this paper a spatially distributed and physically based approach is presented, which integrates of a failure model with an hydrological one. The hydrological model used in the study is the tRIBS model (Triangulated Irregular Network (TIN-based) Real-Time Integrated Basin Simulator) that allows simulation of spatial and temporal hydrological dynamics influencing the landsliding, in particular infiltration, evapotranspiration, groundwater dynamics and soil moisture conditions. In order to evaluate the slope stability, the infinite slope model has been implemented in tRIBS, making up a new component of the model. For each computational element, the model is able to verify the stability condition as a function of the safety factor, splitting between the unconditionally stable and the conditionally stable computational cells. The amount of detached soil and its possible path are also estimated. The variations in elevation due to the landslides modify the basin morphology. The

  4. Stat-tracks and mediotypes: powerful tools for modern ichnology based on 3D models

    Directory of Open Access Journals (Sweden)

    Matteo Belvedere

    2018-01-01

    Full Text Available Vertebrate tracks are subject to a wide distribution of morphological types. A single trackmaker may be associated with a range of tracks reflecting individual pedal anatomy and behavioural kinematics mediated through substrate properties which may vary both in space and time. Accordingly, the same trackmaker can leave substantially different morphotypes something which must be considered in creating ichnotaxa. In modern practice this is often captured by the collection of a series of 3D track models. We introduce two concepts to help integrate these 3D models into ichnological analysis procedures. The mediotype is based on the idea of using statistically-generated three-dimensional track models (median or mean of the type specimens to create a composite track to support formal recognition of a ichno type. A representative track (mean and/or median is created from a set of individual reference tracks or from multiple examples from one or more trackways. In contrast, stat-tracks refer to other digitally generated tracks which may explore variance. For example, they are useful in: understanding the preservation variability of a given track sample; identifying characteristics or unusual track features; or simply as a quantitative comparison tool. Both concepts assist in making ichnotaxonomical interpretations and we argue that they should become part of the standard procedure when instituting new ichnotaxa. As three-dimensional models start to become a standard in publications on vertebrate ichnology, the mediotype and stat-track concepts have the potential to help guiding a revolution in the study of vertebrate ichnology and ichnotaxonomy.

  5. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    International Nuclear Information System (INIS)

    Palma, J.H.N.

    2017-01-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  6. Climate change web picker. A tool bridging daily climate needs in process based modelling in forestry and agriculture

    Energy Technology Data Exchange (ETDEWEB)

    Palma, J.H.N.

    2017-11-01

    Aim of study: Climate data is a need for different types of modeling assessments, especially those involving process based modeling focusing on climate change impacts. However, there is a scarcity of tools delivering easy access to climate datasets to use in biological related modeling. This study aimed at the development of a tool that could provide an user-friendly interface to facilitate access to climate datasets, that are used to supply climate scenarios for the International Panel on Climate Change. Area of study: The tool provides daily datasets across Europe, and also parts of northern Africa Material and Methods: The tool uses climatic datasets generated from third party sources (IPCC related) while a web based interface was developed in JavaScript to ease the access to the datasets Main Results: The interface delivers daily (or monthly) climate data from a user-defined location in Europe for 7 climate variables: minimum and maximum temperature, precipitation, radiation, minimum and maximum relative humidity and wind speed). The time frame ranges from 1951 to 2100, providing the basis to use the data for climate change impact assessments. The tool is free and publicly available at http://www.isa.ulisboa.pt/proj/clipick/. Research Highlights: A new and easy-to-use tool is suggested that will promote the use of climate change scenarios across Europe, especially when daily time steps are needed. CliPick eases the communication between climatic and modelling communities such as agriculture and forestry.

  7. A ligand predication tool based on modeling and reasoning with imprecise probabilistic knowledge.

    Science.gov (United States)

    Liu, Weiru; Yue, Anbu; Timson, David J

    2010-04-01

    Ligand prediction has been driven by a fundamental desire to understand more about how biomolecules recognize their ligands and by the commercial imperative to develop new drugs. Most of the current available software systems are very complex and time-consuming to use. Therefore, developing simple and efficient tools to perform initial screening of interesting compounds is an appealing idea. In this paper, we introduce our tool for very rapid screening for likely ligands (either substrates or inhibitors) based on reasoning with imprecise probabilistic knowledge elicited from past experiments. Probabilistic knowledge is input to the system via a user-friendly interface showing a base compound structure. A prediction of whether a particular compound is a substrate is queried against the acquired probabilistic knowledge base and a probability is returned as an indication of the prediction. This tool will be particularly useful in situations where a number of similar compounds have been screened experimentally, but information is not available for all possible members of that group of compounds. We use two case studies to demonstrate how to use the tool. 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Supporting Scientific Modeling Practices in Atmospheric Sciences: Intended and Actual Affordances of a Computer-Based Modeling Tool

    Science.gov (United States)

    Wu, Pai-Hsing; Wu, Hsin-Kai; Kuo, Che-Yu; Hsu, Ying-Shao

    2015-01-01

    Computer-based learning tools include design features to enhance learning but learners may not always perceive the existence of these features and use them in desirable ways. There might be a gap between what the tool features are designed to offer (intended affordance) and what they are actually used (actual affordance). This study thus aims at…

  9. Integrating a Decision Management Tool with UML Modeling Tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    the development process. In this report, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from a case study: the modeling tool shall show all decisions related to a model and allow its users to extend or update them; the decision management tool shall......Numerous design decisions are made while developing software systems, which influence the architecture of these systems as well as following decisions. A number of decision management tools already exist for capturing, documenting, and maintaining design decisions, but also for guiding developers...... trigger the modeling tool to realize design decisions in the models. We define tool-independent concepts and architecture building blocks supporting these use cases and present how they can be implemented in the IBM Rational Software Modeler and Architectural Decision Knowledge Wiki. This seamless...

  10. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    Science.gov (United States)

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  11. Comprehensive Assessment of Models and Events based on Library tools (CAMEL)

    Science.gov (United States)

    Rastaetter, L.; Boblitt, J. M.; DeZeeuw, D.; Mays, M. L.; Kuznetsova, M. M.; Wiegand, C.

    2017-12-01

    At the Community Coordinated Modeling Center (CCMC), the assessment of modeling skill using a library of model-data comparison metrics is taken to the next level by fully integrating the ability to request a series of runs with the same model parameters for a list of events. The CAMEL framework initiates and runs a series of selected, pre-defined simulation settings for participating models (e.g., WSA-ENLIL, SWMF-SC+IH for the heliosphere, SWMF-GM, OpenGGCM, LFM, GUMICS for the magnetosphere) and performs post-processing using existing tools for a host of different output parameters. The framework compares the resulting time series data with respective observational data and computes a suite of metrics such as Prediction Efficiency, Root Mean Square Error, Probability of Detection, Probability of False Detection, Heidke Skill Score for each model-data pair. The system then plots scores by event and aggregated over all events for all participating models and run settings. We are building on past experiences with model-data comparisons of magnetosphere and ionosphere model outputs in GEM2008, GEM-CEDAR CETI2010 and Operational Space Weather Model challenges (2010-2013). We can apply the framework also to solar-heliosphere as well as radiation belt models. The CAMEL framework takes advantage of model simulations described with Space Physics Archive Search and Extract (SPASE) metadata and a database backend design developed for a next-generation Run-on-Request system at the CCMC.

  12. OXlearn: a new MATLAB-based simulation tool for connectionist models.

    Science.gov (United States)

    Ruh, Nicolas; Westermann, Gert

    2009-11-01

    OXlearn is a free, platform-independent MATLAB toolbox in which standard connectionist neural network models can be set up, run, and analyzed by means of a user-friendly graphical interface. Due to its seamless integration with the MATLAB programming environment, the inner workings of the simulation tool can be easily inspected and/or extended using native MATLAB commands or components. This combination of usability, transparency, and extendability makes OXlearn an efficient tool for the implementation of basic research projects or the prototyping of more complex research endeavors, as well as for teaching. Both the MATLAB toolbox and a compiled version that does not require access to MATLAB can be downloaded from http://psych.brookes.ac.uk/oxlearn/.

  13. A Web-Based Data-Querying Tool Based on Ontology-Driven Methodology and Flowchart-Based Model

    Science.gov (United States)

    Ping, Xiao-Ou; Chung, Yufang; Liang, Ja-Der; Yang, Pei-Ming; Huang, Guan-Tarn; Lai, Feipei

    2013-01-01

    Background Because of the increased adoption rate of electronic medical record (EMR) systems, more health care records have been increasingly accumulating in clinical data repositories. Therefore, querying the data stored in these repositories is crucial for retrieving the knowledge from such large volumes of clinical data. Objective The aim of this study is to develop a Web-based approach for enriching the capabilities of the data-querying system along the three following considerations: (1) the interface design used for query formulation, (2) the representation of query results, and (3) the models used for formulating query criteria. Methods The Guideline Interchange Format version 3.5 (GLIF3.5), an ontology-driven clinical guideline representation language, was used for formulating the query tasks based on the GLIF3.5 flowchart in the Protégé environment. The flowchart-based data-querying model (FBDQM) query execution engine was developed and implemented for executing queries and presenting the results through a visual and graphical interface. To examine a broad variety of patient data, the clinical data generator was implemented to automatically generate the clinical data in the repository, and the generated data, thereby, were employed to evaluate the system. The accuracy and time performance of the system for three medical query tasks relevant to liver cancer were evaluated based on the clinical data generator in the experiments with varying numbers of patients. Results In this study, a prototype system was developed to test the feasibility of applying a methodology for building a query execution engine using FBDQMs by formulating query tasks using the existing GLIF. The FBDQM-based query execution engine was used to successfully retrieve the clinical data based on the query tasks formatted using the GLIF3.5 in the experiments with varying numbers of patients. The accuracy of the three queries (ie, “degree of liver damage,” “degree of liver damage

  14. A New Browser-based, Ontology-driven Tool for Generating Standardized, Deep Descriptions of Geoscience Models

    Science.gov (United States)

    Peckham, S. D.; Kelbert, A.; Rudan, S.; Stoica, M.

    2016-12-01

    Standardized metadata for models is the key to reliable and greatly simplified coupling in model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System). This model metadata also helps model users to understand the important details that underpin computational models and to compare the capabilities of different models. These details include simplifying assumptions on the physics, governing equations and the numerical methods used to solve them, discretization of space (the grid) and time (the time-stepping scheme), state variables (input or output), model configuration parameters. This kind of metadata provides a "deep description" of a computational model that goes well beyond other types of metadata (e.g. author, purpose, scientific domain, programming language, digital rights, provenance, execution) and captures the science that underpins a model. While having this kind of standardized metadata for each model in a repository opens up a wide range of exciting possibilities, it is difficult to collect this information and a carefully conceived "data model" or schema is needed to store it. Automated harvesting and scraping methods can provide some useful information, but they often result in metadata that is inaccurate or incomplete, and this is not sufficient to enable the desired capabilities. In order to address this problem, we have developed a browser-based tool called the MCM Tool (Model Component Metadata) which runs on notebooks, tablets and smart phones. This tool was partially inspired by the TurboTax software, which greatly simplifies the necessary task of preparing tax documents. It allows a model developer or advanced user to provide a standardized, deep description of a computational geoscience model, including hydrologic models. Under the hood, the tool uses a new ontology for models built on the CSDMS Standard Names, expressed as a collection of RDF files (Resource Description Framework). This ontology is based on core concepts

  15. PetriCode: A Tool for Template-Based Code Generation from CPN Models

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge

    2014-01-01

    levels of abstraction. The elements of the models are annotated with code generation pragmatics enabling PetriCode to use a template-based approach to generate code while keeping the models uncluttered from implementation artefacts. PetriCode is the realization of our code generation approach which has...

  16. Research on Error Modelling and Identification of 3 Axis NC Machine Tools Based on Cross Grid Encoder Measurement

    International Nuclear Information System (INIS)

    Du, Z C; Lv, C F; Hong, M S

    2006-01-01

    A new error modelling and identification method based on the cross grid encoder is proposed in this paper. Generally, there are 21 error components in the geometric error of the 3 axis NC machine tools. However according our theoretical analysis, the squareness error among different guide ways affects not only the translation error component, but also the rotational ones. Therefore, a revised synthetic error model is developed. And the mapping relationship between the error component and radial motion error of round workpiece manufactured on the NC machine tools are deduced. This mapping relationship shows that the radial error of circular motion is the comprehensive function result of all the error components of link, worktable, sliding table and main spindle block. Aiming to overcome the solution singularity shortcoming of traditional error component identification method, a new multi-step identification method of error component by using the Cross Grid Encoder measurement technology is proposed based on the kinematic error model of NC machine tool. Firstly, the 12 translational error components of the NC machine tool are measured and identified by using the least square method (LSM) when the NC machine tools go linear motion in the three orthogonal planes: XOY plane, XOZ plane and YOZ plane. Secondly, the circular error tracks are measured when the NC machine tools go circular motion in the same above orthogonal planes by using the cross grid encoder Heidenhain KGM 182. Therefore 9 rotational errors can be identified by using LSM. Finally the experimental validation of the above modelling theory and identification method is carried out in the 3 axis CNC vertical machining centre Cincinnati 750 Arrow. The entire 21 error components have been successfully measured out by the above method. Research shows the multi-step modelling and identification method is very suitable for 'on machine measurement'

  17. CHANNEL MORPHOLOGY TOOL (CMT): A GIS-BASED AUTOMATED EXTRACTION MODEL FOR CHANNEL GEOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    JUDI, DAVID [Los Alamos National Laboratory; KALYANAPU, ALFRED [Los Alamos National Laboratory; MCPHERSON, TIMOTHY [Los Alamos National Laboratory; BERSCHEID, ALAN [Los Alamos National Laboratory

    2007-01-17

    This paper describes an automated Channel Morphology Tool (CMT) developed in ArcGIS 9.1 environment. The CMT creates cross-sections along a stream centerline and uses a digital elevation model (DEM) to create station points with elevations along each of the cross-sections. The generated cross-sections may then be exported into a hydraulic model. Along with the rapid cross-section generation the CMT also eliminates any cross-section overlaps that might occur due to the sinuosity of the channels using the Cross-section Overlap Correction Algorithm (COCoA). The CMT was tested by extracting cross-sections from a 5-m DEM for a 50-km channel length in Houston, Texas. The extracted cross-sections were compared directly with surveyed cross-sections in terms of the cross-section area. Results indicated that the CMT-generated cross-sections satisfactorily matched the surveyed data.

  18. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  19. Four-bar linkage-based automatic tool changer: Dynamic modeling and torque optimization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangho; Seo, TaeWon [Yeungnam University, Gyeongsan (Korea, Republic of); Kim, Jong-Won; Kim, Jongwon [Seoul National University, Seoul (Korea, Republic of)

    2017-05-15

    An Automatic tool changer (ATC) is a device used in a tapping machine to reduce process time. This paper presents the optimization of a Peak torque reduction mechanism (PTRM) for an ATC. It is necessary to reduce the fatigue load and energy consumed, which is related to the peak torque. The PTRM uses a torsion spring to reduce the peak torque and was applied to a novel ATC mechanism, which was modeled using inverse dynamics. Optimization of the PTRM is required to minimize the peak torque. The design parameters are the initial angle and stiffness of the torsion spring, and the objective function is the peak torque of the input link. The torque was simulated, and the peak torque was decreased by 10 %. The energy consumed was reduced by the optimization.

  20. A Review of Model-Based Design Tools for Metal-Air Batteries

    Directory of Open Access Journals (Sweden)

    Simon Clark

    2018-01-01

    Full Text Available The advent of large-scale renewable energy generation and electric mobility is driving a growing need for new electrochemical energy storage systems. Metal-air batteries, particularly zinc-air, are a promising technology that could help address this need. While experimental research is essential, it can also be expensive and time consuming. The utilization of well-developed theory-based models can improve researchers’ understanding of complex electrochemical systems, guide development, and more efficiently utilize experimental resources. In this paper, we review the current state of metal-air batteries and the modeling methods that can be implemented to advance their development. Microscopic and macroscopic modeling methods are discussed with a focus on continuum modeling derived from non-equilibrium thermodynamics. An applied example of zinc-air battery engineering is presented.

  1. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  2. Physiologically Based Toxicokinetic Modelling as a Tool to Support Risk Assessment: Three Case Studies

    Directory of Open Access Journals (Sweden)

    Hans Mielke

    2012-01-01

    Full Text Available In this contribution we present three case studies of physiologically based toxicokinetic (PBTK modelling in regulatory risk assessment. (1 Age-dependent lower enzyme expression in the newborn leads to bisphenol A (BPA blood levels which are near the levels of the tolerated daily intake (TDI at the oral exposure as calculated by EFSA. (2 Dermal exposure of BPA by receipts, car park tickets, and so forth, contribute to the exposure towards BPA. However, at the present levels of dermal exposure there is no risk for the adult. (3 Dermal exposure towards coumarin via cosmetic products leads to external exposures of two-fold the TDI. PBTK modeling helped to identify liver peak concentration as the metric for liver toxicity. After dermal exposure of twice the TDI, the liver peak concentration was lower than that present after oral exposure with the TDI dose. In the presented cases, PBTK modeling was useful to reach scientifically sound regulatory decisions.

  3. Monte Carlo simulation as a tool to predict blasting fragmentation based on the Kuz Ram model

    Science.gov (United States)

    Morin, Mario A.; Ficarazzo, Francesco

    2006-04-01

    Rock fragmentation is considered the most important aspect of production blasting because of its direct effects on the costs of drilling and blasting and on the economics of the subsequent operations of loading, hauling and crushing. Over the past three decades, significant progress has been made in the development of new technologies for blasting applications. These technologies include increasingly sophisticated computer models for blast design and blast performance prediction. Rock fragmentation depends on many variables such as rock mass properties, site geology, in situ fracturing and blasting parameters and as such has no complete theoretical solution for its prediction. However, empirical models for the estimation of size distribution of rock fragments have been developed. In this study, a blast fragmentation Monte Carlo-based simulator, based on the Kuz-Ram fragmentation model, has been developed to predict the entire fragmentation size distribution, taking into account intact and joints rock properties, the type and properties of explosives and the drilling pattern. Results produced by this simulator were quite favorable when compared with real fragmentation data obtained from a blast quarry. It is anticipated that the use of Monte Carlo simulation will increase our understanding of the effects of rock mass and explosive properties on the rock fragmentation by blasting, as well as increase our confidence in these empirical models. This understanding will translate into improvements in blasting operations, its corresponding costs and the overall economics of open pit mines and rock quarries.

  4. A cognitive-based model of tool use in normal aging.

    Science.gov (United States)

    Lesourd, Mathieu; Baumard, Josselin; Jarry, Christophe; Le Gall, Didier; Osiurak, François

    2017-07-01

    While several cognitive domains have been widely investigated in the field of aging, the age-related effects on tool use are still an open issue and hardly any studies on tool use and aging is available. A significant body of literature has indicated that tool use skills might be supported by at least two different types of knowledge, namely, mechanical knowledge and semantic knowledge. However, neither the contribution of these kinds of knowledge to familiar tool use, nor the effects of aging on mechanical and semantic knowledge have been explored in normal aging. The aim of the present study was to fill this gap. To do so, 98 healthy elderly adults were presented with three tasks: a classical, familiar tool use task, a novel tool use task assessing mechanical knowledge, and a picture matching task assessing semantic knowledge. The results showed that aging has a negative impact on tool use tasks and on knowledge supporting tool use skills. We also found that aging did not impact mechanical and semantic knowledge in the same way, confirming the distinct nature of those forms of knowledge. Finally, our results stressed that mechanical and semantic knowledge are both involved in the ability to use familiar tools.

  5. eSBMTools 1.0: enhanced native structure-based modeling tools.

    Science.gov (United States)

    Lutz, Benjamin; Sinner, Claude; Heuermann, Geertje; Verma, Abhinav; Schug, Alexander

    2013-11-01

    Molecular dynamics simulations provide detailed insights into the structure and function of biomolecular systems. Thus, they complement experimental measurements by giving access to experimentally inaccessible regimes. Among the different molecular dynamics techniques, native structure-based models (SBMs) are based on energy landscape theory and the principle of minimal frustration. Typically used in protein and RNA folding simulations, they coarse-grain the biomolecular system and/or simplify the Hamiltonian resulting in modest computational requirements while achieving high agreement with experimental data. eSBMTools streamlines running and evaluating SBM in a comprehensive package and offers high flexibility in adding experimental- or bioinformatics-derived restraints. We present a software package that allows setting up, modifying and evaluating SBM for both RNA and proteins. The implemented workflows include predicting protein complexes based on bioinformatics-derived inter-protein contact information, a standardized setup of protein folding simulations based on the common PDB format, calculating reaction coordinates and evaluating the simulation by free-energy calculations with weighted histogram analysis method or by phi-values. The modules interface with the molecular dynamics simulation program GROMACS. The package is open source and written in architecture-independent Python2. http://sourceforge.net/projects/esbmtools/. alexander.schug@kit.edu. Supplementary data are available at Bioinformatics online.

  6. An integrated suite of modeling tools that empower scientists in structure- and property-based drug design

    Science.gov (United States)

    Feng, Jianwen A.; Aliagas, Ignacio; Bergeron, Philippe; Blaney, Jeff M.; Bradley, Erin K.; Koehler, Michael F. T.; Lee, Man-Ling; Ortwine, Daniel F.; Tsui, Vickie; Wu, Johnny; Gobbi, Alberto

    2015-06-01

    Structure- and property-based drug design is an integral part of modern drug discovery, enabling the design of compounds aimed at improving potency and selectivity. However, building molecules using desktop modeling tools can easily lead to poor designs that appear to form many favorable interactions with the protein's active site. Although a proposed molecule looks good on screen and appears to fit into the protein site X-ray crystal structure or pharmacophore model, doing so might require a high-energy small molecule conformation, which would likely be inactive. To help scientists make better design decisions, we have built integrated, easy-to-use, interactive software tools to perform docking experiments, de novo design, shape and pharmacophore based database searches, small molecule conformational analysis and molecular property calculations. Using a combination of these tools helps scientists in assessing the likelihood that a designed molecule will be active and have desirable drug metabolism and pharmacokinetic properties. Small molecule discovery success requires project teams to rapidly design and synthesize potent molecules with good ADME properties. Empowering scientists to evaluate ideas quickly and make better design decisions with easy-to-access and easy-to-understand software on their desktop is now a key part of our discovery process.

  7. Collaborative Tools' Quality in Web-Based Learning Systems — A Model of User Perceptions

    Science.gov (United States)

    Davoli, Paolo; Monari, Matteo

    The importance of collaborative tools is increasing in e-learning practice, both in educational institutions and enterprises. E-learning is nowadays much more than file downloading: both in distance and blended learning, group interactions are showing their didactic relevance. Specific contexts and needs are to be taken into account when evaluating didactic collaborative tools, since they present peculiar aspects. For instance, e-learning platforms are not pure groupware, but didactic systems hosting both groupware facilities and single-user features.

  8. LitPathExplorer: A Confidence-based Visual Text Analytics Tool for Exploring Literature-Enriched Pathway Models.

    Science.gov (United States)

    Soto, Axel J; Zerva, Chrysoula; Batista-Navarro, Riza; Ananiadou, Sophia

    2017-12-08

    Pathway models are valuable resources that help us understand the various mechanisms underpinning complex biological processes. Their curation is typically carried out through manual inspection of published scientific literature to find information relevant to a model, which is a laborious and knowledge-intensive task. Furthermore, models curated manually cannot be easily updated and maintained with new evidence extracted from the literature without automated support. We have developed LitPathExplorer, a visual text analytics tool that integrates advanced text mining, semi-supervised learning and interactive visualization, to facilitate the exploration and analysis of pathway models using statements (i.e., events) extracted automatically from the literature and organized according to levels of confidence. LitPathExplorer supports pathway modellers and curators alike by: 1) extracting events from the literature that corroborate existing models with evidence; 2) discovering new events which can update models; and 3) providing a confidence value for each event that is automatically computed based on linguistic features and article metadata. Our evaluation of event extraction showed a precision of 89% and a recall of 71%. Evaluation of our confidence measure, when used for ranking sampled events, showed an average precision ranging between 61% and 73%, which can be improved to 95% when the user is involved in the semi-supervised learning process. Qualitative evaluation using pair analytics based on the feedback of three domain experts confirmed the utility of our tool within the context of pathway model exploration. LitPathExplorer is available at http://nactem.ac.uk/LitPathExplorer_BI/. sophia.ananiadou@manchester.ac.uk. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  9. A Web-based modeling tool for the SEMAT Essence theory of software engineering

    Directory of Open Access Journals (Sweden)

    Daniel Graziotin

    2013-09-01

    Full Text Available As opposed to more mature subjects, software engineering lacks general theories that establish its foundations as a discipline. The Essence Theory of software engineering (Essence has been proposed by the Software Engineering Methods and Theory (SEMAT initiative. The goal of Essence is to develop a theoretically sound basis for software engineering practice and its wide adoption. However, Essence is far from reaching academic- and industry-wide adoption. The reasons for this include a struggle to foresee its utilization potential and a lack of tools for implementation. SEMAT Accelerator (SematAcc is a Web-positioning tool for a software engineering endeavor, which implements the SEMAT’s Essence kernel. SematAcc permits the use of Essence, thus helping to understand it. The tool enables the teaching, adoption, and research of Essence in controlled experiments and case studies.

  10. GIS-Based Analytical Tools for Transport Planning: Spatial Regression Models for Transportation Demand Forecast

    Directory of Open Access Journals (Sweden)

    Simone Becker Lopes

    2014-04-01

    Full Text Available Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included. This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

  11. CRT--Cascade Routing Tool to define and visualize flow paths for grid-based watershed models

    Science.gov (United States)

    Henson, Wesley R.; Medina, Rose L.; Mayers, C. Justin; Niswonger, Richard G.; Regan, R.S.

    2013-01-01

    The U.S. Geological Survey Cascade Routing Tool (CRT) is a computer application for watershed models that include the coupled Groundwater and Surface-water FLOW model, GSFLOW, and the Precipitation-Runoff Modeling System (PRMS). CRT generates output to define cascading surface and shallow subsurface flow paths for grid-based model domains. CRT requires a land-surface elevation for each hydrologic response unit (HRU) of the model grid; these elevations can be derived from a Digital Elevation Model raster data set of the area containing the model domain. Additionally, a list is required of the HRUs containing streams, swales, lakes, and other cascade termination features along with indices that uniquely define these features. Cascade flow paths are determined from the altitudes of each HRU. Cascade paths can cross any of the four faces of an HRU to a stream or to a lake within or adjacent to an HRU. Cascades can terminate at a stream, lake, or HRU that has been designated as a watershed outflow location.

  12. Tools for Model Evaluation

    DEFF Research Database (Denmark)

    Olesen, H. R.

    1998-01-01

    Proceedings of the Twenty-Second NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held June 6-10, 1997, in Clermont-Ferrand, France.......Proceedings of the Twenty-Second NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held June 6-10, 1997, in Clermont-Ferrand, France....

  13. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    Science.gov (United States)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  14. Use of genome editing tools in human stem cell-based disease modeling and precision medicine.

    Science.gov (United States)

    Wei, Yu-da; Li, Shuang; Liu, Gai-gai; Zhang, Yong-xian; Ding, Qiu-rong

    2015-10-01

    Precision medicine emerges as a new approach that takes into account individual variability. The successful conduct of precision medicine requires the use of precise disease models. Human pluripotent stem cells (hPSCs), as well as adult stem cells, can be differentiated into a variety of human somatic cell types that can be used for research and drug screening. The development of genome editing technology over the past few years, especially the CRISPR/Cas system, has made it feasible to precisely and efficiently edit the genetic background. Therefore, disease modeling by using a combination of human stem cells and genome editing technology has offered a new platform to generate " personalized " disease models, which allow the study of the contribution of individual genetic variabilities to disease progression and the development of precise treatments. In this review, recent advances in the use of genome editing in human stem cells and the generation of stem cell models for rare diseases and cancers are discussed.

  15. AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT: A GIS-BASED HYDROLOGIC MODELING TOOL

    Science.gov (United States)

    Planning and assessment in land and water resource management are evolving toward complex, spatially explicit regional assessments. These problems have to be addressed with distributed models that can compute runoff and erosion at different spatial and temporal scales. The extens...

  16. Requirements for clinical information modelling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Jódar-Sánchez, Francisco; Kalra, Dipak

    2015-07-01

    This study proposes consensus requirements for clinical information modelling tools that can support modelling tasks in medium/large scale institutions. Rather than identify which functionalities are currently available in existing tools, the study has focused on functionalities that should be covered in order to provide guidance about how to evolve the existing tools. After identifying a set of 56 requirements for clinical information modelling tools based on a literature review and interviews with experts, a classical Delphi study methodology was applied to conduct a two round survey in order to classify them as essential or recommended. Essential requirements are those that must be met by any tool that claims to be suitable for clinical information modelling, and if we one day have a certified tools list, any tool that does not meet essential criteria would be excluded. Recommended requirements are those more advanced requirements that may be met by tools offering a superior product or only needed in certain modelling situations. According to the answers provided by 57 experts from 14 different countries, we found a high level of agreement to enable the study to identify 20 essential and 21 recommended requirements for these tools. It is expected that this list of identified requirements will guide developers on the inclusion of new basic and advanced functionalities that have strong support by end users. This list could also guide regulators in order to identify requirements that could be demanded of tools adopted within their institutions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. REE radiation fault model: a tool for organizing and communication radiation test data and construction COTS based spacebourne computing systems

    Science.gov (United States)

    Ferraro, R.; Some, R.

    2002-01-01

    The growth in data rates of instruments on future NASA spacecraft continues to outstrip the improvement in communications bandwidth and processing capabilities of radiation-hardened computers. Sophisticated autonomous operations strategies will further increase the processing workload. Given the reductions in spacecraft size and available power, standard radiation hardened computing systems alone will not be able to address the requirements of future missions. The REE project was intended to overcome this obstacle by developing a COTS- based supercomputer suitable for use as a science and autonomy data processor in most space environments. This development required a detailed knowledge of system behavior in the presence of Single Event Effect (SEE) induced faults so that mitigation strategies could be designed to recover system level reliability while maintaining the COTS throughput advantage. The REE project has developed a suite of tools and a methodology for predicting SEU induced transient fault rates in a range of natural space environments from ground-based radiation testing of component parts. In this paper we provide an overview of this methodology and tool set with a concentration on the radiation fault model and its use in the REE system development methodology. Using test data reported elsewhere in this and other conferences, we predict upset rates for a particular COTS single board computer configuration in several space environments.

  18. Modeling of tool-tissue interactions for computer-based surgical simulation: a literature review

    NARCIS (Netherlands)

    Misra, Sarthak; Ramesh, K.T.; Okamura, Allison M.

    2008-01-01

    Surgical simulators present a safe and potentially effective method for surgical training, and can also be used in robot-assisted surgery for pre- and intra-operative planning. Accurate modeling of the interaction between surgical instruments and organs has been recognized as a key requirement in

  19. GIS-BASED HYDROLOGIC MODELING: THE AUTOMATED GEOSPATIAL WATERSHED ASSESSMENT TOOL

    Science.gov (United States)

    Planning and assessment in land and water resource management are evolving from simple, local scale problems toward complex, spatially explicit regional ones. Such problems have to be addressed with distributed models that can compute runoff and erosion at different spatial a...

  20. A Practical Probabilistic Graphical Modeling Tool for Weighing Ecological Risk-Based Evidence

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for e...

  1. Modeling Precipitation Kinetics During Heat Treatment with Calphad-Based Tools

    Science.gov (United States)

    Chen, Qing; Wu, Kaisheng; Sterner, Gustaf; Mason, Paul

    2014-12-01

    Sophisticated precipitation reaction models combined with well-developed CALPHAD databases provide an efficient way to tailor precipitate microstructures that maximize strengthening via the optimization of alloy chemistries and heat treatment schedules. The success of the CALPHAD approach relies on the capability to provide fundamental phase equilibrium and phase transformation information in materials of industrial relevance taking into consideration composition and temperature variation. The newly developed TC-PRISMA program is described. The effect of growth modes, alloy chemistries, and cooling profiles on the formation of multimodal microstructures has been examined in order to understand the underlying thermodynamics and kinetics. Practical issues that are critical to the accuracy and applicability of the current simulations, such as modifications that overcome mean field approximations, compatibility between CALPHAD databases, and selections of key parameters (particularly interfacial energy and nucleation site densities), are also addressed.

  2. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    Science.gov (United States)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  3. Process-Based Quality (PBQ) Tools Development

    Energy Technology Data Exchange (ETDEWEB)

    Cummins, J.L.

    2001-12-03

    The objective of this effort is to benchmark the development of process-based quality tools for application in CAD (computer-aided design) model-based applications. The processes of interest are design, manufacturing, and quality process applications. A study was commissioned addressing the impact, current technologies, and known problem areas in application of 3D MCAD (3-dimensional mechanical computer-aided design) models and model integrity on downstream manufacturing and quality processes. The downstream manufacturing and product quality processes are profoundly influenced and dependent on model quality and modeling process integrity. The goal is to illustrate and expedite the modeling and downstream model-based technologies for available or conceptual methods and tools to achieve maximum economic advantage and advance process-based quality concepts.

  4. Global Earth Observation System of Systems: Characterizing Uncertainties of Space- based Measurements and Earth System Models Informing Decision Tools

    Science.gov (United States)

    Birk, R. J.; Frederick, M.

    2006-05-01

    The Global Earth Observation System of Systems (GEOSS) framework identifies the benefits of systematically and scientifically networking the capacity of organizations and systems into solutions that benefit nine societal benefit areas. The U.S. Integrated Earth Observation System (IEOS), the U.S. contribution to the GEOSS, focuses on near-term, mid-term, and long-term opportunities to establish integrated system solutions based on capacities and capabilities of member agencies and affiliations. Scientists at NASA, NOAA, DOE, NSF and other U.S. agencies are evolving the predictive capacity of models of Earth processes based on space-based, airborne and surface-based instruments and their measurements. NASA research activities include advancing the power and accessibility of computational resources (i.e. Project Columbia) to enable robust science data analysis, modeling, and assimilation techniques to rapidly advance. The integration of the resulting observations and predictions into decision support tools require characterization of the accuracies of a range of input measurements includes temperature and humidity profiles, wind speed, ocean height, sea surface temperature, and atmospheric constituents that are measured globally by U.S. deployed spacecraft. These measurements are stored in many data formats on many different information systems with widely varying accessibility and have processes whose documentation ranges from extremely detailed to very minimal. Integrated and interdisciplinary modeling (enabled by the Earth System Model Framework) enable the types of ensemble analysis that are useful for decision processes associated with energy management, public health risk assessments, and optimizing transportation safety and efficiency. Interdisciplinary approaches challenge systems integrators (both scientists and engineers) to expand beyond the traditional boundaries of particular disciplines to develop, verify and validate, and ultimately benchmark the

  5. The South Florida Ecosystem Portfolio Model - A Map-Based Multicriteria Ecological, Economic, and Community Land-Use Planning Tool

    Science.gov (United States)

    Labiosa, William B.; Bernknopf, Richard; Hearn, Paul; Hogan, Dianna; Strong, David; Pearlstine, Leonard; Mathie, Amy M.; Wein, Anne M.; Gillen, Kevin; Wachter, Susan

    2009-01-01

    The South Florida Ecosystem Portfolio Model (EPM) prototype is a regional land-use planning Web tool that integrates ecological, economic, and social information and values of relevance to decision-makers and stakeholders. The EPM uses a multicriteria evaluation framework that builds on geographic information system-based (GIS) analysis and spatially-explicit models that characterize important ecological, economic, and societal endpoints and consequences that are sensitive to regional land-use/land-cover (LULC) change. The EPM uses both economics (monetized) and multiattribute utility (nonmonetized) approaches to valuing these endpoints and consequences. This hybrid approach represents a methodological middle ground between rigorous economic and ecological/ environmental scientific approaches. The EPM sacrifices some degree of economic- and ecological-forecasting precision to gain methodological transparency, spatial explicitness, and transferability, while maintaining credibility. After all, even small steps in the direction of including ecosystem services evaluation are an improvement over current land-use planning practice (Boyd and Wainger, 2003). There are many participants involved in land-use decision-making in South Florida, including local, regional, State, and Federal agencies, developers, environmental groups, agricultural groups, and other stakeholders (South Florida Regional Planning Council, 2003, 2004). The EPM's multicriteria evaluation framework is designed to cut across the objectives and knowledge bases of all of these participants. This approach places fundamental importance on social equity and stakeholder participation in land-use decision-making, but makes no attempt to determine normative socially 'optimal' land-use plans. The EPM is thus a map-based set of evaluation tools for planners and stakeholders to use in their deliberations of what is 'best', considering a balancing of disparate interests within a regional perspective. Although

  6. An RM-ODP Based Ontology and a CAD Tool for Modeling Hierarchical Systems in Enterprise Architecture

    OpenAIRE

    Lê, Lam Son; Wegmann, Alain

    2005-01-01

    Enterprise Architecture (EA) requires modeling enterprises across multiple levels (from markets down to IT systems) i.e. modeling hierarchical systems. Our goal is to build a Computer Aided Design (CAD) tool for EA. To be able to build this CAD tool, we need an ontology that can be used to describe hierarchical systems. The Reference Model of Open Distributed Processing (RM-ODP) was originally defined for describing IT systems and their environment. RM-ODP can also be suited to general, hier...

  7. Applied, theoretical modeling of space-based assembly, using expert system architecture for computer-aided engineering tool development

    Science.gov (United States)

    Jolly, Steven Douglas

    1992-01-01

    The challenges associated with constructing interplanetary spacecraft and space platforms in low earth orbit are such that it is imperative that comprehensive, preliminary process planning analyses be completed before committing funds for Phase B design (detail design, development). Phase A and 'pre-Phase A' design activities will commonly address engineering questions such as mission-design structural integrity, attitude control, thermal control, etc. But the questions of constructability, maintainability and reliability during the assembly phase usually go unaddressed until the more mature stages of design (or very often production) are reached. This is an unacceptable strategy for future space missions whether they be government or commercial ventures. After interviews with expert Aerospace and Construction industry planners a new methodology was formulated and a Blackboard Metaphor Knowledge-based Expert System synthesis model has been successfully developed which can decompose interplanetary vehicles into deliverable orbital subassemblies. Constraint propagation, including launch vehicle payload shroud envelope, is accomplished with heuristic and numerical algorithms including a unique adaptation of a reasoning technique used by Stanford researchers in terrestrial automated process planning. The model is a hybrid combination of rule and frame-based representations, designed to integrate into a Computer-Aided Engineering (CAE) environment. Emphasis is placed on the actual joining, rendezvous, and refueling of the orbiting, dynamic spacecraft. Significant results of this new methodology upon a large Mars interplanetary spacecraft (736,000 kg) designed by Boeing, show high correlation to manual decomposition and planning analysis studies, but at a fraction of the time, and with little user interaction. Such Computer-Aided Engineering (CAE) tools would greatly leverage the designers ability to assess constructability.

  8. Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools

    Science.gov (United States)

    López de Lacalle, Luis Norberto; Urbicain Pelayo, Gorka; Fernández-Valdivielso, Asier; Alvarez, Alvaro; González, Haizea

    2017-09-01

    Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation. This paper establishes the cutting force relation between work-piece and tool in the turning of such difficult-to-cut alloys by means of a mechanistic cutting force model that considers the tool wear effect. The cutting force model demonstrates the force sensitivity to the cutting engagement parameters (ap, f) when using ceramic inserts and wear is considered. Wear is introduced through a cutting time factor, being useful in real conditions taking into account that wear quickly appears in alloys machining. A good accuracy in the cutting force model coefficients is the key issue for an accurate prediction of turning forces, which could be used as criteria for tool replacement or as input for chatter or other models.

  9. Enzyme kinetics modeling as a tool to optimize food industry: a pragmatic approach based on amylolytic enzymes.

    Science.gov (United States)

    Galanakis, Charis M; Patsioura, Anna; Gekas, Vassilis

    2015-01-01

    Modeling is an important tool in the food industry since it is able to simplify explanation of phenomena and optimize processes that cover a broad field from manufacture to byproducts treatment. The goal of the current article is to explore the development of enzyme kinetic models and their evolution over the last decades. For this reason, corresponding simulations were classified in deterministic, empirical, and stochastic models, prior investigating limitations, corrections, and industrial applications in each case. The ultimate goal is to provide an answer to a major problem: how can we develop an intermediate complexity model that achieves satisfactorily representation of the main phenomena with a limited number of parameters?

  10. Application of a flexible lattice Boltzmann method based simulation tool for modelling physico-chemical processes at different scales

    Science.gov (United States)

    Patel, Ravi A.; Perko, Janez; Jacques, Diederik

    2017-04-01

    Often, especially in the disciplines related to natural porous media, such as for example vadoze zone or aquifer hydrology or contaminant transport, the relevant spatial and temporal scales on which we need to provide information is larger than the scale where the processes actually occur. Usual techniques used to deal with these problems assume the existence of a REV. However, in order to understand the behavior on larger scales it is important to downscale the problem onto the relevant scale of the processes. Due to the limitations of resources (time, memory) the downscaling can only be made up to the certain lower scale. At this lower scale still several scales may co-exist - the scale which can be explicitly described and a scale which needs to be conceptualized by effective properties. Hence, models which are supposed to provide effective properties on relevant scales should therefor be flexible enough to represent complex pore-structure by explicit geometry on one side, and differently defined processes (e.g. by the effective properties) which emerge on lower scale. In this work we present the state-of-the-art lattice Boltzmann method based simulation tool applicable to advection-diffusion equation coupled to geochemical processes. The lattice Boltzmann transport solver can be coupled with an external geochemical solver which allows to account for a wide range of geochemical reaction networks through thermodynamic databases. The applicability to multiphase systems is ongoing. We provide several examples related to the calculation of an effective diffusion properties, permeability and effective reaction rate based on a continuum scale based on the pore scale geometry.

  11. Development and implementation of a GIS-based tool for spatial modeling of seismic vulnerability of Tehran

    Directory of Open Access Journals (Sweden)

    M. Hashemi

    2012-12-01

    Full Text Available Achieving sustainable development in countries prone to earthquakes is possible with taking effective measures to reduce vulnerability to earthquakes. In this context, damage assessment of hypothetical earthquakes and planning for disaster management are important issues. Having a computer tool capable of estimating structural and human losses from earthquakes in a specific region may facilitate the decision-making process before and during disasters. Interoperability of this tool with wide-spread spatial analysis frameworks will expedite the data transferring process. In this study, the earthquake damage assessment (EDA software tool is developed as an embedded extension within a GIS (geographic information system environment for the city of Tehran, Iran. This GIS-based extension provides users with a familiar environment to estimate and observe the probable damages and fatalities of a deterministic earthquake scenario. The productivity of this tool is later demonstrated for southern Karoon parish, Region 10, Tehran. Three case studies for three active faults in the area and a comparison of the results with other research substantiated the reliability of this tool for additional earthquake scenarios.

  12. Identifying and prioritizing the tools/techniques of knowledge management based on the Asian Productivity Organization Model (APO) to use in hospitals.

    Science.gov (United States)

    Khajouei, Hamid; Khajouei, Reza

    2017-12-01

    Appropriate knowledge, correct information, and relevant data are vital in medical diagnosis and treatment systems. Knowledge Management (KM) through its tools/techniques provides a pertinent framework for decision-making in healthcare systems. The objective of this study was to identify and prioritize the KM tools/techniques that apply to hospital setting. This is a descriptive-survey study. Data were collected using a -researcher-made questionnaire that was developed based on experts' opinions to select the appropriate tools/techniques from 26 tools/techniques of the Asian Productivity Organization (APO) model. Questions were categorized into five steps of KM (identifying, creating, storing, sharing, and applying the knowledge) according to this model. The study population consisted of middle and senior managers of hospitals and managing directors of Vice-Chancellor for Curative Affairs in Kerman University of Medical Sciences in Kerman, Iran. The data were analyzed in SPSS v.19 using one-sample t-test. Twelve out of 26 tools/techniques of the APO model were identified as the tools applicable in hospitals. "Knowledge café" and "APO knowledge management assessment tool" with respective means of 4.23 and 3.7 were the most and the least applicable tools in the knowledge identification step. "Mentor-mentee scheme", as well as "voice and Voice over Internet Protocol (VOIP)" with respective means of 4.20 and 3.52 were the most and the least applicable tools/techniques in the knowledge creation step. "Knowledge café" and "voice and VOIP" with respective means of 3.85 and 3.42 were the most and the least applicable tools/techniques in the knowledge storage step. "Peer assist and 'voice and VOIP' with respective means of 4.14 and 3.38 were the most and the least applicable tools/techniques in the knowledge sharing step. Finally, "knowledge worker competency plan" and "knowledge portal" with respective means of 4.38 and 3.85 were the most and the least applicable tools

  13. Using Collaborative Simulation Modeling to Develop a Web-Based Tool to Support Policy-Level Decision Making About Breast Cancer Screening Initiation Age

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Burnside MD, MPH, MS

    2017-07-01

    Full Text Available Background: There are no publicly available tools designed specifically to assist policy makers to make informed decisions about the optimal ages of breast cancer screening initiation for different populations of US women. Objective: To use three established simulation models to develop a web-based tool called Mammo OUTPuT. Methods: The simulation models use the 1970 US birth cohort and common parameters for incidence, digital screening performance, and treatment effects. Outcomes include breast cancers diagnosed, breast cancer deaths averted, breast cancer mortality reduction, false-positive mammograms, benign biopsies, and overdiagnosis. The Mammo OUTPuT tool displays these outcomes for combinations of age at screening initiation (every year from 40 to 49, annual versus biennial interval, lifetime versus 10-year horizon, and breast density, compared to waiting to start biennial screening at age 50 and continuing to 74. The tool was piloted by decision makers (n = 16 who completed surveys. Results: The tool demonstrates that benefits in the 40s increase linearly with earlier initiation age, without a specific threshold age. Likewise, the harms of screening increase monotonically with earlier ages of initiation in the 40s. The tool also shows users how the balance of benefits and harms varies with breast density. Surveys revealed that 100% of users (16/16 liked the appearance of the site; 94% (15/16 found the tool helpful; and 94% (15/16 would recommend the tool to a colleague. Conclusions: This tool synthesizes a representative subset of the most current CISNET (Cancer Intervention and Surveillance Modeling Network simulation model outcomes to provide policy makers with quantitative data on the benefits and harms of screening women in the 40s. Ultimate decisions will depend on program goals, the population served, and informed judgments about the weight of benefits and harms.

  14. SU-E-T-259: A Statistical and Machine Learning-Based Tool for Modeling and Visualization of Radiotherapy Treatment Outcomes.

    Science.gov (United States)

    Oh, J; Wang, Y; Apte, A; Deasy, J

    2012-06-01

    Effective radiotherapy outcomes modeling could provide physicians with better understanding of the underlying disease mechanism, enabling to early predict outcomes and ultimately allowing for individualizing treatment for patients at high risk. This requires not only sophisticated statistical methods, but user-friendly visualization and data analysis tools. Unfortunately, few tools are available to support these requirements in radiotherapy community. Our group has developed Matlab-based in-house software called DREES for statistical modeling of radiotherapy treatment outcomes. We have noticed that advanced machine learning techniques can be used as useful tools for analyzing and modeling the outcomes data. To this end, we have upgraded DREES such that it takes advantage of useful Statistics and Bioinformatics toolboxes in Matlab that provide robust statistical data modeling and analysis methods as well as user-friendly visualization and graphical interface. Newly added key features include variable selection, discriminant analysis and decision tree for classification, and k-means and hierarchical clustering functions. Also, existing graphical tools and statistical methods in DREES were replaced with a library of the Matlab toolboxes. We analyzed several radiotherapy outcomes datasets with our tools and showed that these can be effectively used for building normal tissue complication probability (NTCP) and tumor control probability (TCP) models. We have developed an integrated software tool for modeling and visualization of radiotherapy outcomes data within the Matlab programming environment. It is our expectation that this tool could help physicians and scientists better understand the complex mechanism of disease and identify clinical and biological factors related to outcomes. © 2012 American Association of Physicists in Medicine.

  15. Developing and testing a measurement tool for assessing predictors of breakfast consumption based on a health promotion model.

    Science.gov (United States)

    Dehdari, Tahereh; Rahimi, Tahereh; Aryaeian, Naheed; Gohari, Mahmood Reza; Esfeh, Jabiz Modaresi

    2014-01-01

    To develop an instrument for measuring Health Promotion Model constructs in terms of breakfast consumption, and to identify the constructs that were predictors of breakfast consumption among Iranian female students. A questionnaire on Health Promotion Model variables was developed and potential predictors of breakfast consumption were assessed using this tool. One hundred female students, mean age 13 years (SD ± 1.2 years). Two middle schools from moderate-income areas in Qom, Iran. Health Promotion Model variables were assessed using a 58-item questionnaire. Breakfast consumption was also measured. Internal consistency (Cronbach alpha), content validity index, content validity ratio, multiple linear regression using stepwise method, and Pearson correlation. Content validity index and content validity ratio scores of the developed scale items were 0.89 and 0.93, respectively. Internal consistencies (range, .74-.91) of subscales were acceptable. Prior related behaviors, perceived barriers, self-efficacy, and competing demand and preferences were 4 constructs that could predict 63% variance of breakfast frequency per week among subjects. The instrument developed in this study may be a useful tool for researchers to explore factors affecting breakfast consumption among students. Students with a high level of self-efficacy, more prior related behavior, fewer perceived barriers, and fewer competing demands were most likely to regularly consume breakfast. Copyright © 2014 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.

  16. Development of the GREEN (Garden Resources, Education, and Environment Nexus) Tool: An Evidence-Based Model for School Garden Integration.

    Science.gov (United States)

    Burt, Kate Gardner; Koch, Pamela; Contento, Isobel

    2017-10-01

    Researchers have established the benefits of school gardens on students' academic achievement, dietary outcomes, physical activity, and psychosocial skills, yet limited research has been conducted about how school gardens become institutionalized and sustained. Our aim was to develop a tool that captures how gardens are effectively established, integrated, and sustained in schools. We conducted a sequential, exploratory, mixed-methods study. Participants were identified with the help of Grow To Learn, the organization coordinating the New York City school garden initiative, and recruited via e-mail. A stratified, purposeful sample of 21 New York City elementary and middle schools participated in this study throughout the 2013/2014 school year. The sample was stratified in their garden budgets and purposeful in that each of the schools' gardens were determined to be well integrated and sustained. The processes and strategies used by school gardeners to establish well-integrated school gardens were assessed via data collected from surveys, interviews, observations, and concept mapping. Descriptive statistics as well as multidimensional scaling and hierarchical cluster analysis were used to examine the survey and concept mapping data. Qualitative data analysis consisted of thematic coding, pattern matching, explanation building and cross-case synthesis. Nineteen components within four domains of school garden integration were found through the mixed-methods concept mapping analysis. When the analyses of other data were combined, relationships between domains and components emerged. These data resulted in the development of the GREEN (Garden Resources, Education, and Environment Nexus) Tool. When schools with integrated and sustained gardens were studied, patterns emerged about how gardeners achieve institutionalization through different combinations of critical components. These patterns are best described by the GREEN Tool, the first framework to identify how to

  17. Hard- and software of real time simulation tools of Electric Power System for adequate modeling power semiconductors in voltage source convertor based HVDC and FACTS

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2014-01-01

    Full Text Available The motivation of the presented research is based on the needs for development of new methods and tools for adequate simulation of Flexible Alternating Current Transmission System (FACTS devices and High Voltage Direct Current Transmission (HVDC system as part of real electric power systems (EPS. For that, a hybrid approach for advanced simulation of the FACTS and HVDC based on Voltage Source is proposed. The presented simulation results of the developed hybrid model of VSC confirm the achievement of the desired properties of the model and the effectiveness of the proposed solutions.

  18. Development and Psychometric of Assessment Tool of Students\\' Preventive Behaviors of Cutaneous Leishmaniosis Based on BASNEF Model

    Directory of Open Access Journals (Sweden)

    Musalreza Ghodsi

    2017-08-01

    The results showed that prevention behavior questionnaire of skin, cutaneous Based on BASNEF Model is valid and reliable with 36 items, and because of the strength of suitable factor structure and psychometric properties, researchers can use it in the  related studies.

  19. PROCARB: A Database of Known and Modelled Carbohydrate-Binding Protein Structures with Sequence-Based Prediction Tools

    Directory of Open Access Journals (Sweden)

    Adeel Malik

    2010-01-01

    Full Text Available Understanding of the three-dimensional structures of proteins that interact with carbohydrates covalently (glycoproteins as well as noncovalently (protein-carbohydrate complexes is essential to many biological processes and plays a significant role in normal and disease-associated functions. It is important to have a central repository of knowledge available about these protein-carbohydrate complexes as well as preprocessed data of predicted structures. This can be significantly enhanced by tools de novo which can predict carbohydrate-binding sites for proteins in the absence of structure of experimentally known binding site. PROCARB is an open-access database comprising three independently working components, namely, (i Core PROCARB module, consisting of three-dimensional structures of protein-carbohydrate complexes taken from Protein Data Bank (PDB, (ii Homology Models module, consisting of manually developed three-dimensional models of N-linked and O-linked glycoproteins of unknown three-dimensional structure, and (iii CBS-Pred prediction module, consisting of web servers to predict carbohydrate-binding sites using single sequence or server-generated PSSM. Several precomputed structural and functional properties of complexes are also included in the database for quick analysis. In particular, information about function, secondary structure, solvent accessibility, hydrogen bonds and literature reference, and so forth, is included. In addition, each protein in the database is mapped to Uniprot, Pfam, PDB, and so forth.

  20. Molecular Modeling and Simulation Tools in the Development of Peptide-Based Biosensors for Mycotoxin Detection: Example of Ochratoxin

    Directory of Open Access Journals (Sweden)

    Aby A. Thyparambil

    2017-12-01

    Full Text Available Mycotoxin contamination of food and feed is now ubiquitous. Exposures to mycotoxin via contact or ingestion can potentially induce adverse health outcomes. Affordable mycotoxin-monitoring systems are highly desired but are limited by (a the reliance on technically challenging and costly molecular recognition by immuno-capture technologies; and (b the lack of predictive tools for directing the optimization of alternative molecular recognition modalities. Our group has been exploring the development of ochratoxin detection and monitoring systems using the peptide NFO4 as the molecular recognition receptor in fluorescence, electrochemical and multimodal biosensors. Using ochratoxin as the model mycotoxin, we share our perspective on addressing the technical challenges involved in biosensor fabrication, namely: (a peptide receptor design; and (b performance evaluation. Subsequently, the scope and utility of molecular modeling and simulation (MMS approaches to address the above challenges are described. Informed and enabled by phage display, the subsequent application of MMS approaches can rationally guide subsequent biomolecular engineering of peptide receptors, including bioconjugation and bioimmobilization approaches to be used in the fabrication of peptide biosensors. MMS approaches thus have the potential to reduce biosensor development cost, extend product life cycle, and facilitate multi-analyte detection of mycotoxins, each of which positively contributes to the overall affordability of mycotoxin biosensor monitoring systems.

  1. Web tools for predictive toxicology model building.

    Science.gov (United States)

    Jeliazkova, Nina

    2012-07-01

    The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.

  2. Alien wavelength modeling tool and field trial

    DEFF Research Database (Denmark)

    Sambo, N.; Sgambelluri, A.; Secondini, M.

    2015-01-01

    A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...

  3. On the Development of a Java-Based Tool for Multifidelity Modeling of Coupled Systems LDRD Final Report

    CERN Document Server

    Gardner, D R; Gonzáles, M A; Hennigan, G L; Young, M

    2002-01-01

    This report describes research and development of methods to couple vastly different subsystems and physical models and to encapsulate these methods in a Java(trademark)-based framework. The work described here focused on developing a capability to enable design engineers and safety analysts to perform multifidelity, multiphysics analyses more simply. In particular this report describes a multifidelity algorithm for thermal radiative heat transfer and illustrates its performance. Additionally, it describes a module-based computer software architecture that facilitates multifidelity, multiphysics simulations. The architecture is currently being used to develop an environment for modeling the effects of radiation on electronic circuits in support of the FY 2003 Hostile Environments Milestone for the Accelerated Strategic Computing Initiative.

  4. Integrating decision management with UML modeling concepts and tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    2009-01-01

    Numerous design decisions including architectural decisions are made while developing a software system, which influence the architecture of the system as well as subsequent decisions. Several tools already exist for managing design decisions, i.e. capturing, documenting, and maintaining them......, but also for guiding the user by proposing subsequent decisions. In model-based software development, many decisions directly affect the structural and behavioral models used to describe and develop a software system and its architecture. However, the decisions are typically not connected to these models....... In this paper, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from an example: the UML modeling tool shall show all decisions related to a model and allow extending or updating them; the decision management tool shall trigger the modeling tool...

  5. A Physically-Based and Distributed Tool for Modeling the Hydrological and Mechanical Processes of Shallow Landslides

    Science.gov (United States)

    Arnone, E.; Noto, L. V.; Dialynas, Y. G.; Caracciolo, D.; Bras, R. L.

    2015-12-01

    This work presents the capabilities of a model, i.e. the tRIBS-VEGGIE-Landslide, in two different versions, i.e. developed within a probabilistic framework and coupled with a root cohesion module. The probabilistic model treats geotechnical and soil retention curve parameters as random variables across the basin and estimates theoretical probability distributions of slope stability and the associated "factor of safety" commonly used to describe the occurrence of shallow landslides. The derived distributions are used to obtain the spatio-temporal dynamics of probability of failure, conditioned on soil moisture dynamics at each watershed location. The framework has been tested in the Luquillo Experimental Forest (Puerto Rico) where shallow landslides are common. In particular, the methodology was used to evaluate how the spatial and temporal patterns of precipitation, whose variability is significant over the basin, affect the distribution of probability of failure. Another version of the model accounts for the additional cohesion exerted by vegetation roots. The approach is to use the Fiber Bundle Model (FBM) framework that allows for the evaluation of the root strength as a function of the stress-strain relationships of bundles of fibers. The model requires the knowledge of the root architecture to evaluate the additional reinforcement from each root diameter class. The root architecture is represented with a branching topology model based on Leonardo's rule. The methodology has been tested on a simple case study to explore the role of both hydrological and mechanical root effects. Results demonstrate that the effects of root water uptake can at times be more significant than the mechanical reinforcement; and that the additional resistance provided by roots depends heavily on the vegetation root structure and length.

  6. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative methodologies proposed in this STTR Phase 2 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being...

  7. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being...

  8. High Performance Multiphase Combustion Tool Using Level Set-Based Primary Atomization Coupled with Flamelet Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative methodologies proposed in this STTR Phase 1 project will enhance Loci-STREAM which is a high performance, high fidelity simulation tool already being...

  9. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.

    Directory of Open Access Journals (Sweden)

    Grigoriy E Pinchuk

    2010-06-01

    Full Text Available Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii developed an approach to identify cycles (such as futile cycles and circulations, (iii classified how reaction usage affects cellular growth, (iv predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a

  10. GPCR-SSFE 2.0-a fragment-based molecular modeling web tool for Class A G-protein coupled receptors.

    Science.gov (United States)

    Worth, Catherine L; Kreuchwig, Franziska; Tiemann, Johanna K S; Kreuchwig, Annika; Ritschel, Michele; Kleinau, Gunnar; Hildebrand, Peter W; Krause, Gerd

    2017-07-03

    G-protein coupled receptors (GPCRs) are key players in signal transduction and therefore a large proportion of pharmaceutical drugs target these receptors. Structural data of GPCRs are sparse yet important for elucidating the molecular basis of GPCR-related diseases and for performing structure-based drug design. To ameliorate this problem, GPCR-SSFE 2.0 (http://www.ssfa-7tmr.de/ssfe2/), an intuitive web server dedicated to providing three-dimensional Class A GPCR homology models has been developed. The updated web server includes 27 inactive template structures and incorporates various new functionalities. Uniquely, it uses a fingerprint correlation scoring strategy for identifying the optimal templates, which we demonstrate captures structural features that sequence similarity alone is unable to do. Template selection is carried out separately for each helix, allowing both single-template models and fragment-based models to be built. Additionally, GPCR-SSFE 2.0 stores a comprehensive set of pre-calculated and downloadable homology models and also incorporates interactive loop modeling using the tool SL2, allowing knowledge-based input by the user to guide the selection process. For visual analysis, the NGL viewer is embedded into the result pages. Finally, blind-testing using two recently published structures shows that GPCR-SSFE 2.0 performs comparably or better than other state-of-the art GPCR modeling web servers. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. GPCR-SSFE 2.0—a fragment-based molecular modeling web tool for Class A G-protein coupled receptors

    Science.gov (United States)

    Kreuchwig, Franziska; Tiemann, Johanna K.S.; Kreuchwig, Annika; Ritschel, Michele; Kleinau, Gunnar; Hildebrand, Peter W.; Krause, Gerd

    2017-01-01

    Abstract G-protein coupled receptors (GPCRs) are key players in signal transduction and therefore a large proportion of pharmaceutical drugs target these receptors. Structural data of GPCRs are sparse yet important for elucidating the molecular basis of GPCR-related diseases and for performing structure-based drug design. To ameliorate this problem, GPCR-SSFE 2.0 (http://www.ssfa-7tmr.de/ssfe2/), an intuitive web server dedicated to providing three-dimensional Class A GPCR homology models has been developed. The updated web server includes 27 inactive template structures and incorporates various new functionalities. Uniquely, it uses a fingerprint correlation scoring strategy for identifying the optimal templates, which we demonstrate captures structural features that sequence similarity alone is unable to do. Template selection is carried out separately for each helix, allowing both single-template models and fragment-based models to be built. Additionally, GPCR-SSFE 2.0 stores a comprehensive set of pre-calculated and downloadable homology models and also incorporates interactive loop modeling using the tool SL2, allowing knowledge-based input by the user to guide the selection process. For visual analysis, the NGL viewer is embedded into the result pages. Finally, blind-testing using two recently published structures shows that GPCR-SSFE 2.0 performs comparably or better than other state-of-the art GPCR modeling web servers. PMID:28582569

  12. Play it forward : A Game-based tool for Sustainable Product and Business Model Innovation in the Fuzzy Front End

    NARCIS (Netherlands)

    Dewulf, K.R.

    2010-01-01

    Dealing with sustainability in the fuzzy front end of innovation is complex and often hard. There are a number of tools available to guide designers, engineers and managers in the design process after the specifications of the product or service are already set, but methods supporting goal finding

  13. Comparison of two different modelling tools

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2009-01-01

    In this paper a test case is solved using two different modelling tools, Engineering Equation Solver (EES) and WinDali, in order to compare the tools. The system of equations solved, is a static model of an evaporator used for refrigeration. The evaporator consists of two parallel channels, and i...

  14. [A risk-based monitoring model for health care service institutions as a tool to protect health rights in Peru].

    Science.gov (United States)

    Benites-Zapata, Vicente A; Saravia-Chong, Héctor A; Mezones-Holguin, Edward; Aquije-Díaz, Allen J; Villegas-Ortega, José; Rossel-de-Almeida, Gustavo; Acosta-Saal, Carlos; Philipps-Cuba, Flor

    2016-01-01

    To describe the monitoring model of the Health Care Service Institutions (HCSI) of the National Health Authority (NHA) and assess the factors associated with risk-adjusted normative compliance (%RANC) within the Peruvian Health System (PHS). We carried out a case study of the experience of the NHA in the development and implementation of a monitoring program based on the ISO 31000-2009. With HCSI as the units of analysis, we calculated the %RANC (a scorein continuous scale ranging from 0 to 100) for comprehensive monitoring (CM) and for specific evaluations made from 2013 to 2015. A higher score in the %RANC means lower operational risk. Also, slope coefficients (β) and their 95% confidence intervals (95% CI) were estimated using generalized linear models to estimate the association between %RANC as outcome, and health subsector, region, level of care and year, as explanatory variables. The NHA made 1444 evaluations. For CM, only the Social Security Administration had higher %RANC than private centers (β=7.7%; 95% CI 3.5 to 11.9). The HCSI of the coastal region (β=-5.2, 95% CI -9.4 to -1.0), andean region (β=-12.5; 95% CI -16.7 to -8.3) and jungle region (β=-12.6, 95% CI% -17.7 to -7.6) had lower %RANC than those located in Lima Metropolitan area. %RANC was higher in 2015 than 2013 (β=10.8; 95% CI 6.4 to 15.3). The %RANC differs by health subsector, region and year of supervision. For CM, the HCSI in the Social Security Administration and in the Lima Metropolitan area had better scores, and scores improved over time. The implementation of actions aimed at improving %RANC in order to foster the full exercise of health rights in the PHS is suggested.

  15. Wear-dependent specific coefficients in a mechanistic model for turning of nickel-based superalloy with ceramic tools

    Directory of Open Access Journals (Sweden)

    López de Lacalle Luis Norberto

    2017-09-01

    Full Text Available Difficult to cut materials such as nickel and titanium alloys are used in the aeronautical industry, the former alloys due to its heat-resistant behavior and the latter for the low weight - high strength ratio. Ceramic tools made out alumina with reinforce SiC whiskers are a choice in turning for roughing and semifinishing workpiece stages. Wear rate is high in the machining of these alloys, and consequently cutting forces tends to increase along one operation.

  16. Modeling and Tool Wear in Routing of CFRP

    International Nuclear Information System (INIS)

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.; Lopez de Lacalle, L. N.; Girot, F.

    2011-01-01

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the tool wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.

  17. Collaboro: a collaborative (meta modeling tool

    Directory of Open Access Journals (Sweden)

    Javier Luis Cánovas Izquierdo

    2016-10-01

    Full Text Available Software development is becoming more and more collaborative, emphasizing the role of end-users in the development process to make sure the final product will satisfy customer needs. This is especially relevant when developing Domain-Specific Modeling Languages (DSMLs, which are modeling languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays. In this paper, we propose a more community-aware language development process by enabling the active participation of all community members (both developers and end-users from the very beginning. Our proposal, called Collaboro, is based on a DSML itself enabling the representation of change proposals during the language design and the discussion (and trace back of possible solutions, comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based recommender system to help community members to define high-quality notations for the DSMLs. We also show how Collaboro can be used at the model-level to facilitate the collaborative specification of software models. Tool support is available both as an Eclipse plug-in a web-based solution.

  18. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  19. qDNAmod: a statistical model-based tool to reveal intercellular heterogeneity of DNA modification from SMRT sequencing data

    Science.gov (United States)

    Feng, Zhixing; Li, Jing; Zhang, Jing-Ren; Zhang, Xuegong

    2014-01-01

    In an isogenic cell population, phenotypic heterogeneity among individual cells is common and critical for survival of the population under different environment conditions. DNA modification is an important epigenetic factor that can regulate phenotypic heterogeneity. The single molecule real-time (SMRT) sequencing technology provides a unique platform for detecting a wide range of DNA modifications, including N6-methyladenine (6-mA), N4-methylcytosine (4-mC) and 5-methylcytosine (5-mC). Here we present qDNAmod, a novel bioinformatic tool for genome-wide quantitative profiling of intercellular heterogeneity of DNA modification from SMRT sequencing data. It is capable of estimating proportion of isogenic haploid cells, in which the same loci of the genome are differentially modified. We tested the reliability of qDNAmod with the SMRT sequencing data of Streptococcus pneumoniae strain ST556. qDNAmod detected extensive intercellular heterogeneity of DNA methylation (6-mA) in a clonal population of ST556. Subsequent biochemical analyses revealed that the recognition sequences of two type I restriction–modification (R-M) systems are responsible for the intercellular heterogeneity of DNA methylation initially identified by qDNAmod. qDNAmod thus represents a valuable tool for studying intercellular phenotypic heterogeneity from genome-wide DNA modification. PMID:25404133

  20. Using ComBase Predictor and Pathogen Modeling Program as support tools in outbreak investigation: an example from Denmark

    DEFF Research Database (Denmark)

    Møller, Cleide; Hansen, Tina Beck; Andersen, Jens Kirk

    2009-01-01

    of salt to the batter. A deterministic model was constructed in Microsoft Excel using information on the production of the implicated sausage. This model predicted the level of Y. enterocolitica to increase 2.3, 4.2 and 7.8 log-units during fermentation, drying and storage, respectively. At the point...

  1. A comprehensive tool for image-based generation of fetus and pregnant women mesh models for numerical dosimetry studies

    International Nuclear Information System (INIS)

    Dahdouh, S; Serrurier, A; De la Plata, J-P; Anquez, J; Angelini, E D; Bloch, I; Varsier, N; Wiart, J

    2014-01-01

    Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer. (paper)

  2. ANSYS tools in modeling tires

    Science.gov (United States)

    Ali, Ashraf; Lovell, Michael

    1995-01-01

    This presentation summarizes the capabilities in the ANSYS program that relate to the computational modeling of tires. The power and the difficulties associated with modeling nearly incompressible rubber-like materials using hyperelastic constitutive relationships are highlighted from a developer's point of view. The topics covered include a hyperelastic material constitutive model for rubber-like materials, a general overview of contact-friction capabilities, and the acoustic fluid-structure interaction problem for noise prediction. Brief theoretical development and example problems are presented for each topic.

  3. An Ecosystem of Intelligent ICT Tools for Speech-Language Therapy Based on a Formal Knowledge Model.

    Science.gov (United States)

    Robles-Bykbaev, Vladimir; López-Nores, Martín; Pazos-Arias, José; Quisi-Peralta, Diego; García-Duque, Jorge

    2015-01-01

    The language and communication constitute the development mainstays of several intellectual and cognitive skills in humans. However, there are millions of people around the world who suffer from several disabilities and disorders related with language and communication, while most of the countries present a lack of corresponding services related with health care and rehabilitation. On these grounds, we are working to develop an ecosystem of intelligent ICT tools to support speech and language pathologists, doctors, students, patients and their relatives. This ecosystem has several layers and components, integrating Electronic Health Records management, standardized vocabularies, a knowledge database, an ontology of concepts from the speech-language domain, and an expert system. We discuss the advantages of such an approach through experiments carried out in several institutions assisting children with a wide spectrum of disabilities.

  4. Stress urinary incontinence animal models as a tool to study cell-based regenerative therapies targeting the urethral sphincter.

    Science.gov (United States)

    Herrera-Imbroda, Bernardo; Lara, María F; Izeta, Ander; Sievert, Karl-Dietrich; Hart, Melanie L

    2015-03-01

    Urinary incontinence (UI) is a major health problem causing a significant social and economic impact affecting more than 200million people (women and men) worldwide. Over the past few years researchers have been investigating cell therapy as a promising approach for the treatment of stress urinary incontinence (SUI) since such an approach may improve the function of a weakened sphincter. Currently, a diverse collection of SUI animal models is available. We describe the features of the different models of SUI/urethral dysfunction and the pros and cons of these animal models in regard to cell therapy applications. We also discuss different cell therapy approaches and cell types tested in preclinical animal models. Finally, we propose new research approaches and perspectives to ensure the use of cellular therapy becomes a real treatment option for SUI. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Modeling and Decision Support Tools Based on the Effects to Sediment Geochemistry and Microbial Populations on Contaminant Reactions in Sediments

    Science.gov (United States)

    2011-09-01

    macroinvertebrates with different PCB sources. Phytophilous macroinvertebrates (PMI) primarily accumulate PCBs from the water column, while benthic... macroinvertebrates (BMI) primarily accumulate PCBs from the sediment. Thus, processes will be written to describe the uptake of PCBs from the water and...Carlo Techniques for Water - Quality Model Uncertainty." Ecological Modeling 62(1-3): 149- 162. Duhamel, M., K. Mo and E. A. Edwards (2004

  6. Web-based Open Tool Integration Framework

    Science.gov (United States)

    2006-05-01

    tool that produces gene/transcription factor maps. Used in systems biology. Ptolemy A modeling and simulation environment developed by Prof. Ed Lee...is illustrated in the figure below. 8 Simulink/Stateflow Functional modeling ECSL-DP/GME System modeling MOML Ptolemy Simulation M D L 2 D...system in Ptolemy ), (b) Giotto code (for executing the models as a Giotto program), (c) analysis models (for schedulability analysis using AIRES), and

  7. Using ComBase Predictor and Pathogen Modeling Program as support tools in outbreak investigation: an example from Denmark

    DEFF Research Database (Denmark)

    Møller, Cleide; Hansen, Tina Beck; Andersen, Jens Kirk

    2009-01-01

    of salt to the batter. A deterministic model was constructed in Microsoft Excel using information on the production of the implicated sausage. This model predicted the level of Y. enterocolitica to increase 2.3, 4.2 and 7.8 log-units during fermentation, drying and storage, respectively. At the point...... of release of the sausage for sale, 1 Y. enterocolitica could have increased to 106 and the sausage could, therefore, not be ruled out as the source of Y. enterocolitica found in two of the outbreak cases....

  8. ECONOMIC MODEL AND TOOLS OF THE AIR PROTECTION MANAGEMENT BASED ON THE EXAMPLE OF A COKING PLANT

    Directory of Open Access Journals (Sweden)

    Danuta Hilse

    2014-10-01

    Full Text Available Legal-economic models of the air protection management at the Polish industrial plants, which take into account the regulations of the Act on “Environment protection law”, are far from being perfect. It is particularly noticeable in the coking industry where chargeable pollutions are chosen selectively, and unitary rates of emission charges are agreed at random. Tax deductions are not granted either to producers of fuel coke for reduction of pollutants emission in municipal-housing management after replacing coal with fuel coke. The proposed new economic model of the air protection management at coking plants eliminates the existing shortcomings.

  9. Rapid response tools and datasets for post-fire modeling: Linking Earth Observations and process-based hydrological models to support post-fire remediation

    Science.gov (United States)

    M. E. Miller; M. Billmire; W. J. Elliot; K. A. Endsley; P. R. Robichaud

    2015-01-01

    Preparation is key to utilizing Earth Observations and process-based models to support post-wildfire mitigation. Post-fire flooding and erosion can pose a serious threat to life, property and municipal water supplies. Increased runoff and sediment delivery due to the loss of surface cover and fire-induced changes in soil properties are of great concern. Remediation...

  10. Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale

    Czech Academy of Sciences Publication Activity Database

    Thuiller, W.; Richardson, D. M.; Pyšek, Petr; Midgley, G. F.; Hughes, G. O.; Rouget, M.

    2005-01-01

    Roč. 11, - (2005), s. 2234-2250 ISSN 1354-1013 R&D Projects: GA ČR GA206/03/1216 Institutional research plan: CEZ:AV0Z60050516 Keywords : bioclimatic modelling * biological invasions * risk assessment Subject RIV: EF - Botanics Impact factor: 4.075, year: 2005

  11. Development of a cardiovascular diseases risk prediction model and tools for Chinese patients with type 2 diabetes mellitus: A population-based retrospective cohort study.

    Science.gov (United States)

    Wan, Eric Yuk Fai; Fong, Daniel Yee Tak; Fung, Colman Siu Cheung; Yu, Esther Yee Tak; Chin, Weng Yee; Chan, Anca Ka Chun; Lam, Cindy Lo Kuen

    2018-02-01

    Evidence-based cardiovascular diseases (CVD) risk prediction models and tools specific for Chinese patients with type 2 diabetes mellitus (T2DM) are currently unavailable. This study aimed to develop and validate a CVD risk prediction model for Chinese T2DM patients. A retrospective cohort study was conducted with 137 935 Chinese patients aged 18 to 79 years with T2DM and without prior history of CVD, who had received public primary care services between January 1, 2010 and December 31, 2010. Using the derivation cohort over a median follow-up of 5 years, the interaction effect between predictors and age were derived using Cox proportional hazards regression with a forward stepwise approach. Harrell's C statistic and calibration plot were used on the validation cohort to assess the discrimination and calibration of the models. The web calculator and chart were developed based on the developed models. For both genders, predictors for higher risk of CVD were older age, smoking, longer diabetes duration, usage of anti-hypertensive drug and insulin, higher body mass index, haemoglobin A1c (HbA1c), systolic and diastolic blood pressure, a total cholesterol to high-density lipoprotein-cholesterol (TC/HDL-C) ratio and urine albumin to creatinine ratio, and lower estimated glomerular filtration rate. Interaction factors with age demonstrated a greater weighting of TC/HDL-C ratio in both younger females and males, and smoking status and HbA1c in younger males. The developed models, translated into a web calculator and color-coded chart, served as evidence-based visual aids that facilitate clinicians to estimate quickly the 5-year CVD risk for Chinese T2DM patients and to guide intervention. © 2017 John Wiley & Sons Ltd.

  12. Systematic Methods and Tools for Computer Aided Modelling

    DEFF Research Database (Denmark)

    Fedorova, Marina

    Models are playing important roles in design and analysis of chemicals/bio-chemicals based products and the processes that manufacture them. Model-based methods and tools have the potential to decrease the number of experiments, which can be expensive and time consuming, and point to candidates......, where the experimental effort could be focused. In this project a general modelling framework for systematic model building through modelling templates, which supports the reuse of existing models via its new model import and export capabilities, have been developed. The new feature for model transfer...... has been developed by establishing a connection with an external modelling environment for code generation. The main contribution of this thesis is a creation of modelling templates and their connection with other modelling tools within a modelling framework. The goal was to create a user...

  13. Assessment of low contrast detection in CT using model observers. Developing a clinically-relevant tool for characterising adaptive statistical and model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Ott, Julien G.; Ba, Alexandre; Racine, Damien; Viry, Anais; Bochud, Francois O.; Verdun, Francis R. [Univ. Hospital Lausanne (Switzerland). Inst. of Radiation Physics

    2017-08-01

    This study aims to assess CT image quality in a way that would meet specific requirements of clinical practice. Physics metrics like Fourier transform derived metrics were traditionally employed for that. However, assessment methods through a detection task have also developed quite extensively lately, and we chose here to rely on this modality for image quality assessment. Our goal was to develop a tool adapted for a fast and reliable CT image quality assessment in order to pave the way for new CT benchmarking techniques in a clinical context. Additionally, we also used this method to estimate the benefits brought by some IR algorithms. A modified QRM chest phantom containing spheres of 5 and 8 mm at contrast levels of 10 and 20 HU at 120 kVp was used. Images of the phantom were acquired at CTDI{sub vol} of 0.8, 3.6, 8.2 and 14.5 mGy, before being reconstructed using FBP, ASIR 40 and MBIR on a GE HD 750 CT scanner. They were then assessed by eight human observers undergoing a 4-AFC test. After that, these data were compared with the results obtained from two different model observers (NPWE and CHO with DDoG channels). The study investigated the effects of the acquisition conditions as well as reconstruction methods. NPWE and CHO models both gave coherent results and approximated human observer results well. Moreover, the reconstruction technique used to retrieve the images had a clear impact on the PC values. Both models suggest that switching from FBP to ASIR 40 and particularly to MBIR produces an increase of the low contrast detection, provided a minimum level of exposure is reached. Our work shows that both CHO with DDoG channels and NPWE models both approximate the trend of humans performing a detection task. Both models also suggest that the use of MBIR goes along with an increase of the PCs, indicating that further dose reduction is still possible when using those techniques. Eventually, the CHO model associated to the protocol we described in this study

  14. A pandemic influenza modeling and visualization tool

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Ross; Livengood, Philip; Rudolph, Stephen; Collins, Timothy F.; Ebert, David S.; Brigantic, Robert T.; Corley, Courtney D.; Muller, George A.; Sanders, Stephen W.

    2011-08-01

    The National Strategy for Pandemic Influenza outlines a plan for community response to a potential pandemic. In this outline, state and local communities are charged with enhancing their preparedness. In order to help public health officials better understand these charges, we have developed a modeling and visualization toolkit (PanViz) for analyzing the effect of decision measures implemented during a simulated pandemic influenza scenario. Spread vectors based on the point of origin and distance traveled over time are calculated and the factors of age distribution and population density are taken into effect. Healthcare officials are able to explore the effects of the pandemic on the population through a spatiotemporal view, moving forward and backward through time and inserting decision points at various days to determine the impact. Linked statistical displays are also shown, providing county level summaries of data in terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently, this tool has been deployed in Indiana State Department of Health planning and preparedness exercises, and as an educational tool for demonstrating the impact of social distancing strategies during the recent H1N1 (swine flu) outbreak.

  15. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  16. System level modelling with open source tools

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Niaki, Seyed Hosein Attarzadeh

    , called ForSyDe. ForSyDe is available under the open Source approach, which allows small and medium enterprises (SME) to get easy access to advanced modeling capabilities and tools. We give an introduction to the design methodology through the system level modeling of a simple industrial use case, and we...

  17. Static Stiffness Modeling of Parallel Kinematics Machine Tool Joints

    OpenAIRE

    O. K. Akmaev; B. A. Enikeev; A. I. Nigmatullin

    2015-01-01

    The possible variants of an original parallel kinematics machine-tool structure are explored in this article. A new Hooke's universal joint design based on needle roller bearings with the ability of a preload setting is proposed. The bearing stiffness modeling is carried out using a variety of methods. The elastic deformation modeling of a Hook’s joint and a spherical rolling joint have been developed to assess the possibility of using these joints in machine tools with parallel k...

  18. Towards a generalized energy prediction model for machine tools.

    Science.gov (United States)

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  19. Risk Assessment in Fractured Clayey Tills - Which Modeling Tools?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Binning, Philip John

    2012-01-01

    The article presents different tools available for risk assessment in fractured clayey tills and their advantages and limitations are discussed. Because of the complex processes occurring during contaminant transport through fractured media, the development of simple practical tools for risk...... assessment is challenging and the inclusion of the relevant processes is difficult. Furthermore the lack of long-term monitoring data prevents from verifying the accuracy of the different conceptual models. Further investigations based on long-term data and numerical modeling are needed to accurately...... describe contaminant transport in fractured media and develop practical tools with the relevant processes and level of complexity....

  20. Hypermedia as an experiential learning tool: a theoretical model

    OpenAIRE

    Jose Miguel Baptista Nunes; Susan P. Fowell

    1996-01-01

    The process of methodical design and development is of extreme importance in the production of educational software. However, this process will only be effective, if it is based on a theoretical model that explicitly defines what educational approach is being used and how specific features of the technology can best support it. This paper proposes a theoretical model of how hypermedia can be used as an experiential learning tool. The development of the model was based on a experiential learni...

  1. Software tools for microprocessor based systems

    CERN Document Server

    Halatsis, C

    1981-01-01

    After a short review of the hardware and/or software tools for the development of single-chip, fixed instruction set microprocessor-based systems the author focuses on the software tools for designing systems based on microprogrammed bit-sliced microprocessors. Emphasis is placed on meta-microassemblers and simulation facilities at the register-transfer-level and architecture level. The author reviews available meta-microassemblers giving their most important features, advantages and disadvantages. He also makes extensions to higher-level microprogramming languages and associated systems specifically developed for bit-slices. In the area of simulation facilities the author first discusses the simulation objectives and the criteria for choosing the right simulation language. He concentrates on simulation facilities already used in bit-slices projects and discusses the gained experience, and concludes by describing the way the Signetics meta-microassembler and the ISPS simulation tool have been employed in the ...

  2. Web-Based Learning Design Tool

    Science.gov (United States)

    Bruno, F. B.; Silva, T. L. K.; Silva, R. P.; Teixeira, F. G.

    2012-01-01

    Purpose: The purpose of this paper is to propose a web-based tool that enables the development and provision of learning designs and its reuse and re-contextualization as generative learning objects, aimed at developing educational materials. Design/methodology/approach: The use of learning objects can facilitate the process of production and…

  3. Evaluation of clinical information modeling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Austin, Tony; Moreno-Conde, Jesús; Parra-Calderón, Carlos L; Kalra, Dipak

    2016-11-01

    Clinical information models are formal specifications for representing the structure and semantics of the clinical content within electronic health record systems. This research aims to define, test, and validate evaluation metrics for software tools designed to support the processes associated with the definition, management, and implementation of these models. The proposed framework builds on previous research that focused on obtaining agreement on the essential requirements in this area. A set of 50 conformance criteria were defined based on the 20 functional requirements agreed by that consensus and applied to evaluate the currently available tools. Of the 11 initiative developing tools for clinical information modeling identified, 9 were evaluated according to their performance on the evaluation metrics. Results show that functionalities related to management of data types, specifications, metadata, and terminology or ontology bindings have a good level of adoption. Improvements can be made in other areas focused on information modeling and associated processes. Other criteria related to displaying semantic relationships between concepts and communication with terminology servers had low levels of adoption. The proposed evaluation metrics were successfully tested and validated against a representative sample of existing tools. The results identify the need to improve tool support for information modeling and software development processes, especially in those areas related to governance, clinician involvement, and optimizing the technical validation of testing processes. This research confirmed the potential of these evaluation metrics to support decision makers in identifying the most appropriate tool for their organization. Los Modelos de Información Clínica son especificaciones para representar la estructura y características semánticas del contenido clínico en los sistemas de Historia Clínica Electrónica. Esta investigación define, prueba y valida

  4. Tool-Based Curricula and Visual Learning

    Directory of Open Access Journals (Sweden)

    Dragica Vasileska

    2013-12-01

    Full Text Available In the last twenty years nanotechnology hasrevolutionized the world of information theory, computers andother important disciplines, such as medicine, where it hascontributed significantly in the creation of more sophisticateddiagnostic tools. Therefore, it is important for people working innanotechnology to better understand basic concepts to be morecreative and productive. To further foster the progress onNanotechnology in the USA, the National Science Foundation hascreated the Network for Computational Nanotechnology (NCNand the dissemination of all the information from member andnon-member participants of the NCN is enabled by thecommunity website www.nanoHUB.org. nanoHUB’s signatureservices online simulation that enables the operation ofsophisticated research and educational simulation engines with acommon browser. No software installation or local computingpower is needed. The simulation tools as well as nano-conceptsare augmented by educational materials, assignments, and toolbasedcurricula, which are assemblies of tools that help studentsexcel in a particular area.As elaborated later in the text, it is the visual mode of learningthat we are exploiting in achieving faster and better results withstudents that go through simulation tool-based curricula. Thereare several tool based curricula already developed on thenanoHUB and undergoing further development, out of which fiveare directly related to nanoelectronics. They are: ABACUS –device simulation module; ACUTE – Computational Electronicsmodule; ANTSY – bending toolkit; and AQME – quantummechanics module. The methodology behind tool-based curriculais discussed in details. Then, the current status of each module ispresented, including user statistics and student learningindicatives. Particular simulation tool is explored further todemonstrate the ease by which students can grasp information.Representative of Abacus is PN-Junction Lab; representative ofAQME is PCPBT tool; and

  5. Development of Computational Tools for Modeling Thermal and Radiation Effects on Grain Boundary Segregation and Precipitation in Fe-Cr-Ni-based Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ying [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This work aims at developing computational tools for modeling thermal and radiation effects on solute segregation at grain boundaries (GBs) and precipitation. This report described two major efforts. One is the development of computational tools on integrated modeling of thermal equilibrium segregation (TES) and radiation-induced segregation (RIS), from which synergistic effects of thermal and radiation, pre-existing GB segregation have been taken into consideration. This integrated modeling was used in describing the Cr and Ni segregation in the Fe-Cr-Ni alloys. The other effort is thermodynamic modeling on the Fe-Cr-Ni-Mo system which includes the major alloying elements in the investigated alloys in the Advanced Radiation Resistant Materials (ARRM) program. Through thermodynamic calculation, we provide baseline thermodynamic stability of the hardening phase Ni2(Cr,Mo) in selected Ni-based super alloys, and contribute knowledge on mechanistic understanding on the formation of Ni2(Cr,Mo) in the irradiated materials. The major outcomes from this work are listed in the following: 1) Under the simultaneous thermal and irradiation conditions, radiation-induced segregation played a dominant role in the GB segregation. The pre-existing GB segregation only affects the subsequent radiation-induced segregation in the short time. For the same element, the segregation tendency of Cr and Ni due to TES is opposite to it from RIS. The opposite tendency can lead to the formation of W-shape profile. These findings are consistent with literature observation of the transitory W-shape profile. 2) While TES only affects the distance of one or two atomic layers from GBs, the RIS can affect a broader distance from GB. Therefore, the W-shape due to pre-existing GB segregation is much narrower than that due to composition gradient formed during the transient state. Considering the measurement resolution of Auger or STEM analysis, the segregation tendency due to RIS should play a dominant

  6. Graphical tools for model selection in generalized linear models.

    Science.gov (United States)

    Murray, K; Heritier, S; Müller, S

    2013-11-10

    Model selection techniques have existed for many years; however, to date, simple, clear and effective methods of visualising the model building process are sparse. This article describes graphical methods that assist in the selection of models and comparison of many different selection criteria. Specifically, we describe for logistic regression, how to visualize measures of description loss and of model complexity to facilitate the model selection dilemma. We advocate the use of the bootstrap to assess the stability of selected models and to enhance our graphical tools. We demonstrate which variables are important using variable inclusion plots and show that these can be invaluable plots for the model building process. We show with two case studies how these proposed tools are useful to learn more about important variables in the data and how these tools can assist the understanding of the model building process. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Pre-Processing and Modeling Tools for Bigdata

    Directory of Open Access Journals (Sweden)

    Hashem Hadi

    2016-09-01

    Full Text Available Modeling tools and operators help the user / developer to identify the processing field on the top of the sequence and to send into the computing module only the data related to the requested result. The remaining data is not relevant and it will slow down the processing. The biggest challenge nowadays is to get high quality processing results with a reduced computing time and costs. To do so, we must review the processing sequence, by adding several modeling tools. The existing processing models do not take in consideration this aspect and focus on getting high calculation performances which will increase the computing time and costs. In this paper we provide a study of the main modeling tools for BigData and a new model based on pre-processing.

  8. Animal models: an important tool in mycology.

    Science.gov (United States)

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  9. Climate-Agriculture-Modeling and Decision Tool for Disease (CAMDT-Disease) for seasonal climate forecast-based crop disease risk management in agriculture

    Science.gov (United States)

    Kim, K. H.; Lee, S.; Han, E.; Ines, A. V. M.

    2017-12-01

    Climate-Agriculture-Modeling and Decision Tool (CAMDT) is a decision support system (DSS) tool that aims to facilitate translations of probabilistic seasonal climate forecasts (SCF) to crop responses such as yield and water stress. Since CAMDT is a software framework connecting different models and algorithms with SCF information, it can be easily customized for different types of agriculture models. In this study, we replaced the DSSAT-CSM-Rice model originally incorporated in CAMDT with a generic epidemiological model, EPIRICE, to generate a seasonal pest outlook. The resulting CAMDT-Disease generates potential risks for selected fungal, viral, and bacterial diseases of rice over the next months by translating SCFs into agriculturally-relevant risk information. The integrated modeling procedure of CAMDT-Disease first disaggregates a given SCF using temporal downscaling methods (predictWTD or FResampler1), runs EPIRICE with the downscaled weather inputs, and finally visualizes the EPIRICE outputs as disease risk compared to that of the previous year and the 30-year-climatological average. In addition, the easy-to-use graphical user interface adopted from CAMDT allows users to simulate "what-if" scenarios of disease risks over different planting dates with given SCFs. Our future work includes the simulation of the effect of crop disease on yields through the disease simulation models with the DSSAT-CSM-Rice model, as disease remains one of the most critical yield-reducing factors in the field.

  10. CREST Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-based Incentives in the United States. User Manual Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, Jason S. [Sustainable Energy Advantage, LLC, Framingham, MA (United States); Grace, Robert C. [Sustainable Energy Advantage, LLC, Framingham, MA (United States)

    2011-03-01

    This user manual helps model users understands how to use the CREST model to support renewable energy incentives, FITs, and other renewable energy rate-setting processes. It reviews the spreadsheet tool, including its layout and conventions, offering context on how and why it was created. It also provides instructions on how to populate the model with inputs that are appropriate for a specific jurisdiction’s policymaking objectives and context. And, it describes the results and outlines how these results may inform decisions about long-term renewable energy support programs.

  11. Dasy Based Tool for The Design of Ice Mechanisms

    Directory of Open Access Journals (Sweden)

    Tichánek Radek

    2015-12-01

    Full Text Available This article presents a tool for designing new mechanisms of internal combustion engines based on the DASY knowledge database. An OHC valve train has been chosen for developing and testing the presented tool. The tool includes both a kinematic and dynamic model connected to a crank train. Values of unknown parameters have been obtained using detailed calibration and consequent validation of three dynamic models with measured data. The values remain stored in DASY and many of them can be used directly to design new mechanisms, even in cases where the geometries of some parts are different. The paper presents three methods which have been used not only for the calibration, but also for the identification of the influence of unknown parameters on valve acceleration and its vibration. The tool has been used to design the cam shapes for a prototype of the new mechanism.

  12. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta

    2012-06-01

    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  13. A tool box for implementing supersymmetric models

    Science.gov (United States)

    Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian

    2012-10-01

    We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The

  14. SMILE Maker : a web-based tool for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Aroyo, L.M.; Kommers, Petrus A.M.; Ivanov, Ivan

    1999-01-01

    This paper focuses on the purposes, theoretical model, and functionality of the SMILE (Solution Mapping Intelligent Learning Environment) Maker--a World Wide Web-based problem-solving tool. From an instructional design point of view, an attempt to establish a balance between

  15. Web Based Personal Nutrition Management Tool

    Science.gov (United States)

    Bozkurt, Selen; Zayim, Neşe; Gülkesen, Kemal Hakan; Samur, Mehmet Kemal

    Internet is being used increasingly as a resource for accessing health-related information because of its several advantages. Therefore, Internet tailoring becomes quite preferable in health education and personal health management recently. Today, there are many web based health programs de-signed for individuals. Among these studies nutrition and weight management is popular because, obesity has become a heavy burden for populations worldwide. In this study, we designed a web based personal nutrition education and management tool, The Nutrition Web Portal, in order to enhance patients’ nutrition knowledge, and provide behavioral change against obesity. The present paper reports analysis, design and development processes of The Nutrition Web Portal.

  16. Software tools for microprocessor based systems

    International Nuclear Information System (INIS)

    Halatsis, C.

    1981-01-01

    After a short review of the hardware and/or software tools for the development of single-chip, fixed instruction set microprocessor-based sytems we focus on the software tools for designing systems based on microprogrammed bit-sliced microprocessors. Emphasis is placed on meta-microassemblers and simulation facilties at the register-transfer-level and architecture level. We review available meta-microassemblers giving their most important features, advantages and disadvantages. We also make extentions to higher-level microprogramming languages and associated systems specifically developed for bit-slices. In the area of simulation facilities we first discuss the simulation objectives and the criteria for chosing the right simulation language. We consertrate to simulation facilities already used in bit-slices projects and discuss the gained experience. We conclude by describing the way the Signetics meta-microassembler and the ISPS simulation tool have been employed in the design of a fast microprogrammed machine, called MICE, made out of ECL bit-slices. (orig.)

  17. Fish habitat simulation models and integrated assessment tools

    International Nuclear Information System (INIS)

    Harby, A.; Alfredsen, K.

    1999-01-01

    Because of human development water use increases in importance, and this worldwide trend is leading to an increasing number of user conflicts with a strong need for assessment tools to measure the impacts both on the ecosystem and the different users and user groups. The quantitative tools must allow a comparison of alternatives, different user groups, etc., and the tools must be integrated while impact assessments includes different disciplines. Fish species, especially young ones, are indicators of the environmental state of a riverine system and monitoring them is a way to follow environmental changes. The direct and indirect impacts on the ecosystem itself are measured, and impacts on user groups is not included. Fish habitat simulation models are concentrated on, and methods and examples are considered from Norway. Some ideas on integrated modelling tools for impact assessment studies are included. One dimensional hydraulic models are rapidly calibrated and do not require any expert knowledge in hydraulics. Two and three dimensional models require a bit more skilled users, especially if the topography is very heterogeneous. The advantages of using two and three dimensional models include: they do not need any calibration, just validation; they are predictive; and they can be more cost effective than traditional habitat hydraulic models when combined with modern data acquisition systems and tailored in a multi-disciplinary study. Suitable modelling model choice should be based on available data and possible data acquisition, available manpower, computer, and software resources, and needed output and accuracy in the output. 58 refs

  18. Static Stiffness Modeling of Parallel Kinematics Machine Tool Joints

    Directory of Open Access Journals (Sweden)

    O. K. Akmaev

    2015-09-01

    Full Text Available The possible variants of an original parallel kinematics machine-tool structure are explored in this article. A new Hooke's universal joint design based on needle roller bearings with the ability of a preload setting is proposed. The bearing stiffness modeling is carried out using a variety of methods. The elastic deformation modeling of a Hook’s joint and a spherical rolling joint have been developed to assess the possibility of using these joints in machine tools with parallel kinematics.

  19. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan; Baggu, Murali M.

    2017-05-11

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source to enable use by others.

  20. Conversion and Validation of Distribution System Model from a QSTS-Based Tool to a Real-Time Dynamic Phasor Simulator: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Chamana, Manohar; Prabakar, Kumaraguru; Palmintier, Bryan; Baggu, Murali M.

    2017-04-11

    A software process is developed to convert distribution network models from a quasi-static time-series tool (OpenDSS) to a real-time dynamic phasor simulator (ePHASORSIM). The description of this process in this paper would be helpful for researchers who intend to perform similar conversions. The converter could be utilized directly by users of real-time simulators who intend to perform software-in-the-loop or hardware-in-the-loop tests on large distribution test feeders for a range of use cases, including testing functions of advanced distribution management systems against a simulated distribution system. In the future, the developers intend to release the conversion tool as open source to enable use by others.

  1. Image based method for aberration measurement of lithographic tools

    Science.gov (United States)

    Xu, Shuang; Tao, Bo; Guo, Yongxing; Li, Gongfa

    2018-01-01

    Information of lens aberration of lithographic tools is important as it directly affects the intensity distribution in the image plane. Zernike polynomials are commonly used for a mathematical description of lens aberrations. Due to the advantage of lower cost and easier implementation of tools, image based measurement techniques have been widely used. Lithographic tools are typically partially coherent systems that can be described by a bilinear model, which entails time consuming calculations and does not lend a simple and intuitive relationship between lens aberrations and the resulted images. Previous methods for retrieving lens aberrations in such partially coherent systems involve through-focus image measurements and time-consuming iterative algorithms. In this work, we propose a method for aberration measurement in lithographic tools, which only requires measuring two images of intensity distribution. Two linear formulations are derived in matrix forms that directly relate the measured images to the unknown Zernike coefficients. Consequently, an efficient non-iterative solution is obtained.

  2. WMT: The CSDMS Web Modeling Tool

    Science.gov (United States)

    Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged

  3. Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model: A Web-based program designed to evaluate the cost-effectiveness of disease management programs in heart failure.

    Science.gov (United States)

    Reed, Shelby D; Neilson, Matthew P; Gardner, Matthew; Li, Yanhong; Briggs, Andrew H; Polsky, Daniel E; Graham, Felicia L; Bowers, Margaret T; Paul, Sara C; Granger, Bradi B; Schulman, Kevin A; Whellan, David J; Riegel, Barbara; Levy, Wayne C

    2015-11-01

    Heart failure disease management programs can influence medical resource use and quality-adjusted survival. Because projecting long-term costs and survival is challenging, a consistent and valid approach to extrapolating short-term outcomes would be valuable. We developed the Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model, a Web-based simulation tool designed to integrate data on demographic, clinical, and laboratory characteristics; use of evidence-based medications; and costs to generate predicted outcomes. Survival projections are based on a modified Seattle Heart Failure Model. Projections of resource use and quality of life are modeled using relationships with time-varying Seattle Heart Failure Model scores. The model can be used to evaluate parallel-group and single-cohort study designs and hypothetical programs. Simulations consist of 10,000 pairs of virtual cohorts used to generate estimates of resource use, costs, survival, and incremental cost-effectiveness ratios from user inputs. The model demonstrated acceptable internal and external validity in replicating resource use, costs, and survival estimates from 3 clinical trials. Simulations to evaluate the cost-effectiveness of heart failure disease management programs across 3 scenarios demonstrate how the model can be used to design a program in which short-term improvements in functioning and use of evidence-based treatments are sufficient to demonstrate good long-term value to the health care system. The Tools for Economic Analysis of Patient Management Interventions in Heart Failure Cost-Effectiveness Model provides researchers and providers with a tool for conducting long-term cost-effectiveness analyses of disease management programs in heart failure. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Comparison of BrainTool to other UML modeling and model transformation tools

    Science.gov (United States)

    Nikiforova, Oksana; Gusarovs, Konstantins

    2017-07-01

    In the last 30 years there were numerous model generated software systems offered targeting problems with the development productivity and the resulting software quality. CASE tools developed due today's date are being advertised as having "complete code-generation capabilities". Nowadays the Object Management Group (OMG) is calling similar arguments in regards to the Unified Modeling Language (UML) models at different levels of abstraction. It is being said that software development automation using CASE tools enables significant level of automation. Actual today's CASE tools are usually offering a combination of several features starting with a model editor and a model repository for a traditional ones and ending with code generator (that could be using a scripting or domain-specific (DSL) language), transformation tool to produce the new artifacts from the manually created and transformation definition editor to define new transformations for the most advanced ones. Present paper contains the results of CASE tool (mainly UML editors) comparison against the level of the automation they are offering.

  5. Development Life Cycle and Tools for XML Content Models

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Morris, Katherine [National Institute of Standards and Technology (NIST); Buhwan, Jeong [POSTECH University, South Korea; Goyal, Puja [National Institute of Standards and Technology (NIST)

    2004-11-01

    Many integration projects today rely on shared semantic models based on standards represented using Extensible Mark up Language (XML) technologies. Shared semantic models typically evolve and require maintenance. In addition, to promote interoperability and reduce integration costs, the shared semantics should be reused as much as possible. Semantic components must be consistent and valid in terms of agreed upon standards and guidelines. In this paper, we describe an activity model for creation, use, and maintenance of a shared semantic model that is coherent and supports efficient enterprise integration. We then use this activity model to frame our research and the development of tools to support those activities. We provide overviews of these tools primarily in the context of the W3C XML Schema. At the present, we focus our work on the W3C XML Schema as the representation of choice, due to its extensive adoption by industry.

  6. New tools for generation IV assemblies modelling

    International Nuclear Information System (INIS)

    Sylvie Aniel-Buchheit; Edwige Richebois

    2005-01-01

    Full text of publication follows: In the framework of the development of generation IV concepts, the need of new assembly modelling tools arises. These concepts present more geometrical and spectral heterogeneities (radially and axially). Moreover thermal-hydraulics and neutronics aspects are so closely related that coupled computations are necessary. That raises the need for more precise and flexible tools presenting 3D features. The 3D-coupling of the thermal-hydraulic code FLICA4 with the Monte-Carlo neutronics code TRIPOLI4 was developed in that frame. This new tool enables for the first time to obtain realistic axial and radial power profiles with real feedback effects in an assembly where thermal-hydraulics and neutronics effects are closely related. The BWR is the existing concept presenting the closest heterogeneous characteristics to the various new proposed concepts. This assembly design is thus chosen to compare this new tool, presenting real 3D characteristics, to the existing ones. For design studies, the evaluation of the assembly behavior, currently necessitate a depletion scheme using a 3D thermal-hydraulics assembly calculation coupled with a 1D axial neutronics deterministic calculation (or an axial power profile chosen as a function of the assembly averaged burn-up). The 3D neutronics code (CRONOS2) uses neutronic data built by 2D deterministic assembly calculations without feedback. These cross section libraries enable to take feedbacks into account via parameters such as fuel temperature, moderator density and temperature (history parameters such as void and control rod are not useful in design evaluation). Recently, the libraries build-up has been replaced by on line multi-2D deterministic assembly calculations performed by a cell code (APOLLO2). That avoids interpolation between pre-determined parameters in the cross-section data used by the 1D axial neutronics calculation and enable to give a radial power map to the 3D thermal

  7. Development of IFC based fire safety assesment tools

    DEFF Research Database (Denmark)

    Taciuc, Anca; Karlshøj, Jan; Dederichs, Anne

    2016-01-01

    changes need to be implemented, involving supplementary work and costs with negative impact on the client. The aim of this project is to create a set of automatic compliance checking rules for prescriptive design and to develop a web application tool for performance based design that retrieves data from...... Building Information Models (BIM) to evacuate the safety level in the building during the conceptual design stage. The findings show that the developed tools can be useful in AEC industry. Integrating BIM from conceptual design stage for analyzing the fire safety level can ensure precision in further...

  8. Designing tools for oil exploration using nuclear modeling

    Science.gov (United States)

    Mauborgne, Marie-Laure; Allioli, Françoise; Manclossi, Mauro; Nicoletti, Luisa; Stoller, Chris; Evans, Mike

    2017-09-01

    When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  9. Designing tools for oil exploration using nuclear modeling

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  10. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  11. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  12. Using EPA Tools and Data Services to Inform Changes to Design Storm Definitions for Wastewater Utilities based on Climate Model Projections

    Science.gov (United States)

    Tryby, M.; Fries, J. S.; Baranowski, C.

    2014-12-01

    Extreme precipitation events can cause significant impacts to drinking water and wastewater utilities, including facility damage, water quality impacts, service interruptions and potential risks to human health and the environment due to localized flooding and combined sewer overflows (CSOs). These impacts will become more pronounced with the projected increases in frequency and intensity of extreme precipitation events due to climate change. To model the impacts of extreme precipitation events, wastewater utilities often develop Intensity, Duration, and Frequency (IDF) rainfall curves and "design storms" for use in the U.S. Environmental Protection Agency's (EPA) Storm Water Management Model (SWMM). Wastewater utilities use SWMM for planning, analysis, and facility design related to stormwater runoff, combined and sanitary sewers, and other drainage systems in urban and non-urban areas. SWMM tracks (1) the quantity and quality of runoff made within each sub-catchment; and (2) the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period made up of multiple time steps. In its current format, EPA SWMM does not consider climate change projection data. Climate change may affect the relationship between intensity, duration, and frequency described by past rainfall events. Therefore, EPA is integrating climate projection data available in the Climate Resilience Evaluation and Awareness Tool (CREAT) into SWMM. CREAT is a climate risk assessment tool for utilities that provides downscaled climate change projection data for changes in the amount of rainfall in a 24-hour period for various extreme precipitation events (e.g., from 5-year to 100-year storm events). Incorporating climate change projections into SWMM will provide wastewater utilities with more comprehensive data they can use in planning for future storm events, thereby reducing the impacts to the utility and customers served from flooding and stormwater issues.

  13. Computational tools for clinical support: a multi-scale compliant model for haemodynamic simulations in an aortic dissection based on multi-modal imaging data.

    Science.gov (United States)

    Bonfanti, Mirko; Balabani, Stavroula; Greenwood, John P; Puppala, Sapna; Homer-Vanniasinkam, Shervanthi; Díaz-Zuccarini, Vanessa

    2017-11-01

    Aortic dissection (AD) is a vascular condition with high morbidity and mortality rates. Computational fluid dynamics (CFD) can provide insight into the progression of AD and aid clinical decisions; however, oversimplified modelling assumptions and high computational cost compromise the accuracy of the information and impede clinical translation. To overcome these limitations, a patient-specific CFD multi-scale approach coupled to Windkessel boundary conditions and accounting for wall compliance was developed and used to study a patient with AD. A new moving boundary algorithm was implemented to capture wall displacement and a rich in vivo clinical dataset was used to tune model parameters and for validation. Comparisons between in silico and in vivo data showed that this approach successfully captures flow and pressure waves for the patient-specific AD and is able to predict the pressure in the false lumen (FL), a critical variable for the clinical management of the condition. Results showed regions of low and oscillatory wall shear stress which, together with higher diastolic pressures predicted in the FL, may indicate risk of expansion. This study, at the interface of engineering and medicine, demonstrates a relatively simple and computationally efficient approach to account for arterial deformation and wave propagation phenomena in a three-dimensional model of AD, representing a step forward in the use of CFD as a potential tool for AD management and clinical support. © 2017 The Author(s).

  14. Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE; Version 1.0): web-based tools to assess the impact of sea level rise in south Florida

    Science.gov (United States)

    Hearn, Paul; Strong, David; Swain, Eric; Decker, Jeremy

    2013-01-01

    South Florida's Greater Everglades area is particularly vulnerable to sea level rise, due to its rich endowment of animal and plant species and its heavily populated urban areas along the coast. Rising sea levels are expected to have substantial impacts on inland flooding, the depth and extent of surge from coastal storms, the degradation of water supplies by saltwater intrusion, and the integrity of plant and animal habitats. Planners and managers responsible for mitigating these impacts require advanced tools to help them more effectively identify areas at risk. The U.S. Geological Survey's (USGS) Internet-based Modeling, Mapping, and Analysis for the Greater Everglades (IMMAGE) Web site has been developed to address these needs by providing more convenient access to projections from models that forecast the effects of sea level rise on surface water and groundwater, the extent of surge and resulting economic losses from coastal storms, and the distribution of habitats. IMMAGE not only provides an advanced geographic information system (GIS) interface to support decision making, but also includes topic-based modules that explain and illustrate key concepts for nontechnical users. The purpose of this report is to familiarize both technical and nontechnical users with the IMMAGE Web site and its various applications.

  15. Toposcopy : A modelling tool for CITYGML

    NARCIS (Netherlands)

    Groneman, A.; Zlatanova, S.

    2009-01-01

    The new 3D standard CityGML has been attracting a lot of attention in the last few years. Many characteristics of the XML-based format make it suitable for storage and exchange of virtual 3D city models. It provides possibilities to store semantic and geometric information and has the potential to

  16. Designing a training tool for imaging mental models

    Science.gov (United States)

    Dede, Christopher J.; Jayaram, Geetha

    1990-01-01

    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.

  17. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    Science.gov (United States)

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  18. Taming Log Files from Game/Simulation-Based Assessments: Data Models and Data Analysis Tools. Research Report. ETS RR-16-10

    Science.gov (United States)

    Hao, Jiangang; Smith, Lawrence; Mislevy, Robert; von Davier, Alina; Bauer, Malcolm

    2016-01-01

    Extracting information efficiently from game/simulation-based assessment (G/SBA) logs requires two things: a well-structured log file and a set of analysis methods. In this report, we propose a generic data model specified as an extensible markup language (XML) schema for the log files of G/SBAs. We also propose a set of analysis methods for…

  19. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly, Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies' behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies' movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by

  20. A Generic Individual-Based Spatially Explicit Model as a Novel Tool for Investigating Insect-Plant Interactions: A Case Study of the Behavioural Ecology of Frugivorous Tephritidae.

    Science.gov (United States)

    Wang, Ming; Cribb, Bronwen; Clarke, Anthony R; Hanan, Jim

    2016-01-01

    Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies' behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies' movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of

  1. The Communication, Awareness, Relationships and Empowerment (C.A.R.E.) Model: An Effective Tool for Engaging Urban Communities in Community-Based Participatory Research.

    Science.gov (United States)

    Ceasar, Joniqua; Peters-Lawrence, Marlene H; Mitchell, Valerie; Powell-Wiley, Tiffany M

    2017-11-21

    Little is known about recruitment methods for racial/ethnic minority populations from resource-limited areas for community-based health and needs assessments, particularly assessments that incorporate mobile health (mHealth) technology for characterizing physical activity and dietary intake. We examined whether the Communication, Awareness, Relationships and Empowerment (C.A.R.E.) model could reduce challenges recruiting and retaining participants from faith-based organizations in predominantly African American Washington, D.C. communities for a community-based assessment. Employing C.A.R.E. model elements, our diverse research team developed partnerships with churches, health organizations, academic institutions and governmental agencies. Through these partnerships, we cultivated a visible presence at community events, provided cardiovascular health education and remained accessible throughout the research process. Additionally, these relationships led to the creation of a community advisory board (CAB), which influenced the study's design, implementation, and dissemination. Over thirteen months, 159 individuals were recruited for the study, 99 completed the initial assessment, and 81 used mHealth technology to self-monitor physical activity over 30 days. The culturally and historically sensitive C.A.R.E. model strategically engaged CAB members and study participants. It was essential for success in recruitment and retention of an at-risk, African American population and may be an effective model for researchers hoping to engage racial/ethnic minority populations living in urban communities.

  2. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  3. Web-Based Tools in Education

    Directory of Open Access Journals (Sweden)

    Lupasc Adrian

    2016-07-01

    Full Text Available Technology is advancing at a rapid pace, and what we knew a year ago is likely to no longer apply today. With it, the technology brings new ways of transmitting information, machining and processing, storage and socializing. The continuous development of information technologies contributes more than ever to the increase of access to information for any field of activity, including education. For this reason, education must help young people (pupils and students to collect and select from the sheer volume of information available, to access them and learn how to use them. Therefore, education must constantly adapt to social change; it must pass on the achievements and richness of human experience. At the same time, technology supports didactic activity because it leads learning beyond the classroom, involving all actors in the school community and prepares young people for their profession. Moreover, web tools available for education can yield added benefits, which is why, especially at higher levels of the education system, their integration starts being more obvious and the results are soon to be seen. Moreover, information technologies produce changes in the classic way of learning, thus suffering rapid and profound transformations. In addition, current information technologies offer many types of applications, representing the argument for a new system of providing education and for building knowledge. In this regard, the paper aims to highlight the impact and benefits of current information technologies, particularly web-based, on the educational process.

  4. Thermal behaviour modelling of superplastic forming tools

    OpenAIRE

    Velay , Vincent; Cutard , Thierry; Guegan , N.

    2008-01-01

    High-temperature operational conditions of super plastic forming (SPF) tools induce very complex thermomechanical loadings responsible to their failure. Various materials can be used to manufacture forming tools: ceramic, refractory castable or heat resistant steel. In this paper, an experimental and numerical analysis is performed in order to characterise the environmental loadings undergone by the tool whatever the considered material. This investigation allows to lead a thermal calculation...

  5. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization.

    Science.gov (United States)

    Yilmaz, L Safak; Parnerkar, Shreyas; Noguera, Daniel R

    2011-02-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  6. MODERN TOOLS FOR MODELING ACTIVITY IT-COMPANIES

    Directory of Open Access Journals (Sweden)

    Марина Петрівна ЧАЙКОВСЬКА

    2015-05-01

    Full Text Available Increasing competition in the market of the web-based applications increases the importance of the quality of services and optimization of processes of interaction with customers. The purpose of the article is to develop recommendations for improving the business processes of IT enterprises of web application segment based on technological tools for business modeling, shaping requirements for the development of an information system for customer interaction; analysis of the effective means of implementation and evaluation of the economic effects of the introduction. A scheme of the business process development and launch of the website was built, based on the analysis of business process models and “swim lane” models, requirements for IP customer relationship management for web studio were established. Market of software to create IP was analyzed, and the ones corresponding to the requirements were selected. IP system was developed and tested, implemented it in the company, an appraisal of the economic effect was conducted.

  7. The application of cure models in the presence of competing risks: a tool for improved risk communication in population-based cancer patient survival.

    Science.gov (United States)

    Eloranta, Sandra; Lambert, Paul C; Andersson, Therese M-L; Björkholm, Magnus; Dickman, Paul W

    2014-09-01

    Quantifying cancer patient survival from the perspective of cure is clinically relevant. However, most cure models estimate cure assuming no competing causes of death. We use a relative survival framework to demonstrate how flexible parametric cure models can be used in combination with competing-risks theory to incorporate noncancer deaths. Under a model that incorporates statistical cure, we present the probabilities that cancer patients (1) have died from their cancer, (2) have died from other causes, (3) will eventually die from their cancer, or (4) will eventually die from other causes, all as a function of time since diagnosis. We further demonstrate how conditional probabilities can be used to update the prognosis among survivors (eg, at 1 or 5 years after diagnosis) by summarizing the proportion of patients who will not die from their cancer. The proposed method is applied to Swedish population-based data for persons diagnosed with melanoma, colon cancer, or acute myeloid leukemia between 1973 and 2007.

  8. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  9. A communication tool to improve the patient journey modeling process.

    Science.gov (United States)

    Curry, Joanne; McGregor, Carolyn; Tracy, Sally

    2006-01-01

    Quality improvement is high on the agenda of Health Care Organisations (HCO) worldwide. Patient journey modeling is a relatively recent innovation in healthcare quality improvement that models the patient's movement through the HCO by viewing it from a patient centric perspective. Critical to the success of the redesigning care process is the involvement of all stakeholders and their commitment to actively participate in the process. Tools which promote this type of communication are a critical enabler that can significantly affect the overall process redesign outcomes. Such a tool must also be able to incorporate additional factors such as relevant policies and procedures, staff roles, system usage and measurements such as process time and cost. This paper presents a graphically based communication tool that can be used as part of the patient journey modeling process to promote stakeholder involvement, commitment and ownership as well highlighting the relationship of other relevant variables that contribute to the patient's journey. Examples of how the tool has been used and the framework employed are demonstrated via a midwife-led primary care case study. A key contribution of this research is the provision of a graphical communication framework that is simple to use, is easily understood by a diverse range of stakeholders and enables ready recognition of patient journey issues. Results include strong stakeholder buy-in and significant enhancement to the overall design of the future patient journey. Initial results indicate that the use of such a communication tool can improve the patient journey modeling process and the overall quality improvement outcomes.

  10. Modeling, methodologies and tools for molecular and nano-scale communications modeling, methodologies and tools

    CERN Document Server

    Nakano, Tadashi; Moore, Michael

    2017-01-01

    (Preliminary) The book presents the state of art in the emerging field of molecular and nanoscale communication. It gives special attention to fundamental models, and advanced methodologies and tools used in the field. It covers a wide range of applications, e.g. nanomedicine, nanorobot communication, bioremediation and environmental managements. It addresses advanced graduate students, academics and professionals working at the forefront in their fields and at the interfaces between different areas of research, such as engineering, computer science, biology and nanotechnology.

  11. Programming Models and Tools for Intelligent Embedded Systems

    DEFF Research Database (Denmark)

    Sørensen, Peter Verner Bojsen

    Design automation and analysis tools targeting embedded platforms, developed using a component-based design approach, must be able to reason about the capabilities of the platforms. In the general case where nothing is assumed about the components comprising a platform or the platform topology......, analysis must be employed to determine its capabilities. This kind of analysis is the subject of this dissertation. The main contribution of this work is the Service Relation Model used to describe and analyze the flow of service in models of platforms and systems composed of re-usable components...

  12. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    Science.gov (United States)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models

  13. Numerical Model Metrics Tools in Support of Navy Operations

    Science.gov (United States)

    Dykes, J. D.; Fanguy, P.

    2017-12-01

    Increasing demands of accurate ocean forecasts that are relevant to the Navy mission decision makers demand tools that quickly provide relevant numerical model metrics to the forecasters. Increasing modelling capabilities with ever-higher resolution domains including coupled and ensemble systems as well as the increasing volume of observations and other data sources to which to compare the model output requires more tools for the forecaster to enable doing more with less. These data can be appropriately handled in a geographic information system (GIS) fused together to provide useful information and analyses, and ultimately a better understanding how the pertinent model performs based on ground truth.. Oceanographic measurements like surface elevation, profiles of temperature and salinity, and wave height can all be incorporated into a set of layers correlated to geographic information such as bathymetry and topography. In addition, an automated system that runs concurrently with the models on high performance machines matches routinely available observations to modelled values to form a database of matchups with which statistics can be calculated and displayed, to facilitate validation of forecast state and derived variables. ArcMAP, developed by Environmental Systems Research Institute, is a GIS application used by the Naval Research Laboratory (NRL) and naval operational meteorological and oceanographic centers to analyse the environment in support of a range of Navy missions. For example, acoustic propagation in the ocean is described with a three-dimensional analysis of sound speed that depends on profiles of temperature, pressure and salinity predicted by the Navy Coastal Ocean Model. The data and model output must include geo-referencing information suitable for accurately placing the data within the ArcMAP framework. NRL has developed tools that facilitate merging these geophysical data and their analyses, including intercomparisons between model

  14. Development of a simulation tool based on a segregated model to optimize the design and the scale up of animal cell culture in fixed-bed bioreactor [abstract

    Directory of Open Access Journals (Sweden)

    Gelbgras, V.

    2010-01-01

    Full Text Available The fixed-bed bioreactor is a promising system for the process intensification of the adherent animal cell culture. Nevertheless the fixed-bed bioreactor presents heterogeneity of the cell and the species concentrations which can complicate its optimization and its scale-up. The aim of this work is to develop a mathematical model of the evolution of the cell concentration and the species concentrations to study the process optimization and the bioreactor scale-up. The developed model is used as a simulation tool to study the influence of different phenomena on the cell heterogeneity. In this work, the importance of the adherent phase is investigated. This phase takes place in the beginning of the process. To realize a good implementation of the process, it is important to control the adherent cell concentration and to minimize the heterogeneity during this phase. If cell concentration heterogeneity appears, it will have repercussions during the whole process. In the model, four cell populations are considered: the viable cells in suspension in the medium, the captured cells by the fixed-bed in suspension in the medium, the adherent cells on the fixed-bed and the dead cells in suspension in the medium. Five extracellular species are considered: glucose, glutamine, oxygen, ammonia and lactate. Five phenomena are modeled: the culture medium flow through the fixed-bed (with axial convection, radial dispersion and axial dispersion, the cell capture by the fixed-bed, the cell adherence on the fixed-bed, the cell growth with a maximal cell concentration imposed by the specific area of the fixed-bed and the cell death. The interaction between cells and species is modeled by a Monod equation for the specific growth rate. The model equations are solved with a routine developed with Matlab 6.5. This routine used the Finite Volume Method coupled with a Newton-Raphson algorithm. The model parameters are experimentally identified by cell cultures in a pilot

  15. Developing a Modeling Tool Using Eclipse

    NARCIS (Netherlands)

    Kirtley, Nick; Waqas Kamal, Ahmad; Avgeriou, Paris

    2008-01-01

    Tool development using an open source platform provides autonomy to users to change, use, and develop cost-effective software with freedom from licensing requirements. However, open source tool development poses a number of challenges, such as poor documentation and continuous evolution. In this

  16. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  17. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  18. A new model for the sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-12-01

    A number of models for the sonic borehole logging tool has earlier been developed. These models which are mainly based on experimental data, are discussed and compared. On this background the new model is developed. It is based on the assumptions that the pores of low porosity formations and the grains of high porosity media may be approximated by cylinders, and that the dimension of these cylinders are given by distribution functions. From these assumptions the transit time Δt p of low porosity formations and Δt g of high porosity media are calculated by use of the Monte Carlo method. Combining the Δt p and Δt g values obtained by use of selected weighting functions seems to permit the determination of the transit time Δt for the full porosity range (0 ≤ φ ≤ 100%). (author)

  19. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  20. Fuzzy regression modeling for tool performance prediction and degradation detection.

    Science.gov (United States)

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  1. Modeling and Simulation Tools for Heavy Lift Airships

    Science.gov (United States)

    Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John

    2016-01-01

    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.

  2. Math-Based Simulation Tools and Methods

    National Research Council Canada - National Science Library

    Arepally, Sudhakar

    2007-01-01

    ...: HMMWV 30-mph Rollover Test, Soldier Gear Effects, Occupant Performance in Blast Effects, Anthropomorphic Test Device, Human Models, Rigid Body Modeling, Finite Element Methods, Injury Criteria...

  3. Evaluation of air pollution modelling tools as environmental engineering courseware.

    Science.gov (United States)

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results.

  4. Skull base tumor model.

    Science.gov (United States)

    Gragnaniello, Cristian; Nader, Remi; van Doormaal, Tristan; Kamel, Mahmoud; Voormolen, Eduard H J; Lasio, Giovanni; Aboud, Emad; Regli, Luca; Tulleken, Cornelius A F; Al-Mefty, Ossama

    2010-11-01

    achievable score where the evaluator strongly agreed with the proposed factor). Individual components had scores at or above 80% (except for 1). The only score that was below 80% was related to radiographic visibility of the model for adequate surgical planning (score of 74%). The highest score was given to usefulness in neurosurgical training (98%). The skull base tumor model is an effective tool to provide more practice in preoperative planning and technical skills.

  5. Location-allocation model for external beam radiotherapy as an example of an evidence-based management tool implemented in healthcare sector in Poland.

    Science.gov (United States)

    Czerwiński, Adam Michał; Więckowska, Barbara

    2018-02-21

    External beam radiotherapy (EBRT) is one of three key treatment modalities of cancer patients. Its utilisation and outcomes depend on a plethora of variables, one of which is the distance a patient must travel to undergo the treatment. The relation between distance and utilisation is clearly visible in Poland. At the same time no strategic investment plan is observed. This work proposes a method of resolving these two issues. We propose a mixed-integer linear programming model that aims to optimise the distribution of linear accelerators among selected locations in such a way that a patient's journey to the nearest EBRT is as short as possible. The optimisation is done with observance of international guidelines concerning EBRT capacity. With the use of proposed theoretical framework, we develop a national, strategic plan for linear accelerator investments. According to model assumptions decentralisation of EBRT, together with new equipment purchases, is required to ensure optimal access to EBRT. The results were incorporated into Healthcare Needs Maps for Poland. The plan based on the results of this study, implemented by 2025, should deal with the most pressing concerns of Polish EBRT. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Modelling stillbirth mortality reduction with the Lives Saved Tool

    Directory of Open Access Journals (Sweden)

    Hannah Blencowe

    2017-11-01

    Full Text Available Abstract Background The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries set policy and plan investment to scale up interventions to meet this target. This paper summarises the approach taken for modelling the impact of scaling-up health interventions on stillbirths in the Lives Saved tool (LiST, and potential future refinements. Methods The specific application to stillbirths of the general method for modelling the impact of interventions in LiST is described. The evidence for the effectiveness of potential interventions to reduce stillbirths are reviewed and the assumptions of the affected fraction of stillbirths who could potentially benefit from these interventions are presented. The current assumptions and their effects on stillbirth reduction are described and potential future improvements discussed. Results High quality evidence are not available for all parameters in the LiST stillbirth model. Cause-specific mortality data is not available for stillbirths, therefore stillbirths are modelled in LiST using an attributable fraction approach by timing of stillbirths (antepartum/ intrapartum. Of 35 potential interventions to reduce stillbirths identified, eight interventions are currently modelled in LiST. These include childbirth care, induction for prolonged pregnancy, multiple micronutrient and balanced energy supplementation, malaria prevention and detection and management of hypertensive disorders of pregnancy, diabetes and syphilis. For three of the interventions, childbirth care, detection and management of hypertensive disorders of pregnancy, and diabetes the estimate of effectiveness is based on expert opinion through a Delphi process. Only for malaria is coverage information available, with coverage

  7. An empirical tool to evaluate the safety of cyclists: Community based, macro-level collision prediction models using negative binomial regression.

    Science.gov (United States)

    Wei, Feng; Lovegrove, Gordon

    2013-12-01

    Today, North American governments are more willing to consider compact neighborhoods with increased use of sustainable transportation modes. Bicycling, one of the most effective modes for short trips with distances less than 5km is being encouraged. However, as vulnerable road users (VRUs), cyclists are more likely to be injured when involved in collisions. In order to create a safe road environment for them, evaluating cyclists' road safety at a macro level in a proactive way is necessary. In this paper, different generalized linear regression methods for collision prediction model (CPM) development are reviewed and previous studies on micro-level and macro-level bicycle-related CPMs are summarized. On the basis of insights gained in the exploration stage, this paper also reports on efforts to develop negative binomial models for bicycle-auto collisions at a community-based, macro-level. Data came from the Central Okanagan Regional District (CORD), of British Columbia, Canada. The model results revealed two types of statistical associations between collisions and each explanatory variable: (1) An increase in bicycle-auto collisions is associated with an increase in total lane kilometers (TLKM), bicycle lane kilometers (BLKM), bus stops (BS), traffic signals (SIG), intersection density (INTD), and arterial-local intersection percentage (IALP). (2) A decrease in bicycle collisions was found to be associated with an increase in the number of drive commuters (DRIVE), and in the percentage of drive commuters (DRP). These results support our hypothesis that in North America, with its current low levels of bicycle use (<4%), we can initially expect to see an increase in bicycle collisions as cycle mode share increases. However, as bicycle mode share increases beyond some unknown 'critical' level, our hypothesis also predicts a net safety improvement. To test this hypothesis and to further explore the statistical relationships between bicycle mode split and overall road

  8. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    -process design. Illustrative examples highlighting the need for efficient model-based systems will be presented, where the need for predictive models for innovative chemical product-process design will be highlighted. The examples will cover aspects of chemical product-process design where the idea of the grand......The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......, which can be expensive and time consuming. An alternative approach is the use of a systematic model-based framework according to an established work-flow in product-process design, replacing some of the time consuming and/or repetitive experimental steps. The advantages of the use of a model...

  9. Tools for the Knowledge-Based Organization

    DEFF Research Database (Denmark)

    Ravn, Ib

    2002-01-01

    it with the information held by its computers. Knowledge specialists cannot be managed and directed in the classical sense. The organization needs to be rehumanized and conditions for reflection, learning and autonomy enhanced, so that its collective knowledge may be better used to create real value for its stakeholders....... • To help organizations do this, tools need to be researched, sophisticated or invented. Broadly conceived, tools include ideas, such as theories, missions and business plans, practices, such as procedures and behaviors, and instruments, such as questionnaires, indicators, agendas and methods......, in that the researchers and practitioners involved in the multiple projects will be induced to interact and cross-fertilize in a manner not usually seen in the academic world....

  10. Student Model Tools Code Release and Documentation

    DEFF Research Database (Denmark)

    Johnson, Matthew; Bull, Susan; Masci, Drew

    of its strengths and areas of improvement (Section 6). Several key appendices are attached to this report including user manuals for teacher and students (Appendix 3). Fundamentally, all relevant information is included in the report for those wishing to do further development work with the tool...

  11. A Decision Support Model and Tool to Assist Financial Decision-Making in Universities

    Science.gov (United States)

    Bhayat, Imtiaz; Manuguerra, Maurizio; Baldock, Clive

    2015-01-01

    In this paper, a model and tool is proposed to assist universities and other mission-based organisations to ascertain systematically the optimal portfolio of projects, in any year, meeting the organisations risk tolerances and available funds. The model and tool presented build on previous work on university operations and decision support systems…

  12. Right approach to 3D modeling using CAD tools

    Science.gov (United States)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  13. An ensemble model of QSAR tools for regulatory risk assessment.

    Science.gov (United States)

    Pradeep, Prachi; Povinelli, Richard J; White, Shannon; Merrill, Stephen J

    2016-01-01

    Quantitative structure activity relationships (QSARs) are theoretical models that relate a quantitative measure of chemical structure to a physical property or a biological effect. QSAR predictions can be used for chemical risk assessment for protection of human and environmental health, which makes them interesting to regulators, especially in the absence of experimental data. For compatibility with regulatory use, QSAR models should be transparent, reproducible and optimized to minimize the number of false negatives. In silico QSAR tools are gaining wide acceptance as a faster alternative to otherwise time-consuming clinical and animal testing methods. However, different QSAR tools often make conflicting predictions for a given chemical and may also vary in their predictive performance across different chemical datasets. In a regulatory context, conflicting predictions raise interpretation, validation and adequacy concerns. To address these concerns, ensemble learning techniques in the machine learning paradigm can be used to integrate predictions from multiple tools. By leveraging various underlying QSAR algorithms and training datasets, the resulting consensus prediction should yield better overall predictive ability. We present a novel ensemble QSAR model using Bayesian classification. The model allows for varying a cut-off parameter that allows for a selection in the desirable trade-off between model sensitivity and specificity. The predictive performance of the ensemble model is compared with four in silico tools (Toxtree, Lazar, OECD Toolbox, and Danish QSAR) to predict carcinogenicity for a dataset of air toxins (332 chemicals) and a subset of the gold carcinogenic potency database (480 chemicals). Leave-one-out cross validation results show that the ensemble model achieves the best trade-off between sensitivity and specificity (accuracy: 83.8 % and 80.4 %, and balanced accuracy: 80.6 % and 80.8 %) and highest inter-rater agreement [kappa ( κ ): 0

  14. Computer-Aided Modelling Methods and Tools

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    . To illustrate these concepts a number of examples are used. These include models of polymer membranes, distillation and catalyst behaviour. Some detailed considerations within these models are stated and discussed. Model generation concepts are introduced and ideas of a reference model are given that shows...

  15. Large scale experiments as a tool for numerical model development

    DEFF Research Database (Denmark)

    Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper

    2003-01-01

    for improvement of the reliability of physical model results. This paper demonstrates by examples that numerical modelling benefits in various ways from experimental studies (in large and small laboratory facilities). The examples range from very general hydrodynamic descriptions of wave phenomena to specific......Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...... hydrodynamic interaction with structures. The examples also show that numerical model development benefits from international co-operation and sharing of high quality results....

  16. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  17. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  18. Parameter Extraction for PSpice Models by means of an Automated Optimization Tool – An IGBT model Study Case

    DEFF Research Database (Denmark)

    Suárez, Carlos Gómez; Reigosa, Paula Diaz; Iannuzzo, Francesco

    2016-01-01

    An original tool for parameter extraction of PSpice models has been released, enabling a simple parameter identification. A physics-based IGBT model is used to demonstrate that the optimization tool is capable of generating a set of parameters which predicts the steady-state and switching behavior...

  19. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  20. The scientific modeling assistant: An advanced software tool for scientific model building

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael H.

    1991-01-01

    Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.

  1. Reduction of inequalities in health: assessing evidence-based tools

    OpenAIRE

    Shea Beverley; Hatcher-Roberts Jan; Robinson Vivian; Jacobsen Mary; Kristjansson Elizabeth; Mhatre Sharmila; Andersson Neil; O'Connor Annette; Tugwell Peter; Francis Daniel; Beardmore Jil; Wells George A; Losos Joe

    2006-01-01

    Abstract Background The reduction of health inequalities is a focus of many national and international health organisations. The need for pragmatic evidence-based approaches has led to the development of a number of evidence-based equity initiatives. This paper describes a new program that focuses upon evidence- based tools, which are useful for policy initiatives that reduce inequities. Methods This paper is based on a presentation that was given at the "Regional Consultation on Policy Tools...

  2. Scratch as a computational modelling tool for teaching physics

    Science.gov (United States)

    Lopez, Victor; Hernandez, Maria Isabel

    2015-05-01

    The Scratch online authoring tool, which features a simple programming language that has been adapted to primary and secondary students, is being used more and more in schools as it offers students and teachers the opportunity to use a tool to build scientific models and evaluate their behaviour, just as can be done with computational modelling programs. In this article, we briefly discuss why Scratch could be a useful tool for computational modelling in the primary or secondary physics classroom, and we present practical examples of how it can be used to build a model.

  3. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  4. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  5. Spatial Modeling Tools for Cell Biology

    Science.gov (United States)

    2006-10-01

    of the cells total volume. The cytosol contains thousands of enzymes that are responsible for the catalyzation of glycolysis and gluconeogenesis ... dog , swine and pig models [Pantely, 1990, 1991; Stanley 1992]. In these studies, blood flow through the left anterior descending (LAD) coronary...perfusion. In conclusion, even thought our model falls within the (rather large) error bounds of experimental dog , pig and swine models, the

  6. A Fractionated Spacecraft System Assessment Tool Based on Lifecycle Simulation Under Uncertainty

    NARCIS (Netherlands)

    Yao, W.; Chen, X.; Zhao, Y.; Van Tooren, M.J.L.

    2012-01-01

    To comprehensively assess fractionated spacecraft, an assessment tool is developed based on lifecycle simulation under uncertainty driven by modular evolutionary stochastic models. First, fractionated spacecraft nomenclature and architecture are clarified, and assessment criteria are analyzed. The

  7. Java based LCD reconstruction and analysis tools

    International Nuclear Information System (INIS)

    Bower, Gary; Cassell, Ron; Graf, Norman; Johnson, Tony; Ronan, Mike

    2001-01-01

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities

  8. JAVA based LCD Reconstruction and Analysis Tools

    International Nuclear Information System (INIS)

    Bower, G.

    2004-01-01

    We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities

  9. The Innsbruck/ESO sky models and telluric correction tools*

    Directory of Open Access Journals (Sweden)

    Kimeswenger S.

    2015-01-01

    While the ground based astronomical observatories just have to correct for the line-of-sight integral of these effects, the Čerenkov telescopes use the atmosphere as the primary detector. The measured radiation originates at lower altitudes and does not pass through the entire atmosphere. Thus, a decent knowledge of the profile of the atmosphere at any time is required. The latter cannot be achieved by photometric measurements of stellar sources. We show here the capabilities of our sky background model and data reduction tools for ground-based optical/infrared telescopes. Furthermore, we discuss the feasibility of monitoring the atmosphere above any observing site, and thus, the possible application of the method for Čerenkov telescopes.

  10. A model of tool wear monitoring system for turning

    OpenAIRE

    Šimunović, Goran; Ficko, Mirko; Šarić, Tomislav; Milošević, Mijodrag; Antić, Aco

    2015-01-01

    Acquiring high-quality and timely information on the tool wear condition in real time, presents a necessary prerequisite for identification of tool wear degree, which significantly improves the stability and quality of the machining process. Defined in this paper is a model of tool wear monitoring system with special emphasis on the module for acquisition and processing of vibration acceleration signal by applying discrete wavelet transformations (DWT) in signal decomposition. The paper prese...

  11. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  12. Multi-Agent Auction Based Simulation Tool for an Insurance Policy Market

    Directory of Open Access Journals (Sweden)

    Lavendelis Egons

    2014-07-01

    Full Text Available The paper presents a simulation tool for automated interactions between insurance companies and their clients during the travel insurance buying process. Insurance deal evaluation model using price and insured risks has been developed based on the study of the Latvian insurance market. The proposed model is used together with well-known agent auction protocols, thus providing a multi-agent negotiation protocol. It allows automating one-to-many negotiations between client and insurance companies simulating electronic insurance policy marketplace. The simulation tool has been developed using the MASITS methodology and tool, thus providing a case study for the methodology and tool for a new type of systems

  13. Component-based assistants for MEMS design tools

    Science.gov (United States)

    Hahn, Kai; Brueck, Rainer; Schneider, Christian; Schumer, Christian; Popp, Jens

    2001-04-01

    With this paper a new approach for MEMS design tools will be introduced. An analysis of the design tool market leads to the result that most of the designers work with large and inflexible frameworks. Purchasing and maintaining these frameworks is expensive, and gives no optimum support for MEMS design process. The concept of design assistants, carried out with the concept of interacting software components, denotes a new generation of flexible, small, semi-autonomous software systems that are used to solve specific MEMS design tasks in close interaction with the designer. The degree of interaction depends on the complexity of the design task to be performed and the possibility to formalize the respective knowledge. In this context the Internet as one of today's most important communication media provides support for new tool concepts on the basis of the Java programming language. These modern technologies can be used to set up distributed and platform-independent applications. Thus the idea emerged to implement design assistants using Java. According to the MEMS design model new process sequences have to be defined new for every specific design object. As a consequence, assistants have to be built dynamically depending on the requirements of the design process, what can be achieved with component based software development. Componentware offers the possibility to realize design assistants, in areas like design rule checks, process consistency checks, technology definitions, graphical editors, etc. that may reside distributed over the Internet, communicating via Internet protocols. At the University of Siegen a directory for reusable MEMS components has been created, containing a process specification assistant and a layout verification assistant for lithography based MEMS technologies.

  14. A computer aided tolerancing tool based on kinematic analogies

    NARCIS (Netherlands)

    Salomons, O.W.; Jonge poerink, H.J.; van Slooten, F.; van Slooten, F.; van Houten, Frederikus J.A.M.; Kals, H.J.J.

    1995-01-01

    A computer aided tolerancing tool is presented that assists the designer in functional tolerance specification. The theoretical concepts for subsequent tolerance analysis are also provided. The computer aided tolerancing tool is part of a feature based object oriented (re)-design support system,

  15. Tools for model-independent bounds in direct dark matter searches

    DEFF Research Database (Denmark)

    Cirelli, M.; Del Nobile, E.; Panci, P.

    2013-01-01

    We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei.......We discuss a framework (based on non-relativistic operators) and a self-contained set of numerical tools to derive the bounds from some current direct detection experiments on virtually any arbitrary model of Dark Matter elastically scattering on nuclei....

  16. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  17. Graphical Tools for Linear Structural Equation Modeling

    Science.gov (United States)

    2014-06-01

    regression coefficient βS A.CQ1 van- ishes, which can be used to test whether the specification of Model 2 is compatible with the data. Most...because they are all compatible with the graph in Figure 19a, which displays the skeleton and v-structures. Note that we cannot reverse the edge from...im- plications of linear structual equation models. R-428, <http://ftp.cs.ucla.edu/pub/stat_ser/r428.pdf>, CA. To ap- pear in Proceedings of AAAI-2014

  18. Skill Transfer and Virtual Training for IND Response Decision-Making: Models for Government-Industry Collaboration for the Development of Game-Based Training Tools

    Science.gov (United States)

    2016-04-01

    effectively trained with game- based techniques are strategic skills and soft skills . Those skills are commonly part of successful entertainment games, and an...public. <Source: Industry> GARNERING GOVERNMENT INTEREST Despite a range of potential benefits (lightweight training , soft skill evaluation...method employed (game-based or otherwise), training organizations will need to improve their understanding of the targeted soft skills . For example, game

  19. A Simple Evacuation Modeling and Simulation Tool for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Daniel B [ORNL; Payne, Patricia W [ORNL

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools can quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.

  20. Using the IEA ETSAP modelling tools for Denmark

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik

    -annual workshops focusing on presentations of model analyses and use of the ETSAP' tools (the MARKAL/TIMES family of models). The project was also planned to benefit from the EU project ”NEEDS - New Energy Externalities Developments for Sustainability. ETSAP is contributing to a part of NEEDS that develops......, Environment and Health (CEEH), starting from January 2007. This report summarises the activities under ETSAP Annex X and related project, emphasising the development of modelling tools that will be useful for modelling the Danish energy system. It is also a status report for the development of a model...

  1. MODEL CAR TRANSPORT SYSTEM - MODERN ITS EDUCATION TOOL

    Directory of Open Access Journals (Sweden)

    Karel Bouchner

    2017-12-01

    Full Text Available The model car transport system is a laboratory intended for a practical development in the area of the motor traffic. It is also an important education tool for students’ hands-on training, enabling students to test the results of their own studies. The main part of the model car transportation network is a model in a ratio 1:87 (HO, based on component units of FALLER Car system, e.g. cars, traffic lights, carriage way, parking spaces, stop sections, branch-off junctions, sensors and control sections. The model enables to simulate real traffic situations. It includes a motor traffic in a city, in a small village, on a carriageway between a city and a village including a railway crossing. The traffic infrastructure includes different kinds of intersections, such as T-junctions, a classic four-way crossroad and four-way traffic circle, with and without traffic lights control. Another important part of the model is a segment of a highway which includes an elevated crossing with highway approaches and exits.

  2. DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Directory of Open Access Journals (Sweden)

    Jiří Barnat

    2009-12-01

    Full Text Available In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them.

  3. Tool Wear Feature Extraction Based on Hilbert Marginal Spectrum

    Science.gov (United States)

    Guan, Shan; Song, Weijie; Pang, Hongyang

    2017-09-01

    In the metal cutting process, the signal contains a wealth of tool wear state information. A tool wear signal’s analysis and feature extraction method based on Hilbert marginal spectrum is proposed. Firstly, the tool wear signal was decomposed by empirical mode decomposition algorithm and the intrinsic mode functions including the main information were screened out by the correlation coefficient and the variance contribution rate. Secondly, Hilbert transform was performed on the main intrinsic mode functions. Hilbert time-frequency spectrum and Hilbert marginal spectrum were obtained by Hilbert transform. Finally, Amplitude domain indexes were extracted on the basis of the Hilbert marginal spectrum and they structured recognition feature vector of tool wear state. The research results show that the extracted features can effectively characterize the different wear state of the tool, which provides a basis for monitoring tool wear condition.

  4. SMARTool: A tool for clinical decision support for the management of patients with coronary artery disease based on modeling of atherosclerotic plaque process.

    Science.gov (United States)

    Sakellarios, Antonis I; Rigas, George; Kigka, Vassiliki; Siogkas, Panagiotis; Tsompou, Panagiota; Karanasiou, Georgia; Exarchos, Themis; Andrikos, Ioannis; Tachos, Nikolaos; Pelosi, Gualtriero; Parodi, Oberdan; Fotiaids, Dimitrios I

    2017-07-01

    SMARTool aims to the development of a clinical decision support system (CDSS) for the management and stratification of patients with coronary artery disease (CAD). This will be achieved by performing computational modeling of the main processes of atherosclerotic plaque growth. More specifically, computed tomography coronary angiography (CTCA) is acquired and 3-dimensional (3D) reconstruction is performed for the arterial trees. Then, blood flow and plaque growth modeling is employed simulating the major processes of atherosclerosis, such as the estimation of endothelial shear stress (ESS), the lipids transportation, low density lipoprotein (LDL) oxidation, macrophages migration and plaque development. The plaque growth model integrates information from genetic and biological data of the patients. The SMARTool system enables also the calculation of the virtual functional assessment index (vFAI), an index equivalent to the invasively measured fractional flow reserve (FFR), to provide decision support for patients with stenosed arteries. Finally, it integrates modeling of stent deployment. In this work preliminary results are presented. More specifically, the reconstruction methodology has mean value of Dice Coefficient and Hausdorff Distance is 0.749 and 1.746, respectively, while low ESS and high LDL concentration can predict plaque progression.

  5. Predictions of titanium alloy properties using thermodynamic modeling tools

    Science.gov (United States)

    Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.

    2005-12-01

    Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.

  6. The Culture Based Model: Constructing a Model of Culture

    Science.gov (United States)

    Young, Patricia A.

    2008-01-01

    Recent trends reveal that models of culture aid in mapping the design and analysis of information and communication technologies. Therefore, models of culture are powerful tools to guide the building of instructional products and services. This research examines the construction of the culture based model (CBM), a model of culture that evolved…

  7. A Bayesian Inference Tool for NHPP-Based Software Reliability Assessment

    Science.gov (United States)

    Hirata, Takumi; Okamura, Hiroyuki; Dohi, Tadashi

    In this paper, we concern a sampling method for Markov chain Monte Carlo (MCMC) in estimating software reliability, and propose a unified MCMC algorithm based on the Metropolis-Hasting method regardless of model on data structures. The resulting MCMC algorithm is implemented as a Java-based tool. Using the Java-based Bayesian inference tool, we illustrate how to assess the software reliability in actual software development processes.

  8. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    Science.gov (United States)

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  9. Transparent Model Transformation: Turning Your Favourite Model Editor into a Transformation Tool

    DEFF Research Database (Denmark)

    Acretoaie, Vlad; Störrle, Harald; Strüber, Daniel

    2015-01-01

    Current model transformation languages are supported by dedicated editors, often closely coupled to a single execution engine. We introduce Transparent Model Transformation, a paradigm enabling modelers to specify transformations using a familiar tool: their model editor. We also present VMTL, th...... model transformation tool sharing the model editor’s benefits, transparently....

  10. Analytical and Empirical Modeling of Wear and Forces of CBN Tool in Hard Turning - A Review

    Science.gov (United States)

    Patel, Vallabh Dahyabhai; Gandhi, Anishkumar Hasmukhlal

    2017-08-01

    Machining of steel material having hardness above 45 HRC (Hardness-Rockwell C) is referred as a hard turning. There are numerous models which should be scrutinized and implemented to gain optimum performance of hard turning. Various models in hard turning by cubic boron nitride tool have been reviewed, in attempt to utilize appropriate empirical and analytical models. Validation of steady state flank and crater wear model, Usui's wear model, forces due to oblique cutting theory, extended Lee and Shaffer's force model, chip formation and progressive flank wear have been depicted in this review paper. Effort has been made to understand the relationship between tool wear and tool force based on the different cutting conditions and tool geometries so that appropriate model can be used according to user requirement in hard turning.

  11. Rasp Tool on Phoenix Robotic Arm Model

    Science.gov (United States)

    2008-01-01

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm. The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Rapid Deployment of Optimal Control for Building HVAC Systems using Innovative Software Tools and a Hybrid Heuristic/Model Based Control Approach

    Science.gov (United States)

    2017-03-21

    Borrelli and his UCB group have developed optimal control algorithms with experimental validation on a wide range of systems in the automotive field, in...account for equipment specifications, chilled water load and flow profile , and the coincident weather data. This program tests all of the possible...control approach based on predictive control. The test design centers around comparing energy consumed by the HVAC systems when the traditional

  13. Model Fusion Tool - the Open Environmental Modelling Platform Concept

    Science.gov (United States)

    Kessler, H.; Giles, J. R.

    2010-12-01

    The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological

  14. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  15. Caries detection using light-based diagnostic tools.

    Science.gov (United States)

    Rechmann, Peter; Rechmann, Beate M T; Featherstone, John D B

    2012-09-01

    Modern caries treatment concepts like caries management by risk assessment--CAMBRA--entail diagnosing early caries lesions in a precavitated stage to make it possible to reverse the caries process with remineralization and bacteria reduction efforts. Newer, sensitive caries diagnostic tools can serve not only for early detection but also for monitoring of caries lesions to confirm the success of prevention and remineralization efforts. This article describes light-based caries diagnostic tools, with emphasis on fluorescence-based techniques, and compares the most common available fluorescence-based tools with a standardized visual caries inspection system-the International Caries Detection and Assessment System (ICDAS II). Fluorescence tools that provide high-resolution fluorescence pictures are likely to provide more reliable scores than fluorescence devices that assess via a single spot. The better visibility of the high-resolution fluorescence imaging could prevent unnecessary operative interventions.

  16. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    Science.gov (United States)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  17. Tool path planning of spiral bevel gear for digital finishing based on finger tool

    Directory of Open Access Journals (Sweden)

    TIAN Feng

    2016-10-01

    Full Text Available In this paper,the digital machining method of the free-form surface is chosen to do the tool track planning for the spiral bevel′s digital finishing.We use the finger milling-cutter,and choose processes as roughing,semi-finishing and finishing.Based on the CC path cross-section.Through the concrete analysis,we got the reasonable processing route,the position of the tool relative to work piece as well as tool pose.We have solved the interference problem between finger tool and arbor,and demonstrate the feasibility of this method through computer simulation and actual operation process.It can help to improve the spiral bevel gear′s manufacturing.

  18. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  19. Overview of software tools for modeling single event upsets in microelectronic devices

    Directory of Open Access Journals (Sweden)

    Anatoly Alexandrovich Smolin

    2016-10-01

    Full Text Available The paper presents the results of the analysis of existing simulation tools for evaluation of single event upset susceptibility of microelectronic devices with deep sub-micron feature sizes. This simulation tools are meant to replace obsolete approach to single event rate estimation based on integral rectangular parallelepiped model. Three main approaches implemented in simulation tools are considered: combined use of particle transport codes and rectangular parallelepiped model, combined use of particle transport codes and analytical models of charge collection and circuit simulators, and combined use of particle transport codes and TCAD simulators.

  20. Performance Evaluation of Java Based Object Relational Mapping Tools

    Directory of Open Access Journals (Sweden)

    Shoaib Mahmood Bhatti

    2013-04-01

    Full Text Available Object persistency is the hot issue in the form of ORM (Object Relational Mapping tools in industry as developers use these tools during software development. This paper presents the performance evaluation of Java based ORM tools. For this purpose, Hibernate, Ebean and TopLinkhave been selected as the ORM tools which are popular and open source. Their performance has been measured from execution point of view. The results show that ORM tools are the good option for the developers considering the system throughput in shorter setbacks and they can be used efficiently and effectively for performing mapping of the objects into the relational dominated world of database, thus creating a hope for a better and well dominated future of this technology.

  1. SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools.

    Science.gov (United States)

    Chaouiya, Claudine; Bérenguier, Duncan; Keating, Sarah M; Naldi, Aurélien; van Iersel, Martijn P; Rodriguez, Nicolas; Dräger, Andreas; Büchel, Finja; Cokelaer, Thomas; Kowal, Bryan; Wicks, Benjamin; Gonçalves, Emanuel; Dorier, Julien; Page, Michel; Monteiro, Pedro T; von Kamp, Axel; Xenarios, Ioannis; de Jong, Hidde; Hucka, Michael; Klamt, Steffen; Thieffry, Denis; Le Novère, Nicolas; Saez-Rodriguez, Julio; Helikar, Tomáš

    2013-12-10

    Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.

  2. Development of Nylon Based FDM Filament for Rapid Tooling Application

    Science.gov (United States)

    Singh, R.; Singh, S.

    2014-04-01

    There has been critical need for development of cost effective nylon based wire to be used as feed stock filament for fused deposition modelling (FDM) machine. But hitherto, very less work has been reported for development of alternate solution of acrylonitrile butadiene styrene (ABS) based wire which is presently used in most of FDM machines. The present research work is focused on development of nylon based wire as an alternative of ABS wire (which is to be used as feedstock filament on FDM) without changing any hardware or software of machine. For the present study aluminium oxide (Al2O3) as additive in different proportion has been used with nylon fibre. Single screw extruder was used for wire preparation and wire thus produced was tested on FDM. Mechanical properties i.e. tensile strength and percentage elongation of finally developed wire have been optimized by Taguchi L9 technique. The work represented major development in reducing cost and time in rapid tooling applications.

  3. Astronomical data fusion tool based on PostgreSQL

    Science.gov (United States)

    Han, Bo; Zhang, Yan-Xia; Zhong, Shou-Bo; Zhao, Yong-Heng

    2016-11-01

    With the application of advanced astronomical technologies, equipments and methods all over the world, astronomical observations cover the range from radio, infrared, visible light, ultraviolet, X-ray and gamma-ray bands, and enter into the era of full wavelength astronomy. How to effectively integrate data from different ground- and space-based observation equipments, different observers, different bands and different observation times, requires data fusion technology. In this paper we introduce a cross-match tool that is developed in the Python language, is based on the PostgreSQL database and uses Q3C as the core index, facilitating the cross-match work of massive astronomical data. It provides four different cross-match functions, namely: (I) cross-match of the custom error range; (II) cross-match of catalog errors; (III) cross-match based on the elliptic error range; (IV) cross-match of the nearest neighbor algorithm. The resulting cross-matched set provides a good foundation for subsequent data mining and statistics based on multiwavelength data. The most advantageous aspect of this tool is a user-oriented tool applied locally by users. By means of this tool, users can easily create their own databases, manage their own data and cross-match databases according to their requirements. In addition, this tool is also able to transfer data from one database into another database. More importantly, it is easy to get started with the tool and it can be used by astronomers without writing any code.

  4. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    's widely used in the world. Watershed models can be characterized by the high number of processes associated simulated. The estimation of these processes is also data intensive, requiring data on topography, land use / land cover, agriculture practices, soil type, precipitation, temperature, relative humidity, wind and radiation. Every year new data is being made available namely by satellite, that has allow to improve the quality of model input and also the calibration of the models (Galvão et. al, 2004b). Tools to cope with the vast amount of data have been developed: data formatting, data retrieving, data bases, metadata bases. The high number of processes simulated in watershed models makes them very wide in terms of output. The SWAT model outputs were modified to produce MOHID compliant result files (time series and HDF). These changes maintained the integrity of the original model, thus guarantying that results remain equal to the original version of SWAT. This allowed to output results in MOHID format, thus making it possible to immediately process it with MOHID visualization and data analysis tools (Chambel-Leitão et. al 2007; Trancoso et. al, 2009). Besides SWAT was modified to produce results files in HDF5 format, this allows the visualization of watershed properties (modeled by SWAT) in animated maps using MOHID GIS. The modified version of SWAT described here has been applied to various national and European projects. Results of the application of this modified version of SWAT to estimate hydrology and nutrients loads to estuaries and water bodies will be shown (Chambel-Leitão, 2008; Yarrow & Chambel-Leitão 2008; Chambel-Leitão et. al 2008; Yarrow & P. Chambel-Leitão, 2007; Yarrow & P. Chambel-Leitão, 2007; Coelho et. al., 2008). Keywords: Watershed models, SWAT, MOHID LAND, Hydrology, Nutrient Loads Arnold, J. G. and Fohrer, N. (2005). SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol. Process. 19, 563

  5. WIFIRE Data Model and Catalog for Wildfire Data and Tools

    Science.gov (United States)

    Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.

    2014-12-01

    The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.

  6. Designer Modeling for Personalized Game Content Creation Tools

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2013-01-01

    With the growing use of automated content creation and computer-aided design tools in game development, there is potential for enhancing the design process through personalized interactions between the software and the game developer. This paper proposes designer modeling for capturing the designer......’s preferences, goals and processes from their interaction with a computer-aided design tool, and suggests methods and domains within game development where such a model can be applied. We describe how designer modeling could be integrated with current work on automated and mixed-initiative content creation...

  7. Web-based tools from AHRQ's National Resource Center.

    Science.gov (United States)

    Cusack, Caitlin M; Shah, Sapna

    2008-11-06

    The Agency for Healthcare Research and Quality (AHRQ) has made an investment of over $216 million in research around health information technology (health IT). As part of their investment, AHRQ has developed the National Resource Center for Health IT (NRC) which includes a public domain Web site. New content for the web site, such as white papers, toolkits, lessons from the health IT portfolio and web-based tools, is developed as needs are identified. Among the tools developed by the NRC are the Compendium of Surveys and the Clinical Decision Support (CDS) Resources. The Compendium of Surveys is a searchable repository of health IT evaluation surveys made available for public use. The CDS Resources contains content which may be used to develop clinical decision support tools, such as rules, reminders and templates. This live demonstration will show the access, use, and content of both these freely available web-based tools.

  8. Building flexible, distributed collaboration tools using type-based publish/subscribe - The Distributed Knight case

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Damm, Christian Heide

    2004-01-01

    for flexible, distributed collaboration. We intro duce the Distributed Knight tool that provides flexible and lightweight support for distributed collaboration in object oriented modelling. The Distributed Knight implementa tion builds crucially on the type-based publish/subscribe distributed communication......Distributed collaboration is becoming increasingly impor tant also in software development. Combined with an in creasing interest in experimental and agile approaches to software development, this poses challenges to tool sup port for software development. Specifically, tool support is needed...... paradigm, which provides an effective and natural abstraction for developing distributed collaboration tools....

  9. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  10. Advanced REACH Tool (ART) : Calibration of the mechanistic model

    NARCIS (Netherlands)

    Schinkel, J.; Warren, N.; Fransman, W.; Tongeren, M. van; McDonnell, P.; Voogd, E.; Cherrie, J.W.; Tischer, M.; Kromhout, H.; Tielemans, E.

    2011-01-01

    The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure levels from different scenarios. The objectives of the calibration described in this paper are threefold: to study whether the mechanistic model scores are accurately ranked in relation to exposure

  11. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Molecular modeling has become a valuable and essential tool to medicinal chemists in the drug design process. Molecular modeling describes the generation, manipula- tion or representation of three-dimensional structures of molecules and associated physico-chemical properties. It involves a range of computerized ...

  12. A crowdsourcing model for creating preclinical medical education study tools.

    Science.gov (United States)

    Bow, Hansen C; Dattilo, Jonathan R; Jonas, Andrea M; Lehmann, Christoph U

    2013-06-01

    During their preclinical course work, medical students must memorize and recall substantial amounts of information. Recent trends in medical education emphasize collaboration through team-based learning. In the technology world, the trend toward collaboration has been characterized by the crowdsourcing movement. In 2011, the authors developed an innovative approach to team-based learning that combined students' use of flashcards to master large volumes of content with a crowdsourcing model, using a simple informatics system to enable those students to share in the effort of generating concise, high-yield study materials. The authors used Google Drive and developed a simple Java software program that enabled students to simultaneously access and edit sets of questions and answers in the form of flashcards. Through this crowdsourcing model, medical students in the class of 2014 at the Johns Hopkins University School of Medicine created a database of over 16,000 questions that corresponded to the Genes to Society basic science curriculum. An analysis of exam scores revealed that students in the class of 2014 outperformed those in the class of 2013, who did not have access to the flashcard system, and a survey of students demonstrated that users were generally satisfied with the system and found it a valuable study tool. In this article, the authors describe the development and implementation of their crowdsourcing model for creating study materials, emphasize its simplicity and user-friendliness, describe its impact on students' exam performance, and discuss how students in any educational discipline could implement a similar model of collaborative learning.

  13. Interactive Assessment and Course Transformation Using Web-Based Tools.

    Science.gov (United States)

    Byers, Celina

    2002-01-01

    Discusses the need for course assessment that includes the instructor's perception, the student's perception, and the student's performance and describes the roles that Web-based tools can play in the active learning process and in interactive assessment based on experiences with a multimedia production course. (LRW)

  14. Implementing the Mother-Baby Model of Nursing Care Using Models and Quality Improvement Tools.

    Science.gov (United States)

    Brockman, Vicki

    As family-centered care has become the expected standard, many facilities follow the mother-baby model, in which care is provided to both a woman and her newborn in the same room by the same nurse. My facility employed a traditional model of nursing care, which was not evidence-based or financially sustainable. After implementing the mother-baby model, we experienced an increase in exclusive breastfeeding rates at hospital discharge, increased patient satisfaction, improved staff productivity and decreased salary costs, all while the number of births increased. Our change was successful because it was guided by the use of quality improvement tools, change theory and evidence-based practice models. © 2015 AWHONN.

  15. Tool Support for Collaborative Teaching and Learning of Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Ratzer, Anne Vinter

    2002-01-01

    Modeling is central to doing and learning object-oriented development. We present a new tool, Ideogramic UML, for gesture-based collaborative modeling with the Unified Modeling Language (UML), which can be used to collaboratively teach and learn modeling. Furthermore, we discuss how we have effec...... effectively used Ideogramic UML to teach object-oriented modeling and the UML to groups of students using the UML for project assignments....

  16. Business intelligence tools for radiology: creating a prototype model using open-source tools.

    Science.gov (United States)

    Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin

    2010-04-01

    Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.

  17. Reduction of inequalities in health: assessing evidence-based tools

    Directory of Open Access Journals (Sweden)

    Shea Beverley

    2006-09-01

    Full Text Available Abstract Background The reduction of health inequalities is a focus of many national and international health organisations. The need for pragmatic evidence-based approaches has led to the development of a number of evidence-based equity initiatives. This paper describes a new program that focuses upon evidence- based tools, which are useful for policy initiatives that reduce inequities. Methods This paper is based on a presentation that was given at the "Regional Consultation on Policy Tools: Equity in Population Health Reports," held in Toronto, Canada in June 2002. Results Five assessment tools were presented. 1. A database of systematic reviews on the effects of educational, legal, social, and health interventions to reduce unfair inequalities is being established through the Cochrane and Campbell Collaborations. 2 Decision aids and shared decision making can be facilitated in disadvantaged groups by 'health coaches' to help people become better decision makers, negotiators, and navigators of the health system; a pilot study in Chile has provided proof of this concept. 3. The CIET Cycle: Combining adapted cluster survey techniques with qualitative methods, CIET's population based applications support evidence-based decision making at local and national levels. The CIET map generates maps directly from survey or routine institutional data, to be used as evidence-based decisions aids. Complex data can be displayed attractively, providing an important tool for studying and comparing health indicators among and between different populations. 4. The Ottawa Equity Gauge is applying the Global Equity Gauge Alliance framework to an industrialised country setting. 5 The Needs-Based Health Assessment Toolkit, established to assemble information on which clinical and health policy decisions can be based, is being expanded to ensure a focus on distribution and average health indicators. Conclusion Evidence-based planning tools have much to offer the

  18. Reduction of inequalities in health: assessing evidence-based tools

    Science.gov (United States)

    Tugwell, Peter; O'Connor, Annette; Andersson, Neil; Mhatre, Sharmila; Kristjansson, Elizabeth; Jacobsen, Mary Jane; Robinson, Vivian; Hatcher-Roberts, Jan; Shea, Beverley; Francis, Daniel; Beardmore, Jil; Wells, George A; Losos, Joe

    2006-01-01

    Background The reduction of health inequalities is a focus of many national and international health organisations. The need for pragmatic evidence-based approaches has led to the development of a number of evidence-based equity initiatives. This paper describes a new program that focuses upon evidence- based tools, which are useful for policy initiatives that reduce inequities. Methods This paper is based on a presentation that was given at the "Regional Consultation on Policy Tools: Equity in Population Health Reports," held in Toronto, Canada in June 2002. Results Five assessment tools were presented. 1. A database of systematic reviews on the effects of educational, legal, social, and health interventions to reduce unfair inequalities is being established through the Cochrane and Campbell Collaborations. 2 Decision aids and shared decision making can be facilitated in disadvantaged groups by 'health coaches' to help people become better decision makers, negotiators, and navigators of the health system; a pilot study in Chile has provided proof of this concept. 3. The CIET Cycle: Combining adapted cluster survey techniques with qualitative methods, CIET's population based applications support evidence-based decision making at local and national levels. The CIET map generates maps directly from survey or routine institutional data, to be used as evidence-based decisions aids. Complex data can be displayed attractively, providing an important tool for studying and comparing health indicators among and between different populations. 4. The Ottawa Equity Gauge is applying the Global Equity Gauge Alliance framework to an industrialised country setting. 5 The Needs-Based Health Assessment Toolkit, established to assemble information on which clinical and health policy decisions can be based, is being expanded to ensure a focus on distribution and average health indicators. Conclusion Evidence-based planning tools have much to offer the goal of equitable health

  19. Enhancing Formal Modelling Tool Support with Increased Automation

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    Progress report for the qualification exam report for PhD Student Kenneth Lausdahl. Initial work on enhancing tool support for the formal method VDM and the concept of unifying a abstract syntax tree with the ability for isolated extensions is described. The tool support includes a connection...... to UML and a test automation principle based on traces written as a kind of regular expressions....

  20. Modeling and Simulation Tools: From Systems Biology to Systems Medicine.

    Science.gov (United States)

    Olivier, Brett G; Swat, Maciej J; Moné, Martijn J

    2016-01-01

    Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools.

  1. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  2. Open source Modeling and optimization tools for Planning

    Energy Technology Data Exchange (ETDEWEB)

    Peles, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-10

    Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward to complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.

  3. Analytical Modelling Of Milling For Tool Design And Selection

    Science.gov (United States)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-05-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools.

  4. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  5. Enabling analytical and Modeling Tools for Enhanced Disease Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Dawn K. Manley

    2003-04-01

    Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on and applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating

  6. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.; Sarfraz, M.

    2004-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  7. Web Based VRML Modelling

    NARCIS (Netherlands)

    Kiss, S.; Banissi, E.; Khosrowshahi, F.; Sarfraz, M.; Ursyn, A.

    2001-01-01

    Presents a method to connect VRML (Virtual Reality Modeling Language) and Java components in a Web page using EAI (External Authoring Interface), which makes it possible to interactively generate and edit VRML meshes. The meshes used are based on regular grids, to provide an interaction and modeling

  8. Distributing Knight. Using Type-Based Publish/Subscribe for Building Distributed Collaboration Tools

    DEFF Research Database (Denmark)

    Damm, Christian Heide; Hansen, Klaus Marius

    2002-01-01

    more important. We present Distributed Knight, an extension to the Knight tool, for distributed, collaborative, and gesture-based object-oriented modelling. Distributed Knight was built using the type-based publish/subscribe paradigm. Based on this case, we argue that type-based publish......Distributed applications are hard to understand, build, and evolve. The need for decoupling, flexibility, and heterogeneity in distributed collaboration tools present particular problems; for such applications, having the right abstractions and primitives for distributed communication becomes even...

  9. Metamodelling Approach and Software Tools for Physical Modelling and Simulation

    Directory of Open Access Journals (Sweden)

    Vitaliy Mezhuyev

    2015-02-01

    Full Text Available In computer science, metamodelling approach becomes more and more popular for the purpose of software systems development. In this paper, we discuss applicability of the metamodelling approach for development of software tools for physical modelling and simulation.To define a metamodel for physical modelling the analysis of physical models will be done. The result of such the analyses will show the invariant physical structures, we propose to use as the basic abstractions of the physical metamodel. It is a system of geometrical objects, allowing to build a spatial structure of physical models and to set a distribution of physical properties. For such geometry of distributed physical properties, the different mathematical methods can be applied. To prove the proposed metamodelling approach, we consider the developed prototypes of software tools.

  10. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  11. Accessing Curriculum Through Technology Tools (ACTTT): A Model Development Project

    Science.gov (United States)

    Daytner, Katrina M.; Johanson, Joyce; Clark, Letha; Robinson, Linda

    2012-01-01

    Accessing Curriculum Through Technology Tools (ACTTT), a project funded by the U.S. Office of Special Education Programs (OSEP), developed and tested a model designed to allow children in early elementary school, including those "at risk" and with disabilities, to better access, participate in, and benefit from the general curriculum.…

  12. Combining modelling tools to evaluate a goose management scheme

    NARCIS (Netherlands)

    Baveco, Hans; Bergjord, Anne Kari; Bjerke, Jarle W.; Chudzińska, Magda E.; Pellissier, Loïc; Simonsen, Caroline E.; Madsen, Jesper; Tombre, Ingunn M.; Nolet, Bart A.

    2017-01-01

    Many goose species feed on agricultural land, and with growing goose numbers, conflicts with agriculture are increasing. One possible solution is to designate refuge areas where farmers are paid to leave geese undisturbed. Here, we present a generic modelling tool that can be used to designate the

  13. Combining modelling tools to evaluate a goose management scheme.

    NARCIS (Netherlands)

    Baveco, J.M.; Bergjord, A.K.; Bjerke, J.W.; Chudzińska, M.E.; Pellissier, L.; Simonsen, C.E.; Madsen, J.; Tombre, Ingunn M.; Nolet, B.A.

    2017-01-01

    Many goose species feed on agricultural land, and with growing goose numbers, conflicts with agriculture are increasing. One possible solution is to designate refuge areas where farmers are paid to leave geese undisturbed. Here, we present a generic modelling tool that can be used to designate the

  14. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Science.gov (United States)

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

  15. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Towards Semantically Integrated Models and Tools for Cyber-Physical Systems Design

    DEFF Research Database (Denmark)

    Larsen, Peter Gorm; Fitzgerald, John; Woodcock, Jim

    2016-01-01

    We describe an approach to the model-based engineering of embedded and cyber-physical systems, based on the semantic integration of diverse discipline-specific notations and tools. Using the example of a small unmanned aerial vehicle, we explain the need for multiple notations and collaborative...

  17. Community Based Forest Management as a Tool for Sustainable ...

    African Journals Online (AJOL)

    Community Based Forest Management as a Tool for Sustainable Forest Management in Cross River State, Nigeria. ... creation of enabling environment; state economic and fiscal policies, policy to encourage forestry enterprises; effective monitoring and evaluation of forest management policy and adequate mechanisms for ...

  18. Computer-based tools to support curriculum developers

    NARCIS (Netherlands)

    Nieveen, N.M.; Gustafson, Kent

    2000-01-01

    Since the start of the early 90’s, an increasing number of people are interested in supporting the complex tasks of the curriculum development process with computer-based tools. ‘Curriculum development’ refers to an intentional process or activity directed at (re) designing, developing and

  19. IBES: A Tool for Creating Instructions Based on Event Segmentation

    Directory of Open Access Journals (Sweden)

    Katharina eMura

    2013-12-01

    Full Text Available Receiving informative, well-structured, and well-designed instructions supports performance and memory in assembly tasks. We describe IBES, a tool with which users can quickly and easily create multimedia, step-by-step instructions by segmenting a video of a task into segments. In a validation study we demonstrate that the step-by-step structure of the visual instructions created by the tool corresponds to the natural event boundaries, which are assessed by event segmentation and are known to play an important role in memory processes. In one part of the study, twenty participants created instructions based on videos of two different scenarios by using the proposed tool. In the other part of the study, ten and twelve participants respectively segmented videos of the same scenarios yielding event boundaries for coarse and fine events. We found that the visual steps chosen by the participants for creating the instruction manual had corresponding events in the event segmentation. The number of instructional steps was a compromise between the number of fine and coarse events. Our interpretation of results is that the tool picks up on natural human event perception processes of segmenting an ongoing activity into events and enables the convenient transfer into meaningful multimedia instructions for assembly tasks. We discuss the practical application of IBES, for example, creating manuals for differing expertise levels, and give suggestions for research on user-oriented instructional design based on this tool.

  20. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  1. Greenhouse gases from wastewater treatment - A review of modelling tools.

    Science.gov (United States)

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Nucleonica. Web-based software tools for simulation and analysis

    International Nuclear Information System (INIS)

    Magill, J.; Dreher, R.; Soti, Z.

    2014-01-01

    The authors present a description of the Nucleonica web-based portal for simulation and analysis for a wide range of commonly encountered nuclear science applications. Advantages of a web-based approach include availability wherever there is internet access, intuitive user-friendly interface, remote access to high-power computing resources, and continual maintenance, improvement, and addition of tools and techniques common to the nuclear science industry. A description of the nuclear data resources, and some applications is given.

  3. Emerging Network-Based Tools in Movement Ecology.

    Science.gov (United States)

    Jacoby, David M P; Freeman, Robin

    2016-04-01

    New technologies have vastly increased the available data on animal movement and behaviour. Consequently, new methods deciphering the spatial and temporal interactions between individuals and their environments are vital. Network analyses offer a powerful suite of tools to disentangle the complexity within these dynamic systems, and we review these tools, their application, and how they have generated new ecological and behavioural insights. We suggest that network theory can be used to model and predict the influence of ecological and environmental parameters on animal movement, focusing on spatial and social connectivity, with fundamental implications for conservation. Refining how we construct and randomise spatial networks at different temporal scales will help to establish network theory as a prominent, hypothesis-generating tool in movement ecology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Advanced Computing Tools and Models for Accelerator Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  5. Advanced Computing Tools and Models for Accelerator Physics

    International Nuclear Information System (INIS)

    Ryne, Robert; Ryne, Robert D.

    2008-01-01

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics

  6. Web-based tool for expert elicitation of the variogram

    Science.gov (United States)

    Truong, Phuong N.; Heuvelink, Gerard B. M.; Gosling, John Paul

    2013-02-01

    The variogram is the keystone of geostatistics. Estimation of the variogram is deficient and difficult when there are no or too few observations available due to budget constraints or physical and temporal obstacles. In such cases, expert knowledge can be an important source of information. Expert knowledge can also fulfil the increasing demand for an a priori variogram in Bayesian geostatistics and spatial sampling optimization. Formal expert elicitation provides a sound scientific basis to reliably and consistently extract knowledge from experts. In this study, we aimed at applying existing statistical expert elicitation techniques to extract the variogram of a regionalized variable that is assumed to have either a multivariate normal or lognormal spatial probability distribution from expert knowledge. To achieve this, we developed an elicitation protocol and implemented it as a web-based tool to facilitate the elicitation of beliefs from multiple experts. Our protocol has two main rounds: elicitation of the marginal probability distribution and elicitation of the variogram. The web-based tool has three main components: a web interface for expert elicitation and feedback; a component for statistical computation and mathematical pooling of multiple experts' knowledge; and a database management component. Results from a test case study show that the protocol is adequate and that the online elicitation tool functions satisfactorily. The web-based tool is free to use and supports scientists to conveniently elicit the variogram of spatial random variables from experts. The source code is available from the journal FTP site under the GNU General Public License.

  7. Evaluating EML Modeling Tools for Insurance Purposes: A Case Study

    Directory of Open Access Journals (Sweden)

    Mikael Gustavsson

    2010-01-01

    Full Text Available As with any situation that involves economical risk refineries may share their risk with insurers. The decision process generally includes modelling to determine to which extent the process area can be damaged. On the extreme end of modelling the so-called Estimated Maximum Loss (EML scenarios are found. These scenarios predict the maximum loss a particular installation can sustain. Unfortunately no standard model for this exists. Thus the insurers reach different results due to applying different models and different assumptions. Therefore, a study has been conducted on a case in a Swedish refinery where several scenarios previously had been modelled by two different insurance brokers using two different softwares, ExTool and SLAM. This study reviews the concept of EML and analyses the used models to see which parameters are most uncertain. Also a third model, EFFECTS, was employed in an attempt to reach a conclusion with higher reliability.

  8. MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models

    Science.gov (United States)

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-01-01

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. This computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community. PMID:27536246

  9. Cloud-Based Computational Tools for Earth Science Applications

    Science.gov (United States)

    Arendt, A. A.; Fatland, R.; Howe, B.

    2015-12-01

    Earth scientists are increasingly required to think across disciplines and utilize a wide range of datasets in order to solve complex environmental challenges. Although significant progress has been made in distributing data, researchers must still invest heavily in developing computational tools to accommodate their specific domain. Here we document our development of lightweight computational data systems aimed at enabling rapid data distribution, analytics and problem solving tools for Earth science applications. Our goal is for these systems to be easily deployable, scalable and flexible to accommodate new research directions. As an example we describe "Ice2Ocean", a software system aimed at predicting runoff from snow and ice in the Gulf of Alaska region. Our backend components include relational database software to handle tabular and vector datasets, Python tools (NumPy, pandas and xray) for rapid querying of gridded climate data, and an energy and mass balance hydrological simulation model (SnowModel). These components are hosted in a cloud environment for direct access across research teams, and can also be accessed via API web services using a REST interface. This API is a vital component of our system architecture, as it enables quick integration of our analytical tools across disciplines, and can be accessed by any existing data distribution centers. We will showcase several data integration and visualization examples to illustrate how our system has expanded our ability to conduct cross-disciplinary research.

  10. Multi Sector Planning Tools for Trajectory-Based Operations

    Science.gov (United States)

    Prevot, Thomas; Mainini, Matthew; Brasil, Connie

    2010-01-01

    This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset.

  11. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  12. Novel texture-based descriptors for tool wear condition monitoring

    Science.gov (United States)

    Antić, Aco; Popović, Branislav; Krstanović, Lidija; Obradović, Ratko; Milošević, Mijodrag

    2018-01-01

    All state-of-the-art tool condition monitoring systems (TCM) in the tool wear recognition task, especially those that use vibration sensors, heavily depend on the choice of descriptors containing information about the tool wear state which are extracted from the particular sensor signals. All other post-processing techniques do not manage to increase the recognition precision if those descriptors are not discriminative enough. In this work, we propose a tool wear monitoring strategy which relies on the novel texture based descriptors. We consider the module of the Short Term Discrete Fourier Transform (STDFT) spectra obtained from the particular vibration sensors signal utterance as the 2D textured image. This is done by identifying the time scale of STDFT as the first dimension, and the frequency scale as the second dimension of the particular textured image. The obtained textured image is then divided into particular 2D texture patches, covering a part of the frequency range of interest. After applying the appropriate filter bank, 2D textons are extracted for each predefined frequency band. By averaging in time, we extract from the textons for each band of interest the information regarding the Probability Density Function (PDF) in the form of lower order moments, thus obtaining robust tool wear state descriptors. We validate the proposed features by the experiments conducted on the real TCM system, obtaining the high recognition accuracy.

  13. Tool for the Synthesis of Mechanisms of New Engines Based on Dasy

    Directory of Open Access Journals (Sweden)

    Richtr David

    2017-12-01

    Full Text Available The article presents a tool for the synthesis of engine mechanisms based on DASY and the use thereof for designing the parameters of an experimental single-cylinder engine. The tool includes a parametric engine model based on DASY. The model will make it possible to simulate the engine thermodynamics and its mechanisms. It consists of sub-models which deal with the thermodynamics, kinematics and dynamics of the valve timing mechanism, its belt drive, and hydraulic circuit for camshaft adjustment. The methodologies of synthesis of mechanisms were used to determine the values of the calibration parameters. The parameters of the sub-models were subsequently validated by experimental data, and the values thereof are included in DASY. The sub-models were used to assemble the model of an experimental single-cylinder engine which validates the design thereof, makes it possible to optimize its parameters and predict its behavior in different simulated conditions.

  14. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  15. Response Surface Modeling Tool Suite, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-05

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code, a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.

  16. Transfer Entropy as a Tool for Hydrodynamic Model Validation

    Directory of Open Access Journals (Sweden)

    Alicia Sendrowski

    2018-01-01

    Full Text Available The validation of numerical models is an important component of modeling to ensure reliability of model outputs under prescribed conditions. In river deltas, robust validation of models is paramount given that models are used to forecast land change and to track water, solid, and solute transport through the deltaic network. We propose using transfer entropy (TE to validate model results. TE quantifies the information transferred between variables in terms of strength, timescale, and direction. Using water level data collected in the distributary channels and inter-channel islands of Wax Lake Delta, Louisiana, USA, along with modeled water level data generated for the same locations using Delft3D, we assess how well couplings between external drivers (river discharge, tides, wind and modeled water levels reproduce the observed data couplings. We perform this operation through time using ten-day windows. Modeled and observed couplings compare well; their differences reflect the spatial parameterization of wind and roughness in the model, which prevents the model from capturing high frequency fluctuations of water level. The model captures couplings better in channels than on islands, suggesting that mechanisms of channel-island connectivity are not fully represented in the model. Overall, TE serves as an additional validation tool to quantify the couplings of the system of interest at multiple spatial and temporal scales.

  17. CREST Cost of Renewable Energy Spreadsheet Tool: A Model for Developing Cost-Based Incentives in the United States; User Manual Version 4, August 2009 - March 2011 (Updated July 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Gifford, J. S.; Grace, R. C.

    2013-07-01

    The objective of this document is to help model users understand how to use the CREST model to support renewable energy incentives, FITs, and other renewable energy rate-setting processes. This user manual will walk the reader through the spreadsheet tool, including its layout and conventions, offering context on how and why it was created. This user manual will also provide instructions on how to populate the model with inputs that are appropriate for a specific jurisdiction's policymaking objectives and context. Finally, the user manual will describe the results and outline how these results may inform decisions about long-term renewable energy support programs.

  18. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites

    Directory of Open Access Journals (Sweden)

    Junfeng Xiang

    2018-02-01

    Full Text Available The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiCp/Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiCp/Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiCp/Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD and chemical vapor deposition (CVD diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiCp/Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting

  19. Mechanism-Based FE Simulation of Tool Wear in Diamond Drilling of SiCp/Al Composites.

    Science.gov (United States)

    Xiang, Junfeng; Pang, Siqin; Xie, Lijing; Gao, Feinong; Hu, Xin; Yi, Jie; Hu, Fang

    2018-02-07

    The aim of this work is to analyze the micro mechanisms underlying the wear of macroscale tools during diamond machining of SiC p /Al6063 composites and to develop the mechanism-based diamond wear model in relation to the dominant wear behaviors. During drilling, high volume fraction SiC p /Al6063 composites containing Cu, the dominant wear mechanisms of diamond tool involve thermodynamically activated physicochemical wear due to diamond-graphite transformation catalyzed by Cu in air atmosphere and mechanically driven abrasive wear due to high-frequency scrape of hard SiC reinforcement on tool surface. An analytical diamond wear model, coupling Usui abrasive wear model and Arrhenius extended graphitization wear model was proposed and implemented through a user-defined subroutine for tool wear estimates. Tool wear estimate in diamond drilling of SiC p /Al6063 composites was achieved by incorporating the combined abrasive-chemical tool wear subroutine into the coupled thermomechanical FE model of 3D drilling. The developed drilling FE model for reproducing diamond tool wear was validated for feasibility and reliability by comparing numerically simulated tool wear morphology and experimentally observed results after drilling a hole using brazed polycrystalline diamond (PCD) and chemical vapor deposition (CVD) diamond coated tools. A fairly good agreement of experimental and simulated results in cutting forces, chip and tool wear morphologies demonstrates that the developed 3D drilling FE model, combined with a subroutine for diamond tool wear estimate can provide a more accurate analysis not only in cutting forces and chip shape but also in tool wear behavior during drilling SiC p /Al6063 composites. Once validated and calibrated, the developed diamond tool wear model in conjunction with other machining FE models can be easily extended to the investigation of tool wear evolution with various diamond tool geometries and other machining processes in cutting different

  20. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.

  1. Model Based Temporal Reasoning

    Science.gov (United States)

    Rabin, Marla J.; Spinrad, Paul R.; Fall, Thomas C.

    1988-03-01

    Systems that assess the real world must cope with evidence that is uncertain, ambiguous, and spread over time. Typically, the most important function of an assessment system is to identify when activities are occurring that are unusual or unanticipated. Model based temporal reasoning addresses both of these requirements. The differences among temporal reasoning schemes lies in the methods used to avoid computational intractability. If we had n pieces of data and we wanted to examine how they were related, the worst case would be where we had to examine every subset of these points to see if that subset satisfied the relations. This would be 2n, which is intractable. Models compress this; if several data points are all compatible with a model, then that model represents all those data points. Data points are then considered related if they lie within the same model or if they lie in models that are related. Models thus address the intractability problem. They also address the problem of determining unusual activities if the data do not agree with models that are indicated by earlier data then something out of the norm is taking place. The models can summarize what we know up to that time, so when they are not predicting correctly, either something unusual is happening or we need to revise our models. The model based reasoner developed at Advanced Decision Systems is thus both intuitive and powerful. It is currently being used on one operational system and several prototype systems. It has enough power to be used in domains spanning the spectrum from manufacturing engineering and project management to low-intensity conflict and strategic assessment.

  2. Inspection of the Math Model Tools for On-Orbit Assessment of Impact Damage Report

    Science.gov (United States)

    Harris, Charles E.; Raju, Ivatury S.; Piascik, Robert S> KramerWhite, Julie A.; KramerWhite, Julie A.; Labbe, Steve G.; Rotter, Hank A.

    2007-01-01

    In Spring of 2005, the NASA Engineering Safety Center (NESC) was engaged by the Space Shuttle Program (SSP) to peer review the suite of analytical tools being developed to support the determination of impact and damage tolerance of the Orbiter Thermal Protection Systems (TPS). The NESC formed an independent review team with the core disciplines of materials, flight sciences, structures, mechanical analysis and thermal analysis. The Math Model Tools reviewed included damage prediction and stress analysis, aeroheating analysis, and thermal analysis tools. Some tools are physics-based and other tools are empirically-derived. Each tool was created for a specific use and timeframe, including certification, real-time pre-launch assessments. In addition, the tools are used together in an integrated strategy for assessing the ramifications of impact damage to tile and RCC. The NESC teams conducted a peer review of the engineering data package for each Math Model Tool. This report contains the summary of the team observations and recommendations from these reviews.

  3. A Monte Carlo-based treatment-planning tool for ion beam therapy

    CERN Document Server

    Böhlen, T T; Dosanjh, M; Ferrari, A; Haberer, T; Parodi, K; Patera, V; Mairan, A

    2013-01-01

    Ion beam therapy, as an emerging radiation therapy modality, requires continuous efforts to develop and improve tools for patient treatment planning (TP) and research applications. Dose and fluence computation algorithms using the Monte Carlo (MC) technique have served for decades as reference tools for accurate dose computations for radiotherapy. In this work, a novel MC-based treatment-planning (MCTP) tool for ion beam therapy using the pencil beam scanning technique is presented. It allows single-field and simultaneous multiple-fields optimization for realistic patient treatment conditions and for dosimetric quality assurance for irradiation conditions at state-of-the-art ion beam therapy facilities. It employs iterative procedures that allow for the optimization of absorbed dose and relative biological effectiveness (RBE)-weighted dose using radiobiological input tables generated by external RBE models. Using a re-implementation of the local effect model (LEM), theMCTP tool is able to perform TP studies u...

  4. Using the IEA ETSAP modelling tools for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, Poul Erik

    2008-12-15

    An important part of the cooperation within the IEA (International Energy Agency) is organised through national contributions to 'Implementation Agreements' on energy technology and energy analyses. One of them is ETSAP (Energy Technology Systems Analysis Programme), started in 1976. Denmark has signed the agreement and contributed to some early annexes. This project is motivated by an invitation to participate in ETSAP Annex X, 'Global Energy Systems and Common Analyses: Climate friendly, Secure and Productive Energy Systems' for the period 2005 to 2007. The main activity is semi-annual workshops focusing on presentations of model analyses and use of the ETSAP tools (the MARKAL/TIMES family of models). The project was also planned to benefit from the EU project 'NEEDS - New Energy Externalities Developments for Sustainability'. ETSAP is contributing to a part of NEEDS that develops the TIMES model for 29 European countries with assessment of future technologies. An additional project 'Monitoring and Evaluation of the RES directives: implementation in EU27 and policy recommendations for 2020' (RES2020) under Intelligent Energy Europe was added, as well as the Danish 'Centre for Energy, Environment and Health (CEEH), starting from January 2007. This report summarises the activities under ETSAP Annex X and related project, emphasising the development of modelling tools that will be useful for modelling the Danish energy system. It is also a status report for the development of a model for Denmark, focusing on the tools and features that allow comparison with other countries and, particularly, to evaluate assumptions and results in international models covering Denmark. (au)

  5. ADAS tools for collisional–radiative modelling of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F., E-mail: francisco.guzman@cea.fr [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); CEA, IRFM, Saint-Paul-lez-Durance 13108 (France); O’Mullane, M.; Summers, H.P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2013-07-15

    New theoretical and computational tools for molecular collisional–radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H{sub 2} are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional–radiative) rate coefficients versus temperature and density are presented.

  6. ADAS tools for collisional-radiative modelling of molecules

    Science.gov (United States)

    Guzmán, F.; O'Mullane, M.; Summers, H. P.

    2013-07-01

    New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.

  7. MIMOX: a web tool for phage display based epitope mapping

    Directory of Open Access Journals (Sweden)

    Honda Wataru

    2006-10-01

    Full Text Available Abstract Background Phage display is widely used in basic research such as the exploration of protein-protein interaction sites and networks, and applied research such as the development of new drugs, vaccines, and diagnostics. It has also become a promising method for epitope mapping. Research on new algorithms that assist and automate phage display based epitope mapping has attracted many groups. Most of the existing tools have not been implemented as an online service until now however, making it less convenient for the community to access, utilize, and evaluate them. Results We present MIMOX, a free web tool that helps to map the native epitope of an antibody based on one or more user supplied mimotopes and the antigen structure. MIMOX was coded in Perl using modules from the Bioperl project. It has two sections. In the first section, MIMOX provides a simple interface for ClustalW to align a set of mimotopes. It also provides a simple statistical method to derive the consensus sequence and embeds JalView as a Java applet to view and manage the alignment. In the second section, MIMOX can map a single mimotope or a consensus sequence of a set of mimotopes, on to the corresponding antigen structure and search for all of the clusters of residues that could represent the native epitope. NACCESS is used to evaluate the surface accessibility of the candidate clusters; and Jmol is embedded to view them interactively in their 3D context. Initial case studies show that MIMOX can reproduce mappings from existing tools such as FINDMAP and 3DEX, as well as providing novel, rational results. Conclusion A web-based tool called MIMOX has been developed for phage display based epitope mapping. As a publicly available online service in this area, it is convenient for the community to access, utilize, and evaluate, complementing other existing programs. MIMOX is freely available at http://web.kuicr.kyoto-u.ac.jp/~hjian/mimox.

  8. The Application of Logical Tools in Project-Based Classrooms

    OpenAIRE

    Jakovljević, Marija

    2011-01-01

    The purpose of this paper is to investigate the application of logical tools such as inference trees and columnar data flow diagrams in the information system (IS) analysis and design context. Seventeen students at an institution of higher education were observed during the design and analysis of information systems and their experiences were evaluated through a focus group interview, observations and documents analysis. This research was based on a qualitative, action research approach (Yin ...

  9. Internet MEMS design tools based on component technology

    Science.gov (United States)

    Brueck, Rainer; Schumer, Christian

    1999-03-01

    The micro electromechanical systems (MEMS) industry in Europe is characterized by small and medium sized enterprises specialized on products to solve problems in specific domains like medicine, automotive sensor technology, etc. In this field of business the technology driven design approach known from micro electronics is not appropriate. Instead each design problem aims at its own, specific technology to be used for the solution. The variety of technologies at hand, like Si-surface, Si-bulk, LIGA, laser, precision engineering requires a huge set of different design tools to be available. No single SME can afford to hold licenses for all these tools. This calls for a new and flexible way of designing, implementing and distributing design software. The Internet provides a flexible manner of offering software access along with methodologies of flexible licensing e.g. on a pay-per-use basis. New communication technologies like ADSL, TV cable of satellites as carriers promise to offer a bandwidth sufficient even for interactive tools with graphical interfaces in the near future. INTERLIDO is an experimental tool suite for process specification and layout verification for lithography based MEMS technologies to be accessed via the Internet. The first version provides a Java implementation even including a graphical editor for process specification. Currently, a new version is brought into operation that is based on JavaBeans component technology. JavaBeans offers the possibility to realize independent interactive design assistants, like a design rule checking assistants, a process consistency checking assistants, a technology definition assistants, a graphical editor assistants, etc. that may reside distributed over the Internet, communicating via Internet protocols. Each potential user thus is able to configure his own dedicated version of a design tool set dedicated to the requirements of the current problem to be solved.

  10. Introduction to genetic algorithms as a modeling tool

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    Genetic algorithms are search and classification techniques modeled on natural adaptive systems. This is an introduction to their use as a modeling tool with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in genetic algorithms and to recognize those which might impact on electric power engineering. Beginning with a discussion of genetic algorithms and their origin as a model of biological adaptation, their advantages and disadvantages are described in comparison with other modeling tools such as simulation and neural networks in order to provide guidance in selecting appropriate applications. In particular, their use is described for improving expert systems from actual data and they are suggested as an aid in building mathematical models. Using the Thermal Performance Advisor as an example, it is suggested how genetic algorithms might be used to make a conventional expert system and mathematical model of a power plant adapt automatically to changes in the plant's characteristics

  11. Web-based portfolios: a valuable tool for surgical education.

    Science.gov (United States)

    Lewis, Catherine E; Tillou, Areti; Yeh, Michael W; Quach, Chi; Hiatt, Jonathan R; Hines, O Joe

    2010-06-01

    Our residency program developed and implemented an online portfolio system. In the present communication, we describe this system and provide an early analysis of its effect on competency-based performance and acceptance of the system by the residents. To measure competency-based performance, end-of-rotation global evaluations of residents by faculty completed before (n = 1488) and after (n = 697) implementation of the portfolio were compared. To assess acceptance, residents completed a 20-question survey. Practice-based learning and improvement improved following implementation of the portfolio system (P = 0.002). There was also a trend toward improvement in the remaining competencies. In the survey tool (response rate 69%), 95% of the residents agreed that the purpose and functions of the system had been explained to them, and 82% affirmed understanding of ways in which the system could help them, although fewer than half reported that their portfolio had aided in their development of the competencies. All residents appreciated the system's organizational capabilities, and 87% agreed that the portfolio was a useful educational tool. This web portfolio program is a valuable new instrument for both residents and administrators. Early analysis of its impact demonstrates a positive effect across all competencies, and survey analysis revealed that residents have a positive view of this new system. As the portfolio is further incorporated into the educational program, we believe that our residents will discover new tools to craft a career of genuine self-directed learning. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. Surviving the present: Modeling tools for organizational change

    Energy Technology Data Exchange (ETDEWEB)

    Pangaro, P. (Pangaro Inc., Washington, DC (United States))

    1992-01-01

    The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them.

  13. Surviving the present: Modeling tools for organizational change

    International Nuclear Information System (INIS)

    Pangaro, P.

    1992-01-01

    The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them

  14. Integrated environmental decision support tool based on GIS technology

    International Nuclear Information System (INIS)

    Doctor, P.G.; O'Neil, T.K.; Sackschewsky, M.R.; Becker, J.M.; Rykiel, E.J.; Walters, T.B.; Brandt, C.A.; Hall, J.A.

    1995-01-01

    Environmental restoration and management decisions facing the US Department of Energy require balancing trade-offs between diverse land uses and impacts over multiple spatial and temporal scales. Many types of environmental data have been collected for the Hanford Site and the Columbia River in Washington State over the past fifty years. Pacific Northwest National Laboratory (PNNL) is integrating these data into a Geographic Information System (GIS) based computer decision support tool. This tool provides a comprehensive and concise description of the current environmental landscape that can be used to evaluate the ecological and monetary trade-offs between future land use, restoration and remediation options before action is taken. Ecological impacts evaluated include effects to individual species of concern and habitat loss and fragmentation. Monetary impacts include those associated with habitat mitigation. The tool is organized as both a browsing tool for educational purposes, and as a framework that leads a project manager through the steps needed to be in compliance with environmental requirements

  15. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  16. Investigating Learner Attitudes toward E-Books as Learning Tools: Based on the Activity Theory Approach

    Science.gov (United States)

    Liaw, Shu-Sheng; Huang, Hsiu-Mei

    2016-01-01

    This paper investigates the use of e-books as learning tools in terms of learner satisfaction, usefulness, behavioral intention, and learning effectiveness. Based on the activity theory approach, this research develops a research model to understand learner attitudes toward e-books in two physical sizes: 10? and 7?. Results suggest that screen…

  17. A unified tool for performance modelling and prediction

    International Nuclear Information System (INIS)

    Gilmore, Stephen; Kloul, Leila

    2005-01-01

    We describe a novel performability modelling approach, which facilitates the efficient solution of performance models extracted from high-level descriptions of systems. The notation which we use for our high-level designs is the Unified Modelling Language (UML) graphical modelling language. The technology which provides the efficient representation capability for the underlying performance model is the multi-terminal binary decision diagram (MTBDD)-based PRISM probabilistic model checker. The UML models are compiled through an intermediate language, the stochastic process algebra PEPA, before translation into MTBDDs for solution. We illustrate our approach on a real-world analysis problem from the domain of mobile telephony

  18. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  19. ANN Based Tool Condition Monitoring System for CNC Milling Machines

    Directory of Open Access Journals (Sweden)

    Mota-Valtierra G.C.

    2011-10-01

    Full Text Available Most of the companies have as objective to manufacture high-quality products, then by optimizing costs, reducing and controlling the variations in its production processes it is possible. Within manufacturing industries a very important issue is the tool condition monitoring, since the tool state will determine the quality of products. Besides, a good monitoring system will protect the machinery from severe damages. For determining the state of the cutting tools in a milling machine, there is a great variety of models in the industrial market, however these systems are not available to all companies because of their high costs and the requirements of modifying the machining tool in order to attach the system sensors. This paper presents an intelligent classification system which determines the status of cutt ers in a Computer Numerical Control (CNC milling machine. This tool state is mainly detected through the analysis of the cutting forces drawn from the spindle motors currents. This monitoring system does not need sensors so it is no necessary to modify the machine. The correct classification is made by advanced digital signal processing techniques. Just after acquiring a signal, a FIR digital filter is applied to the data to eliminate the undesired noisy components and to extract the embedded force components. A Wavelet Transformation is applied to the filtered signal in order to compress the data amount and to optimize the classifier structure. Then a multilayer perceptron- type neural network is responsible for carrying out the classification of the signal. Achieving a reliability of 95%, the system is capable of detecting breakage and a worn cutter.

  20. The use of virtual laboratories and other web-based tools in a drug assay course.

    Science.gov (United States)

    Dunham, Marissa Waldman; Ghirtis, Konstantine; Beleh, Mustapha

    2012-06-18

    To determine students' perceptions of and performance in a drug assay laboratory course after the addition of Web-based multimedia tools. Video modules and other Web-based tools to deliver instructions and emulate the laboratory set up for experiments were implemented in 2005 to improve student preparation for laboratory sessions and eliminate the need for graduate students to present instructions live. Data gathered from quizzes, final examinations, and post-course surveys administered over 6 years were analyzed. Students' scores on online quizzes after implementation of the virtual laboratories reflected improved student understanding and preparation. Students' perception of the course improved significantly after the introduction of the tools and the new teaching model. Implementation of an active-learning model in a laboratory course led to improvement in students' educational experience and satisfaction. Additional benefits included improved resource use, student exposure to a variety of educational methods, and having a highly structured laboratory format that reduced inconsistencies in delivered instructions.

  1. Logic flowgraph methodology - A tool for modeling embedded systems

    Science.gov (United States)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  2. Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Directory of Open Access Journals (Sweden)

    Ezio Bartocci

    2016-01-01

    Full Text Available As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.

  3. Empirical comparison of web-based antimicrobial peptide prediction tools.

    Science.gov (United States)

    Gabere, Musa Nur; Noble, William Stafford

    2017-07-01

    Antimicrobial peptides (AMPs) are innate immune molecules that exhibit activities against a range of microbes, including bacteria, fungi, viruses and protozoa. Recent increases in microbial resistance against current drugs has led to a concomitant increase in the need for novel antimicrobial agents. Over the last decade, a number of AMP prediction tools have been designed and made freely available online. These AMP prediction tools show potential to discriminate AMPs from non-AMPs, but the relative quality of the predictions produced by the various tools is difficult to quantify. We compiled two sets of AMP and non-AMP peptides, separated into three categories-antimicrobial, antibacterial and bacteriocins. Using these benchmark data sets, we carried out a systematic evaluation of ten publicly available AMP prediction methods. Among the six general AMP prediction tools-ADAM, CAMPR3(RF), CAMPR3(SVM), MLAMP, DBAASP and MLAMP-we find that CAMPR3(RF) provides a statistically significant improvement in performance, as measured by the area under the receiver operating characteristic (ROC) curve, relative to the other five methods. Surprisingly, for antibacterial prediction, the original AntiBP method significantly outperforms its successor, AntiBP2 based on one benchmark dataset. The two bacteriocin prediction tools, BAGEL3 and BACTIBASE, both provide very good performance and BAGEL3 outperforms its predecessor, BACTIBASE, on the larger of the two benchmarks. gaberemu@ngha.med.sa or william-noble@uw.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  4. Web-based drug repurposing tools: a survey.

    Science.gov (United States)

    Sam, Elizabeth; Athri, Prashanth

    2017-10-06

    Drug repurposing (a.k.a. drug repositioning) is the search for new indications or molecular targets distinct from a drug's putative activity, pharmacological effect or binding specificities. With the ever-increasing rates of termination of drugs in clinical trials, drug repositioning has risen as one of the effective solutions against the risk of drug failures. Repositioning finds a way to reverse the grim but real trend that Eroom's law portends for the pharmaceutical and biotech industry, and drug discovery in general. Further, the advent of high-throughput technologies to explore biological systems has enabled the generation of zeta bytes of data and a massive collection of databases that store them. Computational analytics and mining are frequently used as effective tools to explore this byzantine series of biological and biomedical data. However, advanced computational tools are often difficult to understand or use, thereby limiting their accessibility to scientists without a strong computational background. Hence it is of great importance to build user-friendly interfaces to extend the user-base beyond computational scientists, to include life scientists who may have deeper chemical and biological insights. This survey is focused on systematically presenting the available Web-based tools that aid in repositioning drugs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Development of Multi-slice Analytical Tool to Support BIM-based Design Process

    Science.gov (United States)

    Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.

    2017-03-01

    This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.

  6. Design tool for TOF and SL based 3D cameras.

    Science.gov (United States)

    Bouquet, Gregory; Thorstensen, Jostein; Bakke, Kari Anne Hestnes; Risholm, Petter

    2017-10-30

    Active illumination 3D imaging systems based on Time-of-flight (TOF) and Structured Light (SL) projection are in rapid development, and are constantly finding new areas of application. In this paper, we present a theoretical design tool that allows prediction of 3D imaging precision. Theoretical expressions are developed for both TOF and SL imaging systems. The expressions contain only physically measurable parameters and no fitting parameters. We perform 3D measurements with both TOF and SL imaging systems, showing excellent agreement between theoretical and measured distance precision. The theoretical framework can be a powerful 3D imaging design tool, as it allows for prediction of 3D measurement precision already in the design phase.

  7. A cloud based tool for knowledge exchange on local scale flood risk.

    Science.gov (United States)

    Wilkinson, M E; Mackay, E; Quinn, P F; Stutter, M; Beven, K J; MacLeod, C J A; Macklin, M G; Elkhatib, Y; Percy, B; Vitolo, C; Haygarth, P M

    2015-09-15

    There is an emerging and urgent need for new approaches for the management of environmental challenges such as flood hazard in the broad context of sustainability. This requires a new way of working which bridges disciplines and organisations, and that breaks down science-culture boundaries. With this, there is growing recognition that the appropriate involvement of local communities in catchment management decisions can result in multiple benefits. However, new tools are required to connect organisations and communities. The growth of cloud based technologies offers a novel way to facilitate this process of exchange of information in environmental science and management; however, stakeholders need to be engaged with as part of the development process from the beginning rather than being presented with a final product at the end. Here we present the development of a pilot Local Environmental Virtual Observatory Flooding Tool. The aim was to develop a cloud based learning platform for stakeholders, bringing together fragmented data, models and visualisation tools that will enable these stakeholders to make scientifically informed environmental management decisions at the local scale. It has been developed by engaging with different stakeholder groups in three catchment case studies in the UK and a panel of national experts in relevant topic areas. However, these case study catchments are typical of many northern latitude catchments. The tool was designed to communicate flood risk in locally impacted communities whilst engaging with landowners/farmers about the risk of runoff from the farmed landscape. It has been developed iteratively to reflect the needs, interests and capabilities of a wide range of stakeholders. The pilot tool combines cloud based services, local catchment datasets, a hydrological model and bespoke visualisation tools to explore real time hydrometric data and the impact of flood risk caused by future land use changes. The novel aspects of the

  8. The EDF/SEPTEN crisis team calculation tools and models

    International Nuclear Information System (INIS)

    De Magondeaux, B.; Grimaldi, X.

    1993-01-01

    Electricite de France (EDF) has developed a set of simplified tools and models called TOUTEC and CRISALIDE which are devoted to be used by the French utility National Crisis Team in order to perform the task of diagnosis and prognosis during an emergency situation. As a severe accident could have important radiological consequences, this method is focused on the diagnosis of the state of the safety barriers and on the prognosis of their behaviour. These tools allow the crisis team to deliver public authorities with information on the radiological risk and to provide advices to manage the accident on the damaged unit. At a first level, TOUTEC is intended to complement the hand-book with simplified calculation models and predefined relationships. It can avoid tedious calculation during stress conditions. The main items are the calculation of the primary circuit breach size and the evaluation of hydrogen over pressurization. The set of models called CRISALIDE is devoted to evaluate the following critical parameters: delay before core uncover, which would signify more severe consequences if it occurs, containment pressure behaviour and finally source term. With these models, crisis team comes able to take into account combinations of boundary conditions according to safety and auxiliary systems availability

  9. MARs Tools for Interactive ANalysis (MARTIAN): Google Maps Tools for Visual Exploration of Geophysical Modeling on Mars

    Science.gov (United States)

    Dimitrova, L. L.; Haines, M.; Holt, W. E.; Schultz, R. A.; Richard, G.; Haines, A. J.

    2006-12-01

    Interactive maps of surface-breaking faults and stress models on Mars provide important tools to engage undergraduate students, educators, and scientists with current geological and geophysical research. We have developed a map based on the Google Maps API -- an Internet based tool combining DHTML and AJAX, -- which allows very large maps to be viewed over the World Wide Web. Typically, small portions of the maps are downloaded as needed, rather than the entire image at once. This set-up enables relatively fast access for users with low bandwidth. Furthermore, Google Maps provides an extensible interactive interface making it ideal for visualizing multiple data sets at the user's choice. The Google Maps API works primarily with data referenced to latitudes and longitudes, which is then mapped in Mercator projection only. We have developed utilities for general cylindrical coordinate systems by converting these coordinates into equivalent Mercator projection before including them on the map. The MARTIAN project is available at http://rock.geo.sunysb.edu/~holt/Mars/MARTIAN/. We begin with an introduction to the Martian surface using a topography model. Faults from several datasets are classified by type (extension vs. compression) and by time epoch. Deviatoric stresses due to gravitational potential energy differences, calculated from the topography and crustal thickness, can be overlain. Several quantitative measures for the fit of the stress field to the faults are also included. We provide introductory text and exercises spanning a range of topics: how are faults identified, what stress is and how it relates to faults, what gravitational potential energy is and how variations in it produce stress, how the models are created, and how these models can be evaluated and interpreted. The MARTIAN tool is used at Stony Brook University in GEO 310: Introduction to Geophysics, a class geared towards junior and senior geosciences majors. Although this project is in its

  10. Development of a surrogate model for elemental analysis using a natural gamma ray spectroscopy tool

    International Nuclear Information System (INIS)

    Zhang, Qiong

    2015-01-01

    A systematic computational method for obtaining accurate elemental standards efficiently for varying borehole conditions was developed based on Monte Carlo simulations, surrogate modeling, and data assimilation. Elemental standards are essential for spectral unfolding in formation evaluation applications commonly used for nuclear well logging tools. Typically, elemental standards are obtained by standardized measurements, but these experiments are expensive and lack the flexibility to address different logging conditions. In contrast, computer-based Monte Carlo simulations provide an accurate and more flexible approach to obtaining elemental standards for formation evaluation. The presented computational method recognizes that in contrast to typical neutron–photon simulations, where the source is typically artificial and well characterized (Galford, 2009), an accurate knowledge of the source is essential for matching the obtained Monte Carlo elemental standards with their experimental counterparts. Therefore, source distributions are adjusted to minimize the L2 difference of the Monte Carlo computed and experimental standards. Subsequently, an accurate surrogate model is developed accounting for different casing and cement thicknesses, and tool positions within the borehole. The adjusted source distributions are then utilized to generate and validate spectra for varying borehole conditions: tool position, casing and cement thickness. The effect of these conditions on the spectra are investigated and discussed in this work. Given that Monte Carlo modeling provides much lower cost and more flexibility, employing Monte Carlo could enhance the processing of nuclear tool logging data computed standards. - Highlights: • A novel computational model for efficiently computing elemental standards for varying borehole conditions has been developed. • A model of an experimental test pit was implemented in the Monte Carlo code GEANT4 for computing elemental standards.

  11. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  12. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  13. In silico tools used for compound selection during target-based drug discovery and development.

    Science.gov (United States)

    Caldwell, Gary W

    2015-01-01

    The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.

  14. Mathematical modeling of physiological systems: an essential tool for discovery.

    Science.gov (United States)

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  16. Performance Analysis, Modeling and Scaling of HPC Applications and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bhatele, Abhinav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-13

    E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research along the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.

  17. PV-WEB: internet-based PV information tool

    International Nuclear Information System (INIS)

    Cowley, P.

    2003-01-01

    This report gives details of a project to create a web-based information system on photovoltaic (PV) systems for the British PV Association (PV-UK) for use by decision makers in government, the utilities, and the housing and construction sectors. The project, which aims to provide an easily accessible tool for UK companies, promote PV technology, increase competitiveness, and identify market opportunities, is described. The design of the web site and its implementation and the evolution are discussed, along with the maintenance of the site by PV-UK and the opportunities offered to PV-UK Members

  18. Advanced prototyping tools for project- and problem-based learning

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Bech, Michael Møller; Holm, Allan J.

    2002-01-01

    A new approach in prototyping for project- and problem-based learning is achieved by using the new Total Development Environment concept introduced by dSPACE that allows a full visual block-oriented programming of dynamic real-time systems to be achieved  using the Matlab/Simulink environment....... A new laboratory called Flexible Drives System Laboratory (FDSL) as well as a matrix-converter controller which both are using dSPACE prototyping tools are described in this paper....

  19. Molecular tools for the construction of peptide-based materials.

    Science.gov (United States)

    Ramakers, B E I; van Hest, J C M; Löwik, D W P M

    2014-04-21

    Proteins and peptides are fundamental components of living systems where they play crucial roles at both functional and structural level. The versatile biological properties of these molecules make them interesting building blocks for the construction of bio-active and biocompatible materials. A variety of molecular tools can be used to fashion the peptides necessary for the assembly of these materials. In this tutorial review we shall describe five of the main techniques, namely solid phase peptide synthesis, native chemical ligation, Staudinger ligation, NCA polymerisation, and genetic engineering, that have been used to great effect for the construction of a host of peptide-based materials.

  20. Visual Representation in GENESIS as a tool for Physical Modeling, Sound Synthesis and Musical Composition

    OpenAIRE

    Villeneuve, Jérôme; Cadoz, Claude; Castagné, Nicolas

    2015-01-01

    The motivation of this paper is to highlight the importance of visual representations for artists when modeling and simulating mass-interaction physical networks in the context of sound synthesis and musical composition. GENESIS is a musician-oriented software environment for sound synthesis and musical composition. However, despite this orientation, a substantial amount of effort has been put into building a rich variety of tools based on static or dynamic visual representations of models an...

  1. Bio-logic builder: a non-technical tool for building dynamical, qualitative models.

    Science.gov (United States)

    Helikar, Tomáš; Kowal, Bryan; Madrahimov, Alex; Shrestha, Manish; Pedersen, Jay; Limbu, Kahani; Thapa, Ishwor; Rowley, Thaine; Satalkar, Rahul; Kochi, Naomi; Konvalina, John; Rogers, Jim A

    2012-01-01

    Computational modeling of biological processes is a promising tool in biomedical research. While a large part of its potential lies in the ability to integrate it with laboratory research, modeling currently generally requires a high degree of training in mathematics and/or computer science. To help address this issue, we have developed a web-based tool, Bio-Logic Builder, that enables laboratory scientists to define mathematical representations (based on a discrete formalism) of biological regulatory mechanisms in a modular and non-technical fashion. As part of the user interface, generalized "bio-logic" modules have been defined to provide users with the building blocks for many biological processes. To build/modify computational models, experimentalists provide purely qualitative information about a particular regulatory mechanisms as is generally found in the laboratory. The Bio-Logic Builder subsequently converts the provided information into a mathematical representation described with Boolean expressions/rules. We used this tool to build a number of dynamical models, including a 130-protein large-scale model of signal transduction with over 800 interactions, influenza A replication cycle with 127 species and 200+ interactions, and mammalian and budding yeast cell cycles. We also show that any and all qualitative regulatory mechanisms can be built using this tool.

  2. Model Based Definition

    Science.gov (United States)

    Rowe, Sidney E.

    2010-01-01

    In September 2007, the Engineering Directorate at the Marshall Space Flight Center (MSFC) created the Design System Focus Team (DSFT). MSFC was responsible for the in-house design and development of the Ares 1 Upper Stage and the Engineering Directorate was preparing to deploy a new electronic Configuration Management and Data Management System with the Design Data Management System (DDMS) based upon a Commercial Off The Shelf (COTS) Product Data Management (PDM) System. The DSFT was to establish standardized CAD practices and a new data life cycle for design data. Of special interest here, the design teams were to implement Model Based Definition (MBD) in support of the Upper Stage manufacturing contract. It is noted that this MBD does use partially dimensioned drawings for auxiliary information to the model. The design data lifecycle implemented several new release states to be used prior to formal release that allowed the models to move through a flow of progressive maturity. The DSFT identified some 17 Lessons Learned as outcomes of the standards development, pathfinder deployments and initial application to the Upper Stage design completion. Some of the high value examples are reviewed.

  3. Computer-based tools for decision support at the Hanford Site

    International Nuclear Information System (INIS)

    Doctor, P.G.; Mahaffey, J.A.; Cowley, P.J.; Freshley, M.D.; Hassig, N.L.; Brothers, J.W.; Glantz, C.S.; Strachan, D.M.

    1992-11-01

    To help integrate activities in the environmental restoration and waste management mission of the Hanford Site, the Hanford Integrated Planning Project (HIPP) was established and funded by the US Department of Energy. The project is divided into three key program elements, the first focusing on an explicit, defensible and comprehensive method for evaluating technical options. Based on the premise that computer technology can be used to support the decision-making process and facilitate integration among programs and activities, the Decision Support Tools Task was charged with assessing the status of computer technology for those purposes at the Site. The task addressed two types of tools: tools need to provide technical information and management support tools. Technical tools include performance and risk assessment models, information management systems, data and the computer infrastructure to supports models, data, and information management systems. Management decision support tools are used to synthesize information at a high' level to assist with making decisions. The major conclusions resulting from the assessment are that there is much technical information available, but it is not reaching the decision-makers in a form to be used. Many existing tools provide components that are needed to integrate site activities; however, some components are missing and, more importantly, the ''glue'' or connections to tie the components together to answer decision-makers questions is largely absent. Top priority should be given to decision support tools that support activities given in the TPA. Other decision tools are needed to facilitate and support the environmental restoration and waste management mission

  4. Computer-based tools for decision support at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Mahaffey, J.A.; Cowley, P.J.; Freshley, M.D.; Hassig, N.L.; Brothers, J.W.; Glantz, C.S.; Strachan, D.M.

    1992-11-01

    To help integrate activities in the environmental restoration and waste management mission of the Hanford Site, the Hanford Integrated Planning Project (HIPP) was established and funded by the US Department of Energy. The project is divided into three key program elements, the first focusing on an explicit, defensible and comprehensive method for evaluating technical options. Based on the premise that computer technology can be used to support the decision-making process and facilitate integration among programs and activities, the Decision Support Tools Task was charged with assessing the status of computer technology for those purposes at the Site. The task addressed two types of tools: tools need to provide technical information and management support tools. Technical tools include performance and risk assessment models, information management systems, data and the computer infrastructure to supports models, data, and information management systems. Management decision support tools are used to synthesize information at a high' level to assist with making decisions. The major conclusions resulting from the assessment are that there is much technical information available, but it is not reaching the decision-makers in a form to be used. Many existing tools provide components that are needed to integrate site activities; however, some components are missing and, more importantly, the glue'' or connections to tie the components together to answer decision-makers questions is largely absent. Top priority should be given to decision support tools that support activities given in the TPA. Other decision tools are needed to facilitate and support the environmental restoration and waste management mission.

  5. Computer-based tools for decision support at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, P.G.; Mahaffey, J.A.; Cowley, P.J.; Freshley, M.D.; Hassig, N.L.; Brothers, J.W.; Glantz, C.S.; Strachan, D.M.

    1992-11-01

    To help integrate activities in the environmental restoration and waste management mission of the Hanford Site, the Hanford Integrated Planning Project (HIPP) was established and funded by the US Department of Energy. The project is divided into three key program elements, the first focusing on an explicit, defensible and comprehensive method for evaluating technical options. Based on the premise that computer technology can be used to support the decision-making process and facilitate integration among programs and activities, the Decision Support Tools Task was charged with assessing the status of computer technology for those purposes at the Site. The task addressed two types of tools: tools need to provide technical information and management support tools. Technical tools include performance and risk assessment models, information management systems, data and the computer infrastructure to supports models, data, and information management systems. Management decision support tools are used to synthesize information at a high` level to assist with making decisions. The major conclusions resulting from the assessment are that there is much technical information available, but it is not reaching the decision-makers in a form to be used. Many existing tools provide components that are needed to integrate site activities; however, some components are missing and, more importantly, the ``glue`` or connections to tie the components together to answer decision-makers questions is largely absent. Top priority should be given to decision support tools that support activities given in the TPA. Other decision tools are needed to facilitate and support the environmental restoration and waste management mission.

  6. Model based design introduction: modeling game controllers to microprocessor architectures

    Science.gov (United States)

    Jungwirth, Patrick; Badawy, Abdel-Hameed

    2017-04-01

    We present an introduction to model based design. Model based design is a visual representation, generally a block diagram, to model and incrementally develop a complex system. Model based design is a commonly used design methodology for digital signal processing, control systems, and embedded systems. Model based design's philosophy is: to solve a problem - a step at a time. The approach can be compared to a series of steps to converge to a solution. A block diagram simulation tool allows a design to be simulated with real world measurement data. For example, if an analog control system is being upgraded to a digital control system, the analog sensor input signals can be recorded. The digital control algorithm can be simulated with the real world sensor data. The output from the simulated digital control system can then be compared to the old analog based control system. Model based design can compared to Agile software develop. The Agile software development goal is to develop working software in incremental steps. Progress is measured in completed and tested code units. Progress is measured in model based design by completed and tested blocks. We present a concept for a video game controller and then use model based design to iterate the design towards a working system. We will also describe a model based design effort to develop an OS Friendly Microprocessor Architecture based on the RISC-V.

  7. Aquifer characterization through an integrated GIS-based tool

    Science.gov (United States)

    Criollo, Rotman; Velasco, Violeta; Vázquez-Suñé, Enric; Serrano-Juan, Alejandro; Alcaraz, Mar; García-Gil, Alejandro

    2016-04-01

    Hydraulic parameters of the subsurface (transmissivity, hydraulic conductivity, storativity and specific storage) are important to achieve hydrogeological studies such as environmental impact assessments, water resources evaluations or groundwater contamination remediation, among others. There are several methods to determine aquifer parameters but pumping test is the most commonly used method to obtain them and generally leads to reliable hydraulic parameters. These parameters and other hydraulic data available for integration into the hydrogeological studies (which currently are supported by groundwater numerical models) usually has a very diverse origin and format and, therefore, a chance of bias in the interpretations. Consequently, it becomes necessary to have effective instruments that facilitate the pre-process, the visualization, the analysis and the validation (e.g. graphical analysis techniques) of this great amount of data. To achieve this in a clear and understandable manner, the GIS environment is a useful instrument. We developed a software to analyze pumping tests in a GIS platform environment to support the hydraulic parameterization of groundwater flow and transport models. This novel platform provides a package of tools for collecting, managing, analyzing, processing and interpreting data derived from pumping tests in a GIS environment. Additionally, within the GIS platform, it is possible to process the hydraulic parameters obtained from the pumping test and to create spatial distribution maps, perform geostatistical analysis and export the information to an external software platform. These tools have been applied in the metropolitan area of Barcelona (Spain) to tests out and improve their usefulness in hydrogeological analysis.

  8. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  9. ISRU System Model Tool: From Excavation to Oxygen Production

    Science.gov (United States)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  10. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions

    International Nuclear Information System (INIS)

    Brown, Alan; Long, Fei; Nicholls, Robert A.; Toots, Jaan; Emsley, Paul; Murshudov, Garib

    2015-01-01

    A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions. The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC

  11. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Alan; Long, Fei; Nicholls, Robert A.; Toots, Jaan; Emsley, Paul; Murshudov, Garib, E-mail: garib@mrc-lmb.cam.ac.uk [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH (United Kingdom)

    2015-01-01

    A description is given of new tools to facilitate model building and refinement into electron cryo-microscopy reconstructions. The recent rapid development of single-particle electron cryo-microscopy (cryo-EM) now allows structures to be solved by this method at resolutions close to 3 Å. Here, a number of tools to facilitate the interpretation of EM reconstructions with stereochemically reasonable all-atom models are described. The BALBES database has been repurposed as a tool for identifying protein folds from density maps. Modifications to Coot, including new Jiggle Fit and morphing tools and improved handling of nucleic acids, enhance its functionality for interpreting EM maps. REFMAC has been modified for optimal fitting of atomic models into EM maps. As external structural information can enhance the reliability of the derived atomic models, stabilize refinement and reduce overfitting, ProSMART has been extended to generate interatomic distance restraints from nucleic acid reference structures, and a new tool, LIBG, has been developed to generate nucleic acid base-pair and parallel-plane restraints. Furthermore, restraint generation has been integrated with visualization and editing in Coot, and these restraints have been applied to both real-space refinement in Coot and reciprocal-space refinement in REFMAC.

  12. Modeling and Control of the Cobelli Model as a Personalized Prescriptive Tool for Diabetes Treatment

    Science.gov (United States)

    2016-11-05

    physiological accurate model allows for the use of control theory to investigate applications as a personalized prescription tool. This research...physiological accurate model allows for the use of control theory to investigate applications as a personalized prescription tool. This research...utilization increases toward healthy levels. The second pathway is by decreasing the endogenous glucose production of the liver to the bloodstream [6,7

  13. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  14. Development of tools and models for computational fracture assessment

    International Nuclear Information System (INIS)

    Talja, H.; Santaoja, K.

    1998-01-01

    The aim of the work presented in this paper has been to develop and test new computational tools and theoretically more sound methods for fracture mechanical analysis. The applicability of the engineering integrity assessment system MASI for evaluation of piping components has been extended. The most important motivation for the theoretical development have been the well-known fundamental limitations in the validity of J-integral, which limits its applicability in many important practical safety assessment cases. Examples are extensive plastic deformation, multimaterial structures and ascending loading paths (especially warm prestress, WPS). Further, the micromechanical Gurson model has been applied to several reactor pressure vessel materials. Special attention is paid to the transferability of Gurson model parameters from tensile test results to prediction of ductile failure behaviour of cracked structures. (author)

  15. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  16. Edge effect modeling of small tool polishing in planetary movement

    Science.gov (United States)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  17. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  18. Automated sensitivity analysis: New tools for modeling complex dynamic systems

    International Nuclear Information System (INIS)

    Pin, F.G.

    1987-01-01

    Sensitivity analysis is an established methodology used by researchers in almost every field to gain essential insight in design and modeling studies and in performance assessments of complex systems. Conventional sensitivity analysis methodologies, however, have not enjoyed the widespread use they deserve considering the wealth of information they can provide, partly because of their prohibitive cost or the large initial analytical investment they require. Automated systems have recently been developed at ORNL to eliminate these drawbacks. Compilers such as GRESS and EXAP now allow automatic and cost effective calculation of sensitivities in FORTRAN computer codes. In this paper, these and other related tools are described and their impact and applicability in the general areas of modeling, performance assessment and decision making for radioactive waste isolation problems are discussed

  19. Risk-based decision support tools: protecting rail-centered transit corridors from cascading effects.

    Science.gov (United States)

    Greenberg, Michael R; Lowrie, Karen; Mayer, Henry; Altiok, Tayfur

    2011-12-01

    We consider the value of decision support tools for passenger rail system managers. First, we call for models that follow events along main rail lines and then into the surrounding environment where they can cascade onto connected light rail, bus, auto, truck, and other transport modes. Second, we suggest that both probabilistic risk assessment (PRA-based) and agent-based models have a role to play at different scales of analysis and for different kinds of risks. Third, we argue that economic impact tools need more systematic evaluation. Fourth, we note that developers of decision support tools face a challenge of balancing their desire for theoretical elegance and the tendency to focus only on high consequence events against decisionmakers' mistrust of complex tools that they and their staff cannot manage and incorporate into their routine operations, as well as the high costs of developing, updating, and applying decision support tools to transport systems undergoing budget cuts and worker and service reductions. © 2011 Society for Risk Analysis.

  20. Rogeaulito: A World Energy Scenario Modeling Tool for Transparent Energy System Thinking

    International Nuclear Information System (INIS)

    Benichou, Léo; Mayr, Sebastian

    2014-01-01

    Rogeaulito is a world energy model for scenario building developed by the European think tank The Shift Project. It’s a tool to explore world energy choices from a very long-term and systematic perspective. As a key feature and novelty it computes energy supply and demand independently from each other revealing potentially missing energy supply by 2100. It is further simple to use, didactic, and open source. As such, it targets a broad user group and advocates for reproducibility and transparency in scenario modeling as well as model-based learning. Rogeaulito applies an engineering approach using disaggregated data in a spreadsheet model.

  1. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  2. Model Based Analysis and Test Generation for Flight Software

    Science.gov (United States)

    Pasareanu, Corina S.; Schumann, Johann M.; Mehlitz, Peter C.; Lowry, Mike R.; Karsai, Gabor; Nine, Harmon; Neema, Sandeep

    2009-01-01

    We describe a framework for model-based analysis and test case generation in the context of a heterogeneous model-based development paradigm that uses and combines Math- Works and UML 2.0 models and the associated code generation tools. This paradigm poses novel challenges to analysis and test case generation that, to the best of our knowledge, have not been addressed before. The framework is based on a common intermediate representation for different modeling formalisms and leverages and extends model checking and symbolic execution tools for model analysis and test case generation, respectively. We discuss the application of our framework to software models for a NASA flight mission.

  3. Nongeneric tool support for model-driven product development; Werkzeugunterstuetzung fuer die modellbasierte Produktentwicklung. Maschinenlesbare Spezifikationen selbst erstellen

    Energy Technology Data Exchange (ETDEWEB)

    Bock, C. [Technische Univ. Kaiserslautern (Germany). Lehrstuhl fuer Produktionsautomatisierung; Zuehlke, D. [Technische Univ. Kaiserslautern (Germany). Lehrstuhl fuer Produktionsautomatisierung; Deutsches Forschungszentrum fuer Kuenstliche Intelligenz (DFKI), Kaiserslautern (DE). Zentrum fuer Mensch-Maschine-Interaktion (ZMMI)

    2006-07-15

    A well-defined specification process is a central success factor in human-machine-interface development. Consequently in interdisciplinary development teams specification documents are an important communication instrument. In order to replace todays typically paper-based specification and to leverage the benefits of their electronic equivalents developers demand comprehensive and applicable computer-based tool kits. Manufacturers' increasing awareness of appropriate tool support causes alternative approaches for tool kit creation to emerge. Therefore this article introduces meta-modelling as a promising attempt to create nongeneric tool support with justifiable effort. This enables manufacturers to take advantage of electronic specifications in product development processes.

  4. A Multiagent Based Model for Tactical Planning

    Science.gov (United States)

    2002-10-01

    Pub. Co. 1985. [10] Castillo, J.M. Aproximación mediante procedimientos de Inteligencia Artificial al planeamiento táctico. Doctoral Thesis...been developed under the same conceptual model and using similar Artificial Intelligence Tools. We use four different stimulus/response agents in...The conceptual model is built on base of the Agents theory. To implement the different agents we have used Artificial Intelligence techniques such

  5. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2018-01-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…

  6. An artificial intelligence tool for complex age-depth models

    Science.gov (United States)

    Bradley, E.; Anderson, K. A.; de Vesine, L. R.; Lai, V.; Thomas, M.; Nelson, T. H.; Weiss, I.; White, J. W. C.

    2017-12-01

    CSciBox is an integrated software system for age modeling of paleoenvironmental records. It incorporates an array of data-processing and visualization facilities, ranging from 14C calibrations to sophisticated interpolation tools. Using CSciBox's GUI, a scientist can build custom analysis pipelines by composing these built-in components or adding new ones. Alternatively, she can employ CSciBox's automated reasoning engine, Hobbes, which uses AI techniques to perform an in-depth, autonomous exploration of the space of possible age-depth models and presents the results—both the models and the reasoning that was used in constructing and evaluating them—to the user for her inspection. Hobbes accomplishes this using a rulebase that captures the knowledge of expert geoscientists, which was collected over the course of more than 100 hours of interviews. It works by using these rules to generate arguments for and against different age-depth model choices for a given core. Given a marine-sediment record containing uncalibrated 14C dates, for instance, Hobbes tries CALIB-style calibrations using a choice of IntCal curves, with reservoir age correction values chosen from the 14CHRONO database using the lat/long information provided with the core, and finally composes the resulting age points into a full age model using different interpolation methods. It evaluates each model—e.g., looking for outliers or reversals—and uses that information to guide the next steps of its exploration, and presents the results to the user in human-readable form. The most powerful of CSciBox's built-in interpolation methods is BACON, a Bayesian sedimentation-rate algorithm—a powerful but complex tool that can be difficult to use. Hobbes adjusts BACON's many parameters autonomously to match the age model to the expectations of expert geoscientists, as captured in its rulebase. It then checks the model against the data and iteratively re-calculates until it is a good fit to the data.

  7. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming

    2012-01-01

    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  8. Selecting a risk-based tool to aid in decision making

    Energy Technology Data Exchange (ETDEWEB)

    Bendure, A.O.

    1995-03-01

    Selecting a risk-based tool to aid in decision making is as much of a challenge as properly using the tool once it has been selected. Failure to consider customer and stakeholder requirements and the technical bases and differences in risk-based decision making tools will produce confounding and/or politically unacceptable results when the tool is used. Selecting a risk-based decisionmaking tool must therefore be undertaken with the same, if not greater, rigor than the use of the tool once it is selected. This paper presents a process for selecting a risk-based tool appropriate to a set of prioritization or resource allocation tasks, discusses the results of applying the process to four risk-based decision-making tools, and identifies the ``musts`` for successful selection and implementation of a risk-based tool to aid in decision making.

  9. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  10. A Visualization-Based Tutoring Tool for Engineering Education

    Science.gov (United States)

    Nguyen, Tang-Hung; Khoo, I.-Hung

    2010-06-01

    In engineering disciplines, students usually have hard time to visualize different aspects of engineering analysis and design, which inherently are too complex or abstract to fully understand without the aid of visual explanations or visualizations. As examples, when learning materials and sequences of construction process, students need to visualize how all components of a constructed facility are assembled? Such visualization can not be achieved in a textbook and a traditional lecturing environment. In this paper, the authors present the development of a computer tutoring software, in which different visualization tools including video clips, 3 dimensional models, drawings, pictures/photos together with complementary texts are used to assist students in deeply understanding and effectively mastering materials. The paper will also discuss the implementation and the effectiveness evaluation of the proposed tutoring software, which was used to teach a construction engineering management course offered at California State University, Long Beach.

  11. KNOWLEDGE MANAGEMENT TOOLS FOR THE EUROPEAN KNOWLEDGE BASED SOCIETY

    Directory of Open Access Journals (Sweden)

    Ramona – Diana Leon

    2011-12-01

    Full Text Available Increasingly more literature mention that in the current competitive environment, knowledge have become the main source of the competitive advantages, while recent researches regarding economic growth and development have defined knowledge as being the most critical resource of the emerging countries.Therefore, the organizations interest for knowledge has increased, the latter being defined as knowledge management process in order to meet existing needs, to identify and exploit existing and/or acquired knowledge and developing new opportunities.In other words, knowledge management facilitates productive information usage, intelligence growth, storing intellectual capital, strategic planning, flexible acquisition, collection of best practices, increasing the likelihood of being successful as well as a more productive collaboration within the company.In order to benefit from all these advantages, it is required the usage of specific tools including models and systems to stimulate the creation, dissemination and use of knowledge held by each employee and the organization as a whole.

  12. Model-Based GUI Testing Using Uppaal at Novo Nordisk

    DEFF Research Database (Denmark)

    H. Hjort, Ulrik; Rasmussen, Jacob Illum; Larsen, Kim Guldstrand

    2009-01-01

    This paper details a collaboration between Aalborg University and Novo Nordiskin developing an automatic model-based test generation tool for system testing of the graphical user interface of a medical device on an embedded platform. The tool takes as input an UML Statemachine model and generates...

  13. Using Web-Based Technologies for Network Management Tools

    National Research Council Canada - National Science Library

    Agami, Arie

    1997-01-01

    .... New solutions to current network management tools problems may be found in the increasingly popular World Wide Web, Internet tools such as Java, and remote database access through the Internet...

  14. Tools for evaluating team performance in simulation-based training.

    Science.gov (United States)

    Rosen, Michael A; Weaver, Sallie J; Lazzara, Elizabeth H; Salas, Eduardo; Wu, Teresa; Silvestri, Salvatore; Schiebel, Nicola; Almeida, Sandra; King, Heidi B

    2010-10-01

    Teamwork training constitutes one of the core approaches for moving healthcare systems toward increased levels of quality and safety, and simulation provides a powerful method of delivering this training, especially for face-paced and dynamic specialty areas such as Emergency Medicine. Team performance measurement and evaluation plays an integral role in ensuring that simulation-based training for teams (SBTT) is systematic and effective. However, this component of SBTT systems is overlooked frequently. This article addresses this gap by providing a review and practical introduction to the process of developing and implementing evaluation systems in SBTT. First, an overview of team performance evaluation is provided. Second, best practices for measuring team performance in simulation are reviewed. Third, some of the prominent measurement tools in the literature are summarized and discussed relative to the best practices. Subsequently, implications of the review are discussed for the practice of training teamwork in Emergency Medicine.

  15. Glimpse: Sparsity based weak lensing mass-mapping tool

    Science.gov (United States)

    Lanusse, F.; Starck, J.-L.; Leonard, A.; Pires, S.

    2018-02-01

    Glimpse, also known as Glimpse2D, is a weak lensing mass-mapping tool that relies on a robust sparsity-based regularization scheme to recover high resolution convergence from either gravitational shear alone or from a combination of shear and flexion. Including flexion allows the supplementation of the shear on small scales in order to increase the sensitivity to substructures and the overall resolution of the convergence map. To preserve all available small scale information, Glimpse avoids any binning of the irregularly sampled input shear and flexion fields and treats the mass-mapping problem as a general ill-posed inverse problem, regularized using a multi-scale wavelet sparsity prior. The resulting algorithm incorporates redshift, reduced shear, and reduced flexion measurements for individual galaxies and is made highly efficient by the use of fast Fourier estimators.

  16. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  17. Spindle Thermal Error Optimization Modeling of a Five-axis Machine Tool

    Science.gov (United States)

    Guo, Qianjian; Fan, Shuo; Xu, Rufeng; Cheng, Xiang; Zhao, Guoyong; Yang, Jianguo

    2017-05-01

    Aiming at the problem of low machining accuracy and uncontrollable thermal errors of NC machine tools, spindle thermal error measurement, modeling and compensation of a two turntable five-axis machine tool are researched. Measurement experiment of heat sources and thermal errors are carried out, and GRA(grey relational analysis) method is introduced into the selection of temperature variables used for thermal error modeling. In order to analyze the influence of different heat sources on spindle thermal errors, an ANN (artificial neural network) model is presented, and ABC(artificial bee colony) algorithm is introduced to train the link weights of ANN, a new ABC-NN(Artificial bee colony-based neural network) modeling method is proposed and used in the prediction of spindle thermal errors. In order to test the prediction performance of ABC-NN model, an experiment system is developed, the prediction results of LSR (least squares regression), ANN and ABC-NN are compared with the measurement results of spindle thermal errors. Experiment results show that the prediction accuracy of ABC-NN model is higher than LSR and ANN, and the residual error is smaller than 3 μm, the new modeling method is feasible. The proposed research provides instruction to compensate thermal errors and improve machining accuracy of NC machine tools.

  18. Cost Benefit Analysis Modeling Tool for Electric vs. ICE Airport Ground Support Equipment – Development and Results

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Kevin Morrow; Dimitri Hochard

    2007-02-01

    This report documents efforts to develop a computer tool for modeling the economic payback for comparative airport ground support equipment (GSE) that are propelled by either electric motors or gasoline and diesel engines. The types of GSE modeled are pushback tractors, baggage tractors, and belt loaders. The GSE modeling tool includes an emissions module that estimates the amount of tailpipe emissions saved by replacing internal combustion engine GSE with electric GSE. This report contains modeling assumptions, methodology, a user’s manual, and modeling results. The model was developed based on the operations of two airlines at four United States airports.

  19. Prototype of Automated PLC Model Checking Using Continuous Integration Tools

    CERN Document Server

    Lettrich, Michael

    2015-01-01

    To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...

  20. Extending the Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2016-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…

  1. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  2. MATHEMATICS TOOLS DEVELOPMENT BASED ON WEB WITH MOODLE APPLICATIONS IN BASED STATISTICS SUBJECT

    Directory of Open Access Journals (Sweden)

    rina dwi s, febrian dewanto, bagus ardi s

    2016-02-01

    The results the influence of motivation and activity of learning achievement of 89.7% d and the average of  learning achievement experimental class achieve exhaustiveness 74.25 e Average learning achievement of  experimental class 74.25, better than average learning achievement for control class 64.57. Based on the research results obtained are valid learning tools and effective learning that show the development of learning tools goals achieved.

  3. Planning the network of gas pipelines through modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)

    2009-07-01

    Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)

  4. Complex Coronary Hemodynamics - Simple Analog Modelling as an Educational Tool.

    Science.gov (United States)

    Parikh, Gaurav R; Peter, Elvis; Kakouros, Nikolaos

    2017-01-01

    Invasive coronary angiography remains the cornerstone for evaluation of coronary stenoses despite there being a poor correlation between luminal loss assessment by coronary luminography and myocardial ischemia. This is especially true for coronary lesions deemed moderate by visual assessment. Coronary pressure-derived fractional flow reserve (FFR) has emerged as the gold standard for the evaluation of hemodynamic significance of coronary artery stenosis, which is cost effective and leads to improved patient outcomes. There are, however, several limitations to the use of FFR including the evaluation of serial stenoses. In this article, we discuss the electronic-hydraulic analogy and the utility of simple electrical modelling to mimic the coronary circulation and coronary stenoses. We exemplify the effect of tandem coronary lesions on the FFR by modelling of a patient with sequential disease segments and complex anatomy. We believe that such computational modelling can serve as a powerful educational tool to help clinicians better understand the complexity of coronary hemodynamics and improve patient care.

  5. Interactive, open source, travel time scenario modelling: tools to facilitate participation in health service access analysis.

    Science.gov (United States)

    Fisher, Rohan; Lassa, Jonatan

    2017-04-18

    Modelling travel time to services has become a common public health tool for planning service provision but the usefulness of these analyses is constrained by the availability of accurate input data and limitations inherent in the assumptions and parameterisation. This is particularly an issue in the developing world where access to basic data is limited and travel is often complex and multi-modal. Improving the accuracy and relevance in this context requires greater accessibility to, and flexibility in, travel time modelling tools to facilitate the incorporation of local knowledge and the rapid exploration of multiple travel scenarios. The aim of this work was to develop simple open source, adaptable, interactive travel time modelling tools to allow greater access to and participation in service access analysis. Described are three interconnected applications designed to reduce some of the barriers to the more wide-spread use of GIS analysis of service access and allow for complex spatial and temporal variations in service availability. These applications are an open source GIS tool-kit and two geo-simulation models. The development of these tools was guided by health service issues from a developing world context but they present a general approach to enabling greater access to and flexibility in health access modelling. The tools demonstrate a method that substantially simplifies the process for conducting travel time assessments and demonstrate a dynamic, interactive approach in an open source GIS format. In addition this paper provides examples from empirical experience where these tools have informed better policy and planning. Travel and health service access is complex and cannot be reduced to a few static modeled outputs. The approaches described in this paper use a unique set of tools to explore this complexity, promote discussion and build understanding with the goal of producing better planning outcomes. The accessible, flexible, interactive and

  6. The Biobank Economic Modeling Tool (BEMT): Online Financial Planning to Facilitate Biobank Sustainability.

    Science.gov (United States)

    Odeh, Hana; Miranda, Lisa; Rao, Abhi; Vaught, Jim; Greenman, Howard; McLean, Jeffrey; Reed, Daniel; Memon, Sarfraz; Fombonne, Benjamin; Guan, Ping; Moore, Helen M

    2015-12-01

    Biospecimens are essential resources for advancing basic and translational research. However, there are little data available regarding the costs associated with operating a biobank, and few resources to enable their long-term sustainability. To support the research community in this effort, the National Institutes of Health, National Cancer Institute's Biorepositories and Biospecimen Research Branch has developed the Biobank Economic Modeling Tool (BEMT). The tool is accessible at http://biospecimens.cancer.gov/resources/bemt.asp. To obtain market-based cost information and to inform the development of the tool, a survey was designed and sent to 423 biobank managers and directors across the world. The survey contained questions regarding infrastructure investments, salary costs, funding options, types of biospecimen resources and services offered, as well as biospecimen pricing and service-related costs. A total of 106 responses were received. The data were anonymized, aggregated, and used to create a comprehensive database of cost and pricing information that was integrated into the web-based tool, the BEMT. The BEMT was built to allow the user to input cost and pricing data through a seven-step process to build a cost profile for their biobank, define direct and indirect costs, determine cost recovery fees, perform financial forecasting, and query the anonymized survey data from comparable biobanks. A survey was conducted to obtain a greater understanding of the costs involved in operating a biobank. The anonymized survey data was then used to develop the BEMT, a cost modeling tool for biobanks. Users of the tool will be able to create a cost profile for their biobanks' specimens, products and services, establish pricing, and allocate costs for biospecimens based on percent cost recovered, and perform project-specific cost analyses and financial forecasting.

  7. Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects

    Directory of Open Access Journals (Sweden)

    Murat Gunduz

    2017-11-01

    Full Text Available This paper deals with application of Value Stream Mapping (VSM as a sustainable construction tool on a real construction project of installation of underground pipelines. VSM was adapted to reduce the high percentage of non-value-added activities and time wastes during each construction stage and the paper searched for an effective way to consider the cost for studied construction of underground pipeline. This paper is unique in its way that it adopts cost implementation of VSM to improve the productivity in underground pipeline projects. The data was observed and collected from site during construction, indicating the cycle time, value added and non-value added of each construction stage. The current state was built based on these details. This was an eye-opening exercise and a process management tool as a trigger for improvement. After the current state assessment, a future state is attempted by Value Stream Mapping tool balancing the resources using a Line of Balance (LOB technique. Moreover, a sustainable cost estimation model was developed during current state and future state to calculate the cost of underground pipeline construction. The result shows a cost reduction of 20.8% between current and future states. This reflects the importance of the cost based Value Stream Mapping in construction as a sustainable measurement tool. This new tool could be utilized in construction industry to add the sustainability and effective cost management.

  8. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models

    Science.gov (United States)

    Trame, MN; Lesko, LJ

    2015-01-01

    A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289

  9. Tool-driven Design and Automated Parameterization for Real-time Generic Drivetrain Models

    Directory of Open Access Journals (Sweden)

    Schwarz Christina

    2015-01-01

    Full Text Available Real-time dynamic drivetrain modeling approaches have a great potential for development cost reduction in the automotive industry. Even though real-time drivetrain models are available, these solutions are specific to single transmission topologies. In this paper an environment for parameterization of a solution is proposed based on a generic method applicable to all types of gear transmission topologies. This enables tool-guided modeling by non- experts in the fields of mechanic engineering and control theory leading to reduced development and testing efforts. The approach is demonstrated for an exemplary automatic transmission using the environment for automated parameterization. Finally, the parameterization is validated via vehicle measurement data.

  10. Mathematical modelling : a tool for hospital infection control

    NARCIS (Netherlands)

    Grundmann, H; Hellriegel, B

    Health-care-associated infections caused by antibiotic-resistant pathogens have become a menace in hospitals worldwide and infection control measures have lead to vastly different outcomes in different countries. During the past 6 years, a theoretical framework based on mathematical models has

  11. Mathematical modelling: a tool for hospital infection control

    NARCIS (Netherlands)

    Grundmann, Hajo; Hellriegel, B.

    2006-01-01

    Health-care-associated infections caused by antibiotic-resistant pathogens have become a menace in hospitals worldwide and infection control measures have lead to vastly different outcomes in different countries. During the past 6 years, a theoretical framework based on mathematical models has

  12. Mathematical modelling: a tool for hospital infection control.

    NARCIS (Netherlands)

    Grundmann, Hajo; Hellriegel, B

    2006-01-01

    Health-care-associated infections caused by antibiotic-resistant pathogens have become a menace in hospitals worldwide and infection control measures have lead to vastly different outcomes in different countries. During the past 6 years, a theoretical framework based on mathematical models has

  13. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-2 analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration; Calafiura, Paolo; Delsart, Pierre-Antoine; Elsing, Markus; Koeneke, Karsten; Krasznahorkay, Attila; Krumnack, Nils; Lancon, Eric; Lavrijsen, Wim; Laycock, Paul; Lei, Xiaowen; Strandberg, Sara Kristina; Verkerke, Wouter; Vivarelli, Iacopo; Woudstra, Martin

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This paper will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  14. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-II analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This presentation will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  15. Intellectual Model-Based Configuration Management Conception

    Directory of Open Access Journals (Sweden)

    Bartusevics Arturs

    2014-07-01

    Full Text Available Software configuration management is one of the most important disciplines within the software development project, which helps control the software evolution process and allows including into the end project only tested and validated changes. To achieve this, software management completes certain tasks. Concrete tools are used for technical implementation of tasks, such as version control systems, servers of continuous integration, compilers, etc. A correct configuration management process usually requires several tools, which mutually exchange information by generating various kinds of transfers. When it comes to introducing the configuration management process, often there are situations when tool installation is started, yet at that given moment there is no general picture of the total process. The article offers a model-based configuration management concept, which foresees the development of an abstract model for the configuration management process that later is transformed to lower abstraction level models and tools are indicated to support the technical process. A solution of this kind allows a more rational introduction and configuration of tools

  16. Automated tool for virtual screening and pharmacology-based pathway prediction and analysis

    Directory of Open Access Journals (Sweden)

    Sugandh Kumar

    2017-10-01

    Full Text Available The virtual screening is an effective tool for the lead identification in drug discovery. However, there are limited numbers of crystal structures available as compared to the number of biological sequences which makes (Structure Based Drug Discovery SBDD a difficult choice. The current tool is an attempt to automate the protein structure modelling and automatic virtual screening followed by pharmacology-based prediction and analysis. Starting from sequence(s, this tool automates protein structure modelling, binding site identification, automated docking, ligand preparation, post docking analysis and identification of hits in the biological pathways that can be modulated by a group of ligands. This automation helps in the characterization of ligands selectivity and action of ligands on a complex biological molecular network as well as on individual receptor. The judicial combination of the ligands binding different receptors can be used to inhibit selective biological pathways in a disease. This tool also allows the user to systemically investigate network-dependent effects of a drug or drug candidate.

  17. Graphical surface-vegetation-atmosphere transfer (SVAT) model as a pedagogical and research tool

    OpenAIRE

    Gillies, Robert R.; Carlson, Toby N.; Ripley, David A.J.

    1998-01-01

    This paper considers, by example, the use of a Surface-Atmosphere-Vegetation-Transfer (SVAT), Atmospheric Boundary Layer (ABL) model designed as a pedagogical tool. The goal of the computer software and the approach is to improve the efficiency and effectiveness of communicating often complex and mathematical based disciplines (e.g., micrometeorology, land surface processes) to the non-specialist interested in studying problems involving interactions between vegetation and the atmosphere and,...

  18. Graphical and numerical diagnostic tools to assess suitability of multiple imputations and imputation models.

    Science.gov (United States)

    Bondarenko, Irina; Raghunathan, Trivellore

    2016-07-30

    Multiple imputation has become a popular approach for analyzing incomplete data. Many software packages are available to multiply impute the missing values and to analyze the resulting completed data sets. However, diagnostic tools to check the validity of the imputations are limited, and the majority of the currently available methods need considerable knowledge of the imputation model. In many practical settings, however, the imputer and the analyst may be different individuals or from different organizations, and the analyst model may or may not be congenial to the model used by the imputer. This article develops and evaluates a set of graphical and numerical diagnostic tools for two practical purposes: (i) for an analyst to determine whether the imputations are reasonable under his/her model assumptions without actually knowing the imputation model assumptions; and (ii) for an imputer to fine tune the imputation model by checking the key characteristics of the observed and imputed values. The tools are based on the numerical and graphical comparisons of the distributions of the observed and imputed values conditional on the propensity of response. The methodology is illustrated using simulated data sets created under a variety of scenarios. The examples focus on continuous and binary variables, but the principles can be used to extend methods for other types of variables. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Multi-Model R-Tool for uncertainty assessment in landslides susceptibility analysis

    Science.gov (United States)

    Cosmin Sandric, Ionut; Chitu, Zenaida; Jurchescu, Marta; Micu, Mihai

    2014-05-01

    The evaluation of landslide susceptibility requires understanding of the spatial distribution of the factors that control slope instability. It is known that the behavior of landslides is difficult to evaluate because of the various factors that trigger mass movements. The methodology used is very diverse, based on statistical methods, probabilistic methods, deterministic methods, empirical methods or a combination of them and the main factors used for landslide susceptibility assessment are composed from basic morphometric parameters, such as slope gradient, curvature, aspect, solar radiation etc. in combination with lithology, land-use/land-cover, soil types or soil properties. The reliability of susceptibility maps is mostly estimated by a comparison with ground truth and visualized as charts and statistical tables and less by maps for landslides susceptibility uncertainty. Due to similarity of inputs required by numerous susceptibility models, we have developed a Multi-Model tool for R, a free software environment for statistical computing and graphics, combines several landslides susceptibility models into one forecast, thereby improving the forecast accuracy even further. The tool uses as inputs all the predisposing factors and generates susceptibility maps for each model; it combines the resulted susceptibility maps in just one and assesses the uncertainty as a function of susceptibility levels from each map. The final results are susceptibility and uncertainty maps as a function of several susceptibility models. The Multi-Model R-Tool was tested in different areas from Romanian Subcarpathians with very good results

  20. Ranking of Business Process Simulation Software Tools with DEX/QQ Hierarchical Decision Model.

    Science.gov (United States)

    Damij, Nadja; Boškoski, Pavle; Bohanec, Marko; Mileva Boshkoska, Biljana

    2016-01-01

    The omnipresent need for optimisation requires constant improvements of companies' business processes (BPs). Minimising the risk of inappropriate BP being implemented is usually performed by simulating the newly developed BP under various initial conditions and "what-if" scenarios. An effectual business process simulations software (BPSS) is a prerequisite for accurate analysis of an BP. Characterisation of an BPSS tool is a challenging task due to the complex selection criteria that includes quality of visual aspects, simulation capabilities, statistical facilities, quality reporting etc. Under such circumstances, making an optimal decision is challenging. Therefore, various decision support models are employed aiding the BPSS tool selection. The currently established decision support models are either proprietary or comprise only a limited subset of criteria, which affects their accuracy. Addressing this issue, this paper proposes a new hierarchical decision support model for ranking of BPSS based on their technical characteristics by employing DEX and qualitative to quantitative (QQ) methodology. Consequently, the decision expert feeds the required information in a systematic and user friendly manner. There are three significant contributions of the proposed approach. Firstly, the proposed hierarchical model is easily extendible for adding new criteria in the hierarchical structure. Secondly, a fully operational decision support system (DSS) tool that implements the proposed hierarchical model is presented. Finally, the effectiveness of the proposed hierarchical model is assessed by comparing the resulting rankings of BPSS with respect to currently available results.

  1. Web based educational tool for neural network robot control

    Directory of Open Access Journals (Sweden)

    Jure Čas

    2007-05-01

    Full Text Available Abstract— This paper describes the application for teleoperations of the SCARA robot via the internet. The SCARA robot is used by students of mehatronics at the University of Maribor as a remote educational tool. The developed software consists of two parts i.e. the continuous neural network sliding mode controller (CNNSMC and the graphical user interface (GUI. Application is based on two well-known commercially available software packages i.e. MATLAB/Simulink and LabVIEW. Matlab/Simulink and the DSP2 Library for Simulink are used for control algorithm development, simulation and executable code generation. While this code is executing on the DSP-2 Roby controller and through the analog and digital I/O lines drives the real process, LabVIEW virtual instrument (VI, running on the PC, is used as a user front end. LabVIEW VI provides the ability for on-line parameter tuning, signal monitoring, on-line analysis and via Remote Panels technology also teleoperation. The main advantage of a CNNSMC is the exploitation of its self-learning capability. When friction or an unexpected impediment occurs for example, the user of a remote application has no information about any changed robot dynamic and thus is unable to dispatch it manually. This is not a control problem anymore because, when a CNNSMC is used, any approximation of changed robot dynamic is estimated independently of the remote’s user. Index Terms—LabVIEW; Matlab/Simulink; Neural network control; remote educational tool; robotics

  2. Automation of Global Adjoint Tomography Based on ASDF and Workflow Management Tools

    Science.gov (United States)

    Lei, W.; Ruan, Y.; Bozdag, E.; Smith, J. A.; Modrak, R. T.; Krischer, L.; Chen, Y.; Lefebvre, M. P.; Tromp, J.

    2016-12-01

    Global adjoint tomography is computationally expensive, requiring thousands of wavefield simulations and massive data processing. Though a collaboration with the Oak Ridge National Laboratory computing group and an allocation on the `Titan' GPU-accelerated supercomputer, we have begun to assimilate waveform data from more than 4,000 earthquakes, from 1995 to 2015, in our inversions. However, since conventional file formats and signal processing tools were not designed for parallel processing of massive data volumes, use of such tools in high-resolution global inversions leads to major bottlenecks. To overcome such problems and allow for continued scientific progress, we designed the Adaptive Seismic Data Format (ASDF) and developed a set of processing tools based on ASDF, covering from signal processing (pytomo3d), time window selection (pyflex) to adjoint source (pyadjoint). These new tools greatly enhance the reproducibility and accountability of our research while taking full advantage of parallel computing, showing superior scaling on modern computational platforms. The entire inversion workflow, intrinsically complex and sensitive to human errors, is carefully handled and automated by modern workflow management tools, preventing data contamination and saving a huge amount of time. Our starting model GLAD-M15 (Bozdag et al., 2016), an elastic model with transversely isotropic upper mantle, is based on 253 earthquakes and 15 nonlinear conjugate gradient iterations. We have now completed source inversions for more than 1,000 earthquakes and have started structural inversions using a quasi-Newton optimization algorithm. We will discuss the challenges of large-scale workflows on HPC systems, the solutions offered by our new adjoint tomography tools, and the initial tomographic results obtained using the new expanded dataset.

  3. Econophysics of agent-based models

    CERN Document Server

    Aoyama, Hideaki; Chakrabarti, Bikas; Chakraborti, Anirban; Ghosh, Asim

    2014-01-01

    The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in the...

  4. Springer handbook of model-based science

    CERN Document Server

    Bertolotti, Tommaso

    2017-01-01

    The handbook offers the first comprehensive reference guide to the interdisciplinary field of model-based reasoning. It highlights the role of models as mediators between theory and experimentation, and as educational devices, as well as their relevance in testing hypotheses and explanatory functions. The Springer Handbook merges philosophical, cognitive and epistemological perspectives on models with the more practical needs related to the application of this tool across various disciplines and practices. The result is a unique, reliable source of information that guides readers toward an understanding of different aspects of model-based science, such as the theoretical and cognitive nature of models, as well as their practical and logical aspects. The inferential role of models in hypothetical reasoning, abduction and creativity once they are constructed, adopted, and manipulated for different scientific and technological purposes is also discussed. Written by a group of internationally renowned experts in ...

  5. Modeling Constellation Virtual Missions Using the Vdot(Trademark) Process Management Tool

    Science.gov (United States)

    Hardy, Roger; ONeil, Daniel; Sturken, Ian; Nix, Michael; Yanez, Damian

    2011-01-01

    The authors have identified a software tool suite that will support NASA's Virtual Mission (VM) effort. This is accomplished by transforming a spreadsheet database of mission events, task inputs and outputs, timelines, and organizations into process visualization tools and a Vdot process management model that includes embedded analysis software as well as requirements and information related to data manipulation and transfer. This paper describes the progress to date, and the application of the Virtual Mission to not only Constellation but to other architectures, and the pertinence to other aerospace applications. Vdot s intuitive visual interface brings VMs to life by turning static, paper-based processes into active, electronic processes that can be deployed, executed, managed, verified, and continuously improved. A VM can be executed using a computer-based, human-in-the-loop, real-time format, under the direction and control of the NASA VM Manager. Engineers in the various disciplines will not have to be Vdot-proficient but rather can fill out on-line, Excel-type databases with the mission information discussed above. The author s tool suite converts this database into several process visualization tools for review and into Microsoft Project, which can be imported directly into Vdot. Many tools can be embedded directly into Vdot, and when the necessary data/information is received from a preceding task, the analysis can be initiated automatically. Other NASA analysis tools are too complex for this process but Vdot automatically notifies the tool user that the data has been received and analysis can begin. The VM can be simulated from end-to-end using the author s tool suite. The planned approach for the Vdot-based process simulation is to generate the process model from a database; other advantages of this semi-automated approach are the participants can be geographically remote and after refining the process models via the human-in-the-loop simulation, the

  6. Hanford River Protection Project Life cycle Cost Modeling Tool to Enhance Mission Planning - 13396

    International Nuclear Information System (INIS)

    Dunford, Gary; Williams, David; Smith, Rick

    2013-01-01

    The Life cycle Cost Model (LCM) Tool is an overall systems model that incorporates budget, and schedule impacts for the entire life cycle of the River Protection Project (RPP) mission, and is replacing the Hanford Tank Waste Operations Simulator (HTWOS) model as the foundation of the RPP system planning process. Currently, the DOE frequently requests HTWOS simulations of alternative technical and programmatic strategies for completing the RPP mission. Analysis of technical and programmatic changes can be performed with HTWOS; however, life cycle costs and schedules were previously generated by manual transfer of time-based data from HTWOS to Primavera P6. The LCM Tool automates the preparation of life cycle costs and schedules and is needed to provide timely turnaround capability for RPP mission alternative analyses. LCM is the simulation component of the LCM Tool. The simulation component is a replacement of the HTWOS model with new capability to support life cycle cost modeling. It is currently deployed in G22, but has been designed to work in any full object-oriented language with an extensive feature set focused on networking and cross-platform compatibility. The LCM retains existing HTWOS functionality needed to support system planning and alternatives studies going forward. In addition, it incorporates new functionality, coding improvements that streamline programming and model maintenance, and capability to input/export data to/from the LCM using the LCM Database (LCMDB). The LCM Cost/Schedule (LCMCS) contains cost and schedule data and logic. The LCMCS is used to generate life cycle costs and schedules for waste retrieval and processing scenarios. It uses time-based output data from the LCM to produce the logic ties in Primavera P6 necessary for shifting activities. The LCM Tool is evolving to address the needs of decision makers who want to understand the broad spectrum of risks facing complex organizations like DOE-RPP to understand how near

  7. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  8. Development of Plant Physiology Learning Tool Based on Guided Inquiry

    Directory of Open Access Journals (Sweden)

    Saidatun Ni’mah

    2015-03-01

    Full Text Available Pengembangan Perangkat Pembelajaran Fisiologi Tumbuhan Berbasis Inkuiri Terbimbing   Abstract: The purpose of this research was to produce an instructional materials for Plant Physiology course, including syllabus, lesson plan, worksheet, and assessment instruments, based on guided inquiry. The models of this research was adapted from the ADDIE Model which consists of (1 analysis, (2 design, (3 development, (4 implementation, and (5 evaluation. The results of the validation by experts validator and a small group readability test results showed that the developed instructional materials were categorized “Good”. The results of trials on 39 students showed that the guided inquiry-based learning improved the students’ learning outcomes. Key Words: instructional materials development, plant physiology, guided inquiry   Abstrak: Penelitian ini bertujuan untuk menghasilkan perangkat pembelajaran Fisiologi Tumbuhan berbasis inkuiri terbimbing yang meliputi silabus, Satuan Acara Perkuliahan (SAP, Lembar Kerja Mahasiswa (LKM, dan instrumen penilaian. Model penelitian dan pengembangan merupakan hasil adaptasi model pengembangan ADDIE yang terdiri dari (1 analysis, (2 design, (3 development, (4 implementation, dan (5 evaluation. Hasil validasi oleh validator ahli dan hasil uji keterbacaan oleh uji kelompok kecil menunjukkan bahwa perangkat pembelajaran hasil pengembangan berkategori baik. Hasil uji coba lapangan dilakukan pada 39 mahasiswa angkatan 2012/2013 Program Studi Pendidikan Biologi STKIP PGRI Banjarmasin dan menunjukkan bahwa dengan pembelajaran berbasis inkuiri terbimbing dapat meningkatkan hasil belajar mahasiswa. Kata kunci: pengembangan perangkat pembelajaran, fisiologi tumbuhan, inkuiri terbimbing

  9. Event-Based Conceptual Modeling

    DEFF Research Database (Denmark)

    Bækgaard, Lars

    The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event-based mod......The paper demonstrates that a wide variety of event-based modeling approaches are based on special cases of the same general event concept, and that the general event concept can be used to unify the otherwise unrelated fields of information modeling and process modeling. A set of event......-based modeling approaches are analyzed and the results are used to formulate a general event concept that can be used for unifying the seemingly unrelated event concepts. Events are characterized as short-duration processes that have participants, consequences, and properties, and that may be modeled in terms...

  10. A tool for multi-scale modelling of the renal nephron

    Science.gov (United States)

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  11. CSML2SBML: a novel tool for converting quantitative biological pathway models from CSML into SBML.

    Science.gov (United States)

    Li, Chen; Nagasaki, Masao; Ikeda, Emi; Sekiya, Yayoi; Miyano, Satoru

    2014-07-01

    CSML and SBML are XML-based model definition standards which are developed with the aim of creating exchange formats for modeling, visualizing and simulating biological pathways. In this article we report a release of a format convertor for quantitative pathway models, namely CSML2SBML. It translates models encoded by CSML into SBML without loss of structural and kinetic information. The simulation and parameter estimation of the resulting SBML model can be carried out with compliant tool CellDesigner for further analysis. The convertor is based on the standards CSML version 3.0 and SBML Level 2 Version 4. In our experiments, 11 out of 15 pathway models in CSML model repository and 228 models in Macrophage Pathway Knowledgebase (MACPAK) are successfully converted to SBML models. The consistency of the resulting model is validated by libSBML Consistency Check of CellDesigner. Furthermore, the converted SBML model assigned with the kinetic parameters translated from CSML model can reproduce the same dynamics with CellDesigner as CSML one running on Cell Illustrator. CSML2SBML, along with its instructions and examples for use are available at http://csml2sbml.csml.org. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. The Business Model Evaluation Tool for Smart Cities: Application to SmartSantander Use Cases

    Directory of Open Access Journals (Sweden)

    Raimundo Díaz-Díaz

    2017-02-01

    Full Text Available New technologies open up the door to multiple business models applied to public services in smart cities. However, there is not a commonly adopted methodology for evaluating business models in smart cities that can help both practitioners and researchers to choose the best option. This paper addresses this gap introducing the Business Model Evaluation Tool for Smart Cities. This methodology is a simple, organized, flexible and the transparent system that facilitates the work of the evaluators of potential business models. It is useful to compare two or more business models and take strategic decisions promptly. The method is part of a previous process of content analysis and it is based on the widely utilized Business Model Canvas. The evaluation method has been assessed by 11 experts and, subsequently it has been validated applying it to the case studies of Santander’s waste management and street lighting systems, which take advantage of innovative technologies commonly used in smart cities.

  13. Conceptualizing a tool to optimize therapy based on dynamic heterogeneity

    International Nuclear Information System (INIS)

    Liao, David; Estévez-Salmerón, Luis; Tlsty, Thea D

    2012-01-01

    Complex biological systems often display a randomness paralleled in processes studied in fundamental physics. This simple stochasticity emerges owing to the complexity of the system and underlies a fundamental aspect of biology called phenotypic stochasticity. Ongoing stochastic fluctuations in phenotype at the single-unit level can contribute to two emergent population phenotypes. Phenotypic stochasticity not only generates heterogeneity within a cell population, but also allows reversible transitions back and forth between multiple states. This phenotypic interconversion tends to restore a population to a previous composition after that population has been depleted of specific members. We call this tendency homeostatic heterogeneity. These concepts of dynamic heterogeneity can be applied to populations composed of molecules, cells, individuals, etc. Here we discuss the concept that phenotypic stochasticity both underlies the generation of heterogeneity within a cell population and can be used to control population composition, contributing, in particular, to both the ongoing emergence of drug resistance and an opportunity for depleting drug-resistant cells. Using notions of both ‘large’ and ‘small’ numbers of biomolecular components, we rationalize our use of Markov processes to model the generation and eradication of drug-resistant cells. Using these insights, we have developed a graphical tool, called a metronomogram, that we propose will allow us to optimize dosing frequencies and total course durations for clinical benefit. (paper)

  14. TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools

    Science.gov (United States)

    Marlowe, Jill M.; Dixon, Genevieve D.

    1998-01-01

    This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.

  15. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    Science.gov (United States)

    Sulaiman, S.; Roshan, A.; Ariffin, M. K. A.

    2013-12-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes.

  16. An Integrated Approach of Fuzzy Linguistic Preference Based AHP and Fuzzy COPRAS for Machine Tool Evaluation.

    Science.gov (United States)

    Nguyen, Huu-Tho; Md Dawal, Siti Zawiah; Nukman, Yusoff; Aoyama, Hideki; Case, Keith

    2015-01-01

    Globalization of business and competitiveness in manufacturing has forced companies to improve their manufacturing facilities to respond to market requirements. Machine tool evaluation involves an essential decision using imprecise and vague information, and plays a major role to improve the productivity and flexibility in manufacturing. The aim of this study is to present an integrated approach for decision-making in machine tool selection. This paper is focused on the integration of a consistent fuzzy AHP (Analytic Hierarchy Process) and a fuzzy COmplex PRoportional ASsessment (COPRAS) for multi-attribute decision-making in selecting the most suitable machine tool. In this method, the fuzzy linguistic reference relation is integrated into AHP to handle the imprecise and vague information, and to simplify the data collection for the pair-wise comparison matrix of the AHP which determines the weights of attributes. The output of the fuzzy AHP is imported into the fuzzy COPRAS method for ranking alternatives through the closeness coefficient. Presentation of the proposed model application is provided by a numerical example based on the collection of data by questionnaire and from the literature. The results highlight the integration of the improved fuzzy AHP and the fuzzy COPRAS as a precise tool and provide effective multi-attribute decision-making for evaluating the machine tool in the uncertain environment.

  17. A Spreadsheet-based GIS tool for planning aerial photography

    Science.gov (United States)

    The U.S.EPA's Pacific Coastal Ecology Branch has developed a tool which facilitates planning aerial photography missions. This tool is an Excel spreadsheet which accepts various input parameters such as desired photo-scale and boundary coordinates of the study area and compiles ...

  18. Estimation of toxicity using a Java based software tool

    Science.gov (United States)

    A software tool has been developed that will allow a user to estimate the toxicity for a variety of endpoints (such as acute aquatic toxicity). The software tool is coded in Java and can be accessed using a web browser (or alternatively downloaded and ran as a stand alone applic...

  19. Simulation Tools for Power Electronics Courses Based on Java Technologies

    Science.gov (United States)

    Canesin, Carlos A.; Goncalves, Flavio A. S.; Sampaio, Leonardo P.

    2010-01-01

    This paper presents interactive power electronics educational tools. These interactive tools make use of the benefits of Java language to provide a dynamic and interactive approach to simulating steady-state ideal rectifiers (uncontrolled and controlled; single-phase and three-phase). Additionally, this paper discusses the development and use of…

  20. Towards the Development of Web-based Business intelligence Tools

    DEFF Research Database (Denmark)

    Georgiev, Lachezar; Tanev, Stoyan

    2011-01-01

    This paper focuses on using web search techniques in examining the co-creation strategies of technology driven firms. It does not focus on the co-creation results but describes the implementation of a software tool using data mining techniques to analyze the content on firms’ websites. The tool...

  1. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning

    International Nuclear Information System (INIS)

    Zhu Xiaofeng; Ge Yaorong; Li Taoran; Thongphiew, Danthai; Yin Fangfang; Wu, Q Jackie

    2011-01-01

    Purpose: To ensure plan quality for adaptive IMRT of the prostate, we developed a quantitative evaluation tool using a machine learning approach. This tool generates dose volume histograms (DVHs) of organs-at-risk (OARs) based on prior plans as a reference, to be compared with the adaptive plan derived from fluence map deformation. Methods: Under the same configuration using seven-field 15 MV photon beams, DVHs of OARs (bladder and rectum) were estimated based on anatomical information of the patient and a model learned from a database of high quality prior plans. In this study, the anatomical information was characterized by the organ volumes and distance-to-target histogram (DTH). The database consists of 198 high quality prostate plans and was validated with 14 cases outside the training pool. Principal component analysis (PCA) was applied to DVHs and DTHs to quantify their salient features. Then, support vector regression (SVR) was implemented to establish the correlation between the features of the DVH and the anatomical information. Results: DVH/DTH curves could be characterized sufficiently just using only two or three truncated principal components, thus, patient anatomical information was quantified with reduced numbers of variables. The evaluation of the model using the test data set demonstrated its accuracy ∼80% in prediction and effectiveness in improving ART planning quality. Conclusions: An adaptive IMRT plan quality evaluation tool based on machine learning has been developed, which estimates OAR sparing and provides reference in evaluating ART.

  2. An Integrated Package of Neuromusculoskeletal Modeling Tools in Simulink (TM)

    National Research Council Canada - National Science Library

    Davoodi, R

    2001-01-01

    .... Blocks representing the skeletal linkage, sensors, muscles, and neural controllers are developed using separate software tools and integrated in the powerful simulation environment of Simulink (Mathworks Inc., USA...

  3. Tools for Resilience Management: Multidisciplinary Development of State-and-Transition Models for Northwest Colorado

    Directory of Open Access Journals (Sweden)

    Emily J. Kachergis

    2013-12-01

    Full Text Available Building models is an important way of integrating knowledge. Testing and updating models of social-ecological systems can inform management decisions and, ultimately, improve resilience. We report on the outcomes of a six-year, multidisciplinary model development process in the sagebrush steppe, USA. We focused on creating state-and-transition models (STMs, conceptual models of ecosystem change that represent nonlinear dynamics and are being adopted worldwide as tools for managing ecosystems. STM development occurred in four steps with four distinct sets of models: (1 local knowledge elicitation using semistructured interviews; (2 ecological data collection using an observational study; (3 model integration using participatory workshops; and (4 model simplification upon review of the literature by a multidisciplinary team. We found that different knowledge types are ultimately complementary. Many of the benefits of the STM-building process flowed from the knowledge integration steps, including improved communication, identification of uncertainties, and production of more broadly credible STMs that can be applied in diverse situations. The STM development process also generated hypotheses about sagebrush steppe dynamics that could be tested by future adaptive management and research. We conclude that multidisciplinary development of STMs has great potential for producing credible, useful tools for managing resilience of social-ecological systems. Based on this experience, we outline a streamlined, participatory STM development process that integrates multiple types of knowledge and incorporates adaptive management.

  4. Enterprise KM System: IT based Tool for Nuclear Malaysia

    International Nuclear Information System (INIS)

    Mohamad Safuan Sulaiman; Siti Nurbahyah Hamdan; Mohd Dzul Aiman Aslan

    2014-01-01

    Implementation of right and suitable tool for enterprise Knowledge Management (KM) system to an organization is not an easy task. Everything needs to be taken into account before its implementation come true. One of them is to ensure full cooperation is given by the whole entire organization to succeed the knowledge sharing culture utilizing the tool. From selection of potential tools until the implementation and deployment strategies, these shall be thoroughly and carefully organized. A study of choosing the suitable tools and those strategies has been done in Nuclear Malaysia as resulted from Process Oriented Knowledge Management (POKM) project. As far as enterprise KM system is concerned, Microsoft Share Point technology is one of the potential tools in this context. This paper articulates approach and methodology of choosing the technology including its planning, deployment and implementation strategies. (author)

  5. Designing and Implementing Web-Based Scaffolding Tools for Technology-Enhanced Socioscientific Inquiry

    Science.gov (United States)

    Shin, Suhkyung; Brush, Thomas A.; Glazewski, Krista D.

    2017-01-01

    This study explores how web-based scaffolding tools provide instructional support while implementing a socio-scientific inquiry (SSI) unit in a science classroom. This case study focused on how students used web-based scaffolding tools during SSI activities, and how students perceived the SSI unit and the scaffolding tools embedded in the SSI…

  6. Knowledge-based systems as decision support tools in an ecosystem approach to fisheries: Comparing a fuzzy-logic and rule-based approach

    DEFF Research Database (Denmark)

    Jarre, Astrid; Paterson, B.; Moloney, C.L.

    2008-01-01

    rule-based Boolean and fuzzy-logic models have been used successfully as knowledge-based decision support tools. This study compares two such systems relevant to fisheries management in an EAF developed for the southern Benguela. The first is a rule-based system for the prediction of anchovy...

  7. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    Directory of Open Access Journals (Sweden)

    Khalil Al Handawi

    2017-09-01

    Full Text Available Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  8. GPURFSCREEN: a GPU based virtual screening tool using random forest classifier.

    Science.gov (United States)

    Jayaraj, P B; Ajay, Mathias K; Nufail, M; Gopakumar, G; Jaleel, U C A

    2016-01-01

    In-silico methods are an integral part of modern drug discovery paradigm. Virtual screening, an in-silico method, is used to refine data models and reduce the chemical space on which wet lab experiments need to be performed. Virtual screening of a ligand data model requires large scale computations, making it a highly time consuming task. This process can be speeded up by implementing parallelized algorithms on a Graphical Processing Unit (GPU). Random Forest is a robust classification algorithm that can be employed in the virtual screening. A ligand based virtual screening tool (GPURFSCREEN) that uses random forests on GPU systems has been proposed and evaluated in this paper. This tool produces optimized results at a lower execution time for large bioassay data sets. The quality of results produced by our tool on GPU is same as that on a regular serial environment. Considering the magnitude of data to be screened, the parallelized virtual screening has a significantly lower running time at high throughput. The proposed parallel tool outperforms its serial counterpart by successfully screening billions of molecules in training and prediction phases.

  9. The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2015-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…

  10. Web-based management of research groups - using the right tools and an adequate integration strategy

    International Nuclear Information System (INIS)

    Barroso, Antonio Carlos de Oliveira; Menezes, Mario Olimpio de

    2011-01-01

    Nowadays broad interest in a couple of inter linked subject areas can make the configuration of a research group to be much diversified both in terms of its components and of the binding relationships that glues the group together. That is the case of the research group for knowledge management and its applications to nuclear technology - KMANT at IPEN, a living entity born 7 years ago and that has sustainably attracted new collaborators. This paper describes the strategic planning of the group, its charter and credo, the present components of the group and the diversified nature of their relations with the group and with IPEN. Then the technical competencies and currently research lines (or programs) are described as well as the research projects, and the management scheme of the group. In the sequence the web-based management and collaboration tools are described as well our experience with their use. KMANT have experiment with over 20 systems and software in this area, but we will focus on those aimed at: (a) web-based project management (RedMine, ClockinIT, Who does, PhProjekt and Dotproject); (b) teaching platform (Moodle); (c) mapping and knowledge representation tools (Cmap, Freemind and VUE); (d) Simulation tools (Matlab, Vensim and NetLogo); (e) social network analysis tools (ORA, MultiNet and UciNet); (f) statistical analysis and modeling tools (R and SmartPLS). Special emphasis is given to the coupling of the group permanent activities like graduate courses and regular seminars and how newcomers are selected and trained to be able to enroll the group. A global assessment of the role the management strategy and available tool set for the group performance is presented. (author)

  11. Web-based management of research groups - using the right tools and an adequate integration strategy

    Energy Technology Data Exchange (ETDEWEB)

    Barroso, Antonio Carlos de Oliveira; Menezes, Mario Olimpio de, E-mail: barroso@ipen.b, E-mail: mario@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Grupo de Pesquisa em Gestao do Conhecimento Aplicada a Area Nuclear

    2011-07-01

    Nowadays broad interest in a couple of inter linked subject areas can make the configuration of a research group to be much diversified both in terms of its components and of the binding relationships that glues the group together. That is the case of the research group for knowledge management and its applications to nuclear technology - KMANT at IPEN, a living entity born 7 years ago and that has sustainably attracted new collaborators. This paper describes the strategic planning of the group, its charter and credo, the present components of the group and the diversified nature of their relations with the group and with IPEN. Then the technical competencies and currently research lines (or programs) are described as well as the research projects, and the management scheme of the group. In the sequence the web-based management and collaboration tools are described as well our experience with their use. KMANT have experiment with over 20 systems and software in this area, but we will focus on those aimed at: (a) web-based project management (RedMine, ClockinIT, Who does, PhProjekt and Dotproject); (b) teaching platform (Moodle); (c) mapping and knowledge representation tools (Cmap, Freemind and VUE); (d) Simulation tools (Matlab, Vensim and NetLogo); (e) social network analysis tools (ORA, MultiNet and UciNet); (f) statistical analysis and modeling tools (R and SmartPLS). Special emphasis is given to the coupling of the group permanent activities like graduate courses and regular seminars and how newcomers are selected and trained to be able to enroll the group. A global assessment of the role the management strategy and available tool set for the group performance is presented. (author)

  12. Applications and issues of GIS as tool for civil engineering modeling

    Science.gov (United States)

    Miles, S.B.; Ho, C.L.

    1999-01-01

    A tool that has proliferated within civil engineering in recent years is geographic information systems (GIS). The goal of a tool is to supplement ability and knowledge that already exists, not to serve as a replacement for that which is lacking. To secure the benefits and avoid misuse of a burgeoning tool, engineers must understand the limitations, alternatives, and context of the tool. The common benefits of using GIS as a supplement to engineering modeling are summarized. Several brief case studies of GIS modeling applications are taken from popular civil engineering literature to demonstrate the wide use and varied implementation of GIS across the discipline. Drawing from the case studies, limitations regarding traditional GIS data models find the implementation of civil engineering models within current GIS are identified and countered by discussing the direction of the next generation of GIS. The paper concludes by highlighting the potential for the misuse of GIS in the context of engineering modeling and suggests that this potential can be reduced through education and awareness. The goal of this paper is to promote awareness of the issues related to GIS-based modeling and to assist in the formulation of questions regarding the application of current GIS. The technology has experienced much publicity of late, with many engineers being perhaps too excited about the usefulness of current GIS. An undoubtedly beneficial side effect of this, however, is that engineers are becoming more aware of GIS and, hopefully, the associated subtleties. Civil engineers must stay informed of GIS issues and progress, but more importantly, civil engineers must inform the GIS community to direct the technology development optimally.

  13. Surface Modeling of Workpiece and Tool Trajectory Planning for Spray Painting Robot

    Science.gov (United States)

    Tang, Yang; Chen, Wei

    2015-01-01

    Automated tool trajectory planning for spray-painting robots is still a challenging problem, especially for a large free-form surface. A grid approximation of a free-form surface is adopted in CAD modeling in this paper. A free-form surface model is approximated by a set of flat patches. We describe here an efficient and flexible tool trajectory optimization scheme using T-Bézier curves calculated in a new way from trigonometrical bases. The distance between the spray gun and the free-form surface along the normal vector is varied. Automotive body parts, which are large free-form surfaces, are used to test the scheme. The experimental results show that the trajectory planning algorithm achieves satisfactory performance. This algorithm can also be extended to other applications. PMID:25993663

  14. Virtual Power Electronics: Novel Software Tools for Design, Modeling and Education

    Science.gov (United States)

    Hamar, Janos; Nagy, István; Funato, Hirohito; Ogasawara, Satoshi; Dranga, Octavian; Nishida, Yasuyuki

    The current paper is dedicated to present browser-based multimedia-rich software tools and e-learning curriculum to support the design and modeling process of power electronics circuits and to explain sometimes rather sophisticated phenomena. Two projects will be discussed. The so-called Inetele project is financed by the Leonardo da Vinci program of the European Union (EU). It is a collaborative project between numerous EU universities and institutes to develop state-of-the art curriculum in Electrical Engineering. Another cooperative project with participation of Japanese, European and Australian institutes focuses especially on developing e-learning curriculum, interactive design and modeling tools, furthermore on development of a virtual laboratory. Snapshots from these two projects will be presented.

  15. Research on Key Technologies of Unit-Based CNC Machine Tool Assembly Design

    Directory of Open Access Journals (Sweden)

    Zhongqi Sheng

    2014-01-01

    Full Text Available Assembly is the part that produces the maximum workload and consumed time during product design and manufacturing process. CNC machine tool is the key basic equipment in manufacturing industry and research on assembly design technologies of CNC machine tool has theoretical significance and practical value. This study established a simplified ASRG for CNC machine tool. The connection between parts, semantic information of transmission, and geometric constraint information were quantified to assembly connection strength to depict the assembling difficulty level. The transmissibility based on trust relationship was applied on the assembly connection strength. Assembly unit partition based on assembly connection strength was conducted, and interferential assembly units were identified and revised. The assembly sequence planning and optimization of parts in each assembly unit and between assembly units was conducted using genetic algorithm. With certain type of high speed CNC turning center, as an example, this paper explored into the assembly modeling, assembly unit partition, and assembly sequence planning and optimization and realized the optimized assembly sequence of headstock of CNC machine tool.

  16. Building an asynchronous web-based tool for machine learning classification.

    Science.gov (United States)

    Weber, Griffin; Vinterbo, Staal; Ohno-Machado, Lucila

    2002-01-01

    Various unsupervised and supervised learning methods including support vector machines, classification trees, linear discriminant analysis and nearest neighbor classifiers have been used to classify high-throughput gene expression data. Simpler and more widely accepted statistical tools have not yet been used for this purpose, hence proper comparisons between classification methods have not been conducted. We developed free software that implements logistic regression with stepwise variable selection as a quick and simple method for initial exploration of important genetic markers in disease classification. To implement the algorithm and allow our collaborators in remote locations to evaluate and compare its results against those of other methods, we developed a user-friendly asynchronous web-based application with a minimal amount of programming using free, downloadable software tools. With this program, we show that classification using logistic regression can perform as well as other more sophisticated algorithms, and it has the advantages of being easy to interpret and reproduce. By making the tool freely and easily available, we hope to promote the comparison of classification methods. In addition, we believe our web application can be used as a model for other bioinformatics laboratories that need to develop web-based analysis tools in a short amount of time and on a limited budget.

  17. Models and tools for studying drought stress responses in peas.

    Science.gov (United States)

    Magyar-Tábori, Katalin; Mendler-Drienyovszki, Nóra; Dobránszki, Judit

    2011-12-01

    The pea (Pisum sativum L.) is an important pulse crop but the growing area is limited because of its relatively low yield stability. In many parts of the world the most important abiotic factor limiting the survival and yield of plants is the restricted water supply, and the crop productivity can only be increased by improving drought tolerance. Development of pea cultivars well adapted to dry conditions has been one of the major tasks in breeding programs. Conventional breeding of new cultivars for dry conditions required extensive selection and testing for yield performance over diverse environments using various biometrical approaches. Several morphological and biochemical traits have been proven to be related to drought resistance, and methods based on physiological attributes can also be used in development of better varieties. Osmoregulation plays a role in the maintenance of turgor pressure under water stress conditions, and information on the behaviour of genotypes under osmotic stress can help selection for drought resistance. Biotechnological approaches including in vitro test, genetic transformation, and the use of molecular markers and mutants could be useful tools in breeding of pea. In this minireview we summarized the present status of different approaches related to drought stress improvement in the pea.

  18. The Bristol Radiology Report Assessment Tool (BRRAT): Developing a workplace-based assessment tool for radiology reporting skills

    International Nuclear Information System (INIS)

    Wallis, A.; Edey, A.; Prothero, D.; McCoubrie, P.

    2013-01-01

    Aim: To review the development of a workplace-based assessment tool to assess the quality of written radiology reports and assess its reliability, feasibility, and validity. Materials and methods: A comprehensive literature review and rigorous Delphi study enabled the development of the Bristol Radiology Report Assessment Tool (BRRAT), which consists of 19 questions and a global assessment score. Three assessors applied the assessment tool to 240 radiology reports provided by 24 radiology trainees. Results: The reliability coefficient for the 19 questions was 0.79 and the equivalent coefficient for the global assessment scores was 0.67. Generalizability coefficients demonstrate that higher numbers of assessors and assessments are needed to reach acceptable levels of reliability for summative assessments due to assessor subjectivity. Conclusion: The study methodology gives good validity and strong foundation in best-practice. The assessment tool developed for radiology reporting is reliable and most suited to formative assessments

  19. The Bristol Radiology Report Assessment Tool (BRRAT): developing a workplace-based assessment tool for radiology reporting skills.

    Science.gov (United States)

    Wallis, A; Edey, A; Prothero, D; McCoubrie, P

    2013-11-01

    To review the development of a workplace-based assessment tool to assess the quality of written radiology reports and assess its reliability, feasibility, and validity. A comprehensive literature review and rigorous Delphi study enabled the development of the Bristol Radiology Report Assessment Tool (BRRAT), which consists of 19 questions and a global assessment score. Three assessors applied the assessment tool to 240 radiology reports provided by 24 radiology trainees. The reliability coefficient for the 19 questions was 0.79 and the equivalent coefficient for the global assessment scores was 0.67. Generalizability coefficients demonstrate that higher numbers of assessors and assessments are needed to reach acceptable levels of reliability for summative assessments due to assessor subjectivity. The study methodology gives good validity and strong foundation in best-practice. The assessment tool developed for radiology reporting is reliable and most suited to formative assessments. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. A Web-based Tool Combining Different Type Analyses

    DEFF Research Database (Denmark)

    Henriksen, Kim Steen; Gallagher, John Patrick

    2006-01-01

    of both, and they can be goal-dependent or goal-independent. We describe a prototype tool that can be accessed from a web browser, allowing various type analyses to be run. The first goal of the tool is to allow the analysis results to be examined conveniently by clicking on points in the original program...... clauses, and to highlight ill-typed program constructs, empty types or other type anomalies. Secondly the tool allows combination of the various styles of analysis. For example, a descriptive regular type can be automatically inferred for a given program, and then that type can be used to generate...

  1. SIMULATION MODELLING AS A TOOL FORPERFORMING AVAILABILIlYAND SENSITIVIlY ANALYSIS

    Directory of Open Access Journals (Sweden)

    P.S. Kruger

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Simulation modelling is a general purpose tool that may be used to provide decision support in a number of application areas. It may be used to analyze, design or "optimize" manufacturing, materials handling, management, commercial and a wide variety of other systems.
    This paper will report on the design of a prototype decision support tool, based on a simulation model of a vehicle fleet availability problem. The primary purpose of the model is to serve as a tool for the evaluation of the availability of equipment under different conditions and to perform sensitivity analysis.

    AFRIKAANSE OPSOMMING: Simulasiemodellering is 'n algemeendoelige tegniek wat gebruik kan word vir die verskaffing van besluitsteun in 'n aantal toepassingsgebiede. Dit mag gebruik word vir die analise, ontwerp of "optimisering" van vervaardiging-, materiaalhantering-, bestuur-, kommersieIe en 'n wye verskeidenheid ander stelsels.
    Hierdie referaat doen verslag oor die ontwikkeling van 'n prototipe besluitnemingshulpmiddel wat gebaseer is op 'n simulasiemodel van 'n voertuigvloot beskikbaarheidsprobleem. Die hoofdoelwit van die model is om te dien as 'n hulpmiddel by die evaluasie van die beskikbaarheid van toerusting onder verskillende omstandighede asook vir die uitvoer van sensitiwiteitsanalise.

  2. Model-based Software Engineering

    DEFF Research Database (Denmark)

    Kindler, Ekkart

    2010-01-01

    The vision of model-based software engineering is to make models the main focus of software development and to automatically generate software from these models. Part of that idea works already today. But, there are still difficulties when it comes to behaviour. Actually, there is no lack in models...

  3. A web-based rapid assessment tool for production publishing solutions

    Science.gov (United States)

    Sun, Tong

    2010-02-01

    Solution assessment is a critical first-step in understanding and measuring the business process efficiency enabled by an integrated solution package. However, assessing the effectiveness of any solution is usually a very expensive and timeconsuming task which involves lots of domain knowledge, collecting and understanding the specific customer operational context, defining validation scenarios and estimating the expected performance and operational cost. This paper presents an intelligent web-based tool that can rapidly assess any given solution package for production publishing workflows via a simulation engine and create a report for various estimated performance metrics (e.g. throughput, turnaround time, resource utilization) and operational cost. By integrating the digital publishing workflow ontology and an activity based costing model with a Petri-net based workflow simulation engine, this web-based tool allows users to quickly evaluate any potential digital publishing solutions side-by-side within their desired operational contexts, and provides a low-cost and rapid assessment for organizations before committing any purchase. This tool also benefits the solution providers to shorten the sales cycles, establishing a trustworthy customer relationship and supplement the professional assessment services with a proven quantitative simulation and estimation technology.

  4. Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools

    Science.gov (United States)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.

    2011-12-01

    Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate

  5. Interdisciplinary semantic model for managing the design of a steam-assisted gravity drainage tooling system

    Directory of Open Access Journals (Sweden)

    Michael Leitch

    2018-01-01

    Full Text Available Complex engineering systems often require extensive coordination between different expert areas in order to avoid costly design iterations and rework. Cyber-physics system (CPS engineering methods could provide valuable insights to help model these interactions and optimize the design of such systems. In this work, steam assisted gravity drainage (SAGD, a complex oil extraction process that requires deep understanding of several physical-chemical phenomena, is examined whereby the complexities and interdependencies of the system are explored. Based on an established unified feature modeling scheme, a software modeling framework is proposed to manage the design process of the production tools used for SAGD oil extraction. Applying CPS methods to unify complex phenomenon and engineering models, the proposed CPS model combines effective simulation with embedded knowledge of completion tooling design in order to optimize reservoir performance. The system design is expressed using graphical diagrams of the unified modelling language (UML convention. To demonstrate the capability of this system, a distributed research group is described, and their activities coordinated using the described CPS model.

  6. A tool for urban soundscape evaluation applying Support Vector Machines for developing a soundscape classification model.

    Science.gov (United States)

    Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F

    2014-06-01

    To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.

  7. Principles of models based engineering

    Energy Technology Data Exchange (ETDEWEB)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  8. Numerical modeling as a tool for sustainable water management

    Science.gov (United States)

    Zacharias, I.; Dimitriou, E.; Koussouris, Th.

    2003-04-01

    Combining environmental preservation and economic prosperity is a primary objective of most developmental activities nowadays. Sustainable Water Resources Management can contribute in achieving this objective, especially in wetland areas that often undergo significant stresses due to irrational water exploitation schemes. Applying numerical modeling for designing sustainable water management scenarios is a common practice during the last decade but it is also under controversy by many scientists and environmental managers. The particular scientific effort attempted to develop and assess a methodology for the formation of water management plans in lake catchments by combining GIS applications, remote-sensing techniques and physically-based hydrologic modeling. The advantages and disadvantages of the specific methodology and particularly of the numerical modeling utilization in the water management forming process have been examined through a case study application in Trichonis lake catchment, W. Greece. At this area, significant wetlands with the endangered Calcareous fens habitat are encountered and presented significant degradation during the last 30 years. The results indicated that the particular methodology provided water management scenarios that fulfilled both the environmental and anthropogenic demands without compromising the replenishment potential of the local water resources. Numerical modeling operated efficiently, accelerated the water management formation process and offered scenarios that can be easily applicable and amendable by the local Water Authorities.

  9. Simulation-Based Tool for Traffic Management Training, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Both the current NAS, as well as NextGen, need successful use of advanced tools. Successful training is required today because more information gathering and...

  10. Simulation-Based Tool for Traffic Management Training, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Both the current NAS, as well as NextGen, need successful use of advanced tools. Successful training is required today because more information gathering and...

  11. cFS-based Autonomous Requirements Testing Tool, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The S&K Team proposes design of a tool suite, Autonomy Requirements Tester (ART), to address the difficulty of stating autonomous requirements and the links to...

  12. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool.

    Science.gov (United States)

    Huang, Zhuojie; Das, Anirrudha; Qiu, Youliang; Tatem, Andrew J

    2012-08-14

    Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR), to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya) and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements on the air travel network. The framework built provides a flexible

  13. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR tool

    Directory of Open Access Journals (Sweden)

    Huang Zhuojie

    2012-08-01

    Full Text Available Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR, to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements

  14. A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation

    Science.gov (United States)

    Hyman, Cody

    2011-01-01

    Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.

  15. The Design of Tools for Sketching Sensor-Based Interaction

    DEFF Research Database (Denmark)

    Brynskov, Martin; Lunding, Rasmus; Vestergaard, Lasse Steenbock

    2012-01-01

    , flexibility and cost, aimed at wearable and ultra-mobile prototyping where fast reaction is needed (e.g. in controlling sound), and we discuss the general issues facing this category of embodied interaction design tools. We then present the platform in more detail, both regarding hard- ware and software...... users include designers, students, artists etc. with minimal programming and hardware skills, but this paper adresses the issues with designing the tools, which includes technical details....

  16. Proc. of the Workshop on Agent Simulation : Applications, Models, and Tools, Oct. 15-16, 1999

    International Nuclear Information System (INIS)

    Macal, C. M.; Sallach, D.

    2000-01-01

    The many motivations for employing agent-based computation in the social sciences are reviewed. It is argued that there exist three distinct uses of agent modeling techniques. One such use-the simplest-is conceptually quite close to traditional simulation in operations research. This use arises when equations can be formulated that completely describe a social process, and these equations are explicitly soluble, either analytically or numerically. In the former case, the agent model is merely a tool for presenting results, while in the latter it is a novel kind of Monte Carlo analysis. A second, more commonplace usage of computational agent models arises when mathematical models can be written down but not completely solved. In this case the agent-based model can shed significant light on the solution structure, illustrate dynamical properties of the model, serve to test the dependence of results on parameters and assumptions, and be a source of counter-examples. Finally, there are important classes of problems for which writing down equations is not a useful activity. In such circumstances, resort to agent-based computational models may be the only way available to explore such processes systematically, and constitute a third distinct usage of such models

  17. Test-Driven, Model-Based Systems Engineering

    DEFF Research Database (Denmark)

    Munck, Allan

    Hearing systems have evolved over many years from simple mechanical devices (horns) to electronic units consisting of microphones, amplifiers, analog filters, loudspeakers, batteries, etc. Digital signal processors replaced analog filters to provide better performance end new features. Central....... This thesis concerns methods for identifying, selecting and implementing tools for various aspects of model-based systems engineering. A comprehensive method was proposed that include several novel steps such as techniques for analyzing the gap between requirements and tool capabilities. The method...... was verified with good results in two case studies for selection of a traceability tool (single-tool scenario) and a set of modeling tools (multi-tool scenarios). Models must be subjected to testing to allow engineers to predict functionality and performance of systems. Test-first strategies are known...

  18. Tool Wear Detection Based on Duffing-Holmes Oscillator

    Directory of Open Access Journals (Sweden)

    Wanqing Song

    2008-01-01

    Full Text Available The cutting sound in the audible range includes plenty of tool wear information. The sound is sampled by the acoustic emission (AE sensor as a short-time sequence, then worn wear can be detected by the Duffing-Holmes oscillator. A novel engineering method is proposed for determining the chaotic threshold of the Duffing-Holmes oscillator. First, a rough threshold value is calculated by local Lyapunov exponents with a step size 0.1. Second, the exact threshold value is calculated by the Duffing-Holmes system in terms of the law of the golden section. The advantage of the method is low computation cost. The feasibility for tool condition detection is demonstrated by the 27 kinds of cutting conditions with sharp tool and worn tool in turning experiments. The 54 group data sampled as noisy are embedded into the Duffing-Holmes oscillator, respectively. Finally, one chaotic threshold is determined conveniently which can distinguish between worn tool or sharp tool.

  19. Application of the GEM Inventory Data Capture Tools for Dynamic Vulnerability Assessment and Recovery Modelling

    Science.gov (United States)

    Verrucci, Enrica; Bevington, John; Vicini, Alessandro

    2014-05-01

    A set of open-source tools to create building exposure datasets for seismic risk assessment was developed from 2010-13 by the Inventory Data Capture Tools (IDCT) Risk Global Component of the Global Earthquake Model (GEM). The tools were designed to integrate data derived from remotely-sensed imagery, statistically-sampled in-situ field data of buildings to generate per-building and regional exposure data. A number of software tools were created to aid the development of these data, including mobile data capture tools for in-field structural assessment, and the Spatial Inventory Data Developer (SIDD) for creating "mapping schemes" - statistically-inferred distributions of building stock applied to areas of homogeneous urban land use. These tools were made publically available in January 2014. Exemplar implementations in Europe and Central Asia during the IDCT project highlighted several potential application areas beyond the original scope of the project. These are investigated here. We describe and demonstrate how the GEM-IDCT suite can be used extensively within the framework proposed by the EC-FP7 project SENSUM (Framework to integrate Space-based and in-situ sENSing for dynamic vUlnerability and recovery Monitoring). Specifically, applications in the areas of 1) dynamic vulnerability assessment (pre-event), and 2) recovery monitoring and evaluation (post-event) are discussed. Strategies for using the IDC Tools for these purposes are discussed. The results demonstrate the benefits of using advanced technology tools for data capture, especially in a systematic fashion using the taxonomic standards set by GEM. Originally designed for seismic risk assessment, it is clear the IDCT tools have relevance for multi-hazard risk assessment. When combined with a suitable sampling framework and applied to multi-temporal recovery monitoring, data generated from the tools can reveal spatio-temporal patterns in the quality of recovery activities and resilience trends can be

  20. ThinTool: a spreadsheet model to evaluate fuel reduction thinning cost, net energy output, and nutrient impacts

    Science.gov (United States)

    Sang-Kyun Han; Han-Sup Han; William J. Elliot; Edward M. Bilek

    2017-01-01

    We developed a spreadsheet-based model, named ThinTool, to evaluate the cost of mechanical fuel reduction thinning including biomass removal, to predict net energy output, and to assess nutrient impacts from thinning treatments in northern California and southern Oregon. A combination of literature reviews, field-based studies, and contractor surveys was used to...

  1. A software tool for modification of human voxel models used for application in radiation protection

    International Nuclear Information System (INIS)

    Becker, Janine; Zankl, Maria; Petoussi-Henss, Nina

    2007-01-01

    This note describes a new software tool called 'VolumeChange' that was developed to modify the masses and location of organs of virtual human voxel models. A voxel model is a three-dimensional representation of the human body in the form of an array of identification numbers that are arranged in slices, rows and columns. Each entry in this array represents a voxel; organs are represented by those voxels having the same identification number. With this tool, two human voxel models were adjusted to fit the reference organ masses of a male and a female adult, as defined by the International Commission on Radiological Protection (ICRP). The alteration of an already existing voxel model is a complicated process, leading to many problems that have to be solved. To solve those intricacies in an easy way, a new software tool was developed and is presented here. If the organs are modified, no bit of tissue, i.e. voxel, may vanish nor should an extra one appear. That means that organs cannot be modified without considering the neighbouring tissue. Thus, the principle of organ modification is based on the reassignment of voxels from one organ/tissue to another; actually deleting and adding voxels is only possible at the external surface, i.e. skin. In the software tool described here, the modifications are done by semi-automatic routines but including human control. Because of the complexity of the matter, a skilled person has to validate that the applied changes to organs are anatomically reasonable. A graphical user interface was designed to fulfil the purpose of a comfortable working process, and an adequate graphical display of the modified voxel model was developed. Single organs, organ complexes and even whole limbs can be edited with respect to volume, shape and location. (note)

  2. Néron Models and Base Change

    DEFF Research Database (Denmark)

    Halle, Lars Halvard; Nicaise, Johannes

    Presenting the first systematic treatment of the behavior of Néron models under ramified base change, this book can be read as an introduction to various subtle invariants and constructions related to Néron models of semi-abelian varieties, motivated by concrete research problems and complemented...... with explicit examples. Néron models of abelian and semi-abelian varieties have become an indispensable tool in algebraic and arithmetic geometry since Néron introduced them in his seminal 1964 paper. Applications range from the theory of heights in Diophantine geometry to Hodge theory. We focus specifically...... on Néron component groups, Edixhoven’s filtration and the base change conductor of Chai and Yu, and we study these invariants using various techniques such as models of curves, sheaves on Grothendieck sites and non-archimedean uniformization. We then apply our results to the study of motivic zeta functions...

  3. Decision modelling tools for utilities in the deregulated energy market

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, S. [Process Vision Oy, Helsinki (Finland)

    2005-07-01

    , strategic decision support has also faced new challenges. This thesis introduces two applications involving multiple criteria decision making methods. The first application explores the decision making problem caused by the introduction of 'green' electricity that creates additional value for renewable energy. In this problem the stochastic multicriteria acceptability analysis method (SMAA) is applied. The second strategic multi-criteria decision making study discusses two different energy-related operations research problems: the elements of risk analysis in the energy field and the evaluation of different choices with a decision support tool accommodating incomplete preference information to help energy companies to select a proper risk management system. The application is based on the rank inclusion in criteria hierarchies (RICH) method. (orig.)

  4. Decision modelling tools for utilities in the deregulated energy market

    International Nuclear Information System (INIS)

    Makkonen, S.

    2005-01-01

    , strategic decision support has also faced new challenges. This thesis introduces two applications involving multiple criteria decision making methods. The first application explores the decision making problem caused by the introduction of 'green' electricity that creates additional value for renewable energy. In this problem the stochastic multicriteria acceptability analysis method (SMAA) is applied. The second strategic multi-criteria decision making study discusses two different energy-related operations research problems: the elements of risk analysis in the energy field and the evaluation of different choices with a decision support tool accommodating incomplete preference information to help energy companies to select a proper risk management system. The application is based on the rank inclusion in criteria hierarchies (RICH) method. (orig.)

  5. Rethinking the Role of Information Technology-Based Research Tools in Students' Development of Scientific Literacy

    Science.gov (United States)

    van Eijck, Michiel; Roth, Wolff-Michael

    2007-06-01

    Given the central place IT-based research tools take in scientific research, the marginal role such tools currently play in science curricula is dissatisfying from the perspective of making students scientifically literate. To appropriately frame the role of IT-based research tools in science curricula, we propose a framework that is developed to understand the use of tools in human activity, namely cultural-historical activity theory (CHAT). Accordingly, IT-based research tools constitute central moments of scientific research activity and neither can be seen apart from its objectives, nor can it be considered apart from the cultural-historical determined forms of activity (praxis) in which human subjects participate. Based on empirical data involving students participating in research activity, we point out how an appropriate account of IT-based research tools involves subjects' use of tools with respect to the objectives of research activity and the contribution to the praxis of research. We propose to reconceptualize the role of IT-based research tools as contributing to scientific literacy if students apply these tools with respect to the objectives of the research activity and contribute to praxis of research by evaluating and modifying the application of these tools. We conclude this paper by sketching the educational implications of this reconceptualized role of IT-based research tools.

  6. Modeling and Results for Creating Oblique Fields in a Magnetic Flux Leakage Survey Tool

    Science.gov (United States)

    Simek, James C.

    2010-02-01

    Integrity management programs designed to maintain safe pipeline systems quite often will use survey results from In line inspection (ILI) tools in addition to data from other sources. Commonly referred to a "smart pigs," one of the most widely used types are those based upon the magnetic flux leakage technique, typically used to detect and quantify metal loss zones. The majority of pipelines surveyed to date have used tools with the magnetic field direction axially aligned with the length of the pipeline. In order to enable detection and quantification of extremely narrow metal loss features or certain types of weld zone anomalies, tools employing magnetic circuits directing the magnetic fields around the pipe circumference have been designed and are use in segments where these feature categories are a primary concern. Modeling and laboratory test data of metal loss features will be used to demonstrate the response of extremely narrow metal loss zones as the features are rotated relative to the induced field direction. Based upon these results, the basis for developing a magnetizer capable of creating fields oblique to either pipeline axis will be presented along with the magnetic field profile models of several configurations.

  7. Mathematical Modeling: A Tool for Optimization of Lipid Nanoparticle-Mediated Delivery of siRNA.

    Science.gov (United States)

    Mihaila, Radu; Ruhela, Dipali; Keough, Edward; Cherkaev, Elena; Chang, Silvia; Galinski, Beverly; Bartz, René; Brown, Duncan; Howell, Bonnie; Cunningham, James J

    2017-06-16

    Lipid nanoparticles (LNPs) have been used to successfully deliver small interfering RNAs (siRNAs) to target cells in both preclinical and clinical studies and currently are the leading systems for in vivo delivery. Here, we propose the use of an ordinary differential equation (ODE)-based model as a tool for optimizing LNP-mediated delivery of siRNAs. As a first step, we have used a combination of experimental and computational approaches to develop and validate a mathematical model that captures the critical features for efficient siRNA-LNP delivery in vitro. This model accurately predicts mRNA knockdown resulting from novel combinations of siRNAs and LNPs in vitro. As demonstrated, this model can be effectively used as a screening tool to select the most efficacious LNPs, which can then further be evaluated in vivo. The model serves as a starting point for the future development of next generation models capable of capturing the additional complexity of in vivo delivery. Copyright © 2017 Elena Cherkaev, Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA. Published by Elsevier Inc. All rights reserved.

  8. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    Science.gov (United States)

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  9. DYNAMO-HIA--a Dynamic Modeling tool for generic Health Impact Assessments.

    Directory of Open Access Journals (Sweden)

    Stefan K Lhachimi

    Full Text Available BACKGROUND: Currently, no standard tool is publicly available that allows researchers or policy-makers to quantify the impact of policies using epidemiological evidence within the causal framework of Health Impact Assessment (HIA. A standard tool should comply with three technical criteria (real-life population, dynamic projection, explicit risk-factor states and three usability criteria (modest data requirements, rich model output, generally accessible to be useful in the applied setting of HIA. With DYNAMO-HIA (Dynamic Modeling for Health Impact Assessment, we introduce such a generic software tool specifically designed to facilitate quantification in the assessment of the health impacts of policies. METHODS AND RESULTS: DYNAMO-HIA quantifies the impact of user-specified risk-factor changes on multiple diseases and in turn on overall population health, comparing one reference scenario with one or more intervention scenarios. The Markov-based modeling approach allows for explicit risk-factor states and simulation of a real-life population. A built-in parameter estimation module ensures that only standard population-level epidemiological evidence is required, i.e. data on incidence, prevalence, relative risks, and mortality. DYNAMO-HIA provides a rich output of summary measures--e.g. life expectancy and disease-free life expectancy--and detailed data--e.g. prevalences and mortality/survival rates--by age, sex, and risk-factor status over time. DYNAMO-HIA is controlled via a graphical user interface and is publicly available from the internet, ensuring general accessibility. We illustrate the use of DYNAMO-HIA with two example applications: a policy causing an overall increase in alcohol consumption and quantifying the disease-burden of smoking. CONCLUSION: By combining modest data needs with general accessibility and user friendliness within the causal framework of HIA, DYNAMO-HIA is a potential standard tool for health impact assessment based

  10. A Web-Based Tool to Estimate Pollutant Loading Using LOADEST

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2015-09-01

    Full Text Available Collecting and analyzing water quality samples is costly and typically requires significant effort compared to streamflow data, thus water quality data are typically collected at a low frequency. Regression models, identifying a relationship between streamflow and water quality data, are often used to estimate pollutant loads. A web-based tool using LOAD ESTimator (LOADEST as a core engine with four modules was developed to provide user-friendly interfaces and input data collection via web access. The first module requests and receives streamflow and water quality data from the U.S. Geological Survey. The second module retrieves watershed area for computation of pollutant loads per unit area. The third module examines potential error of input datasets for LOADEST runs, and the last module computes estimated and allowable annual average pollutant loads and provides tabular and graphical LOADEST outputs. The web-based tool was applied to two watersheds in this study, one agriculturally-dominated and one urban-dominated. It was found that annual sediment load at the urban-dominant watershed exceeded the target load; therefore, the web-based tool identified correctly the watershed requiring best management practices to reduce pollutant loads.

  11. Use of System Dynamics Techniques in the Garrison Health Modelling Tool

    Science.gov (United States)

    2010-11-01

    Joint Health Command (JHC) tasked DSTO to develop techniques for modelling Defence health service delivery both in a Garrison environment in Australia ...UNCLASSIFIED UNCLASSIFIED Use of System Dynamics Techniques in the Garrison Health Modelling Tool Mark Burnett, Kerry Clifford and...Garrison Health Modelling Tool, a prototype software package designed to provide decision-support to JHC health officers and managers in a garrison

  12. Predicting cycle 24 using various dynamo-based tools

    Directory of Open Access Journals (Sweden)

    M. Dikpati

    2008-02-01

    Full Text Available Various dynamo-based techniques have been used to predict the mean solar cycle features, namely the amplitude and the timings of onset and peak. All methods use information from previous cycles, including particularly polar fields, drift-speed of the sunspot zone to the equator, and remnant magnetic flux from the decay of active regions. Polar fields predict a low cycle 24, while spot zone migration and remnant flux both lead to predictions of a high cycle 24. These methods both predict delayed onset for cycle 24. We will describe how each of these methods relates to dynamo processes. We will present the latest results from our flux-transport dynamo, including some sensitivity tests and how our model relates to polar fields and spot zone drift methods.

  13. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  14. A remote sensing computer-assisted learning tool developed using the unified modeling language

    Science.gov (United States)

    Friedrich, J.; Karslioglu, M. O.

    The goal of this work has been to create an easy-to-use and simple-to-make learning tool for remote sensing at an introductory level. Many students struggle to comprehend what seems to be a very basic knowledge of digital images, image processing and image arithmetic, for example. Because professional programs are generally too complex and overwhelming for beginners and often not tailored to the specific needs of a course regarding functionality, a computer-assisted learning (CAL) program was developed based on the unified modeling language (UML), the present standard for object-oriented (OO) system development. A major advantage of this approach is an easier transition from modeling to coding of such an application, if modern UML tools are being used. After introducing the constructed UML model, its implementation is briefly described followed by a series of learning exercises. They illustrate how the resulting CAL tool supports students taking an introductory course in remote sensing at the author's institution.

  15. MoManI: a tool to facilitate research, analysis, and teaching of computer models

    Science.gov (United States)

    Howells, Mark; Pelakauskas, Martynas; Almulla, Youssef; Tkaczyk, Alan H.; Zepeda, Eduardo

    2017-04-01

    Allocating limited resource efficiently is a task to which efficient planning and policy design aspires. This may be a non-trivial task. For example, the seventh sustainable development goal (SDG) of Agenda 2030 is to provide access to affordable sustainable energy to all. On the one hand, energy is required to realise almost all other SDGs. (A clinic requires electricity for fridges to store vaccines for maternal health, irrigate agriculture requires energy to pump water to crops in dry periods etc.) On the other hand, the energy system is non-trivial. It requires the mapping of resource, its conversion into useable energy and then into machines that we use to meet our needs. That requires new tools that draw from standard techniques, best-in-class models and allow the analyst to develop new models. Thus we present the Model Management Infrastructure (MoManI). MoManI is used to develop, manage, run, store input and results data for linear programming models. MoManI, is a browser-based open source interface for systems modelling. It is available to various user audiences, from policy makers and planners through to academics. For example, we implement the Open Source energy Modelling System (OSeMOSYS) in MoManI. OSeMOSYS is a specialized energy model generator. A typical OSeMOSYS model would represent the current energy system of a country, region or city; in it, equations and constraints are specified; and calibrated to a base year. From that future technologies and policy options are represented. From those scenarios are designed and run. Efficient allocation of energy resource and expenditure on technology is calculated. Finally, results are visualized. At present this is done in relatively rigid interfaces or via (for some) cumbersome text files. Implementing and operating OSeMOSYS in MoManI shortens the learning curve and reduces phobia associated with the complexity of computer modelling, thereby supporting effective capacity building activities. The novel

  16. An improved model for the oPtImal Measurement Probes Allocation tool

    International Nuclear Information System (INIS)

    Sterle, C.; Neto, A.C.; De Tommasi, G.

    2015-01-01

    Highlights: • The problem of optimally allocating the probes of a diagnostic system is tackled. • The problem is decomposed in two consecutive optimization problems. • Two original ILP models are proposed and sequentially solved to optimality. • The proposed ILP models improve and extend the previous work present in literature. • Real size instances have been optimally solved with very low computation time. - Abstract: The oPtImal Measurement Probes Allocation (PIMPA) tool has been recently proposed in [1] to maximize the reliability of a tokamak diagnostic system against the failure of one or more of the processing nodes. PIMPA is based on the solution of integer linear programming (ILP) problems, and it minimizes the effect of the failure of a data acquisition component. The first formulation of the PIMPA model did not support the concept of individual slots. This work presents an improved ILP model that addresses the above mentioned problem, by taking into account all the individual probes.

  17. Modeling of edge effect in subaperture tool influence functions of computer controlled optical surfacing.

    Science.gov (United States)

    Wan, Songlin; Zhang, Xiangchao; He, Xiaoying; Xu, Min

    2016-12-20

    Computer controlled optical surfacing requires an accurate tool influence function (TIF) for reliable path planning and deterministic fabrication. Near the edge of the workpieces, the TIF has a nonlinear removal behavior, which will cause a severe edge-roll phenomenon. In the present paper, a new edge pressure model is developed based on the finite element analysis results. The model is represented as the product of a basic pressure function and a correcting function. The basic pressure distribution is calculated according to the surface shape of the polishing pad, and the correcting function is used to compensate the errors caused by the edge effect. Practical experimental results demonstrate that the new model can accurately predict the edge TIFs with different overhang ratios. The relative error of the new edge model can be reduced to 15%.

  18. Hypersonic Control Modeling and Simulation Tool for Lifting Towed Ballutes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Aerospace Corporation proposes to develop a hypersonic control modeling and simulation tool for hypersonic aeroassist vehicles. Our control and simulation...

  19. MSP-Tool: a VBA-based software tool for the analysis of multispecimen paleointensity data

    Science.gov (United States)

    Monster, Marilyn; de Groot, Lennart; Dekkers, Mark

    2015-12-01

    The multispecimen protocol (MSP) is a method to estimate the Earth's magnetic field's past strength from volcanic rocks or archeological materials. By reducing the amount of heating steps and aligning the specimens parallel to the applied field, thermochemical alteration and multi-domain effects are minimized. We present a new software tool, written for Microsoft Excel 2010 in Visual Basic for Applications (VBA), that evaluates paleointensity data acquired using this protocol. In addition to the three ratios (standard, fraction-corrected and domain-state-corrected) calculated following Dekkers and Böhnel (2006) and Fabian and Leonhardt (2010) and a number of other parameters proposed by Fabian and Leonhardt (2010), it also provides several reliability criteria. These include an alteration criterion, whether or not the linear regression intersects the y axis within the theoretically prescribed range, and two directional checks. Overprints and misalignment are detected by isolating the remaining natural remanent magnetization (NRM) and the partial thermoremanent magnetization (pTRM) gained and comparing their declinations and inclinations. The NRM remaining and pTRM gained are then used to calculate alignment-corrected multispecimen plots. Data are analyzed using bootstrap statistics. The program was tested on lava samples that were given a full TRM and that acquired their pTRMs at angles of 0, 15, 30 and 90° with respect to their NRMs. MSP-Tool adequately detected and largely corrected these artificial alignment errors.

  20. Cluster Based Text Classification Model

    DEFF Research Database (Denmark)

    Nizamani, Sarwat; Memon, Nasrullah; Wiil, Uffe Kock

    2011-01-01

    We propose a cluster based classification model for suspicious email detection and other text classification tasks. The text classification tasks comprise many training examples that require a complex classification model. Using clusters for classification makes the model simpler and increases......, the classifier is trained on each cluster having reduced dimensionality and less number of examples. The experimental results show that the proposed model outperforms the existing classification models for the task of suspicious email detection and topic categorization on the Reuters-21578 and 20 Newsgroups...... datasets. Our model also outperforms A Decision Cluster Classification (ADCC) and the Decision Cluster Forest Classification (DCFC) models on the Reuters-21578 dataset....