WorldWideScience

Sample records for modeling tool consists

  1. Requirements for UML and OWL Integration Tool for User Data Consistency Modeling and Testing

    DEFF Research Database (Denmark)

    Nytun, J. P.; Jensen, Christian Søndergaard; Oleshchuk, V. A.

    2003-01-01

    The amount of data available on the Internet is continuously increasing, consequentially there is a growing need for tools that help to analyse the data. Testing of consistency among data received from different sources is made difficult by the number of different languages and schemas being used....... In this paper we analyze requirements for a tool that support integration of UML models and ontologies written in languages like the W3C Web Ontology Language (OWL). The tool can be used in the following way: after loading two legacy models into the tool, the tool user connects them by inserting modeling......, an important part of this technique is attaching of OCL expressions to special boolean class attributes that we call consistency attributes. The resulting integration model can be used for automatic consistency testing of two instances of the legacy models by automatically instantiate the whole integration...

  2. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  3. A Spectral Unmixing Model for the Integration of Multi-Sensor Imagery: A Tool to Generate Consistent Time Series Data

    Directory of Open Access Journals (Sweden)

    Georgia Doxani

    2015-10-01

    Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.

  4. ERBE bidirectional model consistency check

    Science.gov (United States)

    Baldwin, D. G.; Coakley, J. A., Jr.

    1986-01-01

    A short analysis is presented of Earth Radiation Budget Experiment (ERBE) errors inherent in the directional models used for data interpretation. The models were all developed on the basis of experience with the Nimbus-7 ERB experiment, which had a spatial resolution one-third that of ERBE instrumentation. A pseudo-directional model is defined to simulate the ERBE scanner data, using the assumptions that the average radiant exitance for any particular scene is independent of the viewing geometry, geographic location and time the data is collected. The directionality of the view angle and solar zenith angle is accounted for by a method of bins.

  5. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    Science.gov (United States)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain

  6. Consistency of the MLE under mixture models

    OpenAIRE

    Chen, Jiahua

    2016-01-01

    The large-sample properties of likelihood-based statistical inference under mixture models have received much attention from statisticians. Although the consistency of the nonparametric MLE is regarded as a standard conclusion, many researchers ignore the precise conditions required on the mixture model. An incorrect claim of consistency can lead to false conclusions even if the mixture model under investigation seems well behaved. Under a finite normal mixture model, for instance, the consis...

  7. Consistent spectroscopy for a extended gauge model

    International Nuclear Information System (INIS)

    Oliveira Neto, G. de.

    1990-11-01

    The consistent spectroscopy was obtained with a Lagrangian constructed with vector fields with a U(1) group extended symmetry. As consistent spectroscopy is understood the determination of quantum physical properties described by the model in an manner independent from the possible parametrizations adopted in their description. (L.C.J.A.)

  8. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  9. Consistent Estimation of Partition Markov Models

    Directory of Open Access Journals (Sweden)

    Jesús E. García

    2017-04-01

    Full Text Available The Partition Markov Model characterizes the process by a partition L of the state space, where the elements in each part of L share the same transition probability to an arbitrary element in the alphabet. This model aims to answer the following questions: what is the minimal number of parameters needed to specify a Markov chain and how to estimate these parameters. In order to answer these questions, we build a consistent strategy for model selection which consist of: giving a size n realization of the process, finding a model within the Partition Markov class, with a minimal number of parts to represent the process law. From the strategy, we derive a measure that establishes a metric in the state space. In addition, we show that if the law of the process is Markovian, then, eventually, when n goes to infinity, L will be retrieved. We show an application to model internet navigation patterns.

  10. Self-consistent asset pricing models

    Science.gov (United States)

    Malevergne, Y.; Sornette, D.

    2007-08-01

    We discuss the foundations of factor or regression models in the light of the self-consistency condition that the market portfolio (and more generally the risk factors) is (are) constituted of the assets whose returns it is (they are) supposed to explain. As already reported in several articles, self-consistency implies correlations between the return disturbances. As a consequence, the alphas and betas of the factor model are unobservable. Self-consistency leads to renormalized betas with zero effective alphas, which are observable with standard OLS regressions. When the conditions derived from internal consistency are not met, the model is necessarily incomplete, which means that some sources of risk cannot be replicated (or hedged) by a portfolio of stocks traded on the market, even for infinite economies. Analytical derivations and numerical simulations show that, for arbitrary choices of the proxy which are different from the true market portfolio, a modified linear regression holds with a non-zero value αi at the origin between an asset i's return and the proxy's return. Self-consistency also introduces “orthogonality” and “normality” conditions linking the betas, alphas (as well as the residuals) and the weights of the proxy portfolio. Two diagnostics based on these orthogonality and normality conditions are implemented on a basket of 323 assets which have been components of the S&P500 in the period from January 1990 to February 2005. These two diagnostics show interesting departures from dynamical self-consistency starting about 2 years before the end of the Internet bubble. Assuming that the CAPM holds with the self-consistency condition, the OLS method automatically obeys the resulting orthogonality and normality conditions and therefore provides a simple way to self-consistently assess the parameters of the model by using proxy portfolios made only of the assets which are used in the CAPM regressions. Finally, the factor decomposition with the

  11. Developing consistent pronunciation models for phonemic variants

    CSIR Research Space (South Africa)

    Davel, M

    2006-09-01

    Full Text Available from a lexicon containing variants. In this paper we (the authors) address both these issues by creating ‘pseudo-phonemes’ associated with sets of ‘generation restriction rules’ to model those pronunciations that are consistently realised as two or more...

  12. Self-consistent model of confinement

    International Nuclear Information System (INIS)

    Swift, A.R.

    1988-01-01

    A model of the large-spatial-distance, zero--three-momentum, limit of QCD is developed from the hypothesis that there is an infrared singularity. Single quarks and gluons do not propagate because they have infinite energy after renormalization. The Hamiltonian formulation of the path integral is used to quantize QCD with physical, nonpropagating fields. Perturbation theory in the infrared limit is simplified by the absence of self-energy insertions and by the suppression of large classes of diagrams due to vanishing propagators. Remaining terms in the perturbation series are resummed to produce a set of nonlinear, renormalizable integral equations which fix both the confining interaction and the physical propagators. Solutions demonstrate the self-consistency of the concepts of an infrared singularity and nonpropagating fields. The Wilson loop is calculated to provide a general proof of confinement. Bethe-Salpeter equations for quark-antiquark pairs and for two gluons have finite-energy solutions in the color-singlet channel. The choice of gauge is addressed in detail. Large classes of corrections to the model are discussed and shown to support self-consistency

  13. ThermoFit: A Set of Software Tools, Protocols and Schema for the Organization of Thermodynamic Data and for the Development, Maintenance, and Distribution of Internally Consistent Thermodynamic Data/Model Collections

    Science.gov (United States)

    Ghiorso, M. S.

    2013-12-01

    Internally consistent thermodynamic databases are critical resources that facilitate the calculation of heterogeneous phase equilibria and thereby support geochemical, petrological, and geodynamical modeling. These 'databases' are actually derived data/model systems that depend on a diverse suite of physical property measurements, calorimetric data, and experimental phase equilibrium brackets. In addition, such databases are calibrated with the adoption of various models for extrapolation of heat capacities and volumetric equations of state to elevated temperature and pressure conditions. Finally, these databases require specification of thermochemical models for the mixing properties of solid, liquid, and fluid solutions, which are often rooted in physical theory and, in turn, depend on additional experimental observations. The process of 'calibrating' a thermochemical database involves considerable effort and an extensive computational infrastructure. Because of these complexities, the community tends to rely on a small number of thermochemical databases, generated by a few researchers; these databases often have limited longevity and are universally difficult to maintain. ThermoFit is a software framework and user interface whose aim is to provide a modeling environment that facilitates creation, maintenance and distribution of thermodynamic data/model collections. Underlying ThermoFit are data archives of fundamental physical property, calorimetric, crystallographic, and phase equilibrium constraints that provide the essential experimental information from which thermodynamic databases are traditionally calibrated. ThermoFit standardizes schema for accessing these data archives and provides web services for data mining these collections. Beyond simple data management and interoperability, ThermoFit provides a collection of visualization and software modeling tools that streamline the model/database generation process. Most notably, ThermoFit facilitates the

  14. Simplified models for dark matter face their consistent completions

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, Dorival; Machado, Pedro A. N.; No, Jose Miguel

    2017-03-01

    Simplified dark matter models have been recently advocated as a powerful tool to exploit the complementarity between dark matter direct detection, indirect detection and LHC experimental probes. Focusing on pseudoscalar mediators between the dark and visible sectors, we show that the simplified dark matter model phenomenology departs significantly from that of consistent ${SU(2)_{\\mathrm{L}} \\times U(1)_{\\mathrm{Y}}}$ gauge invariant completions. We discuss the key physics simplified models fail to capture, and its impact on LHC searches. Notably, we show that resonant mono-Z searches provide competitive sensitivities to standard mono-jet analyses at $13$ TeV LHC.

  15. A thermodynamically consistent model for magnetic hysteresis

    International Nuclear Information System (INIS)

    Ho, Kwangsoo

    2014-01-01

    A phenomenological constitutive model is presented to describe the magnetization curve within the context of thermodynamics. Due to the phenomenological analogy between the magnetic hysteresis and the stress hysteresis, the basic structure of the proposed model comes from rate-dependent plasticity in continuum mechanics, namely viscoplasticity. The total magnetic flux density is assumed to be the sum of reversible and irreversible parts. The model introduces the evolution laws of two internal state variables to incorporate the effect of the ever-changing internal microstructure on the current state. The conception originated from viscoplasticity enables the frequency dependence of the hysteresis curve to be modeled. - Highlights: • A constitutive model is proposed within the framework of thermodynamic principles. • The basic structure of formulation is originated from the rate-dependent plasticity. • Decomposition of the magnetic flux into reversible and irreversible parts is assumed. • Constitutive model reproduces the frequency dependency of magnetic hysteresis

  16. Green Infrastructure Modeling Tools

    Science.gov (United States)

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  17. Population Density Modeling Tool

    Science.gov (United States)

    2012-06-26

    194 POPULATION DENSITY MODELING TOOL by Davy Andrew Michael Knott David Burke 26 June 2012 Distribution...MARYLAND NAWCADPAX/TR-2012/194 26 June 2012 POPULATION DENSITY MODELING TOOL by Davy Andrew Michael Knott David Burke...information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE 26

  18. Parametrization of model consistant expectations in the Sidrauski model

    NARCIS (Netherlands)

    Hoogenveen, Victoria; Sterken, Elmer

    1996-01-01

    This paper discusses a cubic parametrisation of model consistent expectations in a nonlinear dynamic monetary growth model. The so-called Sidrauski model links money, inflation and consumption growth. Iterative least squares combined with simulation is used to address the alleged impact of inflation

  19. Consistent Alignment of World Embedding Models

    Science.gov (United States)

    2017-03-02

    MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02421, USA ABSTRACT Word embedding models offer continuous vector representations that can...generated synthetic data points. This generative process is inspired by the observation that a variety of linguistic relationships is captured by simple...as images , and genomic data. In Wang et al. (2016) manifold alignment techniques are used to discover logical relationships in supervised settings. We

  20. Self-Consistent Models of Accretion Disks

    Science.gov (United States)

    Narayan, Ramesh

    2000-01-01

    Research was carried out on several topics in the theory of astrophysical accretion flows around black holes, neutron stars and white dwarfs. The focus of our effort was the advection-dominated accretion flow (ADAF) model which the PI and his collaborators proposed and developed over the last several years. Our group completed a total of 46 papers, of which 36 are in refereed journals and 12 are in conference proceedings. All the papers have either already appeared in print or are in press.

  1. Consistency test of the standard model

    International Nuclear Information System (INIS)

    Pawlowski, M.; Raczka, R.

    1997-01-01

    If the 'Higgs mass' is not the physical mass of a real particle but rather an effective ultraviolet cutoff then a process energy dependence of this cutoff must be admitted. Precision data from at least two energy scale experimental points are necessary to test this hypothesis. The first set of precision data is provided by the Z-boson peak experiments. We argue that the second set can be given by 10-20 GeV e + e - colliders. We pay attention to the special role of tau polarization experiments that can be sensitive to the 'Higgs mass' for a sample of ∼ 10 8 produced tau pairs. We argue that such a study may be regarded as a negative selfconsistency test of the Standard Model and of most of its extensions

  2. Comparison of two different modelling tools

    DEFF Research Database (Denmark)

    Brix, Wiebke; Elmegaard, Brian

    2009-01-01

    In this paper a test case is solved using two different modelling tools, Engineering Equation Solver (EES) and WinDali, in order to compare the tools. The system of equations solved, is a static model of an evaporator used for refrigeration. The evaporator consists of two parallel channels, and i...

  3. MetaBar - a tool for consistent contextual data acquisition and standards compliant submission.

    Science.gov (United States)

    Hankeln, Wolfgang; Buttigieg, Pier Luigi; Fink, Dennis; Kottmann, Renzo; Yilmaz, Pelin; Glöckner, Frank Oliver

    2010-06-30

    Environmental sequence datasets are increasing at an exponential rate; however, the vast majority of them lack appropriate descriptors like sampling location, time and depth/altitude: generally referred to as metadata or contextual data. The consistent capture and structured submission of these data is crucial for integrated data analysis and ecosystems modeling. The application MetaBar has been developed, to support consistent contextual data acquisition. MetaBar is a spreadsheet and web-based software tool designed to assist users in the consistent acquisition, electronic storage, and submission of contextual data associated to their samples. A preconfigured Microsoft Excel spreadsheet is used to initiate structured contextual data storage in the field or laboratory. Each sample is given a unique identifier and at any stage the sheets can be uploaded to the MetaBar database server. To label samples, identifiers can be printed as barcodes. An intuitive web interface provides quick access to the contextual data in the MetaBar database as well as user and project management capabilities. Export functions facilitate contextual and sequence data submission to the International Nucleotide Sequence Database Collaboration (INSDC), comprising of the DNA DataBase of Japan (DDBJ), the European Molecular Biology Laboratory database (EMBL) and GenBank. MetaBar requests and stores contextual data in compliance to the Genomic Standards Consortium specifications. The MetaBar open source code base for local installation is available under the GNU General Public License version 3 (GNU GPL3). The MetaBar software supports the typical workflow from data acquisition and field-sampling to contextual data enriched sequence submission to an INSDC database. The integration with the megx.net marine Ecological Genomics database and portal facilitates georeferenced data integration and metadata-based comparisons of sampling sites as well as interactive data visualization. The ample export

  4. MetaBar - a tool for consistent contextual data acquisition and standards compliant submission

    Directory of Open Access Journals (Sweden)

    Kottmann Renzo

    2010-06-01

    Full Text Available Abstract Background Environmental sequence datasets are increasing at an exponential rate; however, the vast majority of them lack appropriate descriptors like sampling location, time and depth/altitude: generally referred to as metadata or contextual data. The consistent capture and structured submission of these data is crucial for integrated data analysis and ecosystems modeling. The application MetaBar has been developed, to support consistent contextual data acquisition. Results MetaBar is a spreadsheet and web-based software tool designed to assist users in the consistent acquisition, electronic storage, and submission of contextual data associated to their samples. A preconfigured Microsoft® Excel® spreadsheet is used to initiate structured contextual data storage in the field or laboratory. Each sample is given a unique identifier and at any stage the sheets can be uploaded to the MetaBar database server. To label samples, identifiers can be printed as barcodes. An intuitive web interface provides quick access to the contextual data in the MetaBar database as well as user and project management capabilities. Export functions facilitate contextual and sequence data submission to the International Nucleotide Sequence Database Collaboration (INSDC, comprising of the DNA DataBase of Japan (DDBJ, the European Molecular Biology Laboratory database (EMBL and GenBank. MetaBar requests and stores contextual data in compliance to the Genomic Standards Consortium specifications. The MetaBar open source code base for local installation is available under the GNU General Public License version 3 (GNU GPL3. Conclusion The MetaBar software supports the typical workflow from data acquisition and field-sampling to contextual data enriched sequence submission to an INSDC database. The integration with the megx.net marine Ecological Genomics database and portal facilitates georeferenced data integration and metadata-based comparisons of sampling sites as

  5. Standard Model Vacuum Stability and Weyl Consistency Conditions

    DEFF Research Database (Denmark)

    Antipin, Oleg; Gillioz, Marc; Krog, Jens

    2013-01-01

    At high energy the standard model possesses conformal symmetry at the classical level. This is reflected at the quantum level by relations between the different beta functions of the model. These relations are known as the Weyl consistency conditions. We show that it is possible to satisfy them...... order by order in perturbation theory, provided that a suitable coupling constant counting scheme is used. As a direct phenomenological application, we study the stability of the standard model vacuum at high energies and compare with previous computations violating the Weyl consistency conditions....

  6. The Turc-Budyko adimensional graphs as a tool for consistency assessment

    Science.gov (United States)

    Andréassian, Vazken; Perrin, Charles; Coron, Laurent; Le Moine, Nicolas

    2015-04-01

    This poster discusses the Turc-Budyko nondimensional graph, a widely used nondimensional representation relating long-term actual evaporation to precipitation and potential evaporation as a tool for assessing the consistency of catchment water balance. We present examples showing both the classical use of the graph (based on long-term averages, see Andréassian and Perrin, 2012) but also a newer use involving dated annual values, which allows to check the consistency of individual years (see Coron et al., 2015). References Andréassian, V., and C. Perrin (2012), On the ambiguous interpretation of the Turc-Budyko nondimensional graph, Water Resour. Res., 48, W10601, doi:10.1029/2012WR012532. Coron, L., V. Andréassian, C. Perrin & N. Le Moine. 2015. Graphical tools based on Turc-Budyko plots to detect changes in catchment behaviour. Hydrological Sciences Journal, doi: 10.1080/02626667.2014.964245

  7. Modeling a Consistent Behavior of PLC-Sensors

    Directory of Open Access Journals (Sweden)

    E. V. Kuzmin

    2014-01-01

    Full Text Available The article extends the cycle of papers dedicated to programming and verificatoin of PLC-programs by LTL-specification. This approach provides the availability of correctness analysis of PLC-programs by the model checking method.The model checking method needs to construct a finite model of a PLC program. For successful verification of required properties it is important to take into consideration that not all combinations of input signals from the sensors can occur while PLC works with a control object. This fact requires more advertence to the construction of the PLC-program model.In this paper we propose to describe a consistent behavior of sensors by three groups of LTL-formulas. They will affect the program model, approximating it to the actual behavior of the PLC program. The idea of LTL-requirements is shown by an example.A PLC program is a description of reactions on input signals from sensors, switches and buttons. In constructing a PLC-program model, the approach to modeling a consistent behavior of PLC sensors allows to focus on modeling precisely these reactions without an extension of the program model by additional structures for realization of a realistic behavior of sensors. The consistent behavior of sensors is taken into account only at the stage of checking a conformity of the programming model to required properties, i. e. a property satisfaction proof for the constructed model occurs with the condition that the model contains only such executions of the program that comply with the consistent behavior of sensors.

  8. Diagnosing a Strong-Fault Model by Conflict and Consistency.

    Science.gov (United States)

    Zhang, Wenfeng; Zhao, Qi; Zhao, Hongbo; Zhou, Gan; Feng, Wenquan

    2018-03-29

    The diagnosis method for a weak-fault model with only normal behaviors of each component has evolved over decades. However, many systems now demand a strong-fault models, the fault modes of which have specific behaviors as well. It is difficult to diagnose a strong-fault model due to its non-monotonicity. Currently, diagnosis methods usually employ conflicts to isolate possible fault and the process can be expedited when some observed output is consistent with the model's prediction where the consistency indicates probably normal components. This paper solves the problem of efficiently diagnosing a strong-fault model by proposing a novel Logic-based Truth Maintenance System (LTMS) with two search approaches based on conflict and consistency. At the beginning, the original a strong-fault model is encoded by Boolean variables and converted into Conjunctive Normal Form (CNF). Then the proposed LTMS is employed to reason over CNF and find multiple minimal conflicts and maximal consistencies when there exists fault. The search approaches offer the best candidate efficiency based on the reasoning result until the diagnosis results are obtained. The completeness, coverage, correctness and complexity of the proposals are analyzed theoretically to show their strength and weakness. Finally, the proposed approaches are demonstrated by applying them to a real-world domain-the heat control unit of a spacecraft-where the proposed methods are significantly better than best first and conflict directly with A* search methods.

  9. Consistent partnership formation: application to a sexually transmitted disease model.

    Science.gov (United States)

    Artzrouni, Marc; Deuchert, Eva

    2012-02-01

    We apply a consistent sexual partnership formation model which hinges on the assumption that one gender's choices drives the process (male or female dominant model). The other gender's behavior is imputed. The model is fitted to UK sexual behavior data and applied to a simple incidence model of HSV-2. With a male dominant model (which assumes accurate male reports on numbers of partners) the modeled incidences of HSV-2 are 77% higher for men and 50% higher for women than with a female dominant model (which assumes accurate female reports). Although highly stylized, our simple incidence model sheds light on the inconsistent results one can obtain with misreported data on sexual activity and age preferences. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Consistent estimation of linear panel data models with measurement error

    NARCIS (Netherlands)

    Meijer, Erik; Spierdijk, Laura; Wansbeek, Thomas

    2017-01-01

    Measurement error causes a bias towards zero when estimating a panel data linear regression model. The panel data context offers various opportunities to derive instrumental variables allowing for consistent estimation. We consider three sources of moment conditions: (i) restrictions on the

  11. Final Report Fermionic Symmetries and Self consistent Shell Model

    International Nuclear Information System (INIS)

    Zamick, Larry

    2008-01-01

    In this final report in the field of theoretical nuclear physics we note important accomplishments.We were confronted with 'anomoulous' magnetic moments by the experimetalists and were able to expain them. We found unexpected partial dynamical symmetries--completely unknown before, and were able to a large extent to expain them. The importance of a self consistent shell model was emphasized.

  12. Tools for Model Evaluation

    DEFF Research Database (Denmark)

    Olesen, H. R.

    1998-01-01

    Proceedings of the Twenty-Second NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held June 6-10, 1997, in Clermont-Ferrand, France.......Proceedings of the Twenty-Second NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held June 6-10, 1997, in Clermont-Ferrand, France....

  13. Detection and quantification of flow consistency in business process models

    DEFF Research Database (Denmark)

    Burattin, Andrea; Bernstein, Vered; Neurauter, Manuel

    2017-01-01

    , to show how such features can be quantified into computational metrics, which are applicable to business process models. We focus on one particular feature, consistency of flow direction, and show the challenges that arise when transforming it into a precise metric. We propose three different metrics......Business process models abstract complex business processes by representing them as graphical models. Their layout, as determined by the modeler, may have an effect when these models are used. However, this effect is currently not fully understood. In order to systematically study this effect......, a basic set of measurable key visual features is proposed, depicting the layout properties that are meaningful to the human user. The aim of this research is thus twofold: first, to empirically identify key visual features of business process models which are perceived as meaningful to the user and second...

  14. Consistency checks in beam emission modeling for neutral beam injectors

    International Nuclear Information System (INIS)

    Punyapu, Bharathi; Vattipalle, Prahlad; Sharma, Sanjeev Kumar; Baruah, Ujjwal Kumar; Crowley, Brendan

    2015-01-01

    In positive neutral beam systems, the beam parameters such as ion species fractions, power fractions and beam divergence are routinely measured using Doppler shifted beam emission spectrum. The accuracy with which these parameters are estimated depend on the accuracy of the atomic modeling involved in these estimations. In this work, an effective procedure to check the consistency of the beam emission modeling in neutral beam injectors is proposed. As a first consistency check, at a constant beam voltage and current, the intensity of the beam emission spectrum is measured by varying the pressure in the neutralizer. Then, the scaling of measured intensity of un-shifted (target) and Doppler shifted intensities (projectile) of the beam emission spectrum at these pressure values are studied. If the un-shifted component scales with pressure, then the intensity of this component will be used as a second consistency check on the beam emission modeling. As a further check, the modeled beam fractions and emission cross sections of projectile and target are used to predict the intensity of the un-shifted component and then compared with the value of measured target intensity. An agreement between the predicted and measured target intensities provide the degree of discrepancy in the beam emission modeling. In order to test this methodology, a systematic analysis of Doppler shift spectroscopy data obtained on the JET neutral beam test stand data was carried out

  15. Structure and internal consistency of a shoulder model.

    Science.gov (United States)

    Högfors, C; Karlsson, D; Peterson, B

    1995-07-01

    A three-dimensional biomechanical model of the shoulder is developed for force predictions in 46 shoulder structures. The model is directed towards the analysis of static working situations where the load is low or moderate. Arbitrary static arm postures in the natural shoulder range may be considered, as well as different kinds of external loads including different force and moment directions. The model can predict internal forces for the shoulder muscles, for the glenohumeral, the acromioclavicular and the sternoclavicular joint as well as for the coracohumeral ligament. A solution to the statistically indeterminate force system is obtained by minimising an objective function. The default function chosen for this is the sum of the squared muscle stresses, but other objective functions may be used as well. The structure of the model is described and its ingredients discussed. The internal consistency of the model, its structural stability and the compatibility of the elements that go into it, is investigated.

  16. Towards a self-consistent dynamical nuclear model

    International Nuclear Information System (INIS)

    Roca-Maza, X; Colò, G; Bortignon, P F; Niu, Y F

    2017-01-01

    Density functional theory (DFT) is a powerful and accurate tool, exploited in nuclear physics to investigate the ground-state and some of the collective properties of nuclei along the whole nuclear chart. Models based on DFT are not, however, suitable for the description of single-particle dynamics in nuclei. Following the field theoretical approach by A Bohr and B R Mottelson to describe nuclear interactions between single-particle and vibrational degrees of freedom, we have taken important steps towards the building of a microscopic dynamic nuclear model. In connection with this, one important issue that needs to be better understood is the renormalization of the effective interaction in the particle-vibration approach. One possible way to renormalize the interaction is by the so-called subtraction method . In this contribution, we will implement the subtraction method in our model for the first time and study its consequences. (paper)

  17. Consistency Across Standards or Standards in a New Business Model

    Science.gov (United States)

    Russo, Dane M.

    2010-01-01

    Presentation topics include: standards in a changing business model, the new National Space Policy is driving change, a new paradigm for human spaceflight, consistency across standards, the purpose of standards, danger of over-prescriptive standards, a balance is needed (between prescriptive and general standards), enabling versus inhibiting, characteristics of success-oriented standards, characteristics of success-oriented standards, and conclusions. Additional slides include NASA Procedural Requirements 8705.2B identifies human rating standards and requirements, draft health and medical standards for human rating, what's been done, government oversight models, examples of consistency from anthropometry, examples of inconsistency from air quality and appendices of government and non-governmental human factors standards.

  18. Marky: a tool supporting annotation consistency in multi-user and iterative document annotation projects.

    Science.gov (United States)

    Pérez-Pérez, Martín; Glez-Peña, Daniel; Fdez-Riverola, Florentino; Lourenço, Anália

    2015-02-01

    Document annotation is a key task in the development of Text Mining methods and applications. High quality annotated corpora are invaluable, but their preparation requires a considerable amount of resources and time. Although the existing annotation tools offer good user interaction interfaces to domain experts, project management and quality control abilities are still limited. Therefore, the current work introduces Marky, a new Web-based document annotation tool equipped to manage multi-user and iterative projects, and to evaluate annotation quality throughout the project life cycle. At the core, Marky is a Web application based on the open source CakePHP framework. User interface relies on HTML5 and CSS3 technologies. Rangy library assists in browser-independent implementation of common DOM range and selection tasks, and Ajax and JQuery technologies are used to enhance user-system interaction. Marky grants solid management of inter- and intra-annotator work. Most notably, its annotation tracking system supports systematic and on-demand agreement analysis and annotation amendment. Each annotator may work over documents as usual, but all the annotations made are saved by the tracking system and may be further compared. So, the project administrator is able to evaluate annotation consistency among annotators and across rounds of annotation, while annotators are able to reject or amend subsets of annotations made in previous rounds. As a side effect, the tracking system minimises resource and time consumption. Marky is a novel environment for managing multi-user and iterative document annotation projects. Compared to other tools, Marky offers a similar visually intuitive annotation experience while providing unique means to minimise annotation effort and enforce annotation quality, and therefore corpus consistency. Marky is freely available for non-commercial use at http://sing.ei.uvigo.es/marky. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. A Self-consistent Model of the Solar Tachocline

    Science.gov (United States)

    Wood, T. S.; Brummell, N. H.

    2018-02-01

    We present a local but fully nonlinear model of the solar tachocline, using three-dimensional direct numerical simulations. The tachocline forms naturally as a statistically steady balance between Coriolis, pressure, buoyancy, and Lorentz forces beneath a turbulent convection zone. Uniform rotation is maintained in the radiation zone by a primordial magnetic field, which is confined by meridional flows in the tachocline and convection zone. Such balanced dynamics has previously been found in idealized laminar models, but never in fully self-consistent numerical simulations.

  20. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  1. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    2013-01-01

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... to be priced consistently, while allowing for jumps in volatility and returns. An affine specification using Lévy processes as building blocks leads to analytically tractable pricing formulas for volatility derivatives, such as VIX options, as well as efficient numerical methods for pricing of European options...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  2. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Cont, Rama; Kokholm, Thomas

    We propose and study a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index, allowing options on forward variance swaps and options on the underlying index to be priced consistently. Our model reproduces various empirically...... observed properties of variance swap dynamics and allows for jumps in volatility and returns. An affine specification using L´evy processes as building blocks leads to analytically tractable pricing formulas for options on variance swaps as well as efficient numerical methods for pricing of European...... options on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options...

  3. Are paleoclimate model ensembles consistent with the MARGO data synthesis?

    Directory of Open Access Journals (Sweden)

    J. C. Hargreaves

    2011-08-01

    Full Text Available We investigate the consistency of various ensembles of climate model simulations with the Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO sea surface temperature data synthesis. We discover that while two multi-model ensembles, created through the Paleoclimate Model Intercomparison Projects (PMIP and PMIP2, pass our simple tests of reliability, an ensemble based on parameter variation in a single model does not perform so well. We show that accounting for observational uncertainty in the MARGO database is of prime importance for correctly evaluating the ensembles. Perhaps surprisingly, the inclusion of a coupled dynamical ocean (compared to the use of a slab ocean does not appear to cause a wider spread in the sea surface temperature anomalies, but rather causes systematic changes with more heat transported north in the Atlantic. There is weak evidence that the sea surface temperature data may be more consistent with meridional overturning in the North Atlantic being similar for the LGM and the present day. However, the small size of the PMIP2 ensemble prevents any statistically significant results from being obtained.

  4. Development of a Consistent and Reproducible Porcine Scald Burn Model

    Science.gov (United States)

    Kempf, Margit; Kimble, Roy; Cuttle, Leila

    2016-01-01

    There are very few porcine burn models that replicate scald injuries similar to those encountered by children. We have developed a robust porcine burn model capable of creating reproducible scald burns for a wide range of burn conditions. The study was conducted with juvenile Large White pigs, creating replicates of burn combinations; 50°C for 1, 2, 5 and 10 minutes and 60°C, 70°C, 80°C and 90°C for 5 seconds. Visual wound examination, biopsies and Laser Doppler Imaging were performed at 1, 24 hours and at 3 and 7 days post-burn. A consistent water temperature was maintained within the scald device for long durations (49.8 ± 0.1°C when set at 50°C). The macroscopic and histologic appearance was consistent between replicates of burn conditions. For 50°C water, 10 minute duration burns showed significantly deeper tissue injury than all shorter durations at 24 hours post-burn (p ≤ 0.0001), with damage seen to increase until day 3 post-burn. For 5 second duration burns, by day 7 post-burn the 80°C and 90°C scalds had damage detected significantly deeper in the tissue than the 70°C scalds (p ≤ 0.001). A reliable and safe model of porcine scald burn injury has been successfully developed. The novel apparatus with continually refreshed water improves consistency of scald creation for long exposure times. This model allows the pathophysiology of scald burn wound creation and progression to be examined. PMID:27612153

  5. Large scale Bayesian nuclear data evaluation with consistent model defects

    International Nuclear Information System (INIS)

    Schnabel, G

    2015-01-01

    Monte Carlo sampling schemes of available evaluation methods. The second improvement concerns Bayesian evaluation methods based on a certain simplification of the nuclear model. These methods were restricted to the consistent evaluation of tens of thousands of observables. In this thesis, a new evaluation scheme has been developed, which is mathematically equivalent to existing methods, but allows the consistent evaluation of dozens of millions of observables. The new scheme is suited for the implementation as a database application. The realization of such an application with public access can help to accelerate the production of reliable nuclear data sets. Furthermore, in combination with the novel treatment of model deficiencies, problems of the model and the experimental data can be tracked down without user interaction. This feature can foster the development of nuclear models with high predictive power. (author) [de

  6. Mean-field theory and self-consistent dynamo modeling

    International Nuclear Information System (INIS)

    Yoshizawa, Akira; Yokoi, Nobumitsu

    2001-12-01

    Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)

  7. Self-consistent modeling of amorphous silicon devices

    International Nuclear Information System (INIS)

    Hack, M.

    1987-01-01

    The authors developed a computer model to describe the steady-state behaviour of a range of amorphous silicon devices. It is based on the complete set of transport equations and takes into account the important role played by the continuous distribution of localized states in the mobility gap of amorphous silicon. Using one set of parameters they have been able to self-consistently simulate the current-voltage characteristics of p-i-n (or n-i-p) solar cells under illumination, the dark behaviour of field-effect transistors, p-i-n diodes and n-i-n diodes in both the ohmic and space charge limited regimes. This model also describes the steady-state photoconductivity of amorphous silicon, in particular, its dependence on temperature, doping and illumination intensity

  8. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  9. Classical and Quantum Consistency of the DGP Model

    CERN Document Server

    Nicolis, A; Nicolis, Alberto; Rattazzi, Riccardo

    2004-01-01

    We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \\pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \\pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline ...

  10. Adjoint-consistent formulations of slip models for coupled electroosmotic flow systems

    KAUST Repository

    Garg, Vikram V

    2014-09-27

    Background Models based on the Helmholtz `slip\\' approximation are often used for the simulation of electroosmotic flows. The objectives of this paper are to construct adjoint-consistent formulations of such models, and to develop adjoint-based numerical tools for adaptive mesh refinement and parameter sensitivity analysis. Methods We show that the direct formulation of the `slip\\' model is adjoint inconsistent, and leads to an ill-posed adjoint problem. We propose a modified formulation of the coupled `slip\\' model, which is shown to be well-posed, and therefore automatically adjoint-consistent. Results Numerical examples are presented to illustrate the computation and use of the adjoint solution in two-dimensional microfluidics problems. Conclusions An adjoint-consistent formulation for Helmholtz `slip\\' models of electroosmotic flows has been proposed. This formulation provides adjoint solutions that can be reliably used for mesh refinement and sensitivity analysis.

  11. Thermodynamically consistent mesoscopic model of the ferro/paramagnetic transition

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora; Kružík, Martin; Roubíček, Tomáš

    2013-01-01

    Roč. 64, Č. 1 (2013), s. 1-28 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GA106/09/1573; GA ČR GAP201/10/0357 Grant - others:GA ČR(CZ) GA106/08/1397; GA MŠk(CZ) LC06052 Program:GA; LC Institutional support: RVO:67985556 Keywords : ferro-para-magnetism * evolution * thermodynamics Subject RIV: BA - General Mathematics; BA - General Mathematics (UT-L) Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-thermodynamically consistent mesoscopic model of the ferro-paramagnetic transition.pdf

  12. Self-Consistent Dynamical Model of the Broad Line Region

    International Nuclear Information System (INIS)

    Czerny, Bozena; Li, Yan-Rong; Sredzinska, Justyna; Hryniewicz, Krzysztof; Panda, Swayam; Wildy, Conor; Karas, Vladimir

    2017-01-01

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  13. Consistent constraints on the Standard Model Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Berthier, Laure; Trott, Michael [Niels Bohr International Academy, University of Copenhagen,Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2016-02-10

    We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.

  14. Self-Consistent Dynamical Model of the Broad Line Region

    Energy Technology Data Exchange (ETDEWEB)

    Czerny, Bozena [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Li, Yan-Rong [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Sredzinska, Justyna; Hryniewicz, Krzysztof [Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Panda, Swayam [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Copernicus Astronomical Center, Polish Academy of Sciences, Warsaw (Poland); Wildy, Conor [Center for Theoretical Physics, Polish Academy of Sciences, Warsaw (Poland); Karas, Vladimir, E-mail: bcz@cft.edu.pl [Astronomical Institute, Czech Academy of Sciences, Prague (Czech Republic)

    2017-06-22

    We develop a self-consistent description of the Broad Line Region based on the concept of a failed wind powered by radiation pressure acting on a dusty accretion disk atmosphere in Keplerian motion. The material raised high above the disk is illuminated, dust evaporates, and the matter falls back toward the disk. This material is the source of emission lines. The model predicts the inner and outer radius of the region, the cloud dynamics under the dust radiation pressure and, subsequently, the gravitational field of the central black hole, which results in asymmetry between the rise and fall. Knowledge of the dynamics allows us to predict the shapes of the emission lines as functions of the basic parameters of an active nucleus: black hole mass, accretion rate, black hole spin (or accretion efficiency) and the viewing angle with respect to the symmetry axis. Here we show preliminary results based on analytical approximations to the cloud motion.

  15. Consistency of Lower-Body Dimensions Using Surface Landmarks and Simple Measurement Tools.

    Science.gov (United States)

    Caia, Johnpaul; Weiss, Lawrence W; Chiu, Loren Z F; Schilling, Brian K; Paquette, Max R

    2016-09-01

    Caia, J, Weiss, LW, Chiu, LZF, Schilling, BK, and Paquette, MR. Consistency of lower-body dimensions using surface landmarks and simple measurement tools. J Strength Cond Res 30(9): 2600-2608, 2016-Body dimensions may influence various types of physical performance. This study was designed to establish the reliability and precision of bilateral lower-body dimensions using surface anatomic landmarks and either sliding calipers or goniometry. Fifty university students (25 men and 25 women) were measured on 2 separate occasions separated by 48 or 72 hours. A small digital caliper was used to acquire longitudinal dimensions of the feet, whereas a larger broad-blade caliper was used to measure lower-limb, hip, and pelvic dimensions. Quadriceps angle (Q-angle) was determined through surface goniometry. Data for all foot and lower-limb dimensions were both reliable and precise (intraclass correlation coefficient (ICC) ≥0.72, SEM 0.1-0.5 cm). Measures of Q-angle were also reliable and precise (ICC ≥0.85, SEM 0.2-0.4°). Findings from this investigation demonstrate that lower-body dimensions may be reliably and precisely measured through simple practical tests, when surface anatomic landmarks and standardized procedures are used. Although intertester reliability remains to be established, meticulous adherence to specific measurement protocols is likely to yield viable output for lower-body dimensions when more sophisticated methods are unavailable or inappropriate.

  16. Integrating a Decision Management Tool with UML Modeling Tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    the development process. In this report, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from a case study: the modeling tool shall show all decisions related to a model and allow its users to extend or update them; the decision management tool shall......Numerous design decisions are made while developing software systems, which influence the architecture of these systems as well as following decisions. A number of decision management tools already exist for capturing, documenting, and maintaining design decisions, but also for guiding developers...... trigger the modeling tool to realize design decisions in the models. We define tool-independent concepts and architecture building blocks supporting these use cases and present how they can be implemented in the IBM Rational Software Modeler and Architectural Decision Knowledge Wiki. This seamless...

  17. Self-consistent Modeling of Elastic Anisotropy in Shale

    Science.gov (United States)

    Kanitpanyacharoen, W.; Wenk, H.; Matthies, S.; Vasin, R.

    2012-12-01

    Elastic anisotropy in clay-rich sedimentary rocks has increasingly received attention because of significance for prospecting of petroleum deposits, as well as seals in the context of nuclear waste and CO2 sequestration. The orientation of component minerals and pores/fractures is a critical factor that influences elastic anisotropy. In this study, we investigate lattice and shape preferred orientation (LPO and SPO) of three shales from the North Sea in UK, the Qusaiba Formation in Saudi Arabia, and the Officer Basin in Australia (referred to as N1, Qu3, and L1905, respectively) to calculate elastic properties and compare them with experimental results. Synchrotron hard X-ray diffraction and microtomography experiments were performed to quantify LPO, weight proportions, and three-dimensional SPO of constituent minerals and pores. Our preliminary results show that the degree of LPO and total amount of clays are highest in Qu3 (3.3-6.5 m.r.d and 74vol%), moderately high in N1 (2.4-5.6 m.r.d. and 70vol%), and lowest in L1905 (2.3-2.5 m.r.d. and 42vol%). In addition, porosity in Qu3 is as low as 2% while it is up to 6% in L1605 and 8% in N1, respectively. Based on this information and single crystal elastic properties of mineral components, we apply a self-consistent averaging method to calculate macroscopic elastic properties and corresponding seismic velocities for different shales. The elastic model is then compared with measured acoustic velocities on the same samples. The P-wave velocities measured from Qu3 (4.1-5.3 km/s, 26.3%Ani.) are faster than those obtained from L1905 (3.9-4.7 km/s, 18.6%Ani.) and N1 (3.6-4.3 km/s, 17.7%Ani.). By making adjustments for pore structure (aspect ratio) and single crystal elastic properties of clay minerals, a good agreement between our calculation and the ultrasonic measurement is obtained.

  18. Self-consistent approach for neutral community models with speciation

    NARCIS (Netherlands)

    Haegeman, Bart; Etienne, Rampal S.

    Hubbell's neutral model provides a rich theoretical framework to study ecological communities. By incorporating both ecological and evolutionary time scales, it allows us to investigate how communities are shaped by speciation processes. The speciation model in the basic neutral model is

  19. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Self-consistent modelling of resonant tunnelling structures

    DEFF Research Database (Denmark)

    Fiig, T.; Jauho, A.P.

    1992-01-01

    We report a comprehensive study of the effects of self-consistency on the I-V-characteristics of resonant tunnelling structures. The calculational method is based on a simultaneous solution of the effective-mass Schrödinger equation and the Poisson equation, and the current is evaluated...

  1. Consistency between 2D-3D Sediment Transport models

    Science.gov (United States)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  2. A Consistent Pricing Model for Index Options and Volatility Derivatives

    DEFF Research Database (Denmark)

    Kokholm, Thomas

    We propose a flexible modeling framework for the joint dynamics of an index and a set of forward variance swap rates written on this index. Our model reproduces various empirically observed properties of variance swap dynamics and enables volatility derivatives and options on the underlying index...... on the underlying asset. The model has the convenient feature of decoupling the vanilla skews from spot/volatility correlations and allowing for different conditional correlations in large and small spot/volatility moves. We show that our model can simultaneously fit prices of European options on S&P 500 across...

  3. Is the island universe model consistent with observations?

    OpenAIRE

    Piao, Yun-Song

    2005-01-01

    We study the island universe model, in which initially the universe is in a cosmological constant sea, then the local quantum fluctuations violating the null energy condition create the islands of matter, some of which might corresponds to our observable universe. We examine the possibility that the island universe model is regarded as an alternative scenario of the origin of observable universe.

  4. Mechanistically Consistent Reduced Models of Synthetic Gene Networks

    Science.gov (United States)

    Mier-y-Terán-Romero, Luis; Silber, Mary; Hatzimanikatis, Vassily

    2013-01-01

    Designing genetic networks with desired functionalities requires an accurate mathematical framework that accounts for the essential mechanistic details of the system. Here, we formulate a time-delay model of protein translation and mRNA degradation by systematically reducing a detailed mechanistic model that explicitly accounts for the ribosomal dynamics and the cleaving of mRNA by endonucleases. We exploit various technical and conceptual advantages that our time-delay model offers over the mechanistic model to probe the behavior of a self-repressing gene over wide regions of parameter space. We show that a heuristic time-delay model of protein synthesis of a commonly used form yields a notably different prediction for the parameter region where sustained oscillations occur. This suggests that such heuristics can lead to erroneous results. The functional forms that arise from our systematic reduction can be used for every system that involves transcription and translation and they could replace the commonly used heuristic time-delay models for these processes. The results from our analysis have important implications for the design of synthetic gene networks and stress that such design must be guided by a combination of heuristic models and mechanistic models that include all relevant details of the process. PMID:23663853

  5. Thermodynamically consistent description of criticality in models of correlated electrons

    Czech Academy of Sciences Publication Activity Database

    Janiš, Václav; Kauch, Anna; Pokorný, Vladislav

    2017-01-01

    Roč. 95, č. 4 (2017), s. 1-14, č. článku 045108. ISSN 2469-9950 R&D Projects: GA ČR GA15-14259S Institutional support: RVO:68378271 Keywords : conserving approximations * Anderson model * Hubbard model * parquet equations Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  6. A thermodynamically consistent model of shape-memory alloys

    Czech Academy of Sciences Publication Activity Database

    Benešová, Barbora

    2011-01-01

    Roč. 11, č. 1 (2011), s. 355-356 ISSN 1617-7061 R&D Projects: GA ČR GAP201/10/0357 Institutional research plan: CEZ:AV0Z20760514 Keywords : slape memory alloys * model based on relaxation * thermomechanic coupling Subject RIV: BA - General Mathematics http://onlinelibrary.wiley.com/doi/10.1002/pamm.201110169/abstract

  7. On self-consistent N=1 supersymmetric composite models

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1984-01-01

    A class of fermion-boson N=1 supersymmetric composite models is considered. The models satisfy the anomaly matching condition, n-independence and the survival hypothesis. A unique admissible set of light states has been found under additional requirements for the two-particle metacolour force saturation, left-right discrete symmetry and observability of spectator states, on a par with the composite ones, the formey being necessary to compensate for axial anomalies. With respect to the unbroken chiral symmetry Gsup((MF))=SU(n)sub(L)xSU(n)sub(R), the light set has in left-chiral notations the form [(n(n-1)/2, 1)+(1, anti n(n-1)/2]+2(anti n, n)+[(n(n+1)/2/, 1)+(1, anti n(n-1)/2] independent of the metacolo group Gsup((MC)). The effective interaction theory for the light set on the mass scales, smaller than that of compositeness, is the N=1 supersymmetric grand unified model Gsup((MF))=SU(n)sub(L)xSU(n)sub(R). Here n=6, 8 are phenomenologically acceptable. On low mass scales, the light set transforms exactly into four families of ordinary leptons and quarks. In accordance with the survival hypothesis, all exotic states are naturally heavy under the spontaneous breaking of Gsup((MF)) to the low-energy standard model symmetry

  8. A seismologically consistent compositional model of Earth's core.

    Science.gov (United States)

    Badro, James; Côté, Alexander S; Brodholt, John P

    2014-05-27

    Earth's core is less dense than iron, and therefore it must contain "light elements," such as S, Si, O, or C. We use ab initio molecular dynamics to calculate the density and bulk sound velocity in liquid metal alloys at the pressure and temperature conditions of Earth's outer core. We compare the velocity and density for any composition in the (Fe-Ni, C, O, Si, S) system to radial seismological models and find a range of compositional models that fit the seismological data. We find no oxygen-free composition that fits the seismological data, and therefore our results indicate that oxygen is always required in the outer core. An oxygen-rich core is a strong indication of high-pressure and high-temperature conditions of core differentiation in a deep magma ocean with an FeO concentration (oxygen fugacity) higher than that of the present-day mantle.

  9. Flood damage: a model for consistent, complete and multipurpose scenarios

    Science.gov (United States)

    Menoni, Scira; Molinari, Daniela; Ballio, Francesco; Minucci, Guido; Mejri, Ouejdane; Atun, Funda; Berni, Nicola; Pandolfo, Claudia

    2016-12-01

    Effective flood risk mitigation requires the impacts of flood events to be much better and more reliably known than is currently the case. Available post-flood damage assessments usually supply only a partial vision of the consequences of the floods as they typically respond to the specific needs of a particular stakeholder. Consequently, they generally focus (i) on particular items at risk, (ii) on a certain time window after the occurrence of the flood, (iii) on a specific scale of analysis or (iv) on the analysis of damage only, without an investigation of damage mechanisms and root causes. This paper responds to the necessity of a more integrated interpretation of flood events as the base to address the variety of needs arising after a disaster. In particular, a model is supplied to develop multipurpose complete event scenarios. The model organizes available information after the event according to five logical axes. This way post-flood damage assessments can be developed that (i) are multisectoral, (ii) consider physical as well as functional and systemic damage, (iii) address the spatial scales that are relevant for the event at stake depending on the type of damage that has to be analyzed, i.e., direct, functional and systemic, (iv) consider the temporal evolution of damage and finally (v) allow damage mechanisms and root causes to be understood. All the above features are key for the multi-usability of resulting flood scenarios. The model allows, on the one hand, the rationalization of efforts currently implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  10. Toward a Self-Consistent Dynamical Model of the NSSL

    Science.gov (United States)

    Matilsky, Loren

    2018-01-01

    The advent of helioseismology has revealed in detail the internal differential rotation profile of the Sun. In particular, the presence of two boundary layers, the tachocline at the bottom of the convection zone (CZ) and the Near Surface Shear Layer (NSSL) at the top of the CZ, has remained a mystery. These two boundary layers may have significant consequences for the internal dynamo that operates the Sun's magnetic field, and so understanding their dynamics is an important step in solar physics and in the theory of solar-like stellar structure in general. In this talk, we analyze three numerical models of hydrodynamic convection in rotating spherical shells with varying degrees of stratification in order to understand the dynamical balance of the solar near-surface shear layer (NSSL). We find that with sufficient stratification, a boundary layer with some characteristics of the NSSL develops at high latitudes, and it is maintained purely an inertial balance of torques in which the viscosity is negligible. An inward radial flux of angular momentum from the Reynold's stress (as has been predicted by theory) is balanced by the poleward latitudinal flux of angular momentum due to the meridional circulation. We analyze the similarities of the near surface shear in our models to that of the Sun, and find that the solar NSSL is most likely maintained by the inertial balance our simulations display at high latitudes, but with a modified upper boundary condition.

  11. Consistency problems for Heath-Jarrow-Morton interest rate models

    CERN Document Server

    Filipović, Damir

    2001-01-01

    The book is written for a reader with knowledge in mathematical finance (in particular interest rate theory) and elementary stochastic analysis, such as provided by Revuz and Yor (Continuous Martingales and Brownian Motion, Springer 1991). It gives a short introduction both to interest rate theory and to stochastic equations in infinite dimension. The main topic is the Heath-Jarrow-Morton (HJM) methodology for the modelling of interest rates. Experts in SDE in infinite dimension with interest in applications will find here the rigorous derivation of the popular "Musiela equation" (referred to in the book as HJMM equation). The convenient interpretation of the classical HJM set-up (with all the no-arbitrage considerations) within the semigroup framework of Da Prato and Zabczyk (Stochastic Equations in Infinite Dimensions) is provided. One of the principal objectives of the author is the characterization of finite-dimensional invariant manifolds, an issue that turns out to be vital for applications. Finally, ge...

  12. On the internal consistency of holographic dark energy models

    International Nuclear Information System (INIS)

    Horvat, R

    2008-01-01

    Holographic dark energy (HDE) models, underpinned by an effective quantum field theory (QFT) with a manifest UV/IR connection, have become convincing candidates for providing an explanation of the dark energy in the universe. On the other hand, the maximum number of quantum states that a conventional QFT for a box of size L is capable of describing relates to those boxes which are on the brink of experiencing a sudden collapse to a black hole. Another restriction on the underlying QFT is that the UV cut-off, which cannot be chosen independently of the IR cut-off and therefore becomes a function of time in a cosmological setting, should stay the largest energy scale even in the standard cosmological epochs preceding a dark energy dominated one. We show that, irrespective of whether one deals with the saturated form of HDE or takes a certain degree of non-saturation in the past, the above restrictions cannot be met in a radiation dominated universe, an epoch in the history of the universe which is expected to be perfectly describable within conventional QFT

  13. Alien wavelength modeling tool and field trial

    DEFF Research Database (Denmark)

    Sambo, N.; Sgambelluri, A.; Secondini, M.

    2015-01-01

    A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...

  14. Study of mango endogenous pectinases as a tool to engineer mango purée consistency.

    Science.gov (United States)

    Jamsazzadeh Kermani, Zahra; Shpigelman, Avi; Houben, Ken; ten Geuzendam, Belinda; Van Loey, Ann M; Hendrickx, Marc E

    2015-04-01

    The objective of this work was to evaluate the possibility of using mango endogenous pectinases to change the viscosity of mango purée. Hereto, the structure of pectic polysaccharide and the presence of sufficiently active endogenous enzymes of ripe mango were determined. Pectin of mango flesh had a high molecular weight and was highly methoxylated. Pectin methylesterase showed a negligible activity which is related to the confirmed presence of a pectin methylesterase inhibitor. Pectin contained relatively high amounts of galactose and considerable β-galactosidase (β-Gal) activity was observed. The possibility of stimulating β-Gal activity during processing (temperature/pressure, time) was investigated. β-Gal of mango was rather temperature labile but pressure stable relatively to the temperature and pressure levels used to inactivate destructive enzymes in industry. Creating processing conditions allowing endogenous β-Gal activity did not substantially change the consistency of mango purée. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Consistency in Estimation and Model Selection of Dynamic Panel Data Models with Fixed Effects

    Directory of Open Access Journals (Sweden)

    Guangjie Li

    2015-07-01

    Full Text Available We examine the relationship between consistent parameter estimation and model selection for autoregressive panel data models with fixed effects. We find that the transformation of fixed effects proposed by Lancaster (2002 does not necessarily lead to consistent estimation of common parameters when some true exogenous regressors are excluded. We propose a data dependent way to specify the prior of the autoregressive coefficient and argue for comparing different model specifications before parameter estimation. Model selection properties of Bayes factors and Bayesian information criterion (BIC are investigated. When model uncertainty is substantial, we recommend the use of Bayesian Model Averaging to obtain point estimators with lower root mean squared errors (RMSE. We also study the implications of different levels of inclusion probabilities by simulations.

  16. Requirements for clinical information modelling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Jódar-Sánchez, Francisco; Kalra, Dipak

    2015-07-01

    This study proposes consensus requirements for clinical information modelling tools that can support modelling tasks in medium/large scale institutions. Rather than identify which functionalities are currently available in existing tools, the study has focused on functionalities that should be covered in order to provide guidance about how to evolve the existing tools. After identifying a set of 56 requirements for clinical information modelling tools based on a literature review and interviews with experts, a classical Delphi study methodology was applied to conduct a two round survey in order to classify them as essential or recommended. Essential requirements are those that must be met by any tool that claims to be suitable for clinical information modelling, and if we one day have a certified tools list, any tool that does not meet essential criteria would be excluded. Recommended requirements are those more advanced requirements that may be met by tools offering a superior product or only needed in certain modelling situations. According to the answers provided by 57 experts from 14 different countries, we found a high level of agreement to enable the study to identify 20 essential and 21 recommended requirements for these tools. It is expected that this list of identified requirements will guide developers on the inclusion of new basic and advanced functionalities that have strong support by end users. This list could also guide regulators in order to identify requirements that could be demanded of tools adopted within their institutions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Consistent model reduction of polymer chains in solution in dissipative particle dynamics: Model description

    KAUST Repository

    Moreno Chaparro, Nicolas

    2015-06-30

    We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥200≥200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥20≥20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.

  18. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  19. A new k-epsilon model consistent with Monin-Obukhov similarity theory

    DEFF Research Database (Denmark)

    van der Laan, Paul; Kelly, Mark C.; Sørensen, Niels N.

    2017-01-01

    A new k-" model is introduced that is consistent with Monin–Obukhov similarity theory (MOST). The proposed k-" model is compared with another k-" model that was developed in an attempt to maintain inlet profiles compatible with MOST. It is shown that the previous k-" model is not consistent with ...

  20. Modeling Plankton Mixotrophy: A Mechanistic Model Consistent with the Shuter-Type Biochemical Approach

    Directory of Open Access Journals (Sweden)

    Caroline Ghyoot

    2017-07-01

    Full Text Available Mixotrophy, i.e., the ability to combine phototrophy and phagotrophy in one organism, is now recognized to be widespread among photic-zone protists and to potentially modify the structure and functioning of planktonic ecosystems. However, few biogeochemical/ecological models explicitly include this mode of nutrition, owing to the large diversity of observed mixotrophic types, the few data allowing the parameterization of physiological processes, and the need to make the addition of mixotrophy into existing ecosystem models as simple as possible. We here propose and discuss a flexible model that depicts the main observed behaviors of mixotrophy in microplankton. A first model version describes constitutive mixotrophy (the organism photosynthesizes by use of its own chloroplasts. This model version offers two possible configurations, allowing the description of constitutive mixotrophs (CMs that favor either phototrophy or heterotrophy. A second version describes non-constitutive mixotrophy (the organism performs phototrophy by use of chloroplasts acquired from its prey. The model variants were described so as to be consistent with a plankton conceptualization in which the biomass is divided into separate components on the basis of their biochemical function (Shuter-approach; Shuter, 1979. The two model variants of mixotrophy can easily be implemented in ecological models that adopt the Shuter-approach, such as the MIRO model (Lancelot et al., 2005, and address the challenges associated with modeling mixotrophy.

  1. ANSYS tools in modeling tires

    Science.gov (United States)

    Ali, Ashraf; Lovell, Michael

    1995-01-01

    This presentation summarizes the capabilities in the ANSYS program that relate to the computational modeling of tires. The power and the difficulties associated with modeling nearly incompressible rubber-like materials using hyperelastic constitutive relationships are highlighted from a developer's point of view. The topics covered include a hyperelastic material constitutive model for rubber-like materials, a general overview of contact-friction capabilities, and the acoustic fluid-structure interaction problem for noise prediction. Brief theoretical development and example problems are presented for each topic.

  2. Reconstruction of Consistent 3d CAD Models from Point Cloud Data Using a Priori CAD Models

    Science.gov (United States)

    Bey, A.; Chaine, R.; Marc, R.; Thibault, G.; Akkouche, S.

    2011-09-01

    We address the reconstruction of 3D CAD models from point cloud data acquired in industrial environments, using a pre-existing 3D model as an initial estimate of the scene to be processed. Indeed, this prior knowledge can be used to drive the reconstruction so as to generate an accurate 3D model matching the point cloud. We more particularly focus our work on the cylindrical parts of the 3D models. We propose to state the problem in a probabilistic framework: we have to search for the 3D model which maximizes some probability taking several constraints into account, such as the relevancy with respect to the point cloud and the a priori 3D model, and the consistency of the reconstructed model. The resulting optimization problem can then be handled using a stochastic exploration of the solution space, based on the random insertion of elements in the configuration under construction, coupled with a greedy management of the conflicts which efficiently improves the configuration at each step. We show that this approach provides reliable reconstructed 3D models by presenting some results on industrial data sets.

  3. The european Trans-Tools transport model

    NARCIS (Netherlands)

    Rooijen, T. van; Burgess, A.

    2008-01-01

    The paper presents the use of ArcGIS in the Transtools Transport Model, TRANS-TOOLS, created by an international consortium for the European Commission. The model describe passenger as well as freight transport in Europe with all medium and long distance modes (cars, vans, trucks, train, inland

  4. System level modelling with open source tools

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Koefoed; Madsen, Jan; Niaki, Seyed Hosein Attarzadeh

    , called ForSyDe. ForSyDe is available under the open Source approach, which allows small and medium enterprises (SME) to get easy access to advanced modeling capabilities and tools. We give an introduction to the design methodology through the system level modeling of a simple industrial use case, and we...

  5. Magy: Time dependent, multifrequency, self-consistent code for modeling electron beam devices

    International Nuclear Information System (INIS)

    Botton, M.; Antonsen, T.M.; Levush, B.

    1997-01-01

    A new MAGY code is being developed for three dimensional modeling of electron beam devices. The code includes a time dependent multifrequency description of the electromagnetic fields and a self consistent analysis of the electrons. The equations of motion are solved with the electromagnetic fields as driving forces and the resulting trajectories are used as current sources for the fields. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of relatively small number of coupled one dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell close-quote s equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. In MAGY, the coupling among the various modes is determined by the waveguide non-uniformity, finite conductivity of the walls, and the sources due to the electron beam. The equations of motion of the electrons are solved assuming that all the electrons traverse the cavity in less than the cavity fill time. Therefore, at each time step, a set of trajectories are calculated with the high frequency and other external fields as the driving forces. The code includes a verity of diagnostics for both electromagnetic fields and particles trajectories. It is simple to operate and requires modest computing resources, thus expected to serve as a design tool. copyright 1997 American Institute of Physics

  6. Self-consistent imbedding and the ellipsoidal model model for porous rocks

    International Nuclear Information System (INIS)

    Korringa, J.; Brown, R.J.S.; Thompson, D.D.; Runge, R.J.

    1979-01-01

    Equations are obtained for the effective elastic moduli for a model of an isotropic, heterogeneous, porous medium. The mathematical model used for computation is abstract in that it is not simply a rigorous computation for a composite medium of some idealized geometry, although the computation contains individual steps which are just that. Both the solid part and pore space are represented by ellipsoidal or spherical 'grains' or 'pores' of various sizes and shapes. The strain of each grain, caused by external forces applied to the medium, is calculated in a self-consistent imbedding (SCI) approximation, which replaces the true surrounding of any given grain or pore by an isotropic medium defined by the effective moduli to be computed. The ellipsoidal nature of the shapes allows us to use Eshelby's theoretical treatment of a single ellipsoidal inclusion in an infiinte homogeneous medium. Results are compared with the literature, and discrepancies are found with all published accounts of this problem. Deviations from the work of Wu, of Walsh, and of O'Connell and Budiansky are attributed to a substitution made by these authors which though an identity for the exact quantities involved, is only approximate in the SCI calculation. This reduces the validity of the equations to first-order effects only. Differences with the results of Kuster and Toksoez are attributed to the fact that the computation of these authors is not self-consistent in the sense used here. A result seems to be the stiffening of the medium as if the pores are held apart. For spherical grains and pores, their calculated moduli are those given by the Hashin-Shtrikman upper bounds. Our calculation reproduces, in the case of spheres, an early result of Budiansky. An additional feature of our work is that the algebra is simpler than in earlier work. We also incorporate into the theory the possibility that fluid-filled pores are interconnected

  7. A CVAR scenario for a standard monetary model using theory-consistent expectations

    DEFF Research Database (Denmark)

    Juselius, Katarina

    2017-01-01

    A theory-consistent CVAR scenario describes a set of testable regularities capturing basic assumptions of the theoretical model. Using this concept, the paper considers a standard model for exchange rate determination and shows that all assumptions about the model's shock structure and steady...

  8. Development of a Kohn-Sham like potential in the Self-Consistent Atomic Deformation Model

    OpenAIRE

    Mehl, M. J.; Boyer, L. L.; Stokes, H. T.

    1996-01-01

    This is a brief description of how to derive the local ``atomic'' potentials from the Self-Consistent Atomic Deformation (SCAD) model density function. Particular attention is paid to the spherically averaged case.

  9. Consistency, Verification, and Validation of Turbulence Models for Reynolds-Averaged Navier-Stokes Applications

    Science.gov (United States)

    Rumsey, Christopher L.

    2009-01-01

    In current practice, it is often difficult to draw firm conclusions about turbulence model accuracy when performing multi-code CFD studies ostensibly using the same model because of inconsistencies in model formulation or implementation in different codes. This paper describes an effort to improve the consistency, verification, and validation of turbulence models within the aerospace community through a website database of verification and validation cases. Some of the variants of two widely-used turbulence models are described, and two independent computer codes (one structured and one unstructured) are used in conjunction with two specific versions of these models to demonstrate consistency with grid refinement for several representative problems. Naming conventions, implementation consistency, and thorough grid resolution studies are key factors necessary for success.

  10. Assessment of adverse events in medical care: lack of consistency between experienced teams using the global trigger tool.

    Science.gov (United States)

    Schildmeijer, Kristina; Nilsson, Lena; Arestedt, Kristofer; Perk, Joep

    2012-04-01

    Many patients are harmed as the result of healthcare. A retrospective structured record review is one way to identify adverse events (AEs). One such review approach is the global trigger tool (GTT), a consistent and well-developed method used to detect AEs. The GTT was originally intended to be used for measuring data over time within a single organisation. However, as the method spreads, it is likely that comparisons of GTT safety outcomes between hospitals will occur. To evaluate agreement in judgement of AEs between well-trained GTT teams from different hospitals. Five teams from five hospitals of different sizes in the southeast of Sweden conducted a retrospective review of patient records from a random sample of 50 admissions between October 2009 and May 2010. Inter-rater reliability between teams was assessed using descriptive and κ statistics. The five teams identified 42 different AEs altogether. The number of identified AEs differed between the teams, corresponding to a level of AEs ranging from 27.2 to 99.7 per 1000 hospital days. Pair-wise agreement for detection of AEs ranged from 88% to 96%, with weighted κ values between 0.26 and 0.77. Of the AEs, 29 (69%) were identified by only one team and not by the other four groups. Most AEs resulted in minor and transient harm, the most common being healthcare-associated infections. The level of agreement regarding the potential for prevention showed a large variation between the teams. The results do not encourage the use of the GTT for making comparisons between hospitals. The use of the GTT to this end would require substantial training to achieve better agreement across reviewer teams.

  11. Self-consistent assessment of Englert-Schwinger model on atomic properties.

    Science.gov (United States)

    Lehtomäki, Jouko; Lopez-Acevedo, Olga

    2017-12-21

    Our manuscript investigates a self-consistent solution of the statistical atom model proposed by Berthold-Georg Englert and Julian Schwinger (the ES model) and benchmarks it against atomic Kohn-Sham and two orbital-free models of the Thomas-Fermi-Dirac (TFD)-λvW family. Results show that the ES model generally offers the same accuracy as the well-known TFD-15vW model; however, the ES model corrects the failure in the Pauli potential near-nucleus region. We also point to the inability of describing low-Z atoms as the foremost concern in improving the present model.

  12. QUALITY SERVICES EVALUATION MODEL BASED ON DEDICATED SOFTWARE TOOL

    Directory of Open Access Journals (Sweden)

    ANDREEA CRISTINA IONICĂ

    2012-10-01

    Full Text Available In this paper we introduced a new model, called Service Quality (SQ, which combines QFD and SERVQUAL methods. This model takes from the SERVQUAL method the five dimensions of requirements and three of characteristics and from the QFD method the application methodology. The originality of the SQ model consists in computing a global index that reflects the customers’ requirements accomplishment level by the quality characteristics. In order to prove the viability of the SQ model, there was developed a software tool that was applied for the evaluation of a health care services provider.

  13. Development Life Cycle and Tools for XML Content Models

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Morris, Katherine [National Institute of Standards and Technology (NIST); Buhwan, Jeong [POSTECH University, South Korea; Goyal, Puja [National Institute of Standards and Technology (NIST)

    2004-11-01

    Many integration projects today rely on shared semantic models based on standards represented using Extensible Mark up Language (XML) technologies. Shared semantic models typically evolve and require maintenance. In addition, to promote interoperability and reduce integration costs, the shared semantics should be reused as much as possible. Semantic components must be consistent and valid in terms of agreed upon standards and guidelines. In this paper, we describe an activity model for creation, use, and maintenance of a shared semantic model that is coherent and supports efficient enterprise integration. We then use this activity model to frame our research and the development of tools to support those activities. We provide overviews of these tools primarily in the context of the W3C XML Schema. At the present, we focus our work on the W3C XML Schema as the representation of choice, due to its extensive adoption by industry.

  14. Web tools for predictive toxicology model building.

    Science.gov (United States)

    Jeliazkova, Nina

    2012-07-01

    The development and use of web tools in chemistry has accumulated more than 15 years of history already. Powered by the advances in the Internet technologies, the current generation of web systems are starting to expand into areas, traditional for desktop applications. The web platforms integrate data storage, cheminformatics and data analysis tools. The ease of use and the collaborative potential of the web is compelling, despite the challenges. The topic of this review is a set of recently published web tools that facilitate predictive toxicology model building. The focus is on software platforms, offering web access to chemical structure-based methods, although some of the frameworks could also provide bioinformatics or hybrid data analysis functionalities. A number of historical and current developments are cited. In order to provide comparable assessment, the following characteristics are considered: support for workflows, descriptor calculations, visualization, modeling algorithms, data management and data sharing capabilities, availability of GUI or programmatic access and implementation details. The success of the Web is largely due to its highly decentralized, yet sufficiently interoperable model for information access. The expected future convergence between cheminformatics and bioinformatics databases provides new challenges toward management and analysis of large data sets. The web tools in predictive toxicology will likely continue to evolve toward the right mix of flexibility, performance, scalability, interoperability, sets of unique features offered, friendly user interfaces, programmatic access for advanced users, platform independence, results reproducibility, curation and crowdsourcing utilities, collaborative sharing and secure access.

  15. Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB

    Science.gov (United States)

    Yu, Yiqun; Jordanova, Vania; Zaharia, Sorin; Koller, Josef; Zhang, Jichun; Kistler, Lynn M.

    2012-03-01

    The validation of the magnetically self-consistent inner magnetospheric model RAM-SCB developed at Los Alamos National Laboratory is presented here. The model consists of two codes: a kinetic ring current-atmosphere interaction model (RAM) and a 3-D equilibrium magnetic field code (SCB). The validation is conducted by simulating two magnetic storm events and then comparing the model results against a variety of satellite in situ observations, including the magnetic field from Cluster and Polar spacecraft, ion differential flux from the Cluster/CODIF (Composition and Distribution Function) analyzer, and the ground-based SYM-H index. The model prediction of the magnetic field is in good agreement with observations, which indicates the model's capability of representing well the inner magnetospheric field configuration. This provides confidence for the RAM-SCB model to be utilized for field line and drift shell tracing, which are needed in radiation belt studies. While the SYM-H index, which reflects the total ring current energy content, is generally reasonably reproduced by the model using the Weimer electric field model, the modeled ion differential flux clearly depends on the electric field strength, local time, and magnetic activity level. A self-consistent electric field approach may be needed to improve the model performance in this regard.

  16. Self-consistent treatment of quark-quark interaction in MIT bag model

    CERN Document Server

    Simonis, V

    1997-01-01

    Some features of the MlT bag model are discussed with particular emphasis on static, spherical cavity approximation to the model. A self-consistent procedure for obtaining wave functions and calculating gluon exchange effects is proposed. The equations derived are similar to state-dependent relativistic Hartree-Fock equations. (author)

  17. Estimating long-term volatility parameters for market-consistent models

    African Journals Online (AJOL)

    Contemporary actuarial and accounting practices (APN 110 in the South African context) require the use of market-consistent models for the valuation of embedded investment derivatives. These models have to be calibrated with accurate and up-to-date market data. Arguably, the most important variable in the valuation of ...

  18. A parameter study of self-consistent disk models around Herbig AeBe stars

    NARCIS (Netherlands)

    Meijer, J.; Dominik, C.; de Koter, A.; Dullemond, C.P.; van Boekel, R.; Waters, L.B.F.M.

    2008-01-01

    We present a parameter study of self-consistent models of protoplanetary disks around Herbig AeBe stars. We use the code developed by Dullemond and Dominik, which solves the 2D radiative transfer problem including an iteration for the vertical hydrostatic structure of the disk. This grid of models

  19. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    NARCIS (Netherlands)

    Pera, H.; Kleijn, J.M.; Leermakers, F.A.M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and

  20. Self-consistent field modeling of adsorption from polymer/surfactant mixtures

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the

  1. Graphical tools for model selection in generalized linear models.

    Science.gov (United States)

    Murray, K; Heritier, S; Müller, S

    2013-11-10

    Model selection techniques have existed for many years; however, to date, simple, clear and effective methods of visualising the model building process are sparse. This article describes graphical methods that assist in the selection of models and comparison of many different selection criteria. Specifically, we describe for logistic regression, how to visualize measures of description loss and of model complexity to facilitate the model selection dilemma. We advocate the use of the bootstrap to assess the stability of selected models and to enhance our graphical tools. We demonstrate which variables are important using variable inclusion plots and show that these can be invaluable plots for the model building process. We show with two case studies how these proposed tools are useful to learn more about important variables in the data and how these tools can assist the understanding of the model building process. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Animal models: an important tool in mycology.

    Science.gov (United States)

    Capilla, Javier; Clemons, Karl V; Stevens, David A

    2007-12-01

    Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.

  3. Assessment of the validity and internal consistency of a performance evaluation tool based on the Japanese version of the modified barthel index for elderly people living at home.

    Science.gov (United States)

    Ohura, Tomoko; Higashi, Takahiro; Ishizaki, Tatsuro; Nakayama, Takeo

    2014-12-01

    [Purpose] This study aimed to examine the validity and internal consistency of the Japanese version of a performance evaluation tool for activities of daily living (ADL) based on the modified Barthel Index (PET-MBI) among elderly people at home. [Subjects] The subjects were elderly people living at home in Japan. [Methods] A cross-sectional study was performed at five home care facilities for elderly people in Japan. ADL performance was evaluated for 128 participants using the PET-MBI, which included 10 self-care items. We used confirmatory factor analysis to estimate the factorial validity. We assessed data model fitness with the χ(2) statistic, the Goodness of Fit Index (GFI), Adjusted Goodness of Fit Index (AGFI), and Root Mean Square Error of Approximation (RMSEA). Cronbach's alpha coefficient was used to determine the internal consistency. [Results] The mean age of the participants was 79.1±8.9 years. Among the 126 participants included in the analysis, 67 were women (53.2%). The single-factor model demonstrated a fair fit to the data, with the χ(2) statistic = 74.9 (df =35), GFI = 0.88, AGFI = 0.81, and RMSEA = 0.096, and the path coefficients of each item ranged from 0.44 to 0.95. The alpha coefficient of the 10-item scale was 0.93. [Conclusion] The PET-MBI for elderly people at home was well validated.

  4. A tool box for implementing supersymmetric models

    Science.gov (United States)

    Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian

    2012-10-01

    We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The

  5. A non-parametric consistency test of the ΛCDM model with Planck CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir; Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2017-09-01

    Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation of the base ΛCDM model as cosmology's gold standard.

  6. Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion

    Directory of Open Access Journals (Sweden)

    Muhammad Imran

    2017-11-01

    Full Text Available Dynamic recrystallization (DRX processes are widely used in industrial hot working operations, not only to keep the forming forces low but also to control the microstructure and final properties of the workpiece. According to the second derivative criterion (SDC by Poliak and Jonas, the onset of DRX can be detected from an inflection point in the strain-hardening rate as a function of flow stress. Various models are available that can predict the evolution of flow stress from incipient plastic flow up to steady-state deformation in the presence of DRX. Some of these models have been implemented into finite element codes and are widely used for the design of metal forming processes, but their consistency with the SDC has not been investigated. This work identifies three sources of inconsistencies that models for DRX may exhibit. For a consistent modeling of the DRX kinetics, a new strain-hardening model for the hardening stages III to IV is proposed and combined with consistent recrystallization kinetics. The model is devised in the Kocks-Mecking space based on characteristic transition in the strain-hardening rate. A linear variation of the transition and inflection points is observed for alloy 800H at all tested temperatures and strain rates. The comparison of experimental and model results shows that the model is able to follow the course of the strain-hardening rate very precisely, such that highly accurate flow stress predictions are obtained.

  7. Development of a Model for Dynamic Recrystallization Consistent with the Second Derivative Criterion.

    Science.gov (United States)

    Imran, Muhammad; Kühbach, Markus; Roters, Franz; Bambach, Markus

    2017-11-02

    Dynamic recrystallization (DRX) processes are widely used in industrial hot working operations, not only to keep the forming forces low but also to control the microstructure and final properties of the workpiece. According to the second derivative criterion (SDC) by Poliak and Jonas, the onset of DRX can be detected from an inflection point in the strain-hardening rate as a function of flow stress. Various models are available that can predict the evolution of flow stress from incipient plastic flow up to steady-state deformation in the presence of DRX. Some of these models have been implemented into finite element codes and are widely used for the design of metal forming processes, but their consistency with the SDC has not been investigated. This work identifies three sources of inconsistencies that models for DRX may exhibit. For a consistent modeling of the DRX kinetics, a new strain-hardening model for the hardening stages III to IV is proposed and combined with consistent recrystallization kinetics. The model is devised in the Kocks-Mecking space based on characteristic transition in the strain-hardening rate. A linear variation of the transition and inflection points is observed for alloy 800H at all tested temperatures and strain rates. The comparison of experimental and model results shows that the model is able to follow the course of the strain-hardening rate very precisely, such that highly accurate flow stress predictions are obtained.

  8. Collaborative CAD Synchronization Based on a Symmetric and Consistent Modeling Procedure

    Directory of Open Access Journals (Sweden)

    Yiqi Wu

    2017-04-01

    Full Text Available One basic issue with collaborative computer aided design (Co-CAD is how to maintain valid and consistent modeling results across all design sites. Moreover, modeling history is important in parametric CAD modeling. Therefore, different from a typical co-editing approach, this paper proposes a novel method for Co-CAD synchronization, in which all Co-CAD sites maintain symmetric and consistent operating procedures. Consequently, the consistency of both modeling results and history can be achieved. In order to generate a valid, unique, and symmetric queue among collaborative sites, a set of correlated mechanisms is presented in this paper. Firstly, the causal relationship of operations is maintained. Secondly, the operation queue is reconstructed for partial concurrency operation, and the concurrent operation can be retrieved. Thirdly, a symmetric, concurrent operation control strategy is proposed to determine the order of operations and resolve possible conflicts. Compared with existing Co-CAD consistency methods, the proposed method is convenient and flexible in supporting collaborative design. The experiment performed based on the collaborative modeling procedure demonstrates the correctness and applicability of this work.

  9. Towards an Information Model of Consistency Maintenance in Distributed Interactive Applications

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2008-01-01

    Full Text Available A novel framework to model and explore predictive contract mechanisms in distributed interactive applications (DIAs using information theory is proposed. In our model, the entity state update scheme is modelled as an information generation, encoding, and reconstruction process. Such a perspective facilitates a quantitative measurement of state fidelity loss as a result of the distribution protocol. Results from an experimental study on a first-person shooter game are used to illustrate the utility of this measurement process. We contend that our proposed model is a starting point to reframe and analyse consistency maintenance in DIAs as a problem in distributed interactive media compression.

  10. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  11. A self-consistent kinetic modeling of a 1-D, bounded, plasma in ...

    Indian Academy of Sciences (India)

    Abstract. A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle ... This paper reports on the findings of a kinetic code that retains col- lisions and sources, models ..... was used in the runs reported in this paper, the source of particles is modified from the explicit source Л(Ъ).

  12. A new self-consistent model for thermodynamics of binary solutions

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Shan, Y. V.; Fischer, F. D.

    2015-01-01

    Roč. 108, NOV (2015), s. 27-30 ISSN 1359-6462 R&D Projects: GA ČR(CZ) GA14-24252S Institutional support: RVO:68081723 Keywords : Thermodynamics * Analytical methods * CALPHAD * Phase diagram * Self-consistent model Subject RIV: BJ - Thermodynamics Impact factor: 3.305, year: 2015

  13. Topologically Consistent Models for Efficient Big Geo-Spatio Data Distribution

    Science.gov (United States)

    Jahn, M. W.; Bradley, P. E.; Doori, M. Al; Breunig, M.

    2017-10-01

    Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial + temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented. In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

  14. Spectropolarimetric forward modelling of the lines of the Lyman-series using a self-consistent, global, solar coronal model

    Science.gov (United States)

    Khan, A.; Belluzzi, L.; Landi Degl'Innocenti, E.; Fineschi, S.; Romoli, M.

    2011-05-01

    Context. The presence and importance of the coronal magnetic field is illustrated by a wide range of phenomena, such as the abnormally high temperatures of the coronal plasma, the existence of a slow and fast solar wind, the triggering of explosive events such as flares and CMEs. Aims: We investigate the possibility of using the Hanle effect to diagnose the coronal magnetic field by analysing its influence on the linear polarisation, i.e. the rotation of the plane of polarisation and depolarisation. Methods: We analyse the polarisation characteristics of the first three lines of the hydrogen Lyman-series using an axisymmetric, self-consistent, minimum-corona MHD model with relatively low values of the magnetic field (a few Gauss). Results: We find that the Hanle effect in the above-mentioned lines indeed seems to be a valuable tool for analysing the coronal magnetic field. However, great care must be taken when analysing the spectropolarimetry of the Lα line, given that a non-radial solar wind and active regions on the solar disk can mimic the effects of the magnetic field, and, in some cases, even mask them. Similar drawbacks are not found for the Lβ and Lγ lines because they are more sensitive to the magnetic field. We also briefly consider the instrumental requirements needed to perform polarimetric observations for diagnosing the coronal magnetic fields. Conclusions: The combined analysis of the three aforementioned lines could provide an important step towards better constrainting the value of solar coronal magnetic fields.

  15. Numerical simulation of a thermodynamically consistent four-species tumor growth model.

    Science.gov (United States)

    Hawkins-Daarud, Andrea; van der Zee, Kristoffer G; Oden, J Tinsley

    2012-01-01

    In this paper, we develop a thermodynamically consistent four-species model of tumor growth on the basis of the continuum theory of mixtures. Unique to this model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models. A mixed finite element spatial discretization is developed and implemented to provide numerical results demonstrating the range of solutions this model can produce. A time-stepping algorithm is then presented for this system, which is shown to be first order accurate and energy gradient stable. The results of an array of numerical experiments are presented, which demonstrate a wide range of solutions produced by various choices of model parameters.

  16. Self-consistency in the phonon space of the particle-phonon coupling model

    Science.gov (United States)

    Tselyaev, V.; Lyutorovich, N.; Speth, J.; Reinhard, P.-G.

    2018-04-01

    In the paper the nonlinear generalization of the time blocking approximation (TBA) is presented. The TBA is one of the versions of the extended random-phase approximation (RPA) developed within the Green-function method and the particle-phonon coupling model. In the generalized version of the TBA the self-consistency principle is extended onto the phonon space of the model. The numerical examples show that this nonlinear version of the TBA leads to the convergence of results with respect to enlarging the phonon space of the model.

  17. ICFD modeling of final settlers - developing consistent and effective simulation model structures

    DEFF Research Database (Denmark)

    Plósz, Benedek G.; Guyonvarch, Estelle; Ramin, Elham

    Summary of key findings The concept of interpreted computational fluid dynamic (iCFD) modelling and the development methodology are presented (Fig. 1). The 1-D advection-dispersion model along with the statistically generated, meta-model for pseudo-dispersion constitutes the newly developed i...... nine different model structures based on literature (1; 3; 2; 10; 9) and on more recent considerations (Fig. 2a). Validation tests were done using the CFD outputs from extreme scenarios. The most effective model structure (relatively low the sum of square of relative errors, SSRE, and computational...... time) obtained is that in which the XTC is set at the concentration of the layer just below the feed-layer. The feed-layer location is set to the highest location where X>Xin (solids concentration in SST influent). An effective discretization level (computational time/numerical error) is assessed...

  18. WMT: The CSDMS Web Modeling Tool

    Science.gov (United States)

    Piper, M.; Hutton, E. W. H.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Community Surface Dynamics Modeling System (CSDMS) has a mission to enable model use and development for research in earth surface processes. CSDMS strives to expand the use of quantitative modeling techniques, promotes best practices in coding, and advocates for the use of open-source software. To streamline and standardize access to models, CSDMS has developed the Web Modeling Tool (WMT), a RESTful web application with a client-side graphical interface and a server-side database and API that allows users to build coupled surface dynamics models in a web browser on a personal computer or a mobile device, and run them in a high-performance computing (HPC) environment. With WMT, users can: Design a model from a set of components Edit component parameters Save models to a web-accessible server Share saved models with the community Submit runs to an HPC system Download simulation results The WMT client is an Ajax application written in Java with GWT, which allows developers to employ object-oriented design principles and development tools such as Ant, Eclipse and JUnit. For deployment on the web, the GWT compiler translates Java code to optimized and obfuscated JavaScript. The WMT client is supported on Firefox, Chrome, Safari, and Internet Explorer. The WMT server, written in Python and SQLite, is a layered system, with each layer exposing a web service API: wmt-db: database of component, model, and simulation metadata and output wmt-api: configure and connect components wmt-exe: launch simulations on remote execution servers The database server provides, as JSON-encoded messages, the metadata for users to couple model components, including descriptions of component exchange items, uses and provides ports, and input parameters. Execution servers are network-accessible computational resources, ranging from HPC systems to desktop computers, containing the CSDMS software stack for running a simulation. Once a simulation completes, its output, in NetCDF, is packaged

  19. Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources

    Science.gov (United States)

    Dai, Fa Foster

    Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the

  20. The Science Consistency Review A Tool To Evaluate the Use of Scientific Information in Land Management Decisionmaking

    Science.gov (United States)

    James M. Guldin; David Cawrse; Russell Graham; Miles Hemstrom; Linda Joyce; Steve Kessler; Ranotta McNair; George Peterson; Charles G. Shaw; Peter Stine; Mark Twery; Jeffrey Walter

    2003-01-01

    The paper outlines a process called the science consistency review, which can be used to evaluate the use of scientific information in land management decisions. Developed with specific reference to land management decisions in the U.S. Department of Agriculture Forest Service, the process involves assembling a team of reviewers under a review administrator to...

  1. Comparison of BrainTool to other UML modeling and model transformation tools

    Science.gov (United States)

    Nikiforova, Oksana; Gusarovs, Konstantins

    2017-07-01

    In the last 30 years there were numerous model generated software systems offered targeting problems with the development productivity and the resulting software quality. CASE tools developed due today's date are being advertised as having "complete code-generation capabilities". Nowadays the Object Management Group (OMG) is calling similar arguments in regards to the Unified Modeling Language (UML) models at different levels of abstraction. It is being said that software development automation using CASE tools enables significant level of automation. Actual today's CASE tools are usually offering a combination of several features starting with a model editor and a model repository for a traditional ones and ending with code generator (that could be using a scripting or domain-specific (DSL) language), transformation tool to produce the new artifacts from the manually created and transformation definition editor to define new transformations for the most advanced ones. Present paper contains the results of CASE tool (mainly UML editors) comparison against the level of the automation they are offering.

  2. Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.

    2017-01-01

    This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

  3. Consistent biases in Antarctic sea ice concentration simulated by climate models

    Science.gov (United States)

    Roach, Lettie A.; Dean, Samuel M.; Renwick, James A.

    2018-01-01

    The simulation of Antarctic sea ice in global climate models often does not agree with observations. In this study, we examine the compactness of sea ice, as well as the regional distribution of sea ice concentration, in climate models from the latest Coupled Model Intercomparison Project (CMIP5) and in satellite observations. We find substantial differences in concentration values between different sets of satellite observations, particularly at high concentrations, requiring careful treatment when comparing to models. As a fraction of total sea ice extent, models simulate too much loose, low-concentration sea ice cover throughout the year, and too little compact, high-concentration cover in the summer. In spite of the differences in physics between models, these tendencies are broadly consistent across the population of 40 CMIP5 simulations, a result not previously highlighted. Separating models with and without an explicit lateral melt term, we find that inclusion of lateral melt may account for overestimation of low-concentration cover. Targeted model experiments with a coupled ocean-sea ice model show that choice of constant floe diameter in the lateral melt scheme can also impact representation of loose ice. This suggests that current sea ice thermodynamics contribute to the inadequate simulation of the low-concentration regime in many models.

  4. Consistent constitutive modeling of metallic target penetration using empirical, analytical, and numerical penetration models

    Directory of Open Access Journals (Sweden)

    John (Jack P. Riegel III

    2016-04-01

    Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a

  5. New tools for generation IV assemblies modelling

    International Nuclear Information System (INIS)

    Sylvie Aniel-Buchheit; Edwige Richebois

    2005-01-01

    Full text of publication follows: In the framework of the development of generation IV concepts, the need of new assembly modelling tools arises. These concepts present more geometrical and spectral heterogeneities (radially and axially). Moreover thermal-hydraulics and neutronics aspects are so closely related that coupled computations are necessary. That raises the need for more precise and flexible tools presenting 3D features. The 3D-coupling of the thermal-hydraulic code FLICA4 with the Monte-Carlo neutronics code TRIPOLI4 was developed in that frame. This new tool enables for the first time to obtain realistic axial and radial power profiles with real feedback effects in an assembly where thermal-hydraulics and neutronics effects are closely related. The BWR is the existing concept presenting the closest heterogeneous characteristics to the various new proposed concepts. This assembly design is thus chosen to compare this new tool, presenting real 3D characteristics, to the existing ones. For design studies, the evaluation of the assembly behavior, currently necessitate a depletion scheme using a 3D thermal-hydraulics assembly calculation coupled with a 1D axial neutronics deterministic calculation (or an axial power profile chosen as a function of the assembly averaged burn-up). The 3D neutronics code (CRONOS2) uses neutronic data built by 2D deterministic assembly calculations without feedback. These cross section libraries enable to take feedbacks into account via parameters such as fuel temperature, moderator density and temperature (history parameters such as void and control rod are not useful in design evaluation). Recently, the libraries build-up has been replaced by on line multi-2D deterministic assembly calculations performed by a cell code (APOLLO2). That avoids interpolation between pre-determined parameters in the cross-section data used by the 1D axial neutronics calculation and enable to give a radial power map to the 3D thermal

  6. A semi-nonparametric mixture model for selecting functionally consistent proteins.

    Science.gov (United States)

    Yu, Lianbo; Doerge, Rw

    2010-09-28

    High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein.

  7. Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach.

    Science.gov (United States)

    Ponce-de-Leon, Miguel; Calle-Espinosa, Jorge; Peretó, Juli; Montero, Francisco

    2015-01-01

    Genome-scale metabolic models usually contain inconsistencies that manifest as blocked reactions and gap metabolites. With the purpose to detect recurrent inconsistencies in metabolic models, a large-scale analysis was performed using a previously published dataset of 130 genome-scale models. The results showed that a large number of reactions (~22%) are blocked in all the models where they are present. To unravel the nature of such inconsistencies a metamodel was construed by joining the 130 models in a single network. This metamodel was manually curated using the unconnected modules approach, and then, it was used as a reference network to perform a gap-filling on each individual genome-scale model. Finally, a set of 36 models that had not been considered during the construction of the metamodel was used, as a proof of concept, to extend the metamodel with new biochemical information, and to assess its impact on gap-filling results. The analysis performed on the metamodel allowed to conclude: 1) the recurrent inconsistencies found in the models were already present in the metabolic database used during the reconstructions process; 2) the presence of inconsistencies in a metabolic database can be propagated to the reconstructed models; 3) there are reactions not manifested as blocked which are active as a consequence of some classes of artifacts, and; 4) the results of an automatic gap-filling are highly dependent on the consistency and completeness of the metamodel or metabolic database used as the reference network. In conclusion the consistency analysis should be applied to metabolic databases in order to detect and fill gaps as well as to detect and remove artifacts and redundant information.

  8. Self-consistent Dark Matter simplified models with an s-channel scalar mediator

    International Nuclear Information System (INIS)

    Bell, Nicole F.; Busoni, Giorgio; Sanderson, Isaac W.

    2017-01-01

    We examine Simplified Models in which fermionic DM interacts with Standard Model (SM) fermions via the exchange of an s -channel scalar mediator. The single-mediator version of this model is not gauge invariant, and instead we must consider models with two scalar mediators which mix and interfere. The minimal gauge invariant scenario involves the mixing of a new singlet scalar with the Standard Model Higgs boson, and is tightly constrained. We construct two Higgs doublet model (2HDM) extensions of this scenario, where the singlet mixes with the 2nd Higgs doublet. Compared with the one doublet model, this provides greater freedom for the masses and mixing angle of the scalar mediators, and their coupling to SM fermions. We outline constraints on these models, and discuss Yukawa structures that allow enhanced couplings, yet keep potentially dangerous flavour violating processes under control. We examine the direct detection phenomenology of these models, accounting for interference of the scalar mediators, and interference of different quarks in the nucleus. Regions of parameter space consistent with direct detection measurements are determined.

  9. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  10. Alfven-wave particle interaction in finite-dimensional self-consistent field model

    International Nuclear Information System (INIS)

    Padhye, N.; Horton, W.

    1998-01-01

    A low-dimensional Hamiltonian model is derived for the acceleration of ions in finite amplitude Alfven waves in a finite pressure plasma sheet. The reduced low-dimensional wave-particle Hamiltonian is useful for describing the reaction of the accelerated ions on the wave amplitudes and phases through the self-consistent fields within the envelope approximation. As an example, the authors show for a single Alfven wave in the central plasma sheet of the Earth's geotail, modeled by the linear pinch geometry called the Harris sheet, the time variation of the wave amplitude during the acceleration of fast protons

  11. Self-consistent nonlinearly polarizable shell-model dynamics for ferroelectric materials

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S.E.; Kofane, T.C.; Ngabireng, C.M.

    2002-11-01

    We investigate the dynamical properties of the polarizable shellmodel with a symmetric double Morse-type electron-ion interaction in one ionic species. A variational calculation based on the Self-Consistent Einstein Model (SCEM) shows that a theoretical ferroelectric (FE) transition temperature can be derive which demonstrates the presence of a first-order phase transition for the potassium selenate (K 2 SeO 4 ) crystal around Tc 91.5 K. Comparison of the model calculation with the experimental critical temperature yields satisfactory agreement. (author)

  12. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    Science.gov (United States)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models

  13. A consistent modelling methodology for secondary settling tanks: a reliable numerical method.

    Science.gov (United States)

    Bürger, Raimund; Diehl, Stefan; Farås, Sebastian; Nopens, Ingmar; Torfs, Elena

    2013-01-01

    The consistent modelling methodology for secondary settling tanks (SSTs) leads to a partial differential equation (PDE) of nonlinear convection-diffusion type as a one-dimensional model for the solids concentration as a function of depth and time. This PDE includes a flux that depends discontinuously on spatial position modelling hindered settling and bulk flows, a singular source term describing the feed mechanism, a degenerating term accounting for sediment compressibility, and a dispersion term for turbulence. In addition, the solution itself is discontinuous. A consistent, reliable and robust numerical method that properly handles these difficulties is presented. Many constitutive relations for hindered settling, compression and dispersion can be used within the model, allowing the user to switch on and off effects of interest depending on the modelling goal as well as investigate the suitability of certain constitutive expressions. Simulations show the effect of the dispersion term on effluent suspended solids and total sludge mass in the SST. The focus is on correct implementation whereas calibration and validation are not pursued.

  14. Development of a self-consistent lightning NOx simulation in large-scale 3-D models

    Science.gov (United States)

    Luo, Chao; Wang, Yuhang; Koshak, William J.

    2017-03-01

    We seek to develop a self-consistent representation of lightning NOx (LNOx) simulation in a large-scale 3-D model. Lightning flash rates are parameterized functions of meteorological variables related to convection. We examine a suite of such variables and find that convective available potential energy and cloud top height give the best estimates compared to July 2010 observations from ground-based lightning observation networks. Previous models often use lightning NOx vertical profiles derived from cloud-resolving model simulations. An implicit assumption of such an approach is that the postconvection lightning NOx vertical distribution is the same for all deep convection, regardless of geographic location, time of year, or meteorological environment. Detailed observations of the lightning channel segment altitude distribution derived from the NASA Lightning Nitrogen Oxides Model can be used to obtain the LNOx emission profile. Coupling such a profile with model convective transport leads to a more self-consistent lightning distribution compared to using prescribed postconvection profiles. We find that convective redistribution appears to be a more important factor than preconvection LNOx profile selection, providing another reason for linking the strength of convective transport to LNOx distribution.

  15. An Ice Model That is Consistent with Composite Rheology in GIA Modelling

    Science.gov (United States)

    Huang, P.; Patrick, W.

    2017-12-01

    There are several popular approaches in constructing ice history models. One of them is mainly based on thermo-mechanical ice models with forcing or boundary conditions inferred from paleoclimate data. The second one is mainly based on the observed response of the Earth to glacial loading and unloading, a process called Glacial Isostatic Adjustment or GIA. The third approach is a hybrid version of the first and second approaches. In this presentation, we will follow the second approach which also uses geological data such as ice flow, terminal moraine data and simple ice dynamic for the ice sheet re-construction (Peltier & Andrew 1976). The global ice model ICE-6G (Peltier et al. 2015) and all its predecessors (Tushingham & Peltier 1991, Peltier 1994, 1996, 2004, Lambeck et al. 2014) are constructed this way with the assumption that mantle rheology is linear. However, high temperature creep experiments on mantle rocks show that non-linear creep laws can also operate in the mantle. Since both linear (e.g. diffusion creep) and non-linear (e.g. dislocation) creep laws can operate simultaneously in the mantle, mantle rheology is likely composite, where the total creep is the sum of both linear and onlinear creep. Preliminary GIA studies found that composite rheology can fit regional RSL observations better than that from linear rheology(e.g. van der Wal et al. 2010). The aim of this paper is to construct ice models in Laurentia and Fennoscandia using this second approach, but with composite rheology, so that its predictions can fit GIA observations such as global RSL data, land uplift rate and g-dot simultaneously in addition to geological data and simple ice dynamics. The g-dot or gravity-rate-of-change data is from the GRACE gravity mission but with the effects of hydrology removed. Our GIA model is based on the Coupled Laplace-Finite Element method as described in Wu(2004) and van der Wal et al.(2010). It is found that composite rheology generally supports a thicker

  16. More hyperelastic models for rubber-like materials: consistent tangent operators and comparative study

    Science.gov (United States)

    Hossain, Mokarram; Steinmann, Paul

    2013-06-01

    Rubber-like materials can deform largely and nonlinearly upon loading, and they return to the initial configuration when the load is removed. Such rubber elasticity is achieved due to very flexible long-chain molecules and a three-dimensional network structure that is formed via cross-linking or entanglements between molecules. Over the years, to model the mechanical behavior of such randomly oriented microstructures, several phenomenological and micromechanically motivated network models for nearly incompressible hyperelastic polymeric materials have been proposed in the literature. To implement these models for polymeric material (undoubtedly with widespread engineering applications) in the finite element framework for solving a boundary value problem, one would require two important ingredients, i.e., the stress tensor and the consistent fourth-order tangent operator, where the latter is the result of linearization of the former. In our previous work, 14 such material models are reviewed by deriving the accurate stress tensors and tangent operators from a group of phenomenological and micromechanical models at large deformations. The current contribution will supplement some further important models that were not included in the previous work. For comparison of all selected models in reproducing the well-known Treloar data, the analytical expressions for the three homogeneous defomation modes, i.e., uniaxial tension, equibiaxial tension, and pure shear, have been derived and the performances of the models are analyzed.

  17. Possible world based consistency learning model for clustering and classifying uncertain data.

    Science.gov (United States)

    Liu, Han; Zhang, Xianchao; Zhang, Xiaotong

    2018-06-01

    Possible world has shown to be effective for handling various types of data uncertainty in uncertain data management. However, few uncertain data clustering and classification algorithms are proposed based on possible world. Moreover, existing possible world based algorithms suffer from the following issues: (1) they deal with each possible world independently and ignore the consistency principle across different possible worlds; (2) they require the extra post-processing procedure to obtain the final result, which causes that the effectiveness highly relies on the post-processing method and the efficiency is also not very good. In this paper, we propose a novel possible world based consistency learning model for uncertain data, which can be extended both for clustering and classifying uncertain data. This model utilizes the consistency principle to learn a consensus affinity matrix for uncertain data, which can make full use of the information across different possible worlds and then improve the clustering and classification performance. Meanwhile, this model imposes a new rank constraint on the Laplacian matrix of the consensus affinity matrix, thereby ensuring that the number of connected components in the consensus affinity matrix is exactly equal to the number of classes. This also means that the clustering and classification results can be directly obtained without any post-processing procedure. Furthermore, for the clustering and classification tasks, we respectively derive the efficient optimization methods to solve the proposed model. Experimental results on real benchmark datasets and real world uncertain datasets show that the proposed model outperforms the state-of-the-art uncertain data clustering and classification algorithms in effectiveness and performs competitively in efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Collaboro: a collaborative (meta modeling tool

    Directory of Open Access Journals (Sweden)

    Javier Luis Cánovas Izquierdo

    2016-10-01

    Full Text Available Software development is becoming more and more collaborative, emphasizing the role of end-users in the development process to make sure the final product will satisfy customer needs. This is especially relevant when developing Domain-Specific Modeling Languages (DSMLs, which are modeling languages specifically designed to carry out the tasks of a particular domain. While end-users are actually the experts of the domain for which a DSML is developed, their participation in the DSML specification process is still rather limited nowadays. In this paper, we propose a more community-aware language development process by enabling the active participation of all community members (both developers and end-users from the very beginning. Our proposal, called Collaboro, is based on a DSML itself enabling the representation of change proposals during the language design and the discussion (and trace back of possible solutions, comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based recommender system to help community members to define high-quality notations for the DSMLs. We also show how Collaboro can be used at the model-level to facilitate the collaborative specification of software models. Tool support is available both as an Eclipse plug-in a web-based solution.

  19. Self-consistent modeling of laminar electrohydrodynamic plumes from ultra-sharp needles in cyclohexane

    Science.gov (United States)

    Becerra, Marley; Frid, Henrik; Vázquez, Pedro A.

    2017-12-01

    This paper presents a self-consistent model of electrohydrodynamic (EHD) laminar plumes produced by electron injection from ultra-sharp needle tips in cyclohexane. Since the density of electrons injected into the liquid is well described by the Fowler-Nordheim field emission theory, the injection law is not assumed. Furthermore, the generation of electrons in cyclohexane and their conversion into negative ions is included in the analysis. Detailed steady-state characteristics of EHD plumes under weak injection and space-charge limited injection are studied. It is found that the plume characteristics far from both electrodes and under weak injection can be accurately described with an asymptotic simplified solution proposed by Vazquez et al. ["Dynamics of electrohydrodynamic laminar plumes: Scaling analysis and integral model," Phys. Fluids 12, 2809 (2000)] when the correct longitudinal electric field distribution and liquid velocity radial profile are used as input. However, this asymptotic solution deviates from the self-consistently calculated plume parameters under space-charge limited injection since it neglects the radial variations of the electric field produced by a high-density charged core. In addition, no significant differences in the model estimates of the plume are found when the simulations are obtained either with the finite element method or with a diffusion-free particle method. It is shown that the model also enables the calculation of the current-voltage characteristic of EHD laminar plumes produced by electron field emission, with good agreement with measured values reported in the literature.

  20. Traffic Multiresolution Modeling and Consistency Analysis of Urban Expressway Based on Asynchronous Integration Strategy

    Directory of Open Access Journals (Sweden)

    Liyan Zhang

    2017-01-01

    Full Text Available The paper studies multiresolution traffic flow simulation model of urban expressway. Firstly, compared with two-level hybrid model, three-level multiresolution hybrid model has been chosen. Then, multiresolution simulation framework and integration strategies are introduced. Thirdly, the paper proposes an urban expressway multiresolution traffic simulation model by asynchronous integration strategy based on Set Theory, which includes three submodels: macromodel, mesomodel, and micromodel. After that, the applicable conditions and derivation process of the three submodels are discussed in detail. In addition, in order to simulate and evaluate the multiresolution model, “simple simulation scenario” of North-South Elevated Expressway in Shanghai has been established. The simulation results showed the following. (1 Volume-density relationships of three submodels are unanimous with detector data. (2 When traffic density is high, macromodel has a high precision and smaller error and the dispersion of results is smaller. Compared with macromodel, simulation accuracies of micromodel and mesomodel are lower but errors are bigger. (3 Multiresolution model can simulate characteristics of traffic flow, capture traffic wave, and keep the consistency of traffic state transition. Finally, the results showed that the novel multiresolution model can have higher simulation accuracy and it is feasible and effective in the real traffic simulation scenario.

  1. A formally verified algorithm for interactive consistency under a hybrid fault model

    Science.gov (United States)

    Lincoln, Patrick; Rushby, John

    1993-01-01

    Consistent distribution of single-source data to replicated computing channels is a fundamental problem in fault-tolerant system design. The 'Oral Messages' (OM) algorithm solves this problem of Interactive Consistency (Byzantine Agreement) assuming that all faults are worst-cass. Thambidurai and Park introduced a 'hybrid' fault model that distinguished three fault modes: asymmetric (Byzantine), symmetric, and benign; they also exhibited, along with an informal 'proof of correctness', a modified version of OM. Unfortunately, their algorithm is flawed. The discipline of mechanically checked formal verification eventually enabled us to develop a correct algorithm for Interactive Consistency under the hybrid fault model. This algorithm withstands $a$ asymmetric, $s$ symmetric, and $b$ benign faults simultaneously, using $m+1$ rounds, provided $n is greater than 2a + 2s + b + m$, and $m\\geg a$. We present this algorithm, discuss its subtle points, and describe its formal specification and verification in PVS. We argue that formal verification systems such as PVS are now sufficiently effective that their application to fault-tolerance algorithms should be considered routine.

  2. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  3. A pandemic influenza modeling and visualization tool

    Energy Technology Data Exchange (ETDEWEB)

    Maciejewski, Ross; Livengood, Philip; Rudolph, Stephen; Collins, Timothy F.; Ebert, David S.; Brigantic, Robert T.; Corley, Courtney D.; Muller, George A.; Sanders, Stephen W.

    2011-08-01

    The National Strategy for Pandemic Influenza outlines a plan for community response to a potential pandemic. In this outline, state and local communities are charged with enhancing their preparedness. In order to help public health officials better understand these charges, we have developed a modeling and visualization toolkit (PanViz) for analyzing the effect of decision measures implemented during a simulated pandemic influenza scenario. Spread vectors based on the point of origin and distance traveled over time are calculated and the factors of age distribution and population density are taken into effect. Healthcare officials are able to explore the effects of the pandemic on the population through a spatiotemporal view, moving forward and backward through time and inserting decision points at various days to determine the impact. Linked statistical displays are also shown, providing county level summaries of data in terms of the number of sick, hospitalized and dead as a result of the outbreak. Currently, this tool has been deployed in Indiana State Department of Health planning and preparedness exercises, and as an educational tool for demonstrating the impact of social distancing strategies during the recent H1N1 (swine flu) outbreak.

  4. Consistent phase-change modeling for CO2-based heat mining operation

    DEFF Research Database (Denmark)

    Singh, Ashok Kumar; Veje, Christian

    2017-01-01

    –gas phase transition with more accuracy and consistency. Calculation of fluid properties and saturation state were based on the volume translated Peng–Robinson equation of state and results verified. The present model has been applied to a scenario to simulate a CO2-based heat mining process. In this paper......The accuracy of mathematical modeling of phase-change phenomena is limited if a simple, less accurate equation of state completes the governing partial differential equation. However, fluid properties (such as density, dynamic viscosity and compressibility) and saturation state are calculated using...... a highly accurate, complex equation of state. This leads to unstable and inaccurate simulation as the equation of state and governing partial differential equations are mutually inconsistent. In this study, the volume-translated Peng–Robinson equation of state was used with emphasis to model the liquid...

  5. Elastoplastic properties of duplex steel determined using neutron diffraction and self-consistent model

    International Nuclear Information System (INIS)

    Baczmanski, A.; Braham, C.

    2004-01-01

    A new method for determining the parameters characterising elastoplastic deformation of two-phase material is proposed. The method is based on the results of neutron diffraction and mechanical experiments, which are analysed using the self-consistent rate-independent model of elastoplastic deformation. The neutron diffraction method has been applied to determine the lattice strains and diffraction peak broadening in two-phase austeno-ferritic steel during uniaxial tensile test. The elastoplastic model was used to predict evolution of internal stresses and critical resolved shear stresses. Calculations based on this model were successfully compared with experimental results and the parameters characterising elastoplastic deformation were determined for both phases of duplex steel

  6. Multidisciplinary Modelling Tools for Power Electronic Circuits

    DEFF Research Database (Denmark)

    Bahman, Amir Sajjad

    package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...

  7. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  8. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles

    Directory of Open Access Journals (Sweden)

    Jenny Roth

    2018-04-01

    Full Text Available The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility as associative connections. The model builds on two cognitive principles, balance–congruity and imbalance–dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification depends in part on the (incompatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (incompatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  9. Are water simulation models consistent with steady-state and ultrafast vibrational spectroscopy experiments?

    International Nuclear Information System (INIS)

    Schmidt, J.R.; Roberts, S.T.; Loparo, J.J.; Tokmakoff, A.; Fayer, M.D.; Skinner, J.L.

    2007-01-01

    Vibrational spectroscopy can provide important information about structure and dynamics in liquids. In the case of liquid water, this is particularly true for isotopically dilute HOD/D 2 O and HOD/H 2 O systems. Infrared and Raman line shapes for these systems were measured some time ago. Very recently, ultrafast three-pulse vibrational echo experiments have been performed on these systems, which provide new, exciting, and important dynamical benchmarks for liquid water. There has been tremendous theoretical effort expended on the development of classical simulation models for liquid water. These models have been parameterized from experimental structural and thermodynamic measurements. The goal of this paper is to determine if representative simulation models are consistent with steady-state, and especially with these new ultrafast, experiments. Such a comparison provides information about the accuracy of the dynamics of these simulation models. We perform this comparison using theoretical methods developed in previous papers, and calculate the experimental observables directly, without making the Condon and cumulant approximations, and taking into account molecular rotation, vibrational relaxation, and finite excitation pulses. On the whole, the simulation models do remarkably well; perhaps the best overall agreement with experiment comes from the SPC/E model

  10. Group Membership, Group Change, and Intergroup Attitudes: A Recategorization Model Based on Cognitive Consistency Principles.

    Science.gov (United States)

    Roth, Jenny; Steffens, Melanie C; Vignoles, Vivian L

    2018-01-01

    The present article introduces a model based on cognitive consistency principles to predict how new identities become integrated into the self-concept, with consequences for intergroup attitudes. The model specifies four concepts (self-concept, stereotypes, identification, and group compatibility) as associative connections. The model builds on two cognitive principles, balance-congruity and imbalance-dissonance, to predict identification with social groups that people currently belong to, belonged to in the past, or newly belong to. More precisely, the model suggests that the relative strength of self-group associations (i.e., identification) depends in part on the (in)compatibility of the different social groups. Combining insights into cognitive representation of knowledge, intergroup bias, and explicit/implicit attitude change, we further derive predictions for intergroup attitudes. We suggest that intergroup attitudes alter depending on the relative associative strength between the social groups and the self, which in turn is determined by the (in)compatibility between social groups. This model unifies existing models on the integration of social identities into the self-concept by suggesting that basic cognitive mechanisms play an important role in facilitating or hindering identity integration and thus contribute to reducing or increasing intergroup bias.

  11. Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge

    International Nuclear Information System (INIS)

    Chabert, P.; Raimbault, J.L.; Rax, J.M.; Lieberman, M.A.

    2004-01-01

    It has been shown previously [Lieberman et al., Plasma Sources Sci. Technol. 11, 283 (2002)], using a non-self-consistent model based on solutions of Maxwell's equations, that several electromagnetic effects may compromise capacitive discharge uniformity. Among these, the standing wave effect dominates at low and moderate electron densities when the driving frequency is significantly greater than the usual 13.56 MHz. In the present work, two different global discharge models have been coupled to a transmission line model and used to obtain the self-consistent characteristics of the standing wave effect. An analytical solution for the wavelength λ was derived for the lossless case and compared to the numerical results. For typical plasma etching conditions (pressure 10-100 mTorr), a good approximation of the wavelength is λ/λ 0 ≅40 V 0 1/10 l -1/2 f -2/5 , where λ 0 is the wavelength in vacuum, V 0 is the rf voltage magnitude in volts at the discharge center, l is the electrode spacing in meters, and f the driving frequency in hertz

  12. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer's disease.

    Science.gov (United States)

    Choi, Sung W; Gerencser, Akos A; Ng, Ryan; Flynn, James M; Melov, Simon; Danielson, Steven R; Gibson, Bradford W; Nicholls, David G; Bredesen, Dale E; Brand, Martin D

    2012-11-21

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer's disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months, and APP/PS age 9 and 14 months) to age-matched controls. No consistent bioenergetic deficiencies were detected in synaptosomes from the three models; only APP/PS cortical synaptosomes from 14-month-old mice showed an increase in respiration associated with proton leak. J20 mice were chosen for a highly stringent investigation of mitochondrial function and content. There were no significant differences in the quality of the synaptosomal preparations or the mitochondrial volume fraction. Furthermore, respiratory variables, calcium handling, and membrane potentials of synaptosomes from symptomatic J20 mice under calcium-imposed stress were not consistently impaired. The recovery of marker proteins during synaptosome preparation was the same, ruling out the possibility that the lack of functional bioenergetic defects in synaptosomes from J20 mice was due to the selective loss of damaged synaptosomes during sample preparation. Our results support the conclusion that the intrinsic bioenergetic capacities of presynaptic nerve terminals are maintained in these symptomatic AD mouse models.

  13. A Time consistent model for monetary value of man-sievert

    International Nuclear Information System (INIS)

    Na, S.H.; Kim, Sun G.

    2008-01-01

    Full text: Performing a cost-benefit analysis to establish optimum levels of radiation protection under the ALARA principle, we introduce a discrete stepwise model to evaluate man-sievert monetary value of Korea. The model formula, which is unique and country-specific, is composed of GDP, the nominal risk coefficient for cancer and hereditary effects, the aversion factor against radiation exposure, and the average life expectancy. Unlike previous researches on alpha-value assessment, we showed different alpha values optimized with respect to various ranges of individual dose, which would be more realistic and applicable to the radiation protection area. Employing economically constant term of GDP we showed the real values of man-sievert by year, which should be consistent in time series comparison even under price level fluctuation. GDP deflators of an economy have to be applied to measure one's own consistent value of radiation protection by year. In addition, we recommend that the concept of purchasing power parity should be adopted if it needs international comparison of alpha values in real terms. Finally, we explain the way that this stepwise model can be generalized simply to other countries without normalizing any country-specific factors. (author)

  14. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    Science.gov (United States)

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  15. Evaluation of clinical information modeling tools.

    Science.gov (United States)

    Moreno-Conde, Alberto; Austin, Tony; Moreno-Conde, Jesús; Parra-Calderón, Carlos L; Kalra, Dipak

    2016-11-01

    Clinical information models are formal specifications for representing the structure and semantics of the clinical content within electronic health record systems. This research aims to define, test, and validate evaluation metrics for software tools designed to support the processes associated with the definition, management, and implementation of these models. The proposed framework builds on previous research that focused on obtaining agreement on the essential requirements in this area. A set of 50 conformance criteria were defined based on the 20 functional requirements agreed by that consensus and applied to evaluate the currently available tools. Of the 11 initiative developing tools for clinical information modeling identified, 9 were evaluated according to their performance on the evaluation metrics. Results show that functionalities related to management of data types, specifications, metadata, and terminology or ontology bindings have a good level of adoption. Improvements can be made in other areas focused on information modeling and associated processes. Other criteria related to displaying semantic relationships between concepts and communication with terminology servers had low levels of adoption. The proposed evaluation metrics were successfully tested and validated against a representative sample of existing tools. The results identify the need to improve tool support for information modeling and software development processes, especially in those areas related to governance, clinician involvement, and optimizing the technical validation of testing processes. This research confirmed the potential of these evaluation metrics to support decision makers in identifying the most appropriate tool for their organization. Los Modelos de Información Clínica son especificaciones para representar la estructura y características semánticas del contenido clínico en los sistemas de Historia Clínica Electrónica. Esta investigación define, prueba y valida

  16. Quest for consistent modelling of statistical decay of the compound nucleus

    Science.gov (United States)

    Banerjee, Tathagata; Nath, S.; Pal, Santanu

    2018-01-01

    A statistical model description of heavy ion induced fusion-fission reactions is presented where shell effects, collective enhancement of level density, tilting away effect of compound nuclear spin and dissipation are included. It is shown that the inclusion of all these effects provides a consistent picture of fission where fission hindrance is required to explain the experimental values of both pre-scission neutron multiplicities and evaporation residue cross-sections in contrast to some of the earlier works where a fission hindrance is required for pre-scission neutrons but a fission enhancement for evaporation residue cross-sections.

  17. A Consistent Methodology Based Parameter Estimation for a Lactic Acid Bacteria Fermentation Model

    DEFF Research Database (Denmark)

    Spann, Robert; Roca, Christophe; Kold, David

    2017-01-01

    Lactic acid bacteria are used in many industrial applications, e.g. as starter cultures in the dairy industry or as probiotics, and research on their cell production is highly required. A first principles kinetic model was developed to describe and understand the biological, physical, and chemical...... mechanisms in a lactic acid bacteria fermentation. We present here a consistent approach for a methodology based parameter estimation for a lactic acid fermentation. In the beginning, just an initial knowledge based guess of parameters was available and an initial parameter estimation of the complete set...

  18. A self-consistent model for thermodynamics of multicomponent solid solutions

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.

    2016-01-01

    The self-consistent concept recently published in this journal (108, 27–30, 2015) is extended from a binary to a multicomponent system. This is possible by exploiting the trapping concept as basis for including the interaction of atoms in terms of pairs (e.g. A–A, B–B, C–C…) and couples (e.g. A–B, B–C, …) in a multicomponent system with A as solvent and B, C, … as dilute solutes. The model results in a formulation of Gibbs-energy, which can be minimized. Examples show that the couple and pair formation may influence the equilibrium Gibbs energy markedly.

  19. Is biochemical relapse-free survival after profoundly hypofractionated radiotherapy consistent with current radiobiological models?

    Science.gov (United States)

    Tree, A C; Khoo, V S; van As, N J; Partridge, M

    2014-04-01

    The α/β ratio for prostate cancer is thought to be low and less than for the rectum, which is usually the dose-limiting organ. Hypofractionated radiotherapy should therefore improve the therapeutic ratio, increasing cure rates with less toxicity. A number of models for predicting biochemical relapse-free survival have been developed from large series of patients treated with conventional and moderately hypofractionated radiotherapy. The purpose of this study was to test these models when significant numbers of patients treated with profoundly hypofractionated radiotherapy were included. A systematic review of the literature with regard to hypofractionated radiotherapy for prostate cancer was conducted, focussing on data recently presented on prostate stereotactic body radiotherapy. For the work described here, we have taken published biochemical control rates for a range of moderately and profoundly fractionated schedules and plotted these together with a range of radiobiological models, which are described. The data reviewed show consistency between the various radiobiological model predictions and the currently observed data. Current radiobiological models provide accurate predictions of biochemical relapse-free survival, even when profoundly hypofractionated patients are included in the analysis. Copyright © 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Comparison of squashing and self-consistent input-output models of quantum feedback

    Science.gov (United States)

    Peřinová, V.; Lukš, A.; Křepelka, J.

    2018-03-01

    The paper (Yanagisawa and Hope, 2010) opens with two ways of analysis of a measurement-based quantum feedback. The scheme of the feedback includes, along with the homodyne detector, a modulator and a beamsplitter, which does not enable one to extract the nonclassical field. In the present scheme, the beamsplitter is replaced by the quantum noise evader, which makes it possible to extract the nonclassical field. We re-approach the comparison of two models related to the same scheme. The first one admits that in the feedback loop between the photon annihilation and creation operators, unusual commutation relations hold. As a consequence, in the feedback loop, squashing of the light occurs. In the second one, the description arrives at the feedback loop via unitary transformations. But it is obvious that the unitary transformation which describes the modulator changes even the annihilation operator of the mode which passes by the modulator which is not natural. The first model could be called "squashing model" and the second one could be named "self-consistent model". Although the predictions of the two models differ only a little and both the ways of analysis have their advantages, they have also their drawbacks and further investigation is possible.

  1. Non local thermodynamic equilibrium self-consistent average atom model for plasma physics

    International Nuclear Information System (INIS)

    Faussurier, G.; Blancard, Ch.; Berthier, E.

    2000-01-01

    A time-dependent collisional-radiative average-atom model is presented to study statistical properties of highly-charged ion plasmas in off-equilibrium conditions. Atomic structure is described either with a screened-hydrogenic model including l-splitting, or by calculating one electron states in a self-consistent average-atom potential. Collisional and radiative excitation/deexcitation and ionization/recombination rats, as well as auto-ionization and dielectronic recombination rates, are formulated within the average-configuration framework. A good agreement with experiment is found for the charge-state distribution of a gold plasma at electron and density temperature equal to 6 x 10 20 cm -3 and 2200 eV. (author)

  2. A self-consistent model for polycrystal deformation. Description and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lorentzen, T.

    1997-04-01

    This report is a manual for the ANSI C implementation of an incremental elastic-plastic rate-insensitive self-consistent polycrystal deformation model based on (Hutchinson 1970). The model is furthermore described in the Ph.D. thesis by Clausen (Clausen 1997). The structure of the main program, sc{sub m}odel.c, and its subroutines are described with flow-charts. Likewise the pre-processor, sc{sub i}ni.c, is described with a flowchart. Default values of all the input parameters are given in the pre-processor, but the user is able to select from other pre-defined values or enter new values. A sample calculation is made and the results are presented as plots and examples of the output files are shown. (au) 4 tabs., 28 ills., 17 refs.

  3. Study of stress localisation in polycrystalline grains using self-consistent modelling and neutron diffraction

    Science.gov (United States)

    Baczmański, A.; Gaj, A.; Le Joncour, L.; Wroński, S.; François, M.; Panicaud, B.; Braham, C.; Paradowska, A. M.

    2012-08-01

    The time-of-flight neutron diffraction technique and the elastoplastic self-consistent model were used to study the behaviour of single and multi-phase materials. Critical resolved shear stresses and hardening parameters in austenitic and austenitic-ferritic steels were found by analysing the evolution of the lattice strains measured during tensile tests. Special attention was paid to the changes of the grain stresses occurring due to transition from elastic to plastic deformation. Using a new method of data analysis, the variation of the stress localisation tensor as a function of macrostress was measured. The experimental results were successfully compared with model predictions for both phases of the duplex steel and also for the austenitic sample.

  4. Self-Consistent Generation of Primordial Continental Crust in Global Mantle Convection Models

    Science.gov (United States)

    Jain, C.; Rozel, A.; Tackley, P. J.

    2017-12-01

    We present the generation of primordial continental crust (TTG rocks) using self-consistent and evolutionary thermochemical mantle convection models (Tackley, PEPI 2008). Numerical modelling commonly shows that mantle convection and continents have strong feedbacks on each other. However in most studies, continents are inserted a priori while basaltic (oceanic) crust is generated self-consistently in some models (Lourenco et al., EPSL 2016). Formation of primordial continental crust happened by fractional melting and crystallisation in episodes of relatively rapid growth from late Archean to late Proterozoic eras (3-1 Ga) (Hawkesworth & Kemp, Nature 2006) and it has also been linked to the onset of plate tectonics around 3 Ga. It takes several stages of differentiation to generate Tonalite-Trondhjemite-Granodiorite (TTG) rocks or proto-continents. First, the basaltic magma is extracted from the pyrolitic mantle which is both erupted at the surface and intruded at the base of the crust. Second, it goes through eclogitic transformation and then partially melts to form TTGs (Rudnick, Nature 1995; Herzberg & Rudnick, Lithos 2012). TTGs account for the majority of the Archean continental crust. Based on the melting conditions proposed by Moyen (Lithos 2011), the feasibility of generating TTG rocks in numerical simulations has already been demonstrated by Rozel et al. (Nature, 2017). Here, we have developed the code further by parameterising TTG formation. We vary the ratio of intrusive (plutonic) and extrusive (volcanic) magmatism (Crisp, Volcanol. Geotherm. 1984) to study the relative volumes of three petrological TTG compositions as reported from field data (Moyen, Lithos 2011). Furthermore, we systematically vary parameters such as friction coefficient, initial core temperature and composition-dependent viscosity to investigate the global tectonic regime of early Earth. Continental crust can also be destroyed by subduction or delamination. We will investigate

  5. Smoothed Particle Hydrodynamics: A consistent model for interfacial multiphase fluid flow simulations

    Science.gov (United States)

    Krimi, Abdelkader; Rezoug, Mehdi; Khelladi, Sofiane; Nogueira, Xesús; Deligant, Michael; Ramírez, Luis

    2018-04-01

    In this work, a consistent Smoothed Particle Hydrodynamics (SPH) model to deal with interfacial multiphase fluid flows simulation is proposed. A modification to the Continuum Stress Surface formulation (CSS) [1] to enhance the stability near the fluid interface is developed in the framework of the SPH method. A non-conservative first-order consistency operator is used to compute the divergence of stress surface tensor. This formulation benefits of all the advantages of the one proposed by Adami et al. [2] and, in addition, it can be applied to more than two phases fluid flow simulations. Moreover, the generalized wall boundary conditions [3] are modified in order to be well adapted to multiphase fluid flows with different density and viscosity. In order to allow the application of this technique to wall-bounded multiphase flows, a modification of generalized wall boundary conditions is presented here for using the SPH method. In this work we also present a particle redistribution strategy as an extension of the damping technique presented in [3] to smooth the initial transient phase of gravitational multiphase fluid flow simulations. Several computational tests are investigated to show the accuracy, convergence and applicability of the proposed SPH interfacial multiphase model.

  6. Self-consistent modeling of plasma response to impurity spreading from intense localized source

    International Nuclear Information System (INIS)

    Koltunov, Mikhail

    2012-07-01

    Non-hydrogen impurities unavoidably exist in hot plasmas of present fusion devices. They enter it intrinsically, due to plasma interaction with the wall of vacuum vessel, as well as are seeded for various purposes deliberately. Normally, the spots where injected particles enter the plasma are much smaller than its total surface. Under such conditions one has to expect a significant modification of local plasma parameters through various physical mechanisms, which, in turn, affect the impurity spreading. Self-consistent modeling of interaction between impurity and plasma is, therefore, not possible with linear approaches. A model based on the fluid description of electrons, main and impurity ions, and taking into account the plasma quasi-neutrality, Coulomb collisions of background and impurity charged particles, radiation losses, particle transport to bounding surfaces, is elaborated in this work. To describe the impurity spreading and the plasma response self-consistently, fluid equations for the particle, momentum and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solution in principal details: the magnitudes of plasma density and plasma temperatures in the regions of impurity localization and the spatial scales of these regions. The results of calculations for plasma conditions typical in tokamak experiments with impurity injection are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures is proposed.

  7. Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models

    KAUST Repository

    Vignal, Philippe

    2016-02-11

    Phase-field models are emerging as a promising strategy to simulate interfacial phenomena. Rather than tracking interfaces explicitly as done in sharp interface descriptions, these models use a diffuse order parameter to monitor interfaces implicitly. This implicit description, as well as solid physical and mathematical footings, allow phase-field models to overcome problems found by predecessors. Nonetheless, the method has significant drawbacks. The phase-field framework relies on the solution of high-order, nonlinear partial differential equations. Solving these equations entails a considerable computational cost, so finding efficient strategies to handle them is important. Also, standard discretization strategies can many times lead to incorrect solutions. This happens because, for numerical solutions to phase-field equations to be valid, physical conditions such as mass conservation and free energy monotonicity need to be guaranteed. In this work, we focus on the development of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure evolution. The algorithm developed conserves, guarantees energy stability and is second order accurate in time. The second part of the thesis presents two numerical schemes that generalize literature regarding energy-stable methods for conserved and non-conserved phase-field models. The time discretization strategies can conserve mass if needed, are energy-stable, and second order accurate in time. We also develop an adaptive time-stepping strategy, which can be applied to any second-order accurate scheme. This time-adaptive strategy relies on a backward approximation to give an accurate error estimator. The spatial discretization, in both parts, relies on a mixed finite element formulation and isogeometric analysis. The codes are

  8. Towards a consistent geochemical model for prediction of uranium(VI) removal from groundwater by ferrihydrite

    International Nuclear Information System (INIS)

    Gustafsson, Jon Petter; Daessman, Ellinor; Baeckstroem, Mattias

    2009-01-01

    Uranium(VI), which is often elevated in granitoidic groundwaters, is known to adsorb strongly to Fe (hydr)oxides under certain conditions. This process can be used in water treatment to remove U(VI). To develop a consistent geochemical model for U(VI) adsorption to ferrihydrite, batch experiments were performed and previous data sets reviewed to optimize a set of surface complexation constants using the 3-plane CD-MUSIC model. To consider the effect of dissolved organic matter (DOM) on U(VI) speciation, new parameters for the Stockholm Humic Model (SHM) were optimized using previously published data. The model, which was constrained from available X-ray absorption fine structure (EXAFS) spectroscopy evidence, fitted the data well when the surface sites were divided into low- and high-affinity binding sites. Application of the model concept to other published data sets revealed differences in the reactivity of different ferrihydrites towards U(VI). Use of the optimized SHM parameters for U(VI)-DOM complexation showed that this process is important for U(VI) speciation at low pH. However in neutral to alkaline waters with substantial carbonate present, Ca-U-CO 3 complexes predominate. The calibrated geochemical model was used to simulate U(VI) adsorption to ferrihydrite for a hypothetical groundwater in the presence of several competitive ions. The results showed that U(VI) adsorption was strong between pH 5 and 8. Also near the calcite saturation limit, where U(VI) adsorption was weakest according to the model, the adsorption percentage was predicted to be >80%. Hence U(VI) adsorption to ferrihydrite-containing sorbents may be used as a method to bring down U(VI) concentrations to acceptable levels in groundwater

  9. Symmetry breaking in frustrated XY models: Results from new self-consistent fluctuation approach and simulations

    Science.gov (United States)

    Behzadi, Azad Esmailov

    1999-10-01

    The critical behavior of the fully frustrated XY model has remained controversial in spite of almost two decades of related research. In this study, we have developed a new method inspired by Netz and Berker's hard-spin mean- field theory. Our approach for XY models yields results consistent with Monte Carlo simulations as the ratio of antiferromagnetic to ferromagnetic interactions is varied. The method captures two phase transitions clearly separated in temperature for ratios of 0.5, 0.6, and 1.5, with these transitions moving closer together in temperature as the interaction ratio approaches 1.0, the fully frustrated case. From the system's chirality as a function of temperature in the critical region, we calculate the critical exponent β in agreement with an Ising transition for all of the interaction ratios studied, including 1.0. This result provides support for the view that there are two transitions, rather than one transition in a new universality class, occurring in the fully frustrated XY model. Finite size effects in this model can be essentially eliminated by rescaling the local magnetization, the quantity retained self- consistently in our computations. This rescaling scheme also shows excellent results when tested on the two- dimensional Ising model, and the method, as generalized, provides a framework for an analytical approach to complex systems. Monte Carlo simulations of the fully frustrated XY model in a magnetic field provide further evidence of two transitions. The magnetic field breaks the rotational symmetry of the model, but the two-fold chiral degeneracy of the ground state persists in the field. This lower degeneracy with the field present makes Monte Carlo simulations converge more rapidly. The critical exponent δ determined from the sublattice magnetizations as a function of field agrees with the value expected for a Kosterlitz-Thouless transition. Further, the zero-field specific heat obtained by extrapolation from simulations in a

  10. Consistent modelling of wind turbine noise propagation from source to receiver.

    Science.gov (United States)

    Barlas, Emre; Zhu, Wei Jun; Shen, Wen Zhong; Dag, Kaya O; Moriarty, Patrick

    2017-11-01

    The unsteady nature of wind turbine noise is a major reason for annoyance. The variation of far-field sound pressure levels is not only caused by the continuous change in wind turbine noise source levels but also by the unsteady flow field and the ground characteristics between the turbine and receiver. To take these phenomena into account, a consistent numerical technique that models the sound propagation from the source to receiver is developed. Large eddy simulation with an actuator line technique is employed for the flow modelling and the corresponding flow fields are used to simulate sound generation and propagation. The local blade relative velocity, angle of attack, and turbulence characteristics are input to the sound generation model. Time-dependent blade locations and the velocity between the noise source and receiver are considered within a quasi-3D propagation model. Long-range noise propagation of a 5 MW wind turbine is investigated. Sound pressure level time series evaluated at the source time are studied for varying wind speeds, surface roughness, and ground impedances within a 2000 m radius from the turbine.

  11. Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Science.gov (United States)

    Screen, James A.; Deser, Clara; Smith, Doug M.; Zhang, Xiangdong; Blackport, Russell; Kushner, Paul J.; Oudar, Thomas; McCusker, Kelly E.; Sun, Lantao

    2018-02-01

    The decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.

  12. Model for ICRF fast wave current drive in self-consistent MHD equilibria

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Englade, R.C.; Porkolab, M.; Fenstermacher, M.E.

    1993-01-01

    Recently, a model for fast wave current drive in the ion cyclotron radio frequency (ICRF) range was incorporated into the current drive and MHD equilibrium code ACCOME. The ACCOME model combines a free boundary solution of the Grad Shafranov equation with the calculation of driven currents due to neutral beam injection, lower hybrid (LH) waves, bootstrap effects, and ICRF fast waves. The equilibrium and current drive packages iterate between each other to obtain an MHD equilibrium which is consistent with the profiles of driven current density. The ICRF current drive package combines a toroidal full-wave code (FISIC) with a parameterization of the current drive efficiency obtained from an adjoint solution of the Fokker Planck equation. The electron absorption calculation in the full-wave code properly accounts for the combined effects of electron Landau damping (ELD) and transit time magnetic pumping (TTMP), assuming a Maxwellian (or bi-Maxwellian) electron distribution function. Furthermore, the current drive efficiency includes the effects of particle trapping, momentum conserving corrections to the background Fokker Planck collision operator, and toroidally induced variations in the parallel wavenumbers of the injected ICRF waves. This model has been used to carry out detailed studies of advanced physics scenarios in the proposed Tokamak Physics Experiment (TPX). Results are shown, for example, which demonstrate the possibility of achieving stable equilibria at high beta and high bootstrap current fraction in TPX. Model results are also shown for the proposed ITER device

  13. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  14. Development of a 3D consistent 1D neutronics model for reactor core simulation

    International Nuclear Information System (INIS)

    Lee, Ki Bog; Joo, Han Gyu; Cho, Byung Oh; Zee, Sung Quun

    2001-02-01

    In this report a 3D consistent 1D model based on nonlinear analytic nodal method is developed to reproduce the 3D results. During the derivation, the current conservation factor (CCF) is introduced which guarantees the same axial neutron currents obtained from the 1D equation as the 3D reference values. Furthermore in order to properly use 1D group constants, a new 1D group constants representation scheme employing tables for the fuel temperature, moderator density and boron concentration is developed and functionalized for the control rod tip position. To test the 1D kinetics model with CCF, several steady state and transient calculations were performed and compared with 3D reference values. The errors of K-eff values were reduced about one tenth when using CCF without significant computational overhead. And the errors of power distribution were decreased to the range of one fifth or tenth at steady state calculation. The 1D kinetics model with CCF and the 1D group constant functionalization employing tables as a function of control rod tip position can provide preciser results at the steady state and transient calculation. Thus it is expected that the 1D kinetics model derived in this report can be used in the safety analysis, reactor real time simulation coupled with system analysis code, operator support system etc.

  15. An analysis of comprehensive health promotion programs' consistency with the systems model of health.

    Science.gov (United States)

    Meek, J

    1993-01-01

    Purpose. The purpose of this article is to report a review and analysis of the concordance between current comprehensive corporate health promotion programs as described in the published literature and the systems model of health and to explore emerging trends in the field of health promotion. Search Methods. MEDLINE, BIOSIS, and PsycINFO searches were conducted from 1985 to 1991, and the bibliographies of articles thus obtained were back searched for additional descriptions of corporate health promotion programs. Inclusive criteria included "comprehensive" corporate programs, published in peer-reviewed journals or books, and descriptions adequate enough to permit coding in the majority of analysis matrix categories. Out of 63 identified programs, 16 met the inclusion criteria; 47 were excluded. A common reason for rejection was the limitation imposed by inadequate program descriptions in the published literature. Major Findings. On average, the comprehensive corporate programs reviewed were initiated between 1984 and 1987 and set in the context of a manufacturing firm with over 10,000 employees. A minority of programs (12.5%) consistently satisfied systems model criteria. The most common category of programs were those which were inconsistent (44%), meeting some of the criteria of a systems model of health promotion, but not all. The mechanistic medical and public health models predominated strongly (63%) with the preeminent goal being individual risk factor modification. Conclusions. The limitations of the published literature do not permit strong conclusions about the number or degree to which current corporate comprehensive programs are concordant with the systems model of health. Although mechanistic models of health predominated, there is evidence that a number of comprehensive programs were inconsistent with the mechanistic model, meeting some of the criteria, but also meeting some systems model criteria. To continue the advancement of health promotion with

  16. A paradigm shift toward a consistent modeling framework to assess climate impacts

    Science.gov (United States)

    Monier, E.; Paltsev, S.; Sokolov, A. P.; Fant, C.; Chen, H.; Gao, X.; Schlosser, C. A.; Scott, J. R.; Dutkiewicz, S.; Ejaz, Q.; Couzo, E. A.; Prinn, R. G.; Haigh, M.

    2017-12-01

    Estimates of physical and economic impacts of future climate change are subject to substantial challenges. To enrich the currently popular approaches of assessing climate impacts by evaluating a damage function or by multi-model comparisons based on the Representative Concentration Pathways (RCPs), we focus here on integrating impacts into a self-consistent coupled human and Earth system modeling framework that includes modules that represent multiple physical impacts. In a sample application we show that this framework is capable of investigating the physical impacts of climate change and socio-economic stressors. The projected climate impacts vary dramatically across the globe in a set of scenarios with global mean warming ranging between 2.4°C and 3.6°C above pre-industrial by 2100. Unabated emissions lead to substantial sea level rise, acidification that impacts the base of the oceanic food chain, air pollution that exceeds health standards by tenfold, water stress that impacts an additional 1 to 2 billion people globally and agricultural productivity that decreases substantially in many parts of the world. We compare the outcomes from these forward-looking scenarios against the common goal described by the target-driven scenario of 2°C, which results in much smaller impacts. It is challenging for large internationally coordinated exercises to respond quickly to new policy targets. We propose that a paradigm shift toward a self-consistent modeling framework to assess climate impacts is needed to produce information relevant to evolving global climate policy and mitigation strategies in a timely way.

  17. A Thermodynamically-consistent FBA-based Approach to Biogeochemical Reaction Modeling

    Science.gov (United States)

    Shapiro, B.; Jin, Q.

    2015-12-01

    Microbial rates are critical to understanding biogeochemical processes in natural environments. Recently, flux balance analysis (FBA) has been applied to predict microbial rates in aquifers and other settings. FBA is a genome-scale constraint-based modeling approach that computes metabolic rates and other phenotypes of microorganisms. This approach requires a prior knowledge of substrate uptake rates, which is not available for most natural microbes. Here we propose to constrain substrate uptake rates on the basis of microbial kinetics. Specifically, we calculate rates of respiration (and fermentation) using a revised Monod equation; this equation accounts for both the kinetics and thermodynamics of microbial catabolism. Substrate uptake rates are then computed from the rates of respiration, and applied to FBA to predict rates of microbial growth. We implemented this method by linking two software tools, PHREEQC and COBRA Toolbox. We applied this method to acetotrophic methanogenesis by Methanosarcina barkeri, and compared the simulation results to previous laboratory observations. The new method constrains acetate uptake by accounting for the kinetics and thermodynamics of methanogenesis, and predicted well the observations of previous experiments. In comparison, traditional methods of dynamic-FBA constrain acetate uptake on the basis of enzyme kinetics, and failed to reproduce the experimental results. These results show that microbial rate laws may provide a better constraint than enzyme kinetics for applying FBA to biogeochemical reaction modeling.

  18. Thermal behaviour modelling of superplastic forming tools

    OpenAIRE

    Velay , Vincent; Cutard , Thierry; Guegan , N.

    2008-01-01

    High-temperature operational conditions of super plastic forming (SPF) tools induce very complex thermomechanical loadings responsible to their failure. Various materials can be used to manufacture forming tools: ceramic, refractory castable or heat resistant steel. In this paper, an experimental and numerical analysis is performed in order to characterise the environmental loadings undergone by the tool whatever the considered material. This investigation allows to lead a thermal calculation...

  19. Self-consistent field modeling of adsorption from polymer/surfactant mixtures.

    Science.gov (United States)

    Postmus, Bart R; Leermakers, Frans A M; Cohen Stuart, Martien A

    2008-06-01

    We report on the development of a self-consistent field model that describes the competitive adsorption of nonionic alkyl-(ethylene oxide) surfactants and nonionic polymer poly(ethylene oxide) (PEO) from aqueous solutions onto silica. The model explicitly describes the response to the pH and the ionic strength. On an inorganic oxide surface such as silica, the dissociation of the surface depends on the pH. However, salt ions can screen charges on the surface, and hence, the number of dissociated groups also depends on the ionic strength. Furthermore, the solvent quality for the EO groups is a function of the ionic strength. Using our model, we can compute bulk parameters such as the average size of the polymer coil and the surfactant CMC. We can make predictions on the adsorption behavior of either polymers or surfactants, and we have made adsorption isotherms, i.e., calculated the relationship between the surface excess and its corresponding bulk concentration. When we add both polymer and surfactant to our mixture, we can find a surfactant concentration (or, more precisely, a surfactant chemical potential) below which only the polymer will adsorb and above which only the surfactant will adsorb. The corresponding surfactant concentration is called the CSAC. In a first-order approximation, the surfactant chemical potential has the CMC as its upper bound. We can find conditions for which CMC model is to understand the experimental data from one of our previous articles. We managed to explain most, but unfortunately not all, of the experimental trends. At the end of the article we discuss the possibilities for improving the model.

  20. Alterations in Striatal Synaptic Transmission are Consistent across Genetic Mouse Models of Huntington's Disease

    Directory of Open Access Journals (Sweden)

    Damian M Cummings

    2010-05-01

    Full Text Available Since the identification of the gene responsible for HD (Huntington's disease, many genetic mouse models have been generated. Each employs a unique approach for delivery of the mutated gene and has a different CAG repeat length and background strain. The resultant diversity in the genetic context and phenotypes of these models has led to extensive debate regarding the relevance of each model to the human disorder. Here, we compare and contrast the striatal synaptic phenotypes of two models of HD, namely the YAC128 mouse, which carries the full-length huntingtin gene on a yeast artificial chromosome, and the CAG140 KI*** (knock-in mouse, which carries a human/mouse chimaeric gene that is expressed in the context of the mouse genome, with our previously published data obtained from the R6/2 mouse, which is transgenic for exon 1 mutant huntingtin. We show that striatal MSNs (medium-sized spiny neurons in YAC128 and CAG140 KI mice have similar electrophysiological phenotypes to that of the R6/2 mouse. These include a progressive increase in membrane input resistance, a reduction in membrane capacitance, a lower frequency of spontaneous excitatory postsynaptic currents and a greater frequency of spontaneous inhibitory postsynaptic currents in a subpopulation of striatal neurons. Thus, despite differences in the context of the inserted gene between these three models of HD, the primary electrophysiological changes observed in striatal MSNs are consistent. The outcomes suggest that the changes are due to the expression of mutant huntingtin and such alterations can be extended to the human condition.

  1. Methodology and consistency of slant and vertical assessments for ionospheric electron content models

    Science.gov (United States)

    Hernández-Pajares, Manuel; Roma-Dollase, David; Krankowski, Andrzej; García-Rigo, Alberto; Orús-Pérez, Raül

    2017-12-01

    A summary of the main concepts on global ionospheric map(s) [hereinafter GIM(s)] of vertical total electron content (VTEC), with special emphasis on their assessment, is presented in this paper. It is based on the experience accumulated during almost two decades of collaborative work in the context of the international global navigation satellite systems (GNSS) service (IGS) ionosphere working group. A representative comparison of the two main assessments of ionospheric electron content models (VTEC-altimeter and difference of Slant TEC, based on independent global positioning system data GPS, dSTEC-GPS) is performed. It is based on 26 GPS receivers worldwide distributed and mostly placed on islands, from the last quarter of 2010 to the end of 2016. The consistency between dSTEC-GPS and VTEC-altimeter assessments for one of the most accurate IGS GIMs (the tomographic-kriging GIM `UQRG' computed by UPC) is shown. Typical error RMS values of 2 TECU for VTEC-altimeter and 0.5 TECU for dSTEC-GPS assessments are found. And, as expected by following a simple random model, there is a significant correlation between both RMS and specially relative errors, mainly evident when large enough number of observations per pass is considered. The authors expect that this manuscript will be useful for new analysis contributor centres and in general for the scientific and technical community interested in simple and truly external ways of validating electron content models of the ionosphere.

  2. Self-Consistent Atmosphere Models of the Most Extreme Hot Jupiters

    Science.gov (United States)

    Lothringer, Joshua; Barman, Travis

    2018-01-01

    We present a detailed look at self-consistent PHOENIX atmosphere models of the most highly irradiated hot Jupiters known to exist. These hot Jupiters typically have equilibrium temperatures approaching and sometimes exceeding 3000 K, orbiting A, F, and early-G type stars on orbits less than 0.03 AU (10x closer than Mercury is to the Sun). The most extreme example, KELT-9b, is the hottest known hot Jupiter with a measured dayside temperature of 4600 K. Many of the planets we model have recently attracted attention with high profile discoveries, including temperature inversions in WASP-33b and WASP-121, changing phase curve offsets possibly caused by magnetohydrodymanic effects in HAT-P-7b, and TiO in WASP-19b. Our modeling provides a look at the a priori expectations for these planets and helps us understand these recent discoveries. We show that, in the hottest cases, all molecules are dissociated down to relatively high pressures. These planets may have detectable temperature inversions, more akin to thermospheres than stratospheres in that an optical absorber like TiO or VO is not needed. Instead, the inversions are created by a lack of cooling in the IR combined with heating from atoms and ions at UV and blue optical wavelengths. We also reevaluate some of the assumptions that have been made in retrieval analyses of these planets.

  3. Modeling, methodologies and tools for molecular and nano-scale communications modeling, methodologies and tools

    CERN Document Server

    Nakano, Tadashi; Moore, Michael

    2017-01-01

    (Preliminary) The book presents the state of art in the emerging field of molecular and nanoscale communication. It gives special attention to fundamental models, and advanced methodologies and tools used in the field. It covers a wide range of applications, e.g. nanomedicine, nanorobot communication, bioremediation and environmental managements. It addresses advanced graduate students, academics and professionals working at the forefront in their fields and at the interfaces between different areas of research, such as engineering, computer science, biology and nanotechnology.

  4. ISRU System Model Tool: From Excavation to Oxygen Production

    Science.gov (United States)

    Santiago-Maldonado, Edgardo; Linne, Diane L.

    2007-01-01

    In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.

  5. Height-Diameter Models for Mixed-Species Forests Consisting of Spruce, Fir, and Beech

    Directory of Open Access Journals (Sweden)

    Petráš Rudolf

    2014-06-01

    Full Text Available Height-diameter models define the general relationship between the tree height and diameter at each growth stage of the forest stand. This paper presents generalized height-diameter models for mixed-species forest stands consisting of Norway spruce (Picea abies Karst., Silver fir (Abies alba L., and European beech (Fagus sylvatica L. from Slovakia. The models were derived using two growth functions from the exponential family: the two-parameter Michailoff and three-parameter Korf functions. Generalized height-diameter functions must normally be constrained to pass through the mean stand diameter and height, and then the final growth model has only one or two parameters to be estimated. These “free” parameters are then expressed over the quadratic mean diameter, height and stand age and the final mathematical form of the model is obtained. The study material included 50 long-term experimental plots located in the Western Carpathians. The plots were established 40-50 years ago and have been repeatedly measured at 5 to 10-year intervals. The dataset includes 7,950 height measurements of spruce, 21,661 of fir and 5,794 of beech. As many as 9 regression models were derived for each species. Although the “goodness of fit” of all models showed that they were generally well suited for the data, the best results were obtained for silver fir. The coefficient of determination ranged from 0.946 to 0.948, RMSE (m was in the interval 1.94-1.97 and the bias (m was -0.031 to 0.063. Although slightly imprecise parameter estimation was established for spruce, the estimations of the regression parameters obtained for beech were quite less precise. The coefficient of determination for beech was 0.854-0.860, RMSE (m 2.67-2.72, and the bias (m ranged from -0.144 to -0.056. The majority of models using Korf’s formula produced slightly better estimations than Michailoff’s, and it proved immaterial which estimated parameter was fixed and which parameters

  6. The self-consistent field model for Fermi systems with account of three-body interactions

    Directory of Open Access Journals (Sweden)

    Yu.M. Poluektov

    2015-12-01

    Full Text Available On the basis of a microscopic model of self-consistent field, the thermodynamics of the many-particle Fermi system at finite temperatures with account of three-body interactions is built and the quasiparticle equations of motion are obtained. It is shown that the delta-like three-body interaction gives no contribution into the self-consistent field, and the description of three-body forces requires their nonlocality to be taken into account. The spatially uniform system is considered in detail, and on the basis of the developed microscopic approach general formulas are derived for the fermion's effective mass and the system's equation of state with account of contribution from three-body forces. The effective mass and pressure are numerically calculated for the potential of "semi-transparent sphere" type at zero temperature. Expansions of the effective mass and pressure in powers of density are obtained. It is shown that, with account of only pair forces, the interaction of repulsive character reduces the quasiparticle effective mass relative to the mass of a free particle, and the attractive interaction raises the effective mass. The question of thermodynamic stability of the Fermi system is considered and the three-body repulsive interaction is shown to extend the region of stability of the system with the interparticle pair attraction. The quasiparticle energy spectrum is calculated with account of three-body forces.

  7. Self-consistent model of the Rayleigh--Taylor instability in ablatively accelerated laser plasma

    International Nuclear Information System (INIS)

    Bychkov, V.V.; Golberg, S.M.; Liberman, M.A.

    1994-01-01

    A self-consistent approach to the problem of the growth rate of the Rayleigh--Taylor instability in laser accelerated targets is developed. The analytical solution of the problem is obtained by solving the complete system of the hydrodynamical equations which include both thermal conductivity and energy release due to absorption of the laser light. The developed theory provides a rigorous justification for the supplementary boundary condition in the limiting case of the discontinuity model. An analysis of the suppression of the Rayleigh--Taylor instability by the ablation flow is done and it is found that there is a good agreement between the obtained solution and the approximate formula σ = 0.9√gk - 3u 1 k, where g is the acceleration, u 1 is the ablation velocity. This paper discusses different regimes of the ablative stabilization and compares them with previous analytical and numerical works

  8. Thermal states of neutron stars with a consistent model of interior

    Science.gov (United States)

    Fortin, M.; Taranto, G.; Burgio, G. F.; Haensel, P.; Schulze, H.-J.; Zdunik, J. L.

    2018-04-01

    We model the thermal states of both isolated neutron stars and accreting neutron stars in X-ray transients in quiescence and confront them with observations. We use an equation of state calculated using realistic two-body and three-body nucleon interactions, and superfluid nucleon gaps obtained using the same microscopic approach in the BCS approximation. Consistency with low-luminosity accreting neutron stars is obtained, as the direct Urca process is operating in neutron stars with mass larger than 1.1 M⊙ for the employed equation of state. In addition, proton superfluidity and sufficiently weak neutron superfluidity, obtained using a scaling factor for the gaps, are necessary to explain the cooling of middle-aged neutron stars and to obtain a realistic distribution of neutron star masses.

  9. Consistently modeling the same movement strategy is more important than model skill level in observational learning contexts.

    Science.gov (United States)

    Buchanan, John J; Dean, Noah

    2014-02-01

    The experiment undertaken was designed to elucidate the impact of model skill level on observational learning processes. The task was bimanual circle tracing with a 90° relative phase lead of one hand over the other hand. Observer groups watched videos of either an instruction model, a discovery model, or a skilled model. The instruction and skilled model always performed the task with the same movement strategy, the right-arm traced clockwise and the left-arm counterclockwise around circle templates with the right-arm leading. The discovery model used several movement strategies (tracing-direction/hand-lead) during practice. Observation of the instruction and skilled model provided a significant benefit compared to the discovery model when performing the 90° relative phase pattern in a post-observation test. The observers of the discovery model had significant room for improvement and benefited from post-observation practice of the 90° pattern. The benefit of a model is found in the consistency with which that model uses the same movement strategy, and not within the skill level of the model. It is the consistency in strategy modeled that allows observers to develop an abstract perceptual representation of the task that can be implemented into a coordinated action. Theoretically, the results show that movement strategy information (relative motion direction, hand lead) and relative phase information can be detected through visual perception processes and be successfully mapped to outgoing motor commands within an observational learning context. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Developing a Modeling Tool Using Eclipse

    NARCIS (Netherlands)

    Kirtley, Nick; Waqas Kamal, Ahmad; Avgeriou, Paris

    2008-01-01

    Tool development using an open source platform provides autonomy to users to change, use, and develop cost-effective software with freedom from licensing requirements. However, open source tool development poses a number of challenges, such as poor documentation and continuous evolution. In this

  11. The Consistent Kinetics Porosity (CKP) Model: A Theory for the Mechanical Behavior of Moderately Porous Solids

    Energy Technology Data Exchange (ETDEWEB)

    BRANNON,REBECCA M.

    2000-11-01

    A theory is developed for the response of moderately porous solids (no more than {approximately}20% void space) to high-strain-rate deformations. The model is consistent because each feature is incorporated in a manner that is mathematically compatible with the other features. Unlike simple p-{alpha} models, the onset of pore collapse depends on the amount of shear present. The user-specifiable yield function depends on pressure, effective shear stress, and porosity. The elastic part of the strain rate is linearly related to the stress rate, with nonlinear corrections from changes in the elastic moduli due to pore collapse. Plastically incompressible flow of the matrix material allows pore collapse and an associated macroscopic plastic volume change. The plastic strain rate due to pore collapse/growth is taken normal to the yield surface. If phase transformation and/or pore nucleation are simultaneously occurring, the inelastic strain rate will be non-normal to the yield surface. To permit hardening, the yield stress of matrix material is treated as an internal state variable. Changes in porosity and matrix yield stress naturally cause the yield surface to evolve. The stress, porosity, and all other state variables vary in a consistent manner so that the stress remains on the yield surface throughout any quasistatic interval of plastic deformation. Dynamic loading allows the stress to exceed the yield surface via an overstress ordinary differential equation that is solved in closed form for better numerical accuracy. The part of the stress rate that causes no plastic work (i.e-, the part that has a zero inner product with the stress deviator and the identity tensor) is given by the projection of the elastic stressrate orthogonal to the span of the stress deviator and the identity tensor.The model, which has been numerically implemented in MIG format, has been exercised under a wide array of extremal loading and unloading paths. As will be discussed in a companion

  12. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  13. Isotopes as validation tools for global climate models

    International Nuclear Information System (INIS)

    Henderson-Sellers, A.

    2001-01-01

    Global Climate Models (GCMs) are the predominant tool with which we predict the future climate. In order that people can have confidence in such predictions, GCMs require validation. As almost every available item of meteorological data has been exploited in the construction and tuning of GCMs to date, independent validation is very difficult. This paper explores the use of isotopes as a novel and fully independent means of evaluating GCMs. The focus is the Amazon Basin which has a long history of isotope collection and analysis and also of climate modelling: both having been reported for over thirty years. Careful consideration of the results of GCM simulations of Amazonian deforestation and climate change suggests that the recent stable isotope record is more consistent with the predicted effects of greenhouse warming, possibly combined with forest removal, than with GCM predictions of the effects of deforestation alone

  14. A fast-simplified wheel-rail contact model consistent with perfect plastic materials

    Science.gov (United States)

    Sebès, Michel; Chevalier, Luc; Ayasse, Jean-Bernard; Chollet, Hugues

    2012-09-01

    A method is described which is an extension of rolling contact models with respect to plasticity. This new method, which is an extension of the STRIPES semi-Hertzian (SH) model, has been implemented in a multi-body-system (MBS) package and does not result in a longer execution time than the STRIPES SH model [J.B. Ayasse and H. Chollet, Determination of the wheel-rail contact patch in semi-Hertzian conditions, Veh. Syst. Dyn. 43(3) (2005), pp. 161-172]. High speed of computation is obtained by some hypotheses about the plastic law, the shape of stresses, the locus of the maximum stress and the slip. Plasticity does not change the vehicle behaviour but there is a need for an extension of rolling contact models with respect to plasticity as far as fatigue analysis of rail is concerned: rolling contact fatigue may be addressed via the finite element method (FEM) including material non-linearities, where loads are the contact stresses provided by the post-processing of MBS results [K. Dang Van, M.H. Maitournam, Z. Moumni, and F. Roger, A comprehensive approach for modeling fatigue and fracture of rails, Eng. Fract. Mech. 76 (2009), pp. 2626-2636]. In STRIPES, like in other MBS models, contact stresses may exceed the plastic yield criterion, leading to wrong results in the subsequent FEM analysis. With the proposed method, contact stresses are kept consistent with a perfect plastic law, avoiding these problems. The method is benchmarked versus non-linear FEM in Hertzian geometries. As a consequence of taking plasticity into account, contact patch area is bigger than the elastic one. In accordance with FEM results, a different ellipse aspect ratio than the one predicted by Hertz theory was also found and finally pressure does not exceed the threshold prescribed by the plastic law. The method also provides more exact results with non-Hertzian geometries. The new approach is finally compared with non-linear FEM in a tangent case with a unidirectional load and a complete

  15. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  16. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling.

    Science.gov (United States)

    Pera, H; Kleijn, J M; Leermakers, F A M

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus kc and k̄ and the preferred monolayer curvature J(0)(m), and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of kc and the area compression modulus kA are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k̄ and J(0)(m) can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k̄ and J(0)(m) change sign with relevant parameter changes. Although typically k̄ 0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks.

  17. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    International Nuclear Information System (INIS)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M.

    2014-01-01

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k c and k ¯ and the preferred monolayer curvature J 0 m , and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k c and the area compression modulus k A are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k ¯ and J 0 m can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k ¯ and J 0 m change sign with relevant parameter changes. Although typically k ¯ 0 m ≫0, especially at low ionic strengths. We anticipate that these changes lead to unstable membranes as these become vulnerable to pore formation or disintegration into lipid disks

  18. Deconvolution of experimental data of aggregates using self-consistent polycrystal models

    International Nuclear Information System (INIS)

    Tome, C.N.; Christodoulou, N.; Holt, R.; Woo, C.H.; Lebensohn, R.A.; Turner, P.A.

    1994-01-01

    We present in this work an overview of self-consistent polycrystal models, together with a comprehensive body of work where those models are used to characterize the response of zirconium alloy aggregates under several deformation regimes. In particular, we address here: evolution of internal stresses associated with heat treatments (thermo-elastic regime) and small deformations (elasto-plastic regime); dimensional changes induced by creep and growth during neutron irradiation (visco-elastic regime); texture development associated with forming operations (visco-plastic regime). In each case we emphasize the effect of texture and internal stresses in the observed response of the aggregate, and from the comparison of the predictions with experimental evidence we determine the single crystal properties from the macroscopic response of the polycrystal. The latter approach is particularly useful in the case of zirconium alloys, a material for which it is not possible to grow single crystals and thus directly measure their single crystal properties. Specifically, we infer information concerning: the stress-free lattice parameters and thermal coefficients of the hexagonal crystals; the irradiation creep compliances and growth coefficients; the crystallographic deformation modes and their associated critical stresses. (au) (38 refs.)

  19. Hazard-consistent ground motions generated with a stochastic fault-rupture model

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Akemi, E-mail: nishida.akemi@jaea.go.jp [Center for Computational Science and e-Systems, Japan Atomic Energy Agency, 178-4-4, Wakashiba, Kashiwa, Chiba 277-0871 (Japan); Igarashi, Sayaka, E-mail: igrsyk00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Sakamoto, Shigehiro, E-mail: shigehiro.sakamoto@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Uchiyama, Yasuo, E-mail: yasuo.uchiyama@sakura.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Yamamoto, Yu, E-mail: ymmyu-00@pub.taisei.co.jp [Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama 245-0051 (Japan); Muramatsu, Ken, E-mail: kmuramat@tcu.ac.jp [Department of Nuclear Safety Engineering, Tokyo City University, 1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557 (Japan); Takada, Tsuyoshi, E-mail: takada@load.arch.t.u-tokyo.ac.jp [Department of Architecture, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-12-15

    Conventional seismic probabilistic risk assessments (PRAs) of nuclear power plants consist of probabilistic seismic hazard and fragility curves. Even when earthquake ground-motion time histories are required, they are generated to fit specified response spectra, such as uniform hazard spectra at a specified exceedance probability. These ground motions, however, are not directly linked with seismic-source characteristics. In this context, the authors propose a method based on Monte Carlo simulations to generate a set of input ground-motion time histories to develop an advanced PRA scheme that can explain exceedance probability and the sequence of safety-functional loss in a nuclear power plant. These generated ground motions are consistent with seismic hazard at a reference site, and their seismic-source characteristics can be identified in detail. Ground-motion generation is conducted for a reference site, Oarai in Japan, the location of a hypothetical nuclear power plant. A total of 200 ground motions are generated, ranging from 700 to 1100 cm/s{sup 2} peak acceleration, which corresponds to a 10{sup −4} to 10{sup −5} annual exceedance frequency. In the ground-motion generation, seismic sources are selected according to their hazard contribution at the site, and Monte Carlo simulations with stochastic parameters for the seismic-source characteristics are then conducted until ground motions with the target peak acceleration are obtained. These ground motions are selected so that they are consistent with the hazard. Approximately 110,000 simulations were required to generate 200 ground motions with these peak accelerations. Deviations of peak ground motion acceleration generated for 1000–1100 cm/s{sup 2} range from 1.5 to 3.0, where the deviation is evaluated with peak ground motion accelerations generated from the same seismic source. Deviations of 1.0 to 3.0 for stress drops, one of the stochastic parameters of seismic-source characteristics, are required to

  20. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  1. Modeling and Simulation Tools for Heavy Lift Airships

    Science.gov (United States)

    Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John

    2016-01-01

    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.

  2. Modeling and Tool Wear in Routing of CFRP

    International Nuclear Information System (INIS)

    Iliescu, D.; Fernandez, A.; Gutierrez-Orrantia, M. E.; Lopez de Lacalle, L. N.; Girot, F.

    2011-01-01

    This paper presents the prediction and evaluation of feed force in routing of carbon composite material. In order to extend tool life and improve quality of the machined surface, a better understanding of uncoated and coated tool behaviors is required. This work describes (1) the optimization of the geometry of multiple teeth tools minimizing the tool wear and the feed force, (2) the optimization of tool coating and (3) the development of a phenomenological model between the feed force, the routing parameters and the tool wear. The experimental results indicate that the feed rate, the cutting speed and the tool wear are the most significant factors affecting the feed force. In the case of multiple teeth tools, a particular geometry with 14 teeth right helix right cut and 11 teeth left helix right cut gives the best results. A thick AlTiN coating or a diamond coating can dramatically improve the tool life while minimizing the axial force, roughness and delamination. A wear model has then been developed based on an abrasive behavior of the tool. The model links the feed rate to the tool geometry parameters (tool diameter), to the process parameters (feed rate, cutting speed and depth of cut) and to the wear. The model presented has been verified by experimental tests.

  3. Toward self-consistent tectono-magmatic numerical model of rift-to-ridge transition

    Science.gov (United States)

    Gerya, Taras; Bercovici, David; Liao, Jie

    2017-04-01

    Natural data from modern and ancient lithospheric extension systems suggest three-dimensional (3D) character of deformation and complex relationship between magmatism and tectonics during the entire rift-to-ridge transition. Therefore, self-consistent high-resolution 3D magmatic-thermomechanical numerical approaches stand as a minimum complexity requirement for modeling and understanding of this transition. Here we present results from our new high-resolution 3D finite-difference marker-in-cell rift-to-ridge models, which account for magmatic accretion of the crust and use non-linear strain-weakened visco-plastic rheology of rocks that couples brittle/plastic failure and ductile damage caused by grain size reduction. Numerical experiments suggest that nucleation of rifting and ridge-transform patterns are decoupled in both space and time. At intermediate stages, two patterns can coexist and interact, which triggers development of detachment faults, failed rift arms, hyper-extended margins and oblique proto-transforms. En echelon rift patterns typically develop in the brittle upper-middle crust whereas proto-ridge and proto-transform structures nucleate in the lithospheric mantle. These deep proto-structures propagate upward, inter-connect and rotate toward a mature orthogonal ridge-transform patterns on the timescale of millions years during incipient thermal-magmatic accretion of the new oceanic-like lithosphere. Ductile damage of the extending lithospheric mantle caused by grain size reduction assisted by Zenner pinning plays critical role in rift-to-ridge transition by stabilizing detachment faults and transform structures. Numerical results compare well with observations from incipient spreading regions and passive continental margins.

  4. The Devil in the Dark: A Fully Self-Consistent Seismic Model for Venus

    Science.gov (United States)

    Unterborn, C. T.; Schmerr, N. C.; Irving, J. C. E.

    2017-12-01

    The bulk composition and structure of Venus is unknown despite accounting for 40% of the mass of all the terrestrial planets in our Solar System. As we expand the scope of planetary science to include those planets around other stars, the lack of measurements of basic planetary properties such as moment of inertia, core-size and thermal profile for Venus hinders our ability to compare the potential uniqueness of the Earth and our Solar System to other planetary systems. Here we present fully self-consistent, whole-planet density and seismic velocity profiles calculated using the ExoPlex and BurnMan software packages for various potential Venusian compositions. Using these models, we explore the seismological implications of the different thermal and compositional initial conditions, taking into account phase transitions due to changes in pressure, temperature as well as composition. Using mass-radius constraints, we examine both the centre frequencies of normal mode oscillations and the waveforms and travel times of body waves. Seismic phases which interact with the core, phase transitions in the mantle, and shallower parts of Venus are considered. We also consider the detectability and transmission of these seismic waves from within the dense atmosphere of Venus. Our work provides coupled compositional-seismological reference models for the terrestrial planet in our Solar System of which we know the least. Furthermore, these results point to the potential wealth of fundamental scientific insights into Venus and Earth, as well as exoplanets, which could be gained by including a seismometer on future planetary exploration missions to Venus, the devil in the dark.

  5. Self-consistent model of a solid for the description of lattice and magnetic properties

    International Nuclear Information System (INIS)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2017-01-01

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  6. Self-consistent evolution models for slow CMEs up to 1 AU

    Science.gov (United States)

    Poedts, S.; Pomoell, J.; Zuccarello, F. P.

    2016-02-01

    Our 2.5D (axi-symmetric) self-consistent numerical magneto-hydrodynamics (MHD) models for the onset of CMEs under solar minimum conditions and for their interaction with coronal streamers and subsequent evolution up to 1 AU, are presented and discussed. The CMEs are initiated by magnetic flux emergence/cancellation and/or by shearing the magnetic foot points of a magnetic arcade which is positioned above or below the equatorial plane and embedded in a larger helmet streamer. The overlying magnetic streamer field then deflects the CMEs towards the equator, and the deflection path is dependent on the driving velocity. The core of the CME, created during the onset process, contains a magnetic flux rope and the synthetic white light images often show the typical three-part CME structure. The resulting CMEs propagate only slightly faster than the background solar wind, but this small excess speed is high enough to create a fast MHD shock wave from a distance of 0.25 AU onwards. At 1 AU, the plasma shows the typical characteristics of a magnetic cloud, and the simulated data are in good agreement with the (ACE) observations.

  7. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  8. A fully kinetic, self-consistent particle simulation model of the collisionless plasma--sheath region

    International Nuclear Information System (INIS)

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C.

    1990-01-01

    A fully kinetic particle-in-cell (PIC) model is used to self-consistently determine the steady-state potential profile in a collisionless plasma that contacts a floating, absorbing boundary. To balance the flow of particles to the wall, a distributed source region is used to inject particles into the one-dimensional system. The effect of the particle source distribution function on the source region and collector sheath potential drops, and particle velocity distributions is investigated. The ion source functions proposed by Emmert et al. [Phys. Fluids 23, 803 (1980)] and Bissell and Johnson [Phys. Fluids 30, 779 (1987)] (and various combinations of these) are used for the injection of both ions and electrons. The values of the potential drops obtained from the PIC simulations are compared to those from the theories of Emmert et al., Bissell and Johnson, and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)], all of which assume that the electron density is related to the plasma potential via the Boltzmann relation. The values of the source region and total potential drop are found to depend on the choice of the electron source function, as well as the ion source function. The question of an infinite electric field at the plasma--sheath interface, which arises in the analyses of Bissell and Johnson and Scheuer and Emmert, is also addressed

  9. Self-consistent model of a solid for the description of lattice and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Balcerzak, T., E-mail: t_balcerzak@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Szałowski, K., E-mail: kszalowski@uni.lodz.pl [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Łódź, ulica Pomorska 149/153, 90-236 Łódź (Poland); Jaščur, M. [Department of Theoretical Physics and Astrophysics, Faculty of Science, P. J. Šáfárik University, Park Angelinum 9, 041 54 Košice (Slovakia)

    2017-03-15

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  10. Integrating decision management with UML modeling concepts and tools

    DEFF Research Database (Denmark)

    Könemann, Patrick

    2009-01-01

    Numerous design decisions including architectural decisions are made while developing a software system, which influence the architecture of the system as well as subsequent decisions. Several tools already exist for managing design decisions, i.e. capturing, documenting, and maintaining them......, but also for guiding the user by proposing subsequent decisions. In model-based software development, many decisions directly affect the structural and behavioral models used to describe and develop a software system and its architecture. However, the decisions are typically not connected to these models....... In this paper, we propose an integration of a decision management and a UML-based modeling tool, based on use cases we distill from an example: the UML modeling tool shall show all decisions related to a model and allow extending or updating them; the decision management tool shall trigger the modeling tool...

  11. Models and Modelling Tools for Chemical Product and Process Design

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    2016-01-01

    -process design. Illustrative examples highlighting the need for efficient model-based systems will be presented, where the need for predictive models for innovative chemical product-process design will be highlighted. The examples will cover aspects of chemical product-process design where the idea of the grand......The design, development and reliability of a chemical product and the process to manufacture it, need to be consistent with the end-use characteristics of the desired product. One of the common ways to match the desired product-process characteristics is through trial and error based experiments......, which can be expensive and time consuming. An alternative approach is the use of a systematic model-based framework according to an established work-flow in product-process design, replacing some of the time consuming and/or repetitive experimental steps. The advantages of the use of a model...

  12. Multiscale Modeling at Nanointerfaces: Polymer Thin Film Materials Discovery via Thermomechanically Consistent Coarse Graining

    Science.gov (United States)

    Hsu, David D.

    Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational

  13. Consistency of land surface reflectance data: presentation of a new tool and case study with Formosat-2, SPOT-4 and Landsat-5/7/8 data

    Science.gov (United States)

    Claverie, M.; Vermote, E.; Franch, B.; Huc, M.; Hagolle, O.; Masek, J.

    2013-12-01

    Maintaining consistent dataset of Surface Reflectance (SR) data derived from the large panel of in-orbit sensors is an important challenge to ensure long term analysis of earth observation data. Continuous validation of such SR products through comparison with a reference dataset is thus an important challenge. Validating with in situ or airborne SR data is not easy since the sensors rarely match completely the same spectral, spatial and directional characteristics of the satellite measurement. Inter-comparison between satellites sensors data appears as a valuable tool to maintain a long term consistency of the data. However, satellite data are acquired at various times of the day (i.e., variation of the atmosphere content) and within a relative large range of geometry (view and sun angles). Also, even if band-to-band spectral characteristics of optical sensors are closed, they rarely have identical spectral responses. As the results, direct comparisons without consideration of these differences are poorly suitable. In this study, we suggest a new systematic method to assess land optical SR data from high to medium resolution sensors. We used MODIS SR products (MO/YD09CMG) which benefit from a long term calibration/validation process, to assess SR from 3 sensors data: Formosat-2 (280 scenes 24x24km - 5 sites), SPOT-4 (62 scenes 120x60km - 1 site) and Landsat-5/7 (104 180x180km scenes - 50 sites). The main issue concerns the difference in term of geometry acquisition between MODIS and compared sensors data. We used the VJB model (Vermote et al. 2009, TGRS) to correct MODIS SR from BRDF effects and to simulate SR at the corresponding geometry (view and sun angles) of each pixel of the compared sensor data. The comparison is done at the CMG spatial resolution (0.05°) which ensures a constant field-of-view and negligible geometrical errors. Figure 1 displays the summary of the NIR results through APU graphs where metrics A, P and U stands for Accuracy, Precision and

  14. Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

    Science.gov (United States)

    Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen

    2016-07-01

    The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our

  15. Student Model Tools Code Release and Documentation

    DEFF Research Database (Denmark)

    Johnson, Matthew; Bull, Susan; Masci, Drew

    of its strengths and areas of improvement (Section 6). Several key appendices are attached to this report including user manuals for teacher and students (Appendix 3). Fundamentally, all relevant information is included in the report for those wishing to do further development work with the tool...

  16. Achieving Consistent Multiple Daily Low-Dose Bacillus anthracis Spore Inhalation Exposures in the Rabbit Model

    Science.gov (United States)

    2012-06-13

    generating , sizing, quan- tifying, and sampling aerosols of inert materials also hold true for bioaerosols , i.e., for aerosolizing materials of...characterization, traditional bioaerosol generation and collection techniques can be employed to achieve consistent and reproducible low-dose expo- sures... generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses to rabbits. The pilot feasibility characterization

  17. Consistent Two-Equation Closure Modelling for Atmospheric Research: Buoyancy and Vegetation Implementations

    DEFF Research Database (Denmark)

    Sogachev, Andrey; Kelly, Mark C.; Leclerc, Monique Y.

    2012-01-01

    A self-consistent two-equation closure treating buoyancy and plant drag effects has been developed, through consideration of the behaviour of the supplementary equation for the length-scale-determining variable in homogeneous turbulent flow. Being consistent with the canonical flow regimes of gri...

  18. Microencapsulation of model oil in wall matrices consisting of SPI and maltodextrins

    Directory of Open Access Journals (Sweden)

    Moshe Rosenberg

    2016-01-01

    Full Text Available Microencapsulation can provide means to entrap, protect and deliver nutritional lipids and related compounds that are susceptible to deterioration. The encapsulation of high lipid loads represents a challenge. The research has investigated the encapsulation by spray drying of a model oil, at a core load of 25–60%, in wall systems consisting of 2.5–10% SPI and 17.5–10% maltodextrin. In general, core-in-wall-emulsions exhibited unimodal PSD and a mean particle diameter < 0.5 µm. Dry microcapsules ranged in diameter from about 5 to less than 50 µm and exhibited only a limited extent of surface indentation. Core domains, in the form of protein-coated droplets, were embedded throughout the wall matrices and no visible cracks connecting these domains with the environment could be detected. Core retention ranged from 72.2 to 95.9% and was significantly affected (p < 0.05 by a combined influence of wall composition and initial core load. Microencapsulation efficiency, MEE, ranged from 25.4 to 91.6% and from 12.4 to 91.4% after 5 and 30 min of extraction, respectively (p < 0.05. MEE was significantly influenced by wall composition, extraction time, initial core load and DE value of the maltodextrins. Results indicated that wall solutions containing as low as 2.5% SPI and 17.5% maltodextrin were very effective as microencapsulating agents for high oil load. Results highlighted the functionality of SPI as microencapsulating agent in food applications and indicated the importance of carefully designing the composition of core-in-wall-emulsions.

  19. Computer-Aided Modelling Methods and Tools

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    . To illustrate these concepts a number of examples are used. These include models of polymer membranes, distillation and catalyst behaviour. Some detailed considerations within these models are stated and discussed. Model generation concepts are introduced and ideas of a reference model are given that shows...

  20. Large scale experiments as a tool for numerical model development

    DEFF Research Database (Denmark)

    Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper

    2003-01-01

    for improvement of the reliability of physical model results. This paper demonstrates by examples that numerical modelling benefits in various ways from experimental studies (in large and small laboratory facilities). The examples range from very general hydrodynamic descriptions of wave phenomena to specific......Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...... hydrodynamic interaction with structures. The examples also show that numerical model development benefits from international co-operation and sharing of high quality results....

  1. Advanced reach tool (ART) : Development of the mechanistic model

    NARCIS (Netherlands)

    Fransman, W.; Tongeren, M. van; Cherrie, J.W.; Tischer, M.; Schneider, T.; Schinkel, J.; Kromhout, H.; Warren, N.; Goede, H.; Tielemans, E.

    2011-01-01

    This paper describes the development of the mechanistic model within a collaborative project, referred to as the Advanced REACH Tool (ART) project, to develop a tool to model inhalation exposure for workers sharing similar operational conditions across different industries and locations in Europe.

  2. Storm Water Management Model Climate Adjustment Tool (SWMM-CAT)

    Science.gov (United States)

    The US EPA’s newest tool, the Stormwater Management Model (SWMM) – Climate Adjustment Tool (CAT) is meant to help municipal stormwater utilities better address potential climate change impacts affecting their operations. SWMM, first released in 1971, models hydrology and hydrauli...

  3. Self-consistent tight-binding model of B and N doping in graphene

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Pedersen, Jesper Goor

    2013-01-01

    . The impurity potential depends sensitively on the impurity occupancy, leading to a self-consistency requirement. We solve this problem using the impurity Green's function and determine the self-consistent local density of states at the impurity site and, thereby, identify acceptor and donor energy resonances.......Boron and nitrogen substitutional impurities in graphene are analyzed using a self-consistent tight-binding approach. An analytical result for the impurity Green's function is derived taking broken electron-hole symmetry into account and validated by comparison to numerical diagonalization...

  4. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  5. The scientific modeling assistant: An advanced software tool for scientific model building

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael H.

    1991-01-01

    Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.

  6. Assessing the Accuracy and Consistency of Language Proficiency Classification under Competing Measurement Models

    Science.gov (United States)

    Zhang, Bo

    2010-01-01

    This article investigates how measurement models and statistical procedures can be applied to estimate the accuracy of proficiency classification in language testing. The paper starts with a concise introduction of four measurement models: the classical test theory (CTT) model, the dichotomous item response theory (IRT) model, the testlet response…

  7. Development of hydrogeological modelling tools based on NAMMU

    International Nuclear Information System (INIS)

    Marsic, N.; Hartley, L.; Jackson, P.; Poole, M.; Morvik, A.

    2001-09-01

    A number of relatively sophisticated hydrogeological models were developed within the SR 97 project to handle issues such as nesting of scales and the effects of salinity. However, these issues and others are considered of significant importance and generality to warrant further development of the hydrogeological methodology. Several such developments based on the NAMMU package are reported here: - Embedded grid: nesting of the regional- and site-scale models within the same numerical model has given greater consistency in the structural model representation and in the flow between scales. Since there is a continuous representation of the regional- and site-scales the modelling of pathways from the repository no longer has to be contained wholly by the site-scale region. This allows greater choice in the size of the site-scale. - Implicit Fracture Zones (IFZ): this method of incorporating the structural model is very efficient and allows changes to either the mesh or fracture zones to be implemented quickly. It also supports great flexibility in the properties of the structures and rock mass. - Stochastic fractures: new functionality has been added to IFZ to allow arbitrary combinations of stochastic or deterministic fracture zones with the rock-mass. Whether a fracture zone is modelled deterministically or stochastically its statistical properties can be defined independently. - Stochastic modelling: efficient methods for Monte-Carlo simulation of stochastic permeability fields have been implemented and tested on SKB's computers. - Visualisation: the visualisation tool Avizier for NAMMU has been enhanced such that it is efficient for checking models and presentation. - PROPER interface: NAMMU outputs pathlines in PROPER format so that it can be included in PA workflow. The developed methods are illustrated by application to stochastic nested modelling of the Beberg site using data from SR 97. The model properties were in accordance with the regional- and site

  8. Scratch as a computational modelling tool for teaching physics

    Science.gov (United States)

    Lopez, Victor; Hernandez, Maria Isabel

    2015-05-01

    The Scratch online authoring tool, which features a simple programming language that has been adapted to primary and secondary students, is being used more and more in schools as it offers students and teachers the opportunity to use a tool to build scientific models and evaluate their behaviour, just as can be done with computational modelling programs. In this article, we briefly discuss why Scratch could be a useful tool for computational modelling in the primary or secondary physics classroom, and we present practical examples of how it can be used to build a model.

  9. Shape: A 3D Modeling Tool for Astrophysics.

    Science.gov (United States)

    Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus

    2011-04-01

    We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.

  10. Slab2 - Updated Subduction Zone Geometries and Modeling Tools

    Science.gov (United States)

    Moore, G.; Hayes, G. P.; Portner, D. E.; Furtney, M.; Flamme, H. E.; Hearne, M. G.

    2017-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0), is a highly utilized dataset that has been applied to a wide range of geophysical problems. In 2017, these models have been improved and expanded upon as part of the Slab2 modeling effort. With a new data driven approach that can be applied to a broader range of tectonic settings and geophysical data sets, we have generated a model set that will serve as a more comprehensive, reliable, and reproducible resource for three-dimensional slab geometries at all of the world's convergent margins. The newly developed framework of Slab2 is guided by: (1) a large integrated dataset, consisting of a variety of geophysical sources (e.g., earthquake hypocenters, moment tensors, active-source seismic survey images of the shallow slab, tomography models, receiver functions, bathymetry, trench ages, and sediment thickness information); (2) a dynamic filtering scheme aimed at constraining incorporated seismicity to only slab related events; (3) a 3-D data interpolation approach which captures both high resolution shallow geometries and instances of slab rollback and overlap at depth; and (4) an algorithm which incorporates uncertainties of contributing datasets to identify the most probable surface depth over the extent of each subduction zone. Further layers will also be added to the base geometry dataset, such as historic moment release, earthquake tectonic providence, and interface coupling. Along with access to several queryable data formats, all components have been wrapped into an open source library in Python, such that suites of updated models can be released as further data becomes available. This presentation will discuss the extent of Slab2 development, as well as the current availability of the model and modeling tools.

  11. Spatial Modeling Tools for Cell Biology

    Science.gov (United States)

    2006-10-01

    of the cells total volume. The cytosol contains thousands of enzymes that are responsible for the catalyzation of glycolysis and gluconeogenesis ... dog , swine and pig models [Pantely, 1990, 1991; Stanley 1992]. In these studies, blood flow through the left anterior descending (LAD) coronary...perfusion. In conclusion, even thought our model falls within the (rather large) error bounds of experimental dog , pig and swine models, the

  12. Hydrologic consistency as a basis for assessing complexity of monthly water balance models for the continental United States

    Science.gov (United States)

    Martinez, Guillermo F.; Gupta, Hoshin V.

    2011-12-01

    Methods to select parsimonious and hydrologically consistent model structures are useful for evaluating dominance of hydrologic processes and representativeness of data. While information criteria (appropriately constrained to obey underlying statistical assumptions) can provide a basis for evaluating appropriate model complexity, it is not sufficient to rely upon the principle of maximum likelihood (ML) alone. We suggest that one must also call upon a "principle of hydrologic consistency," meaning that selected ML structures and parameter estimates must be constrained (as well as possible) to reproduce desired hydrological characteristics of the processes under investigation. This argument is demonstrated in the context of evaluating the suitability of candidate model structures for lumped water balance modeling across the continental United States, using data from 307 snow-free catchments. The models are constrained to satisfy several tests of hydrologic consistency, a flow space transformation is used to ensure better consistency with underlying statistical assumptions, and information criteria are used to evaluate model complexity relative to the data. The results clearly demonstrate that the principle of consistency provides a sensible basis for guiding selection of model structures and indicate strong spatial persistence of certain model structures across the continental United States. Further work to untangle reasons for model structure predominance can help to relate conceptual model structures to physical characteristics of the catchments, facilitating the task of prediction in ungaged basins.

  13. Studying the Consistency between and within the Student Mental Models for Atomic Structure

    Science.gov (United States)

    Zarkadis, Nikolaos; Papageorgiou, George; Stamovlasis, Dimitrios

    2017-01-01

    Science education research has revealed a number of student mental models for atomic structure, among which, the one based on Bohr's model seems to be the most dominant. The aim of the current study is to investigate the coherence of these models when students apply them for the explanation of a variety of situations. For this purpose, a set of…

  14. Maier-Saupe model of polymer nematics: Comparing free energies calculated with Self Consistent Field theory and Monte Carlo simulations.

    Science.gov (United States)

    Greco, Cristina; Jiang, Ying; Chen, Jeff Z Y; Kremer, Kurt; Daoulas, Kostas Ch

    2016-11-14

    Self Consistent Field (SCF) theory serves as an efficient tool for studying mesoscale structure and thermodynamics of polymeric liquid crystals (LC). We investigate how some of the intrinsic approximations of SCF affect the description of the thermodynamics of polymeric LC, using a coarse-grained model. Polymer nematics are represented as discrete worm-like chains (WLC) where non-bonded interactions are defined combining an isotropic repulsive and an anisotropic attractive Maier-Saupe (MS) potential. The range of the potentials, σ, controls the strength of correlations due to non-bonded interactions. Increasing σ (which can be seen as an increase of coarse-graining) while preserving the integrated strength of the potentials reduces correlations. The model is studied with particle-based Monte Carlo (MC) simulations and SCF theory which uses partial enumeration to describe discrete WLC. In MC simulations the Helmholtz free energy is calculated as a function of strength of MS interactions to obtain reference thermodynamic data. To calculate the free energy of the nematic branch with respect to the disordered melt, we employ a special thermodynamic integration (TI) scheme invoking an external field to bypass the first-order isotropic-nematic transition. Methodological aspects which have not been discussed in earlier implementations of the TI to LC are considered. Special attention is given to the rotational Goldstone mode. The free-energy landscape in MC and SCF is directly compared. For moderate σ the differences highlight the importance of local non-bonded orientation correlations between segments, which SCF neglects. Simple renormalization of parameters in SCF cannot compensate the missing correlations. Increasing σ reduces correlations and SCF reproduces well the free energy in MC simulations.

  15. Self-consistent field modeling of linear non-ionic micelles

    NARCIS (Netherlands)

    Jodar-Reyes, A.B.; Leermakers, F.A.M.

    2006-01-01

    A self-consistent field theory is used to predict structural, mechanical, and thermodynamical properties of linear micelles of selected nonionic surfactants of the type CnEm. Upon increase in surfactant concentration the sudden micelle shape transition from spherical to cylindrical (second critical

  16. Pedagogical Approaches Used by Faculty in Holland's Model Environments: The Role of Environmental Consistency

    Science.gov (United States)

    Smart, John C.; Ethington, Corinna A.; Umbach, Paul D.

    2009-01-01

    This study examines the extent to which faculty members in the disparate academic environments of Holland's theory devote different amounts of time in their classes to alternative pedagogical approaches and whether such differences are comparable for those in "consistent" and "inconsistent" environments. The findings show wide variations in the…

  17. Plasma Processes: A self-consistent kinetic modeling of a 1-D ...

    Indian Academy of Sciences (India)

    A self-consistent kinetic treatment is presented here, where the Boltzmann equation is solved for a particle conserving Krook collision operator. The resulting equations have been implemented numerically. The treatment solves for the entire quasineutral column, making no assumptions about mfp/, where mfp is the ...

  18. Towards a generalized energy prediction model for machine tools.

    Science.gov (United States)

    Bhinge, Raunak; Park, Jinkyoo; Law, Kincho H; Dornfeld, David A; Helu, Moneer; Rachuri, Sudarsan

    2017-04-01

    Energy prediction of machine tools can deliver many advantages to a manufacturing enterprise, ranging from energy-efficient process planning to machine tool monitoring. Physics-based, energy prediction models have been proposed in the past to understand the energy usage pattern of a machine tool. However, uncertainties in both the machine and the operating environment make it difficult to predict the energy consumption of the target machine reliably. Taking advantage of the opportunity to collect extensive, contextual, energy-consumption data, we discuss a data-driven approach to develop an energy prediction model of a machine tool in this paper. First, we present a methodology that can efficiently and effectively collect and process data extracted from a machine tool and its sensors. We then present a data-driven model that can be used to predict the energy consumption of the machine tool for machining a generic part. Specifically, we use Gaussian Process (GP) Regression, a non-parametric machine-learning technique, to develop the prediction model. The energy prediction model is then generalized over multiple process parameters and operations. Finally, we apply this generalized model with a method to assess uncertainty intervals to predict the energy consumed to machine any part using a Mori Seiki NVD1500 machine tool. Furthermore, the same model can be used during process planning to optimize the energy-efficiency of a machining process.

  19. Consistent and Clear Reporting of Results from Diverse Modeling Techniques: The A3 Method

    Directory of Open Access Journals (Sweden)

    Scott Fortmann-Roe

    2015-08-01

    Full Text Available The measurement and reporting of model error is of basic importance when constructing models. Here, a general method and an R package, A3, are presented to support the assessment and communication of the quality of a model fit along with metrics of variable importance. The presented method is accurate, robust, and adaptable to a wide range of predictive modeling algorithms. The method is described along with case studies and a usage guide. It is shown how the method can be used to obtain more accurate models for prediction and how this may simultaneously lead to altered inferences and conclusions about the impact of potential drivers within a system.

  20. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model

    Directory of Open Access Journals (Sweden)

    Roy E Barnewall

    2012-06-01

    Full Text Available Repeated low-level exposures to Bacillus anthracis could occur before or after the remediation of an environmental release. This is especially true for persistent agents such as Bacillus anthracis spores, the causative agent of anthrax. Studies were conducted to examine aerosol methods needed for consistent daily low aerosol concentrations to deliver a low-dose (less than 106 colony forming units (CFU of B. anthracis spores and included a pilot feasibility characterization study, acute exposure study, and a multiple fifteen day exposure study. This manuscript focuses on the state-of-the-science aerosol methodologies used to generate and aerosolize consistent daily low aerosol concentrations and resultant low inhalation doses. The pilot feasibility characterization study determined that the aerosol system was consistent and capable of producing very low aerosol concentrations. In the acute, single day exposure experiment, targeted inhaled doses of 1 x 102, 1 x 103, 1 x 104, and 1 x 105 CFU were used. In the multiple daily exposure experiment, rabbits were exposed multiple days to targeted inhaled doses of 1 x 102, 1 x 103, and 1 x 104 CFU. In all studies, targeted inhaled doses remained fairly consistent from rabbit to rabbit and day to day. The aerosol system produced aerosolized spores within the optimal mass median aerodynamic diameter particle size range to reach deep lung alveoli. Consistency of the inhaled dose was aided by monitoring and recording respiratory parameters during the exposure with real-time plethysmography. Overall, the presented results show that the animal aerosol system was stable and highly reproducible between different studies and multiple exposure days.

  1. A model of tool wear monitoring system for turning

    OpenAIRE

    Šimunović, Goran; Ficko, Mirko; Šarić, Tomislav; Milošević, Mijodrag; Antić, Aco

    2015-01-01

    Acquiring high-quality and timely information on the tool wear condition in real time, presents a necessary prerequisite for identification of tool wear degree, which significantly improves the stability and quality of the machining process. Defined in this paper is a model of tool wear monitoring system with special emphasis on the module for acquisition and processing of vibration acceleration signal by applying discrete wavelet transformations (DWT) in signal decomposition. The paper prese...

  2. Ensuring consistency and persistence to the Quality Information Model - The role of the GeoViQua Broker

    Science.gov (United States)

    Bigagli, Lorenzo; Papeschi, Fabrizio; Nativi, Stefano; Bastin, Lucy; Masó, Joan

    2013-04-01

    GeoViQua (QUAlity aware VIsualisation for the Global Earth Observation System of Systems) is an FP7 project aiming at complementing the Global Earth Observation System of Systems (GEOSS) with rigorous data quality specifications and quality-aware capabilities, in order to improve reliability in scientific studies and policy decision-making. GeoViQua main scientific and technical objective is to enhance the GEOSS Common Infrastructure (GCI) providing the user community with innovative quality-aware search and visualization tools, which will be integrated in the GEOPortal, as well as made available to other end-user interfaces. To this end, GeoViQua will promote the extension of the current standard metadata for geographic information with accurate and expressive quality indicators. The project will also contribute to the definition of a quality label, the GEOLabel, reflecting scientific relevance, quality, acceptance and societal needs. The concept of Quality Information is very broad. When talking about the quality of a product, this is not limited to geophysical quality but also includes concepts like mission quality (e.g. data coverage with respect to planning). In general, it provides an indication of the overall fitness for use of a specific type of product. Employing and extending several ISO standards such as 19115, 19157 and 19139, a common set of data quality indicators has been selected to be used within the project. The resulting work, in the form of a data model, is expressed in XML Schema Language and encoded in XML. Quality information can be stated both by data producers and by data users, actually resulting in two conceptually distinct data models, the Producer Quality model and the User Quality model (or User Feedback model). A very important issue concerns the association between the quality reports and the affected products that are target of the report. This association is usually achieved by means of a Product Identifier (PID), but actually just

  3. Systematic Methods and Tools for Computer Aided Modelling

    DEFF Research Database (Denmark)

    Fedorova, Marina

    Models are playing important roles in design and analysis of chemicals/bio-chemicals based products and the processes that manufacture them. Model-based methods and tools have the potential to decrease the number of experiments, which can be expensive and time consuming, and point to candidates......, where the experimental effort could be focused. In this project a general modelling framework for systematic model building through modelling templates, which supports the reuse of existing models via its new model import and export capabilities, have been developed. The new feature for model transfer...... has been developed by establishing a connection with an external modelling environment for code generation. The main contribution of this thesis is a creation of modelling templates and their connection with other modelling tools within a modelling framework. The goal was to create a user...

  4. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    OpenAIRE

    Estève , D. ,; Sarazin , Y.; Garbet , X.; Grandgirard , V.; Breton , S. ,; Donnel , P. ,; Asahi , Y. ,; Bourdelle , C.; Dif-Pradalier , G; Ehrlacher , C.; Emeriau , C.; Ghendrih , Ph; Gillot , C.; Latu , G.; Passeron , C.

    2018-01-01

    International audience; Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code [V. Grandgirard et al., Comp. Phys. Commun. 207, 35 (2016)]. A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime likely relevant for tungsten, the standard expression of the neoclassical impurity flux is shown t...

  5. The Bioenvironmental modeling of Bahar city based on Climate-consistent Architecture

    OpenAIRE

    Parna Kazemian

    2014-01-01

    The identification of the climate of a particularplace and the analysis of the climatic needs in terms of human comfort and theuse of construction materials is one of the prerequisites of aclimate-consistent design. In studies on climate and weather, usingillustrative reports, first a picture of the state of climate is offered. Then,based on the obtained results, the range of changes is determined, and thecause-effect relationships at different scales are identified. Finally, by ageneral exam...

  6. Self-consistent gyrokinetic modeling of neoclassical and turbulent impurity transport

    Science.gov (United States)

    Estève, D.; Sarazin, Y.; Garbet, X.; Grandgirard, V.; Breton, S.; Donnel, P.; Asahi, Y.; Bourdelle, C.; Dif-Pradalier, G.; Ehrlacher, C.; Emeriau, C.; Ghendrih, Ph.; Gillot, C.; Latu, G.; Passeron, C.

    2018-03-01

    Trace impurity transport is studied with the flux-driven gyrokinetic GYSELA code (Grandgirard et al 2016 Comput. Phys. Commun. 207 35). A reduced and linearized multi-species collision operator has been recently implemented, so that both neoclassical and turbulent transport channels can be treated self-consistently on an equal footing. In the Pfirsch-Schlüter regime that is probably relevant for tungsten, the standard expression for the neoclassical impurity flux is shown to be recovered from gyrokinetics with the employed collision operator. Purely neoclassical simulations of deuterium plasma with trace impurities of helium, carbon and tungsten lead to impurity diffusion coefficients, inward pinch velocities due to density peaking, and thermo-diffusion terms which quantitatively agree with neoclassical predictions and NEO simulations (Belli et al 2012 Plasma Phys. Control. Fusion 54 015015). The thermal screening factor appears to be less than predicted analytically in the Pfirsch-Schlüter regime, which can be detrimental to fusion performance. Finally, self-consistent nonlinear simulations have revealed that the tungsten impurity flux is not the sum of turbulent and neoclassical fluxes computed separately, as is usually assumed. The synergy partly results from the turbulence-driven in-out poloidal asymmetry of tungsten density. This result suggests the need for self-consistent simulations of impurity transport, i.e. including both turbulence and neoclassical physics, in view of quantitative predictions for ITER.

  7. Are the models for type Ia supernova progenitors consistent with the properties of supernova remnants?,

    NARCIS (Netherlands)

    Badenes, C.; Hughes, J.P.; Bravo, E.; Langer, N.

    2007-01-01

    We explore the relationship between the models for progenitor systems of Type Ia supernovae and the properties of the supernova remnants that evolve after the explosion. Most models for Type Ia progenitors in the single-degenerate scenario predict substantial outflows during the presupernova

  8. Physically-consistent wall boundary conditions for the k-ω turbulence model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Dixen, Martin; Jacobsen, Niels Gjøl

    2010-01-01

    A model solving Reynolds-averaged Navier–Stokes equations, coupled with k-v turbulence closure, is used to simulate steady channel flow on both hydraulically smooth and rough beds. Novel experimental data are used as model validation, with k measured directly from all three components...

  9. CONSISTENT USE OF THE KALMAN FILTER IN CHEMICAL TRANSPORT MODELS (CTMS) FOR DEDUCING EMISSIONS

    Science.gov (United States)

    Past research has shown that emissions can be deduced using observed concentrations of a chemical, a Chemical Transport Model (CTM), and the Kalman filter in an inverse modeling application. An expression was derived for the relationship between the "observable" (i.e., the con...

  10. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    Science.gov (United States)

    O. Fovet; L. Ruiz; M. Hrachowitz; M. Faucheux; C. Gascuel-Odoux

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is...

  11. Agent Based Modeling as an Educational Tool

    Science.gov (United States)

    Fuller, J. H.; Johnson, R.; Castillo, V.

    2012-12-01

    Motivation is a key element in high school education. One way to improve motivation and provide content, while helping address critical thinking and problem solving skills, is to have students build and study agent based models in the classroom. This activity visually connects concepts with their applied mathematical representation. "Engaging students in constructing models may provide a bridge between frequently disconnected conceptual and mathematical forms of knowledge." (Levy and Wilensky, 2011) We wanted to discover the feasibility of implementing a model based curriculum in the classroom given current and anticipated core and content standards.; Simulation using California GIS data ; Simulation of high school student lunch popularity using aerial photograph on top of terrain value map.

  12. Graphical Tools for Linear Structural Equation Modeling

    Science.gov (United States)

    2014-06-01

    regression coefficient βS A.CQ1 van- ishes, which can be used to test whether the specification of Model 2 is compatible with the data. Most...because they are all compatible with the graph in Figure 19a, which displays the skeleton and v-structures. Note that we cannot reverse the edge from...im- plications of linear structual equation models. R-428, <http://ftp.cs.ucla.edu/pub/stat_ser/r428.pdf>, CA. To ap- pear in Proceedings of AAAI-2014

  13. Toposcopy : A modelling tool for CITYGML

    NARCIS (Netherlands)

    Groneman, A.; Zlatanova, S.

    2009-01-01

    The new 3D standard CityGML has been attracting a lot of attention in the last few years. Many characteristics of the XML-based format make it suitable for storage and exchange of virtual 3D city models. It provides possibilities to store semantic and geometric information and has the potential to

  14. Using the IEA ETSAP modelling tools for Denmark

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik

    -annual workshops focusing on presentations of model analyses and use of the ETSAP' tools (the MARKAL/TIMES family of models). The project was also planned to benefit from the EU project ”NEEDS - New Energy Externalities Developments for Sustainability. ETSAP is contributing to a part of NEEDS that develops......, Environment and Health (CEEH), starting from January 2007. This report summarises the activities under ETSAP Annex X and related project, emphasising the development of modelling tools that will be useful for modelling the Danish energy system. It is also a status report for the development of a model...

  15. Consistency tests of cosmogonic theories from models of Uranus and Neptune

    Science.gov (United States)

    Podolak, M.; Reynolds, R. T.

    1984-01-01

    The planetary ratios of ice to rock (I/R) abundances expected in Uranus and Neptune are derived on the basis of several cosmogonic theories. For both Uranus and Neptune, the value of I/R lies between about 1.0 and 3.6. This value is difficult to reconcile with a scenario in which N and C are accreted primarily in the form of N2 and CO. It is consistent with some versions of both giant protoplanet theories and equilibrium accretion theories.

  16. Derivation of a Self-Consistent Auroral Oval Model Using the Auroral Boundary Index

    National Research Council Canada - National Science Library

    Anderson, Keith

    2004-01-01

    ... current HF communications capabilities. The auroral morphology is a good indicator of the level at which space weather and its near-Earth consequences are occurring, and thus it is important to develop an auroral prediction model...

  17. Consistent Particle-Continuum Modeling and Simulation of Flows in Strong Thermochemical Nonequilibrium

    Data.gov (United States)

    National Aeronautics and Space Administration — During hypersonic entry into a planetary atmosphere, a spacecraft transitions from free-molecular flow conditions to fully continuum conditions. When modeling and...

  18. A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer

    DEFF Research Database (Denmark)

    Keck, Rolf-Erik; Veldkamp, Dick; Wedel-Heinen, Jens Jakob

    as a standalone flow-solver for the velocity and turbulence distribution, and power production in a wind farm. The performance of the standalone implementation is validated against field data, higher-order computational fluid dynamics models, as well as the most common engineering wake models in the wind industry...... evolution 4. atmospheric stability effects on wake deficit evolution and meandering The conducted research is to a large extent based on detailed wake investigations and reference data generated through computational fluid dynamics simulations, where the wind turbine rotor has been represented......This thesis describes the further development and validation of the dynamic meandering wake model for simulating the flow field and power production of wind farms operating in the atmospheric boundary layer (ABL). The overall objective of the conducted research is to improve the modelling...

  19. Thermodynamically consistent modeling of elementary electrochemistry in lithium-ion batteries

    International Nuclear Information System (INIS)

    Colclasure, Andrew M.; Kee, Robert J.

    2010-01-01

    This paper is particularly concerned with the elementary reactions and transport processes that are responsible for Li-ion battery performance. The model generally follows the widely practiced approach developed by Newman and co-workers (e.g., Doyle et al., J. Electrochem. Soc. 140 (1993) 1526 ). However, there are significant departures, especially in modeling electrochemical charge transfer. The present approach introduces systems of microscopically reversible reactions, including both heterogeneous thermal reactions and electrochemical charge-transfer reactions. All reaction rates are evaluated in elementary form, providing a powerful alternative to a Butler-Volmer formalism for the charge-transfer reactions. The paper is particularly concerned with the influence of non-ideal thermodynamics for evaluating reversible potentials as well as charge-transfer rates. The theory and modeling approach establishes a framework for extending chemistry models to incorporate detailed reaction mechanisms that represent multiple competitive reaction pathways.

  20. Consistent and Conservative Model Selection with the Adaptive LASSO in Stationary and Nonstationary Autoregressions

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl

    2016-01-01

    as if only these had been included in the model from the outset. In particular, this implies that it is able to discriminate between stationary and nonstationary autoregressions and it thereby constitutes an addition to the set of unit root tests. Next, and important in practice, we show that choosing...... to perform conservative model selection it has power even against shrinking alternatives of this form and compare it to the plain Lasso....

  1. Self-Consistent Model of Magnetospheric Electric Field, Ring Current, Plasmasphere, and Electromagnetic Ion Cyclotron Waves: Initial Results

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.; Liemohn, M. W.; Fok, M.-C.; Ridley, A. J.

    2009-01-01

    Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.

  2. Predictions of titanium alloy properties using thermodynamic modeling tools

    Science.gov (United States)

    Zhang, F.; Xie, F.-Y.; Chen, S.-L.; Chang, Y. A.; Furrer, D.; Venkatesh, V.

    2005-12-01

    Thermodynamic modeling tools have become essential in understanding the effect of alloy chemistry on the final microstructure of a material. Implementation of such tools to improve titanium processing via parameter optimization has resulted in significant cost savings through the elimination of shop/laboratory trials and tests. In this study, a thermodynamic modeling tool developed at CompuTherm, LLC, is being used to predict β transus, phase proportions, phase chemistries, partitioning coefficients, and phase boundaries of multicomponent titanium alloys. This modeling tool includes Pandat, software for multicomponent phase equilibrium calculations, and PanTitanium, a thermodynamic database for titanium alloys. Model predictions are compared with experimental results for one α-β alloy (Ti-64) and two near-β alloys (Ti-17 and Ti-10-2-3). The alloying elements, especially the interstitial elements O, N, H, and C, have been shown to have a significant effect on the β transus temperature, and are discussed in more detail herein.

  3. A tool for model based diagnostics of the AGS Booster

    International Nuclear Information System (INIS)

    Luccio, A.

    1993-01-01

    A model-based algorithmic tool was developed to search for lattice errors by a systematic analysis of orbit data in the AGS Booster synchrotron. The algorithm employs transfer matrices calculated with MAD between points in the ring. Iterative model fitting of the data allows one to find and eventually correct magnet displacements and angles or field errors. The tool, implemented on a HP-Apollo workstation system, has proved very general and of immediate physical interpretation

  4. Static Stiffness Modeling of Parallel Kinematics Machine Tool Joints

    OpenAIRE

    O. K. Akmaev; B. A. Enikeev; A. I. Nigmatullin

    2015-01-01

    The possible variants of an original parallel kinematics machine-tool structure are explored in this article. A new Hooke's universal joint design based on needle roller bearings with the ability of a preload setting is proposed. The bearing stiffness modeling is carried out using a variety of methods. The elastic deformation modeling of a Hook’s joint and a spherical rolling joint have been developed to assess the possibility of using these joints in machine tools with parallel k...

  5. Transparent Model Transformation: Turning Your Favourite Model Editor into a Transformation Tool

    DEFF Research Database (Denmark)

    Acretoaie, Vlad; Störrle, Harald; Strüber, Daniel

    2015-01-01

    Current model transformation languages are supported by dedicated editors, often closely coupled to a single execution engine. We introduce Transparent Model Transformation, a paradigm enabling modelers to specify transformations using a familiar tool: their model editor. We also present VMTL, th...... model transformation tool sharing the model editor’s benefits, transparently....

  6. Assessing the reliability of predictive activity coefficient models for molecules consisting of several functional groups

    Directory of Open Access Journals (Sweden)

    R. P. Gerber

    2013-03-01

    Full Text Available Currently, the most successful predictive models for activity coefficients are those based on functional groups such as UNIFAC. In contrast, these models require a large amount of experimental data for the determination of their parameter matrix. A more recent alternative is the models based on COSMO, for which only a small set of universal parameters must be calibrated. In this work, a recalibrated COSMO-SAC model was compared with the UNIFAC (Do model employing experimental infinite dilution activity coefficient data for 2236 non-hydrogen-bonding binary mixtures at different temperatures. As expected, UNIFAC (Do presented better overall performance, with a mean absolute error of 0.12 ln-units against 0.22 for our COSMO-SAC implementation. However, in cases involving molecules with several functional groups or when functional groups appear in an unusual way, the deviation for UNIFAC was 0.44 as opposed to 0.20 for COSMO-SAC. These results show that COSMO-SAC provides more reliable predictions for multi-functional or more complex molecules, reaffirming its future prospects.

  7. Consistency Between Convection Allowing Model Output and Passive Microwave Satellite Observations

    Science.gov (United States)

    Bytheway, J. L.; Kummerow, C. D.

    2018-01-01

    Observations from the Global Precipitation Measurement (GPM) core satellite were used along with precipitation forecasts from the High Resolution Rapid Refresh (HRRR) model to assess and interpret differences between observed and modeled storms. Using a feature-based approach, precipitating objects were identified in both the National Centers for Environmental Prediction Stage IV multisensor precipitation product and HRRR forecast at lead times of 1, 2, and 3 h at valid times corresponding to GPM overpasses. Precipitating objects were selected for further study if (a) the observed feature occurred entirely within the swath of the GPM Microwave Imager (GMI) and (b) the HRRR model predicted it at all three forecast lead times. Output from the HRRR model was used to simulate microwave brightness temperatures (Tbs), which were compared to those observed by the GMI. Simulated Tbs were found to have biases at both the warm and cold ends of the distribution, corresponding to the stratiform/anvil and convective areas of the storms, respectively. Several experiments altered both the simulation microphysics and hydrometeor classification in order to evaluate potential shortcomings in the model's representation of precipitating clouds. In general, inconsistencies between observed and simulated brightness temperatures were most improved when transferring snow water content to supercooled liquid hydrometeor classes.

  8. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    Science.gov (United States)

    Baldwin, Daniel G.; Coakley, James A., Jr.

    1991-01-01

    The anisotropy of the radiance field estimated from bidirectional models derived from Nimbus 7 ERB scanner data is compared with the anisotropy observed with the ERB Experiment (ERBE) scanner aboard the ERB satellite. The results of averaging over groups of 40 ERBE scanner scan lines for a period of a month revealed significant differences between the modeled and the observed anisotropy for given scene types and the sun-earth-satellite viewing geometries. By comparing the radiative fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, it is concluded that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of about 4 percent for a typical 2.5 deg latitude-longitude monthly mean, and an rms error of 15 percent.

  9. Is the thermal-spike model consistent with experimentally determined electron temperature?

    International Nuclear Information System (INIS)

    Ajryan, Eh.A.; Fedorov, A.V.; Kostenko, B.F.

    2000-01-01

    Carbon K-Auger electron spectra from amorphous carbon foils induced by fast heavy ions are theoretically investigated. The high-energy tail of the Auger structure showing a clear projectile charge dependence is analyzed within the thermal-spike model framework as well as in the frame of another model taking into account some kinetic features of the process. A poor comparison results between theoretically and experimentally determined temperatures are suggested to be due to an improper account of double electron excitations or due to shake-up processes which leave the system in a more energetic initial state than a statically screened core hole

  10. Risk Assessment in Fractured Clayey Tills - Which Modeling Tools?

    DEFF Research Database (Denmark)

    Chambon, Julie Claire Claudia; Bjerg, Poul Løgstrup; Binning, Philip John

    2012-01-01

    The article presents different tools available for risk assessment in fractured clayey tills and their advantages and limitations are discussed. Because of the complex processes occurring during contaminant transport through fractured media, the development of simple practical tools for risk...... assessment is challenging and the inclusion of the relevant processes is difficult. Furthermore the lack of long-term monitoring data prevents from verifying the accuracy of the different conceptual models. Further investigations based on long-term data and numerical modeling are needed to accurately...... describe contaminant transport in fractured media and develop practical tools with the relevant processes and level of complexity....

  11. Investigating the consistency between proxy-based reconstructions and climate models using data assimilation: a mid-Holocene case study

    NARCIS (Netherlands)

    A. Mairesse; H. Goosse; P. Mathiot; H. Wanner; S. Dubinkina (Svetlana)

    2013-01-01

    htmlabstractThe mid-Holocene (6 kyr BP; thousand years before present) is a key period to study the consistency between model results and proxy-based reconstruction data as it corresponds to a standard test for models and a reasonable number of proxy-based records is available. Taking advantage of

  12. Rasp Tool on Phoenix Robotic Arm Model

    Science.gov (United States)

    2008-01-01

    This close-up photograph taken at the Payload Interoperability Testbed at the University of Arizona, Tucson, shows the motorized rasp protruding from the bottom of the scoop on the engineering model of NASA's Phoenix Mars Lander's Robotic Arm. The rasp will be placed against the hard Martian surface to cut into the hard material and acquire an icy soil sample for analysis by Phoenix's scientific instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is led by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Self-consistent collisional-radiative model for hydrogen atoms: Atom–atom interaction and radiation transport

    International Nuclear Information System (INIS)

    Colonna, G.; Pietanza, L.D.; D’Ammando, G.

    2012-01-01

    Graphical abstract: Self-consistent coupling between radiation, state-to-state kinetics, electron kinetics and fluid dynamics. Highlight: ► A CR model of shock-wave in hydrogen plasma has been presented. ► All equations have been coupled self-consistently. ► Non-equilibrium electron and level distributions are obtained. ► The results show non-local effects and non-equilibrium radiation. - Abstract: A collisional-radiative model for hydrogen atom, coupled self-consistently with the Boltzmann equation for free electrons, has been applied to model a shock tube. The kinetic model has been completed considering atom–atom collisions and the vibrational kinetics of the ground state of hydrogen molecules. The atomic level kinetics has been also coupled with a radiative transport equation to determine the effective adsorption and emission coefficients and non-local energy transfer.

  14. On the Consistency of Gamma-Ray Burst Spectral Indices with the Synchrotron Shock Model

    Science.gov (United States)

    Preece, R. D.; Briggs, M. S.; Giblin, T. W.; Mallozzi, R. S.; Pendleton, G. N.; Paciesad, W. S.; Band, D. L.

    2002-01-01

    The current scenario for gamma-ray bursts (GRBs) involves internal shocks for the prompt GRB emission phase and external shocks for the afterglow phase. Assuming optically thin synchrotron emission from isotropically distributed energetic shocked electrons, GRB spectra observed with a low-energy power-law spectral index greater than -2/3 (for positive photon number indices E(exp alpha) indicate a problem with this model. For spectra that do not violate this condition, additional tests of the shock model can be made by comparing the low- and high-energy spectral indices, on the basis of the model's assertion that synchrotron emission from a single power-law distribution of electrons is responsible for both the low-energy and the high-energy power-law portions of the spectra. We find in most cases that the inferred relationship between the two spectral indices of observed GRB spectra is inconsistent with the constraints from the simple optically thin synchrotron shock emission model. In this sense, the prompt burst phase is different from the afterglow phase, and this difference may be related to anisotropic distributions of particles or to their continual acceleration in shocks during the prompt phase.

  15. Latent state-trait models for longitudinal family data investigating consistency in perceived support

    NARCIS (Netherlands)

    Loncke, Justine; Mayer, Axel; Eichelsheim, Veroni I.; Branje, Susan J. T.; Meeus, W.H.J.; Koot, Hans M.; Buysse, Ann; Loeys, Tom

    Support is key to healthy family functioning. Using the family social relations model (SRM), it has already been shown that variability in perceived support is mostly attributed to individual perceiver effects. Little is known, however, as to whether those effects are stable or occasion-specific.

  16. Self-consistent semi-analytic models of the first stars

    Science.gov (United States)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-01-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter halos from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual halos) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  17. A model for time-dependent cosmological constant and its consistency with the present Friedmann universe

    Energy Technology Data Exchange (ETDEWEB)

    Novello, M [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180 Rio de Janeiro, RJ (Brazil); Barcelos-Neto, J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, RJ (Brazil); Salim, J M [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, Urca 22290-180 Rio de Janeiro, RJ (Brazil)

    2002-06-07

    We use a model where the cosmological term can be related to the chiral gauge anomaly of a possible quantum scenario of the initial evolution of the universe. We show that this term is compatible with the Friedmann behaviour of the present universe.

  18. Self-consistent semi-analytic models of the first stars

    Science.gov (United States)

    Visbal, Eli; Haiman, Zoltán; Bryan, Greg L.

    2018-04-01

    We have developed a semi-analytic framework to model the large-scale evolution of the first Population III (Pop III) stars and the transition to metal-enriched star formation. Our model follows dark matter haloes from cosmological N-body simulations, utilizing their individual merger histories and three-dimensional positions, and applies physically motivated prescriptions for star formation and feedback from Lyman-Werner (LW) radiation, hydrogen ionizing radiation, and external metal enrichment due to supernovae winds. This method is intended to complement analytic studies, which do not include clustering or individual merger histories, and hydrodynamical cosmological simulations, which include detailed physics, but are computationally expensive and have limited dynamic range. Utilizing this technique, we compute the cumulative Pop III and metal-enriched star formation rate density (SFRD) as a function of redshift at z ≥ 20. We find that varying the model parameters leads to significant qualitative changes in the global star formation history. The Pop III star formation efficiency and the delay time between Pop III and subsequent metal-enriched star formation are found to have the largest impact. The effect of clustering (i.e. including the three-dimensional positions of individual haloes) on various feedback mechanisms is also investigated. The impact of clustering on LW and ionization feedback is found to be relatively mild in our fiducial model, but can be larger if external metal enrichment can promote metal-enriched star formation over large distances.

  19. A self-consistent model for the Galactic cosmic ray, antiproton and positron spectra

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    In this talk I will present the escape model of Galactic cosmic rays. This model explains the measured cosmic ray spectra of individual groups of nuclei from TeV to EeV energies. It predicts an early transition to extragalactic cosmic rays, in agreement with recent Auger data. The escape model also explains the soft neutrino spectrum 1/E^2.5 found by IceCube in concordance with Fermi gamma-ray data. I will show that within the same model one can explain the excess of positrons and antiprotons above 20 GeV found by PAMELA and AMS-02, the discrepancy in the slopes of the spectra of cosmic ray protons and heavier nuclei in the TeV-PeV energy range and the plateau in cosmic ray dipole anisotropy in the 2-50 TeV energy range by adding the effects of a 2 million year old nearby supernova.

  20. Application of a Mass-Consistent Wind Model to Chinook Windstorms

    Science.gov (United States)

    1988-06-01

    Meteor., 6, 837--344. Endlich, R. M., F. L. Ludwig, C. M. Bhunralkar, and M. A. Estoque , 1380: A practical method for estimating wind character34szics at...Project 8349, Menlo Park, CA. 94025. Endlich, R. M., F. L. Ludwig, C. M. Bhunralkar, and M. A. Estoque , 1982: A diagnostic model for estimating winds

  1. Consistent stress-strain ductile fracture model as applied to two grades of beryllium

    International Nuclear Information System (INIS)

    Priddy, T.G.; Benzley, S.E.; Ford, L.M.

    1980-01-01

    Published yield and ultimate biaxial stress and strain data for two grades of beryllium are correlated with a more complete method of characterizing macroscopic strain at fracture initiation in ductile materials. Results are compared with those obtained from an exponential, mean stress dependent, model. Simple statistical methods are employed to illustrate the degree of correlation for each method with the experimental data

  2. Thermodynamically consistent modeling and simulation of multi-component two-phase flow with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2017-12-09

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is an attractive alternative recently over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of multiple fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  3. Consistency of Earth Radiation Budget Experiment bidirectional models and the observed anisotropy of reflected sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.G. (Univ. of Colorado, Boulder (USA)); Coakley, J.A. (Oregon State Univ., Corvallis (USA))

    1991-03-20

    The Earth Radiation Budget Experiment (ERBE) uses bidirectional models to estimate radiative fluxes from observed radiances. The anisotropy of the radiance field derived from these models is compared with that observed with the ERBE scanner on the Earth Radiation Budget Satellite (ERBS). The bidirectional models used by ERBE were derived from NIMBUS 7 Earth radiation budget (ERB) scanner observations. Because of probable differences in the radiometric calibrations of the ERB and ERBE scanners and because of differences in their field of view sizes, the authors expect to find systematic differences of a few percent between the NIMBUS 7 ERB-derived radiation field anisotropy and the ERBS scanner-observed anisotropy. The differences expected are small compared with the variability of the anisotropy which arises from the variability in cloud cover allowed to occur within the individual scene types. By averaging over groups of 40 ERBE scanner scan lines (equivalent to an average over approximately 2,000 km) for a period of a month, they detect significant differences between the modeled and observed anisotropy for particular scene types and Sun-Earth-satellite viewing geometries. For a typical 2.5{degree} latitude-longitude region these differences give rise to a bias in the radiative flux that is at least 0.3% for the monthly mean and an rms error that is at least 4% for instantaneous observations. By comparing the fluxes derived using the observed anisotropy with those derived assuming isotropic reflection, they conclude that a reasonable estimate for the maximum error due to the use of incorrect bidirectional models is a bias of approximately 4% for a typical 2.5{degree} latitude-longitude, monthly mean and an rms error of 15%.

  4. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    Science.gov (United States)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  5. Modeling Tools for Drilling, Reservoir Navigation, and Formation Evaluation

    Directory of Open Access Journals (Sweden)

    Sushant Dutta

    2012-06-01

    Full Text Available The oil and gas industry routinely uses borehole tools for measuring or logging rock and fluid properties of geologic formations to locate hydrocarbons and maximize their production. Pore fluids in formations of interest are usually hydrocarbons or water. Resistivity logging is based on the fact that oil and gas have a substantially higher resistivity than water. The first resistivity log was acquired in 1927, and resistivity logging is still the foremost measurement used for drilling and evaluation. However, the acquisition and interpretation of resistivity logging data has grown in complexity over the years. Resistivity logging tools operate in a wide range of frequencies (from DC to GHz and encounter extremely high (several orders of magnitude conductivity contrast between the metal mandrel of the tool and the geologic formation. Typical challenges include arbitrary angles of tool inclination, full tensor electric and magnetic field measurements, and interpretation of complicated anisotropic formation properties. These challenges combine to form some of the most intractable computational electromagnetic problems in the world. Reliable, fast, and convenient numerical modeling of logging tool responses is critical for tool design, sensor optimization, virtual prototyping, and log data inversion. This spectrum of applications necessitates both depth and breadth of modeling software—from blazing fast one-dimensional (1-D modeling codes to advanced threedimensional (3-D modeling software, and from in-house developed codes to commercial modeling packages. In this paper, with the help of several examples, we demonstrate our approach for using different modeling software to address different drilling and evaluation applications. In one example, fast 1-D modeling provides proactive geosteering information from a deep-reading azimuthal propagation resistivity measurement. In the second example, a 3-D model with multiple vertical resistive fractures

  6. Model based methods and tools for process systems engineering

    DEFF Research Database (Denmark)

    Gani, Rafiqul

    Process systems engineering (PSE) provides means to solve a wide range of problems in a systematic and efficient manner. This presentation will give a perspective on model based methods and tools needed to solve a wide range of problems in product-process synthesis-design. These methods and tools...... need to be integrated with work-flows and data-flows for specific product-process synthesis-design problems within a computer-aided framework. The framework therefore should be able to manage knowledge-data, models and the associated methods and tools needed by specific synthesis-design work...... of model based methods and tools within a computer aided framework for product-process synthesis-design will be highlighted....

  7. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    International Nuclear Information System (INIS)

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-01-01

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation

  8. A self-consistent LTE model of a microwave-driven, high-pressure sulfur lamp

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.W.; Mullen, J.J.A.M. van der [Department of Applied Physics, Eindhoven University of Technology (Netherlands)]. E-mails: C.W.Johnston@tue.nl; J.J.A.M.v.d.Mullen@tue.nl; Heijden, H.W.P. van der; Janssen, G.M.; Dijk, J. van [Department of Applied Physics, Eindhoven University of Technology (Netherlands)

    2002-02-21

    A one-dimensional LTE model of a microwave-driven sulfur lamp is presented to aid our understanding of the discharge. The energy balance of the lamp is determined by Ohmic input on one hand and transport due to conductive heat transfer and molecular radiation on the other. We discuss the origin of operational trends in the spectrum, present the model and discuss how the material properties of the plasma are determined. Not only are temperature profiles and electric field strengths simulated but also the spectrum of the lamp from 300 to 900 nm under various conditions of input power and lamp filling pressure. We show that simulated spectra demonstrate observed trends and that radiated power increases linearly with input power as is also found from experiment. (author)

  9. Self-consisting modeling of entangled network strands and dangling ends

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Schieber, Jay D.; Khaliullin, Renat N.

    2009-01-01

    Text of Abstract We seek knowledge about the effect of dangling ends and soluble structures of stoichiometrically imbalanced networks. To interpretate our recent experimental results we seek a molecular model that can predict LVE data. The discrete slip-link model (DSM) has proven to be a robust......, we call this an ideal entangled network (IEN). We simulate monodisperse polypropylene oxide with an average number of entanglements of ~3.8. Such lightly entangled networks show a G0 that is about 24% lower than GN0. This decrease is a result of monomer fluctuations between entanglements...... of dangling ends and soluble structures. Energy dissipation is increased by adding a fraction of dangling ends, wDE, to the ensemble. We find that when wDE=0.6, G0 is about 75% lower than GN0, this suggests that the fraction of network strands, wNS=1-wDE, largely influences the plateau value at low...

  10. Flood damage: a model for consistent, complete and multipurpose scenarios

    Directory of Open Access Journals (Sweden)

    S. Menoni

    2016-12-01

    implemented in ex post damage assessments, also with the objective of better programming financial resources that will be needed for these types of events in the future. On the other hand, integrated interpretations of flood events are fundamental to adapting and optimizing flood mitigation strategies on the basis of thorough forensic investigation of each event, as corroborated by the implementation of the model in a case study.

  11. A Mind/Brain/Matter Model Consistent with Quantum Physics and UFO phenomena

    Science.gov (United States)

    1979-01-01

    realities of a second type (E.P. Wigr, ,.’ "Two Kinds of Reality," The Monist , Vol. 48, No. 2, April 1964). Note that the modei -eing c dvanced by the...biological organism, including egos of "dead" biosystems. Note also that the wave-packet reduction (collapse of the wave function) is not a relativistically ...new fourth law of logic, which is briefly described and summarized. A new photon interaction model. of quantized observable changc is also presented

  12. A nonlinear mechanics model of bio-inspired hierarchical lattice materials consisting of horseshoe microstructures.

    Science.gov (United States)

    Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui

    2016-05-01

    Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for

  13. A consistent model for leptogenesis, dark matter and the IceCube signal

    Energy Technology Data Exchange (ETDEWEB)

    Fiorentin, M. Re [School of Physics and Astronomy, University of Southampton,SO17 1BJ Southampton (United Kingdom); Niro, V. [Departamento de Física Teórica, Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC,Calle Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Fornengo, N. [Dipartimento di Fisica, Università di Torino,via P. Giuria, 1, 10125 Torino (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Torino,via P. Giuria, 1, 10125 Torino (Italy)

    2016-11-04

    We discuss a left-right symmetric extension of the Standard Model in which the three additional right-handed neutrinos play a central role in explaining the baryon asymmetry of the Universe, the dark matter abundance and the ultra energetic signal detected by the IceCube experiment. The energy spectrum and neutrino flux measured by IceCube are ascribed to the decays of the lightest right-handed neutrino N{sub 1}, thus fixing its mass and lifetime, while the production of N{sub 1} in the primordial thermal bath occurs via a freeze-in mechanism driven by the additional SU(2){sub R} interactions. The constraints imposed by IceCube and the dark matter abundance allow nonetheless the heavier right-handed neutrinos to realize a standard type-I seesaw leptogenesis, with the B−L asymmetry dominantly produced by the next-to-lightest neutrino N{sub 2}. Further consequences and predictions of the model are that: the N{sub 1} production implies a specific power-law relation between the reheating temperature of the Universe and the vacuum expectation value of the SU(2){sub R} triplet; leptogenesis imposes a lower bound on the reheating temperature of the Universe at 7×10{sup 9} GeV. Additionally, the model requires a vanishing absolute neutrino mass scale m{sub 1}≃0.

  14. Demonstration of a geostatistical approach to physically consistent downscaling of climate modeling simulations

    KAUST Repository

    Jha, Sanjeev Kumar

    2013-01-01

    A downscaling approach based on multiple-point geostatistics (MPS) is presented. The key concept underlying MPS is to sample spatial patterns from within training images, which can then be used in characterizing the relationship between different variables across multiple scales. The approach is used here to downscale climate variables including skin surface temperature (TSK), soil moisture (SMOIS), and latent heat flux (LH). The performance of the approach is assessed by applying it to data derived from a regional climate model of the Murray-Darling basin in southeast Australia, using model outputs at two spatial resolutions of 50 and 10 km. The data used in this study cover the period from 1985 to 2006, with 1985 to 2005 used for generating the training images that define the relationships of the variables across the different spatial scales. Subsequently, the spatial distributions for the variables in the year 2006 are determined at 10 km resolution using the 50 km resolution data as input. The MPS geostatistical downscaling approach reproduces the spatial distribution of TSK, SMOIS, and LH at 10 km resolution with the correct spatial patterns over different seasons, while providing uncertainty estimates through the use of multiple realizations. The technique has the potential to not only bridge issues of spatial resolution in regional and global climate model simulations but also in feature sharpening in remote sensing applications through image fusion, filling gaps in spatial data, evaluating downscaled variables with available remote sensing images, and aggregating/disaggregating hydrological and groundwater variables for catchment studies.

  15. Consistent negative response of US crops to high temperatures in observations and crop models

    Science.gov (United States)

    Schauberger, Bernhard; Archontoulis, Sotirios; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Khabarov, Nikolay; Müller, Christoph; Pugh, Thomas A. M.; Rolinski, Susanne; Schaphoff, Sibyll; Schmid, Erwin; Wang, Xuhui; Schlenker, Wolfram; Frieler, Katja

    2017-04-01

    High temperatures are detrimental to crop yields and could lead to global warming-driven reductions in agricultural productivity. To assess future threats, the majority of studies used process-based crop models, but their ability to represent effects of high temperature has been questioned. Here we show that an ensemble of nine crop models reproduces the observed average temperature responses of US maize, soybean and wheat yields. Each day above 30°C diminishes maize and soybean yields by up to 6% under rainfed conditions. Declines observed in irrigated areas, or simulated assuming full irrigation, are weak. This supports the hypothesis that water stress induced by high temperatures causes the decline. For wheat a negative response to high temperature is neither observed nor simulated under historical conditions, since critical temperatures are rarely exceeded during the growing season. In the future, yields are modelled to decline for all three crops at temperatures above 30°C. Elevated CO2 can only weakly reduce these yield losses, in contrast to irrigation.

  16. Observable signatures of wind--driven chemistry with a fully consistent three dimensional radiative hydrodynamics model of HD 209458b

    OpenAIRE

    Drummond, Benjamin; Mayne, N. J.; Manners, James; Carter, Aarynn L.; Boutle, Ian A.; Baraffe, Isabelle; Hebrard, Eric; Tremblin, Pascal; Sing, David K.; Amundsen, David S.; Acreman, Dave

    2018-01-01

    We present a study of the effect of wind-driven advection on the chemical composition of hot Jupiter atmospheres using a fully-consistent 3D hydrodynamics, chemistry and radiative transfer code, the Met Office Unified Model (UM). Chemical modelling of exoplanet atmospheres has primarily been restricted to 1D models that cannot account for 3D dynamical processes. In this work we couple a chemical relaxation scheme to the UM to account for the chemical interconversion of methane and carbon mono...

  17. Pre-Processing and Modeling Tools for Bigdata

    Directory of Open Access Journals (Sweden)

    Hashem Hadi

    2016-09-01

    Full Text Available Modeling tools and operators help the user / developer to identify the processing field on the top of the sequence and to send into the computing module only the data related to the requested result. The remaining data is not relevant and it will slow down the processing. The biggest challenge nowadays is to get high quality processing results with a reduced computing time and costs. To do so, we must review the processing sequence, by adding several modeling tools. The existing processing models do not take in consideration this aspect and focus on getting high calculation performances which will increase the computing time and costs. In this paper we provide a study of the main modeling tools for BigData and a new model based on pre-processing.

  18. Brief screening tool for disordered eating in diabetes: internal consistency and external validity in a contemporary sample of pediatric patients with type 1 diabetes.

    Science.gov (United States)

    Markowitz, Jessica T; Butler, Deborah A; Volkening, Lisa K; Antisdel, Jeanne E; Anderson, Barbara J; Laffel, Lori M B

    2010-03-01

    OBJECTIVE To update and validate a diabetes-specific screening tool for disordered eating (the Diabetes Eating Problem Survey [DEPS]) in contemporary youth with type 1 diabetes. RESEARCH DESIGN AND METHODS A total of 112 youth with type 1 diabetes, ages 13-19 years, completed the DEPS. Higher scores on the DEPS indicate more disordered eating behaviors. Youth and their parents also completed additional surveys to examine diabetes-specific family conflict, negative affect related to blood glucose monitoring, youth quality of life, and diabetes burden. Clinicians provided data on height, weight, A1C, and insulin dosing. The DEPS was revised into a shorter, updated measure and validated. RESULTS The revised 16-item DEPS (DEPS-R) displayed excellent internal consistency (Cronbach's alpha = 0.86). Construct validity was demonstrated by positive correlations with zBMI (P = 0.01), A1C (P = 0.001), diabetes-specific family conflict (P diabetes-specific burden (P = 0.0005), and negative correlations with frequency of blood glucose monitoring (P = 0.03) and quality of life (P diabetes-specific self-report measure of disordered eating that can be completed in diabetes. Future studies should focus on using the DEPS-R to identify high-risk populations for prevention of and early intervention for disordered eating behaviors.

  19. Self-consistent one-dimensional modelling of x-ray laser plasmas

    International Nuclear Information System (INIS)

    Wan, A.S.; Walling, R.S.; Scott, H.A.; Mayle, R.W.; Osterheld, A.L.

    1992-01-01

    This paper presents the simulation of a planar, one-dimensional expanding Ge x-ray laser plasma using a new code which combines hydrodynamics, laser absorption, and detailed level population calculations within the same simulation. Previously, these simulations were performed in separate steps. We will present the effect of line transfer on gains and excited level populations and compare the line transfer result with simulations using escape probabilities. We will also discuss the impact of different atomic models on the accuracy of our simulation

  20. Stretched-exponential decay functions from a self-consistent model of dielectric relaxation

    International Nuclear Information System (INIS)

    Milovanov, A.V.; Rasmussen, J.J.; Rypdal, K.

    2008-01-01

    There are many materials whose dielectric properties are described by a stretched exponential, the so-called Kohlrausch-Williams-Watts (KWW) relaxation function. Its physical origin and statistical-mechanical foundation have been a matter of debate in the literature. In this Letter we suggest a model of dielectric relaxation, which naturally leads to a stretched exponential decay function. Some essential characteristics of the underlying charge conduction mechanisms are considered. A kinetic description of the relaxation and charge transport processes is proposed in terms of equations with time-fractional derivatives

  1. A Single Neonatal Exposure to BMAA in a Rat Model Produces Neuropathology Consistent with Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Laura Louise Scott

    2017-12-01

    Full Text Available Although cyanobacterial β-N-methylamino-l-alanine (BMAA has been implicated in the development of Alzheimer’s Disease (AD, Parkinson’s Disease (PD and Amyotrophic Lateral Sclerosis (ALS, no BMAA animal model has reproduced all the neuropathology typically associated with these neurodegenerative diseases. We present here a neonatal BMAA model that causes β-amyloid deposition, neurofibrillary tangles of hyper-phosphorylated tau, TDP-43 inclusions, Lewy bodies, microbleeds and microgliosis as well as severe neuronal loss in the hippocampus, striatum, substantia nigra pars compacta, and ventral horn of the spinal cord in rats following a single BMAA exposure. We also report here that BMAA exposure on particularly PND3, but also PND4 and 5, the critical period of neurogenesis in the rodent brain, is substantially more toxic than exposure to BMAA on G14, PND6, 7 and 10 which suggests that BMAA could potentially interfere with neonatal neurogenesis in rats. The observed selective toxicity of BMAA during neurogenesis and, in particular, the observed pattern of neuronal loss observed in BMAA-exposed rats suggest that BMAA elicits its effect by altering dopamine and/or serotonin signaling in rats.

  2. 3D self-consistent modeling of a matrix source of negative hydrogen ions.

    Science.gov (United States)

    Tarnev, Kh; Demerdjiev, A; Shivarova, A; Lishev, St

    2016-02-01

    The paper is in the scope of studies on the rf driving of a matrix source of negative hydrogen ions: a matrix of small radius discharges with planar-coil inductive driving and single aperture extraction from each discharge. The results from a three-dimensional model, in which plasma description is coupled to electrodynamics, confirm former conclusion that a single coil driving of the whole matrix by a zigzag coil with an omega-shaped conductor on the bottom of each discharge tube ensures efficient rf power deposition to the plasma. The latter is due to similarities with the rf driving of a single discharge by a single planar coil, shown by the obtained induced current and spatial distribution of the plasma parameters. Distinctions associated with the coil configuration as a single coil for the whole matrix are also discussed.

  3. redGEM: Systematic reduction and analysis of genome-scale metabolic reconstructions for development of consistent core metabolic models.

    Directory of Open Access Journals (Sweden)

    Meric Ataman

    2017-07-01

    Full Text Available Genome-scale metabolic reconstructions have proven to be valuable resources in enhancing our understanding of metabolic networks as they encapsulate all known metabolic capabilities of the organisms from genes to proteins to their functions. However the complexity of these large metabolic networks often hinders their utility in various practical applications. Although reduced models are commonly used for modeling and in integrating experimental data, they are often inconsistent across different studies and laboratories due to different criteria and detail, which can compromise transferability of the findings and also integration of experimental data from different groups. In this study, we have developed a systematic semi-automatic approach to reduce genome-scale models into core models in a consistent and logical manner focusing on the central metabolism or subsystems of interest. The method minimizes the loss of information using an approach that combines graph-based search and optimization methods. The resulting core models are shown to be able to capture key properties of the genome-scale models and preserve consistency in terms of biomass and by-product yields, flux and concentration variability and gene essentiality. The development of these "consistently-reduced" models will help to clarify and facilitate integration of different experimental data to draw new understanding that can be directly extendable to genome-scale models.

  4. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  5. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  6. MetaboTools: A Comprehensive Toolbox for Analysis of Genome-Scale Metabolic Models

    Science.gov (United States)

    Aurich, Maike K.; Fleming, Ronan M. T.; Thiele, Ines

    2016-01-01

    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Previous work, by us and others, revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. With the MetaboTools, we make our methods available to the broader scientific community. The MetaboTools consist of a protocol, a toolbox, and tutorials of two use cases. The protocol describes, in a step-wise manner, the workflow of data integration, and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, the MetaboTools constitute a comprehensive guide to the intra-model analysis of extracellular metabolomic data from microbial, plant, or human cells. This computational modeling resource offers a broad set of computational analysis tools for a wide biomedical and non-biomedical research community. PMID:27536246

  7. Designer Modeling for Personalized Game Content Creation Tools

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2013-01-01

    With the growing use of automated content creation and computer-aided design tools in game development, there is potential for enhancing the design process through personalized interactions between the software and the game developer. This paper proposes designer modeling for capturing the designer......’s preferences, goals and processes from their interaction with a computer-aided design tool, and suggests methods and domains within game development where such a model can be applied. We describe how designer modeling could be integrated with current work on automated and mixed-initiative content creation...

  8. Complementarity of DM searches in a consistent simplified model: the case of Z{sup ′}

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, Thomas [SISSA and INFN,via Bonomea 265, 34136 Trieste (Italy); Katz, Andrey [Theory Division, CERN,CH-1211 Geneva 23 (Switzerland); Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Morgante, Enrico; Racco, Davide [Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Rameez, Mohamed [Département de Physique Nucléaire et Corpusculaire,Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland); Riotto, Antonio [Département de Physique Théorique and Center for Astroparticle Physics (CAP),Université de Genève, 24 quai Ansermet, CH-1211 Genève 4 (Switzerland)

    2016-10-14

    We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC, direct and indirect detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy Z{sup ′} mediates the interactions between the SM and the DM. We find that for heavy dark matter indirect detection provides the strongest bounds on this scenario, while IceCube bounds are typically stronger than those from direct detection. The LHC constraints are dominant for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun and the Galactic Center are either bb̄ or tt̄, while the heavy DM annihilation is completely dominated by Zh channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast IceCube constraints to allow proper comparison with constraints from direct and indirect detection experiments and LHC exclusions.

  9. Complementarity of DM Searches in a Consistent Simplified Model: the Case of Z'

    CERN Document Server

    Jacques, Thomas; Morgante, Enrico; Racco, Davide; Rameez, Mohamed; Riotto, Antonio

    2016-01-01

    We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC and direct detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy $Z'$ mediates the interactions between the SM and the DM. We find that in most cases IceCube provides the strongest bounds on this scenario, while the LHC constraints are only meaningful for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun are either $b \\bar b$ or $t \\bar t$, while the heavy DM annihilation is completely dominated by $Zh$ channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast Ice...

  10. Complementarity of DM searches in a consistent simplified model: the case of Z′

    International Nuclear Information System (INIS)

    Jacques, Thomas; Katz, Andrey; Morgante, Enrico; Racco, Davide; Rameez, Mohamed; Riotto, Antonio

    2016-01-01

    We analyze the constraints from direct and indirect detection on fermionic Majorana Dark Matter (DM). Because the interaction with the Standard Model (SM) particles is spin-dependent, a priori the constraints that one gets from neutrino telescopes, the LHC, direct and indirect detection experiments are comparable. We study the complementarity of these searches in a particular example, in which a heavy Z ′ mediates the interactions between the SM and the DM. We find that for heavy dark matter indirect detection provides the strongest bounds on this scenario, while IceCube bounds are typically stronger than those from direct detection. The LHC constraints are dominant for smaller dark matter masses. These light masses are less motivated by thermal relic abundance considerations. We show that the dominant annihilation channels of the light DM in the Sun and the Galactic Center are either bb̄ or tt̄, while the heavy DM annihilation is completely dominated by Zh channel. The latter produces a hard neutrino spectrum which has not been previously analyzed. We study the neutrino spectrum yielded by DM and recast IceCube constraints to allow proper comparison with constraints from direct and indirect detection experiments and LHC exclusions.

  11. Fish habitat simulation models and integrated assessment tools

    International Nuclear Information System (INIS)

    Harby, A.; Alfredsen, K.

    1999-01-01

    Because of human development water use increases in importance, and this worldwide trend is leading to an increasing number of user conflicts with a strong need for assessment tools to measure the impacts both on the ecosystem and the different users and user groups. The quantitative tools must allow a comparison of alternatives, different user groups, etc., and the tools must be integrated while impact assessments includes different disciplines. Fish species, especially young ones, are indicators of the environmental state of a riverine system and monitoring them is a way to follow environmental changes. The direct and indirect impacts on the ecosystem itself are measured, and impacts on user groups is not included. Fish habitat simulation models are concentrated on, and methods and examples are considered from Norway. Some ideas on integrated modelling tools for impact assessment studies are included. One dimensional hydraulic models are rapidly calibrated and do not require any expert knowledge in hydraulics. Two and three dimensional models require a bit more skilled users, especially if the topography is very heterogeneous. The advantages of using two and three dimensional models include: they do not need any calibration, just validation; they are predictive; and they can be more cost effective than traditional habitat hydraulic models when combined with modern data acquisition systems and tailored in a multi-disciplinary study. Suitable modelling model choice should be based on available data and possible data acquisition, available manpower, computer, and software resources, and needed output and accuracy in the output. 58 refs

  12. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  13. Advanced REACH Tool (ART) : Calibration of the mechanistic model

    NARCIS (Netherlands)

    Schinkel, J.; Warren, N.; Fransman, W.; Tongeren, M. van; McDonnell, P.; Voogd, E.; Cherrie, J.W.; Tischer, M.; Kromhout, H.; Tielemans, E.

    2011-01-01

    The mechanistic model of the Advanced Reach Tool (ART) provides a relative ranking of exposure levels from different scenarios. The objectives of the calibration described in this paper are threefold: to study whether the mechanistic model scores are accurately ranked in relation to exposure

  14. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Molecular modeling has become a valuable and essential tool to medicinal chemists in the drug design process. Molecular modeling describes the generation, manipula- tion or representation of three-dimensional structures of molecules and associated physico-chemical properties. It involves a range of computerized ...

  15. A Self-consistent Model of a Ray Through the Orion Complex

    Science.gov (United States)

    Abel, N. P.; Ferland, G. J.

    2003-12-01

    The Orion Complex is the best studied region of active star formation, with observational data available over the entire electromagnetic spectrum. These extensive observations give us a good idea of the physical structure of Orion, that being a thin ( ˜ 0.1 parsec) blister H II region on the face of the molecular cloud OMC-1. A PDR, where the transition from atoms & ions to molecules occurs, forms an interface between the two. Most of the physical processes are driven by starlight from the Trapezium cluster, with the star Ori C being the strongest source of radiation. Observations made towards lines of sight near Ori C reveal numerous H II and molecular line intensities. Photoionization calculations have played an important role in determining the physical properties of the regions where these lines originate, but thus far have treated the H II region and PDR as separate problems. Actually these regions are energized by the same source of radiation, with the gas hydrodynamics providing the physical link between them. Here were present a unified physical model of a single ray through the Orion Complex. We choose a region 60'' west of Ori C, where extensive observations exist. These include lines that originate within the H II region, background PDR, and from regions deep inside OMC-1 itself. An improved treatment of the grain, molecular hydrogen, and CO physics have all been developed as part of the continuing evolution of the plasma code Cloudy, so that we can now simultaneously predict the full spectrum with few free parameters. This provides a holistic approach that will be validated in this well-studied environment then extended to the distant starburst galaxies. Acknowledgements: We thank the NSF and NASA for support.

  16. Models of vertical coordination consistent with the development of bio-energetics

    Directory of Open Access Journals (Sweden)

    Gianluca Nardone

    Full Text Available To foster the development of the biomasses for solid fuel it is fundamental to build up a strategy at a local level in which co-exists farms as well as industrial farms. To such aim, it is necessary to implement an effective vertical coordination between the stakeholders with the definition of a contract that prevents opportunistic behaviors and guarantees the industrial investments of constant supplies over the time. Starting from a project that foresees a biomasses power plant in the south of Italy, this study reflects on the payments to fix in an eventual contract in such a way to maintain the fidelity of the farmers. These one have a greater flexibility since they can choose the most convenient crop. Therefore, their fidelity can be obtained tying the contractual payments to the price of the main alternative crop to the energetic one. The results of the study seem to indicate the opportunity to fix a purchase price of the raw materials linked to the one of durum wheat that is the most widespread crop in the territory and the one that depends more on a volatile market. Using the data of the District 12 of the province of Foggia Water Consortium with an area of 11.300 hectares (instead of the 20.000 demanded in the proposal, it has been possible to organize approximately 600 enterprises in five cluster, each of them identified by a representative farm. With a model of linear programming, we have run different simulations taking into account the possibility to grow sorghum in different ways. Through an aggregation process, it has been calculated that farmers may find it convenient to supply the energetic crop at a price of 50 €/t when the price of durum wheat is 150 €/t. Anyway, this price is lower than the one offered by firm that is planning to build the power plant. Moreover, it has been identified a strong correlation between the price of the durum wheat and the price that makes convenient for the farmers to grow the sorghum. When the

  17. Models of vertical coordination consistent with the development of bio-energetics

    Directory of Open Access Journals (Sweden)

    Rosaria Viscecchia

    2011-02-01

    Full Text Available To foster the development of the biomasses for solid fuel it is fundamental to build up a strategy at a local level in which co-exists farms as well as industrial farms. To such aim, it is necessary to implement an effective vertical coordination between the stakeholders with the definition of a contract that prevents opportunistic behaviors and guarantees the industrial investments of constant supplies over the time. Starting from a project that foresees a biomasses power plant in the south of Italy, this study reflects on the payments to fix in an eventual contract in such a way to maintain the fidelity of the farmers. These one have a greater flexibility since they can choose the most convenient crop. Therefore, their fidelity can be obtained tying the contractual payments to the price of the main alternative crop to the energetic one. The results of the study seem to indicate the opportunity to fix a purchase price of the raw materials linked to the one of durum wheat that is the most widespread crop in the territory and the one that depends more on a volatile market. Using the data of the District 12 of the province of Foggia Water Consortium with an area of 11.300 hectares (instead of the 20.000 demanded in the proposal, it has been possible to organize approximately 600 enterprises in five cluster, each of them identified by a representative farm. With a model of linear programming, we have run different simulations taking into account the possibility to grow sorghum in different ways. Through an aggregation process, it has been calculated that farmers may find it convenient to supply the energetic crop at a price of 50 €/t when the price of durum wheat is 150 €/t. Anyway, this price is lower than the one offered by firm that is planning to build the power plant. Moreover, it has been identified a strong correlation between the price of the durum wheat and the price that makes convenient for the farmers to grow the sorghum. When the

  18. A simple and self-consistent geostrophic-force-balance model of the thermohaline circulation with boundary mixing

    Directory of Open Access Journals (Sweden)

    J. Callies

    2012-01-01

    Full Text Available A simple model of the thermohaline circulation (THC is formulated, with the objective to represent explicitly the geostrophic force balance of the basinwide THC. The model comprises advective-diffusive density balances in two meridional-vertical planes located at the eastern and the western walls of a hemispheric sector basin. Boundary mixing constrains vertical motion to lateral boundary layers along these walls. Interior, along-boundary, and zonally integrated meridional flows are in thermal-wind balance. Rossby waves and the absence of interior mixing render isopycnals zonally flat except near the western boundary, constraining meridional flow to the western boundary layer. The model is forced by a prescribed meridional surface density profile.

    This two-plane model reproduces both steady-state density and steady-state THC structures of a primitive-equation model. The solution shows narrow deep sinking at the eastern high latitudes, distributed upwelling at both boundaries, and a western boundary current with poleward surface and equatorward deep flow. The overturning strength has a 2/3-power-law dependence on vertical diffusivity and a 1/3-power-law dependence on the imposed meridional surface density difference. Convective mixing plays an essential role in the two-plane model, ensuring that deep sinking is located at high latitudes. This role of convective mixing is consistent with that in three-dimensional models and marks a sharp contrast with previous two-dimensional models.

    Overall, the two-plane model reproduces crucial features of the THC as simulated in simple-geometry three-dimensional models. At the same time, the model self-consistently makes quantitative a conceptual picture of the three-dimensional THC that hitherto has been expressed either purely qualitatively or not self-consistently.

  19. Business intelligence tools for radiology: creating a prototype model using open-source tools.

    Science.gov (United States)

    Prevedello, Luciano M; Andriole, Katherine P; Hanson, Richard; Kelly, Pauline; Khorasani, Ramin

    2010-04-01

    Digital radiology departments could benefit from the ability to integrate and visualize data (e.g. information reflecting complex workflow states) from all of their imaging and information management systems in one composite presentation view. Leveraging data warehousing tools developed in the business world may be one way to achieve this capability. In total, the concept of managing the information available in this data repository is known as Business Intelligence or BI. This paper describes the concepts used in Business Intelligence, their importance to modern Radiology, and the steps used in the creation of a prototype model of a data warehouse for BI using open-source tools.

  20. Self-consistent field modeling of non-ionic surfactants at the silica-water interface: Incorporating molecular detail

    NARCIS (Netherlands)

    Postmus, B.R.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2008-01-01

    We have constructed a model to predict the properties of non-ionic (alkyl-ethylene oxide) (C(n)E(m)) surfactants, both in aqueous solutions and near a silica surface, based upon the self-consistent field theory using the Scheutjens-Fleer discretisation scheme. The system has the pH and the ionic

  1. Hypermedia as an experiential learning tool: a theoretical model

    OpenAIRE

    Jose Miguel Baptista Nunes; Susan P. Fowell

    1996-01-01

    The process of methodical design and development is of extreme importance in the production of educational software. However, this process will only be effective, if it is based on a theoretical model that explicitly defines what educational approach is being used and how specific features of the technology can best support it. This paper proposes a theoretical model of how hypermedia can be used as an experiential learning tool. The development of the model was based on a experiential learni...

  2. Modeling and Simulation Tools: From Systems Biology to Systems Medicine.

    Science.gov (United States)

    Olivier, Brett G; Swat, Maciej J; Moné, Martijn J

    2016-01-01

    Modeling is an integral component of modern biology. In this chapter we look into the role of the model, as it pertains to Systems Medicine, and the software that is required to instantiate and run it. We do this by comparing the development, implementation, and characteristics of tools that have been developed to work with two divergent methodologies: Systems Biology and Pharmacometrics. From the Systems Biology perspective we consider the concept of "Software as a Medical Device" and what this may imply for the migration of research-oriented, simulation software into the domain of human health.In our second perspective, we see how in practice hundreds of computational tools already accompany drug discovery and development at every stage of the process. Standardized exchange formats are required to streamline the model exchange between tools, which would minimize translation errors and reduce the required time. With the emergence, almost 15 years ago, of the SBML standard, a large part of the domain of interest is already covered and models can be shared and passed from software to software without recoding them. Until recently the last stage of the process, the pharmacometric analysis used in clinical studies carried out on subject populations, lacked such an exchange medium. We describe a new emerging exchange format in Pharmacometrics which covers the non-linear mixed effects models, the standard statistical model type used in this area. By interfacing these two formats the entire domain can be covered by complementary standards and subsequently the according tools.

  3. Static Stiffness Modeling of Parallel Kinematics Machine Tool Joints

    Directory of Open Access Journals (Sweden)

    O. K. Akmaev

    2015-09-01

    Full Text Available The possible variants of an original parallel kinematics machine-tool structure are explored in this article. A new Hooke's universal joint design based on needle roller bearings with the ability of a preload setting is proposed. The bearing stiffness modeling is carried out using a variety of methods. The elastic deformation modeling of a Hook’s joint and a spherical rolling joint have been developed to assess the possibility of using these joints in machine tools with parallel kinematics.

  4. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  5. Using a Theory-Consistent CVAR Scenario to Test an Exchange Rate Model Based on Imperfect Knowledge

    Directory of Open Access Journals (Sweden)

    Katarina Juselius

    2017-07-01

    Full Text Available A theory-consistent CVAR scenario describes a set of testable regularieties one should expect to see in the data if the basic assumptions of the theoretical model are empirically valid. Using this method, the paper demonstrates that all basic assumptions about the shock structure and steady-state behavior of an an imperfect knowledge based model for exchange rate determination can be formulated as testable hypotheses on common stochastic trends and cointegration. This model obtaines remarkable support for almost every testable hypothesis and is able to adequately account for the long persistent swings in the real exchange rate.

  6. Open source Modeling and optimization tools for Planning

    Energy Technology Data Exchange (ETDEWEB)

    Peles, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-10

    Open source modeling and optimization tools for planning The existing tools and software used for planning and analysis in California are either expensive, difficult to use, or not generally accessible to a large number of participants. These limitations restrict the availability of participants for larger scale energy and grid studies in the state. The proposed initiative would build upon federal and state investments in open source software, and create and improve open source tools for use in the state planning and analysis activities. Computational analysis and simulation frameworks in development at national labs and universities can be brought forward to complement existing tools. An open source platform would provide a path for novel techniques and strategies to be brought into the larger community and reviewed by a broad set of stakeholders.

  7. Analytical Modelling Of Milling For Tool Design And Selection

    Science.gov (United States)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-05-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools.

  8. Analytical Modelling Of Milling For Tool Design And Selection

    International Nuclear Information System (INIS)

    Fontaine, M.; Devillez, A.; Dudzinski, D.

    2007-01-01

    This paper presents an efficient analytical model which allows to simulate a large panel of milling operations. A geometrical description of common end mills and of their engagement in the workpiece material is proposed. The internal radius of the rounded part of the tool envelope is used to define the considered type of mill. The cutting edge position is described for a constant lead helix and for a constant local helix angle. A thermomechanical approach of oblique cutting is applied to predict forces acting on the tool and these results are compared with experimental data obtained from milling tests on a 42CrMo4 steel for three classical types of mills. The influence of some tool's geometrical parameters on predicted cutting forces is presented in order to propose optimisation criteria for design and selection of cutting tools

  9. Designing tools for oil exploration using nuclear modeling

    Science.gov (United States)

    Mauborgne, Marie-Laure; Allioli, Françoise; Manclossi, Mauro; Nicoletti, Luisa; Stoller, Chris; Evans, Mike

    2017-09-01

    When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  10. Designing tools for oil exploration using nuclear modeling

    Directory of Open Access Journals (Sweden)

    Mauborgne Marie-Laure

    2017-01-01

    Full Text Available When designing nuclear tools for oil exploration, one of the first steps is typically nuclear modeling for concept evaluation and initial characterization. Having an accurate model, including the availability of accurate cross sections, is essential to reduce or avoid time consuming and costly design iterations. During tool response characterization, modeling is benchmarked with experimental data and then used to complement and to expand the database to make it more detailed and inclusive of more measurement environments which are difficult or impossible to reproduce in the laboratory. We present comparisons of our modeling results obtained using the ENDF/B-VI and ENDF/B-VII cross section data bases, focusing on the response to a few elements found in the tool, borehole and subsurface formation. For neutron-induced inelastic and capture gamma ray spectroscopy, major obstacles may be caused by missing or inaccurate cross sections for essential materials. We show examples of the benchmarking of modeling results against experimental data obtained during tool characterization and discuss observed discrepancies.

  11. A Modeling Tool for Household Biogas Burner Flame Port Design

    Science.gov (United States)

    Decker, Thomas J.

    Anaerobic digestion is a well-known and potentially beneficial process for rural communities in emerging markets, providing the opportunity to generate usable gaseous fuel from agricultural waste. With recent developments in low-cost digestion technology, communities across the world are gaining affordable access to the benefits of anaerobic digestion derived biogas. For example, biogas can displace conventional cooking fuels such as biomass (wood, charcoal, dung) and Liquefied Petroleum Gas (LPG), effectively reducing harmful emissions and fuel cost respectively. To support the ongoing scaling effort of biogas in rural communities, this study has developed and tested a design tool aimed at optimizing flame port geometry for household biogas-fired burners. The tool consists of a multi-component simulation that incorporates three-dimensional CAD designs with simulated chemical kinetics and computational fluid dynamics. An array of circular and rectangular port designs was developed for a widely available biogas stove (called the Lotus) as part of this study. These port designs were created through guidance from previous studies found in the literature. The three highest performing designs identified by the tool were manufactured and tested experimentally to validate tool output and to compare against the original port geometry. The experimental results aligned with the tool's prediction for the three chosen designs. Each design demonstrated improved thermal efficiency relative to the original, with one configuration of circular ports exhibiting superior performance. The results of the study indicated that designing for a targeted range of port hydraulic diameter, velocity and mixture density in the tool is a relevant way to improve the thermal efficiency of a biogas burner. Conversely, the emissions predictions made by the tool were found to be unreliable and incongruent with laboratory experiments.

  12. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Directory of Open Access Journals (Sweden)

    A. S. Candy

    2018-01-01

    Full Text Available The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  13. Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Science.gov (United States)

    Candy, Adam S.; Pietrzak, Julie D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, to ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions that enable full accounts of provenance, sharing, and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed that is automated, robust and repeatable, quick-to-draft, rigorously verified, and consistent with the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics. Library code, verification tests, and examples available in the repository at https://github.com/shingleproject/Shingle. Further details of the project presented at http://shingleproject.org.

  14. Multi-Time Scale Model Order Reduction and Stability Consistency Certification of Inverter-Interfaced DG System in AC Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Meng

    2018-01-01

    Full Text Available AC microgrid mainly comprise inverter-interfaced distributed generators (IIDGs, which are nonlinear complex systems with multiple time scales, including frequency control, time delay measurements, and electromagnetic transients. The droop control-based IIDG in an AC microgrid is selected as the research object in this study, which comprises power droop controller, voltage- and current-loop controllers, and filter and line. The multi-time scale characteristics of the detailed IIDG model are divided based on singular perturbation theory. In addition, the IIDG model order is reduced by neglecting the system fast dynamics. The static and transient stability consistency of the IIDG model order reduction are demonstrated by extracting features of the IIDG small signal model and using the quadratic approximation method of the stability region boundary, respectively. The dynamic response consistencies of the IIDG model order reduction are evaluated using the frequency, damping and amplitude features extracted by the Prony transformation. Results are applicable to provide a simplified model for the dynamic characteristic analysis of IIDG systems in AC microgrid. The accuracy of the proposed method is verified by using the eigenvalue comparison, the transient stability index comparison and the dynamic time-domain simulation.

  15. Metamodelling Approach and Software Tools for Physical Modelling and Simulation

    Directory of Open Access Journals (Sweden)

    Vitaliy Mezhuyev

    2015-02-01

    Full Text Available In computer science, metamodelling approach becomes more and more popular for the purpose of software systems development. In this paper, we discuss applicability of the metamodelling approach for development of software tools for physical modelling and simulation.To define a metamodel for physical modelling the analysis of physical models will be done. The result of such the analyses will show the invariant physical structures, we propose to use as the basic abstractions of the physical metamodel. It is a system of geometrical objects, allowing to build a spatial structure of physical models and to set a distribution of physical properties. For such geometry of distributed physical properties, the different mathematical methods can be applied. To prove the proposed metamodelling approach, we consider the developed prototypes of software tools.

  16. HMMEditor: a visual editing tool for profile hidden Markov model

    Directory of Open Access Journals (Sweden)

    Cheng Jianlin

    2008-03-01

    Full Text Available Abstract Background Profile Hidden Markov Model (HMM is a powerful statistical model to represent a family of DNA, RNA, and protein sequences. Profile HMM has been widely used in bioinformatics research such as sequence alignment, gene structure prediction, motif identification, protein structure prediction, and biological database search. However, few comprehensive, visual editing tools for profile HMM are publicly available. Results We develop a visual editor for profile Hidden Markov Models (HMMEditor. HMMEditor can visualize the profile HMM architecture, transition probabilities, and emission probabilities. Moreover, it provides functions to edit and save HMM and parameters. Furthermore, HMMEditor allows users to align a sequence against the profile HMM and to visualize the corresponding Viterbi path. Conclusion HMMEditor provides a set of unique functions to visualize and edit a profile HMM. It is a useful tool for biological sequence analysis and modeling. Both HMMEditor software and web service are freely available.

  17. Accessing Curriculum Through Technology Tools (ACTTT): A Model Development Project

    Science.gov (United States)

    Daytner, Katrina M.; Johanson, Joyce; Clark, Letha; Robinson, Linda

    2012-01-01

    Accessing Curriculum Through Technology Tools (ACTTT), a project funded by the U.S. Office of Special Education Programs (OSEP), developed and tested a model designed to allow children in early elementary school, including those "at risk" and with disabilities, to better access, participate in, and benefit from the general curriculum.…

  18. Combining modelling tools to evaluate a goose management scheme

    NARCIS (Netherlands)

    Baveco, Hans; Bergjord, Anne Kari; Bjerke, Jarle W.; Chudzińska, Magda E.; Pellissier, Loïc; Simonsen, Caroline E.; Madsen, Jesper; Tombre, Ingunn M.; Nolet, Bart A.

    2017-01-01

    Many goose species feed on agricultural land, and with growing goose numbers, conflicts with agriculture are increasing. One possible solution is to designate refuge areas where farmers are paid to leave geese undisturbed. Here, we present a generic modelling tool that can be used to designate the

  19. Combining modelling tools to evaluate a goose management scheme.

    NARCIS (Netherlands)

    Baveco, J.M.; Bergjord, A.K.; Bjerke, J.W.; Chudzińska, M.E.; Pellissier, L.; Simonsen, C.E.; Madsen, J.; Tombre, Ingunn M.; Nolet, B.A.

    2017-01-01

    Many goose species feed on agricultural land, and with growing goose numbers, conflicts with agriculture are increasing. One possible solution is to designate refuge areas where farmers are paid to leave geese undisturbed. Here, we present a generic modelling tool that can be used to designate the

  20. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Science.gov (United States)

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

  1. Molecular Modeling: A Powerful Tool for Drug Design and Molecular ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 5. Molecular Modeling: A Powerful Tool for Drug Design and Molecular Docking. Rama Rao Nadendla. General Article Volume 9 Issue 5 May 2004 pp 51-60. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  3. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  4. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    OpenAIRE

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-est...

  5. Determinants of consistent condom use among college students in China: application of the information-motivation-behavior skills (IMB) model.

    Science.gov (United States)

    Liu, Zhihao; Wei, Pingmin; Huang, Minghao; Liu, Yuan bao; Li, Lucy; Gong, Xiao; Chen, Juan; Li, Xiaoning

    2014-01-01

    Due to the increase incidents of premarital sex and the lack of reproductive health services, college students are at high risk of HIV/AIDS infections in China. This study was designed to examine the predictors of consistency of condom use among college students based on the Information-Motivation-Behavioral Skills (IMB) model and to describe the relationships between the model constructs. A cross-sectional study was conducted to assess HIV/AIDS related information, motivation, behavioral skills and preventive behavior among college students in five colleges and universities in Nanjing, China. An anonymous questionnaire survey was conducted for data collection, and the structural equation model (SEM) was used to assess the IMB model. A total of 3183 participants completed this study. The average age was 19.90 years (SD = 1.43, range 16 to 25). 342 (10.7%) participants of them reported having had premarital sex, among whom 30.7% reported having had a consistent condom use, 13.7% with the experience of abortion (including the participants whose sex partner has the same experience), 32.7% of participants had experience of multiple sex partners. The final IMB model provided acceptable fit to the data (CFI = 0.992, RMSEA = 0.028). Preventive behavior was significantly predicted by behavioral skills (β = 0.754, Pmotivation (β = 0.363, Pstudents in China. The main influencing factor of preventive behavior among college students is behavioral skills. Both information and motivation could affect preventive behavior through behavioral skills. Further research could develop preventive interventions based on the IMB model to promote consistent condom use among college students in China.

  6. Reconstruction of dynamic image series from undersampled MRI data using data-driven model consistency condition (MOCCO).

    Science.gov (United States)

    Velikina, Julia V; Samsonov, Alexey A

    2015-11-01

    To accelerate dynamic MR imaging through development of a novel image reconstruction technique using low-rank temporal signal models preestimated from training data. We introduce the model consistency condition (MOCCO) technique, which utilizes temporal models to regularize reconstruction without constraining the solution to be low-rank, as is performed in related techniques. This is achieved by using a data-driven model to design a transform for compressed sensing-type regularization. The enforcement of general compliance with the model without excessively penalizing deviating signal allows recovery of a full-rank solution. Our method was compared with a standard low-rank approach utilizing model-based dimensionality reduction in phantoms and patient examinations for time-resolved contrast-enhanced angiography (CE-MRA) and cardiac CINE imaging. We studied the sensitivity of all methods to rank reduction and temporal subspace modeling errors. MOCCO demonstrated reduced sensitivity to modeling errors compared with the standard approach. Full-rank MOCCO solutions showed significantly improved preservation of temporal fidelity and aliasing/noise suppression in highly accelerated CE-MRA (acceleration up to 27) and cardiac CINE (acceleration up to 15) data. MOCCO overcomes several important deficiencies of previously proposed methods based on pre-estimated temporal models and allows high quality image restoration from highly undersampled CE-MRA and cardiac CINE data. © 2014 Wiley Periodicals, Inc.

  7. Greenhouse gases from wastewater treatment - A review of modelling tools.

    Science.gov (United States)

    Mannina, Giorgio; Ekama, George; Caniani, Donatella; Cosenza, Alida; Esposito, Giovanni; Gori, Riccardo; Garrido-Baserba, Manel; Rosso, Diego; Olsson, Gustaf

    2016-05-01

    Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incomplete. The literature review shows also that a plant-wide modelling approach that includes GHG is the best option for the understanding how to reduce the carbon footprint of WWTPs. Indeed, several studies have confirmed that a wide vision of the WWPTs has to be considered in order to make them more sustainable as possible. Mechanistic dynamic models were demonstrated as the most comprehensive and reliable tools for GHG assessment. Very few plant-wide GHG modelling studies have been applied to real WWTPs due to the huge difficulties related to data availability and the model complexity. For further improvement in GHG plant-wide modelling and to favour its use at large real scale, knowledge of the mechanisms involved in GHG formation and release, and data acquisition must be enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Comparison of bootstrap current and plasma conductivity models applied in a self-consistent equilibrium calculation for Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Maria Celia Ramos; Ludwig, Gerson Otto [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: mcr@plasma.inpe.br

    2004-07-01

    Different bootstrap current formulations are implemented in a self-consistent equilibrium calculation obtained from a direct variational technique in fixed boundary tokamak plasmas. The total plasma current profile is supposed to have contributions of the diamagnetic, Pfirsch-Schlueter, and the neoclassical Ohmic and bootstrap currents. The Ohmic component is calculated in terms of the neoclassical conductivity, compared here among different expressions, and the loop voltage determined consistently in order to give the prescribed value of the total plasma current. A comparison among several bootstrap current models for different viscosity coefficient calculations and distinct forms for the Coulomb collision operator is performed for a variety of plasma parameters of the small aspect ratio tokamak ETE (Experimento Tokamak Esferico) at the Associated Plasma Laboratory of INPE, in Brazil. We have performed this comparison for the ETE tokamak so that the differences among all the models reported here, mainly regarding plasma collisionality, can be better illustrated. The dependence of the bootstrap current ratio upon some plasma parameters in the frame of the self-consistent calculation is also analysed. We emphasize in this paper what we call the Hirshman-Sigmar/Shaing model, valid for all collisionality regimes and aspect ratios, and a fitted formulation proposed by Sauter, which has the same range of validity but is faster to compute than the previous one. The advantages or possible limitations of all these different formulations for the bootstrap current estimate are analysed throughout this work. (author)

  9. A stock-flow consistent input-output model with applications to energy price shocks, interest rates, and heat emissions

    Science.gov (United States)

    Berg, Matthew; Hartley, Brian; Richters, Oliver

    2015-01-01

    By synthesizing stock-flow consistent models, input-output models, and aspects of ecological macroeconomics, a method is developed to simultaneously model monetary flows through the financial system, flows of produced goods and services through the real economy, and flows of physical materials through the natural environment. This paper highlights the linkages between the physical environment and the economic system by emphasizing the role of the energy industry. A conceptual model is developed in general form with an arbitrary number of sectors, while emphasizing connections with the agent-based, econophysics, and complexity economics literature. First, we use the model to challenge claims that 0% interest rates are a necessary condition for a stationary economy and conduct a stability analysis within the parameter space of interest rates and consumption parameters of an economy in stock-flow equilibrium. Second, we analyze the role of energy price shocks in contributing to recessions, incorporating several propagation and amplification mechanisms. Third, implied heat emissions from energy conversion and the effect of anthropogenic heat flux on climate change are considered in light of a minimal single-layer atmosphere climate model, although the model is only implicitly, not explicitly, linked to the economic model.

  10. Determinants of consistent condom use among college students in China: application of the information-motivation-behavior skills (IMB model.

    Directory of Open Access Journals (Sweden)

    Zhihao Liu

    Full Text Available BACKGROUND: Due to the increase incidents of premarital sex and the lack of reproductive health services, college students are at high risk of HIV/AIDS infections in China. This study was designed to examine the predictors of consistency of condom use among college students based on the Information-Motivation-Behavioral Skills (IMB model and to describe the relationships between the model constructs. METHODS: A cross-sectional study was conducted to assess HIV/AIDS related information, motivation, behavioral skills and preventive behavior among college students in five colleges and universities in Nanjing, China. An anonymous questionnaire survey was conducted for data collection, and the structural equation model (SEM was used to assess the IMB model. RESULTS: A total of 3183 participants completed this study. The average age was 19.90 years (SD = 1.43, range 16 to 25. 342 (10.7% participants of them reported having had premarital sex, among whom 30.7% reported having had a consistent condom use, 13.7% with the experience of abortion (including the participants whose sex partner has the same experience, 32.7% of participants had experience of multiple sex partners. The final IMB model provided acceptable fit to the data (CFI = 0.992, RMSEA = 0.028. Preventive behavior was significantly predicted by behavioral skills (β = 0.754, P<0.001. Information (β = 0.138, P<0.001 and motivation (β = 0.363, P<0.001 were indirectly affected preventive behavior, and was mediated through behavioral skills. CONCLUSIONS: The results of the study demonstrate the utility of the IMB model for consistent condom use among college students in China. The main influencing factor of preventive behavior among college students is behavioral skills. Both information and motivation could affect preventive behavior through behavioral skills. Further research could develop preventive interventions based on the IMB model to promote consistent condom

  11. Evaluating EML Modeling Tools for Insurance Purposes: A Case Study

    Directory of Open Access Journals (Sweden)

    Mikael Gustavsson

    2010-01-01

    Full Text Available As with any situation that involves economical risk refineries may share their risk with insurers. The decision process generally includes modelling to determine to which extent the process area can be damaged. On the extreme end of modelling the so-called Estimated Maximum Loss (EML scenarios are found. These scenarios predict the maximum loss a particular installation can sustain. Unfortunately no standard model for this exists. Thus the insurers reach different results due to applying different models and different assumptions. Therefore, a study has been conducted on a case in a Swedish refinery where several scenarios previously had been modelled by two different insurance brokers using two different softwares, ExTool and SLAM. This study reviews the concept of EML and analyses the used models to see which parameters are most uncertain. Also a third model, EFFECTS, was employed in an attempt to reach a conclusion with higher reliability.

  12. Scenario Evaluator for Electrical Resistivity survey pre-modeling tool

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Robinson, Judith L.; Slater, Lee D.; Halford, Keith J.; Binley, Andrew; Lane, John W.; Werkema, Dale D.

    2017-01-01

    Geophysical tools have much to offer users in environmental, water resource, and geotechnical fields; however, techniques such as electrical resistivity imaging (ERI) are often oversold and/or overinterpreted due to a lack of understanding of the limitations of the techniques, such as the appropriate depth intervals or resolution of the methods. The relationship between ERI data and resistivity is nonlinear; therefore, these limitations depend on site conditions and survey design and are best assessed through forward and inverse modeling exercises prior to field investigations. In this approach, proposed field surveys are first numerically simulated given the expected electrical properties of the site, and the resulting hypothetical data are then analyzed using inverse models. Performing ERI forward/inverse modeling, however, requires substantial expertise and can take many hours to implement. We present a new spreadsheet-based tool, the Scenario Evaluator for Electrical Resistivity (SEER), which features a graphical user interface that allows users to manipulate a resistivity model and instantly view how that model would likely be interpreted by an ERI survey. The SEER tool is intended for use by those who wish to determine the value of including ERI to achieve project goals, and is designed to have broad utility in industry, teaching, and research.

  13. A communication tool to improve the patient journey modeling process.

    Science.gov (United States)

    Curry, Joanne; McGregor, Carolyn; Tracy, Sally

    2006-01-01

    Quality improvement is high on the agenda of Health Care Organisations (HCO) worldwide. Patient journey modeling is a relatively recent innovation in healthcare quality improvement that models the patient's movement through the HCO by viewing it from a patient centric perspective. Critical to the success of the redesigning care process is the involvement of all stakeholders and their commitment to actively participate in the process. Tools which promote this type of communication are a critical enabler that can significantly affect the overall process redesign outcomes. Such a tool must also be able to incorporate additional factors such as relevant policies and procedures, staff roles, system usage and measurements such as process time and cost. This paper presents a graphically based communication tool that can be used as part of the patient journey modeling process to promote stakeholder involvement, commitment and ownership as well highlighting the relationship of other relevant variables that contribute to the patient's journey. Examples of how the tool has been used and the framework employed are demonstrated via a midwife-led primary care case study. A key contribution of this research is the provision of a graphical communication framework that is simple to use, is easily understood by a diverse range of stakeholders and enables ready recognition of patient journey issues. Results include strong stakeholder buy-in and significant enhancement to the overall design of the future patient journey. Initial results indicate that the use of such a communication tool can improve the patient journey modeling process and the overall quality improvement outcomes.

  14. Regional models - Emerging research tools for synoptic meteorologists

    Science.gov (United States)

    Keyser, Daniel; Uccellini, Louis W.

    1987-01-01

    A number of regional-scale numerical weather prediction models are discussed together with their application to the study of the structure and the dynamics of mesoscale phenomena. Consideration is given to investigations of natural phenomena (such as midlatitude cyclones and related baroclinic disturbances; upper-level jet-front systems; surface frontal zones, squall lines, and rain bands; mesoscale convective systems; and severe-storm environments) in which two operational models and four research models are used for regional-model studies. It is shown that these models provide investigators with four-dimensional dynamically consistent data sets to supplement and extend those available from observations.

  15. DsixTools: the standard model effective field theory toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)

    2017-06-15

    We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)

  16. Numerical Model Metrics Tools in Support of Navy Operations

    Science.gov (United States)

    Dykes, J. D.; Fanguy, P.

    2017-12-01

    Increasing demands of accurate ocean forecasts that are relevant to the Navy mission decision makers demand tools that quickly provide relevant numerical model metrics to the forecasters. Increasing modelling capabilities with ever-higher resolution domains including coupled and ensemble systems as well as the increasing volume of observations and other data sources to which to compare the model output requires more tools for the forecaster to enable doing more with less. These data can be appropriately handled in a geographic information system (GIS) fused together to provide useful information and analyses, and ultimately a better understanding how the pertinent model performs based on ground truth.. Oceanographic measurements like surface elevation, profiles of temperature and salinity, and wave height can all be incorporated into a set of layers correlated to geographic information such as bathymetry and topography. In addition, an automated system that runs concurrently with the models on high performance machines matches routinely available observations to modelled values to form a database of matchups with which statistics can be calculated and displayed, to facilitate validation of forecast state and derived variables. ArcMAP, developed by Environmental Systems Research Institute, is a GIS application used by the Naval Research Laboratory (NRL) and naval operational meteorological and oceanographic centers to analyse the environment in support of a range of Navy missions. For example, acoustic propagation in the ocean is described with a three-dimensional analysis of sound speed that depends on profiles of temperature, pressure and salinity predicted by the Navy Coastal Ocean Model. The data and model output must include geo-referencing information suitable for accurately placing the data within the ArcMAP framework. NRL has developed tools that facilitate merging these geophysical data and their analyses, including intercomparisons between model

  17. Self-consistent Non-LTE Model of Infrared Molecular Emissions and Oxygen Dayglows in the Mesosphere and Lower Thermosphere

    Science.gov (United States)

    Feofilov, Artem G.; Yankovsky, Valentine A.; Pesnell, William D.; Kutepov, Alexander A.; Goldberg, Richard A.; Mauilova, Rada O.

    2007-01-01

    We present the new version of the ALI-ARMS (for Accelerated Lambda Iterations for Atmospheric Radiation and Molecular Spectra) model. The model allows simultaneous self-consistent calculating the non-LTE populations of the electronic-vibrational levels of the O3 and O2 photolysis products and vibrational level populations of CO2, N2,O2, O3, H2O, CO and other molecules with detailed accounting for the variety of the electronic-vibrational, vibrational-vibrational and vibrational-translational energy exchange processes. The model was used as the reference one for modeling the O2 dayglows and infrared molecular emissions for self-consistent diagnostics of the multi-channel space observations of MLT in the SABER experiment It also allows reevaluating the thermalization efficiency of the absorbed solar ultraviolet energy and infrared radiative cooling/heating of MLT by detailed accounting of the electronic-vibrational relaxation of excited photolysis products via the complex chain of collisional energy conversion processes down to the vibrational energy of optically active trace gas molecules.

  18. Model Fusion Tool - the Open Environmental Modelling Platform Concept

    Science.gov (United States)

    Kessler, H.; Giles, J. R.

    2010-12-01

    The vision of an Open Environmental Modelling Platform - seamlessly linking geoscience data, concepts and models to aid decision making in times of environmental change. Governments and their executive agencies across the world are facing increasing pressure to make decisions about the management of resources in light of population growth and environmental change. In the UK for example, groundwater is becoming a scarce resource for large parts of its most densely populated areas. At the same time river and groundwater flooding resulting from high rainfall events are increasing in scale and frequency and sea level rise is threatening the defences of coastal cities. There is also a need for affordable housing, improved transport infrastructure and waste disposal as well as sources of renewable energy and sustainable food production. These challenges can only be resolved if solutions are based on sound scientific evidence. Although we have knowledge and understanding of many individual processes in the natural sciences it is clear that a single science discipline is unable to answer the questions and their inter-relationships. Modern science increasingly employs computer models to simulate the natural, economic and human system. Management and planning requires scenario modelling, forecasts and ‘predictions’. Although the outputs are often impressive in terms of apparent accuracy and visualisation, they are inherently not suited to simulate the response to feedbacks from other models of the earth system, such as the impact of human actions. Geological Survey Organisations (GSO) are increasingly employing advances in Information Technology to visualise and improve their understanding of geological systems. Instead of 2 dimensional paper maps and reports many GSOs now produce 3 dimensional geological framework models and groundwater flow models as their standard output. Additionally the British Geological Survey have developed standard routines to link geological

  19. A consistent framework for modeling inorganic pesticides: Adaptation of life cycle inventory models to metal-base pesticides

    DEFF Research Database (Denmark)

    Peña, N.A.; Anton, A.; Fantke, Peter

    2016-01-01

    Quantifying over the life cycle of a product or service the chemical emissions to the environment in the life cycle inventory (LCI) phase is typically based on generic assumptions. Regarding the LCI application to agricultural systems the estimation of pesticide emissions is often based on standard......, and it will influence the outcomes of the impact profile. The pesticide emission model PestLCI 2.0 is the most advanced currently available inventory model for LCA intended to provide an estimation of organic pesticide emission fractions to the environment. We use this model as starting point for quantifying emission...... estimate metal-specific pesticide emission fractions, addressing the issue of inorganic pesticides for inventory analysis in LCA of agricultural systems....

  20. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  1. Transfer Entropy as a Tool for Hydrodynamic Model Validation

    Directory of Open Access Journals (Sweden)

    Alicia Sendrowski

    2018-01-01

    Full Text Available The validation of numerical models is an important component of modeling to ensure reliability of model outputs under prescribed conditions. In river deltas, robust validation of models is paramount given that models are used to forecast land change and to track water, solid, and solute transport through the deltaic network. We propose using transfer entropy (TE to validate model results. TE quantifies the information transferred between variables in terms of strength, timescale, and direction. Using water level data collected in the distributary channels and inter-channel islands of Wax Lake Delta, Louisiana, USA, along with modeled water level data generated for the same locations using Delft3D, we assess how well couplings between external drivers (river discharge, tides, wind and modeled water levels reproduce the observed data couplings. We perform this operation through time using ten-day windows. Modeled and observed couplings compare well; their differences reflect the spatial parameterization of wind and roughness in the model, which prevents the model from capturing high frequency fluctuations of water level. The model captures couplings better in channels than on islands, suggesting that mechanisms of channel-island connectivity are not fully represented in the model. Overall, TE serves as an additional validation tool to quantify the couplings of the system of interest at multiple spatial and temporal scales.

  2. Multi-model comparison highlights consistency in predicted effect of warming on a semi-arid shrub

    Science.gov (United States)

    Renwick, Katherine M.; Curtis, Caroline; Kleinhesselink, Andrew R.; Schlaepfer, Daniel R.; Bradley, Bethany A.; Aldridge, Cameron L.; Poulter, Benjamin; Adler, Peter B.

    2018-01-01

    A number of modeling approaches have been developed to predict the impacts of climate change on species distributions, performance, and abundance. The stronger the agreement from models that represent different processes and are based on distinct and independent sources of information, the greater the confidence we can have in their predictions. Evaluating the level of confidence is particularly important when predictions are used to guide conservation or restoration decisions. We used a multi-model approach to predict climate change impacts on big sagebrush (Artemisia tridentata), the dominant plant species on roughly 43 million hectares in the western United States and a key resource for many endemic wildlife species. To evaluate the climate sensitivity of A. tridentata, we developed four predictive models, two based on empirically derived spatial and temporal relationships, and two that applied mechanistic approaches to simulate sagebrush recruitment and growth. This approach enabled us to produce an aggregate index of climate change vulnerability and uncertainty based on the level of agreement between models. Despite large differences in model structure, predictions of sagebrush response to climate change were largely consistent. Performance, as measured by change in cover, growth, or recruitment, was predicted to decrease at the warmest sites, but increase throughout the cooler portions of sagebrush's range. A sensitivity analysis indicated that sagebrush performance responds more strongly to changes in temperature than precipitation. Most of the uncertainty in model predictions reflected variation among the ecological models, raising questions about the reliability of forecasts based on a single modeling approach. Our results highlight the value of a multi-model approach in forecasting climate change impacts and uncertainties and should help land managers to maximize the value of conservation investments.

  3. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.

    Science.gov (United States)

    Zhao, Dong; Sakoda, Hideyuki; Sawyer, W Gregory; Banks, Scott A; Fregly, Benjamin J

    2008-02-01

    Wear of ultrahigh molecular weight polyethylene remains a primary factor limiting the longevity of total knee replacements (TKRs). However, wear testing on a simulator machine is time consuming and expensive, making it impractical for iterative design purposes. The objectives of this paper were first, to evaluate whether a computational model using a wear factor consistent with the TKR material pair can predict accurate TKR damage measured in a simulator machine, and second, to investigate how choice of surface evolution method (fixed or variable step) and material model (linear or nonlinear) affect the prediction. An iterative computational damage model was constructed for a commercial knee implant in an AMTI simulator machine. The damage model combined a dynamic contact model with a surface evolution model to predict how wear plus creep progressively alter tibial insert geometry over multiple simulations. The computational framework was validated by predicting wear in a cylinder-on-plate system for which an analytical solution was derived. The implant damage model was evaluated for 5 million cycles of simulated gait using damage measurements made on the same implant in an AMTI machine. Using a pin-on-plate wear factor for the same material pair as the implant, the model predicted tibial insert wear volume to within 2% error and damage depths and areas to within 18% and 10% error, respectively. Choice of material model had little influence, while inclusion of surface evolution affected damage depth and area but not wear volume predictions. Surface evolution method was important only during the initial cycles, where variable step was needed to capture rapid geometry changes due to the creep. Overall, our results indicate that accurate TKR damage predictions can be made with a computational model using a constant wear factor obtained from pin-on-plate tests for the same material pair, and furthermore, that surface evolution method matters only during the initial

  4. Thermodynamically consistent modeling and simulation of multi-component two-phase flow model with partial miscibility

    KAUST Repository

    Kou, Jisheng

    2016-11-25

    A general diffuse interface model with a realistic equation of state (e.g. Peng-Robinson equation of state) is proposed to describe the multi-component two-phase fluid flow based on the principles of the NVT-based framework which is a latest alternative over the NPT-based framework to model the realistic fluids. The proposed model uses the Helmholtz free energy rather than Gibbs free energy in the NPT-based framework. Different from the classical routines, we combine the first law of thermodynamics and related thermodynamical relations to derive the entropy balance equation, and then we derive a transport equation of the Helmholtz free energy density. Furthermore, by using the second law of thermodynamics, we derive a set of unified equations for both interfaces and bulk phases that can describe the partial miscibility of two fluids. A relation between the pressure gradient and chemical potential gradients is established, and this relation leads to a new formulation of the momentum balance equation, which demonstrates that chemical potential gradients become the primary driving force of fluid motion. Moreover, we prove that the proposed model satisfies the total (free) energy dissipation with time. For numerical simulation of the proposed model, the key difficulties result from the strong nonlinearity of Helmholtz free energy density and tight coupling relations between molar densities and velocity. To resolve these problems, we propose a novel convex-concave splitting of Helmholtz free energy density and deal well with the coupling relations between molar densities and velocity through very careful physical observations with a mathematical rigor. We prove that the proposed numerical scheme can preserve the discrete (free) energy dissipation. Numerical tests are carried out to verify the effectiveness of the proposed method.

  5. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    Science.gov (United States)

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899

  6. Theoretical Modeling of Rock Breakage by Hydraulic and Mechanical Tool

    Directory of Open Access Journals (Sweden)

    Hongxiang Jiang

    2014-01-01

    Full Text Available Rock breakage by coupled mechanical and hydraulic action has been developed over the past several decades, but theoretical study on rock fragmentation by mechanical tool with water pressure assistance was still lacking. The theoretical model of rock breakage by mechanical tool was developed based on the rock fracture mechanics and the solution of Boussinesq’s problem, and it could explain the process of rock fragmentation as well as predicating the peak reacting force. The theoretical model of rock breakage by coupled mechanical and hydraulic action was developed according to the superposition principle of intensity factors at the crack tip, and the reacting force of mechanical tool assisted by hydraulic action could be reduced obviously if the crack with a critical length could be produced by mechanical or hydraulic impact. The experimental results indicated that the peak reacting force could be reduced about 15% assisted by medium water pressure, and quick reduction of reacting force after peak value decreased the specific energy consumption of rock fragmentation by mechanical tool. The crack formation by mechanical or hydraulic impact was the prerequisite to improvement of the ability of combined breakage.

  7. Development of a simple force prediction model and consistency assessment of knee movements in ten-pin bowling

    Directory of Open Access Journals (Sweden)

    Li-Cheng Hsieh

    2012-08-01

    Full Text Available The aim of this research is to use LabVIEW to help bowlers understand theirjoint movements, forces acting on their joints, and the consistency of their knee movements while competing in ten-pin bowling. Kinetic and kinematic data relating to the lower limbs were derived from bowlers’ joint angles and the joint forces were calculated from the Euler angles using the inverse dynamics method with Newton-Euler equations. An artificial-neural-network (ANN-based data-driven model for predicting knee forces using the Euler angles was developed. This approach allows for the collection of data inbowling alleys without the use of force plates. Correlation coefficients were computed after ANN training and all values exceeded 0.9. This result implies a strong correlation between the joint angles and forces. Furthermore, the predicted 3D forces (obtained from ANN simulations and the measured forces (obtained from force plates via the inverse dynamics method are strongly correlated. The agreement between the predicted andmeasured forces was evaluated by the coefficient of determination (R2, which reflects the bowler’s consistency and steadiness of the bowling motion at the knee. The R2 value was beneficial in assessing the consistency of the bowling motion. An R2 value close to 1 implies a more consistent sliding motion. This research enables the prediction of the forceson the knee during ten-pin bowling by ANN simulations using the measured knee angles. Consequently, coaches and bowlers can use the developed ANN model and the analysis module to improve bowling motion.

  8. Empirical phylogenies and species abundance distributions are consistent with pre-equilibrium dynamics of neutral community models with gene flow

    KAUST Repository

    Bonnet-Lebrun, Anne-Sophie

    2017-03-17

    Community characteristics reflect past ecological and evolutionary dynamics. Here, we investigate whether it is possible to obtain realistically shaped modelled communities - i.e., with phylogenetic trees and species abundance distributions shaped similarly to typical empirical bird and mammal communities - from neutral community models. To test the effect of gene flow, we contrasted two spatially explicit individual-based neutral models: one with protracted speciation, delayed by gene flow, and one with point mutation speciation, unaffected by gene flow. The former produced more realistic communities (shape of phylogenetic tree and species-abundance distribution), consistent with gene flow being a key process in macro-evolutionary dynamics. Earlier models struggled to capture the empirically observed branching tempo in phylogenetic trees, as measured by the gamma statistic. We show that the low gamma values typical of empirical trees can be obtained in models with protracted speciation, in pre-equilibrium communities developing from an initially abundant and widespread species. This was even more so in communities sampled incompletely, particularly if the unknown species are the youngest. Overall, our results demonstrate that the characteristics of empirical communities that we have studied can, to a large extent, be explained through a purely neutral model under pre-equilibrium conditions. This article is protected by copyright. All rights reserved.

  9. Sobol Sensitivity Analysis: A Tool to Guide the Development and Evaluation of Systems Pharmacology Models

    Science.gov (United States)

    Trame, MN; Lesko, LJ

    2015-01-01

    A systems pharmacology model typically integrates pharmacokinetic, biochemical network, and systems biology concepts into a unifying approach. It typically consists of a large number of parameters and reaction species that are interlinked based upon the underlying (patho)physiology and the mechanism of drug action. The more complex these models are, the greater the challenge of reliably identifying and estimating respective model parameters. Global sensitivity analysis provides an innovative tool that can meet this challenge. CPT Pharmacometrics Syst. Pharmacol. (2015) 4, 69–79; doi:10.1002/psp4.6; published online 25 February 2015 PMID:27548289

  10. Development of a Consistent GIS Based Method for Estimating the Groundwater Runoff Parameter for Regional Scale Precipitation-Runoff Models

    Science.gov (United States)

    Bjerklie, D. M.

    2014-12-01

    As part of a U. S. Geological Survey effort to (1) estimate river discharge in ungaged basins, (2) understand runoff quantity and timing for watersheds between gaging stations, and (3) estimate potential future streamflow, a national scale precipitation runoff model is in development. The effort uses the USGS Precipitation Runoff Modeling System (PRMS) model. The model development strategy includes methods to assign hydrologic routing coefficients a priori from national scale GIS data bases. Once developed, the model can serve as an initial baseline for more detailed and locally/regionally calibrated models designed for specific projects and purposes. One of the key hydrologic routing coefficients is the groundwater coefficient (gw_coef). This study estimates the gw_coef from continental US GIS data, including geology, drainage density, aquifer type, vegetation type, and baseflow index information. The gw_coef is applied in regional PRMS models and is estimated using two methods. The first method uses a statistical model to predict the gw_coef from weighted average values of surficial geologic materials, dominant aquifer type, baseflow index, vegetation type, and the drainage density. The second method computes the gw_coef directly from the physical conditions in the watershed including the percentage geologic material and the drainage density. The two methods are compared against the gw_coef derived from streamflow records, and tested for selected rivers in different regions of the country. To address the often weak correlation between geology and baseflow, the existence of groundwater sinks, and complexities of groundwater flow paths, the spatial characteristics of the gw_coef prediction error were evaluated, and a correction factor developed from the spatial error distribution. This provides a consistent and improved method to estimate the gw_coef for regional PRMS models that is derived from available GIS data and physical information for watersheds.

  11. Using the IEA ETSAP modelling tools for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, Poul Erik

    2008-12-15

    An important part of the cooperation within the IEA (International Energy Agency) is organised through national contributions to 'Implementation Agreements' on energy technology and energy analyses. One of them is ETSAP (Energy Technology Systems Analysis Programme), started in 1976. Denmark has signed the agreement and contributed to some early annexes. This project is motivated by an invitation to participate in ETSAP Annex X, 'Global Energy Systems and Common Analyses: Climate friendly, Secure and Productive Energy Systems' for the period 2005 to 2007. The main activity is semi-annual workshops focusing on presentations of model analyses and use of the ETSAP tools (the MARKAL/TIMES family of models). The project was also planned to benefit from the EU project 'NEEDS - New Energy Externalities Developments for Sustainability'. ETSAP is contributing to a part of NEEDS that develops the TIMES model for 29 European countries with assessment of future technologies. An additional project 'Monitoring and Evaluation of the RES directives: implementation in EU27 and policy recommendations for 2020' (RES2020) under Intelligent Energy Europe was added, as well as the Danish 'Centre for Energy, Environment and Health (CEEH), starting from January 2007. This report summarises the activities under ETSAP Annex X and related project, emphasising the development of modelling tools that will be useful for modelling the Danish energy system. It is also a status report for the development of a model for Denmark, focusing on the tools and features that allow comparison with other countries and, particularly, to evaluate assumptions and results in international models covering Denmark. (au)

  12. Designing a training tool for imaging mental models

    Science.gov (United States)

    Dede, Christopher J.; Jayaram, Geetha

    1990-01-01

    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network.

  13. ADAS tools for collisional–radiative modelling of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Guzmán, F., E-mail: francisco.guzman@cea.fr [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); CEA, IRFM, Saint-Paul-lez-Durance 13108 (France); O’Mullane, M.; Summers, H.P. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2013-07-15

    New theoretical and computational tools for molecular collisional–radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H{sub 2} are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional–radiative) rate coefficients versus temperature and density are presented.

  14. ADAS tools for collisional-radiative modelling of molecules

    Science.gov (United States)

    Guzmán, F.; O'Mullane, M.; Summers, H. P.

    2013-07-01

    New theoretical and computational tools for molecular collisional-radiative models are presented. An application to the hydrogen molecule system has been made. At the same time, a structured database has been created where fundamental cross sections and rates for individual processes as well as derived data (effective coefficients) are stored. Relative populations for the vibrational states of the ground electronic state of H2 are presented and this vibronic resolution model is compared electronic resolution where vibronic transitions are summed over vibrational sub-states. Some new reaction rates are calculated by means of the impact parameter approximation. Computational tools have been developed to automate process and simplify the data assembly. Effective (collisional-radiative) rate coefficients versus temperature and density are presented.

  15. Introduction to genetic algorithms as a modeling tool

    International Nuclear Information System (INIS)

    Wildberger, A.M.; Hickok, K.A.

    1990-01-01

    Genetic algorithms are search and classification techniques modeled on natural adaptive systems. This is an introduction to their use as a modeling tool with emphasis on prospects for their application in the power industry. It is intended to provide enough background information for its audience to begin to follow technical developments in genetic algorithms and to recognize those which might impact on electric power engineering. Beginning with a discussion of genetic algorithms and their origin as a model of biological adaptation, their advantages and disadvantages are described in comparison with other modeling tools such as simulation and neural networks in order to provide guidance in selecting appropriate applications. In particular, their use is described for improving expert systems from actual data and they are suggested as an aid in building mathematical models. Using the Thermal Performance Advisor as an example, it is suggested how genetic algorithms might be used to make a conventional expert system and mathematical model of a power plant adapt automatically to changes in the plant's characteristics

  16. Surviving the present: Modeling tools for organizational change

    Energy Technology Data Exchange (ETDEWEB)

    Pangaro, P. (Pangaro Inc., Washington, DC (United States))

    1992-01-01

    The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them.

  17. Surviving the present: Modeling tools for organizational change

    International Nuclear Information System (INIS)

    Pangaro, P.

    1992-01-01

    The nuclear industry, like the rest of modern American business, is beset by a confluence of economic, technological, competitive, regulatory, and political pressures. For better or worse, business schools and management consultants have leapt to the rescue, offering the most modern conveniences that they can purvey. Recent advances in the study of organizations have led to new tools for their analysis, revision, and repair. There are two complementary tools that do not impose values or injunctions in themselves. One, called the organization modeler, captures the hierarchy of purposes that organizations and their subparts carry out. Any deficiency or pathology is quickly illuminated, and requirements for repair are made clear. The second, called THOUGHTSTICKER, is used to capture the semantic content of the conversations that occur across the interactions of parts of an organization. The distinctions and vocabulary in the language of an organization, and the relations within that domain, are elicited from the participants so that all three are available for debate and refinement. The product of the applications of these modeling tools is not the resulting models but rather the enhancement of the organization as a consequence of the process of constructing them

  18. Modelling stillbirth mortality reduction with the Lives Saved Tool

    Directory of Open Access Journals (Sweden)

    Hannah Blencowe

    2017-11-01

    Full Text Available Abstract Background The worldwide burden of stillbirths is large, with an estimated 2.6 million babies stillborn in 2015 including 1.3 million dying during labour. The Every Newborn Action Plan set a stillbirth target of ≤12 per 1000 in all countries by 2030. Planning tools will be essential as countries set policy and plan investment to scale up interventions to meet this target. This paper summarises the approach taken for modelling the impact of scaling-up health interventions on stillbirths in the Lives Saved tool (LiST, and potential future refinements. Methods The specific application to stillbirths of the general method for modelling the impact of interventions in LiST is described. The evidence for the effectiveness of potential interventions to reduce stillbirths are reviewed and the assumptions of the affected fraction of stillbirths who could potentially benefit from these interventions are presented. The current assumptions and their effects on stillbirth reduction are described and potential future improvements discussed. Results High quality evidence are not available for all parameters in the LiST stillbirth model. Cause-specific mortality data is not available for stillbirths, therefore stillbirths are modelled in LiST using an attributable fraction approach by timing of stillbirths (antepartum/ intrapartum. Of 35 potential interventions to reduce stillbirths identified, eight interventions are currently modelled in LiST. These include childbirth care, induction for prolonged pregnancy, multiple micronutrient and balanced energy supplementation, malaria prevention and detection and management of hypertensive disorders of pregnancy, diabetes and syphilis. For three of the interventions, childbirth care, detection and management of hypertensive disorders of pregnancy, and diabetes the estimate of effectiveness is based on expert opinion through a Delphi process. Only for malaria is coverage information available, with coverage

  19. Update on Small Modular Reactors Dynamics System Modeling Tool -- Molten Salt Cooled Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Hale, Richard Edward [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Borum, Robert C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chaleff, Ethan S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rogerson, Doug W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Batteh, John J. [Modelon Corporation (Sweden); Tiller, Michael M. [Xogeny Corporation, Canton, MI (United States)

    2014-08-01

    The Small Modular Reactor (SMR) Dynamic System Modeling Tool project is in the third year of development. The project is designed to support collaborative modeling and study of various advanced SMR (non-light water cooled) concepts, including the use of multiple coupled reactors at a single site. The objective of the project is to provide a common simulation environment and baseline modeling resources to facilitate rapid development of dynamic advanced reactor SMR models, ensure consistency among research products within the Instrumentation, Controls, and Human-Machine Interface (ICHMI) technical area, and leverage cross-cutting capabilities while minimizing duplication of effort. The combined simulation environment and suite of models are identified as the Modular Dynamic SIMulation (MoDSIM) tool. The critical elements of this effort include (1) defining a standardized, common simulation environment that can be applied throughout the program, (2) developing a library of baseline component modules that can be assembled into full plant models using existing geometry and thermal-hydraulic data, (3) defining modeling conventions for interconnecting component models, and (4) establishing user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  20. Thermodynamic consistency of viscoplastic material models involving external variable rates in the evolution equations for the internal variables

    International Nuclear Information System (INIS)

    Malmberg, T.

    1993-09-01

    The objective of this study is to derive and investigate thermodynamic restrictions for a particular class of internal variable models. Their evolution equations consist of two contributions: the usual irreversible part, depending only on the present state, and a reversible but path dependent part, linear in the rates of the external variables (evolution equations of ''mixed type''). In the first instance the thermodynamic analysis is based on the classical Clausius-Duhem entropy inequality and the Coleman-Noll argument. The analysis is restricted to infinitesimal strains and rotations. The results are specialized and transferred to a general class of elastic-viscoplastic material models. Subsequently, they are applied to several viscoplastic models of ''mixed type'', proposed or discussed in the literature (Robinson et al., Krempl et al., Freed et al.), and it is shown that some of these models are thermodynamically inconsistent. The study is closed with the evaluation of the extended Clausius-Duhem entropy inequality (concept of Mueller) where the entropy flux is governed by an assumed constitutive equation in its own right; also the constraining balance equations are explicitly accounted for by the method of Lagrange multipliers (Liu's approach). This analysis is done for a viscoplastic material model with evolution equations of the ''mixed type''. It is shown that this approach is much more involved than the evaluation of the classical Clausius-Duhem entropy inequality with the Coleman-Noll argument. (orig.) [de

  1. Integration and consistency testing of groundwater flow models with hydro-geochemistry in site investigations in Finland

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Loefman, J.; Korkealaakso, J.; Koskinen, L.; Ruotsalainen, P.; Hautojaervi, A.; Aeikaes, T.

    1999-01-01

    In the assessment of the suitability and safety of a geological repository for radioactive waste the understanding of the fluid flow at a site is essential. In order to build confidence in the assessment of the hydrogeological performance of a site in various conditions, integration of hydrological and hydrogeochemical methods and studies provides the primary method for investigating the evolution that has taken place in the past, and for predicting future conditions at the potential disposal site. A systematic geochemical sampling campaign was started since the beginning of 1990's in the Finnish site investigation programme. This enabled the initiating of integration and evaluation of site scale hydrogeochemical and groundwater flow models. Hydrogeochemical information has been used to screen relevant external processes and variables for definition of the initial and boundary conditions in hydrological simulations. The results obtained from interpretation and modelling hydrogeochemical evolution have been employed in testing the hydrogeochemical consistency of conceptual flow models. Integration and testing of flow models with hydrogeochemical information are considered to improve significantly the hydrogeological understanding of a site and increases confidence in conceptual hydrogeological models. (author)

  2. A Simulation Model for Drift Resistive Ballooning Turbulence Examining the Influence of Self-consistent Zonal Flows

    Science.gov (United States)

    Cohen, Bruce; Umansky, Maxim; Joseph, Ilon

    2015-11-01

    Progress is reported on including self-consistent zonal flows in simulations of drift-resistive ballooning turbulence using the BOUT + + framework. Previous published work addressed the simulation of L-mode edge turbulence in realistic single-null tokamak geometry using the BOUT three-dimensional fluid code that solves Braginskii-based fluid equations. The effects of imposed sheared ExB poloidal rotation were included, with a static radial electric field fitted to experimental data. In new work our goal is to include the self-consistent effects on the radial electric field driven by the microturbulence, which contributes to the sheared ExB poloidal rotation (zonal flow generation). We describe a model for including self-consistent zonal flows and an algorithm for maintaining underlying plasma profiles to enable the simulation of steady-state turbulence. We examine the role of Braginskii viscous forces in providing necessary dissipation when including axisymmetric perturbations. We also report on some of the numerical difficulties associated with including the axisymmetric component of the fluctuating fields. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory (LLNL-ABS-674950).

  3. Solid-state-drives (SSDs) modeling simulation tools & strategies

    CERN Document Server

    2017-01-01

    This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, fr...

  4. Large Sample Hydrology : Building an international sample of watersheds to improve consistency and robustness of model evaluation

    Science.gov (United States)

    Mathevet, Thibault; Kumar, Rohini; Gupta, Hoshin; Vaze, Jai; Andréassian, Vazken

    2015-04-01

    This poster introduces the aims of the Large Sample Hydrology working group (LSH-WG) of the new IAHS Panta Rhei decade (2013-2022). The aim of the LSH-WG is to promote large sample hydrology, as discussed by Gupta et al. (2014) and to invite the community to collaborate on building and sharing a comprehensive and representative world-wide sample of watershed datasets. By doing so, LSH will allow the community to work towards 'hydrological consistency' (Martinez and Gupta, 2011) as a basis for hydrologic model development and evaluation, thereby increasing robustness of the model evaluation process. Classical model evaluation metrics based on 'robust statistics' are needed, but clearly not sufficient: multi-criteria assessments based on multiple hydrological signatures can help to better characterize hydrological functioning. Further, large-sample data sets can greatly facilitate: (i) improved understanding through rigorous testing and comparison of competing model hypothesis and structures, (ii) improved robustness of generalizations through statistical analyses that minimize the influence of outliers and case-specific studies, (iii) classification, regionalization and model transfer across a broad diversity of hydrometeorological contexts, and (iv) estimation of predictive uncertainties at a location and across locations (Mathevet et al., 2006; Andréassian et al., 2009; Gupta et al., 2014) References Andréassian, V., Perrin, C., Berthet, L., Le Moine, N., Lerat, J., Loumagne, C., Oudin, L., Mathevet, T., Ramos, M. H., and Valéry, A.: Crash tests for a standardized evaluation of hydrological models, Hydrology and Earth System Sciences, 1757-1764, 2009. Gupta, H. V., Perrin, C., Blöschl, G., Montanari, A., Kumar, R., Clark, M., and Andréassian, V.: Large-sample hydrology: a need to balance depth with breadth, Hydrol. Earth Syst. Sci., 18, 463-477, doi:10.5194/hess-18-463-2014, 2014. Martinez, G. F., and H. V.Gupta (2011), Hydrologic consistency as a basis for

  5. A self-consistent model for the electronic structure of the u-center in alkali-halides

    International Nuclear Information System (INIS)

    Koiller, B.; Brandi, H.S.

    1978-01-01

    A simple one-orbital per site model Hamiltonian for the U center in alkali-halides with rock-salt structure where correlation effects are introduced via an Anderson type Hamiltonian is presented. The Cluster-Bethe lattice method is used to determine the local density of states, yielding both localized and extended states. A one-electron approximation is assumed and the problem is solved self consistently in the Hartree-Fock scheme. The optical excitation energy is in fair agreement with experiment. The present approach is compared with other models previously used to describe this center and the results indicate that is adequately incorporates the relevant features of the system indicating the possibility of its application to other physical situations [pt

  6. An ensemble model of QSAR tools for regulatory risk assessment.

    Science.gov (United States)

    Pradeep, Prachi; Povinelli, Richard J; White, Shannon; Merrill, Stephen J

    2016-01-01

    Quantitative structure activity relationships (QSARs) are theoretical models that relate a quantitative measure of chemical structure to a physical property or a biological effect. QSAR predictions can be used for chemical risk assessment for protection of human and environmental health, which makes them interesting to regulators, especially in the absence of experimental data. For compatibility with regulatory use, QSAR models should be transparent, reproducible and optimized to minimize the number of false negatives. In silico QSAR tools are gaining wide acceptance as a faster alternative to otherwise time-consuming clinical and animal testing methods. However, different QSAR tools often make conflicting predictions for a given chemical and may also vary in their predictive performance across different chemical datasets. In a regulatory context, conflicting predictions raise interpretation, validation and adequacy concerns. To address these concerns, ensemble learning techniques in the machine learning paradigm can be used to integrate predictions from multiple tools. By leveraging various underlying QSAR algorithms and training datasets, the resulting consensus prediction should yield better overall predictive ability. We present a novel ensemble QSAR model using Bayesian classification. The model allows for varying a cut-off parameter that allows for a selection in the desirable trade-off between model sensitivity and specificity. The predictive performance of the ensemble model is compared with four in silico tools (Toxtree, Lazar, OECD Toolbox, and Danish QSAR) to predict carcinogenicity for a dataset of air toxins (332 chemicals) and a subset of the gold carcinogenic potency database (480 chemicals). Leave-one-out cross validation results show that the ensemble model achieves the best trade-off between sensitivity and specificity (accuracy: 83.8 % and 80.4 %, and balanced accuracy: 80.6 % and 80.8 %) and highest inter-rater agreement [kappa ( κ ): 0

  7. Information Theoretic Tools for Parameter Fitting in Coarse Grained Models

    KAUST Repository

    Kalligiannaki, Evangelia

    2015-01-07

    We study the application of information theoretic tools for model reduction in the case of systems driven by stochastic dynamics out of equilibrium. The model/dimension reduction is considered by proposing parametrized coarse grained dynamics and finding the optimal parameter set for which the relative entropy rate with respect to the atomistic dynamics is minimized. The minimization problem leads to a generalization of the force matching methods to non equilibrium systems. A multiplicative noise example reveals the importance of the diffusion coefficient in the optimization problem.

  8. Programming Models and Tools for Intelligent Embedded Systems

    DEFF Research Database (Denmark)

    Sørensen, Peter Verner Bojsen

    Design automation and analysis tools targeting embedded platforms, developed using a component-based design approach, must be able to reason about the capabilities of the platforms. In the general case where nothing is assumed about the components comprising a platform or the platform topology......, analysis must be employed to determine its capabilities. This kind of analysis is the subject of this dissertation. The main contribution of this work is the Service Relation Model used to describe and analyze the flow of service in models of platforms and systems composed of re-usable components...

  9. Evaluation of air pollution modelling tools as environmental engineering courseware.

    Science.gov (United States)

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results.

  10. A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations

    Science.gov (United States)

    Charnay, B.; Bézard, B.; Baudino, J.-L.; Bonnefoy, M.; Boccaletti, A.; Galicher, R.

    2018-02-01

    We developed a simple, physical, and self-consistent cloud model for brown dwarfs and young giant exoplanets. We compared different parametrizations for the cloud particle size, by fixing either particle radii or the mixing efficiency (parameter f sed), or by estimating particle radii from simple microphysics. The cloud scheme with simple microphysics appears to be the best parametrization by successfully reproducing the observed photometry and spectra of brown dwarfs and young giant exoplanets. In particular, it reproduces the L–T transition, due to the condensation of silicate and iron clouds below the visible/near-IR photosphere. It also reproduces the reddening observed for low-gravity objects, due to an increase of cloud optical depth for low gravity. In addition, we found that the cloud greenhouse effect shifts chemical equilibrium, increasing the abundances of species stable at high temperature. This effect should significantly contribute to the strong variation of methane abundance at the L–T transition and to the methane depletion observed on young exoplanets. Finally, we predict the existence of a continuum of brown dwarfs and exoplanets for absolute J magnitude = 15–18 and J-K color = 0–3, due to the evolution of the L–T transition with gravity. This self-consistent model therefore provides a general framework to understand the effects of clouds and appears well-suited for atmospheric retrievals.

  11. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Science.gov (United States)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  12. Logic flowgraph methodology - A tool for modeling embedded systems

    Science.gov (United States)

    Muthukumar, C. T.; Guarro, S. B.; Apostolakis, G. E.

    1991-01-01

    The logic flowgraph methodology (LFM), a method for modeling hardware in terms of its process parameters, has been extended to form an analytical tool for the analysis of integrated (hardware/software) embedded systems. In the software part of a given embedded system model, timing and the control flow among different software components are modeled by augmenting LFM with modified Petrinet structures. The objective of the use of such an augmented LFM model is to uncover possible errors and the potential for unanticipated software/hardware interactions. This is done by backtracking through the augmented LFM mode according to established procedures which allow the semiautomated construction of fault trees for any chosen state of the embedded system (top event). These fault trees, in turn, produce the possible combinations of lower-level states (events) that may lead to the top event.

  13. Computational Modeling, Formal Analysis, and Tools for Systems Biology.

    Directory of Open Access Journals (Sweden)

    Ezio Bartocci

    2016-01-01

    Full Text Available As the amount of biological data in the public domain grows, so does the range of modeling and analysis techniques employed in systems biology. In recent years, a number of theoretical computer science developments have enabled modeling methodology to keep pace. The growing interest in systems biology in executable models and their analysis has necessitated the borrowing of terms and methods from computer science, such as formal analysis, model checking, static analysis, and runtime verification. Here, we discuss the most important and exciting computational methods and tools currently available to systems biologists. We believe that a deeper understanding of the concepts and theory highlighted in this review will produce better software practice, improved investigation of complex biological processes, and even new ideas and better feedback into computer science.

  14. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  15. Producing physically consistent and bias free extreme precipitation events over the Switzerland: Bridging gaps between meteorology and impact models

    Science.gov (United States)

    José Gómez-Navarro, Juan; Raible, Christoph C.; Blumer, Sandro; Martius, Olivia; Felder, Guido

    2016-04-01

    Extreme precipitation episodes, although rare, are natural phenomena that can threat human activities, especially in areas densely populated such as Switzerland. Their relevance demands the design of public policies that protect public assets and private property. Therefore, increasing the current understanding of such exceptional situations is required, i.e. the climatic characterisation of their triggering circumstances, severity, frequency, and spatial distribution. Such increased knowledge shall eventually lead us to produce more reliable projections about the behaviour of these events under ongoing climate change. Unfortunately, the study of extreme situations is hampered by the short instrumental record, which precludes a proper characterization of events with return period exceeding few decades. This study proposes a new approach that allows studying storms based on a synthetic, but physically consistent database of weather situations obtained from a long climate simulation. Our starting point is a 500-yr control simulation carried out with the Community Earth System Model (CESM). In a second step, this dataset is dynamically downscaled with the Weather Research and Forecasting model (WRF) to a final resolution of 2 km over the Alpine area. However, downscaling the full CESM simulation at such high resolution is infeasible nowadays. Hence, a number of case studies are previously selected. This selection is carried out examining the precipitation averaged in an area encompassing Switzerland in the ESM. Using a hydrological criterion, precipitation is accumulated in several temporal windows: 1 day, 2 days, 3 days, 5 days and 10 days. The 4 most extreme events in each category and season are selected, leading to a total of 336 days to be simulated. The simulated events are affected by systematic biases that have to be accounted before this data set can be used as input in hydrological models. Thus, quantile mapping is used to remove such biases. For this task

  16. A self-consistent model of a thermally balanced quiescent prominence in magnetostatic equilibrium in a uniform gravitational field

    International Nuclear Information System (INIS)

    Lerche, I.; Low, B.C.

    1977-01-01

    A theoretical model of quiescent prominences in the form of an infinite vertical sheet is presented. Self-consistent solutions are obtained by integrating simultaneously the set of nonlinear equations of magnetostatic equilibrium and thermal balance. The basic features of the models are: (1) The prominence matter is confined to a sheet and supported against gravity by a bowed magnetic field. (2) The thermal flux is channelled along magnetic field lines. (3) The thermal flux is everywhere balanced by Low's (1975) hypothetical heat sink which is proportional to the local density. (4) A constant component of the magnetic field along the length of the prominence shields the cool plasma from the hot surrounding. It is assumed that the prominence plasma emits more radiation than it absorbes from the radiation fields of the photosphere, chromosphere and corona, and the above hypothetical heat sink is interpreted to represent the amount of radiative loss that must be balanced by a nonradiative energy input. Using a central density and temperature of 10 11 particles cm -3 and 5000 K respectively, a magnetic field strength between 2 to 10 gauss and a thermal conductivity that varies linearly with temperature, the physical properties implied by the model are discussed. The analytic treatment can also be carried out for a class of more complex thermal conductivities. These models provide a useful starting point for investigating the combined requirements of magnetostatic equilibrium and thermal balance in the quiescent prominence. (Auth.)

  17. Gsflow-py: An integrated hydrologic model development tool

    Science.gov (United States)

    Gardner, M.; Niswonger, R. G.; Morton, C.; Henson, W.; Huntington, J. L.

    2017-12-01

    Integrated hydrologic modeling encompasses a vast number of processes and specifications, variable in time and space, and development of model datasets can be arduous. Model input construction techniques have not been formalized or made easily reproducible. Creating the input files for integrated hydrologic models (IHM) requires complex GIS processing of raster and vector datasets from various sources. Developing stream network topology that is consistent with the model resolution digital elevation model is important for robust simulation of surface water and groundwater exchanges. Distribution of meteorologic parameters over the model domain is difficult in complex terrain at the model resolution scale, but is necessary to drive realistic simulations. Historically, development of input data for IHM models has required extensive GIS and computer programming expertise which has restricted the use of IHMs to research groups with available financial, human, and technical resources. Here we present a series of Python scripts that provide a formalized technique for the parameterization and development of integrated hydrologic model inputs for GSFLOW. With some modifications, this process could be applied to any regular grid hydrologic model. This Python toolkit automates many of the necessary and laborious processes of parameterization, including stream network development and cascade routing, land coverages, and meteorological distribution over the model domain.

  18. Right approach to 3D modeling using CAD tools

    Science.gov (United States)

    Baddam, Mounica Reddy

    The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).

  19. CSML2SBML: a novel tool for converting quantitative biological pathway models from CSML into SBML.

    Science.gov (United States)

    Li, Chen; Nagasaki, Masao; Ikeda, Emi; Sekiya, Yayoi; Miyano, Satoru

    2014-07-01

    CSML and SBML are XML-based model definition standards which are developed with the aim of creating exchange formats for modeling, visualizing and simulating biological pathways. In this article we report a release of a format convertor for quantitative pathway models, namely CSML2SBML. It translates models encoded by CSML into SBML without loss of structural and kinetic information. The simulation and parameter estimation of the resulting SBML model can be carried out with compliant tool CellDesigner for further analysis. The convertor is based on the standards CSML version 3.0 and SBML Level 2 Version 4. In our experiments, 11 out of 15 pathway models in CSML model repository and 228 models in Macrophage Pathway Knowledgebase (MACPAK) are successfully converted to SBML models. The consistency of the resulting model is validated by libSBML Consistency Check of CellDesigner. Furthermore, the converted SBML model assigned with the kinetic parameters translated from CSML model can reproduce the same dynamics with CellDesigner as CSML one running on Cell Illustrator. CSML2SBML, along with its instructions and examples for use are available at http://csml2sbml.csml.org. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The EDF/SEPTEN crisis team calculation tools and models

    International Nuclear Information System (INIS)

    De Magondeaux, B.; Grimaldi, X.

    1993-01-01

    Electricite de France (EDF) has developed a set of simplified tools and models called TOUTEC and CRISALIDE which are devoted to be used by the French utility National Crisis Team in order to perform the task of diagnosis and prognosis during an emergency situation. As a severe accident could have important radiological consequences, this method is focused on the diagnosis of the state of the safety barriers and on the prognosis of their behaviour. These tools allow the crisis team to deliver public authorities with information on the radiological risk and to provide advices to manage the accident on the damaged unit. At a first level, TOUTEC is intended to complement the hand-book with simplified calculation models and predefined relationships. It can avoid tedious calculation during stress conditions. The main items are the calculation of the primary circuit breach size and the evaluation of hydrogen over pressurization. The set of models called CRISALIDE is devoted to evaluate the following critical parameters: delay before core uncover, which would signify more severe consequences if it occurs, containment pressure behaviour and finally source term. With these models, crisis team comes able to take into account combinations of boundary conditions according to safety and auxiliary systems availability

  1. Self-Consistant Numerical Modeling of E-Cloud Driven Instability of a Bunch Train in the CERN SPS

    International Nuclear Information System (INIS)

    Vay, J.-L.; Furman, M.A.; Secondo, R.; Venturini, M.; Fox, J.D.; Rivetta, C.H.

    2010-01-01

    The simulation package WARP-POSINST was recently upgraded for handling multiple bunches and modeling concurrently the electron cloud buildup and its effect on the beam, allowing for direct self-consistent simulation of bunch trains generating, and interacting with, electron clouds. We have used the WARP-POSINST package on massively parallel supercomputers to study the growth rate and frequency patterns in space-time of the electron cloud driven transverse instability for a proton bunch train in the CERN SPS accelerator. Results suggest that a positive feedback mechanism exists between the electron buildup and the e-cloud driven transverse instability, leading to a net increase in predicted electron density. Comparisons to selected experimental data are also given. Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS and other accelerators. So far, simulations of electron cloud buildup and their effects on beam dynamics have been performed separately. This is a consequence of the large computational cost of the combined calculation due to large space and time scale disparities between the two processes. We have presented the latest improvements of the simulation package WARP-POSINST for the simulation of self-consistent ecloud effects, including mesh refinement, and generation of electrons from gas ionization and impact at the pipe walls. We also presented simulations of two consecutive bunches interacting with electrons clouds in the SPS, which included generation of secondary electrons. The distribution of electrons in front of the first beam was initialized from a dump taken from a preceding buildup calculation using the POSINST code. In this paper, we present an extension of this work where one full batch of 72 bunches is simulated in the SPS, including the entire buildup calculation and the self-consistent interaction between the bunches and the electrons. Comparisons to experimental data are also given.

  2. MODERN TOOLS FOR MODELING ACTIVITY IT-COMPANIES

    Directory of Open Access Journals (Sweden)

    Марина Петрівна ЧАЙКОВСЬКА

    2015-05-01

    Full Text Available Increasing competition in the market of the web-based applications increases the importance of the quality of services and optimization of processes of interaction with customers. The purpose of the article is to develop recommendations for improving the business processes of IT enterprises of web application segment based on technological tools for business modeling, shaping requirements for the development of an information system for customer interaction; analysis of the effective means of implementation and evaluation of the economic effects of the introduction. A scheme of the business process development and launch of the website was built, based on the analysis of business process models and “swim lane” models, requirements for IP customer relationship management for web studio were established. Market of software to create IP was analyzed, and the ones corresponding to the requirements were selected. IP system was developed and tested, implemented it in the company, an appraisal of the economic effect was conducted.

  3. Analysis of Sequence Diagram Layout in Advanced UML Modelling Tools

    Directory of Open Access Journals (Sweden)

    Ņikiforova Oksana

    2016-05-01

    Full Text Available System modelling using Unified Modelling Language (UML is the task that should be solved for software development. The more complex software becomes the higher requirements are stated to demonstrate the system to be developed, especially in its dynamic aspect, which in UML is offered by a sequence diagram. To solve this task, the main attention is devoted to the graphical presentation of the system, where diagram layout plays the central role in information perception. The UML sequence diagram due to its specific structure is selected for a deeper analysis on the elements’ layout. The authors research represents the abilities of modern UML modelling tools to offer automatic layout of the UML sequence diagram and analyse them according to criteria required for the diagram perception.

  4. A new model for the sonic borehole logging tool

    International Nuclear Information System (INIS)

    Oelgaard, P.L.

    1990-12-01

    A number of models for the sonic borehole logging tool has earlier been developed. These models which are mainly based on experimental data, are discussed and compared. On this background the new model is developed. It is based on the assumptions that the pores of low porosity formations and the grains of high porosity media may be approximated by cylinders, and that the dimension of these cylinders are given by distribution functions. From these assumptions the transit time Δt p of low porosity formations and Δt g of high porosity media are calculated by use of the Monte Carlo method. Combining the Δt p and Δt g values obtained by use of selected weighting functions seems to permit the determination of the transit time Δt for the full porosity range (0 ≤ φ ≤ 100%). (author)

  5. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, Anca D.; Iov, Florin; Sørensen, Poul

    This report presents a collection of models and control strategies developed and implemented in the power system simulation tool PowerFactory DIgSILENT for different wind turbine concepts. It is the second edition of Risø-R-1400(EN) and it gathers and describes a whole wind turbine model database...... speed doubly-fed induction generator wind turbine concept 3. Variable speed multi-pole permanent magnet synchronous generator wind turbine concept These wind turbine concept models can be used and even extended for the study of different aspects, e.g. the assessment of power quality, control strategies......, connection of the wind turbine at different types of grid and storage systems. Different control strategies have been developed and implemented for these wind turbine concepts, their performance in normal or fault operation being assessed and discussed by means of simulations. The described control...

  6. A self-consistent trapping model of driven electron plasma waves and limits on stimulated Raman scatter

    International Nuclear Information System (INIS)

    Rose, Harvey A.; Russell, David A.

    2001-01-01

    A Vlasov equation based model is used to determine various regimes of electron plasma wave response to a source appropriate to stimulated scatter in a laser hot spot. It incorporates trapped particle effects such as the standard nonlinear frequency shift, extended beyond the weak regime, and a reduction of damping a la Zakharov and Karpman [V. E. Zakharov and V. I. Karpman, JETP 16, 351 (1963)]. The results are consistent with those of Holloway and Dorning [J. P. Holloway and J. J. Dorning, Phys. Rev. A 44, 3856 (1991)] for small amplitude Bernstein-Greene-Kruskal modes. This leads to the prediction that as long as kλ D ≥0.53 for a background Maxwellian distribution function, e.g., a 5 keV plasma with n e /n c ≤0.075, anomalously large backward stimulated Raman scatter can be excluded. A similar analysis leads to density limits on stimulated Brillouin scatter

  7. An improved cognitive model of the Iowa and Soochow Gambling Tasks with regard to model fitting performance and tests of parameter consistency.

    Science.gov (United States)

    Dai, Junyi; Kerestes, Rebecca; Upton, Daniel J; Busemeyer, Jerome R; Stout, Julie C

    2015-01-01

    The Iowa Gambling Task (IGT) and the Soochow Gambling Task (SGT) are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning (EVL) model and the prospect valence learning (PVL) model, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79) and 27 control participants (mean age 35; SD 10.44) completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

  8. An Improved Cognitive Model of the Iowa and Soochow Gambling Tasks With Regard to Model Fitting Performance and Tests of Parameter Consistency

    Directory of Open Access Journals (Sweden)

    Junyi eDai

    2015-03-01

    Full Text Available The Iowa Gambling Task (IGT and the Soochow Gambling Task (SGT are two experience-based risky decision-making tasks for examining decision-making deficits in clinical populations. Several cognitive models, including the expectancy-valence learning model (EVL and the prospect valence learning model (PVL, have been developed to disentangle the motivational, cognitive, and response processes underlying the explicit choices in these tasks. The purpose of the current study was to develop an improved model that can fit empirical data better than the EVL and PVL models and, in addition, produce more consistent parameter estimates across the IGT and SGT. Twenty-six opiate users (mean age 34.23; SD 8.79 and 27 control participants (mean age 35; SD 10.44 completed both tasks. Eighteen cognitive models varying in evaluation, updating, and choice rules were fit to individual data and their performances were compared to that of a statistical baseline model to find a best fitting model. The results showed that the model combining the prospect utility function treating gains and losses separately, the decay-reinforcement updating rule, and the trial-independent choice rule performed the best in both tasks. Furthermore, the winning model produced more consistent individual parameter estimates across the two tasks than any of the other models.

  9. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    International Nuclear Information System (INIS)

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10 19 kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at ∼6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that ∼10 47 molecules of SiO vapor are needed to explain an emission feature at ∼8 μm in the Spitzer IRS spectrum of HD 172555. We find that unless there are ∼10 48 atoms or 0.05 M ⊕ of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the ∼8 μm feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  10. A SELF-CONSISTENT MODEL OF THE CIRCUMSTELLAR DEBRIS CREATED BY A GIANT HYPERVELOCITY IMPACT IN THE HD 172555 SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, B. C.; Melosh, H. J. [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, IN 47907 (United States); Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Chen, C. H. [STScI, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Wyatt, M. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Thebault, P. [LESIA, Observatoire de Paris, F-92195 Meudon Principal Cedex (France); Henning, W. G. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Gaidos, E. [Department of Geology and Geophysics, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Elkins-Tanton, L. T. [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Bridges, J. C. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Morlok, A., E-mail: johns477@purdue.edu [Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2012-12-10

    Spectral modeling of the large infrared excess in the Spitzer IRS spectra of HD 172555 suggests that there is more than 10{sup 19} kg of submicron dust in the system. Using physical arguments and constraints from observations, we rule out the possibility of the infrared excess being created by a magma ocean planet or a circumplanetary disk or torus. We show that the infrared excess is consistent with a circumstellar debris disk or torus, located at {approx}6 AU, that was created by a planetary scale hypervelocity impact. We find that radiation pressure should remove submicron dust from the debris disk in less than one year. However, the system's mid-infrared photometric flux, dominated by submicron grains, has been stable within 4% over the last 27 years, from the Infrared Astronomical Satellite (1983) to WISE (2010). Our new spectral modeling work and calculations of the radiation pressure on fine dust in HD 172555 provide a self-consistent explanation for this apparent contradiction. We also explore the unconfirmed claim that {approx}10{sup 47} molecules of SiO vapor are needed to explain an emission feature at {approx}8 {mu}m in the Spitzer IRS spectrum of HD 172555. We find that unless there are {approx}10{sup 48} atoms or 0.05 M{sub Circled-Plus} of atomic Si and O vapor in the system, SiO vapor should be destroyed by photo-dissociation in less than 0.2 years. We argue that a second plausible explanation for the {approx}8 {mu}m feature can be emission from solid SiO, which naturally occurs in submicron silicate ''smokes'' created by quickly condensing vaporized silicate.

  11. Mathematical modeling of physiological systems: an essential tool for discovery.

    Science.gov (United States)

    Glynn, Patric; Unudurthi, Sathya D; Hund, Thomas J

    2014-08-28

    Mathematical models are invaluable tools for understanding the relationships between components of a complex system. In the biological context, mathematical models help us understand the complex web of interrelations between various components (DNA, proteins, enzymes, signaling molecules etc.) in a biological system, gain better understanding of the system as a whole, and in turn predict its behavior in an altered state (e.g. disease). Mathematical modeling has enhanced our understanding of multiple complex biological processes like enzyme kinetics, metabolic networks, signal transduction pathways, gene regulatory networks, and electrophysiology. With recent advances in high throughput data generation methods, computational techniques and mathematical modeling have become even more central to the study of biological systems. In this review, we provide a brief history and highlight some of the important applications of modeling in biological systems with an emphasis on the study of excitable cells. We conclude with a discussion about opportunities and challenges for mathematical modeling going forward. In a larger sense, the review is designed to help answer a simple but important question that theoreticians frequently face from interested but skeptical colleagues on the experimental side: "What is the value of a model?" Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Towards diagnostic tools for analysing Swarm data through model retrievals

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Plank, Gernot; Haagmans, R.

    The objective of the Swarm mission is to provide the best ever survey of the geomagnetic field and its temporal dependency, and to gain new insights into improving our knowledge of the Earth’s interior and climate. The Swarm concept consists of a constellation of three satellites in three different...... polar orbits between 300 and 550 km altitude. Goal of the current study is to build tools and to analyze datasets, in order to allow a fast diagnosis of the Swarm system performance in orbit during the commission phase and operations of the spacecraft. The effects on the reconstruction of the magnetic...... to test the influence of ionospheric residual signal or the impact of data selection on the lithospheric retrieval. Initially, the study considers one satellite and emphasises on the lithospheric field reconstruction, but in a second step it is extended to a realistic Swarm constellation of three...

  13. Integrated modeling tool for performance engineering of complex computer systems

    Science.gov (United States)

    Wright, Gary; Ball, Duane; Hoyt, Susan; Steele, Oscar

    1989-01-01

    This report summarizes Advanced System Technologies' accomplishments on the Phase 2 SBIR contract NAS7-995. The technical objectives of the report are: (1) to develop an evaluation version of a graphical, integrated modeling language according to the specification resulting from the Phase 2 research; and (2) to determine the degree to which the language meets its objectives by evaluating ease of use, utility of two sets of performance predictions, and the power of the language constructs. The technical approach followed to meet these objectives was to design, develop, and test an evaluation prototype of a graphical, performance prediction tool. The utility of the prototype was then evaluated by applying it to a variety of test cases found in the literature and in AST case histories. Numerous models were constructed and successfully tested. The major conclusion of this Phase 2 SBIR research and development effort is that complex, real-time computer systems can be specified in a non-procedural manner using combinations of icons, windows, menus, and dialogs. Such a specification technique provides an interface that system designers and architects find natural and easy to use. In addition, PEDESTAL's multiview approach provides system engineers with the capability to perform the trade-offs necessary to produce a design that meets timing performance requirements. Sample system designs analyzed during the development effort showed that models could be constructed in a fraction of the time required by non-visual system design capture tools.

  14. Fuzzy regression modeling for tool performance prediction and degradation detection.

    Science.gov (United States)

    Li, X; Er, M J; Lim, B S; Zhou, J H; Gan, O P; Rutkowski, L

    2010-10-01

    In this paper, the viability of using Fuzzy-Rule-Based Regression Modeling (FRM) algorithm for tool performance and degradation detection is investigated. The FRM is developed based on a multi-layered fuzzy-rule-based hybrid system with Multiple Regression Models (MRM) embedded into a fuzzy logic inference engine that employs Self Organizing Maps (SOM) for clustering. The FRM converts a complex nonlinear problem to a simplified linear format in order to further increase the accuracy in prediction and rate of convergence. The efficacy of the proposed FRM is tested through a case study - namely to predict the remaining useful life of a ball nose milling cutter during a dry machining process of hardened tool steel with a hardness of 52-54 HRc. A comparative study is further made between four predictive models using the same set of experimental data. It is shown that the FRM is superior as compared with conventional MRM, Back Propagation Neural Networks (BPNN) and Radial Basis Function Networks (RBFN) in terms of prediction accuracy and learning speed.

  15. Performance Analysis, Modeling and Scaling of HPC Applications and Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bhatele, Abhinav [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-01-13

    E cient use of supercomputers at DOE centers is vital for maximizing system throughput, mini- mizing energy costs and enabling science breakthroughs faster. This requires complementary e orts along several directions to optimize the performance of scienti c simulation codes and the under- lying runtimes and software stacks. This in turn requires providing scalable performance analysis tools and modeling techniques that can provide feedback to physicists and computer scientists developing the simulation codes and runtimes respectively. The PAMS project is using time allocations on supercomputers at ALCF, NERSC and OLCF to further the goals described above by performing research along the following fronts: 1. Scaling Study of HPC applications; 2. Evaluation of Programming Models; 3. Hardening of Performance Tools; 4. Performance Modeling of Irregular Codes; and 5. Statistical Analysis of Historical Performance Data. We are a team of computer and computational scientists funded by both DOE/NNSA and DOE/ ASCR programs such as ECRP, XStack (Traleika Glacier, PIPER), ExaOSR (ARGO), SDMAV II (MONA) and PSAAP II (XPACC). This allocation will enable us to study big data issues when analyzing performance on leadership computing class systems and to assist the HPC community in making the most e ective use of these resources.

  16. Model Verification and Validation Using Graphical Information Systems Tools

    Science.gov (United States)

    2013-07-31

    coastal ocean sufficiently to have a complete picture of the flow. The analysis will thus consist of comparing these incomplete pictures of the current...50 cm. This would suggest that tidal flats would exist at synoptic scales but not daily because there are expanses of the lagoon that are < 50 cm...historical daily data from the correct time of year but not from the correct day. This indicates that the model flow is generally correct at synoptic

  17. Conceptual Models as Tools for Communication Across Disciplines

    Directory of Open Access Journals (Sweden)

    Marieke Heemskerk

    2003-12-01

    Full Text Available To better understand and manage complex social-ecological systems, social scientists and ecologists must collaborate. However, issues related to language and research approaches can make it hard for researchers in different fields to work together. This paper suggests that researchers can improve interdisciplinary science through the use of conceptual models as a communication tool. The authors share lessons from a workshop in which interdisciplinary teams of young scientists developed conceptual models of social-ecological systems using data sets and metadata from Long-Term Ecological Research sites across the United States. Both the process of model building and the models that were created are discussed. The exercise revealed that the presence of social scientists in a group influenced the place and role of people in the models. This finding suggests that the participation of both ecologists and social scientists in the early stages of project development may produce better questions and more accurate models of interactions between humans and ecosystems. Although the participants agreed that a better understanding of human intentions and behavior would advance ecosystem science, they felt that interdisciplinary research might gain more by training strong disciplinarians than by merging ecology and social sciences into a new field. It is concluded that conceptual models can provide an inspiring point of departure and a guiding principle for interdisciplinary group discussions. Jointly developing a model not only helped the participants to formulate questions, clarify system boundaries, and identify gaps in existing data, but also revealed the thoughts and assumptions of fellow scientists. Although the use of conceptual models will not serve all purposes, the process of model building can help scientists, policy makers, and resource managers discuss applied problems and theory among themselves and with those in other areas.

  18. ExEP yield modeling tool and validation test results

    Science.gov (United States)

    Morgan, Rhonda; Turmon, Michael; Delacroix, Christian; Savransky, Dmitry; Garrett, Daniel; Lowrance, Patrick; Liu, Xiang Cate; Nunez, Paul

    2017-09-01

    EXOSIMS is an open-source simulation tool for parametric modeling of the detection yield and characterization of exoplanets. EXOSIMS has been adopted by the Exoplanet Exploration Programs Standards Definition and Evaluation Team (ExSDET) as a common mechanism for comparison of exoplanet mission concept studies. To ensure trustworthiness of the tool, we developed a validation test plan that leverages the Python-language unit-test framework, utilizes integration tests for selected module interactions, and performs end-to-end crossvalidation with other yield tools. This paper presents the test methods and results, with the physics-based tests such as photometry and integration time calculation treated in detail and the functional tests treated summarily. The test case utilized a 4m unobscured telescope with an idealized coronagraph and an exoplanet population from the IPAC radial velocity (RV) exoplanet catalog. The known RV planets were set at quadrature to allow deterministic validation of the calculation of physical parameters, such as working angle, photon counts and integration time. The observing keepout region was tested by generating plots and movies of the targets and the keepout zone over a year. Although the keepout integration test required the interpretation of a user, the test revealed problems in the L2 halo orbit and the parameterization of keepout applied to some solar system bodies, which the development team was able to address. The validation testing of EXOSIMS was performed iteratively with the developers of EXOSIMS and resulted in a more robust, stable, and trustworthy tool that the exoplanet community can use to simulate exoplanet direct-detection missions from probe class, to WFIRST, up to large mission concepts such as HabEx and LUVOIR.

  19. Modeling and Control of the Cobelli Model as a Personalized Prescriptive Tool for Diabetes Treatment

    Science.gov (United States)

    2016-11-05

    physiological accurate model allows for the use of control theory to investigate applications as a personalized prescription tool. This research...physiological accurate model allows for the use of control theory to investigate applications as a personalized prescription tool. This research...utilization increases toward healthy levels. The second pathway is by decreasing the endogenous glucose production of the liver to the bloodstream [6,7

  20. Self-consistent fluid modeling and simulation on a pulsed microwave atmospheric-pressure argon plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoquan, E-mail: zqchen@aust.edu.cn [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Yin, Zhixiang, E-mail: zxyin66@163.com; Chen, Minggong; Hong, Lingli; Hu, Yelin; Huang, Yourui [College of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001 (China); Xia, Guangqing; Liu, Minghai [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Kudryavtsev, A. A. [Faculty of Physics, St. Petersburg State University, St. Petersburg 198504 (Russian Federation)

    2014-10-21

    In present study, a pulsed lower-power microwave-driven atmospheric-pressure argon plasma jet has been introduced with the type of coaxial transmission line resonator. The plasma jet plume is with room air temperature, even can be directly touched by human body without any hot harm. In order to study ionization process of the proposed plasma jet, a self-consistent hybrid fluid model is constructed in which Maxwell's equations are solved numerically by finite-difference time-domain method and a fluid model is used to study the characteristics of argon plasma evolution. With a Guass type input power function, the spatio-temporal distributions of the electron density, the electron temperature, the electric field, and the absorbed power density have been simulated, respectively. The simulation results suggest that the peak values of the electron temperature and the electric field are synchronous with the input pulsed microwave power but the maximum quantities of the electron density and the absorbed power density are lagged to the microwave power excitation. In addition, the pulsed plasma jet excited by the local enhanced electric field of surface plasmon polaritons should be the discharge mechanism of the proposed plasma jet.

  1. Thermodynamics of a Compressible Maier-Saupe Model Based on the Self-Consistent Field Theory of Wormlike Polymer

    Directory of Open Access Journals (Sweden)

    Ying Jiang

    2017-02-01

    Full Text Available This paper presents a theoretical formalism for describing systems of semiflexible polymers, which can have density variations due to finite compressibility and exhibit an isotropic-nematic transition. The molecular architecture of the semiflexible polymers is described by a continuum wormlike-chain model. The non-bonded interactions are described through a functional of two collective variables, the local density and local segmental orientation tensor. In particular, the functional depends quadratically on local density-variations and includes a Maier–Saupe-type term to deal with the orientational ordering. The specified density-dependence stems from a free energy expansion, where the free energy of an isotropic and homogeneous homopolymer melt at some fixed density serves as a reference state. Using this framework, a self-consistent field theory is developed, which produces a Helmholtz free energy that can be used for the calculation of the thermodynamics of the system. The thermodynamic properties are analysed as functions of the compressibility of the model, for values of the compressibility realizable in mesoscopic simulations with soft interactions and in actual polymeric materials.

  2. Self-consistent modelling of lattice strains during the in-situ tensile loading of twinning induced plasticity steel

    International Nuclear Information System (INIS)

    Saleh, Ahmed A.; Pereloma, Elena V.; Clausen, Bjørn; Brown, Donald W.; Tomé, Carlos N.; Gazder, Azdiar A.

    2014-01-01

    The evolution of lattice strains in a fully recrystallised Fe–24Mn–3Al–2Si–1Ni–0.06C TWinning Induced Plasticity (TWIP) steel subjected to uniaxial tensile loading up to a true strain of ∼35% was investigated via in-situ neutron diffraction. Typical of fcc elastic and plastic anisotropy, the {111} and {200} grain families record the lowest and highest lattice strains, respectively. Using modelling cases with and without latent hardening, the recently extended Elasto-Plastic Self-Consistent model successfully predicted the macroscopic stress–strain response, the evolution of lattice strains and the development of crystallographic texture. Compared to the isotropic hardening case, latent hardening did not have a significant effect on lattice strains and returned a relatively faster development of a stronger 〈111〉 and a weaker 〈100〉 double fibre parallel to the tensile axis. Close correspondence between the experimental lattice strains and those predicted using particular orientations embedded within a random aggregate was obtained. The result suggests that the exact orientations of the surrounding aggregate have a weak influence on the lattice strain evolution

  3. Development of a Self-Consistent Model of Plutonium Sorption: Quantification of Sorption Enthalpy and Ligand-Promoted Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Powell, Brian [Clemson Univ., SC (United States); Kaplan, Daniel I [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Arai, Yuji [Univ. of Illinois, Urbana-Champaign, IL (United States); Becker, Udo [Univ. of Michigan, Ann Arbor, MI (United States); Ewing, Rod [Stanford Univ., CA (United States)

    2016-12-29

    This university lead SBR project is a collaboration lead by Dr. Brian Powell (Clemson University) with co-principal investigators Dan Kaplan (Savannah River National Laboratory), Yuji Arai (presently at the University of Illinois), Udo Becker (U of Michigan) and Rod Ewing (presently at Stanford University). Hypothesis: The underlying hypothesis of this work is that strong interactions of plutonium with mineral surfaces are due to formation of inner sphere complexes with a limited number of high-energy surface sites, which results in sorption hysteresis where Pu(IV) is the predominant sorbed oxidation state. The energetic favorability of the Pu(IV) surface complex is strongly influenced by positive sorption entropies, which are mechanistically driven by displacement of solvating water molecules from the actinide and mineral surface during sorption. Objectives: The overarching objective of this work is to examine Pu(IV) and Pu(V) sorption to pure metal (oxyhydr)oxide minerals and sediments using variable temperature batch sorption, X-ray absorption spectroscopy, electron microscopy, and quantum-mechanical and empirical-potential calculations. The data will be compiled into a self-consistent surface complexation model. The novelty of this effort lies largely in the manner the information from these measurements and calculations will be combined into a model that will be used to evaluate the thermodynamics of plutonium sorption reactions as well as predict sorption of plutonium to sediments from DOE sites using a component additivity approach.

  4. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    Science.gov (United States)

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  5. SModelS: A Tool for Making Systematic Use of Simplified Models Results

    Science.gov (United States)

    Waltenberger, Wolfgang; SModelS Group

    2016-10-01

    We present an automated software tool ”SModelS” to systematically confront theories Beyond the Standard Model (BSM) with experimental data. The tool consists of a general procedure to decompose such BSM theories into their Simplified Models Spectra (SMS). In addition, SModelS features a database containing the majority of the published SMS results of CMS and ATLAS. These results consist of the 95% confidence level upper limits on signal production cross sections. The two components together allow us to quickly confront any BSM model with LHC results. As a show-case example we will briefly discuss an application of our procedure to a specific supersymmetric model. It is one of our ongoing efforts to extend the framework to include also efficiency maps produced either by the experimental collaborations, by efforts performed within the phenomenological groups, or possibly also by ourselves. While the current implementation can handle null results only, it is our ultimate goal to build the Next Standard Model in a bottom-up fashion from both negative and positive results of several experiments. The implementation is open source, written in python, and available from http://smodels.hephy.at.

  6. Development of tools and models for computational fracture assessment

    International Nuclear Information System (INIS)

    Talja, H.; Santaoja, K.

    1998-01-01

    The aim of the work presented in this paper has been to develop and test new computational tools and theoretically more sound methods for fracture mechanical analysis. The applicability of the engineering integrity assessment system MASI for evaluation of piping components has been extended. The most important motivation for the theoretical development have been the well-known fundamental limitations in the validity of J-integral, which limits its applicability in many important practical safety assessment cases. Examples are extensive plastic deformation, multimaterial structures and ascending loading paths (especially warm prestress, WPS). Further, the micromechanical Gurson model has been applied to several reactor pressure vessel materials. Special attention is paid to the transferability of Gurson model parameters from tensile test results to prediction of ductile failure behaviour of cracked structures. (author)

  7. MTK: An AI tool for model-based reasoning

    Science.gov (United States)

    Erickson, William K.; Schwartz, Mary R.

    1987-01-01

    A 1988 goal for the Systems Autonomy Demonstration Project Office of the NASA Ames Research Center is to apply model-based representation and reasoning techniques in a knowledge-based system that will provide monitoring, fault diagnosis, control and trend analysis of the space station Thermal Management System (TMS). A number of issues raised during the development of the first prototype system inspired the design and construction of a model-based reasoning tool called MTK, which was used in the building of the second prototype. These issues are outlined, along with examples from the thermal system to highlight the motivating factors behind them. An overview of the capabilities of MTK is given.

  8. Port performance evaluation tool based on microsimulation model

    Directory of Open Access Journals (Sweden)

    Tsavalista Burhani Jzolanda

    2017-01-01

    Full Text Available As port performance is becoming correlative to national competitiveness, the issue of port performance evaluation has significantly raised. Port performances can simply be indicated by port service levels to the ship (e.g., throughput, waiting for berthing etc., as well as the utilization level of equipment and facilities within a certain period. The performances evaluation then can be used as a tool to develop related policies for improving the port’s performance to be more effective and efficient. However, the evaluation is frequently conducted based on deterministic approach, which hardly captures the nature variations of port parameters. Therefore, this paper presents a stochastic microsimulation model for investigating the impacts of port parameter variations to the port performances. The variations are derived from actual data in order to provide more realistic results. The model is further developed using MATLAB and Simulink based on the queuing theory.

  9. Edge effect modeling of small tool polishing in planetary movement

    Science.gov (United States)

    Li, Qi-xin; Ma, Zhen; Jiang, Bo; Yao, Yong-sheng

    2018-03-01

    As one of the most challenging problems in Computer Controlled Optical Surfacing (CCOS), the edge effect greatly affects the polishing accuracy and efficiency. CCOS rely on stable tool influence function (TIF), however, at the edge of the mirror surface,with the grinding head out of the mirror ,the contact area and pressure distribution changes, which resulting in a non-linear change of TIF, and leads to tilting or sagging at the edge of the mirror. In order reduce the adverse effects and improve the polishing accuracy and efficiency. In this paper, we used the finite element simulation to analyze the pressure distribution at the mirror edge and combined with the improved traditional method to establish a new model. The new method fully considered the non-uniformity of pressure distribution. After modeling the TIFs in different locations, the description and prediction of the edge effects are realized, which has a positive significance on the control and suppression of edge effects

  10. Empirical flow parameters : a tool for hydraulic model validity

    Science.gov (United States)

    Asquith, William H.; Burley, Thomas E.; Cleveland, Theodore G.

    2013-01-01

    The objectives of this project were (1) To determine and present from existing data in Texas, relations between observed stream flow, topographic slope, mean section velocity, and other hydraulic factors, to produce charts such as Figure 1 and to produce empirical distributions of the various flow parameters to provide a methodology to "check if model results are way off!"; (2) To produce a statistical regional tool to estimate mean velocity or other selected parameters for storm flows or other conditional discharges at ungauged locations (most bridge crossings) in Texas to provide a secondary way to compare such values to a conventional hydraulic modeling approach. (3.) To present ancillary values such as Froude number, stream power, Rosgen channel classification, sinuosity, and other selected characteristics (readily determinable from existing data) to provide additional information to engineers concerned with the hydraulic-soil-foundation component of transportation infrastructure.

  11. Automated sensitivity analysis: New tools for modeling complex dynamic systems

    International Nuclear Information System (INIS)

    Pin, F.G.

    1987-01-01

    Sensitivity analysis is an established methodology used by researchers in almost every field to gain essential insight in design and modeling studies and in performance assessments of complex systems. Conventional sensitivity analysis methodologies, however, have not enjoyed the widespread use they deserve considering the wealth of information they can provide, partly because of their prohibitive cost or the large initial analytical investment they require. Automated systems have recently been developed at ORNL to eliminate these drawbacks. Compilers such as GRESS and EXAP now allow automatic and cost effective calculation of sensitivities in FORTRAN computer codes. In this paper, these and other related tools are described and their impact and applicability in the general areas of modeling, performance assessment and decision making for radioactive waste isolation problems are discussed

  12. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    International Nuclear Information System (INIS)

    Joshi, D.M.; Patel, H.K.

    2015-01-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant

  13. MODEL CAR TRANSPORT SYSTEM - MODERN ITS EDUCATION TOOL

    Directory of Open Access Journals (Sweden)

    Karel Bouchner

    2017-12-01

    Full Text Available The model car transport system is a laboratory intended for a practical development in the area of the motor traffic. It is also an important education tool for students’ hands-on training, enabling students to test the results of their own studies. The main part of the model car transportation network is a model in a ratio 1:87 (HO, based on component units of FALLER Car system, e.g. cars, traffic lights, carriage way, parking spaces, stop sections, branch-off junctions, sensors and control sections. The model enables to simulate real traffic situations. It includes a motor traffic in a city, in a small village, on a carriageway between a city and a village including a railway crossing. The traffic infrastructure includes different kinds of intersections, such as T-junctions, a classic four-way crossroad and four-way traffic circle, with and without traffic lights control. Another important part of the model is a segment of a highway which includes an elevated crossing with highway approaches and exits.

  14. An artificial intelligence tool for complex age-depth models

    Science.gov (United States)

    Bradley, E.; Anderson, K. A.; de Vesine, L. R.; Lai, V.; Thomas, M.; Nelson, T. H.; Weiss, I.; White, J. W. C.

    2017-12-01

    CSciBox is an integrated software system for age modeling of paleoenvironmental records. It incorporates an array of data-processing and visualization facilities, ranging from 14C calibrations to sophisticated interpolation tools. Using CSciBox's GUI, a scientist can build custom analysis pipelines by composing these built-in components or adding new ones. Alternatively, she can employ CSciBox's automated reasoning engine, Hobbes, which uses AI techniques to perform an in-depth, autonomous exploration of the space of possible age-depth models and presents the results—both the models and the reasoning that was used in constructing and evaluating them—to the user for her inspection. Hobbes accomplishes this using a rulebase that captures the knowledge of expert geoscientists, which was collected over the course of more than 100 hours of interviews. It works by using these rules to generate arguments for and against different age-depth model choices for a given core. Given a marine-sediment record containing uncalibrated 14C dates, for instance, Hobbes tries CALIB-style calibrations using a choice of IntCal curves, with reservoir age correction values chosen from the 14CHRONO database using the lat/long information provided with the core, and finally composes the resulting age points into a full age model using different interpolation methods. It evaluates each model—e.g., looking for outliers or reversals—and uses that information to guide the next steps of its exploration, and presents the results to the user in human-readable form. The most powerful of CSciBox's built-in interpolation methods is BACON, a Bayesian sedimentation-rate algorithm—a powerful but complex tool that can be difficult to use. Hobbes adjusts BACON's many parameters autonomously to match the age model to the expectations of expert geoscientists, as captured in its rulebase. It then checks the model against the data and iteratively re-calculates until it is a good fit to the data.

  15. Watershed modeling tools and data for prognostic and diagnostic

    Science.gov (United States)

    Chambel-Leitao, P.; Brito, D.; Neves, R.

    2009-04-01

    When eutrophication is considered an important process to control it can be accomplished reducing nitrogen and phosphorus losses from both point and nonpoint sources and helping to assess the effectiveness of the pollution reduction strategy. HARP-NUT guidelines (Guidelines on Harmonized Quantification and Reporting Procedures for Nutrients) (Borgvang & Selvik, 2000) are presented by OSPAR as the best common quantification and reporting procedures for calculating the reduction of nutrient inputs. In 2000, OSPAR HARP-NUT guidelines on a trial basis. They were intended to serve as a tool for OSPAR Contracting Parties to report, in a harmonized manner, their different commitments, present or future, with regard to nutrients under the OSPAR Convention, in particular the "Strategy to Combat Eutrophication". HARP-NUT Guidelines (Borgvang and Selvik, 2000; Schoumans, 2003) were developed to quantify and report on the individual sources of nitrogen and phosphorus discharges/losses to surface waters (Source Orientated Approach). These results can be compared to nitrogen and phosphorus figures with the total riverine loads measured at downstream monitoring points (Load Orientated Approach), as load reconciliation. Nitrogen and phosphorus retention in river systems represents the connecting link between the "Source Orientated Approach" and the "Load Orientated Approach". Both approaches are necessary for verification purposes and both may be needed for providing the information required for the various commitments. Guidelines 2,3,4,5 are mainly concerned with the sources estimation. They present a set of simple calculations that allow the estimation of the origin of loads. Guideline 6 is a particular case where the application of a model is advised, in order to estimate the sources of nutrients from diffuse sources associated with land use/land cover. The model chosen for this was SWAT (Arnold & Fohrer, 2005) model because it is suggested in the guideline 6 and because it

  16. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  17. Intramolecular structures in a single copolymer chain consisting of flexible and semiflexible blocks: Monte Carlo simulation of a lattice model

    International Nuclear Information System (INIS)

    Martemyanova, Julia A; Ivanov, Victor A; Paul, Wolfgang

    2014-01-01

    We study conformational properties of a single multiblock copolymer chain consisting of flexible and semiflexible blocks. Monomer units of different blocks are equivalent in the sense of the volume interaction potential, but the intramolecular bending potential between successive bonds along the chain is different. We consider a single flexible-semiflexible regular multiblock copolymer chain with equal content of flexible and semiflexible units and vary the length of the blocks and the stiffness parameter. We perform flat histogram type Monte Carlo simulations based on the Wang-Landau approach and employ the bond fluctuation lattice model. We present here our data on different non-trivial globular morphologies which we have obtained in our model for different values of the block length and the stiffness parameter. We demonstrate that the collapse can occur in one or in two stages depending on the values of both these parameters and discuss the role of the inhomogeneity of intraglobular distributions of monomer units of both flexible and semiflexible blocks. For short block length and/or large stiffness the collapse occurs in two stages, because it goes through intermediate (meta-)stable structures, like a dumbbell shaped conformation. In such conformations the semiflexible blocks form a cylinder-like core, and the flexible blocks form two domains at both ends of such a cylinder. For long block length and/or small stiffness the collapse occurs in one stage, and in typical conformations the flexible blocks form a spherical core of a globule while the semiflexible blocks are located on the surface and wrap around this core.

  18. The KBC Void: Consistency with Supernovae Type Ia and the Kinematic SZ Effect in a ΛLTB Model

    Science.gov (United States)

    Hoscheit, Benjamin L.; Barger, Amy J.

    2018-02-01

    There is substantial and growing observational evidence from the normalized luminosity density in the near-infrared that the local universe is underdense on scales of several hundred megaparsecs. We test whether our parameterization of the observational data of such a “void” is compatible with the latest supernovae type Ia data and with constraints from line-of-sight peculiar-velocity motions of galaxy clusters with respect to the cosmic microwave background rest-frame, known as the linear kinematic Sunyaev–Zel’dovich (kSZ) effect. Our study is based on the large local void (LLV) radial profile observed by Keenan, Barger, and Cowie (KBC) and a theoretical void description based on the Lemaître–Tolman–Bondi model with a nonzero cosmological constant (ΛLTB). We find consistency with the measured luminosity distance–redshift relation on radial scales relevant to the KBC LLV through a comparison with 217 low-redshift supernovae type Ia over the redshift range 0.0233Cosmology Telescope, are fully compatible with the existence of the KBC LLV.

  19. Using Modeling Tools to Better Understand Permafrost Hydrology

    Directory of Open Access Journals (Sweden)

    Clément Fabre

    2017-06-01

    Full Text Available Modification of the hydrological cycle and, subsequently, of other global cycles is expected in Arctic watersheds owing to global change. Future climate scenarios imply widespread permafrost degradation caused by an increase in air temperature, and the expected effect on permafrost hydrology is immense. This study aims at analyzing, and quantifying the daily water transfer in the largest Arctic river system, the Yenisei River in central Siberia, Russia, partially underlain by permafrost. The semi-distributed SWAT (Soil and Water Assessment Tool hydrological model has been calibrated and validated at a daily time step in historical discharge simulations for the 2003–2014 period. The model parameters have been adjusted to embrace the hydrological features of permafrost. SWAT is shown capable to estimate water fluxes at a daily time step, especially during unfrozen periods, once are considered specific climatic and soils conditions adapted to a permafrost watershed. The model simulates average annual contribution to runoff of 263 millimeters per year (mm yr−1 distributed as 152 mm yr−1 (58% of surface runoff, 103 mm yr−1 (39% of lateral flow and 8 mm yr−1 (3% of return flow from the aquifer. These results are integrated on a reduced basin area downstream from large dams and are closer to observations than previous modeling exercises.

  20. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Lerman, Susannah B.; Nislow, Keith H.; Nowak, David J.; DeStefano, Stephen; King, David I.; Jones-Farrand, D. Todd

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat to sustain bird and other wildlife populations. The primary goal of this study was to integrate wildlife suitability indices to an existing national urban forest assessment tool, i-Tree. We quantified available habitat characteristics of urban forests for ten northeastern U.S. cities, and summarized bird habitat relationships from the literature in terms of variables that were represented in the i-Tree datasets. With these data, we generated habitat suitability equations for nine bird species representing a range of life history traits and conservation status that predicts the habitat suitability based on i-Tree data. We applied these equations to the urban forest datasets to calculate the overall habitat suitability for each city and the habitat suitability for different types of land-use (e.g., residential, commercial, parkland) for each bird species. The proposed habitat models will help guide wildlife managers, urban planners, and landscape designers who require specific information such as desirable habitat conditions within an urban management project to help improve the suitability of urban forests for birds.

  1. A Simple Evacuation Modeling and Simulation Tool for First Responders

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Daniel B [ORNL; Payne, Patricia W [ORNL

    2015-01-01

    Although modeling and simulation of mass evacuations during a natural or man-made disaster is an on-going and vigorous area of study, tool adoption by front-line first responders is uneven. Some of the factors that account for this situation include cost and complexity of the software. For several years, Oak Ridge National Laboratory has been actively developing the free Incident Management Preparedness and Coordination Toolkit (IMPACT) to address these issues. One of the components of IMPACT is a multi-agent simulation module for area-based and path-based evacuations. The user interface is designed so that anyone familiar with typical computer drawing tools can quickly author a geospatially-correct evacuation visualization suitable for table-top exercises. Since IMPACT is designed for use in the field where network communications may not be available, quick on-site evacuation alternatives can be evaluated to keep pace with a fluid threat situation. Realism is enhanced by incorporating collision avoidance into the simulation. Statistics are gathered as the simulation unfolds, including most importantly time-to-evacuate, to help first responders choose the best course of action.

  2. WIFIRE Data Model and Catalog for Wildfire Data and Tools

    Science.gov (United States)

    Altintas, I.; Crawl, D.; Cowart, C.; Gupta, A.; Block, J.; de Callafon, R.

    2014-12-01

    The WIFIRE project (wifire.ucsd.edu) is building an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. WIFIRE may be used by wildfire management authorities in the future to predict wildfire rate of spread and direction, and assess the effectiveness of high-density sensor networks in improving fire and weather predictions. WIFIRE has created a data model for wildfire resources including sensed and archived data, sensors, satellites, cameras, modeling tools, workflows and social information including Twitter feeds. This data model and associated wildfire resource catalog includes a detailed description of the HPWREN sensor network, SDG&E's Mesonet, and NASA MODIS. In addition, the WIFIRE data-model describes how to integrate the data from multiple heterogeneous sources to provide detailed fire-related information. The data catalog describes 'Observables' captured by each instrument using multiple ontologies including OGC SensorML and NASA SWEET. Observables include measurements such as wind speed, air temperature, and relative humidity, as well as their accuracy and resolution. We have implemented a REST service for publishing to and querying from the catalog using Web Application Description Language (WADL). We are creating web-based user interfaces and mobile device Apps that use the REST interface for dissemination to wildfire modeling community and project partners covering academic, private, and government laboratories while generating value to emergency officials and the general public. Additionally, the Kepler scientific workflow system is instrumented to interact with this data catalog to access real-time streaming and archived wildfire data and stream it into dynamic data-driven wildfire models at scale.

  3. A model of integration among prediction tools: applied study to road freight transportation

    Directory of Open Access Journals (Sweden)

    Henrique Dias Blois

    Full Text Available Abstract This study has developed a scenery analysis model which has integrated decision-making tools on investments: prospective scenarios (Grumbach Method and systems dynamics (hard modeling, with the innovated multivariate analysis of experts. It was designed through analysis and simulation scenarios and showed which are the most striking events in the study object as well as highlighted the actions could redirect the future of the analyzed system. Moreover, predictions are likely to be developed through the generated scenarios. The model has been validated empirically with road freight transport data from state of Rio Grande do Sul, Brazil. The results showed that the model contributes to the analysis of investment because it identifies probabilities of events that impact on decision making, and identifies priorities for action, reducing uncertainties in the future. Moreover, it allows an interdisciplinary discussion that correlates different areas of knowledge, fundamental when you wish more consistency in creating scenarios.

  4. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    Science.gov (United States)

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  5. Prototype of Automated PLC Model Checking Using Continuous Integration Tools

    CERN Document Server

    Lettrich, Michael

    2015-01-01

    To deal with the complexity of operating and supervising large scale industrial installations at CERN, often Programmable Logic Controllers (PLCs) are used. A failure in these control systems can cause a disaster in terms of economic loses, environmental damages or human losses. Therefore the requirements to software quality are very high. To provide PLC developers with a way to verify proper functionality against requirements, a Java tool named PLCverif has been developed which encapsulates and thus simplifies the use of third party model checkers. One of our goals in this project is to integrate PLCverif in development process of PLC programs. When the developer changes the program, all the requirements should be verified again, as a change on the code can produce collateral effects and violate one or more requirements. For that reason, PLCverif has been extended to work with Jenkins CI in order to trigger automatically the verication cases when the developer changes the PLC program. This prototype has been...

  6. The Innsbruck/ESO sky models and telluric correction tools*

    Directory of Open Access Journals (Sweden)

    Kimeswenger S.

    2015-01-01

    While the ground based astronomical observatories just have to correct for the line-of-sight integral of these effects, the Čerenkov telescopes use the atmosphere as the primary detector. The measured radiation originates at lower altitudes and does not pass through the entire atmosphere. Thus, a decent knowledge of the profile of the atmosphere at any time is required. The latter cannot be achieved by photometric measurements of stellar sources. We show here the capabilities of our sky background model and data reduction tools for ground-based optical/infrared telescopes. Furthermore, we discuss the feasibility of monitoring the atmosphere above any observing site, and thus, the possible application of the method for Čerenkov telescopes.

  7. Extending the Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2016-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power of the model for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be…

  8. Planning the network of gas pipelines through modeling tools

    Energy Technology Data Exchange (ETDEWEB)

    Sucupira, Marcos L.L.; Lutif Filho, Raimundo B. [Companhia de Gas do Ceara (CEGAS), Fortaleza, CE (Brazil)

    2009-07-01

    Natural gas is a source of non-renewable energy used by different sectors of the economy of Ceara. Its use may be industrial, residential, commercial, as a source of automotive fuel, as a co-generation of energy and as a source for generating electricity from heat. For its practicality this energy has a strong market acceptance and provides a broad list of clients to fit their use, which makes it possible to reach diverse parts of the city. Its distribution requires a complex network of pipelines that branches throughout the city to meet all potential clients interested in this source of energy. To facilitate the design, analysis, expansion and location of bottlenecks and breaks in the distribution network, a modeling software is used that allows the network manager of the net to manage the various information about the network. This paper presents the advantages of modeling the gas distribution network of natural gas companies in Ceara, showing the tool used, the steps necessary for the implementation of the models, the advantages of using the software and the findings obtained with its use. (author)

  9. Complex Coronary Hemodynamics - Simple Analog Modelling as an Educational Tool.

    Science.gov (United States)

    Parikh, Gaurav R; Peter, Elvis; Kakouros, Nikolaos

    2017-01-01

    Invasive coronary angiography remains the cornerstone for evaluation of coronary stenoses despite there being a poor correlation between luminal loss assessment by coronary luminography and myocardial ischemia. This is especially true for coronary lesions deemed moderate by visual assessment. Coronary pressure-derived fractional flow reserve (FFR) has emerged as the gold standard for the evaluation of hemodynamic significance of coronary artery stenosis, which is cost effective and leads to improved patient outcomes. There are, however, several limitations to the use of FFR including the evaluation of serial stenoses. In this article, we discuss the electronic-hydraulic analogy and the utility of simple electrical modelling to mimic the coronary circulation and coronary stenoses. We exemplify the effect of tandem coronary lesions on the FFR by modelling of a patient with sequential disease segments and complex anatomy. We believe that such computational modelling can serve as a powerful educational tool to help clinicians better understand the complexity of coronary hemodynamics and improve patient care.

  10. A Tool for Model-Based Generation of Scenario-driven Electric Power Load Profiles

    Science.gov (United States)

    Rozek, Matthew L.; Donahue, Kenneth M.; Ingham, Michel D.; Kaderka, Justin D.

    2015-01-01

    Power consumption during all phases of spacecraft flight is of great interest to the aerospace community. As a result, significant analysis effort is exerted to understand the rates of electrical energy generation and consumption under many operational scenarios of the system. Previously, no standard tool existed for creating and maintaining a power equipment list (PEL) of spacecraft components that consume power, and no standard tool existed for generating power load profiles based on this PEL information during mission design phases. This paper presents the Scenario Power Load Analysis Tool (SPLAT) as a model-based systems engineering tool aiming to solve those problems. SPLAT is a plugin for MagicDraw (No Magic, Inc.) that aids in creating and maintaining a PEL, and also generates a power and temporal variable constraint set, in Maple language syntax, based on specified operational scenarios. The constraint set can be solved in Maple to show electric load profiles (i.e. power consumption from loads over time). SPLAT creates these load profiles from three modeled inputs: 1) a list of system components and their respective power modes, 2) a decomposition hierarchy of the system into these components, and 3) the specification of at least one scenario, which consists of temporal constraints on component power modes. In order to demonstrate how this information is represented in a system model, a notional example of a spacecraft planetary flyby is introduced. This example is also used to explain the overall functionality of SPLAT, and how this is used to generate electric power load profiles. Lastly, a cursory review of the usage of SPLAT on the Cold Atom Laboratory project is presented to show how the tool was used in an actual space hardware design application.

  11. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    Science.gov (United States)

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  12. Towards a Self-Consistent Physical Framework for Modeling Coupled Human and Physical Activities during the Anthropocene

    Science.gov (United States)

    Garrett, T. J.

    2014-12-01

    Studies of the response of global climate to anthropogenic activities rely upon scenarios for future human activity to provide a range of possible trajectories for greenhouse gases emissions over the coming century. Sophisticated integrated models are used to explore not only what will happen, but what should happen in order to optimize societal well-being. Hundreds of equations might be used to account for the interplay between human decisions, technological change, and macroeconomic priniciples. In contrast, the model equations used to describe geophysical phenomena look very different because they are a) purely deterministic and b) consistent with basic thermodynamic laws. This inconsistency between macroeconomics and physics suggests a rather unhappy marriage. During the Anthropocene the evolution of humanity and our environment will become increasingly intertwined. Representing such a coupling suggests a need for a common theoretical basis. To this end, the approach that is described here is to treat civilization like any other physical process, that is as an open, non-equilibrium thermodynamic system that dissipates energy and diffuses matter in order to sustain existing circulations and to further its material growth. Theoretical arguments and over 40 years of measurements show that a very general representation of global economic wealth (not GDP) has been tied to rates of global primary energy consumption through a constant 7.1 ± 0.1 mW per year 2005 USD. This link between physics and economics leads to very simple expressions for how fast civilization and its rate of energy consumption grow. These are expressible as a function of rates of energy and material resource discovery and depletion, and of the magnitude of externally imposed decay. The equations are validated through hindcasts that show, for example, that economic conditions in the 1950s can be invoked to make remarkably accurate forecasts of present rates of global GDP growth and primary energy

  13. Information Management Workflow and Tools Enabling Multiscale Modeling Within ICME Paradigm

    Science.gov (United States)

    Arnold, Steven M.; Bednarcyk, Brett A.; Austin, Nic; Terentjev, Igor; Cebon, Dave; Marsden, Will

    2016-01-01

    With the increased emphasis on reducing the cost and time to market of new materials, the need for analytical tools that enable the virtual design and optimization of materials throughout their processing - internal structure - property - performance envelope, along with the capturing and storing of the associated material and model information across its lifecycle, has become critical. This need is also fueled by the demands for higher efficiency in material testing; consistency, quality and traceability of data; product design; engineering analysis; as well as control of access to proprietary or sensitive information. Fortunately, material information management systems and physics-based multiscale modeling methods have kept pace with the growing user demands. Herein, recent efforts to establish workflow for and demonstrate a unique set of web application tools for linking NASA GRC's Integrated Computational Materials Engineering (ICME) Granta MI database schema and NASA GRC's Integrated multiscale Micromechanics Analysis Code (ImMAC) software toolset are presented. The goal is to enable seamless coupling between both test data and simulation data, which is captured and tracked automatically within Granta MI®, with full model pedigree information. These tools, and this type of linkage, are foundational to realizing the full potential of ICME, in which materials processing, microstructure, properties, and performance are coupled to enable application-driven design and optimization of materials and structures.

  14. The Functional Segregation and Integration Model: Mixture Model Representations of Consistent and Variable Group-Level Connectivity in fMRI

    DEFF Research Database (Denmark)

    Churchill, Nathan William; Madsen, Kristoffer Hougaard; Mørup, Morten

    2016-01-01

    flexibility: they only estimate segregated structure and do not model interregional functional connectivity, nor do they account for network variability across voxels or between subjects. To address these issues, this letter develops the functional segregation and integration model (FSIM). This extension...... of the GMM framework simultaneously estimates spatial clustering and the most consistent group functional connectivity structure. It also explicitly models network variability, based on voxel- and subject-specific network scaling profiles. We compared the FSIM to standard GMM in a predictive cross......-validation framework and examined the importance of different model parameters, using both simulated and experimental resting-state data. The reliability of parcellations is not significantly altered by flexibility of the FSIM, whereas voxel- and subject-specific network scaling profiles significantly improve...

  15. A crowdsourcing model for creating preclinical medical education study tools.

    Science.gov (United States)

    Bow, Hansen C; Dattilo, Jonathan R; Jonas, Andrea M; Lehmann, Christoph U

    2013-06-01

    During their preclinical course work, medical students must memorize and recall substantial amounts of information. Recent trends in medical education emphasize collaboration through team-based learning. In the technology world, the trend toward collaboration has been characterized by the crowdsourcing movement. In 2011, the authors developed an innovative approach to team-based learning that combined students' use of flashcards to master large volumes of content with a crowdsourcing model, using a simple informatics system to enable those students to share in the effort of generating concise, high-yield study materials. The authors used Google Drive and developed a simple Java software program that enabled students to simultaneously access and edit sets of questions and answers in the form of flashcards. Through this crowdsourcing model, medical students in the class of 2014 at the Johns Hopkins University School of Medicine created a database of over 16,000 questions that corresponded to the Genes to Society basic science curriculum. An analysis of exam scores revealed that students in the class of 2014 outperformed those in the class of 2013, who did not have access to the flashcard system, and a survey of students demonstrated that users were generally satisfied with the system and found it a valuable study tool. In this article, the authors describe the development and implementation of their crowdsourcing model for creating study materials, emphasize its simplicity and user-friendliness, describe its impact on students' exam performance, and discuss how students in any educational discipline could implement a similar model of collaborative learning.

  16. On consistent definitions of momentum and energy fluxes for molecular dynamics models with multi-body interatomic potentials

    Science.gov (United States)

    Wu, Xiaojie; Li, Xiantao

    2015-01-01

    Results from molecular dynamics simulations often need to be further processed to understand the physics on a larger scale. This paper considers the definitions of momentum and energy fluxes obtained from a control-volume approach. To assess the validity of these defined quantities, two consistency criteria are proposed. As examples, the embedded atom potential and the Tersoff potential are considered. The consistency is verified using analytical and numerical methods.

  17. Enabling analytical and Modeling Tools for Enhanced Disease Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Dawn K. Manley

    2003-04-01

    Early detection, identification, and warning are essential to minimize casualties from a biological attack. For covert attacks, sick people are likely to provide the first indication of an attack. An enhanced medical surveillance system that synthesizes distributed health indicator information and rapidly analyzes the information can dramatically increase the number of lives saved. Current surveillance methods to detect both biological attacks and natural outbreaks are hindered by factors such as distributed ownership of information, incompatible data storage and analysis programs, and patient privacy concerns. Moreover, because data are not widely shared, few data mining algorithms have been tested on and applied to diverse health indicator data. This project addressed both integration of multiple data sources and development and integration of analytical tools for rapid detection of disease outbreaks. As a first prototype, we developed an application to query and display distributed patient records. This application incorporated need-to-know access control and incorporated data from standard commercial databases. We developed and tested two different algorithms for outbreak recognition. The first is a pattern recognition technique that searches for space-time data clusters that may signal a disease outbreak. The second is a genetic algorithm to design and train neural networks (GANN) that we applied toward disease forecasting. We tested these algorithms against influenza, respiratory illness, and Dengue Fever data. Through this LDRD in combination with other internal funding, we delivered a distributed simulation capability to synthesize disparate information and models for earlier recognition and improved decision-making in the event of a biological attack. The architecture incorporates user feedback and control so that a user's decision inputs can impact the scenario outcome as well as integrated security and role-based access-control for communicating

  18. Physical Properties of the SKYLAB North Polar Coronal Hole with an Extended Base and its MHD Self-Consistent Modelling

    Science.gov (United States)

    Bravo, S.; Ocania, G.

    1991-04-01

    energetization of the wind, one of the possibilities allowed for fltix the observational uncertailities shows a very good agreement wi4 an NI Ill) seli'consistent modelling with the only additional term of the Lorentz force in the iiii equation. Key words: SUN-CORONA

  19. Modelling as a tool to redesign livestock farming systems: a literature review.

    Science.gov (United States)

    Gouttenoire, L; Cournut, S; Ingrand, S

    2011-12-01

    Livestock farming has recently come under close scrutiny, in response especially to environmental issues. Farmers are encouraged to redesign their livestock farming systems in depth to improve their sustainability. Assuming that modelling can be a relevant tool to address such systemic changes, we sought to answer the following question: 'How can livestock farming systems be modelled to help farmers redesign their whole farming systems?' To this end, we made a literature review of the models of livestock farming systems published from 2000 to mid-2009 (n = 79). We used an analysis grid based on three considerations: (i) system definition, (ii) the intended use of the model and (iii) the way in which farmers' decision-making processes were represented and how agricultural experts and farmers were involved in the modelling processes. Consistent rationales in approaches to supporting changes in livestock farming were identified in three different groups of models, covering 83% of the whole set. These could be defined according to (i) the way in which farmers' decisions were represented and (ii) the model's type of contribution to supporting changes. The first type gathered models that dynamically simulated the system according to different management options; the farmers' decision-making processes are assumed to consist in choosing certain values for management factors. Such models allow long-term simulations and endorse different disciplinary viewpoints, but the farmers are weakly involved in their design. Models of the second type can indicate the best combination of farm activities under given constraints, provided the farmers' objectives are profit maximisation. However, when used to support redesigning processes, they address neither how to implement the optimal solution nor its long-term consequences. Models of the third type enable users to dynamically simulate different options for the farming system, the management of which is assumed to be planned according

  20. Improving Power System Modeling. A Tool to Link Capacity Expansion and Production Cost Models

    Energy Technology Data Exchange (ETDEWEB)

    Diakov, Victor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Brinkman, Gregory [National Renewable Energy Lab. (NREL), Golden, CO (United States); Margolis, Robert [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    Capacity expansion models (CEM) provide a high-level long-term view at the prospects of the evolving power system. In simulating the possibilities of long-term capacity expansion, it is important to maintain the viability of power system operation in the short-term (daily, hourly and sub-hourly) scales. Production-cost models (PCM) simulate routine power system operation on these shorter time scales using detailed load, transmission and generation fleet data by minimizing production costs and following reliability requirements. When based on CEM 'predictions' about generating unit retirements and buildup, PCM provide more detailed simulation for the short-term system operation and, consequently, may confirm the validity of capacity expansion predictions. Further, production cost model simulations of a system that is based on capacity expansion model solution are 'evolutionary' sound: the generator mix is the result of logical sequence of unit retirement and buildup resulting from policy and incentives. The above has motivated us to bridge CEM with PCM by building a capacity expansion - to - production cost model Linking Tool (CEPCoLT). The Linking Tool is built to onset capacity expansion model prescriptions onto production cost model inputs. NREL's ReEDS and Energy Examplar's PLEXOS are the capacity expansion and the production cost models, respectively. Via the Linking Tool, PLEXOS provides details of operation for the regionally-defined ReEDS scenarios.

  1. Consistent Pricing of VIX and Equity Derivatives with the 4/2 Stochastic Volatility Plus Jumps Model

    OpenAIRE

    Lin, Wei; Li, Shenghong; Luo, Xingguo; Chern, Shane

    2015-01-01

    In this paper, we develop a 4/2 stochastic volatility plus jumps model, namely, a new stochastic volatility model including the Heston model and 3/2 model as special cases. Our model is highly tractable by applying the Lie symmetries theory for PDEs, which means that the pricing procedure can be performed efficiently. In fact, we obtain a closed-form solution for the joint Fourier-Laplace transform so that equity and realized-variance derivatives can be priced. We also employ our model to con...

  2. Towards a Tool-Supported Quality Model for Model-Driven Engineering

    OpenAIRE

    Mohagheghi, Parastoo

    2008-01-01

    This paper reviews definitions of model quality before introducing five properties of models that are important for building high-quality models. These are identified to be correctness, completeness, consistency, comprehensibility and confinement. We have earlier defined a quality model that separates intangible quality goals from tangible quality-carrying properties and practices that should be in place to support these properties.  A part of that work was to define a metamodel for deve...

  3. Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models

    Science.gov (United States)

    Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.

    2017-12-01

    Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision

  4. Shingle 2.0 : Generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    NARCIS (Netherlands)

    Candy, A.S.; Pietrzak, J.D.

    2018-01-01

    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model- or application-specific, and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale,

  5. An Integrated Package of Neuromusculoskeletal Modeling Tools in Simulink (TM)

    National Research Council Canada - National Science Library

    Davoodi, R

    2001-01-01

    .... Blocks representing the skeletal linkage, sensors, muscles, and neural controllers are developed using separate software tools and integrated in the powerful simulation environment of Simulink (Mathworks Inc., USA...

  6. Tracers of diabatic changes in potential temperature and potential vorticity: Integral interpretation in terms of net heating and circulation and applications to model consistency across resolutions

    Science.gov (United States)

    Martinez-Alvarado, Oscar; Gray, Suzanne; Methven, John

    2016-04-01

    Diabatic processes in the atmosphere can be characterised by the changes they produce on potential temperature (θ) and potential vorticity (PV) following an air parcel. Diabatic tracers of θ and PV track the changes undergone by those two variables due to the action of diabatic processes in a Lagrangian frame by splitting θ and PV into components that are materially conserved and components that are diabatically generated. Since diabatic tracers are subject to advection by the three-dimensional wind field, they are useful tools for the investigation of the interaction of diabatic processes with the atmospheric flow and the impact of diabatic processes on the evolution of the atmosphere. In this contribution, we present a novel integral interpretation of diabatic tracers over suitably defined control volumes, which depend on the weather system under consideration. Using two contrasting extratropical cyclones as examples, it is shown that θ tracers can be used to assess and systematically compare the cross-isentropic mass transport around each cyclone, which is related to the amount and distribution of heat produced during each cyclone's development. PV tracers are related to circulation and area-average isentropic vorticity through the application of Stoke's theorem. Using the impermeability theorem for PV, which states there can be no PV flux across isentropic surfaces, it is also shown that cross-isentropic motion within the control volumes does not directly influence circulation. Instead, the influence of diabatic processes on the circulation crucially depends on the balance between the fluxes along isentropic surfaces of the materially-conserved and diabatically-generated PV components across the lateral boundaries of the control volumes. Finally, the application of the integral interpretation of diabatic tracers for the assessment of model consistency across different model resolutions is discussed.

  7. Model-based reasoning: using visual tools to reveal student learning.

    Science.gov (United States)

    Luckie, Douglas; Harrison, Scott H; Ebert-May, Diane

    2011-03-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept Connector enables students in large introductory science courses to visualize their thinking through online model building. The Concept Connector's flexible scoring system, based on tested grading schemes as well as instructor input, has enabled >1,000 physiology students to build maps of their ideas about plant and animal physiology with the guidance of automatic and immediate online scoring of homework. Criterion concept maps developed by instructors in this project contain numerous expert-generated or "correct" propositions connecting two concept words together with a linking phrase. In this study, holistic algorithms were used to test automated methods of scoring concept maps that might work as well as a human grader.

  8. Concepts for a New Generation of Global Modelling Tools: Expanding our Capacity for Perception

    Directory of Open Access Journals (Sweden)

    Robert Hoffman

    2015-10-01

    Full Text Available It is now twenty years since the issues associated with the global 'problematique' were widely publicized in Limits to Growth, the pioneering study commissioned by the Club of Rome. In the meantime much has been written, but real action that might lead to a more harmonious and sustainable future has not been forthcoming. Indeed there is evidence that these issues are becoming even more threatening to humankind. There is an apparent inability of human societies to address the global problems of sustainability identified by the Club of Rome twenty years ago. This paper advocates the use of global modelling tools as a means of expanding our collective capacity for perception. What is proposed is not the development of another model but the establishment of a process consisting of the design and use of modelling tools to further the explication and communication of understanding, and thereby facilitating both individual and societal action. The proposed approach builds upon the strength of World Dynamics Model as a communications device and seeks to take advantage of scientific and technological advances of the past decades.

  9. Analytical Modeling Tool for Design of Hydrocarbon Sensitive Optical Fibers

    Directory of Open Access Journals (Sweden)

    Khalil Al Handawi

    2017-09-01

    Full Text Available Pipelines are the main transportation means for oil and gas products across large distances. Due to the severe conditions they operate in, they are regularly inspected using conventional Pipeline Inspection Gages (PIGs for corrosion damage. The motivation for researching a real-time distributed monitoring solution arose to mitigate costs and provide a proactive indication of potential failures. Fiber optic sensors with polymer claddings provide a means of detecting contact with hydrocarbons. By coating the fibers with a layer of metal similar in composition to that of the parent pipeline, corrosion of this coating may be detected when the polymer cladding underneath is exposed to the surrounding hydrocarbons contained within the pipeline. A Refractive Index (RI change occurs in the polymer cladding causing a loss in intensity of a traveling light pulse due to a reduction in the fiber’s modal capacity. Intensity losses may be detected using Optical Time Domain Reflectometry (OTDR while pinpointing the spatial location of the contact via time delay calculations of the back-scattered pulses. This work presents a theoretical model for the above sensing solution to provide a design tool for the fiber optic cable in the context of hydrocarbon sensing following corrosion of an external metal coating. Results are verified against the experimental data published in the literature.

  10. The Will, Skill, Tool Model of Technology Integration: Adding Pedagogy as a New Model Construct

    Science.gov (United States)

    Knezek, Gerald; Christensen, Rhonda

    2015-01-01

    An expansion of the Will, Skill, Tool Model of Technology Integration to include teacher's pedagogical style is proposed by the authors as a means of advancing the predictive power for level of classroom technology integration to beyond 90%. Suggested advantages to this expansion include more precise identification of areas to be targeted for…

  11. Accelerated bridge construction (ABC) decision making and economic modeling tool.

    Science.gov (United States)

    2011-12-01

    In this FHWA-sponsored pool funded study, a set of decision making tools, based on the Analytic Hierarchy Process (AHP) was developed. This tool set is prepared for transportation specialists and decision-makers to determine if ABC is more effective ...

  12. How can land-use modelling tools inform bioenergy policies?

    Science.gov (United States)

    Davis, Sarah C.; House, Joanna I.; Diaz-Chavez, Rocio A.; Molnar, Andras; Valin, Hugo; DeLucia, Evan H.

    2011-01-01

    Targets for bioenergy have been set worldwide to mitigate climate change. Although feedstock sources are often ambiguous, pledges in European nations, the United States and Brazil amount to more than 100 Mtoe of biorenewable fuel production by 2020. As a consequence, the biofuel sector is developing rapidly, and it is increasingly important to distinguish bioenergy options that can address energy security and greenhouse gas mitigation from those that cannot. This paper evaluates how bioenergy production affects land-use change (LUC), and to what extent land-use modelling can inform sound decision-making. We identified local and global internalities and externalities of biofuel development scenarios, reviewed relevant data sources and modelling approaches, identified sources of controversy about indirect LUC (iLUC) and then suggested a framework for comprehensive assessments of bioenergy. Ultimately, plant biomass must be managed to produce energy in a way that is consistent with the management of food, feed, fibre, timber and environmental services. Bioenergy production provides opportunities for improved energy security, climate mitigation and rural development, but the environmental and social consequences depend on feedstock choices and geographical location. The most desirable solutions for bioenergy production will include policies that incentivize regionally integrated management of diverse resources with low inputs, high yields, co-products, multiple benefits and minimal risks of iLUC. Many integrated assessment models include energy resources, trade, technological development and regional environmental conditions, but do not account for biodiversity and lack detailed data on the location of degraded and underproductive lands that would be ideal for bioenergy production. Specific practices that would maximize the benefits of bioenergy production regionally need to be identified before a global analysis of bioenergy-related LUC can be accomplished. PMID

  13. Metallic Material Image Segmentation by using 3D Grain Structure Consistency and Intra/Inter-Grain Model Information

    Science.gov (United States)

    2015-01-05

    fully-automatic method to detect cracks from pavement images, that can be used for pavement road maintenance. The developed method consists of three...steps: 1) A geodesic shadow-removal algorithm to remove the pavement shadows while preserving the cracks ; 2) building a crack probability map to enhance... cracks . Cracktree was evaluated on real pavement images and it achieves better performance than existing methods. 1 Multi-label Segmentation Propagation

  14. Consistent framework data for modeling and formation of scenarios in the Federal Environment Office; Konsistente Rahmendaten fuer Modellierungen und Szenariobildung im Umweltbundesamt

    Energy Technology Data Exchange (ETDEWEB)

    Weimer-Jehle, Wolfgang; Wassermann, Sandra; Kosow, Hannah [Internationales Zentrum fuer Kultur- und Technikforschung an der Univ. Stuttgart (Germany). ZIRN Interdisziplinaerer Forschungsschwerpunkt Risiko und Nachhaltige Technikentwicklung

    2011-04-15

    Model-based environmental scenarios normally require multiple framework assumptions regarding future social, political and economic developments (external developments). In most cases these framework assumptions are highly uncertain. Furthermore, different external developments are not isolated from each other and their interdependences can be described by qualitative judgments only. If the internal consistency of framework assumptions is not methodologically addressed, environmental models risk to be based on inconsistent combinations of framework assumptions which do not reflect existing relations between the respective factors in an appropriate way. This report aims at demonstrating how consistent context scenarios can be developed with the help of the cross-impact balance analysis (CIB). This method allows not only for the internal consistency of framework assumptions of a single model but also for the overall consistency of framework assumptions of modeling instruments, supporting the integrated interpretation of the results of different models. In order to demonstrate the method, in a first step, ten common framework assumptions were chosen and their possible future developments until 2030 were described. In a second step, a qualitative impact network was developed based on expert elicitation. The impact network provided the basis for a qualitative but systematic analysis of the internal consistency of combinations of framework assumptions. This analysis was carried out with the CIB-method and resulted in a set of consistent context scenarios. These scenarios can be used as an informative background for defining framework assumptions for environmental models at the UBA. (orig.)

  15. Decision modelling tools for utilities in the deregulated energy market

    Energy Technology Data Exchange (ETDEWEB)

    Makkonen, S. [Process Vision Oy, Helsinki (Finland)

    2005-07-01

    This thesis examines the impact of the deregulation of the energy market on decision making and optimisation in utilities and demonstrates how decision support applications can solve specific encountered tasks in this context. The themes of the thesis are presented in different frameworks in order to clarify the complex decision making and optimisation environment where new sources of uncertainties arise due to the convergence of energy markets, globalisation of energy business and increasing competition. This thesis reflects the changes in the decision making and planning environment of European energy companies during the period from 1995 to 2004. It also follows the development of computational performance and evolution of energy information systems during the same period. Specifically, this thesis consists of studies at several levels of the decision making hierarchy ranging from top-level strategic decision problems to specific optimisation algorithms. On the other hand, the studies also follow the progress of the liberalised energy market from the monopolistic era to the fully competitive market with new trading instruments and issues like emissions trading. This thesis suggests that there is an increasing need for optimisation and multiple criteria decision making methods, and that new approaches based on the use of operations research are welcome as the deregulation proceeds and uncertainties increase. Technically, the optimisation applications presented are based on Lagrangian relaxation techniques and the dedicated Power Simplex algorithm supplemented with stochastic scenario analysis for decision support, a heuristic method to allocate common benefits and potential losses of coalitions of power companies, and an advanced Branch- and-Bound algorithm to solve efficiently nonconvex optimisation problems. The optimisation problems are part of the operational and tactical decision making process that has become very complex in the recent years. Similarly

  16. Decision modelling tools for utilities in the deregulated energy market

    International Nuclear Information System (INIS)

    Makkonen, S.

    2005-01-01

    This thesis examines the impact of the deregulation of the energy market on decision making and optimisation in utilities and demonstrates how decision support applications can solve specific encountered tasks in this context. The themes of the thesis are presented in different frameworks in order to clarify the complex decision making and optimisation environment where new sources of uncertainties arise due to the convergence of energy markets, globalisation of energy business and increasing competition. This thesis reflects the changes in the decision making and planning environment of European energy companies during the period from 1995 to 2004. It also follows the development of computational performance and evolution of energy information systems during the same period. Specifically, this thesis consists of studies at several levels of the decision making hierarchy ranging from top-level strategic decision problems to specific optimisation algorithms. On the other hand, the studies also follow the progress of the liberalised energy market from the monopolistic era to the fully competitive market with new trading instruments and issues like emissions trading. This thesis suggests that there is an increasing need for optimisation and multiple criteria decision making methods, and that new approaches based on the use of operations research are welcome as the deregulation proceeds and uncertainties increase. Technically, the optimisation applications presented are based on Lagrangian relaxation techniques and the dedicated Power Simplex algorithm supplemented with stochastic scenario analysis for decision support, a heuristic method to allocate common benefits and potential losses of coalitions of power companies, and an advanced Branch- and-Bound algorithm to solve efficiently nonconvex optimisation problems. The optimisation problems are part of the operational and tactical decision making process that has become very complex in the recent years. Similarly

  17. Ab Initio Thermodynamic Modeling of Electrified Metal–Oxide Interfaces: Consistent Treatment of Electronic and Ionic Chemical Potentials

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Hansen, Martin Hangaard; Greeley, Jeffrey Philip

    2014-01-01

    how the structural information can be used as a starting point for accurate calculations of the kinetics of fuel oxidation reactions, in particular the hydrogen oxidation reaction. More generally, we anticipate that the scheme will be a valuable theoretical tool to describe solid–solid electrochemical......Solid oxide fuel cells are attractive devices in a sustainable energy context because of their fuel flexibility and potentially highly efficient conversion of chemical to electrical energy. The performance of the device is to a large extent determined by the atomic structure of the electrode......–electrolyte interface. Lack of atomic-level information about the interface has limited the fundamental understanding, which further limits the opportunity for optimization. The atomic structure of the interface is affected by electrode potential, chemical potential of oxygen ions, temperature, and gas pressures...

  18. Three-dimensional modelling of soil-plant interactions : consistent coupling of soil and plant root systems

    OpenAIRE

    Schröder, Tom

    2009-01-01

    To understand how the uptake of water by roots locally affects and is affected by the soil water distribution, 3D soil-root water transfer models are needed. Nowadays, fully coupled 3D models at the plant scale, that simulate water flow along water potential gradients in the soil-root continuum, are available. However, the coupling of the soil and root system is not investigated thoroughly. In the available models the soil water potential gradient below the soil spatial discretization is negl...

  19. Performance evaluation of paper embossing tools produced by fused deposition modelling additive manufacturing technology

    Directory of Open Access Journals (Sweden)

    Gordana Delić

    2017-12-01

    Full Text Available From its beginnings, up to a few years ago, additive manufacturing technology was able to produce models or prototypes which have limited use, because of materials mechanical properties. With advancement and invention of new materials, this is changing. Now, it is possible to create 3D prints that can be used as final products or functional tools, using technology and materials with low environmental impact. The goal of this study was to examine opportunities for production of paper embossing tools by fused deposition modelling (FDM 3D printing. This study emphasises the use of environmentally friendly poly-lactic acid (PLA materials in FDM technology, contrary to the conventional method using metal alloys and acids. Embossing of line elements and letters using 3D printed embossing tools was done on six different types of paper. Embossing force was applied using SHIMADZU EZ-LX Compact Tabletop Testing Machine. Each type of paper was repeatedly embossed using different values of embossing force (in 250 N increments, starting at 1000 N to determine the optimal embossing force for each specific paper type. When determined, the optimal embossing force was used on ten samples for each paper type. Results of embossing were analysed and evaluated. The analysis consisted of investigating the effects of the applied embossing force and characteristics such as paper basis weight, paper structure, surface characteristic and fibre direction of the paper. Results show that paper characteristics determine the embossing force required for achieving a good embossing result. This means that with the right amount of embossing force, letters and borderlines can be equally well formed by the embossing process regardless of paper weight, surface characteristics, etc. Embossing tools produced in this manner can be used in case of the embossing elements that are not complex. The reason for this is the limitation of FDM technology and lack of precision needed for fine

  20. Response Surface Modeling Tool Suite, Version 1.x

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-05

    The Response Surface Modeling (RSM) Tool Suite is a collection of three codes used to generate an empirical interpolation function for a collection of drag coefficient calculations computed with Test Particle Monte Carlo (TPMC) simulations. The first code, "Automated RSM", automates the generation of a drag coefficient RSM for a particular object to a single command. "Automated RSM" first creates a Latin Hypercube Sample (LHS) of 1,000 ensemble members to explore the global parameter space. For each ensemble member, a TPMC simulation is performed and the object drag coefficient is computed. In the next step of the "Automated RSM" code, a Gaussian process is used to fit the TPMC simulations. In the final step, Markov Chain Monte Carlo (MCMC) is used to evaluate the non-analytic probability distribution function from the Gaussian process. The second code, "RSM Area", creates a look-up table for the projected area of the object based on input limits on the minimum and maximum allowed pitch and yaw angles and pitch and yaw angle intervals. The projected area from the look-up table is used to compute the ballistic coefficient of the object based on its pitch and yaw angle. An accurate ballistic coefficient is crucial in accurately computing the drag on an object. The third code, "RSM Cd", uses the RSM generated by the "Automated RSM" code and the projected area look-up table generated by the "RSM Area" code to accurately compute the drag coefficient and ballistic coefficient of the object. The user can modify the object velocity, object surface temperature, the translational temperature of the gas, the species concentrations of the gas, and the pitch and yaw angles of the object. Together, these codes allow for the accurate derivation of an object's drag coefficient and ballistic coefficient under any conditions with only knowledge of the object's geometry and mass.

  1. A consistent NPMLE of the joint distribution function with competing risks data under the dependent masking and right-censoring model.

    Science.gov (United States)

    Li, Jiahui; Yu, Qiqing

    2016-01-01

    Dinse (Biometrics, 38:417-431, 1982) provides a special type of right-censored and masked competing risks data and proposes a non-parametric maximum likelihood estimator (NPMLE) and a pseudo MLE of the joint distribution function [Formula: see text] with such data. However, their asymptotic properties have not been studied so far. Under the extention of either the conditional masking probability (CMP) model or the random partition masking (RPM) model (Yu and Li, J Nonparametr Stat 24:753-764, 2012), we show that (1) Dinse's estimators are consistent if [Formula: see text] takes on finitely many values and each point in the support set of [Formula: see text] can be observed; (2) if the failure time is continuous, the NPMLE is not uniquely determined, and the standard approach (which puts weights only on one element in each observed set) leads to an inconsistent NPMLE; (3) in general, Dinse's estimators are not consistent even under the discrete assumption; (4) we construct a consistent NPMLE. The consistency is given under a new model called dependent masking and right-censoring model. The CMP model and the RPM model are indeed special cases of the new model. We compare our estimator to Dinse's estimators through simulation and real data. Simulation study indicates that the consistent NPMLE is a good approximation to the underlying distribution for moderate sample sizes.

  2. Description of nucleon scattering on 208Pb by a fully Lane-consistent dispersive spherical optical model potential

    Science.gov (United States)

    Sun, W. L.; Wang, J.; Soukhovitskii, E. Sh.; Capote, R.; Quesada, J. M.

    2017-09-01

    A fully Lane-consistent dispersive spherical optical potential is proposed to describe nucleon scattering interaction with doubly magic nucleus 208Pb up to 200 MeV. The experimental neutron total cross sections, elastically scattered nucleon angular distributions and (p,n) data had been used to search the potential parameters. Good agreement between experiments and the calculations with this potential is observed. Meanwhile, the application of the determined optical potential with the same parameters to neighbouring near magic Pb-Bi isotopes is also examined to show the predictive power of this potential.

  3. An improved algorithm for the polycrystal viscoplastic self-consistent model and its integration with implicit finite element schemes

    International Nuclear Information System (INIS)

    Galán, J; Verleysen, P; Lebensohn, R A

    2014-01-01

    A new algorithm for the solution of the deformation of a polycrystalline material using a self-consistent scheme, and its integration as part of the finite element software Abaqus/Standard are presented. The method is based on the original VPSC formulation by Lebensohn and Tomé and its integration with Abaqus/Standard by Segurado et al. The new algorithm has been implemented as a set of Fortran 90 modules, to be used either from a standalone program or from Abaqus subroutines. The new implementation yields the same results as VPSC7, but with a significantly better performance, especially when used in multicore computers. (paper)

  4. Validated assessment tool paves the way for standardized evaluation of trainees on anastomotic models.

    Science.gov (United States)

    Duran, Cassidy A; Shames, Murray; Bismuth, Jean; Lee, Jason T

    2014-01-01

    Simulation modules allow for the safe practice of certain techniques and are becoming increasingly important in the shift toward education for integrated vascular residents. There is an unquestionable need to standardize the evaluation of trainees on these simulation models to assure their impact and effectiveness. We sought to validate such an assessment tool for a basic open vascular technique. Vascular fellows, integrated vascular residents, and general surgery residents attending Society for Clinical Vascular Surgery, Introduction to Academic Vascular Surgery, and Methodist Boot Camp in 2012 were asked to participate in an assessment model using multiple anastomotic models and given 20 minutes to complete an end-to-side anastomosis. Trained vascular faculty evaluated subjects using an assessment tool that included a 25-point checklist and a graded overall global rating scale (GRS) on a 5-point Likert scale with 8 parameters. Self-assessment using the GRS was performed by 20 trainees. Reliability and construct validity were evaluated. Ninety-two trainees were assessed. There was excellent agreement between assessors on 21 of the 25 items, with 2 items found not to be relevant for the bench-top model. Graders agreed that the checklist was prohibitively cumbersome to use. Scores on the global assessments correlated with experience and were higher for the senior trainees, with median global summary scores increasing by postgraduate year. Reliability was confirmed through interrater correlation and internal consistency. Internal consistency was 0.92 for the GRS. There was poor correlation between grades given by the expert observers and the self-assessment from the trainee, but good correlation between scores assigned by faculty. Assessment of appropriate hemostasis was poor, which likely reflects the difficulty of evaluating this parameter in the current inanimate model. Performance on an open simulation model evaluated by a standardized global rating scale

  5. Self-consistent modeling of entangled network strands and linear dangling structures in a single-strand mean-field slip-link model

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Khaliullin, Renat; Schieber, Jay D.

    2012-01-01

    knowledge about the effect of dangling ends and soluble structures. To interpret our recent experimental results, we exploit a molecular model that can predict LVE data and non-linear stress–strain data. The slip-link model has proven to be a robust tool for both LVE and non-linear stress–strain predictions...... strands in the ensemble are attached to the network in both ends. Next we add dangling strands to the network representing the stoichiometric imbalance, or imperfections during curing. By considering monodisperse network strands without dangling ends, we find that the relative low-frequency plateau, G0/GN......0G0G0N, decreases linearly with the average number of entanglements. The decrease from GN0G0N to G 0 is a result of monomer fluctuations between entanglements, which is similar to “longitudinal modes” in tube theory. It is found that the slope of G′ is dependent on the fraction of network strands...

  6. Maintaining consistency in distributed systems

    Science.gov (United States)

    Birman, Kenneth P.

    1991-01-01

    In systems designed as assemblies of independently developed components, concurrent access to data or data structures normally arises within individual programs, and is controlled using mutual exclusion constructs, such as semaphores and monitors. Where data is persistent and/or sets of operation are related to one another, transactions or linearizability may be more appropriate. Systems that incorporate cooperative styles of distributed execution often replicate or distribute data within groups of components. In these cases, group oriented consistency properties must be maintained, and tools based on the virtual synchrony execution model greatly simplify the task confronting an application developer. All three styles of distributed computing are likely to be seen in future systems - often, within the same application. This leads us to propose an integrated approach that permits applications that use virtual synchrony with concurrent objects that respect a linearizability constraint, and vice versa. Transactional subsystems are treated as a special case of linearizability.

  7. Enhancing Formal Modelling Tool Support with Increased Automation

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    Progress report for the qualification exam report for PhD Student Kenneth Lausdahl. Initial work on enhancing tool support for the formal method VDM and the concept of unifying a abstract syntax tree with the ability for isolated extensions is described. The tool support includes a connection...... to UML and a test automation principle based on traces written as a kind of regular expressions....

  8. Use of System Dynamics Techniques in the Garrison Health Modelling Tool

    Science.gov (United States)

    2010-11-01

    Joint Health Command (JHC) tasked DSTO to develop techniques for modelling Defence health service delivery both in a Garrison environment in Australia ...UNCLASSIFIED UNCLASSIFIED Use of System Dynamics Techniques in the Garrison Health Modelling Tool Mark Burnett, Kerry Clifford and...Garrison Health Modelling Tool, a prototype software package designed to provide decision-support to JHC health officers and managers in a garrison

  9. Development of new pedestal temperature models with self-consistent magnetic shear and safety factor in BALDUR and JETTO codes

    International Nuclear Information System (INIS)

    Suwanna, S.; Onjun, T.; Wongpan, P.; Parail, V.; Poolyarat, N.; Picha, R.

    2009-01-01

    Full text: A formation of a steep pressure gradient region near the plasma edge, called the pedestal, is a main reason for an improved performance in H-mode plasma. In this work, new pedestal temperature models are developed based on different theoretical-based width concepts: flow shear stabilization width concept, magnetic and flow shear stabilization width concept, and diamagnetic stabilization width concept. In the BALDUR code, each pedestal width model is combined with a ballooning mode pressure gradient model to predict the pedestal temperature, which is a boundary condition needed to predict plasma profiles. In the JETTO code, an anomalous transport is suppressed within the pedestal region, which results in a formation of a steep pressure gradient region. The pedestal width is predicted using these theoretically based width concepts. The plasma profiles in the pedestal region are limited by ELM crashes, which can be triggered either by ballooning modes or by peeling modes, depending on which instability is destabilized first. It is found in the BALDUR simulations that the simulated pedestal temperature profiles agree well with experimental data in the region close to the pedestal, but show larger deviation in the core region. In a preliminary investigation, these models agree reasonably well with experiments, yielding overall RMS less than 20%. Furthermore, the model based flow shear stabilization matches very well data from both DIII-D and JET, while the model based on magnetic and flow shear stabilization over-predicts results from JET and under-predicts those from DIII-D. Other statistical analyses such a calculation of offset values, ratios of predicted pedestal (resp. core) temperatures to those from experiments are performed. (author)

  10. Characterisation of poly(lactic acid): poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach

    NARCIS (Netherlands)

    Heald, C.R.; Stolnik, S.; Matteis, De C.; Garnett, M.C.; Illum, L.; Davis, S.S.; Leermakers, F.A.M.

    2003-01-01

    Self-consistent field (SCF) modelling studies can be used to predict the properties of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the theory developed by Scheutjens and Fleer. Good agreement in the results between experimental and modelled data has been observed previously

  11. Hypersonic Control Modeling and Simulation Tool for Lifting Towed Ballutes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Aerospace Corporation proposes to develop a hypersonic control modeling and simulation tool for hypersonic aeroassist vehicles. Our control and simulation...

  12. A Microscale Modeling Tool for the Design and Optimization of Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Shixue Liu

    2009-06-01

    Full Text Available A two dimensional numerical model of a solid oxide fuel cell (SOFC with electrode functional layers is presented. The model incorporates the partial differential equations for mass transport, electric conduction and electrochemical reactions in the electrode functional layers, the anode support layer, the cathode current collection layer and at the electrode/electrolyte interfaces. A dusty gas model is used in modeling the gas transport in porous electrodes. The model is capable of providing results in good agreement with the experimental I-V relationship. Numerical examples are presented to illustrate the applications of this numerical model as a tool for the design and optimization of SOFCs. For a stack assembly of a pitch width of 2 mm and an interconnect-electrode contact resistance of 0.025 Ωcm2, a typical SOFC stack cell should consist of a rib width of 0.9 mm, a cathode current collection layer thickness of 200–300 μm, a cathode functional layer thickness of 20–40 μm, and an anode functional layer thickness of 10–20 μm in order to achieve optimal performance.

  13. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  14. Interfacial tension and wettability in water-carbon dioxide systems: Experiments and self-consistent field modeling

    NARCIS (Netherlands)

    Banerjee, S.; Hassenklover, E.; Kleijn, J.M.; Cohen Stuart, M.A.; Leermakers, F.A.M.

    2013-01-01

    This paper presents experimental and modeling results on water–CO2 interfacial tension (IFT) together with wettability studies of water on both hydrophilic and hydrophobic surfaces immersed in CO2. CO2–water interfacial tension (IFT) measurements showed that the IFT decreased with increasing

  15. A consistent geochemical modelling approach for the leaching and reactive transport of major and trace elements in MSWI bottom ash

    NARCIS (Netherlands)

    Dijkstra, J.J.; Meeussen, J.C.L.; Sloot, van der H.A.; Comans, R.N.J.

    2008-01-01

    To improve the long-term environmental risk assessment of waste applications, a predictive "multi-surface" modelling approach has been developed to simultaneously predict the leaching and reactive transport of a broad range of major and trace elements (i.e., pH, Na, Al, Fe, Ca, SO4, Mg, Si, PO4,

  16. SBML qualitative models: a model representation format and infrastructure to foster interactions between qualitative modelling formalisms and tools.

    Science.gov (United States)

    Chaouiya, Claudine; Bérenguier, Duncan; Keating, Sarah M; Naldi, Aurélien; van Iersel, Martijn P; Rodriguez, Nicolas; Dräger, Andreas; Büchel, Finja; Cokelaer, Thomas; Kowal, Bryan; Wicks, Benjamin; Gonçalves, Emanuel; Dorier, Julien; Page, Michel; Monteiro, Pedro T; von Kamp, Axel; Xenarios, Ioannis; de Jong, Hidde; Hucka, Michael; Klamt, Steffen; Thieffry, Denis; Le Novère, Nicolas; Saez-Rodriguez, Julio; Helikar, Tomáš

    2013-12-10

    Qualitative frameworks, especially those based on the logical discrete formalism, are increasingly used to model regulatory and signalling networks. A major advantage of these frameworks is that they do not require precise quantitative data, and that they are well-suited for studies of large networks. While numerous groups have developed specific computational tools that provide original methods to analyse qualitative models, a standard format to exchange qualitative models has been missing. We present the Systems Biology Markup Language (SBML) Qualitative Models Package ("qual"), an extension of the SBML Level 3 standard designed for computer representation of qualitative models of biological networks. We demonstrate the interoperability of models via SBML qual through the analysis of a specific signalling network by three independent software tools. Furthermore, the collective effort to define the SBML qual format paved the way for the development of LogicalModel, an open-source model library, which will facilitate the adoption of the format as well as the collaborative development of algorithms to analyse qualitative models. SBML qual allows the exchange of qualitative models among a number of complementary software tools. SBML qual has the potential to promote collaborative work on the development of novel computational approaches, as well as on the specification and the analysis of comprehensive qualitative models of regulatory and signalling networks.

  17. Consistent Safety and Infectivity in Sporozoite Challenge Model of Plasmodium vivax in Malaria-Naive Human Volunteers

    Science.gov (United States)

    2011-02-01

    human volunteers with sporozoites. 6 A sporozoite challenge model has been available for P. falciparum for several decades and has led to...the reproduc- ibility of the infection. In those studies, sporozoites inoculated by < 5 mosquitoes led to an irregular infection in malaria-naive...particularly to Juana Vergara and Johanna Parra, for the vol- unteers’ recruitment and health assistance. We also thank Luz Amparo Martínez and all the

  18. No consistent bioenergetic defects in presynaptic nerve terminals isolated from mouse models of Alzheimer’s disease

    OpenAIRE

    Choi, Sung W.; Gerencser, Akos A.; Ng, Ryan; Flynn, James M.; Melov, Simon; Danielson, Steven R.; Gibson, Bradford W.; Nicholls, David G.; Bredesen, Dale E.; Brand, Martin D.

    2012-01-01

    Depressed cortical energy supply and impaired synaptic function are predominant associations of Alzheimer’s disease (AD). To test the hypothesis that presynaptic bioenergetic deficits are associated with the progression of AD pathogenesis, we compared bioenergetic variables of cortical and hippocampal presynaptic nerve terminals (synaptosomes) from commonly used mouse models with AD-like phenotypes (J20 age 6 months, Tg2576 age 16 months and APP/PS age 9 and 14 months) to ag...

  19. Modal Bin Hybrid Model: A surface area consistent, triple-moment sectional method for use in process-oriented modeling of atmospheric aerosols

    Science.gov (United States)

    Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

    2013-09-01

    triple-moment sectional (TMS) aerosol dynamics model, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for aerosol processes and properties such as gas-to-particle mass transfer, heterogeneous reaction, and light extinction cross section. The performance of MBHM was evaluated against double-moment sectional (DMS) models with coarse (BIN4) to very fine (BIN256) size resolutions for simulating evolution of particles under simultaneously occurring nucleation, condensation, and coagulation processes (BINx resolution uses x sections to cover the 1 nm to 1 µm size range). Because MBHM gives a physically consistent form of the intrasectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multicategory and/or mixing state) modeling: Primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from 1 to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photochemical age for aerosol mixing state studies.

  20. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.