WorldWideScience

Sample records for modeling technique applied

  1. The impact of applying product-modelling techniques in configurator projects

    DEFF Research Database (Denmark)

    Hvam, Lars; Kristjansdottir, Katrin; Shafiee, Sara

    2018-01-01

    This paper aims to increase understanding of the impact of using product-modelling techniques to structure and formalise knowledge in configurator projects. Companies that provide customised products increasingly apply configurators in support of sales and design activities, reaping benefits...... that include shorter lead times, improved quality of specifications and products, and lower overall product costs. The design and implementation of configurators are a challenging task that calls for scientifically based modelling techniques to support the formal representation of configurator knowledge. Even...... the phenomenon model and information model are considered visually, (2) non-UML-based modelling techniques, in which only the phenomenon model is considered and (3) non-formal modelling techniques. This study analyses the impact to companies from increased availability of product knowledge and improved control...

  2. Modelling the effects of the sterile insect technique applied to Eldana saccharina Walker in sugarcane

    Directory of Open Access Journals (Sweden)

    L Potgieter

    2012-12-01

    Full Text Available A mathematical model is formulated for the population dynamics of an Eldana saccharina Walker infestation of sugarcane under the influence of partially sterile released insects. The model describes the population growth of and interaction between normal and sterile E.saccharina moths in a temporally variable, but spatially homogeneous environment. The model consists of a deterministic system of difference equations subject to strictly positive initial data. The primary objective of this model is to determine suitable parameters in terms of which the above population growth and interaction may be quantified and according to which E.saccharina infestation levels and the associated sugarcane damage may be measured. Although many models have been formulated in the past describing the sterile insect technique, few of these models describe the technique for Lepidopteran species with more than one life stage and where F1-sterility is relevant. In addition, none of these models consider the technique when fully sterile females and partially sterile males are being released. The model formulated is also the first to describe the technique applied specifically to E.saccharina, and to consider the economic viability of applying the technique to this species. Pertinent decision support is provided to farm managers in terms of the best timing for releases, release ratios and release frequencies.

  3. Applying contemporary statistical techniques

    CERN Document Server

    Wilcox, Rand R

    2003-01-01

    Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc

  4. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    Science.gov (United States)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  5. Applied ALARA techniques

    International Nuclear Information System (INIS)

    Waggoner, L.O.

    1998-01-01

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work

  6. Applied ALARA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  7. Applied impulsive mathematical models

    CERN Document Server

    Stamova, Ivanka

    2016-01-01

    Using the theory of impulsive differential equations, this book focuses on mathematical models which reflect current research in biology, population dynamics, neural networks and economics. The authors provide the basic background from the fundamental theory and give a systematic exposition of recent results related to the qualitative analysis of impulsive mathematical models. Consisting of six chapters, the book presents many applicable techniques, making them available in a single source easily accessible to researchers interested in mathematical models and their applications. Serving as a valuable reference, this text is addressed to a wide audience of professionals, including mathematicians, applied researchers and practitioners.

  8. Applying DEA Technique to Library Evaluation in Academic Research Libraries.

    Science.gov (United States)

    Shim, Wonsik

    2003-01-01

    This study applied an analytical technique called Data Envelopment Analysis (DEA) to calculate the relative technical efficiency of 95 academic research libraries, all members of the Association of Research Libraries. DEA, with the proper model of library inputs and outputs, can reveal best practices in the peer groups, as well as the technical…

  9. Applied methods and techniques for mechatronic systems modelling, identification and control

    CERN Document Server

    Zhu, Quanmin; Cheng, Lei; Wang, Yongji; Zhao, Dongya

    2014-01-01

    Applied Methods and Techniques for Mechatronic Systems brings together the relevant studies in mechatronic systems with the latest research from interdisciplinary theoretical studies, computational algorithm development and exemplary applications. Readers can easily tailor the techniques in this book to accommodate their ad hoc applications. The clear structure of each paper, background - motivation - quantitative development (equations) - case studies/illustration/tutorial (curve, table, etc.) is also helpful. It is mainly aimed at graduate students, professors and academic researchers in related fields, but it will also be helpful to engineers and scientists from industry. Lei Liu is a lecturer at Huazhong University of Science and Technology (HUST), China; Quanmin Zhu is a professor at University of the West of England, UK; Lei Cheng is an associate professor at Wuhan University of Science and Technology, China; Yongji Wang is a professor at HUST; Dongya Zhao is an associate professor at China University o...

  10. Automated Techniques for the Qualitative Analysis of Ecological Models: Continuous Models

    Directory of Open Access Journals (Sweden)

    Lynn van Coller

    1997-06-01

    Full Text Available The mathematics required for a detailed analysis of the behavior of a model can be formidable. In this paper, I demonstrate how various computer packages can aid qualitative analyses by implementing techniques from dynamical systems theory. Because computer software is used to obtain the results, the techniques can be used by nonmathematicians as well as mathematicians. In-depth analyses of complicated models that were previously very difficult to study can now be done. Because the paper is intended as an introduction to applying the techniques to ecological models, I have included an appendix describing some of the ideas and terminology. A second appendix shows how the techniques can be applied to a fairly simple predator-prey model and establishes the reliability of the computer software. The main body of the paper discusses a ratio-dependent model. The new techniques highlight some limitations of isocline analyses in this three-dimensional setting and show that the model is structurally unstable. Another appendix describes a larger model of a sheep-pasture-hyrax-lynx system. Dynamical systems techniques are compared with a traditional sensitivity analysis and are found to give more information. As a result, an incomplete relationship in the model is highlighted. I also discuss the resilience of these models to both parameter and population perturbations.

  11. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    Science.gov (United States)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  12. Optimization technique applied to interpretation of experimental data and research of constitutive laws

    International Nuclear Information System (INIS)

    Grossette, J.C.

    1982-01-01

    The feasibility of identification technique applied to one dimensional numerical analysis of the split-Hopkinson pressure bar experiment is proven. A general 1-D elastic-plastic-viscoplastic computer program was written down so as to give an adequate solution for elastic-plastic-viscoplastic response of a pressure bar subjected to a general Heaviside step loading function in time which is applied over one end of the bar. Special emphasis is placed on the response of the specimen during the first microseconds where no equilibrium conditions can be stated. During this transient phase discontinuity conditions related to wave propagation are encountered and must be carefully taken into account. Having derived an adequate numerical model, then Pontryagin identification technique has been applied in such a way that the unknowns are physical parameters. The solutions depend mainly on the selection of a class of proper eigen objective functionals (cost functions) which may be combined so as to obtain a convenient numerical objective function. A number of significant questions arising in the choice of parameter adjustment algorithms are discussed. In particular, this technique leads to a two point boundary value problem which has been solved using an iterative gradient like technique usually referred to as a double operator gradient method. This method combines the classical Fletcher-Powell technique and a partial quadratic technique with an automatic parameter step size selection. This method is much more efficient than usual ones. Numerical experimentation with simulated data was performed to test the accuracy and stability of the identification algorithm and to determine the most adequate type and quantity of data for estimation purposes

  13. Software engineering techniques applied to agricultural systems an object-oriented and UML approach

    CERN Document Server

    Papajorgji, Petraq J

    2014-01-01

    Software Engineering Techniques Applied to Agricultural Systems presents cutting-edge software engineering techniques for designing and implementing better agricultural software systems based on the object-oriented paradigm and the Unified Modeling Language (UML). The focus is on the presentation of  rigorous step-by-step approaches for modeling flexible agricultural and environmental systems, starting with a conceptual diagram representing elements of the system and their relationships. Furthermore, diagrams such as sequential and collaboration diagrams are used to explain the dynamic and static aspects of the software system.    This second edition includes: a new chapter on Object Constraint Language (OCL), a new section dedicated to the Model-VIEW-Controller (MVC) design pattern, new chapters presenting details of two MDA-based tools – the Virtual Enterprise and Olivia Nova, and a new chapter with exercises on conceptual modeling.  It may be highly useful to undergraduate and graduate students as t...

  14. Molecular modeling: An open invitation for applied mathematics

    Science.gov (United States)

    Mezey, Paul G.

    2013-10-01

    Molecular modeling methods provide a very wide range of challenges for innovative mathematical and computational techniques, where often high dimensionality, large sets of data, and complicated interrelations imply a multitude of iterative approximations. The physical and chemical basis of these methodologies involves quantum mechanics with several non-intuitive aspects, where classical interpretation and classical analogies are often misleading or outright wrong. Hence, instead of the everyday, common sense approaches which work so well in engineering, in molecular modeling one often needs to rely on rather abstract mathematical constraints and conditions, again emphasizing the high level of reliance on applied mathematics. Yet, the interdisciplinary aspects of the field of molecular modeling also generates some inertia and perhaps too conservative reliance on tried and tested methodologies, that is at least partially caused by the less than up-to-date involvement in the newest developments in applied mathematics. It is expected that as more applied mathematicians take up the challenge of employing the latest advances of their field in molecular modeling, important breakthroughs may follow. In this presentation some of the current challenges of molecular modeling are discussed.

  15. Chemical vapor deposition: A technique for applying protective coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, T.C. Sr.; Bowman, M.G.

    1979-01-01

    Chemical vapor deposition is discussed as a technique for applying coatings for materials protection in energy systems. The fundamentals of the process are emphasized in order to establish a basis for understanding the relative advantages and limitations of the technique. Several examples of the successful application of CVD coating are described. 31 refs., and 18 figs.

  16. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-11-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current as well as large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements

  17. Remote sensing applied to numerical modelling. [water resources pollution

    Science.gov (United States)

    Sengupta, S.; Lee, S. S.; Veziroglu, T. N.; Bland, R.

    1975-01-01

    Progress and remaining difficulties in the construction of predictive mathematical models of large bodies of water as ecosystems are reviewed. Surface temperature is at present the only variable than can be measured accurately and reliably by remote sensing techniques, but satellite infrared data are of sufficient resolution for macro-scale modeling of oceans and large lakes, and airborne radiometers are useful in meso-scale analysis (of lakes, bays, and thermal plumes). Finite-element and finite-difference techniques applied to the solution of relevant coupled time-dependent nonlinear partial differential equations are compared, and the specific problem of the Biscayne Bay and environs ecosystem is tackled in a finite-differences treatment using the rigid-lid model and a rigid-line grid system.

  18. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  19. Early counterpulse technique applied to vacuum interrupters

    International Nuclear Information System (INIS)

    Warren, R.W.

    1979-01-01

    Interruption of dc currents using counterpulse techniques is investigated with vacuum interrupters and a novel approach in which the counterpulse is applied before contact separation. Important increases have been achieved in this way in the maximum interruptible current and large reductions in contact erosion. The factors establishing these new limits are presented and ways are discussed to make further improvements to the maximum interruptible current

  20. Selection of productivity improvement techniques via mathematical modeling

    Directory of Open Access Journals (Sweden)

    Mahassan M. Khater

    2011-07-01

    Full Text Available This paper presents a new mathematical model to select an optimal combination of productivity improvement techniques. The proposed model of this paper considers four-stage cycle productivity and the productivity is assumed to be a linear function of fifty four improvement techniques. The proposed model of this paper is implemented for a real-world case study of manufacturing plant. The resulted problem is formulated as a mixed integer programming which can be solved for optimality using traditional methods. The preliminary results of the implementation of the proposed model of this paper indicate that the productivity can be improved through a change on equipments and it can be easily applied for both manufacturing and service industries.

  1. Models of signal validation using artificial intelligence techniques applied to a nuclear reactor

    International Nuclear Information System (INIS)

    Oliveira, Mauro V.; Schirru, Roberto

    2000-01-01

    This work presents two models of signal validation in which the analytical redundancy of the monitored signals from a nuclear plant is made by neural networks. In one model the analytical redundancy is made by only one neural network while in the other it is done by several neural networks, each one working in a specific part of the entire operation region of the plant. Four cluster techniques were tested to separate the entire operation region in several specific regions. An additional information of systems' reliability is supplied by a fuzzy inference system. The models were implemented in C language and tested with signals acquired from Angra I nuclear power plant, from its start to 100% of power. (author)

  2. Computational optimization techniques applied to microgrids planning

    DEFF Research Database (Denmark)

    Gamarra, Carlos; Guerrero, Josep M.

    2015-01-01

    Microgrids are expected to become part of the next electric power system evolution, not only in rural and remote areas but also in urban communities. Since microgrids are expected to coexist with traditional power grids (such as district heating does with traditional heating systems......), their planning process must be addressed to economic feasibility, as a long-term stability guarantee. Planning a microgrid is a complex process due to existing alternatives, goals, constraints and uncertainties. Usually planning goals conflict each other and, as a consequence, different optimization problems...... appear along the planning process. In this context, technical literature about optimization techniques applied to microgrid planning have been reviewed and the guidelines for innovative planning methodologies focused on economic feasibility can be defined. Finally, some trending techniques and new...

  3. Electromagnetic interference modeling and suppression techniques in variable-frequency drive systems

    Science.gov (United States)

    Yang, Le; Wang, Shuo; Feng, Jianghua

    2017-11-01

    Electromagnetic interference (EMI) causes electromechanical damage to the motors and degrades the reliability of variable-frequency drive (VFD) systems. Unlike fundamental frequency components in motor drive systems, high-frequency EMI noise, coupled with the parasitic parameters of the trough system, are difficult to analyze and reduce. In this article, EMI modeling techniques for different function units in a VFD system, including induction motors, motor bearings, and rectifierinverters, are reviewed and evaluated in terms of applied frequency range, model parameterization, and model accuracy. The EMI models for the motors are categorized based on modeling techniques and model topologies. Motor bearing and shaft models are also reviewed, and techniques that are used to eliminate bearing current are evaluated. Modeling techniques for conventional rectifierinverter systems are also summarized. EMI noise suppression techniques, including passive filter, Wheatstone bridge balance, active filter, and optimized modulation, are reviewed and compared based on the VFD system models.

  4. Applying the Flipped Classroom Model to English Language Arts Education

    Science.gov (United States)

    Young, Carl A., Ed.; Moran, Clarice M., Ed.

    2017-01-01

    The flipped classroom method, particularly when used with digital video, has recently attracted many supporters within the education field. Now more than ever, language arts educators can benefit tremendously from incorporating flipped classroom techniques into their curriculum. "Applying the Flipped Classroom Model to English Language Arts…

  5. Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Skov, Thomas; Gernaey, Krist V.

    2017-01-01

    A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds......, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different...

  6. Linear mixing model applied to coarse resolution satellite data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1992-01-01

    A linear mixing model typically applied to high resolution data such as Airborne Visible/Infrared Imaging Spectrometer, Thematic Mapper, and Multispectral Scanner System is applied to the NOAA Advanced Very High Resolution Radiometer coarse resolution satellite data. The reflective portion extracted from the middle IR channel 3 (3.55 - 3.93 microns) is used with channels 1 (0.58 - 0.68 microns) and 2 (0.725 - 1.1 microns) to run the Constrained Least Squares model to generate fraction images for an area in the west central region of Brazil. The derived fraction images are compared with an unsupervised classification and the fraction images derived from Landsat TM data acquired in the same day. In addition, the relationship betweeen these fraction images and the well known NDVI images are presented. The results show the great potential of the unmixing techniques for applying to coarse resolution data for global studies.

  7. Practical Findings from Applying the PSD Model for Evaluating Software Design Specifications

    Science.gov (United States)

    Räisänen, Teppo; Lehto, Tuomas; Oinas-Kukkonen, Harri

    This paper presents practical findings from applying the PSD model to evaluating the support for persuasive features in software design specifications for a mobile Internet device. On the one hand, our experiences suggest that the PSD model fits relatively well for evaluating design specifications. On the other hand, the model would benefit from more specific heuristics for evaluating each technique to avoid unnecessary subjectivity. Better distinction between the design principles in the social support category would also make the model easier to use. Practitioners who have no theoretical background can apply the PSD model to increase the persuasiveness of the systems they design. The greatest benefit of the PSD model for researchers designing new systems may be achieved when it is applied together with a sound theory, such as the Elaboration Likelihood Model. Using the ELM together with the PSD model, one may increase the chances for attitude change.

  8. Eliciting expert opinion for economic models: an applied example.

    Science.gov (United States)

    Leal, José; Wordsworth, Sarah; Legood, Rosa; Blair, Edward

    2007-01-01

    Expert opinion is considered as a legitimate source of information for decision-analytic modeling where required data are unavailable. Our objective was to develop a practical computer-based tool for eliciting expert opinion about the shape of the uncertainty distribution around individual model parameters. We first developed a prepilot survey with departmental colleagues to test a number of alternative approaches to eliciting opinions on the shape of the uncertainty distribution around individual parameters. This information was used to develop a survey instrument for an applied clinical example. This involved eliciting opinions from experts to inform a number of parameters involving Bernoulli processes in an economic model evaluating DNA testing for families with a genetic disease, hypertrophic cardiomyopathy. The experts were cardiologists, clinical geneticists, and laboratory scientists working with cardiomyopathy patient populations and DNA testing. Our initial prepilot work suggested that the more complex elicitation techniques advocated in the literature were difficult to use in practice. In contrast, our approach achieved a reasonable response rate (50%), provided logical answers, and was generally rated as easy to use by respondents. The computer software user interface permitted graphical feedback throughout the elicitation process. The distributions obtained were incorporated into the model, enabling the use of probabilistic sensitivity analysis. There is clearly a gap in the literature between theoretical elicitation techniques and tools that can be used in applied decision-analytic models. The results of this methodological study are potentially valuable for other decision analysts deriving expert opinion.

  9. Applying of USB interface technique in nuclear spectrum acquisition system

    International Nuclear Information System (INIS)

    Zhou Jianbin; Huang Jinhua

    2004-01-01

    This paper introduces applying of USB technique and constructing nuclear spectrum acquisition system via PC's USB interface. The authors choose the USB component USB100 module and the W77E58μc to do the key work. It's easy to apply USB interface technique, when USB100 module is used. USB100 module can be treated as a common I/O component for the μc controller, and can be treated as a communication interface (COM) when connected to PC' USB interface. It's easy to modify the PC's program for the new system with USB100 module. The authors can smoothly change from ISA, RS232 bus to USB bus. (authors)

  10. Ensemble Genetic Fuzzy Neuro Model Applied for the Emergency Medical Service via Unbalanced Data Evaluation

    Directory of Open Access Journals (Sweden)

    Muammar Sadrawi

    2018-03-01

    Full Text Available Equally partitioned data are essential for prediction. However, in some important cases, the data distribution is severely unbalanced. In this study, several algorithms are utilized to maximize the learning accuracy when dealing with a highly unbalanced dataset. A linguistic algorithm is applied to evaluate the input and output relationship, namely Fuzzy c-Means (FCM, which is applied as a clustering algorithm for the majority class to balance the minority class data from about 3 million cases. Each cluster is used to train several artificial neural network (ANN models. Different techniques are applied to generate an ensemble genetic fuzzy neuro model (EGFNM in order to select the models. The first ensemble technique, the intra-cluster EGFNM, works by evaluating the best combination from all the models generated by each cluster. Another ensemble technique is the inter-cluster model EGFNM, which is based on selecting the best model from each cluster. The accuracy of these techniques is evaluated using the receiver operating characteristic (ROC via its area under the curve (AUC. Results show that the AUC of the unbalanced data is 0.67974. The random cluster and best ANN single model have AUCs of 0.7177 and 0.72806, respectively. For the ensemble evaluations, the intra-cluster and the inter-cluster EGFNMs produce 0.7293 and 0.73038, respectively. In conclusion, this study achieved improved results by performing the EGFNM method compared with the unbalanced training. This study concludes that selecting several best models will produce a better result compared with all models combined.

  11. NEW TECHNIQUES APPLIED IN ECONOMICS. ARTIFICIAL NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    Constantin Ilie

    2009-05-01

    Full Text Available The present paper has the objective to inform the public regarding the use of new techniques for the modeling, simulate and forecast of system from different field of activity. One of those techniques is Artificial Neural Network, one of the artificial in

  12. A New ABCD Technique to Analyze Business Models & Concepts

    OpenAIRE

    Aithal P. S.; Shailasri V. T.; Suresh Kumar P. M.

    2015-01-01

    Various techniques are used to analyze individual characteristics or organizational effectiveness like SWOT analysis, SWOC analysis, PEST analysis etc. These techniques provide an easy and systematic way of identifying various issues affecting a system and provides an opportunity for further development. Whereas these provide a broad-based assessment of individual institutions and systems, it suffers limitations while applying to business context. The success of any business model depends on ...

  13. Spatial analysis techniques applied to uranium prospecting in Chihuahua State, Mexico

    Science.gov (United States)

    Hinojosa de la Garza, Octavio R.; Montero Cabrera, María Elena; Sanín, Luz H.; Reyes Cortés, Manuel; Martínez Meyer, Enrique

    2014-07-01

    To estimate the distribution of uranium minerals in Chihuahua, the advanced statistical model "Maximun Entropy Method" (MaxEnt) was applied. A distinguishing feature of this method is that it can fit more complex models in case of small datasets (x and y data), as is the location of uranium ores in the State of Chihuahua. For georeferencing uranium ores, a database from the United States Geological Survey and workgroup of experts in Mexico was used. The main contribution of this paper is the proposal of maximum entropy techniques to obtain the mineral's potential distribution. For this model were used 24 environmental layers like topography, gravimetry, climate (worldclim), soil properties and others that were useful to project the uranium's distribution across the study area. For the validation of the places predicted by the model, comparisons were done with other research of the Mexican Service of Geological Survey, with direct exploration of specific areas and by talks with former exploration workers of the enterprise "Uranio de Mexico". Results. New uranium areas predicted by the model were validated, finding some relationship between the model predictions and geological faults. Conclusions. Modeling by spatial analysis provides additional information to the energy and mineral resources sectors.

  14. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    Science.gov (United States)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  15. A general diagnostic model applied to language testing data.

    Science.gov (United States)

    von Davier, Matthias

    2008-11-01

    Probabilistic models with one or more latent variables are designed to report on a corresponding number of skills or cognitive attributes. Multidimensional skill profiles offer additional information beyond what a single test score can provide, if the reported skills can be identified and distinguished reliably. Many recent approaches to skill profile models are limited to dichotomous data and have made use of computationally intensive estimation methods such as Markov chain Monte Carlo, since standard maximum likelihood (ML) estimation techniques were deemed infeasible. This paper presents a general diagnostic model (GDM) that can be estimated with standard ML techniques and applies to polytomous response variables as well as to skills with two or more proficiency levels. The paper uses one member of a larger class of diagnostic models, a compensatory diagnostic model for dichotomous and partial credit data. Many well-known models, such as univariate and multivariate versions of the Rasch model and the two-parameter logistic item response theory model, the generalized partial credit model, as well as a variety of skill profile models, are special cases of this GDM. In addition to an introduction to this model, the paper presents a parameter recovery study using simulated data and an application to real data from the field test for TOEFL Internet-based testing.

  16. Experimental designs for autoregressive models applied to industrial maintenance

    International Nuclear Information System (INIS)

    Amo-Salas, M.; López-Fidalgo, J.; Pedregal, D.J.

    2015-01-01

    Some time series applications require data which are either expensive or technically difficult to obtain. In such cases scheduling the points in time at which the information should be collected is of paramount importance in order to optimize the resources available. In this paper time series models are studied from a new perspective, consisting in the use of Optimal Experimental Design setup to obtain the best times to take measurements, with the principal aim of saving costs or discarding useless information. The model and the covariance function are expressed in an explicit form to apply the usual techniques of Optimal Experimental Design. Optimal designs for various approaches are computed and their efficiencies are compared. The methods working in an application of industrial maintenance of a critical piece of equipment at a petrochemical plant are shown. This simple model allows explicit calculations in order to show openly the procedure to find the correlation structure, needed for computing the optimal experimental design. In this sense the techniques used in this paper to compute optimal designs may be transferred to other situations following the ideas of the paper, but taking into account the increasing difficulty of the procedure for more complex models. - Highlights: • Optimal experimental design theory is applied to AR models to reduce costs. • The first observation has an important impact on any optimal design. • Either the lack of precision or small starting observations claim for large times. • Reasonable optimal times were obtained relaxing slightly the efficiency. • Optimal designs were computed in a predictive maintenance context

  17. Diagonal ordering operation technique applied to Morse oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Dušan, E-mail: dusan_popov@yahoo.co.uk [Politehnica University Timisoara, Department of Physical Foundations of Engineering, Bd. V. Parvan No. 2, 300223 Timisoara (Romania); Dong, Shi-Hai [CIDETEC, Instituto Politecnico Nacional, Unidad Profesional Adolfo Lopez Mateos, Mexico D.F. 07700 (Mexico); Popov, Miodrag [Politehnica University Timisoara, Department of Steel Structures and Building Mechanics, Traian Lalescu Street, No. 2/A, 300223 Timisoara (Romania)

    2015-11-15

    We generalize the technique called as the integration within a normally ordered product (IWOP) of operators referring to the creation and annihilation operators of the harmonic oscillator coherent states to a new operatorial approach, i.e. the diagonal ordering operation technique (DOOT) about the calculations connected with the normally ordered product of generalized creation and annihilation operators that generate the generalized hypergeometric coherent states. We apply this technique to the coherent states of the Morse oscillator including the mixed (thermal) state case and get the well-known results achieved by other methods in the corresponding coherent state representation. Also, in the last section we construct the coherent states for the continuous dynamics of the Morse oscillator by using two new methods: the discrete–continuous limit, respectively by solving a finite difference equation. Finally, we construct the coherent states corresponding to the whole Morse spectrum (discrete plus continuous) and demonstrate their properties according the Klauder’s prescriptions.

  18. Object oriented programming techniques applied to device access and control

    International Nuclear Information System (INIS)

    Goetz, A.; Klotz, W.D.; Meyer, J.

    1992-01-01

    In this paper a model, called the device server model, has been presented for solving the problem of device access and control faced by all control systems. Object Oriented Programming techniques were used to achieve a powerful yet flexible solution. The model provides a solution to the problem which hides device dependancies. It defines a software framework which has to be respected by implementors of device classes - this is very useful for developing groupware. The decision to implement remote access in the root class means that device servers can be easily integrated in a distributed control system. A lot of the advantages and features of the device server model are due to the adoption of OOP techniques. The main conclusion that can be drawn from this paper is that 1. the device access and control problem is adapted to being solved with OOP techniques, 2. OOP techniques offer a distinct advantage over traditional programming techniques for solving the device access problem. (J.P.N.)

  19. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    International Nuclear Information System (INIS)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-01-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant

  20. Applied potential tomography. A new noninvasive technique for measuring gastric emptying

    Energy Technology Data Exchange (ETDEWEB)

    Avill, R.; Mangnall, Y.F.; Bird, N.C.; Brown, B.H.; Barber, D.C.; Seagar, A.D.; Johnson, A.G.; Read, N.W.

    1987-04-01

    Applied potential tomography is a new, noninvasive technique that yields sequential images of the resistivity of gastric contents after subjects have ingested a liquid or semisolid meal. This study validates the technique as a means of measuring gastric emptying. Experiments in vitro showed an excellent correlation between measurements of resistivity and either the square of the radius of a glass rod or the volume of water in a spherical balloon when both were placed in an oval tank containing saline. Altering the lateral position of the rod in the tank did not alter the values obtained. Images of abdominal resistivity were also directly correlated with the volume of air in a gastric balloon. Profiles of gastric emptying of liquid meals obtained using applied potential tomography were very similar to those obtained using scintigraphy or dye dilution techniques, provided that acid secretion was inhibited by cimetidine. Profiles of emptying of a mashed potato meal using applied potential tomography were also very similar to those obtained by scintigraphy. Measurements of the emptying of a liquid meal from the stomach were reproducible if acid secretion was inhibited by cimetidine. Thus, applied potential tomography is an accurate and reproducible method of measuring gastric emptying of liquids and particulate food. It is inexpensive, well tolerated, easy to use, and ideally suited for multiple studies in patients, even those who are pregnant.

  1. Microscale and nanoscale strain mapping techniques applied to creep of rocks

    Science.gov (United States)

    Quintanilla-Terminel, Alejandra; Zimmerman, Mark E.; Evans, Brian; Kohlstedt, David L.

    2017-07-01

    Usually several deformation mechanisms interact to accommodate plastic deformation. Quantifying the contribution of each to the total strain is necessary to bridge the gaps from observations of microstructures, to geomechanical descriptions, to extrapolating from laboratory data to field observations. Here, we describe the experimental and computational techniques involved in microscale strain mapping (MSSM), which allows strain produced during high-pressure, high-temperature deformation experiments to be tracked with high resolution. MSSM relies on the analysis of the relative displacement of initially regularly spaced markers after deformation. We present two lithography techniques used to pattern rock substrates at different scales: photolithography and electron-beam lithography. Further, we discuss the challenges of applying the MSSM technique to samples used in high-temperature and high-pressure experiments. We applied the MSSM technique to a study of strain partitioning during creep of Carrara marble and grain boundary sliding in San Carlos olivine, synthetic forsterite, and Solnhofen limestone at a confining pressure, Pc, of 300 MPa and homologous temperatures, T/Tm, of 0.3 to 0.6. The MSSM technique works very well up to temperatures of 700 °C. The experimental developments described here show promising results for higher-temperature applications.

  2. Surface-bounded growth modeling applied to human mandibles

    DEFF Research Database (Denmark)

    Andresen, Per Rønsholt

    1999-01-01

    This thesis presents mathematical and computational techniques for three dimensional growth modeling applied to human mandibles. The longitudinal shape changes make the mandible a complex bone. The teeth erupt and the condylar processes change direction, from pointing predominantly backward...... of the common features. 3.model the process that moves the matched points (growth modeling). A local shape feature called crest line has shown itself to be structurally stable on mandibles. Registration of crest lines (from different mandibles) results in a sparse deformation field, which must be interpolated...... old mandible based on the 3 month old scan. When using successively more recent scans as basis for the model the error drops to 2.0 mm for the 11 years old scan. Thus, it seems reasonable to assume that the mandibular growth is linear....

  3. How to Apply the User Profile Usability Technique in the User Modelling Activity for an Adaptive Food Recommendation System for People on Special Diets

    Directory of Open Access Journals (Sweden)

    Lucrecia Llerena

    2017-10-01

    Full Text Available Interest among software professionals in the possibility of adapting software to user requirements has grown as a result of the evolution of software analysis, design and implementation thinking and the growth in the number of software systems users. Moving away from the traditional approach where the user has to settle for the options offered by software systems, different factors (e.g. user needs, aspirations, preferences, knowledge level, goals have to be taken into account for this purpose. Technically, this possibility is referred to as adaptiveness, and it requires user data. It is these data (user model that determine the adaptiveness conditions. Our aim is to build a user model for adaptive systems applied to nutritional requirements, modelling user characteristics that affect their diets and help to improve their health. To build the user model, we apply the user profile usability technique. In order to validate our proposal, we analyse and design a preliminary prototype of an adaptive system capable of making food recommendations to satisfy specific user needs. This study revealed that diet is a propitious field for the development of adaptive systems and that user modelling is a good choice for design of this type of systems.

  4. Dielectric spectroscopy technique applied to study the behaviour of irradiated polymer

    International Nuclear Information System (INIS)

    Saoud, R.; Soualmia, A.; Guerbi, C.A.; Benrekaa, N.

    2006-01-01

    Relaxation spectroscopy provides an excellent method for the study of motional processes in materials and has been widely applied to macromolecules and polymers. The technique is potentially of most interest when applied to irradiated systems. Application to the study of the structure beam-irradiated Teflon is thus an outstanding opportunity for the dielectric relaxation technique, particularly as this material exhibits clamping problems when subjected to dynamic mechanical relaxation studies. A very wide frequency range is necessary to resolve dipolar effects. In this paper, we discuss some significant results about the behavior and the modification of the structure of Teflon submitted to weak energy radiations

  5. Statistical Techniques Used in Three Applied Linguistics Journals: "Language Learning,""Applied Linguistics" and "TESOL Quarterly," 1980-1986: Implications for Readers and Researchers.

    Science.gov (United States)

    Teleni, Vicki; Baldauf, Richard B., Jr.

    A study investigated the statistical techniques used by applied linguists and reported in three journals, "Language Learning,""Applied Linguistics," and "TESOL Quarterly," between 1980 and 1986. It was found that 47% of the published articles used statistical procedures. In these articles, 63% of the techniques used could be called basic, 28%…

  6. AN OVERVIEW OF REDUCED ORDER MODELING TECHNIQUES FOR SAFETY APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, D.; Alfonsi, A.; Talbot, P.; Wang, C.; Maljovec, D.; Smith, C.; Rabiti, C.; Cogliati, J.

    2016-10-01

    The RISMC project is developing new advanced simulation-based tools to perform Computational Risk Analysis (CRA) for the existing fleet of U.S. nuclear power plants (NPPs). These tools numerically model not only the thermal-hydraulic behavior of the reactors primary and secondary systems, but also external event temporal evolution and component/system ageing. Thus, this is not only a multi-physics problem being addressed, but also a multi-scale problem (both spatial, µm-mm-m, and temporal, seconds-hours-years). As part of the RISMC CRA approach, a large amount of computationally-expensive simulation runs may be required. An important aspect is that even though computational power is growing, the overall computational cost of a RISMC analysis using brute-force methods may be not viable for certain cases. A solution that is being evaluated to assist the computational issue is the use of reduced order modeling techniques. During the FY2015, we investigated and applied reduced order modeling techniques to decrease the RISMC analysis computational cost by decreasing the number of simulation runs; for this analysis improvement we used surrogate models instead of the actual simulation codes. This article focuses on the use of reduced order modeling techniques that can be applied to RISMC analyses in order to generate, analyze, and visualize data. In particular, we focus on surrogate models that approximate the simulation results but in a much faster time (microseconds instead of hours/days).

  7. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  8. Application of separable parameter space techniques to multi-tracer PET compartment modeling

    International Nuclear Information System (INIS)

    Zhang, Jeff L; Michael Morey, A; Kadrmas, Dan J

    2016-01-01

    Multi-tracer positron emission tomography (PET) can image two or more tracers in a single scan, characterizing multiple aspects of biological functions to provide new insights into many diseases. The technique uses dynamic imaging, resulting in time-activity curves that contain contributions from each tracer present. The process of separating and recovering separate images and/or imaging measures for each tracer requires the application of kinetic constraints, which are most commonly applied by fitting parallel compartment models for all tracers. Such multi-tracer compartment modeling presents challenging nonlinear fits in multiple dimensions. This work extends separable parameter space kinetic modeling techniques, previously developed for fitting single-tracer compartment models, to fitting multi-tracer compartment models. The multi-tracer compartment model solution equations were reformulated to maximally separate the linear and nonlinear aspects of the fitting problem, and separable least-squares techniques were applied to effectively reduce the dimensionality of the nonlinear fit. The benefits of the approach are then explored through a number of illustrative examples, including characterization of separable parameter space multi-tracer objective functions and demonstration of exhaustive search fits which guarantee the true global minimum to within arbitrary search precision. Iterative gradient-descent algorithms using Levenberg–Marquardt were also tested, demonstrating improved fitting speed and robustness as compared to corresponding fits using conventional model formulations. The proposed technique overcomes many of the challenges in fitting simultaneous multi-tracer PET compartment models. (paper)

  9. Determination of palladium in biological samples applying nuclear analytical techniques

    International Nuclear Information System (INIS)

    Cavalcante, Cassio Q.; Sato, Ivone M.; Salvador, Vera L. R.; Saiki, Mitiko

    2008-01-01

    This study presents Pd determinations in bovine tissue samples containing palladium prepared in the laboratory, and CCQM-P63 automotive catalyst materials of the Proficiency Test, using instrumental thermal and epithermal neutron activation analysis and energy dispersive X-ray fluorescence techniques. Solvent extraction and solid phase extraction procedures were also applied to separate Pd from interfering elements before the irradiation in the nuclear reactor. The results obtained by different techniques were compared against each other to examine sensitivity, precision and accuracy. (author)

  10. Revisión de los principales modelos para aplicar técnicas de Minería de Procesos (Review of models for applying process mining techniques

    Directory of Open Access Journals (Sweden)

    Arturo Orellana García

    2016-03-01

    Full Text Available Spanish abstract La minería de procesos constituye una alternativa novedosa para mejorar los procesos en una variedad de dominios de aplicación. Tiene como objetivo extraer información a partir de los datos almacenados en los registros de trazas de los sistemas de información, en busca de errores, inconsistencias, vulnerabilidades y variabilidad en los procesos que se ejecutan. Las técnicas de minería de procesos se utilizan en múltiples sectores, como la industria, los servicios web, la inteligencia de negocios y la salud. Sin embargo, para aplicar estas técnicas existen varios modelos a seguir y poca información sobre cual aplicar, al no contar con un análisis comparativo entre estos. La investigación se centró en recopilar información sobre los principales modelos propuestos por autores de referencia mundial en el tema de minería de procesos para aplicar técnicas en el descubrimiento, chequeo de conformidad y mejoramiento de los procesos. Se realiza un análisis de los mismos en función de seleccionar los elementos y características útiles para su aplicación en el entorno hospitalario. La actual investigación contribuye al desarrollo de un modelo para la detección y análisis de variabilidad en procesos hospitalarios utilizando técnicas de minería de procesos. Permite a los investigadores tener de forma centralizada, los criterios para decidir qué modelo utilizar, o qué fases emplear de uno o más modelos. English abstract Process mining is a novel alternative to improve processes in a variety of application domains. It aims to extract information from data stored in records of traces from information systems, looking for errors, inconsistencies, vulnerabilities and variability in processes that are executing. The process mining techniques are used in multiple sectors such as industry, web services, business intelligence and health. However, to apply these techniques there are several models and little information on

  11. Biomechanical study of the funnel technique applied in thoracic ...

    African Journals Online (AJOL)

    of vertebra was made for injury model of anterior and central column ... data were collected to eliminate creep and relaxation of soft tissues in .... 3 Pullout strength curve for Magerl technique (A) and Funnel technique (B). 210x164mm (72 x 72 ...

  12. Applied stochastic modelling

    CERN Document Server

    Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P

    2008-01-01

    Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...

  13. Validation of transport models using additive flux minimization technique

    Energy Technology Data Exchange (ETDEWEB)

    Pankin, A. Y.; Kruger, S. E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80303 (United States); Groebner, R. J. [General Atomics, San Diego, California 92121 (United States); Hakim, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Kritz, A. H.; Rafiq, T. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States)

    2013-10-15

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile.

  14. Validation of transport models using additive flux minimization technique

    International Nuclear Information System (INIS)

    Pankin, A. Y.; Kruger, S. E.; Groebner, R. J.; Hakim, A.; Kritz, A. H.; Rafiq, T.

    2013-01-01

    A new additive flux minimization technique is proposed for carrying out the verification and validation (V and V) of anomalous transport models. In this approach, the plasma profiles are computed in time dependent predictive simulations in which an additional effective diffusivity is varied. The goal is to obtain an optimal match between the computed and experimental profile. This new technique has several advantages over traditional V and V methods for transport models in tokamaks and takes advantage of uncertainty quantification methods developed by the applied math community. As a demonstration of its efficiency, the technique is applied to the hypothesis that the paleoclassical density transport dominates in the plasma edge region in DIII-D tokamak discharges. A simplified version of the paleoclassical model that utilizes the Spitzer resistivity for the parallel neoclassical resistivity and neglects the trapped particle effects is tested in this paper. It is shown that a contribution to density transport, in addition to the paleoclassical density transport, is needed in order to describe the experimental profiles. It is found that more additional diffusivity is needed at the top of the H-mode pedestal, and almost no additional diffusivity is needed at the pedestal bottom. The implementation of this V and V technique uses the FACETS::Core transport solver and the DAKOTA toolkit for design optimization and uncertainty quantification. The FACETS::Core solver is used for advancing the plasma density profiles. The DAKOTA toolkit is used for the optimization of plasma profiles and the computation of the additional diffusivity that is required for the predicted density profile to match the experimental profile

  15. Applying BI Techniques To Improve Decision Making And Provide Knowledge Based Management

    Directory of Open Access Journals (Sweden)

    Alexandra Maria Ioana FLOREA

    2015-07-01

    Full Text Available The paper focuses on BI techniques and especially data mining algorithms that can support and improve the decision making process, with applications within the financial sector. We consider the data mining techniques to be more efficient and thus we applied several techniques, supervised and unsupervised learning algorithms The case study in which these algorithms have been implemented regards the activity of a banking institution, with focus on the management of lending activities.

  16. Transfer of physics detector models into CAD systems using modern techniques

    International Nuclear Information System (INIS)

    Dach, M.; Vuoskoski, J.

    1996-01-01

    Designing high energy physics detectors for future experiments requires sophisticated computer aided design and simulation tools. In order to satisfy the future demands in this domain, modern techniques, methods, and standards have to be applied. We present an interface application, designed and implemented using object-oriented techniques, for the widely used GEANT physics simulation package. It converts GEANT detector models into the future industrial standard, STEP. (orig.)

  17. Full Core modeling techniques for research reactors with irregular geometries using Serpent and PARCS applied to the CROCUS reactor

    International Nuclear Information System (INIS)

    Siefman, Daniel J.; Girardin, Gaëtan; Rais, Adolfo; Pautz, Andreas; Hursin, Mathieu

    2015-01-01

    Highlights: • Modeling of research reactors. • Serpent and PARCS coupling. • Lattice physics codes modeling techniques. - Abstract: This paper summarizes the results of modeling methodologies developed for the zero-power (100 W) teaching and research reactor CROCUS located in the Laboratory for Reactor Physics and Systems Behavior (LRS) at the Swiss Federal Institute of Technology in Lausanne (EPFL). The study gives evidence that the Monte Carlo code Serpent can be used effectively as a lattice physics tool for small reactors. CROCUS’ core has an irregular geometry with two fuel zones of different lattice pitches. This and the reactor’s small size necessitate the use of nonstandard cross-section homogenization techniques when modeling the full core with a 3D nodal diffusion code (e.g. PARCS). The primary goal of this work is the development of these techniques for steady-state neutronics and future transient neutronics analyses of not only CROCUS, but research reactors in general. In addition, the modeling methods can provide useful insight for analyzing small modular reactor concepts based on light water technology. Static computational models of CROCUS with the codes Serpent and MCNP5 are presented and methodologies are analyzed for using Serpent and SerpentXS to prepare macroscopic homogenized group cross-sections for a pin-by-pin model of CROCUS with PARCS. The most accurate homogenization scheme lead to a difference in terms of k eff of 385 pcm between the Serpent and PARCS model, while the MCNP5 and Serpent models differed in terms of k eff by 13 pcm (within the statistical error of each simulation). Comparisons of the axial power profiles between the Serpent model as a reference and a set of PARCS models using different homogenization techniques showed a consistent root-mean-square deviation of ∼8%, indicating that the differences are not due to the homogenization technique but rather arise from the definition of the diffusion coefficients

  18. Machine Learning Techniques for Modelling Short Term Land-Use Change

    Directory of Open Access Journals (Sweden)

    Mileva Samardžić-Petrović

    2017-11-01

    Full Text Available The representation of land use change (LUC is often achieved by using data-driven methods that include machine learning (ML techniques. The main objectives of this research study are to implement three ML techniques, Decision Trees (DT, Neural Networks (NN, and Support Vector Machines (SVM for LUC modeling, in order to compare these three ML techniques and to find the appropriate data representation. The ML techniques are applied on the case study of LUC in three municipalities of the City of Belgrade, the Republic of Serbia, using historical geospatial data sets and considering nine land use classes. The ML models were built and assessed using two different time intervals. The information gain ranking technique and the recursive attribute elimination procedure were implemented to find the most informative attributes that were related to LUC in the study area. The results indicate that all three ML techniques can be used effectively for short-term forecasting of LUC, but the SVM achieved the highest agreement of predicted changes.

  19. Application of object modeling technique to medical image retrieval system

    International Nuclear Information System (INIS)

    Teshima, Fumiaki; Abe, Takeshi

    1993-01-01

    This report describes the results of discussions on the object-oriented analysis methodology, which is one of the object-oriented paradigms. In particular, we considered application of the object modeling technique (OMT) to the analysis of a medical image retrieval system. The object-oriented methodology places emphasis on the construction of an abstract model from real-world entities. The effectiveness of and future improvements to OMT are discussed from the standpoint of the system's expandability. These discussions have elucidated that the methodology is sufficiently well-organized and practical to be applied to commercial products, provided that it is applied to the appropriate problem domain. (author)

  20. 2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci

    Science.gov (United States)

    Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.

    2005-06-01

    3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.

  1. Linear mixing model applied to AVHRR LAC data

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55 - 3.93 microns channel was extracted and used with the two reflective channels 0.58 - 0.68 microns and 0.725 - 1.1 microns to run a Constraine Least Squares model to generate vegetation, soil, and shade fraction images for an area in the Western region of Brazil. The Landsat Thematic Mapper data covering the Emas National park region was used for estimating the spectral response of the mixture components and for evaluating the mixing model results. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse resolution data for global studies.

  2. GRAVTool, a Package to Compute Geoid Model by Remove-Compute-Restore Technique

    Science.gov (United States)

    Marotta, G. S.; Blitzkow, D.; Vidotti, R. M.

    2015-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astro-geodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove-Compute-Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and global geopotential coefficients, respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and that adjust these models to one local vertical datum. This research presents a developed package called GRAVTool based on MATLAB software to compute local geoid models by RCR technique and its application in a study area. The studied area comprehends the federal district of Brazil, with ~6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show the local geoid model computed by the GRAVTool package (Figure), using 1377 terrestrial gravity data, SRTM data with 3 arc second of resolution, and geopotential coefficients of the EIGEN-6C4 model to degree 360. The accuracy of the computed model (σ = ± 0.071 m, RMS = 0.069 m, maximum = 0.178 m and minimum = -0.123 m) matches the uncertainty (σ =± 0.073) of 21 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.099 m, RMS = 0.208 m, maximum = 0.419 m and minimum = -0.040 m).

  3. Surface analytical techniques applied to minerals processing

    International Nuclear Information System (INIS)

    Smart, R.St.C.

    1991-01-01

    An understanding of the chemical and physical forms of the chemically altered layers on the surfaces of base metal sulphides, particularly in the form of hydroxides, oxyhydroxides and oxides, and the changes that occur in them during minerals processing lies at the core of a complete description of flotation chemistry. This paper reviews the application of a variety of surface-sensitive techniques and methodologies applied to the study of surface layers on single minerals, mixed minerals, synthetic ores and real ores. Evidence from combined XPS/SAM/SEM studies have provided images and analyses of three forms of oxide, oxyhydroxide and hydroxide products on the surfaces of single sulphide minerals, mineral mixtures and complex sulphide ores. 4 refs., 2 tabs., 4 figs

  4. VIDEOGRAMMETRIC RECONSTRUCTION APPLIED TO VOLCANOLOGY: PERSPECTIVES FOR A NEW MEASUREMENT TECHNIQUE IN VOLCANO MONITORING

    Directory of Open Access Journals (Sweden)

    Emmanuelle Cecchi

    2011-05-01

    Full Text Available This article deals with videogrammetric reconstruction of volcanic structures. As a first step, the method is tested in laboratory. The objective is to reconstruct small sand and plaster cones, analogous to volcanoes, that deform with time. The initial stage consists in modelling the sensor (internal parameters and calculating its orientation and position in space, using a multi-view calibration method. In practice two sets of views are taken: a first one around a calibration target and a second one around the studied object. Both sets are combined in the calibration software to simultaneously compute the internal parameters modelling the sensor, and the external parameters giving the spatial location of each view around the cone. Following this first stage, a N-view reconstruction process is carried out. The principle is as follows: an initial 3D model of the cone is created and then iteratively deformed to fit the real object. The deformation of the meshed model is based on a texture coherence criterion. At present, this reconstruction method and its precision are being validated at laboratory scale. The objective will be then to follow analogue model deformation with time using successive reconstructions. In the future, the method will be applied to real volcanic structures. Modifications of the initial code will certainly be required, however excellent reconstruction accuracy, valuable simplicity and flexibility of the technique are expected, compared to classic stereophotogrammetric techniques used in volcanology.

  5. Fuzzy model predictive control algorithm applied in nuclear power plant

    International Nuclear Information System (INIS)

    Zuheir, Ahmad

    2006-01-01

    The aim of this paper is to design a predictive controller based on a fuzzy model. The Takagi-Sugeno fuzzy model with an Adaptive B-splines neuro-fuzzy implementation is used and incorporated as a predictor in a predictive controller. An optimization approach with a simplified gradient technique is used to calculate predictions of the future control actions. In this approach, adaptation of the fuzzy model using dynamic process information is carried out to build the predictive controller. The easy description of the fuzzy model and the easy computation of the gradient sector during the optimization procedure are the main advantages of the computation algorithm. The algorithm is applied to the control of a U-tube steam generation unit (UTSG) used for electricity generation. (author)

  6. The correlated k-distribution technique as applied to the AVHRR channels

    Science.gov (United States)

    Kratz, David P.

    1995-01-01

    Correlated k-distributions have been created to account for the molecular absorption found in the spectral ranges of the five Advanced Very High Resolution Radiometer (AVHRR) satellite channels. The production of the k-distributions was based upon an exponential-sum fitting of transmissions (ESFT) technique which was applied to reference line-by-line absorptance calculations. To account for the overlap of spectral features from different molecular species, the present routines made use of the multiplication transmissivity property which allows for considerable flexibility, especially when altering relative mixing ratios of the various molecular species. To determine the accuracy of the correlated k-distribution technique as compared to the line-by-line procedure, atmospheric flux and heating rate calculations were run for a wide variety of atmospheric conditions. For the atmospheric conditions taken into consideration, the correlated k-distribution technique has yielded results within about 0.5% for both the cases where the satellite spectral response functions were applied and where they were not. The correlated k-distribution's principal advantages is that it can be incorporated directly into multiple scattering routines that consider scattering as well as absorption by clouds and aerosol particles.

  7. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    Directory of Open Access Journals (Sweden)

    Amany AlShawi

    2016-01-01

    Full Text Available Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers, vendors, data distributors, and others. Further, data objects entered into the single cache system can be extended into 12 components. Database and SPSS modelers can be used to implement the same.

  8. How High Is the Tramping Track? Mathematising and Applying in a Calculus Model-Eliciting Activity

    Science.gov (United States)

    Yoon, Caroline; Dreyfus, Tommy; Thomas, Michael O. J.

    2010-01-01

    Two complementary processes involved in mathematical modelling are mathematising a realistic situation and applying a mathematical technique to a given realistic situation. We present and analyse work from two undergraduate students and two secondary school teachers who engaged in both processes during a mathematical modelling task that required…

  9. Technique applied in electrical power distribution for Satellite Launch Vehicle

    Directory of Open Access Journals (Sweden)

    João Maurício Rosário

    2010-09-01

    Full Text Available The Satellite Launch Vehicle electrical network, which is currently being developed in Brazil, is sub-divided for analysis in the following parts: Service Electrical Network, Controlling Electrical Network, Safety Electrical Network and Telemetry Electrical Network. During the pre-launching and launching phases, these electrical networks are associated electrically and mechanically to the structure of the vehicle. In order to succeed in the integration of these electrical networks it is necessary to employ techniques of electrical power distribution, which are proper to Launch Vehicle systems. This work presents the most important techniques to be considered in the characterization of the electrical power supply applied to Launch Vehicle systems. Such techniques are primarily designed to allow the electrical networks, when submitted to the single-phase fault to ground, to be able of keeping the power supply to the loads.

  10. [Technique and value of direct MR arthrography applying articular distraction].

    Science.gov (United States)

    Becce, Fabio; Wettstein, Michael; Guntern, Daniel; Mouhsine, Elyazid; Palhais, Nuno; Theumann, Nicolas

    2010-02-24

    Direct MR arthrography has a better diagnostic accuracy than MR imaging alone. However, contrast material is not always homogeneously distributed in the articular space. Lesions of cartilage surfaces or intra-articular soft tissues can thus be misdiagnosed. Concomitant application of axial traction during MR arthrography leads to articular distraction. This enables better distribution of contrast material in the joint and better delineation of intra-articular structures. Therefore, this technique improves detection of cartilage lesions. Moreover, the axial stress applied on articular structures may reveal lesions invisible on MR images without traction. Based on our clinical experience, we believe that this relatively unknown technique is promising and should be further developed.

  11. Evaluation of irradiation damage effect by applying electric properties based techniques

    International Nuclear Information System (INIS)

    Acosta, B.; Sevini, F.

    2004-01-01

    The most important effect of the degradation by radiation is the decrease in the ductility of the pressure vessel of the reactor (RPV) ferritic steels. The main way to determine the mechanical behaviour of the RPV steels is tensile and impact tests, from which the ductile to brittle transition temperature (DBTT) and its increase due to neutron irradiation can be calculated. These tests are destructive and regularly applied to surveillance specimens to assess the integrity of RPV. The possibility of applying validated non-destructive ageing monitoring techniques would however facilitate the surveillance of the materials that form the reactor vessel. The JRC-IE has developed two devices, focused on the measurement of the electrical properties to assess non-destructively the embrittlement state of materials. The first technique, called Seebeck and Thomson Effects on Aged Material (STEAM), is based on the measurement of the Seebeck coefficient, characteristic of the material and related to the microstructural changes induced by irradiation embrittlement. With the same aim the second technique, named Resistivity Effects on Aged Material (REAM), measures instead the resistivity of the material. The purpose of this research is to correlate the results of the impact tests, STEAM and REAM measurements with the change in the mechanical properties due to neutron irradiation. These results will make possible the improvement of such techniques based on the measurement of material electrical properties for their application to the irradiation embrittlement assessment

  12. Applying field mapping refractive beam shapers to improve holographic techniques

    Science.gov (United States)

    Laskin, Alexander; Williams, Gavin; McWilliam, Richard; Laskin, Vadim

    2012-03-01

    Performance of various holographic techniques can be essentially improved by homogenizing the intensity profile of the laser beam with using beam shaping optics, for example, the achromatic field mapping refractive beam shapers like πShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flattop one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with several laser sources with different wavelengths simultaneously. Applying of these beam shapers brings serious benefits to the Spatial Light Modulator based techniques like Computer Generated Holography or Dot-Matrix mastering of security holograms since uniform illumination of an SLM allows simplifying mathematical calculations and increasing predictability and reliability of the imaging results. Another example is multicolour Denisyuk holography when the achromatic πShaper provides uniform illumination of a field at various wavelengths simultaneously. This paper will describe some design basics of the field mapping refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.

  13. Just-in-Time techniques as applied to hazardous materials management

    OpenAIRE

    Spicer, John S.

    1996-01-01

    Approved for public release; distribution is unlimited This study investigates the feasibility of integrating JIT techniques in the context of hazardous materials management. This study provides a description of JIT, a description of environmental compliance issues and the outgrowth of related HAZMAT policies, and a broad perspective on strategies for applying JIT to HAZMAT management. http://archive.org/details/justintimetechn00spic Lieutenant Commander, United States Navy

  14. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Science.gov (United States)

    Said, Nadia; Engelhart, Michael; Kirches, Christian; Körkel, Stefan; Holt, Daniel V

    2016-01-01

    Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  15. Applying Mathematical Optimization Methods to an ACT-R Instance-Based Learning Model.

    Directory of Open Access Journals (Sweden)

    Nadia Said

    Full Text Available Computational models of cognition provide an interface to connect advanced mathematical tools and methods to empirically supported theories of behavior in psychology, cognitive science, and neuroscience. In this article, we consider a computational model of instance-based learning, implemented in the ACT-R cognitive architecture. We propose an approach for obtaining mathematical reformulations of such cognitive models that improve their computational tractability. For the well-established Sugar Factory dynamic decision making task, we conduct a simulation study to analyze central model parameters. We show how mathematical optimization techniques can be applied to efficiently identify optimal parameter values with respect to different optimization goals. Beyond these methodological contributions, our analysis reveals the sensitivity of this particular task with respect to initial settings and yields new insights into how average human performance deviates from potential optimal performance. We conclude by discussing possible extensions of our approach as well as future steps towards applying more powerful derivative-based optimization methods.

  16. The monocular visual imaging technology model applied in the airport surface surveillance

    Science.gov (United States)

    Qin, Zhe; Wang, Jian; Huang, Chao

    2013-08-01

    At present, the civil aviation airports use the surface surveillance radar monitoring and positioning systems to monitor the aircrafts, vehicles and the other moving objects. Surface surveillance radars can cover most of the airport scenes, but because of the terminals, covered bridges and other buildings geometry, surface surveillance radar systems inevitably have some small segment blind spots. This paper presents a monocular vision imaging technology model for airport surface surveillance, achieving the perception of scenes of moving objects such as aircrafts, vehicles and personnel location. This new model provides an important complement for airport surface surveillance, which is different from the traditional surface surveillance radar techniques. Such technique not only provides clear objects activities screen for the ATC, but also provides image recognition and positioning of moving targets in this area. Thereby it can improve the work efficiency of the airport operations and avoid the conflict between the aircrafts and vehicles. This paper first introduces the monocular visual imaging technology model applied in the airport surface surveillance and then the monocular vision measurement accuracy analysis of the model. The monocular visual imaging technology model is simple, low cost, and highly efficient. It is an advanced monitoring technique which can make up blind spot area of the surface surveillance radar monitoring and positioning systems.

  17. Use of hydrological modelling and isotope techniques in Guvenc basin

    International Nuclear Information System (INIS)

    Altinbilek, D.

    1991-07-01

    The study covers the work performed under Project No. 335-RC-TUR-5145 entitled ''Use of Hydrologic Modelling and Isotope Techniques in Guvenc Basin'' and is an initial part of a program for estimating runoff from Central Anatolia Watersheds. The study presented herein consists of mainly three parts: 1) the acquisition of a library of rainfall excess, direct runoff and isotope data for Guvenc basin; 2) the modification of SCS model to be applied to Guvenc basin first and then to other basins of Central Anatolia for predicting the surface runoff from gaged and ungaged watersheds; and 3) the use of environmental isotope technique in order to define the basin components of streamflow of Guvenc basin. 31 refs, figs and tabs

  18. Three-dimensional integrated CAE system applying computer graphic technique

    International Nuclear Information System (INIS)

    Kato, Toshisada; Tanaka, Kazuo; Akitomo, Norio; Obata, Tokayasu.

    1991-01-01

    A three-dimensional CAE system for nuclear power plant design is presented. This system utilizes high-speed computer graphic techniques for the plant design review, and an integrated engineering database for handling the large amount of nuclear power plant engineering data in a unified data format. Applying this system makes it possible to construct a nuclear power plant using only computer data from the basic design phase to the manufacturing phase, and it increases the productivity and reliability of the nuclear power plants. (author)

  19. Applying recursive numerical integration techniques for solving high dimensional integrals

    International Nuclear Information System (INIS)

    Ammon, Andreas; Genz, Alan; Hartung, Tobias; Jansen, Karl; Volmer, Julia; Leoevey, Hernan

    2016-11-01

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  20. Applying recursive numerical integration techniques for solving high dimensional integrals

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Andreas [IVU Traffic Technologies AG, Berlin (Germany); Genz, Alan [Washington State Univ., Pullman, WA (United States). Dept. of Mathematics; Hartung, Tobias [King' s College, London (United Kingdom). Dept. of Mathematics; Jansen, Karl; Volmer, Julia [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, Hernan [Humboldt Univ. Berlin (Germany). Inst. fuer Mathematik

    2016-11-15

    The error scaling for Markov-Chain Monte Carlo techniques (MCMC) with N samples behaves like 1/√(N). This scaling makes it often very time intensive to reduce the error of computed observables, in particular for applications in lattice QCD. It is therefore highly desirable to have alternative methods at hand which show an improved error scaling. One candidate for such an alternative integration technique is the method of recursive numerical integration (RNI). The basic idea of this method is to use an efficient low-dimensional quadrature rule (usually of Gaussian type) and apply it iteratively to integrate over high-dimensional observables and Boltzmann weights. We present the application of such an algorithm to the topological rotor and the anharmonic oscillator and compare the error scaling to MCMC results. In particular, we demonstrate that the RNI technique shows an error scaling in the number of integration points m that is at least exponential.

  1. Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

    KAUST Repository

    Khaki, M.; Hoteit, Ibrahim; Kuhn, M.; Awange, J.; Forootan, E.; van Dijk, A.; Schumacher, M.; Pattiaratchi, C.

    2017-01-01

    The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques

  2. [Preparation of simulate craniocerebral models via three dimensional printing technique].

    Science.gov (United States)

    Lan, Q; Chen, A L; Zhang, T; Zhu, Q; Xu, T

    2016-08-09

    Three dimensional (3D) printing technique was used to prepare the simulate craniocerebral models, which were applied to preoperative planning and surgical simulation. The image data was collected from PACS system. Image data of skull bone, brain tissue and tumors, cerebral arteries and aneurysms, and functional regions and relative neural tracts of the brain were extracted from thin slice scan (slice thickness 0.5 mm) of computed tomography (CT), magnetic resonance imaging (MRI, slice thickness 1mm), computed tomography angiography (CTA), and functional magnetic resonance imaging (fMRI) data, respectively. MIMICS software was applied to reconstruct colored virtual models by identifying and differentiating tissues according to their gray scales. Then the colored virtual models were submitted to 3D printer which produced life-sized craniocerebral models for surgical planning and surgical simulation. 3D printing craniocerebral models allowed neurosurgeons to perform complex procedures in specific clinical cases though detailed surgical planning. It offered great convenience for evaluating the size of spatial fissure of sellar region before surgery, which helped to optimize surgical approach planning. These 3D models also provided detailed information about the location of aneurysms and their parent arteries, which helped surgeons to choose appropriate aneurismal clips, as well as perform surgical simulation. The models further gave clear indications of depth and extent of tumors and their relationship to eloquent cortical areas and adjacent neural tracts, which were able to avoid surgical damaging of important neural structures. As a novel and promising technique, the application of 3D printing craniocerebral models could improve the surgical planning by converting virtual visualization into real life-sized models.It also contributes to functional anatomy study.

  3. Development of technique to apply induction heating stress improvement to recirculation inlet nozzle

    International Nuclear Information System (INIS)

    Chiba, Kunihiko; Nihei, Kenichi; Ootaka, Minoru

    2009-01-01

    Stress corrosion cracking (SCC) have been found in the primary loop recirculation (PLR) systems of boiling water reactors (BWR). Residual stress in welding heat-affected zone is one of the factors of SCC, and the residual stress improvement is one of the most effective methods to prevent SCC. Induction heating stress improvement (IHSI) is one of the techniques to improve reduce residual stress. However, it is difficult to apply IHSI to the place such as the recirculation inlet nozzle where the flow stagnates. In this present study, the technique to apply IHSI to the recirculation inlet nozzle was developed using water jet which blowed into the crevice between the nozzle safe end and the thermal sleeve. (author)

  4. A Comparative of business process modelling techniques

    Science.gov (United States)

    Tangkawarow, I. R. H. T.; Waworuntu, J.

    2016-04-01

    In this era, there is a lot of business process modeling techniques. This article is the research about differences of business process modeling techniques. For each technique will explain about the definition and the structure. This paper presents a comparative analysis of some popular business process modelling techniques. The comparative framework is based on 2 criteria: notation and how it works when implemented in Somerleyton Animal Park. Each technique will end with the advantages and disadvantages. The final conclusion will give recommend of business process modeling techniques that easy to use and serve the basis for evaluating further modelling techniques.

  5. Airflow measurement techniques applied to radon mitigation problems

    International Nuclear Information System (INIS)

    Harrje, D.T.; Gadsby, K.J.

    1989-01-01

    During the past decade a multitude of diagnostic procedures associated with the evaluation of air infiltration and air leakage sites have been developed. The spirit of international cooperation and exchange of ideas within the AIC-AIVC conferences has greatly facilitated the adoption and use of these measurement techniques in the countries participating in Annex V. But wide application of such diagnostic methods are not limited to air infiltration alone. The subject of this paper concerns the ways to evaluate and improve radon reduction in buildings using diagnostic methods directly related to developments familiar to the AIVC. Radon problems are certainly not unique to the United States, and the methods described here have to a degree been applied by researchers of other countries faced with similar problems. The radon problem involves more than a harmful pollutant of the living spaces of our buildings -- it also involves energy to operate radon removal equipment and the loss of interior conditioned air as a direct result. The techniques used for air infiltration evaluation will be shown to be very useful in dealing with the radon mitigation challenge. 10 refs., 7 figs., 1 tab

  6. Modeling of high-pressure generation using the laser colliding foil technique

    Energy Technology Data Exchange (ETDEWEB)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-03-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed.

  7. Modeling of high-pressure generation using the laser colliding foil technique

    International Nuclear Information System (INIS)

    Fabbro, R.; Faral, B.; Virmont, J.; Cottet, F.; Romain, J.P.

    1989-01-01

    An analytical model describing the collision of two foils is presented and applied to the collision of laser-accelerated foils. Numerical simulations have been made to verify this model and to compare its results in the case of laser-accelerated foils. Scaling laws relating the different parameters (shock pressure, laser intensity, target material, etc.) have been established. The application of this technique to high-pressure equation of state experiments is then discussed

  8. Database 'catalogue of techniques applied to materials and products of nuclear engineering'

    International Nuclear Information System (INIS)

    Lebedeva, E.E.; Golovanov, V.N.; Podkopayeva, I.A.; Temnoyeva, T.A.

    2002-01-01

    The database 'Catalogue of techniques applied to materials and products of nuclear engineering' (IS MERI) was developed to provide informational support for SSC RF RIAR and other enterprises in scientific investigations. This database contains information on the techniques used at RF Minatom enterprises for reactor material properties investigation. The main purpose of this system consists in the assessment of the current status of the reactor material science experimental base for the further planning of experimental activities and methodical support improvement. (author)

  9. Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model

    Science.gov (United States)

    Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo

    2018-04-01

    PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.

  10. Monte Carlo technique for very large ising models

    Science.gov (United States)

    Kalle, C.; Winkelmann, V.

    1982-08-01

    Rebbi's multispin coding technique is improved and applied to the kinetic Ising model with size 600*600*600. We give the central part of our computer program (for a CDC Cyber 76), which will be helpful also in a simulation of smaller systems, and describe the other tricks necessary to go to large lattices. The magnetization M at T=1.4* T c is found to decay asymptotically as exp(-t/2.90) if t is measured in Monte Carlo steps per spin, and M( t = 0) = 1 initially.

  11. UQ and V&V techniques applied to experiments and simulations of heated pipes pressurized to failure

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Vicente Jose [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dempsey, J. Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antoun, Bonnie R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-05-01

    This report demonstrates versatile and practical model validation and uncertainty quantification techniques applied to the accuracy assessment of a computational model of heated steel pipes pressurized to failure. The Real Space validation methodology segregates aleatory and epistemic uncertainties to form straightforward model validation metrics especially suited for assessing models to be used in the analysis of performance and safety margins. The methodology handles difficulties associated with representing and propagating interval and/or probabilistic uncertainties from multiple correlated and uncorrelated sources in the experiments and simulations including: material variability characterized by non-parametric random functions (discrete temperature dependent stress-strain curves); very limited (sparse) experimental data at the coupon testing level for material characterization and at the pipe-test validation level; boundary condition reconstruction uncertainties from spatially sparse sensor data; normalization of pipe experimental responses for measured input-condition differences among tests and for random and systematic uncertainties in measurement/processing/inference of experimental inputs and outputs; numerical solution uncertainty from model discretization and solver effects.

  12. Dynamic model reduction: An overview of available techniques with application to power systems

    Directory of Open Access Journals (Sweden)

    Đukić Savo D.

    2012-01-01

    Full Text Available This paper summarises the model reduction techniques used for the reduction of large-scale linear and nonlinear dynamic models, described by the differential and algebraic equations that are commonly used in control theory. The groups of methods discussed in this paper for reduction of the linear dynamic model are based on singular perturbation analysis, modal analysis, singular value decomposition, moment matching and methods based on a combination of singular value decomposition and moment matching. Among the nonlinear dynamic model reduction methods, proper orthogonal decomposition, the trajectory piecewise linear method, balancing-based methods, reduction by optimising system matrices and projection from a linearised model, are described. Part of the paper is devoted to the techniques commonly used for reduction (equivalencing of large-scale power systems, which are based on coherency, synchrony, singular perturbation analysis, modal analysis and identification. Two (most interesting of the described techniques are applied to the reduction of the commonly used New England 10-generator, 39-bus test power system.

  13. HIGHLY-ACCURATE MODEL ORDER REDUCTION TECHNIQUE ON A DISCRETE DOMAIN

    Directory of Open Access Journals (Sweden)

    L. D. Ribeiro

    2015-09-01

    Full Text Available AbstractIn this work, we present a highly-accurate technique of model order reduction applied to staged processes. The proposed method reduces the dimension of the original system based on null values of moment-weighted sums of heat and mass balance residuals on real stages. To compute these sums of weighted residuals, a discrete form of Gauss-Lobatto quadrature was developed, allowing a high degree of accuracy in these calculations. The locations where the residuals are cancelled vary with time and operating conditions, characterizing a desirable adaptive nature of this technique. Balances related to upstream and downstream devices (such as condenser, reboiler, and feed tray of a distillation column are considered as boundary conditions of the corresponding difference-differential equations system. The chosen number of moments is the dimension of the reduced model being much lower than the dimension of the complete model and does not depend on the size of the original model. Scaling of the discrete independent variable related with the stages was crucial for the computational implementation of the proposed method, avoiding accumulation of round-off errors present even in low-degree polynomial approximations in the original discrete variable. Dynamical simulations of distillation columns were carried out to check the performance of the proposed model order reduction technique. The obtained results show the superiority of the proposed procedure in comparison with the orthogonal collocation method.

  14. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  15. Applying Brainstorming Techniques to EFL Classroom

    OpenAIRE

    Toshiya, Oishi; 湘北短期大学; aPart-time Lecturer at Shohoku College

    2015-01-01

    This paper focuses on brainstorming techniques for English language learners. From the author's teaching experiences at Shohoku College during the academic year 2014-2015, the importance of brainstorming techniques was made evident. The author explored three elements of brainstorming techniques for writing using literaturereviews: lack of awareness, connecting to prior knowledge, and creativity. The literature reviews showed the advantage of using brainstorming techniques in an English compos...

  16. Applications of soft computing in time series forecasting simulation and modeling techniques

    CERN Document Server

    Singh, Pritpal

    2016-01-01

    This book reports on an in-depth study of fuzzy time series (FTS) modeling. It reviews and summarizes previous research work in FTS modeling and also provides a brief introduction to other soft-computing techniques, such as artificial neural networks (ANNs), rough sets (RS) and evolutionary computing (EC), focusing on how these techniques can be integrated into different phases of the FTS modeling approach. In particular, the book describes novel methods resulting from the hybridization of FTS modeling approaches with neural networks and particle swarm optimization. It also demonstrates how a new ANN-based model can be successfully applied in the context of predicting Indian summer monsoon rainfall. Thanks to its easy-to-read style and the clear explanations of the models, the book can be used as a concise yet comprehensive reference guide to fuzzy time series modeling, and will be valuable not only for graduate students, but also for researchers and professionals working for academic, business and governmen...

  17. Strategies and techniques of communication and public relations applied to non-profit sector

    Directory of Open Access Journals (Sweden)

    Ioana – Julieta Josan

    2010-05-01

    Full Text Available The aim of this paper is to summarize the strategies and techniques of communication and public relations applied to non-profit sector.The approach of the paper is to identify the most appropriate strategies and techniques that non-profit sector can use to accomplish its objectives, to highlight specific differences between the strategies and techniques of the profit and non-profit sectors and to identify potential communication and public relations actions in order to increase visibility among target audience, create brand awareness and to change into positive brand sentiment the target perception about the non-profit sector.

  18. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  19. Reduction of thermal models of buildings: improvement of techniques using meteorological influence models; Reduction de modeles thermiques de batiments: amelioration des techniques par modelisation des sollicitations meteorologiques

    Energy Technology Data Exchange (ETDEWEB)

    Dautin, S.

    1997-04-01

    This work concerns the modeling of thermal phenomena inside buildings for the evaluation of energy exploitation costs of thermal installations and for the modeling of thermal and aeraulic transient phenomena. This thesis comprises 7 chapters dealing with: (1) the thermal phenomena inside buildings and the CLIM2000 calculation code, (2) the ETNA and GENEC experimental cells and their modeling, (3) the techniques of model reduction tested (Marshall`s truncature, Michailesco aggregation method and Moore truncature) with their algorithms and their encoding in the MATRED software, (4) the application of model reduction methods to the GENEC and ETNA cells and to a medium size dual-zone building, (5) the modeling of meteorological influences classically applied to buildings (external temperature and solar flux), (6) the analytical expression of these modeled meteorological influences. The last chapter presents the results of these improved methods on the GENEC and ETNA cells and on a lower inertia building. These new methods are compared to classical methods. (J.S.) 69 refs.

  20. Agrochemical fate models applied in agricultural areas from Colombia

    Science.gov (United States)

    Garcia-Santos, Glenda; Yang, Jing; Andreoli, Romano; Binder, Claudia

    2010-05-01

    The misuse application of pesticides in mainly agricultural catchments can lead to severe problems for humans and environment. Especially in developing countries where there is often found overuse of agrochemicals and incipient or lack of water quality monitoring at local and regional levels, models are needed for decision making and hot spots identification. However, the complexity of the water cycle contrasts strongly with the scarce data availability, limiting the number of analysis, techniques, and models available to researchers. Therefore there is a strong need for model simplification able to appropriate model complexity and still represent the processes. We have developed a new model so-called Westpa-Pest to improve water quality management of an agricultural catchment located in the highlands of Colombia. Westpa-Pest is based on the fully distributed hydrologic model Wetspa and a fate pesticide module. We have applied a multi-criteria analysis for model selection under the conditions and data availability found in the region and compared with the new developed Westpa-Pest model. Furthermore, both models were empirically calibrated and validated. The following questions were addressed i) what are the strengths and weaknesses of the models?, ii) which are the most sensitive parameters of each model?, iii) what happens with uncertainties in soil parameters?, and iv) how sensitive are the transfer coefficients?

  1. Model output statistics applied to wind power prediction

    Energy Technology Data Exchange (ETDEWEB)

    Joensen, A; Giebel, G; Landberg, L [Risoe National Lab., Roskilde (Denmark); Madsen, H; Nielsen, H A [The Technical Univ. of Denmark, Dept. of Mathematical Modelling, Lyngby (Denmark)

    1999-03-01

    Being able to predict the output of a wind farm online for a day or two in advance has significant advantages for utilities, such as better possibility to schedule fossil fuelled power plants and a better position on electricity spot markets. In this paper prediction methods based on Numerical Weather Prediction (NWP) models are considered. The spatial resolution used in NWP models implies that these predictions are not valid locally at a specific wind farm. Furthermore, due to the non-stationary nature and complexity of the processes in the atmosphere, and occasional changes of NWP models, the deviation between the predicted and the measured wind will be time dependent. If observational data is available, and if the deviation between the predictions and the observations exhibits systematic behavior, this should be corrected for; if statistical methods are used, this approaches is usually referred to as MOS (Model Output Statistics). The influence of atmospheric turbulence intensity, topography, prediction horizon length and auto-correlation of wind speed and power is considered, and to take the time-variations into account, adaptive estimation methods are applied. Three estimation techniques are considered and compared, Extended Kalman Filtering, recursive least squares and a new modified recursive least squares algorithm. (au) EU-JOULE-3. 11 refs.

  2. Applying advanced digital signal processing techniques in industrial radioisotopes applications

    International Nuclear Information System (INIS)

    Mahmoud, H.K.A.E.

    2012-01-01

    Radioisotopes can be used to obtain signals or images in order to recognize the information inside the industrial systems. The main problems of using these techniques are the difficulty of identification of the obtained signals or images and the requirement of skilled experts for the interpretation process of the output data of these applications. Now, the interpretation of the output data from these applications is performed mainly manually, depending heavily on the skills and the experience of trained operators. This process is time consuming and the results typically suffer from inconsistency and errors. The objective of the thesis is to apply the advanced digital signal processing techniques for improving the treatment and the interpretation of the output data from the different Industrial Radioisotopes Applications (IRA). This thesis focuses on two IRA; the Residence Time Distribution (RTD) measurement and the defect inspection of welded pipes using a gamma source (gamma radiography). In RTD measurement application, this thesis presents methods for signal pre-processing and modeling of the RTD signals. Simulation results have been presented for two case studies. The first case study is a laboratory experiment for measuring the RTD in a water flow rig. The second case study is an experiment for measuring the RTD in a phosphate production unit. The thesis proposes an approach for RTD signal identification in the presence of noise. In this approach, after signal processing, the Mel Frequency Cepstral Coefficients (MFCCs) and polynomial coefficients are extracted from the processed signal or from one of its transforms. The Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT), and Discrete Sine Transform (DST) have been tested and compared for efficient feature extraction. Neural networks have been used for matching of the extracted features. Furthermore, the Power Density Spectrum (PDS) of the RTD signal has been also used instead of the discrete

  3. Comparison of two stochastic techniques for reliable urban runoff prediction by modeling systematic errors

    DEFF Research Database (Denmark)

    Del Giudice, Dario; Löwe, Roland; Madsen, Henrik

    2015-01-01

    from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can......In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two...... approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge...

  4. Improvement technique of sensitized HAZ by GTAW cladding applied to a BWR power plant

    International Nuclear Information System (INIS)

    Tujimura, Hiroshi; Tamai, Yasumasa; Furukawa, Hideyasu; Kurosawa, Kouichi; Chiba, Isao; Nomura, Keiichi.

    1995-01-01

    A SCC(Stress Corrosion Cracking)-resistant technique, in which the sleeve installed by expansion is melted by GTAW process without filler metal with outside water cooling, was developed. The technique was applied to ICM (In-Core Monitor) housings of a BWR power plant in 1993. The ICM housings of which materials are type 304 Stainless Steels are sensitized with high tensile residual stresses by welding to the RPV (Reactor Pressure Vessel). As the result, ICM housings have potential of SCC initiation. Therefore, the improvement technique resistant to SCC was needed. The technique can improve chemical composition of the housing inside and residual stresses of the housing outside at the same time. Sensitization of the housing inner surface area is eliminated by replacing low-carbon with proper-ferrite microstructure clad. High tensile residual stresses of housing outside surface area is improved into compressive side. Compressive stresses of outside surface are induced by thermal stresses which are caused by inside cladding with outside water cooling. The clad is required to be low-carbon metal with proper ferrite and not to have the new sensitized HAZ (Heat Affected Zone) on the surface by cladding. The effect of the technique was qualified by SCC test, chemical composition check, ferrite content measurement and residual stresses measurement etc. All equipment for remote application were developed and qualified, too. The technique was successfully applied to a BWR plant after sufficient training

  5. Sensitivity analysis techniques applied to a system of hyperbolic conservation laws

    International Nuclear Information System (INIS)

    Weirs, V. Gregory; Kamm, James R.; Swiler, Laura P.; Tarantola, Stefano; Ratto, Marco; Adams, Brian M.; Rider, William J.; Eldred, Michael S.

    2012-01-01

    Sensitivity analysis is comprised of techniques to quantify the effects of the input variables on a set of outputs. In particular, sensitivity indices can be used to infer which input parameters most significantly affect the results of a computational model. With continually increasing computing power, sensitivity analysis has become an important technique by which to understand the behavior of large-scale computer simulations. Many sensitivity analysis methods rely on sampling from distributions of the inputs. Such sampling-based methods can be computationally expensive, requiring many evaluations of the simulation; in this case, the Sobol' method provides an easy and accurate way to compute variance-based measures, provided a sufficient number of model evaluations are available. As an alternative, meta-modeling approaches have been devised to approximate the response surface and estimate various measures of sensitivity. In this work, we consider a variety of sensitivity analysis methods, including different sampling strategies, different meta-models, and different ways of evaluating variance-based sensitivity indices. The problem we consider is the 1-D Riemann problem. By a careful choice of inputs, discontinuous solutions are obtained, leading to discontinuous response surfaces; such surfaces can be particularly problematic for meta-modeling approaches. The goal of this study is to compare the estimated sensitivity indices with exact values and to evaluate the convergence of these estimates with increasing samples sizes and under an increasing number of meta-model evaluations. - Highlights: ► Sensitivity analysis techniques for a model shock physics problem are compared. ► The model problem and the sensitivity analysis problem have exact solutions. ► Subtle details of the method for computing sensitivity indices can affect the results.

  6. Didactical suggestion for a Dynamic Hybrid Intelligent e-Learning Environment (DHILE) applying the PENTHA ID Model

    Science.gov (United States)

    dall'Acqua, Luisa

    2011-08-01

    The teleology of our research is to propose a solution to the request of "innovative, creative teaching", proposing a methodology to educate creative Students in a society characterized by multiple reference points and hyper dynamic knowledge, continuously subject to reviews and discussions. We apply a multi-prospective Instructional Design Model (PENTHA ID Model), defined and developed by our research group, which adopts a hybrid pedagogical approach, consisting of elements of didactical connectivism intertwined with aspects of social constructivism and enactivism. The contribution proposes an e-course structure and approach, applying the theoretical design principles of the above mentioned ID Model, describing methods, techniques, technologies and assessment criteria for the definition of lesson modes in an e-course.

  7. Applying AI techniques to improve alarm display effectiveness

    International Nuclear Information System (INIS)

    Gross, J.M.; Birrer, S.A.; Crosberg, D.R.

    1987-01-01

    The Alarm Filtering System (AFS) addresses the problem of information overload in a control room during abnormal operations. Since operators can miss vital information during these periods, systems which emphasize important messages are beneficial. AFS uses the artificial intelligence (AI) technique of object-oriented programming to filter and dynamically prioritize alarm messages. When an alarm's status changes, AFS determines the relative importance of that change according to the current process state. AFS bases that relative importance on relationships the newly changed alarm has with other activated alarms. Evaluations of a alarm importance take place without regard to the activation sequence of alarm signals. The United States Department of Energy has applied for a patent on the approach used in this software. The approach was originally developed by EG and G Idaho for a nuclear reactor control room

  8. Assessing sequential data assimilation techniques for integrating GRACE data into a hydrological model

    KAUST Repository

    Khaki, M.

    2017-07-06

    The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And Climate Experiment (GRACE) have been increasingly used in recent years to improve the simulation of hydrological models by applying data assimilation techniques. In this study, for the first time, we assess the performance of the most popular data assimilation sequential techniques for integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model. We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as well as Particle filters (PF) using two different resampling approaches of Multinomial Resampling and Systematic Resampling. These choices provide various opportunities for weighting observations and model simulations during the assimilation and also accounting for error distributions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the EnKF approaches likely do not fully represent the statistical properties of the model simulations and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire Australia. To evaluate the filters performances and analyze their impact on model simulations, their estimates are validated by independent in-situ measurements. Our results indicate that all implemented filters improve the estimation of water storage simulations of W3RA. The best results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analysis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively improving the model groundwater estimations errors by 34% and 31% compared to a model run without assimilation. Applying the PF along with Systematic Resampling successfully decreases the model estimation error by 23%.

  9. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    International Nuclear Information System (INIS)

    Schukar, Vivien G; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R

    2012-01-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. (paper)

  10. System health monitoring using multiple-model adaptive estimation techniques

    Science.gov (United States)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  11. Analytical techniques applied to study cultural heritage objects

    Energy Technology Data Exchange (ETDEWEB)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N., E-mail: rizzutto@if.usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2015-07-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  12. Analytical techniques applied to study cultural heritage objects

    International Nuclear Information System (INIS)

    Rizzutto, M.A.; Curado, J.F.; Bernardes, S.; Campos, P.H.O.V.; Kajiya, E.A.M.; Silva, T.F.; Rodrigues, C.L.; Moro, M.; Tabacniks, M.; Added, N.

    2015-01-01

    The scientific study of artistic and cultural heritage objects have been routinely performed in Europe and the United States for decades. In Brazil this research area is growing, mainly through the use of physical and chemical characterization methods. Since 2003 the Group of Applied Physics with Particle Accelerators of the Physics Institute of the University of Sao Paulo (GFAA-IF) has been working with various methodologies for material characterization and analysis of cultural objects. Initially using ion beam analysis performed with Particle Induced X-Ray Emission (PIXE), Rutherford Backscattering (RBS) and recently Ion Beam Induced Luminescence (IBIL), for the determination of the elements and chemical compounds in the surface layers. These techniques are widely used in the Laboratory of Materials Analysis with Ion Beams (LAMFI-USP). Recently, the GFAA expanded the studies to other possibilities of analysis enabled by imaging techniques that coupled with elemental and compositional characterization provide a better understanding on the materials and techniques used in the creative process in the manufacture of objects. The imaging analysis, mainly used to examine and document artistic and cultural heritage objects, are performed through images with visible light, infrared reflectography (IR), fluorescence with ultraviolet radiation (UV), tangential light and digital radiography. Expanding more the possibilities of analysis, new capabilities were added using portable equipment such as Energy Dispersive X-Ray Fluorescence (ED-XRF) and Raman Spectroscopy that can be used for analysis 'in situ' at the museums. The results of these analyzes are providing valuable information on the manufacturing process and have provided new information on objects of different University of Sao Paulo museums. Improving the arsenal of cultural heritage analysis it was recently constructed an 3D robotic stage for the precise positioning of samples in the external beam setup

  13. Current control design for three-phase grid-connected inverters using a pole placement technique based on numerical models

    OpenAIRE

    Citro, Costantino; Gavriluta, Catalin; Nizak Md, H. K.; Beltran, H.

    2012-01-01

    This paper presents a design procedure for linear current controllers of three-phase grid-connected inverters. The proposed method consists in deriving a numerical model of the converter by using software simulations and applying the pole placement technique to design the controller with the desired performances. A clear example on how to apply the technique is provided. The effectiveness of the proposed design procedure has been verified through the experimental results obtained with ...

  14. A hybrid SEA/modal technique for modeling structural-acoustic interior noise in rotorcraft.

    Science.gov (United States)

    Jayachandran, V; Bonilha, M W

    2003-03-01

    This paper describes a hybrid technique that combines Statistical Energy Analysis (SEA) predictions for structural vibration with acoustic modal summation techniques to predict interior noise levels in rotorcraft. The method was applied for predicting the sound field inside a mock-up of the interior panel system of the Sikorsky S-92 helicopter. The vibration amplitudes of the frame and panel systems were predicted using a detailed SEA model and these were used as inputs to the model of the interior acoustic space. The spatial distribution of the vibration field on individual panels, and their coupling to the acoustic space were modeled using stochastic techniques. Leakage and nonresonant transmission components were accounted for using space-averaged values obtained from a SEA model of the complete structural-acoustic system. Since the cabin geometry was quite simple, the modeling of the interior acoustic space was performed using a standard modal summation technique. Sound pressure levels predicted by this approach at specific microphone locations were compared with measured data. Agreement within 3 dB in one-third octave bands above 40 Hz was observed. A large discrepancy in the one-third octave band in which the first acoustic mode is resonant (31.5 Hz) was observed. Reasons for such a discrepancy are discussed in the paper. The developed technique provides a method for modeling helicopter cabin interior noise in the frequency mid-range where neither FEA nor SEA is individually effective or accurate.

  15. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2018-01-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  16. MSC/NASTRAN ''expert'' techniques developed and applied to the TFTR poloidal field coils

    International Nuclear Information System (INIS)

    O'Toole, J.A.

    1986-01-01

    The TFTR poloidal field (PF) coils are being analyzed by PPPL and Grumman using MSC/NASTRAN as a part of an overall effort to establish the absolute limiting conditions of operation for TFTR. Each of the PF coils will be analyzed in depth, using a detailed set of finite element models. Several of the models developed are quite large because each copper turn, as well as its surrounding insulation, was modeled using solid elements. Several of the finite element models proved large enough to tax the capabilities of the National Magnetic Fusion Energy Computer Center (NMFECC), specifically disk storage space. To allow the use of substructuring techniques with their associated data bases for the larger models, it became necessary to employ certain infrequently used MSC/NASTRAN ''expert'' techniques. The techniques developed used multiple data bases and data base sets to divide each problem into a series of computer runs. For each run, only the data required was kept on active disk space, the remainder being placed in inactive ''FILEM'' storage, thus, minimizing active disk space required at any time and permitting problem solution using the NMFECC. A representative problem using the TFTR OH-1 coil global model provides an example of the techniques developed. The special considerations necessary to obtain proper results are discussed

  17. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  18. A Three-Component Model for Magnetization Transfer. Solution by Projection-Operator Technique, and Application to Cartilage

    Science.gov (United States)

    Adler, Ronald S.; Swanson, Scott D.; Yeung, Hong N.

    1996-01-01

    A projection-operator technique is applied to a general three-component model for magnetization transfer, extending our previous two-component model [R. S. Adler and H. N. Yeung,J. Magn. Reson. A104,321 (1993), and H. N. Yeung, R. S. Adler, and S. D. Swanson,J. Magn. Reson. A106,37 (1994)]. The PO technique provides an elegant means of deriving a simple, effective rate equation in which there is natural separation of relaxation and source terms and allows incorporation of Redfield-Provotorov theory without any additional assumptions or restrictive conditions. The PO technique is extended to incorporate more general, multicomponent models. The three-component model is used to fit experimental data from samples of human hyaline cartilage and fibrocartilage. The fits of the three-component model are compared to the fits of the two-component model.

  19. Sensitivity analysis approaches applied to systems biology models.

    Science.gov (United States)

    Zi, Z

    2011-11-01

    With the rising application of systems biology, sensitivity analysis methods have been widely applied to study the biological systems, including metabolic networks, signalling pathways and genetic circuits. Sensitivity analysis can provide valuable insights about how robust the biological responses are with respect to the changes of biological parameters and which model inputs are the key factors that affect the model outputs. In addition, sensitivity analysis is valuable for guiding experimental analysis, model reduction and parameter estimation. Local and global sensitivity analysis approaches are the two types of sensitivity analysis that are commonly applied in systems biology. Local sensitivity analysis is a classic method that studies the impact of small perturbations on the model outputs. On the other hand, global sensitivity analysis approaches have been applied to understand how the model outputs are affected by large variations of the model input parameters. In this review, the author introduces the basic concepts of sensitivity analysis approaches applied to systems biology models. Moreover, the author discusses the advantages and disadvantages of different sensitivity analysis methods, how to choose a proper sensitivity analysis approach, the available sensitivity analysis tools for systems biology models and the caveats in the interpretation of sensitivity analysis results.

  20. A neuro-fuzzy computing technique for modeling hydrological time series

    Science.gov (United States)

    Nayak, P. C.; Sudheer, K. P.; Rangan, D. M.; Ramasastri, K. S.

    2004-05-01

    Intelligent computing tools such as artificial neural network (ANN) and fuzzy logic approaches are proven to be efficient when applied individually to a variety of problems. Recently there has been a growing interest in combining both these approaches, and as a result, neuro-fuzzy computing techniques have evolved. This approach has been tested and evaluated in the field of signal processing and related areas, but researchers have only begun evaluating the potential of this neuro-fuzzy hybrid approach in hydrologic modeling studies. This paper presents the application of an adaptive neuro fuzzy inference system (ANFIS) to hydrologic time series modeling, and is illustrated by an application to model the river flow of Baitarani River in Orissa state, India. An introduction to the ANFIS modeling approach is also presented. The advantage of the method is that it does not require the model structure to be known a priori, in contrast to most of the time series modeling techniques. The results showed that the ANFIS forecasted flow series preserves the statistical properties of the original flow series. The model showed good performance in terms of various statistical indices. The results are highly promising, and a comparative analysis suggests that the proposed modeling approach outperforms ANNs and other traditional time series models in terms of computational speed, forecast errors, efficiency, peak flow estimation etc. It was observed that the ANFIS model preserves the potential of the ANN approach fully, and eases the model building process.

  1. New techniques for subdivision modelling

    OpenAIRE

    BEETS, Koen

    2006-01-01

    In this dissertation, several tools and techniques for modelling with subdivision surfaces are presented. Based on the huge amount of theoretical knowledge about subdivision surfaces, we present techniques to facilitate practical 3D modelling which make subdivision surfaces even more useful. Subdivision surfaces have reclaimed attention several years ago after their application in full-featured 3D animation movies, such as Toy Story. Since then and due to their attractive properties an ever i...

  2. Advanced Atmospheric Ensemble Modeling Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Chiswell, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kurzeja, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maze, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Viner, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Werth, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two release times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.

  3. Applying Metrological Techniques to Satellite Fundamental Climate Data Records

    Science.gov (United States)

    Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.

    2018-02-01

    Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.

  4. Delamination of plasters applied to historical masonry walls: analysis by acoustic emission technique and numerical model

    Science.gov (United States)

    Grazzini, A.; Lacidogna, G.; Valente, S.; Accornero, F.

    2018-06-01

    Masonry walls of historical buildings are subject to rising damp effects due to capillary or rain infiltrations, which in the time produce decay and delamination of historical plasters. In the restoration of masonry buildings, the plaster detachment frequently occurs because of mechanical incompatibility in repair mortar. An innovative laboratory procedure is described for test mechanical adhesion of new repair mortars. Compression static tests were carried out on composite specimens stone block-repair mortar, which specific geometry can test the de-bonding process of mortar in adherence with a stone masonry structure. The acoustic emission (AE) technique was employed for estimating the amount of energy released from fracture propagation in adherence surface between mortar and stone. A numerical simulation was elaborated based on the cohesive crack model. The evolution of detachment process of mortar in a coupled stone brick-mortar system was analysed by triangulation of AE signals, which can improve the numerical model and predict the type of failure in the adhesion surface of repair plaster. Through the cohesive crack model, it was possible to interpret theoretically the de-bonding phenomena occurring at the interface between stone block and mortar. Therefore, the mechanical behaviour of the interface is characterized.

  5. Finite-element-model updating using computational intelligence techniques applications to structural dynamics

    CERN Document Server

    Marwala, Tshilidzi

    2010-01-01

    Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...

  6. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums

    Directory of Open Access Journals (Sweden)

    L. Cheng

    1996-01-01

    Full Text Available This article deals with the modeling of vibrating structures immersed in both light and heavy fluids, and possible applications to noise control problems and industrial vessels containing fluids. A theoretical approach, using artificial spring systems to characterize the mechanical coupling between substructures, is extended to include fluid loading. A structure consisting of a plate-ended cylindrical shell and its enclosed acoustic cavity is analyzed. After a brief description of the proposed technique, a number of numerical results are presented. The analysis addresses the following specific issues: the coupling between the plate and the shell; the coupling between the structure and the enclosure; the possibilities and difficulties regarding internal soundproofing through modifications of the joint connections; and the effects of fluid loading on the vibration of the structure.

  7. Space-mapping techniques applied to the optimization of a safety isolating transformer

    NARCIS (Netherlands)

    T.V. Tran; S. Brisset; D. Echeverria (David); D.J.P. Lahaye (Domenico); P. Brochet

    2007-01-01

    textabstractSpace-mapping optimization techniques allow to allign low-fidelity and high-fidelity models in order to reduce the computational time and increase the accuracy of the solution. The main idea is to build an approximate model from the difference of response between both models. Therefore

  8. Satellite SAR interferometric techniques applied to emergency mapping

    Science.gov (United States)

    Stefanova Vassileva, Magdalena; Riccardi, Paolo; Lecci, Daniele; Giulio Tonolo, Fabio; Boccardo Boccardo, Piero; Chiesa, Giuliana; Angeluccetti, Irene

    2017-04-01

    This paper aim to investigate the capabilities of the currently available SAR interferometric algorithms in the field of emergency mapping. Several tests have been performed exploiting the Copernicus Sentinel-1 data using the COTS software ENVI/SARscape 5.3. Emergency Mapping can be defined as "creation of maps, geo-information products and spatial analyses dedicated to providing situational awareness emergency management and immediate crisis information for response by means of extraction of reference (pre-event) and crisis (post-event) geographic information/data from satellite or aerial imagery". The conventional differential SAR interferometric technique (DInSAR) and the two currently available multi-temporal SAR interferometric approaches, i.e. Permanent Scatterer Interferometry (PSI) and Small BAseline Subset (SBAS), have been applied to provide crisis information useful for the emergency management activities. Depending on the considered Emergency Management phase, it may be distinguished between rapid mapping, i.e. fast provision of geospatial data regarding the area affected for the immediate emergency response, and monitoring mapping, i.e. detection of phenomena for risk prevention and mitigation activities. In order to evaluate the potential and limitations of the aforementioned SAR interferometric approaches for the specific rapid and monitoring mapping application, five main factors have been taken into account: crisis information extracted, input data required, processing time and expected accuracy. The results highlight that DInSAR has the capacity to delineate areas affected by large and sudden deformations and fulfills most of the immediate response requirements. The main limiting factor of interferometry is the availability of suitable SAR acquisition immediately after the event (e.g. Sentinel-1 mission characterized by 6-day revisiting time may not always satisfy the immediate emergency request). PSI and SBAS techniques are suitable to produce

  9. Archaeometry: nuclear and conventional techniques applied to the archaeological research

    International Nuclear Information System (INIS)

    Esparza L, R.; Cardenas G, E.

    2005-01-01

    The book that now is presented is formed by twelve articles that approach from different perspective topics as the archaeological prospecting, the analysis of the pre hispanic and colonial ceramic, the obsidian and the mural painting, besides dating and questions about the data ordaining. Following the chronological order in which the exploration techniques and laboratory studies are required, there are presented in the first place the texts about the systematic and detailed study of the archaeological sites, later we pass to relative topics to the application of diverse nuclear techniques as PIXE, RBS, XRD, NAA, SEM, Moessbauer spectroscopy and other conventional techniques. The multidisciplinary is an aspect that highlights in this work, that which owes to the great specialization of the work that is presented even in the archaeological studies including in the open ground of the topography, mapping, excavation and, of course, in the laboratory tests. Most of the articles are the result of several years of investigation and it has been consigned in the responsibility of each article. The texts here gathered emphasize the technical aspects of each investigation, the modern compute systems applied to the prospecting and the archaeological mapping, the chemical and physical analysis of organic materials, of metal artifacts, of diverse rocks used in the pre hispanic epoch, of mural and ceramic paintings, characteristics that justly underline the potential of the collective works. (Author)

  10. Survey of semantic modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.L.

    1975-07-01

    The analysis of the semantics of programing languages was attempted with numerous modeling techniques. By providing a brief survey of these techniques together with an analysis of their applicability for answering semantic issues, this report attempts to illuminate the state-of-the-art in this area. The intent is to be illustrative rather than thorough in the coverage of semantic models. A bibliography is included for the reader who is interested in pursuing this area of research in more detail.

  11. Towards a Business Process Modeling Technique for Agile Development of Case Management Systems

    Directory of Open Access Journals (Sweden)

    Ilia Bider

    2017-12-01

    Full Text Available A modern organization needs to adapt its behavior to changes in the business environment by changing its Business Processes (BP and corresponding Business Process Support (BPS systems. One way of achieving such adaptability is via separation of the system code from the process description/model by applying the concept of executable process models. Furthermore, to ease introduction of changes, such process model should separate different perspectives, for example, control-flow, human resources, and data perspectives, from each other. In addition, for developing a completely new process, it should be possible to start with a reduced process model to get a BPS system quickly running, and then continue to develop it in an agile manner. This article consists of two parts, the first sets requirements on modeling techniques that could be used in the tools that supports agile development of BPs and BPS systems. The second part suggests a business process modeling technique that allows to start modeling with the data/information perspective which would be appropriate for processes supported by Case or Adaptive Case Management (CM/ACM systems. In a model produced by this technique, called data-centric business process model, a process instance/case is defined as sequence of states in a specially designed instance database, while the process model is defined as a set of rules that set restrictions on allowed states and transitions between them. The article details the background for the project of developing the data-centric process modeling technique, presents the outline of the structure of the model, and gives formal definitions for a substantial part of the model.

  12. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2013-01-01

    Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa

    2012-08-01

    Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.

  14. English Language Teachers' Perceptions on Knowing and Applying Contemporary Language Teaching Techniques

    Science.gov (United States)

    Sucuoglu, Esen

    2017-01-01

    The aim of this study is to determine the perceptions of English language teachers teaching at a preparatory school in relation to their knowing and applying contemporary language teaching techniques in their lessons. An investigation was conducted of 21 English language teachers at a preparatory school in North Cyprus. The SPSS statistical…

  15. VLF surface-impedance modelling techniques for coal exploration

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.; Thiel, D.; O' Keefe, S. [Central Queensland University, Rockhampton, Qld. (Australia). Faculty of Engineering and Physical Systems

    2000-10-01

    New and efficient computational techniques are required for geophysical investigations of coal. This will allow automated inverse analysis procedures to be used for interpretation of field data. In this paper, a number of methods of modelling electromagnetic surface impedance measurements are reviewed, particularly as applied to typical coal seam geology found in the Bowen Basin. At present, the Impedance method and the finite-difference time-domain (FDTD) method appear to offer viable solutions although both have problems. The Impedance method is currently slightly inaccurate, and the FDTD method has large computational demands. In this paper both methods are described and results are presented for a number of geological targets. 17 refs., 14 figs.

  16. Improving skill development: an exploratory study comparing a philosophical and an applied ethical analysis technique

    Science.gov (United States)

    Al-Saggaf, Yeslam; Burmeister, Oliver K.

    2012-09-01

    This exploratory study compares and contrasts two types of critical thinking techniques; one is a philosophical and the other an applied ethical analysis technique. The two techniques analyse an ethically challenging situation involving ICT that a recent media article raised to demonstrate their ability to develop the ethical analysis skills of ICT students and professionals. In particular the skill development focused on includes: being able to recognise ethical challenges and formulate coherent responses; distancing oneself from subjective judgements; developing ethical literacy; identifying stakeholders; and communicating ethical decisions made, to name a few.

  17. Evaluation of Economic Merger Control Techniques Applied to the European Electricity Sector

    International Nuclear Information System (INIS)

    Vandezande, Leen; Meeus, Leonardo; Delvaux, Bram; Van Calster, Geert; Belmans, Ronnie

    2006-01-01

    With European electricity markets not yet functioning on a competitive basis and consolidation increasing, the European Commission has said it intends to more intensively apply competition law in the electricity sector. Yet economic techniques and theories used in EC merger control fail to take sufficiently into account some specific features of electricity markets. The authors offer suggestions to enhance their reliability and applicability in the electricity sector. (author)

  18. Applying traditional signal processing techniques to social media exploitation for situational understanding

    Science.gov (United States)

    Abdelzaher, Tarek; Roy, Heather; Wang, Shiguang; Giridhar, Prasanna; Al Amin, Md. Tanvir; Bowman, Elizabeth K.; Kolodny, Michael A.

    2016-05-01

    Signal processing techniques such as filtering, detection, estimation and frequency domain analysis have long been applied to extract information from noisy sensor data. This paper describes the exploitation of these signal processing techniques to extract information from social networks, such as Twitter and Instagram. Specifically, we view social networks as noisy sensors that report events in the physical world. We then present a data processing stack for detection, localization, tracking, and veracity analysis of reported events using social network data. We show using a controlled experiment that the behavior of social sources as information relays varies dramatically depending on context. In benign contexts, there is general agreement on events, whereas in conflict scenarios, a significant amount of collective filtering is introduced by conflicted groups, creating a large data distortion. We describe signal processing techniques that mitigate such distortion, resulting in meaningful approximations of actual ground truth, given noisy reported observations. Finally, we briefly present an implementation of the aforementioned social network data processing stack in a sensor network analysis toolkit, called Apollo. Experiences with Apollo show that our techniques are successful at identifying and tracking credible events in the physical world.

  19. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  20. Functional reasoning, explanation and analysis: Part 1: a survey on theories, techniques and applied systems. Part 2: qualitative function formation technique

    International Nuclear Information System (INIS)

    Far, B.H.

    1992-01-01

    Functional Reasoning (FR) enables people to derive the purpose of objects and explain their functions, JAERI's 'Human Acts Simulation Program (HASP)', started from 1987, has the goal of developing programs of the underlying technologies for intelligent robots by imitating the intelligent behavior of humans. FR is considered a useful reasoning method in HASP and applied to understand function of tools and objects in the Toolbox Project. In this report, first, the results of the diverse FR researches within a variety of disciplines are reviewed and the common core and basic problems are identified. Then the qualitative function formation (QFF) technique is introduced. Some novel points are: extending the common qualitative models to include interactions and timing of events by defining temporal and dependency constraints, and binding it with the conventional qualitative simulation. Function concepts are defined as interpretations of either a persistence or an order in the sequence of states, using the trace of the qualitative state vector derived by qualitative simulation on the extended qualitative model. This offers solution to some of the FR problems and leads to a method for generalization and comparison of functions of different objects. (author) 85 refs

  1. Identifying and quantifying energy savings on fired plant using low cost modelling techniques

    International Nuclear Information System (INIS)

    Tucker, Robert; Ward, John

    2012-01-01

    Research highlights: → Furnace models based on the zone method for radiation calculation are described. → Validated steady-state and transient models have been developed. → We show how these simple models can identify the best options for saving energy. → High emissivity coatings predicted to give performance enhancement on a fired heater. → Optimal heat recovery strategies on a steel reheating furnace are predicted. -- Abstract: Combustion in fired heaters, boilers and furnaces often accounts for the major energy consumption on industrial processes. Small improvements in efficiency can result in large reductions in energy consumption, CO 2 emissions, and operating costs. This paper will describe some useful low cost modelling techniques based on the zone method to help identify energy saving opportunities on high temperature fuel-fired process plant. The zone method has for many decades, been successfully applied to small batch furnaces through to large steel-reheating furnaces, glass tanks, boilers and fired heaters on petrochemical plant. Zone models can simulate both steady-state furnace operation and more complex transient operation typical of a production environment. These models can be used to predict thermal efficiency and performance, and more importantly, to assist in identifying and predicting energy saving opportunities from such measures as: ·Improving air/fuel ratio and temperature controls. ·Improved insulation. ·Use of oxygen or oxygen enrichment. ·Air preheating via flue gas heat recovery. ·Modification to furnace geometry and hearth loading. There is also increasing interest in the application of refractory coatings for increasing surface radiation in fired plant. All of the techniques can yield savings ranging from a few percent upwards and can deliver rapid financial payback, but their evaluation often requires robust and reliable models in order to increase confidence in making financial investment decisions. This paper gives

  2. Active lubrication applied to radial gas journal bearings. Part 2: Modelling improvement and experimental validation

    DEFF Research Database (Denmark)

    Pierart, Fabián G.; Santos, Ilmar F.

    2016-01-01

    Actively-controlled lubrication techniques are applied to radial gas bearings aiming at enhancing one of their most critical drawbacks, their lack of damping. A model-based control design approach is presented using simple feedback control laws, i.e. proportional controllers. The design approach...... by finite element method and the global model is used as control design tool. Active lubrication allows for significant increase in damping factor of the rotor-bearing system. Very good agreement between theory and experiment is obtained, supporting the multi-physic design tool developed....

  3. Applied research on air pollution using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    1994-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which will run from 1992-1996, and will build upon the experience gained by the Agency from the laboratory support that it has been providing for several years to BAPMoN - the Background Air Pollution Monitoring Network programme organized under the auspices of the World Meterological Organization. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XFR, and PIXE for the analysis of toxic and other trace elements in suspended particulate matter (including air filter samples), rainwater and fog-water samples, and in biological indicators of air pollution (e.g. lichens and mosses). The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for practically-oriented research and monitoring studies on air pollution ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural areas). This document reports the discussions held during the first Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA Headquarters in Vienna. Refs, figs and tabs

  4. Renormalization techniques applied to the study of density of states in disordered systems

    International Nuclear Information System (INIS)

    Ramirez Ibanez, J.

    1985-01-01

    A general scheme for real space renormalization of formal scattering theory is presented and applied to the calculation of density of states (DOS) in some finite width systems. This technique is extended in a self-consistent way, to the treatment of disordered and partially ordered chains. Numerical results of moments and DOS are presented in comparison with previous calculations. In addition, a self-consistent theory for the magnetic order problem in a Hubbard chain is derived and a parametric transition is observed. Properties of localization of the electronic states in disordered chains are studied through various decimation averaging techniques and using numerical simulations. (author) [pt

  5. Geostatistical and adjoint sensitivity techniques applied to a conceptual model of ground-water flow in the Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Metcalfe, D.E.; Campbell, J.E.; RamaRao, B.S.; Harper, W.V.; Battelle Project Management Div., Columbus, OH)

    1985-01-01

    Sensitivity and uncertainty analysis are important components of performance assessment activities for potential high-level radioactive waste repositories. The application of geostatistical and adjoint sensitivity techniques to aid in the calibration of an existing conceptual model of ground-water flow is demonstrated for the Leadville Limestone in Paradox Basin, Utah. The geostatistical method called kriging is used to statistically analyze the measured potentiometric data for the Leadville. This analysis consists of identifying anomalous data and data trends and characterizing the correlation structure between data points. Adjoint sensitivity analysis is then performed to aid in the calibration of a conceptual model of ground-water flow to the Leadville measured potentiometric data. Sensitivity derivatives of the fit between the modeled Leadville potentiometric surface and the measured potentiometric data to model parameters and boundary conditions are calculated by the adjoint method. These sensitivity derivatives are used to determine which model parameter and boundary condition values should be modified to most efficiently improve the fit of modeled to measured potentiometric conditions

  6. Virtual 3d City Modeling: Techniques and Applications

    Science.gov (United States)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2013-08-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as Building, Tree, Vegetation, and some manmade feature belonging to urban area. There are various terms used for 3D city models such as "Cybertown", "Cybercity", "Virtual City", or "Digital City". 3D city models are basically a computerized or digital model of a city contains the graphic representation of buildings and other objects in 2.5 or 3D. Generally three main Geomatics approach are using for Virtual 3-D City models generation, in first approach, researcher are using Conventional techniques such as Vector Map data, DEM, Aerial images, second approach are based on High resolution satellite images with LASER scanning, In third method, many researcher are using Terrestrial images by using Close Range Photogrammetry with DSM & Texture mapping. We start this paper from the introduction of various Geomatics techniques for 3D City modeling. These techniques divided in to two main categories: one is based on Automation (Automatic, Semi-automatic and Manual methods), and another is Based on Data input techniques (one is Photogrammetry, another is Laser Techniques). After details study of this, finally in short, we are trying to give the conclusions of this study. In the last, we are trying to give the conclusions of this research paper and also giving a short view for justification and analysis, and present trend for 3D City modeling. This paper gives an overview about the Techniques related with "Generation of Virtual 3-D City models using Geomatics Techniques" and the Applications of Virtual 3D City models. Photogrammetry, (Close range, Aerial, Satellite), Lasergrammetry, GPS, or combination of these modern Geomatics techniques play a major role to create a virtual 3-D City model. Each and every techniques and method has some advantages and some drawbacks. Point cloud model is a modern trend for virtual 3-D city model. Photo-realistic, Scalable, Geo-referenced virtual 3

  7. Application of Tissue Culture and Transformation Techniques in Model Species Brachypodium distachyon.

    Science.gov (United States)

    Sogutmaz Ozdemir, Bahar; Budak, Hikmet

    2018-01-01

    Brachypodium distachyon has recently emerged as a model plant species for the grass family (Poaceae) that includes major cereal crops and forage grasses. One of the important traits of a model species is its capacity to be transformed and ease of growing both in tissue culture and in greenhouse conditions. Hence, plant transformation technology is crucial for improvements in agricultural studies, both for the study of new genes and in the production of new transgenic plant species. In this chapter, we review an efficient tissue culture and two different transformation systems for Brachypodium using most commonly preferred gene transfer techniques in plant species, microprojectile bombardment method (biolistics) and Agrobacterium-mediated transformation.In plant transformation studies, frequently used explant materials are immature embryos due to their higher transformation efficiencies and regeneration capacity. However, mature embryos are available throughout the year in contrast to immature embryos. We explain a tissue culture protocol for Brachypodium using mature embryos with the selected inbred lines from our collection. Embryogenic calluses obtained from mature embryos are used to transform Brachypodium with both plant transformation techniques that are revised according to previously studied protocols applied in the grasses, such as applying vacuum infiltration, different wounding effects, modification in inoculation and cocultivation steps or optimization of bombardment parameters.

  8. MULTIVARIATE TECHNIQUES APPLIED TO EVALUATION OF LIGNOCELLULOSIC RESIDUES FOR BIOENERGY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Thiago de Paula Protásio

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812361The evaluation of lignocellulosic wastes for bioenergy production demands to consider several characteristicsand properties that may be correlated. This fact demands the use of various multivariate analysis techniquesthat allow the evaluation of relevant energetic factors. This work aimed to apply cluster analysis and principalcomponents analyses for the selection and evaluation of lignocellulosic wastes for bioenergy production.8 types of residual biomass were used, whose the elemental components (C, H, O, N, S content, lignin, totalextractives and ashes contents, basic density and higher and lower heating values were determined. Bothmultivariate techniques applied for evaluation and selection of lignocellulosic wastes were efficient andsimilarities were observed between the biomass groups formed by them. Through the interpretation of thefirst principal component obtained, it was possible to create a global development index for the evaluationof the viability of energetic uses of biomass. The interpretation of the second principal component alloweda contrast between nitrogen and sulfur contents with oxygen content.

  9. A note on the multi model super ensemble technique for reducing forecast errors

    International Nuclear Information System (INIS)

    Kantha, L.; Carniel, S.; Sclavo, M.

    2008-01-01

    The multi model super ensemble (S E) technique has been used with considerable success to improve meteorological forecasts and is now being applied to ocean models. Although the technique has been shown to produce deterministic forecasts that can be superior to the individual models in the ensemble or a simple multi model ensemble forecast, there is a clear need to understand its strengths and limitations. This paper is an attempt to do so in simple, easily understood contexts. The results demonstrate that the S E forecast is almost always better than the simple ensemble forecast, the degree of improvement depending on the properties of the models in the ensemble. However, the skill of the S E forecast with respect to the true forecast depends on a number of factors, principal among which is the skill of the models in the ensemble. As can be expected, if the ensemble consists of models with poor skill, the S E forecast will also be poor, although better than the ensemble forecast. On the other hand, the inclusion of even a single skillful model in the ensemble increases the forecast skill significantly.

  10. Applying Data-mining techniques to study drought periods in Spain

    Science.gov (United States)

    Belda, F.; Penades, M. C.

    2010-09-01

    Data-mining is a technique that it can be used to interact with large databases and to help in the discovery relations between parameters by extracting information from massive and multiple data archives. Drought affects many economic and social sectors, from agricultural to transportation, going through urban water deficit and the development of modern industries. With these problems and drought geographical and temporal distribution it's difficult to find a single definition of drought. Improving the understanding of the knowledge of climatic index is necessary to reduce the impacts of drought and to facilitate quick decisions regarding this problem. The main objective is to analyze drought periods from 1950 to 2009 in Spain. We use several kinds of information, different formats, sources and transmission mode. We use satellite-based Vegetation Index, dryness index for several temporal periods. We use daily and monthly precipitation and temperature data and soil moisture data from numerical weather model. We calculate mainly Standardized Precipitation Index (SPI) that it has been used amply in the bibliography. We use OLAP-Mining techniques to discovery of association rules between remote-sensing, numerical weather model and climatic index. Time series Data- Mining techniques organize data as a sequence of events, with each event having a time of recurrence, to cluster the data into groups of records or cluster with similar characteristics. Prior climatological classification is necessary if we want to study drought periods over all Spain.

  11. Linear mixing model applied to coarse spatial resolution data from multispectral satellite sensors

    Science.gov (United States)

    Holben, Brent N.; Shimabukuro, Yosio E.

    1993-01-01

    A linear mixing model was applied to coarse spatial resolution data from the NOAA Advanced Very High Resolution Radiometer. The reflective component of the 3.55-3.95 micron channel was used with the two reflective channels 0.58-0.68 micron and 0.725-1.1 micron to run a constrained least squares model to generate fraction images for an area in the west central region of Brazil. The fraction images were compared with an unsupervised classification derived from Landsat TM data acquired on the same day. The relationship between the fraction images and normalized difference vegetation index images show the potential of the unmixing techniques when using coarse spatial resolution data for global studies.

  12. Floating Node Method and Virtual Crack Closure Technique for Modeling Matrix Cracking-Delamination Migration

    Science.gov (United States)

    DeCarvalho, Nelson V.; Chen, B. Y.; Pinho, Silvestre T.; Baiz, P. M.; Ratcliffe, James G.; Tay, T. E.

    2013-01-01

    A novel approach is proposed for high-fidelity modeling of progressive damage and failure in composite materials that combines the Floating Node Method (FNM) and the Virtual Crack Closure Technique (VCCT) to represent multiple interacting failure mechanisms in a mesh-independent fashion. In this study, the approach is applied to the modeling of delamination migration in cross-ply tape laminates. Delamination, matrix cracking, and migration are all modeled using fracture mechanics based failure and migration criteria. The methodology proposed shows very good qualitative and quantitative agreement with experiments.

  13. The simulation of Typhoon-induced coastal inundation in Busan, South Korea applying the downscaling technique

    Science.gov (United States)

    Jang, Dongmin; Park, Junghyun; Yuk, Jin-Hee; Joh, MinSu

    2017-04-01

    Due to typhoons, the south coastal cities including Busan in South Korea coastal are very vulnerable to a surge, wave and corresponding coastal inundation, and are affected every year. In 2016, South Korea suffered tremendous damage by typhoon 'Chaba', which was developed near east-north of Guam on Sep. 28 and had maximum 10-minute sustained wind speed of about 50 m/s, 1-minute sustained wind speed of 75 m/s and a minimum central pressure of 905 hpa. As 'Chaba', which is the strongest since typhoon 'Maemi' in 2003, hit South Korea on Oct. 5, it caused a massive economic and casualty damage to Ulsan, Gyeongju and Busan in South Korea. In particular, the damage of typhoon-induced coastal inundation in Busan, where many high-rise buildings and residential areas are concentrated near coast, was serious. The coastal inundation could be more affected by strong wind-induced wave than surge. In fact, it was observed that the surge height was about 1 m averagely and a significant wave height was about 8 m at coastal sea nearby Busan on Oct. 5 due to 'Chaba'. Even though the typhoon-induced surge elevated the sea level, the typhoon-induced long period wave with wave period of more than 15s could play more important role in the inundation. The present work simulated the coastal inundation induced by 'Chaba' in Busan, South Korea considering the effects of typhoon-induced surge and wave. For 'Chaba' hindcast, high resolution Weather Research and Forecasting model (WRF) was applied using a reanalysis data produced by NCEP (FNL 0.25 degree) on the boundary and initial conditions, and was validated by the observation of wind speed, direction and pressure. The typhoon-induced coastal inundation was simulated by an unstructured gird model, Finite Volume Community Ocean Model (FVCOM), which is fully current-wave coupled model. To simulate the wave-induced inundation, 1-way downscaling technique of multi domain was applied. Firstly, a mother's domain including Korean peninsula was

  14. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available A comprehensive data driven modeling experiment is presented in a two-part paper. In this first part, an extensive data-driven modeling experiment is proposed. The most important concerns regarding the way data driven modeling (DDM techniques and data were handled, compared, and evaluated, and the basis on which findings and conclusions were drawn are discussed. A concise review of key articles that presented comparisons among various DDM techniques is presented. Six DDM techniques, namely, neural networks, genetic programming, evolutionary polynomial regression, support vector machines, M5 model trees, and K-nearest neighbors are proposed and explained. Multiple linear regression and naïve models are also suggested as baseline for comparison with the various techniques. Five datasets from Canada and Europe representing evapotranspiration, upper and lower layer soil moisture content, and rainfall-runoff process are described and proposed, in the second paper, for the modeling experiment. Twelve different realizations (groups from each dataset are created by a procedure involving random sampling. Each group contains three subsets; training, cross-validation, and testing. Each modeling technique is proposed to be applied to each of the 12 groups of each dataset. This way, both prediction accuracy and uncertainty of the modeling techniques can be evaluated. The description of the datasets, the implementation of the modeling techniques, results and analysis, and the findings of the modeling experiment are deferred to the second part of this paper.

  15. Investigation of the shear bond strength to dentin of universal adhesives applied with two different techniques

    Directory of Open Access Journals (Sweden)

    Elif Yaşa

    2017-09-01

    Full Text Available Objective: The aim of this study was to evaluate the shear bond strength of universal adhesives applied with self-etch and etch&rinse techniques to dentin. Materials and Method: Fourty-eight sound extracted human third molars were used in this study. Occlusal enamel was removed in order to expose the dentinal surface, and the surface was flattened. Specimens were randomly divided into four groups and were sectioned vestibulo-lingually using a diamond disc. The universal adhesives: All Bond Universal (Group 1a and 1b, Gluma Bond Universal (Group 2a and 2b and Single Bond Universal (Group 3a and 3b were applied onto the tooth specimens either with self-etch technique (a or with etch&rinse technique (b according to the manufacturers’ instructions. Clearfil SE Bond (Group 4a; self-etch and Optibond FL (Group 4b; etch&rinse were used as control groups. Then the specimens were restored with a nanohybrid composite resin (Filtek Z550. After thermocycling, shear bond strength test was performed with a universal test machine at a crosshead speed of 0.5 mm/min. Fracture analysis was done under a stereomicroscope (×40 magnification. Data were analyzed using two-way ANOVA and post-hoc Tukey tests. Results: Statistical analysis showed significant differences in shear bond strength values between the universal adhesives (p<0.05. Significantly higher bond strength values were observed in self-etch groups (a in comparison to etch&rinse groups (b (p<0.05. Among all groups, Single Bond Universal showed the greatest shear bond strength values, whereas All Bond Universal showed the lowest shear bond strength values with both application techniques. Conclusion: Dentin bonding strengths of universal adhesives applied with different techniques may vary depending on the adhesive material. For the universal bonding agents tested in this study, the etch&rinse technique negatively affected the bond strength to dentin.

  16. Comparison between two meshless methods based on collocation technique for the numerical solution of four-species tumor growth model

    Science.gov (United States)

    Dehghan, Mehdi; Mohammadi, Vahid

    2017-03-01

    As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.

  17. Analytical Modelling of the Effects of Different Gas Turbine Cooling Techniques on Engine Performance =

    Science.gov (United States)

    Uysal, Selcuk Can

    In this research, MATLAB SimulinkRTM was used to develop a cooled engine model for industrial gas turbines and aero-engines. The model consists of uncooled on-design, mean-line turbomachinery design and a cooled off-design analysis in order to evaluate the engine performance parameters by using operating conditions, polytropic efficiencies, material information and cooling system details. The cooling analysis algorithm involves a 2nd law analysis to calculate losses from the cooling technique applied. The model is used in a sensitivity analysis that evaluates the impacts of variations in metal Biot number, thermal barrier coating Biot number, film cooling effectiveness, internal cooling effectiveness and maximum allowable blade temperature on main engine performance parameters of aero and industrial gas turbine engines. The model is subsequently used to analyze the relative performance impact of employing Anti-Vortex Film Cooling holes (AVH) by means of data obtained for these holes by Detached Eddy Simulation-CFD Techniques that are valid for engine-like turbulence intensity conditions. Cooled blade configurations with AVH and other different external cooling techniques were used in a performance comparison study. (Abstract shortened by ProQuest.).

  18. The digital geometric phase technique applied to the deformation evaluation of MEMS devices

    International Nuclear Information System (INIS)

    Liu, Z W; Xie, H M; Gu, C Z; Meng, Y G

    2009-01-01

    Quantitative evaluation of the structure deformation of microfabricated electromechanical systems is of importance for the design and functional control of microsystems. In this investigation, a novel digital geometric phase technique was developed to meet the deformation evaluation requirement of microelectromechanical systems (MEMS). The technique is performed on the basis of regular artificial lattices, instead of a natural atom lattice. The regular artificial lattices with a pitch ranging from micrometer to nanometer will be directly fabricated on the measured surface of MEMS devices by using a focused ion beam (FIB). Phase information can be obtained from the Bragg filtered images after fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of the scanning electronic microscope (SEM) images. Then the in-plane displacement field and the local strain field related to the phase information will be evaluated. The obtained results show that the technique can be well applied to deformation measurement with nanometer sensitivity and stiction force estimation of a MEMS device

  19. A characteristic study of CCF modeling techniques and optimization of CCF defense strategies

    International Nuclear Information System (INIS)

    Kim, Min Chull

    2000-02-01

    Common Cause Failures (CCFs ) are among the major contributors to risk and core damage frequency (CDF ) from operating nuclear power plants (NPPs ). Our study on CCF focused on the following aspects : 1) a characteristic study on the CCF modeling techniques and 2) development of the optimal CCF defense strategy. Firstly, the characteristics of CCF modeling techniques were studied through sensitivity study of CCF occurrence probability upon system redundancy. The modeling techniques considered in this study include those most widely used worldwide, i.e., beta factor, MGL, alpha factor, and binomial failure rate models. We found that MGL and alpha factor models are essentially identical in terms of the CCF probability. Secondly, in the study for CCF defense, the various methods identified in the previous studies for defending against CCF were classified into five different categories. Based on these categories, we developed a generic method by which the optimal CCF defense strategy can be selected. The method is not only qualitative but also quantitative in nature: the selection of the optimal strategy among candidates is based on the use of analytic hierarchical process (AHP). We applied this method to two motor-driven valves for containment sump isolation in Ulchin 3 and 4 nuclear power plants. The result indicates that the method for developing an optimal CCF defense strategy is effective

  20. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment......Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...

  1. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  2. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  3. [Molecular techniques applied in species identification of Toxocara].

    Science.gov (United States)

    Fogt, Renata

    2006-01-01

    Toxocarosis is still an important and actual problem in human medicine. It can manifest as visceral (VLM), ocular (OLM) or covert (CT) larva migrans syndroms. Complicated life cycle of Toxocara, lack of easy and practical methods of species differentiation of the adult nematode and embarrassing in recognition of the infection in definitive hosts create difficulties in fighting with the infection. Although studies on human toxocarosis have been continued for over 50 years there is no conclusive answer, which of species--T. canis or T. cati constitutes a greater risk of transmission of the nematode to man. Neither blood serological examinations nor microscopic observations of the morphological features of the nematode give the satisfied answer on the question. Since the 90-ths molecular methods were developed for species identification and became useful tools being widely applied in parasitological diagnosis. This paper cover the survey of methods of DNA analyses used for identification of Toxocara species. The review may be helpful for researchers focused on Toxocara and toxocarosis as well as on detection of new species. The following techniques are described: PCR (Polymerase Chain Reaction), RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA) and SSCP (Single Strand Conformation Polymorphism).

  4. Model assessment using a multi-metric ranking technique

    Science.gov (United States)

    Fitzpatrick, P. J.; Lau, Y.; Alaka, G.; Marks, F.

    2017-12-01

    Validation comparisons of multiple models presents challenges when skill levels are similar, especially in regimes dominated by the climatological mean. Assessing skill separation will require advanced validation metrics and identifying adeptness in extreme events, but maintain simplicity for management decisions. Flexibility for operations is also an asset. This work postulates a weighted tally and consolidation technique which ranks results by multiple types of metrics. Variables include absolute error, bias, acceptable absolute error percentages, outlier metrics, model efficiency, Pearson correlation, Kendall's Tau, reliability Index, multiplicative gross error, and root mean squared differences. Other metrics, such as root mean square difference and rank correlation were also explored, but removed when the information was discovered to be generally duplicative to other metrics. While equal weights are applied, weights could be altered depending for preferred metrics. Two examples are shown comparing ocean models' currents and tropical cyclone products, including experimental products. The importance of using magnitude and direction for tropical cyclone track forecasts instead of distance, along-track, and cross-track are discussed. Tropical cyclone intensity and structure prediction are also assessed. Vector correlations are not included in the ranking process, but found useful in an independent context, and will be briefly reported.

  5. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  6. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...

  7. Vibration monitoring/diagnostic techniques, as applied to reactor coolant pumps

    International Nuclear Information System (INIS)

    Sculthorpe, B.R.; Johnson, K.M.

    1986-01-01

    With the increased awareness of reactor coolant pump (RCP) cracked shafts, brought about by the catastrophic shaft failure at Crystal River number3, Florida Power and Light Company, in conjunction with Bently Nevada Corporation, undertook a test program at St. Lucie Nuclear Unit number2, to confirm the integrity of all four RCP pump shafts. Reactor coolant pumps play a major roll in the operation of nuclear-powered generation facilities. The time required to disassemble and physically inspect a single RCP shaft would be lengthy, monetarily costly to the utility and its customers, and cause possible unnecessary man-rem exposure to plant personnel. When properly applied, vibration instrumentation can increase unit availability/reliability, as well as provide enhanced diagnostic capability. This paper reviews monitoring benefits and diagnostic techniques applicable to RCPs/motor drives

  8. Linear and nonlinear stability analysis in BWRs applying a reduced order model

    Energy Technology Data Exchange (ETDEWEB)

    Olvera G, O. A.; Espinosa P, G.; Prieto G, A., E-mail: omar_olverag@hotmail.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Ciudad de Mexico (Mexico)

    2016-09-15

    Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)

  9. Linear and nonlinear stability analysis in BWRs applying a reduced order model

    International Nuclear Information System (INIS)

    Olvera G, O. A.; Espinosa P, G.; Prieto G, A.

    2016-09-01

    Boiling Water Reactor (BWR) stability studies are generally conducted through nonlinear reduced order models (Rom) employing various techniques such as bifurcation analysis and time domain numerical integration. One of those models used for these studies is the March-Leuba Rom. Such model represents qualitatively the dynamic behavior of a BWR through a one-point reactor kinetics, a one node representation of the heat transfer process in fuel, and a two node representation of the channel Thermal hydraulics to account for the void reactivity feedback. Here, we study the effect of this higher order model on the overall stability of the BWR. The change in the stability boundaries is determined by evaluating the eigenvalues of the Jacobian matrix. The nonlinear model is also integrated numerically to show that in the nonlinear region, the system evolves to stable limit cycles when operating close to the stability boundary. We also applied a new technique based on the Empirical Mode Decomposition (Emd) to estimate a parameter linked with stability in a BWR. This instability parameter is not exactly the classical Decay Ratio (Dr), but it will be linked with it. The proposed method allows decomposing the analyzed signal in different levels or mono-component functions known as intrinsic mode functions (Imf). One or more of these different modes can be associated to the instability problem in BWRs. By tracking the instantaneous frequencies (calculated through Hilbert Huang Transform (HHT) and the autocorrelation function (Acf) of the Imf linked to instability. The estimation of the proposed parameter can be achieved. The current methodology was validated with simulated signals of the studied model. (Author)

  10. Comparison of various modelling approaches applied to cholera case data

    CSIR Research Space (South Africa)

    Van Den Bergh, F

    2008-06-01

    Full Text Available cross-wavelet technique, which is used to compute lead times for co-varying variables, and suggests transformations that enhance co-varying behaviour. Several statistical modelling techniques, including generalised linear models, ARIMA time series...

  11. Volcanic Monitoring Techniques Applied to Controlled Fragmentation Experiments

    Science.gov (United States)

    Kueppers, U.; Alatorre-Ibarguengoitia, M. A.; Hort, M. K.; Kremers, S.; Meier, K.; Scharff, L.; Scheu, B.; Taddeucci, J.; Dingwell, D. B.

    2010-12-01

    Volcanic eruptions are an inevitable natural threat. The range of eruptive styles is large and short term fluctuations of explosivity or vent position pose a large risk that is not necessarily confined to the immediate vicinity of a volcano. Explosive eruptions rather may also affect aviation, infrastructure and climate, regionally as well as globally. Multiparameter monitoring networks are deployed on many active volcanoes to record signs of magmatic processes and help elucidate the secrets of volcanic phenomena. However, our mechanistic understanding of many processes hiding in recorded signals is still poor. As a direct consequence, a solid interpretation of the state of a volcano is still a challenge. In an attempt to bridge this gap, we combined volcanic monitoring and experimental volcanology. We performed 15 well-monitored, field-based, experiments and fragmented natural rock samples from Colima volcano (Mexico) by rapid decompression. We used cylindrical samples of 60 mm height and 25 mm and 60 mm diameter, respectively, and 25 and 35 vol.% open porosity. The applied pressure range was from 4 to 18 MPa. Using different experimental set-ups, the pressurised volume above the samples ranged from 60 - 170 cm3. The experiments were performed at ambient conditions and at controlled sample porosity and size, confinement geometry, and applied pressure. The experiments have been thoroughly monitored with 1) Doppler Radar (DR), 2) high-speed and high-definition cameras, 3) acoustic and infrasound sensors, 4) pressure transducers, and 5) electrically conducting wires. Our aim was to check for common results achieved by the different approaches and, if so, calibrate state-of-the-art monitoring tools. We present how the velocity of the ejected pyroclasts was measured by and evaluated for the different approaches and how it was affected by the experimental conditions and sample characteristics. We show that all deployed instruments successfully measured the pyroclast

  12. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Science.gov (United States)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  13. Verification of Orthogrid Finite Element Modeling Techniques

    Science.gov (United States)

    Steeve, B. E.

    1996-01-01

    The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.

  14. Wire-mesh and ultrasound techniques applied for the characterization of gas-liquid slug flow

    Energy Technology Data Exchange (ETDEWEB)

    Ofuchi, Cesar Y.; Sieczkowski, Wytila Chagas; Neves Junior, Flavio; Arruda, Lucia V.R.; Morales, Rigoberto E.M.; Amaral, Carlos E.F.; Silva, Marco J. da [Federal University of Technology of Parana, Curitiba, PR (Brazil)], e-mails: ofuchi@utfpr.edu.br, wytila@utfpr.edu.br, neves@utfpr.edu.br, lvrarruda@utfpr.edu.br, rmorales@utfpr.edu.br, camaral@utfpr.edu.br, mdasilva@utfpr.edu.br

    2010-07-01

    Gas-liquid two-phase flows are found in a broad range of industrial applications, such as chemical, petrochemical and nuclear industries and quite often determine the efficiency and safety of process and plants. Several experimental techniques have been proposed and applied to measure and quantify two-phase flows so far. In this experimental study the wire-mesh sensor and an ultrasound technique are used and comparatively evaluated to study two-phase slug flows in horizontal pipes. The wire-mesh is an imaging technique and thus appropriated for scientific studies while ultrasound-based technique is robust and non-intrusive and hence well suited for industrial applications. Based on the measured raw data it is possible to extract some specific slug flow parameters of interest such as mean void fraction and characteristic frequency. The experiments were performed in the Thermal Sciences Laboratory (LACIT) at UTFPR, Brazil, in which an experimental two-phase flow loop is available. The experimental flow loop comprises a horizontal acrylic pipe of 26 mm diameter and 9 m length. Water and air were used to produce the two phase flow under controlled conditions. The results show good agreement between the techniques. (author)

  15. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  16. Multiconjugate adaptive optics applied to an anatomically accurate human eye model

    Science.gov (United States)

    Bedggood, P. A.; Ashman, R.; Smith, G.; Metha, A. B.

    2006-09-01

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  17. Multiconjugate adaptive optics applied to an anatomically accurate human eye model.

    Science.gov (United States)

    Bedggood, P A; Ashman, R; Smith, G; Metha, A B

    2006-09-04

    Aberrations of both astronomical telescopes and the human eye can be successfully corrected with conventional adaptive optics. This produces diffraction-limited imagery over a limited field of view called the isoplanatic patch. A new technique, known as multiconjugate adaptive optics, has been developed recently in astronomy to increase the size of this patch. The key is to model atmospheric turbulence as several flat, discrete layers. A human eye, however, has several curved, aspheric surfaces and a gradient index lens, complicating the task of correcting aberrations over a wide field of view. Here we utilize a computer model to determine the degree to which this technology may be applied to generate high resolution, wide-field retinal images, and discuss the considerations necessary for optimal use with the eye. The Liou and Brennan schematic eye simulates the aspheric surfaces and gradient index lens of real human eyes. We show that the size of the isoplanatic patch of the human eye is significantly increased through multiconjugate adaptive optics.

  18. Applying Toyota production system techniques for medication delivery: improving hospital safety and efficiency.

    Science.gov (United States)

    Newell, Terry L; Steinmetz-Malato, Laura L; Van Dyke, Deborah L

    2011-01-01

    The inpatient medication delivery system used at a large regional acute care hospital in the Midwest had become antiquated and inefficient. The existing 24-hr medication cart-fill exchange process with delivery to the patients' bedside did not always provide ordered medications to the nursing units when they were needed. In 2007 the principles of the Toyota Production System (TPS) were applied to the system. Project objectives were to improve medication safety and reduce the time needed for nurses to retrieve patient medications. A multidisciplinary team was formed that included representatives from nursing, pharmacy, informatics, quality, and various operational support departments. Team members were educated and trained in the tools and techniques of TPS, and then designed and implemented a new pull system benchmarking the TPS Ideal State model. The newly installed process, providing just-in-time medication availability, has measurably improved delivery processes as well as patient safety and satisfaction. Other positive outcomes have included improved nursing satisfaction, reduced nursing wait time for delivered medications, and improved efficiency in the pharmacy. After a successful pilot on two nursing units, the system is being extended to the rest of the hospital. © 2010 National Association for Healthcare Quality.

  19. Forecasting performances of three automated modelling techniques during the economic crisis 2007-2009

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    2014-01-01

    . The performances of these three model selectors are compared by looking at the accuracy of the forecasts of the estimated neural network models. We apply the neural network model and the three modelling techniques to monthly industrial production and unemployment series from the G7 countries and the four......In this work we consider the forecasting of macroeconomic variables during an economic crisis. The focus is on a specific class of models, the so-called single hidden-layer feed-forward autoregressive neural network models. What makes these models interesting in the present context is the fact...... that they form a class of universal approximators and may be expected to work well during exceptional periods such as major economic crises. Neural network models are often difficult to estimate, and we follow the idea of White (2006) of transforming the specification and nonlinear estimation problem...

  20. A nonlinear interface model applied to masonry structures

    Science.gov (United States)

    Lebon, Frédéric; Raffa, Maria Letizia; Rizzoni, Raffaella

    2015-12-01

    In this paper, a new imperfect interface model is presented. The model includes finite strains, micro-cracks and smooth roughness. The model is consistently derived by coupling a homogenization approach for micro-cracked media and arguments of asymptotic analysis. The model is applied to brick/mortar interfaces. Numerical results are presented.

  1. Integration of computational modeling and experimental techniques to design fuel surrogates

    DEFF Research Database (Denmark)

    Choudhury, H.A.; Intikhab, S.; Kalakul, Sawitree

    2017-01-01

    performance. A simplified alternative is to develop surrogate fuels that have fewer compounds and emulate certain important desired physical properties of the target fuels. Six gasoline blends were formulated through a computer aided model based technique “Mixed Integer Non-Linear Programming” (MINLP...... Virtual Process-Product Design Laboratory (VPPD-Lab) are applied onto the defined compositions of the surrogate gasoline. The aim is to primarily verify the defined composition of gasoline by means of VPPD-Lab. ρ, η and RVP are calculated with more accuracy and constraints such as distillation curve...... and flash point on the blend design are also considered. A post-design experiment-based verification step is proposed to further improve and fine-tune the “best” selected gasoline blends following the computation work. Here, advanced experimental techniques are used to measure the RVP, ρ, η, RON...

  2. A Method to Test Model Calibration Techniques: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    2016-09-01

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then the calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.

  3. [Hierarchy structuring for mammography technique by interpretive structural modeling method].

    Science.gov (United States)

    Kudo, Nozomi; Kurowarabi, Kunio; Terashita, Takayoshi; Nishimoto, Naoki; Ogasawara, Katsuhiko

    2009-10-20

    Participation in screening mammography is currently desired in Japan because of the increase in breast cancer morbidity. However, the pain and discomfort of mammography is recognized as a significant deterrent for women considering this examination. Thus quick procedures, sufficient experience, and advanced skills are required for radiologic technologists. The aim of this study was to make the point of imaging techniques explicit and to help understand the complicated procedure. We interviewed 3 technologists who were highly skilled in mammography, and 14 factors were retrieved by using brainstorming and the KJ method. We then applied Interpretive Structural Modeling (ISM) to the factors and developed a hierarchical concept structure. The result showed a six-layer hierarchy whose top node was explanation of the entire procedure on mammography. Male technologists were related to as a negative factor. Factors concerned with explanation were at the upper node. We gave attention to X-ray techniques and considerations. The findings will help beginners improve their skills.

  4. Case study: how to apply data mining techniques in a healthcare data warehouse.

    Science.gov (United States)

    Silver, M; Sakata, T; Su, H C; Herman, C; Dolins, S B; O'Shea, M J

    2001-01-01

    Healthcare provider organizations are faced with a rising number of financial pressures. Both administrators and physicians need help analyzing large numbers of clinical and financial data when making decisions. To assist them, Rush-Presbyterian-St. Luke's Medical Center and Hitachi America, Ltd. (HAL), Inc., have partnered to build an enterprise data warehouse and perform a series of case study analyses. This article focuses on one analysis, which was performed by a team of physicians and computer science researchers, using a commercially available on-line analytical processing (OLAP) tool in conjunction with proprietary data mining techniques developed by HAL researchers. The initial objective of the analysis was to discover how to use data mining techniques to make business decisions that can influence cost, revenue, and operational efficiency while maintaining a high level of care. Another objective was to understand how to apply these techniques appropriately and to find a repeatable method for analyzing data and finding business insights. The process used to identify opportunities and effect changes is described.

  5. Applied linear regression

    CERN Document Server

    Weisberg, Sanford

    2013-01-01

    Praise for the Third Edition ""...this is an excellent book which could easily be used as a course text...""-International Statistical Institute The Fourth Edition of Applied Linear Regression provides a thorough update of the basic theory and methodology of linear regression modeling. Demonstrating the practical applications of linear regression analysis techniques, the Fourth Edition uses interesting, real-world exercises and examples. Stressing central concepts such as model building, understanding parameters, assessing fit and reliability, and drawing conclusions, the new edition illus

  6. Applying a realistic evaluation model to occupational safety interventions

    DEFF Research Database (Denmark)

    Pedersen, Louise Møller

    2018-01-01

    Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal characte......Background: Recent literature characterizes occupational safety interventions as complex social activities, applied in complex and dynamic social systems. Hence, the actual outcomes of an intervention will vary, depending on the intervention, the implementation process, context, personal...... and qualitative methods. This revised model has, however, not been applied in a real life context. Method: The model is applied in a controlled, four-component, integrated behaviour-based and safety culture-based safety intervention study (2008-2010) in a medium-sized wood manufacturing company. The interventions...... involve the company’s safety committee, safety manager, safety groups and 130 workers. Results: The model provides a framework for more valid evidence of what works within injury prevention. Affective commitment and role behaviour among key actors are identified as crucial for the implementation...

  7. Statistical learning techniques applied to epidemiology: a simulated case-control comparison study with logistic regression

    Directory of Open Access Journals (Sweden)

    Land Walker H

    2011-01-01

    Full Text Available Abstract Background When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL techniques with kernels are capable of addressing nonlinear problems without making parametric assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations. A simulated case-control study was used to contrast the information embedding characteristics and separation boundaries produced by a specific SL technique with logistic regression (LR modeling representing a parametric approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network. Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the analogous interpretation and generate odds ratios for comparison. Results The SL approach is capable of generating odds ratios for main effects and risk factor interactions that better capture nonlinear relationships between exposure variables and outcome in comparison with LR. Conclusions The integration of SL methods in epidemiology may improve both the understanding and interpretation of complex exposure/disease relationships.

  8. Discrete classification technique applied to TV advertisements liking recognition system based on low-cost EEG headsets.

    Science.gov (United States)

    Soria Morillo, Luis M; Alvarez-Garcia, Juan A; Gonzalez-Abril, Luis; Ortega Ramírez, Juan A

    2016-07-15

    In this paper a new approach is applied to the area of marketing research. The aim of this paper is to recognize how brain activity responds during the visualization of short video advertisements using discrete classification techniques. By means of low cost electroencephalography devices (EEG), the activation level of some brain regions have been studied while the ads are shown to users. We may wonder about how useful is the use of neuroscience knowledge in marketing, or what could provide neuroscience to marketing sector, or why this approach can improve the accuracy and the final user acceptance compared to other works. By using discrete techniques over EEG frequency bands of a generated dataset, C4.5, ANN and the new recognition system based on Ameva, a discretization algorithm, is applied to obtain the score given by subjects to each TV ad. The proposed technique allows to reach more than 75 % of accuracy, which is an excellent result taking into account the typology of EEG sensors used in this work. Furthermore, the time consumption of the algorithm proposed is reduced up to 30 % compared to other techniques presented in this paper. This bring about a battery lifetime improvement on the devices where the algorithm is running, extending the experience in the ubiquitous context where the new approach has been tested.

  9. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model.

    Science.gov (United States)

    Chopra, Sascha Santosh; Wolf, Stefan; Rohde, Veit; Freimann, Florian Baptist

    2015-01-01

    Introduction. Intra-abdominal pressure (IAP) measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic) for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was -0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  10. A pilot modeling technique for handling-qualities research

    Science.gov (United States)

    Hess, R. A.

    1980-01-01

    A brief survey of the more dominant analysis techniques used in closed-loop handling-qualities research is presented. These techniques are shown to rely on so-called classical and modern analytical models of the human pilot which have their foundation in the analysis and design principles of feedback control. The optimal control model of the human pilot is discussed in some detail and a novel approach to the a priori selection of pertinent model parameters is discussed. Frequency domain and tracking performance data from 10 pilot-in-the-loop simulation experiments involving 3 different tasks are used to demonstrate the parameter selection technique. Finally, the utility of this modeling approach in handling-qualities research is discussed.

  11. Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling

    International Nuclear Information System (INIS)

    Yu, P.

    2008-01-01

    More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

  12. Model Checking Markov Chains: Techniques and Tools

    NARCIS (Netherlands)

    Zapreev, I.S.

    2008-01-01

    This dissertation deals with four important aspects of model checking Markov chains: the development of efficient model-checking tools, the improvement of model-checking algorithms, the efficiency of the state-space reduction techniques, and the development of simulation-based model-checking

  13. Analytic model of Applied-B ion diode impedance behavior

    International Nuclear Information System (INIS)

    Miller, P.A.; Mendel, C.W. Jr.

    1987-01-01

    An empirical analysis of impedance data from Applied-B ion diodes used in seven inertial confinement fusion research experiments was published recently. The diodes all operated with impedance values well below the Child's-law value. The analysis uncovered an unusual unifying relationship among data from the different experiments. The analysis suggested that closure of the anode-cathode gap by electrode plasma was not a dominant factor in the experiments, but was not able to elaborate the underlying physics. Here we present a new analytic model of Applied-B ion diodes coupled to accelerators. A critical feature of the diode model is based on magnetic insulation theory. The model successfully describes impedance behavior of these diodes and supports stimulating new viewpoints of the physics of Applied-B ion diode operation

  14. Performability Modelling Tools, Evaluation Techniques and Applications

    NARCIS (Netherlands)

    Haverkort, Boudewijn R.H.M.

    1990-01-01

    This thesis deals with three aspects of quantitative evaluation of fault-tolerant and distributed computer and communication systems: performability evaluation techniques, performability modelling tools, and performability modelling applications. Performability modelling is a relatively new

  15. Applied probability models with optimization applications

    CERN Document Server

    Ross, Sheldon M

    1992-01-01

    Concise advanced-level introduction to stochastic processes that frequently arise in applied probability. Largely self-contained text covers Poisson process, renewal theory, Markov chains, inventory theory, Brownian motion and continuous time optimization models, much more. Problems and references at chapter ends. ""Excellent introduction."" - Journal of the American Statistical Association. Bibliography. 1970 edition.

  16. Forecasting Baltic Dirty Tanker Index by Applying Wavelet Neural Networks

    DEFF Research Database (Denmark)

    Fan, Shuangrui; JI, TINGYUN; Bergqvist, Rickard

    2013-01-01

    modeling techniques used in freight rate forecasting. At the same time research in shipping index forecasting e.g. BDTI applying artificial intelligent techniques is scarce. This analyses the possibilities to forecast the BDTI by applying Wavelet Neural Networks (WNN). Firstly, the characteristics...... of traditional and artificial intelligent forecasting techniques are discussed and rationales for choosing WNN are explained. Secondly, the components and features of BDTI will be explicated. After that, the authors delve the determinants and influencing factors behind fluctuations of the BDTI in order to set...

  17. Applying Data Mining Techniques to Improve Information Security in the Cloud: A Single Cache System Approach

    OpenAIRE

    Amany AlShawi

    2016-01-01

    Presently, the popularity of cloud computing is gradually increasing day by day. The purpose of this research was to enhance the security of the cloud using techniques such as data mining with specific reference to the single cache system. From the findings of the research, it was observed that the security in the cloud could be enhanced with the single cache system. For future purposes, an Apriori algorithm can be applied to the single cache system. This can be applied by all cloud providers...

  18. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  19. Effect of the reinforcement bar arrangement on the efficiency of electrochemical chloride removal technique applied to reinforced concrete structures

    International Nuclear Information System (INIS)

    Garces, P.; Sanchez de Rojas, M.J.; Climent, M.A.

    2006-01-01

    This paper reports on the research done to find out the effect that different bar arrangements may have on the efficiency of the electrochemical chloride removal (ECR) technique when applied to a reinforced concrete structural member. Five different types of bar arrangements were considered, corresponding to typical structural members such as columns (with single and double bar reinforcing), slabs, beams and footings. ECR was applied in several steps. We observe that the extraction efficiency depends on the reinforcing bar arrangement. A uniform layer set-up favours chloride extraction. Electrochemical techniques were also used to estimate the reinforcing bar corrosion states, as well as measure the corrosion potential, and instant corrosion rate based on the polarization resistance technique. After ECR treatment, a reduction in the corrosion levels is observed falling short of the depassivation threshold

  20. Probabilistic evaluation of process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2016-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  1. LEARNING SEMANTICS-ENHANCED LANGUAGE MODELS APPLIED TO UNSUEPRVISED WSD

    Energy Technology Data Exchange (ETDEWEB)

    VERSPOOR, KARIN [Los Alamos National Laboratory; LIN, SHOU-DE [Los Alamos National Laboratory

    2007-01-29

    An N-gram language model aims at capturing statistical syntactic word order information from corpora. Although the concept of language models has been applied extensively to handle a variety of NLP problems with reasonable success, the standard model does not incorporate semantic information, and consequently limits its applicability to semantic problems such as word sense disambiguation. We propose a framework that integrates semantic information into the language model schema, allowing a system to exploit both syntactic and semantic information to address NLP problems. Furthermore, acknowledging the limited availability of semantically annotated data, we discuss how the proposed model can be learned without annotated training examples. Finally, we report on a case study showing how the semantics-enhanced language model can be applied to unsupervised word sense disambiguation with promising results.

  2. Motion Capture Technique Applied Research in Sports Technique Diagnosis

    Directory of Open Access Journals (Sweden)

    Zhiwu LIU

    2014-09-01

    Full Text Available The motion capture technology system definition is described in the paper, and its components are researched, the key parameters are obtained from motion technique, the quantitative analysis are made on technical movements, the method of motion capture technology is proposed in sport technical diagnosis. That motion capture step includes calibration system, to attached landmarks to the tester; to capture trajectory, and to analyze the collected data.

  3. Nuclear radioactive techniques applied to materials research

    CERN Document Server

    Correia, João Guilherme; Wahl, Ulrich

    2011-01-01

    In this paper we review materials characterization techniques using radioactive isotopes at the ISOLDE/CERN facility. At ISOLDE intense beams of chemically clean radioactive isotopes are provided by selective ion-sources and high-resolution isotope separators, which are coupled on-line with particle accelerators. There, new experiments are performed by an increasing number of materials researchers, which use nuclear spectroscopic techniques such as Mössbauer, Perturbed Angular Correlations (PAC), beta-NMR and Emission Channeling with short-lived isotopes not available elsewhere. Additionally, diffusion studies and traditionally non-radioactive techniques as Deep Level Transient Spectroscopy, Hall effect and Photoluminescence measurements are performed on radioactive doped samples, providing in this way the element signature upon correlation of the time dependence of the signal with the isotope transmutation half-life. Current developments, applications and perspectives of using radioactive ion beams and tech...

  4. Applied Control Systems Design

    CERN Document Server

    Mahmoud, Magdi S

    2012-01-01

    Applied Control System Design examines several methods for building up systems models based on real experimental data from typical industrial processes and incorporating system identification techniques. The text takes a comparative approach to the models derived in this way judging their suitability for use in different systems and under different operational circumstances. A broad spectrum of control methods including various forms of filtering, feedback and feedforward control is applied to the models and the guidelines derived from the closed-loop responses are then composed into a concrete self-tested recipe to serve as a check-list for industrial engineers or control designers. System identification and control design are given equal weight in model derivation and testing to reflect their equality of importance in the proper design and optimization of high-performance control systems. Readers’ assimilation of the material discussed is assisted by the provision of problems and examples. Most of these e...

  5. Comparison of groundwater residence time using isotope techniques and numerical groundwater flow model in Gneissic Terrain, Korea

    International Nuclear Information System (INIS)

    Bae, D.S.; Kim, C.S.; Koh, Y.K.; Kim, K.S.; Song, M.Y.

    1997-01-01

    The prediction of groundwater flow affecting the migration of radionuclides is an important component of the performance assessment of radioactive waste disposal. Groundwater flow in fractured rock mass is controlled by fracture networks, transmissivity and hydraulic gradient. Furthermore the scale-dependent and anisotropic properties of hydraulic parameters are resulted mainly from irregular patterns of fracture system, which are very complex to evaluate properly with the current techniques available. For the purpose of characterizing a groundwater flow in fractured rock mass, the discrete fracture network (DFN) concept is available on the basis of assumptions of groundwater flowing only along fractures and flowpaths in rock mass formed by interconnected fractures. To increase the reliability of assessment in groundwater flow phenomena, numerical groundwater flow model and isotopic techniques were applied. Fracture mapping, borehole acoustic scanning were performed to identify conductive fractures in gneissic terrane. Tracer techniques, using deuterium, oxygen-18 and tritium were applied to evaluate the recharge area and groundwater residence time

  6. The Development and Application of Reactive Transport Modeling Techniques to Study Radionuclide Migration at Yucca Mountain, NV

    International Nuclear Information System (INIS)

    Hari Selvi Viswanathan

    1999-01-01

    Yucca Mountain, Nevada has been chosen as a possible site for the first high level radioactive waste repository in the United States. As part of the site investigation studies, we need to make scientifically rigorous estimations of radionuclide migration in the event of a repository breach. Performance assessment models used to make these estimations are computationally intensive. We have developed two reactive transport modeling techniques to simulate radionuclide transport at Yucca Mountain: (1) the selective coupling approach applied to the convection-dispersion-reaction (CDR) model and (2) a reactive stream tube approach (RST). These models were designed to capture the important processes that influence radionuclide migration while being computationally efficient. The conventional method of modeling reactive transport models is to solve a coupled set of multi-dimensional partial differential equations for the relevant chemical components in the system. We have developed an iterative solution technique, denoted the selective coupling method, that represents a versatile alternative to traditional uncoupled iterative techniques and the filly coupled global implicit method. We show that selective coupling results in computational and memory savings relative to these approaches. We develop RST as an alternative to the CDR method for solving large two- or three-dimensional reactive transport simulations for cases in which one is interested in predicting the flux across a specific control plane. In the RST method, the multidimensional problem is reduced to a series of one-dimensional transport simulations along streamlines. The key assumption with RST is that mixing at the control plane approximates the transverse dispersion between streamlines. We compare the CDR and RST approaches for several scenarios that are relevant to the Yucca Mountain Project. For example, we apply the CDR and RST approaches to model an ongoing field experiment called the Unsaturated Zone

  7. Models and Techniques for Proving Data Structure Lower Bounds

    DEFF Research Database (Denmark)

    Larsen, Kasper Green

    In this dissertation, we present a number of new techniques and tools for proving lower bounds on the operational time of data structures. These techniques provide new lines of attack for proving lower bounds in both the cell probe model, the group model, the pointer machine model and the I...... bound of tutq = (lgd􀀀1 n). For ball range searching, we get a lower bound of tutq = (n1􀀀1=d). The highest previous lower bound proved in the group model does not exceed ((lg n= lg lg n)2) on the maximum of tu and tq. Finally, we present a new technique for proving lower bounds....../O-model. In all cases, we push the frontiers further by proving lower bounds higher than what could possibly be proved using previously known techniques. For the cell probe model, our results have the following consequences: The rst (lg n) query time lower bound for linear space static data structures...

  8. Hybrid surrogate-model-based multi-fidelity efficient global optimization applied to helicopter blade design

    Science.gov (United States)

    Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro

    2018-06-01

    A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.

  9. Development of a computational system for radiotherapic planning with the IMRT technique applied to the MCNP computer code with 3D graphic interface for voxel models

    International Nuclear Information System (INIS)

    Fonseca, Telma Cristina Ferreira

    2009-01-01

    The Intensity Modulated Radiation Therapy - IMRT is an advanced treatment technique used worldwide in oncology medicine branch. On this master proposal was developed a software package for simulating the IMRT protocol, namely SOFT-RT which attachment the research group 'Nucleo de Radiacoes Ionizantes' - NRI at UFMG. The computational system SOFT-RT allows producing the absorbed dose simulation of the radiotherapic treatment through a three-dimensional voxel model of the patient. The SISCODES code, from NRI, research group, helps in producing the voxel model of the interest region from a set of CT or MRI digitalized images. The SOFT-RT allows also the rotation and translation of the model about the coordinate system axis for better visualization of the model and the beam. The SOFT-RT collects and exports the necessary parameters to MCNP code which will carry out the nuclear radiation transport towards the tumor and adjacent healthy tissues for each orientation and position of the beam planning. Through three-dimensional visualization of voxel model of a patient, it is possible to focus on a tumoral region preserving the whole tissues around them. It takes in account where exactly the radiation beam passes through, which tissues are affected and how much dose is applied in both tissues. The Out-module from SOFT-RT imports the results and express the dose response superimposing dose and voxel model in gray scale in a three-dimensional graphic representation. The present master thesis presents the new computational system of radiotherapic treatment - SOFT-RT code which has been developed using the robust and multi-platform C ++ programming language with the OpenGL graphics packages. The Linux operational system was adopted with the goal of running it in an open source platform and free access. Preliminary simulation results for a cerebral tumor case will be reported as well as some dosimetric evaluations. (author)

  10. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  11. Applied mathematics

    International Nuclear Information System (INIS)

    Nedelec, J.C.

    1988-01-01

    The 1988 progress report of the Applied Mathematics center (Polytechnic School, France), is presented. The research fields of the Center are the scientific calculus, the probabilities and statistics and the video image synthesis. The research topics developed are: the analysis of numerical methods, the mathematical analysis of the physics and mechanics fundamental models, the numerical solution of complex models related to the industrial problems, the stochastic calculus and the brownian movement, the stochastic partial differential equations, the identification of the adaptive filtering parameters, the discrete element systems, statistics, the stochastic control and the development, the image synthesis techniques for education and research programs. The published papers, the congress communications and the thesis are listed [fr

  12. Learning to Apply Models of Materials While Explaining Their Properties

    Science.gov (United States)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  13. Procedures and Compliance of a Video Modeling Applied Behavior Analysis Intervention for Brazilian Parents of Children with Autism Spectrum Disorders

    Science.gov (United States)

    Bagaiolo, Leila F.; Mari, Jair de J.; Bordini, Daniela; Ribeiro, Tatiane C.; Martone, Maria Carolina C.; Caetano, Sheila C.; Brunoni, Decio; Brentani, Helena; Paula, Cristiane S.

    2017-01-01

    Video modeling using applied behavior analysis techniques is one of the most promising and cost-effective ways to improve social skills for parents with autism spectrum disorder children. The main objectives were: (1) To elaborate/describe videos to improve eye contact and joint attention, and to decrease disruptive behaviors of autism spectrum…

  14. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    International Nuclear Information System (INIS)

    Joosten, A; Bochud, F; Moeckli, R

    2014-01-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  15. Applying decision-making techniques to Civil Engineering Projects

    Directory of Open Access Journals (Sweden)

    Fam F. Abdel-malak

    2017-12-01

    Full Text Available Multi-Criteria Decision-Making (MCDM techniques are found to be useful tools in project managers’ hands to overcome decision-making (DM problems in Civil Engineering Projects (CEPs. The main contribution of this paper includes selecting and studying the popular MCDM techniques that uses different and wide ranges of data types in CEPs. A detailed study including advantages and pitfalls of using the Analytic Hierarchy Process (AHP and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (Fuzzy TOPSIS is introduced. Those two techniques are selected for the purpose of forming a package that covers most available data types in CEPs. The results indicated that AHP has a structure which simplifies complicated problems, while Fuzzy TOPSIS uses the advantages of linguistic variables to solve the issue of undocumented data and ill-defined problems. Furthermore, AHP is a simple technique that depends on pairwise comparisons of factors and natural attributes, beside it is preferable for widely spread hierarchies. On the other hand, Fuzzy TOPSIS needs more information but works well for the one-tier decision tree as well as it shows more flexibility to work in fuzzy environments. The two techniques have the facility to be integrated and combined in a new module to support most of the decisions required in CEPs. Keywords: Decision-making, AHP, Fuzzy TOPSIS, CBA, Civil Engineering Projects

  16. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    International Nuclear Information System (INIS)

    Jeffs, S.P.; Lancaster, R.J.; Garcia, T.E.

    2015-01-01

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k SP method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results

  17. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  18. Applying Nonverbal Techniques to Organizational Diagnosis.

    Science.gov (United States)

    Tubbs, Stewart L.; Koske, W. Cary

    Ongoing research programs conducted at General Motors Institute are motivated by the practical objective of improving the company's organizational effectiveness. Computer technology is being used whenever possible; for example, a technique developed by Herman Chernoff was used to process data from a survey of employee attitudes into 18 different…

  19. 3D-QSPR Method of Computational Technique Applied on Red Reactive Dyes by Using CoMFA Strategy

    Directory of Open Access Journals (Sweden)

    Shahnaz Perveen

    2011-12-01

    Full Text Available Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are “reactive dyes” because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the charachteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  20. 3D-QSPR method of computational technique applied on red reactive dyes by using CoMFA strategy.

    Science.gov (United States)

    Mahmood, Uzma; Rashid, Sitara; Ali, S Ishrat; Parveen, Rasheeda; Zaheer-Ul-Haq; Ambreen, Nida; Khan, Khalid Mohammed; Perveen, Shahnaz; Voelter, Wolfgang

    2011-01-01

    Cellulose fiber is a tremendous natural resource that has broad application in various productions including the textile industry. The dyes, which are commonly used for cellulose printing, are "reactive dyes" because of their high wet fastness and brilliant colors. The interaction of various dyes with the cellulose fiber depends upon the physiochemical properties that are governed by specific features of the dye molecule. The binding pattern of the reactive dye with cellulose fiber is called the ligand-receptor concept. In the current study, the three dimensional quantitative structure property relationship (3D-QSPR) technique was applied to understand the red reactive dyes interactions with the cellulose by the Comparative Molecular Field Analysis (CoMFA) method. This method was successfully utilized to predict a reliable model. The predicted model gives satisfactory statistical results and in the light of these, it was further analyzed. Additionally, the graphical outcomes (contour maps) help us to understand the modification pattern and to correlate the structural changes with respect to the absorptivity. Furthermore, the final selected model has potential to assist in understanding the characteristics of the external test set. The study could be helpful to design new reactive dyes with better affinity and selectivity for the cellulose fiber.

  1. Methods for model selection in applied science and engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2004-10-01

    Mathematical models are developed and used to study the properties of complex systems and/or modify these systems to satisfy some performance requirements in just about every area of applied science and engineering. A particular reason for developing a model, e.g., performance assessment or design, is referred to as the model use. Our objective is the development of a methodology for selecting a model that is sufficiently accurate for an intended use. Information on the system being modeled is, in general, incomplete, so that there may be two or more models consistent with the available information. The collection of these models is called the class of candidate models. Methods are developed for selecting the optimal member from a class of candidate models for the system. The optimal model depends on the available information, the selected class of candidate models, and the model use. Classical methods for model selection, including the method of maximum likelihood and Bayesian methods, as well as a method employing a decision-theoretic approach, are formulated to select the optimal model for numerous applications. There is no requirement that the candidate models be random. Classical methods for model selection ignore model use and require data to be available. Examples are used to show that these methods can be unreliable when data is limited. The decision-theoretic approach to model selection does not have these limitations, and model use is included through an appropriate utility function. This is especially important when modeling high risk systems, where the consequences of using an inappropriate model for the system can be disastrous. The decision-theoretic method for model selection is developed and applied for a series of complex and diverse applications. These include the selection of the: (1) optimal order of the polynomial chaos approximation for non-Gaussian random variables and stationary stochastic processes, (2) optimal pressure load model to be

  2. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    Science.gov (United States)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  3. APPLYING ARTIFICIAL INTELLIGENCE TECHNIQUES TO HUMAN-COMPUTER INTERFACES

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1988-01-01

    A description is given of UIMS (User Interface Management System), a system using a variety of artificial intelligence techniques to build knowledge-based user interfaces combining functionality and information from a variety of computer systems that maintain, test, and configure customer telephone...... and data networks. Three artificial intelligence (AI) techniques used in UIMS are discussed, namely, frame representation, object-oriented programming languages, and rule-based systems. The UIMS architecture is presented, and the structure of the UIMS is explained in terms of the AI techniques....

  4. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Directory of Open Access Journals (Sweden)

    A. Elshorbagy

    2010-10-01

    Full Text Available In this second part of the two-part paper, the data driven modeling (DDM experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs, genetic programming (GP, evolutionary polynomial regression (EPR, Support vector machines (SVM, M5 model trees (M5, K-nearest neighbors (K-nn, and multiple linear regression (MLR techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it

  5. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application

    Science.gov (United States)

    Elshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D. P.

    2010-10-01

    In this second part of the two-part paper, the data driven modeling (DDM) experiment, presented and explained in the first part, is implemented. Inputs for the five case studies (half-hourly actual evapotranspiration, daily peat soil moisture, daily till soil moisture, and two daily rainfall-runoff datasets) are identified, either based on previous studies or using the mutual information content. Twelve groups (realizations) were randomly generated from each dataset by randomly sampling without replacement from the original dataset. Neural networks (ANNs), genetic programming (GP), evolutionary polynomial regression (EPR), Support vector machines (SVM), M5 model trees (M5), K-nearest neighbors (K-nn), and multiple linear regression (MLR) techniques are implemented and applied to each of the 12 realizations of each case study. The predictive accuracy and uncertainties of the various techniques are assessed using multiple average overall error measures, scatter plots, frequency distribution of model residuals, and the deterioration rate of prediction performance during the testing phase. Gamma test is used as a guide to assist in selecting the appropriate modeling technique. Unlike two nonlinear soil moisture case studies, the results of the experiment conducted in this research study show that ANNs were a sub-optimal choice for the actual evapotranspiration and the two rainfall-runoff case studies. GP is the most successful technique due to its ability to adapt the model complexity to the modeled data. EPR performance could be close to GP with datasets that are more linear than nonlinear. SVM is sensitive to the kernel choice and if appropriately selected, the performance of SVM can improve. M5 performs very well with linear and semi linear data, which cover wide range of hydrological situations. In highly nonlinear case studies, ANNs, K-nn, and GP could be more successful than other modeling techniques. K-nn is also successful in linear situations, and it should

  6. Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2013-01-01

    The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...

  7. A new estimation technique of sovereign default risk

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Soytaş

    2016-12-01

    Full Text Available Using the fixed-point theorem, sovereign default models are solved by numerical value function iteration and calibration methods, which due to their computational constraints, greatly limits the models' quantitative performance and foregoes its country-specific quantitative projection ability. By applying the Hotz-Miller estimation technique (Hotz and Miller, 1993- often used in applied microeconometrics literature- to dynamic general equilibrium models of sovereign default, one can estimate the ex-ante default probability of economies, given the structural parameter values obtained from country-specific business-cycle statistics and relevant literature. Thus, with this technique we offer an alternative solution method to dynamic general equilibrium models of sovereign default to improve upon their quantitative inference ability.

  8. DEVELOPMENT OF RESERVOIR CHARACTERIZATION TECHNIQUES AND PRODUCTION MODELS FOR EXPLOITING NATURALLY FRACTURED RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Wiggins; Raymon L. Brown; Faruk Civan; Richard G. Hughes

    2002-12-31

    For many years, geoscientists and engineers have undertaken research to characterize naturally fractured reservoirs. Geoscientists have focused on understanding the process of fracturing and the subsequent measurement and description of fracture characteristics. Engineers have concentrated on the fluid flow behavior in the fracture-porous media system and the development of models to predict the hydrocarbon production from these complex systems. This research attempts to integrate these two complementary views to develop a quantitative reservoir characterization methodology and flow performance model for naturally fractured reservoirs. The research has focused on estimating naturally fractured reservoir properties from seismic data, predicting fracture characteristics from well logs, and developing a naturally fractured reservoir simulator. It is important to develop techniques that can be applied to estimate the important parameters in predicting the performance of naturally fractured reservoirs. This project proposes a method to relate seismic properties to the elastic compliance and permeability of the reservoir based upon a sugar cube model. In addition, methods are presented to use conventional well logs to estimate localized fracture information for reservoir characterization purposes. The ability to estimate fracture information from conventional well logs is very important in older wells where data are often limited. Finally, a desktop naturally fractured reservoir simulator has been developed for the purpose of predicting the performance of these complex reservoirs. The simulator incorporates vertical and horizontal wellbore models, methods to handle matrix to fracture fluid transfer, and fracture permeability tensors. This research project has developed methods to characterize and study the performance of naturally fractured reservoirs that integrate geoscience and engineering data. This is an important step in developing exploitation strategies for

  9. Using ecosystem modelling techniques in exposure assessments of radionuclides - an overview

    International Nuclear Information System (INIS)

    Kumblad, L.

    2005-01-01

    The risk to humans from potential releases from nuclear facilities is evaluated in safety assessments. Essential components of these assessments are exposure models, which estimate the transport of radionuclides in the environment, the uptake in biota, and transfer to humans. Recently, there has been a growing concern for radiological protection of the whole environment, not only humans, and a first attempt has been to employ model approaches based on stylized environments and transfer functions to biota based exclusively on bioconcentration factors (BCF). They are generally of a non-mechanistic nature and involve no knowledge of the actual processes involved, which is a severe limitation when assessing real ecosystems. in this paper, the possibility of using an ecological modelling approach as a complement or an alternative to the use of BCF-based models is discussed. The paper gives an overview of ecological and ecosystem modelling and examples of studies where ecosystem models have been used in association to ecological risk assessment studies for other pollutants than radionuclides. It also discusses the potential to use this technique in exposure assessments of radionuclides with a few examples from the safety assessment work performed by the Swedish nuclear fuel and waste management company (SKB). Finally there is a comparison of the characteristics of ecosystem models and traditionally exposure models for radionuclides used to estimate the radionuclide exposure of biota. The evaluation of ecosystem models already applied in safety assessments has shown that the ecosystem approach is possible to use to assess exposure to biota, and that it can handle many of the modelling problems identified related to BCF-models. The findings in this paper suggest that both national and international assessment frameworks for protection of the environment from ionising radiation would benefit from striving to adopt methodologies based on ecologically sound principles and

  10. Modeling techniques for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  11. Modeling techniques for quantum cascade lasers

    Science.gov (United States)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  12. Recent developments and evaluation of selected geochemical techniques applied to uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.; Cadigan, R.A.; Felmlee, J.K.; Reimer, G.M.; Spirakis, C.S.

    1976-01-01

    Various geochemical techniques for uranium exploration are currently under study by the geochemical techniques team of the Branch of Uranium and Thorium Resources, US Geological Survey. Radium-226 and its parent uranium-238 occur in mineral spring water largely independently of the geochemistry of the solutions and thus are potential indicators of uranium in source rocks. Many radioactive springs, hot or cold, are believed to be related to hydrothermal systems which contain uranium at depth. Radium, when present in the water, is co-precipitated in iron and/or manganese oxides and hydroxides or in barium sulphate associated with calcium carbonate spring deposits. Studies of surface water samples have resulted in improved standardized sample treatment and collection procedures. Stream discharge has been shown to have a significant effect on uranium concentration, while conductivity shows promise as a ''pathfinder'' for uranium. Turbid samples behave differently and consequently must be treated with more caution than samples from clear streams. Both water and stream sediments should be sampled concurrently, as anomalous uranium concentrations may occur in only one of these media and would be overlooked if only one, the wrong one, were analysed. The fission-track technique has been applied to uranium determinations in the above water studies. The advantages of the designed sample collecting system are that only a small quantity, typically one drop, of water is required and sample manipulation is minimized, thereby reducing contamination risks. The fission-track analytical technique is effective at the uranium concentration levels commonly found in natural waters (5.0-0.01 μg/litre). Landsat data were used to detect alteration associated with uranium deposits. Altered areas were detected but were not uniquely defined. Nevertheless, computer processing of Landsat data did suggest a smaller size target for further evaluation and thus is useful as an exploration tool

  13. EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS

    Directory of Open Access Journals (Sweden)

    Dezsi Eva

    2011-07-01

    Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.

  14. Inverse Optimization and Forecasting Techniques Applied to Decision-making in Electricity Markets

    DEFF Research Database (Denmark)

    Saez Gallego, Javier

    patterns that the load traditionally exhibited. On the other hand, this thesis is motivated by the decision-making processes of market players. In response to these challenges, this thesis provides mathematical models for decision-making under uncertainty in electricity markets. Demand-side bidding refers......This thesis deals with the development of new mathematical models that support the decision-making processes of market players. It addresses the problems of demand-side bidding, price-responsive load forecasting and reserve determination. From a methodological point of view, we investigate a novel...... approach to model the response of aggregate price-responsive load as a constrained optimization model, whose parameters are estimated from data by using inverse optimization techniques. The problems tackled in this dissertation are motivated, on one hand, by the increasing penetration of renewable energy...

  15. Point-source inversion techniques

    Science.gov (United States)

    Langston, Charles A.; Barker, Jeffrey S.; Pavlin, Gregory B.

    1982-11-01

    A variety of approaches for obtaining source parameters from waveform data using moment-tensor or dislocation point source models have been investigated and applied to long-period body and surface waves from several earthquakes. Generalized inversion techniques have been applied to data for long-period teleseismic body waves to obtain the orientation, time function and depth of the 1978 Thessaloniki, Greece, event, of the 1971 San Fernando event, and of several events associated with the 1963 induced seismicity sequence at Kariba, Africa. The generalized inversion technique and a systematic grid testing technique have also been used to place meaningful constraints on mechanisms determined from very sparse data sets; a single station with high-quality three-component waveform data is often sufficient to discriminate faulting type (e.g., strike-slip, etc.). Sparse data sets for several recent California earthquakes, for a small regional event associated with the Koyna, India, reservoir, and for several events at the Kariba reservoir have been investigated in this way. Although linearized inversion techniques using the moment-tensor model are often robust, even for sparse data sets, there are instances where the simplifying assumption of a single point source is inadequate to model the data successfully. Numerical experiments utilizing synthetic data and actual data for the 1971 San Fernando earthquake graphically demonstrate that severe problems may be encountered if source finiteness effects are ignored. These techniques are generally applicable to on-line processing of high-quality digital data, but source complexity and inadequacy of the assumed Green's functions are major problems which are yet to be fully addressed.

  16. Finite mixture model applied in the analysis of a turbulent bistable flow on two parallel circular cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Paula, A.V. de, E-mail: vagtinski@mecanica.ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Möller, S.V., E-mail: svmoller@ufrgs.br [PROMEC – Programa de Pós Graduação em Engenharia Mecânica, UFRGS – Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2013-11-15

    This paper presents a study of the bistable phenomenon which occurs in the turbulent flow impinging on circular cylinders placed side-by-side. Time series of axial and transversal velocity obtained with the constant temperature hot wire anemometry technique in an aerodynamic channel are used as input data in a finite mixture model, to classify the observed data according to a family of probability density functions. Wavelet transforms are applied to analyze the unsteady turbulent signals. Results of flow visualization show that the flow is predominantly two-dimensional. A double-well energy model is suggested to describe the behavior of the bistable phenomenon in this case. -- Highlights: ► Bistable flow on two parallel cylinders is studied with hot wire anemometry as a first step for the application on the analysis to tube bank flow. ► The method of maximum likelihood estimation is applied to hot wire experimental series to classify the data according to PDF functions in a mixture model approach. ► Results show no evident correlation between the changes of flow modes with time. ► An energy model suggests the presence of more than two flow modes.

  17. Verification Techniques for Parameter Selection and Bayesian Model Calibration Presented for an HIV Model

    Science.gov (United States)

    Wentworth, Mami Tonoe

    Uncertainty quantification plays an important role when making predictive estimates of model responses. In this context, uncertainty quantification is defined as quantifying and reducing uncertainties, and the objective is to quantify uncertainties in parameter, model and measurements, and propagate the uncertainties through the model, so that one can make a predictive estimate with quantified uncertainties. Two of the aspects of uncertainty quantification that must be performed prior to propagating uncertainties are model calibration and parameter selection. There are several efficient techniques for these processes; however, the accuracy of these methods are often not verified. This is the motivation for our work, and in this dissertation, we present and illustrate verification frameworks for model calibration and parameter selection in the context of biological and physical models. First, HIV models, developed and improved by [2, 3, 8], describe the viral infection dynamics of an HIV disease. These are also used to make predictive estimates of viral loads and T-cell counts and to construct an optimal control for drug therapy. Estimating input parameters is an essential step prior to uncertainty quantification. However, not all the parameters are identifiable, implying that they cannot be uniquely determined by the observations. These unidentifiable parameters can be partially removed by performing parameter selection, a process in which parameters that have minimal impacts on the model response are determined. We provide verification techniques for Bayesian model calibration and parameter selection for an HIV model. As an example of a physical model, we employ a heat model with experimental measurements presented in [10]. A steady-state heat model represents a prototypical behavior for heat conduction and diffusion process involved in a thermal-hydraulic model, which is a part of nuclear reactor models. We employ this simple heat model to illustrate verification

  18. Rare event techniques applied in the Rasmussen study

    International Nuclear Information System (INIS)

    Vesely, W.E.

    1977-01-01

    The Rasmussen Study estimated public risks from commercial nuclear power plant accidents, and therefore the statistics of rare events had to be treated. Two types of rare events were specifically handled, those rare events which were probabilistically rare events and those which were statistically rare events. Four techniques were used to estimate probabilities of rare events. These techniques were aggregating data samples, discretizing ''continuous'' events, extrapolating from minor to catastrophic severities, and decomposing events using event trees and fault trees. In aggregating or combining data the goal was to enlarge the data sample so that the rare event was no longer rare, i.e., so that the enlarged data sample contained one or more occurrences of the event of interest. This aggregation gave rise to random variable treatments of failure rates, occurrence frequencies, and other characteristics estimated from data. This random variable treatment can be interpreted as being comparable to an empirical Bayes technique or a Bayesian technique. In the discretizing event technique, events of a detailed nature were grouped together into a grosser event for purposes of analysis as well as for data collection. The treatment of data characteristics as random variables helped to account for the uncertainties arising from this discretizing. In the severity extrapolation technique a severity variable was associated with each event occurrence for the purpose of predicting probabilities of catastrophic occurrences. Tail behaviors of distributions therefore needed to be considered. Finally, event trees and fault trees were used to express accident occurrences and system failures in terms of more basic events for which data existed. Common mode failures and general dependencies therefore needed to be treated. 2 figures

  19. Structural Modeling Using "Scanning and Mapping" Technique

    Science.gov (United States)

    Amos, Courtney L.; Dash, Gerald S.; Shen, J. Y.; Ferguson, Frederick; Noga, Donald F. (Technical Monitor)

    2000-01-01

    Supported by NASA Glenn Center, we are in the process developing a structural damage diagnostic and monitoring system for rocket engines, which consists of five modules: Structural Modeling, Measurement Data Pre-Processor, Structural System Identification, Damage Detection Criterion, and Computer Visualization. The function of the system is to detect damage as it is incurred by the engine structures. The scientific principle to identify damage is to utilize the changes in the vibrational properties between the pre-damaged and post-damaged structures. The vibrational properties of the pre-damaged structure can be obtained based on an analytic computer model of the structure. Thus, as the first stage of the whole research plan, we currently focus on the first module - Structural Modeling. Three computer software packages are selected, and will be integrated for this purpose. They are PhotoModeler-Pro, AutoCAD-R14, and MSC/NASTRAN. AutoCAD is the most popular PC-CAD system currently available in the market. For our purpose, it plays like an interface to generate structural models of any particular engine parts or assembly, which is then passed to MSC/NASTRAN for extracting structural dynamic properties. Although AutoCAD is a powerful structural modeling tool, the complexity of engine components requires a further improvement in structural modeling techniques. We are working on a so-called "scanning and mapping" technique, which is a relatively new technique. The basic idea is to producing a full and accurate 3D structural model by tracing on multiple overlapping photographs taken from different angles. There is no need to input point positions, angles, distances or axes. Photographs can be taken by any types of cameras with different lenses. With the integration of such a modeling technique, the capability of structural modeling will be enhanced. The prototypes of any complex structural components will be produced by PhotoModeler first based on existing similar

  20. Estimation of water quality parameters applying satellite data fusion and mining techniques in the lake Albufera de Valencia (Spain)

    Science.gov (United States)

    Doña, Carolina; Chang, Ni-Bin; Vannah, Benjamin W.; Sánchez, Juan Manuel; Delegido, Jesús; Camacho, Antonio; Caselles, Vicente

    2014-05-01

    Linked to the enforcement of the European Water Framework Directive (2000) (WFD), which establishes that all countries of the European Union have to avoid deterioration, improve and retrieve the status of the water bodies, and maintain their good ecological status, several remote sensing studies have been carried out to monitor and understand the water quality variables trend. Lake Albufera de Valencia (Spain) is a hypereutrophic system that can present chrorophyll a concentrations over 200 mg·m-3 and transparency (Secchi disk) values below 20 cm, needing to retrieve and improve its water quality. The principal aim of our work was to develop algorithms to estimate water quality parameters such as chlorophyll a concentration and water transparency, which are informative of the eutrophication and ecological status, using remote sensing data. Remote sensing data from Terra/MODIS, Landsat 5-TM and Landsat 7-ETM+ images were used to carry out this study. Landsat images are useful to analyze the spatial variability of the water quality variables, as well as to monitor small to medium size water bodies due to its 30-m spatial resolution. But, the poor temporal resolution of Landsat, with a 16-day revisit time, is an issue. In this work we tried to solve this data gap by applying fusion techniques between Landsat and MODIS images. Although the lower spatial resolution of MODIS is 250/500-m, one image per day is available. Thus, synthetic Landsat images were created using data fusion for no data acquisition dates. Good correlation values were obtained when comparing original and synthetic Landsat images. Genetic programming was used to develop models for predicting water quality. Using the reflectance bands of the synthetic Landsat images as inputs to the model, values of R2 = 0.94 and RMSE = 8 mg·m-3 were obtained when comparing modeled and observed values of chlorophyll a, and values of R2= 0.91 and RMSE = 4 cm for the transparency (Secchi disk). Finally, concentration

  1. Comparison of two multiaxial fatigue models applied to dental implants

    Directory of Open Access Journals (Sweden)

    JM. Ayllon

    2015-07-01

    Full Text Available This paper presents two multiaxial fatigue life prediction models applied to a commercial dental implant. One model is called Variable Initiation Length Model and takes into account both the crack initiation and propagation phases. The second model combines the Theory of Critical Distance with a critical plane damage model to characterise the initiation and initial propagation of micro/meso cracks in the material. This paper discusses which material properties are necessary for the implementation of these models and how to obtain them in the laboratory from simple test specimens. It also describes the FE models developed for the stress/strain and stress intensity factor characterisation in the implant. The results of applying both life prediction models are compared with experimental results arising from the application of ISO-14801 standard to a commercial dental implant.

  2. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    Energy Technology Data Exchange (ETDEWEB)

    Zarzalejo, L.F.; Ramirez, L.; Polo, J. [DER-CIEMAT, Madrid (Spain). Renewable Energy Dept.

    2005-07-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models. (author)

  3. Artificial intelligence techniques applied to hourly global irradiance estimation from satellite-derived cloud index

    International Nuclear Information System (INIS)

    Zarzalejo, Luis F.; Ramirez, Lourdes; Polo, Jesus

    2005-01-01

    Artificial intelligence techniques, such as fuzzy logic and neural networks, have been used for estimating hourly global radiation from satellite images. The models have been fitted to measured global irradiance data from 15 Spanish terrestrial stations. Both satellite imaging data and terrestrial information from the years 1994, 1995 and 1996 were used. The results of these artificial intelligence models were compared to a multivariate regression based upon Heliosat I model. A general better behaviour was observed for the artificial intelligence models

  4. Time-series-analysis techniques applied to nuclear-material accounting

    International Nuclear Information System (INIS)

    Pike, D.H.; Morrison, G.W.; Downing, D.J.

    1982-05-01

    This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother

  5. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  6. Applying the GNSS Volcanic Ash Plume Detection Technique to Consumer Navigation Receivers

    Science.gov (United States)

    Rainville, N.; Palo, S.; Larson, K. M.

    2017-12-01

    Global Navigation Satellite Systems (GNSS) such as the Global Positioning System (GPS) rely on predictably structured and constant power RF signals to fulfill their primary use for navigation and timing. When the received strength of GNSS signals deviates from the expected baseline, it is typically due to a change in the local environment. This can occur when signal reflections from the ground are modified by changes in snow or soil moisture content, as well as by attenuation of the signal from volcanic ash. This effect allows GNSS signals to be used as a source for passive remote sensing. Larson et al. (2017) have developed a detection technique for volcanic ash plumes based on the attenuation seen at existing geodetic GNSS sites. Since these existing networks are relatively sparse, this technique has been extended to use lower cost consumer GNSS receiver chips to enable higher density measurements of volcanic ash. These low-cost receiver chips have been integrated into a fully stand-alone sensor, with independent power, communications, and logging capabilities as part of a Volcanic Ash Plume Receiver (VAPR) network. A mesh network of these sensors transmits data to a local base-station which then streams the data real-time to a web accessible server. Initial testing of this sensor network has uncovered that a different detection approach is necessary when using consumer GNSS receivers and antennas. The techniques to filter and process the lower quality data from consumer receivers will be discussed and will be applied to initial results from a functioning VAPR network installation.

  7. Applying MDA to SDR for Space to Model Real-time Issues

    Science.gov (United States)

    Blaser, Tammy M.

    2007-01-01

    NASA space communications systems have the challenge of designing SDRs with highly-constrained Size, Weight and Power (SWaP) resources. A study is being conducted to assess the effectiveness of applying the MDA Platform-Independent Model (PIM) and one or more Platform-Specific Models (PSM) specifically to address NASA space domain real-time issues. This paper will summarize our experiences with applying MDA to SDR for Space to model real-time issues. Real-time issues to be examined, measured, and analyzed are: meeting waveform timing requirements and efficiently applying Real-time Operating System (RTOS) scheduling algorithms, applying safety control measures, and SWaP verification. Real-time waveform algorithms benchmarked with the worst case environment conditions under the heaviest workload will drive the SDR for Space real-time PSM design.

  8. Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model

    International Nuclear Information System (INIS)

    Wu, Jie; Wang, Jianzhou; Lu, Haiyan; Dong, Yao; Lu, Xiaoxiao

    2013-01-01

    Highlights: ► The seasonal and trend items of the data series are forecasted separately. ► Seasonal item in the data series is verified by the Kendall τ correlation testing. ► Different regression models are applied to the trend item forecasting. ► We examine the superiority of the combined models by the quartile value comparison. ► Paired-sample T test is utilized to confirm the superiority of the combined models. - Abstract: For an energy-limited economy system, it is crucial to forecast load demand accurately. This paper devotes to 1-week-ahead daily load forecasting approach in which load demand series are predicted by employing the information of days before being similar to that of the forecast day. As well as in many nonlinear systems, seasonal item and trend item are coexisting in load demand datasets. In this paper, the existing of the seasonal item in the load demand data series is firstly verified according to the Kendall τ correlation testing method. Then in the belief of the separate forecasting to the seasonal item and the trend item would improve the forecasting accuracy, hybrid models by combining seasonal exponential adjustment method (SEAM) with the regression methods are proposed in this paper, where SEAM and the regression models are employed to seasonal and trend items forecasting respectively. Comparisons of the quartile values as well as the mean absolute percentage error values demonstrate this forecasting technique can significantly improve the accuracy though models applied to the trend item forecasting are eleven different ones. This superior performance of this separate forecasting technique is further confirmed by the paired-sample T tests

  9. Creep lifing methodologies applied to a single crystal superalloy by use of small scale test techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeffs, S.P., E-mail: s.p.jeffs@swansea.ac.uk [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Lancaster, R.J. [Institute of Structural Materials, Swansea University, Singleton Park SA2 8PP (United Kingdom); Garcia, T.E. [IUTA (University Institute of Industrial Technology of Asturias), University of Oviedo, Edificio Departamental Oeste 7.1.17, Campus Universitario, 33203 Gijón (Spain)

    2015-06-11

    In recent years, advances in creep data interpretation have been achieved either by modified Monkman–Grant relationships or through the more contemporary Wilshire equations, which offer the opportunity of predicting long term behaviour extrapolated from short term results. Long term lifing techniques prove extremely useful in creep dominated applications, such as in the power generation industry and in particular nuclear where large static loads are applied, equally a reduction in lead time for new alloy implementation within the industry is critical. The latter requirement brings about the utilisation of the small punch (SP) creep test, a widely recognised approach for obtaining useful mechanical property information from limited material volumes, as is typically the case with novel alloy development and for any in-situ mechanical testing that may be required. The ability to correlate SP creep results with uniaxial data is vital when considering the benefits of the technique. As such an equation has been developed, known as the k{sub SP} method, which has been proven to be an effective tool across several material systems. The current work now explores the application of the aforementioned empirical approaches to correlate small punch creep data obtained on a single crystal superalloy over a range of elevated temperatures. Finite element modelling through ABAQUS software based on the uniaxial creep data has also been implemented to characterise the SP deformation and help corroborate the experimental results.

  10. How Can Synchrotron Radiation Techniques Be Applied for Detecting Microstructures in Amorphous Alloys?

    Directory of Open Access Journals (Sweden)

    Gu-Qing Guo

    2015-11-01

    Full Text Available In this work, how synchrotron radiation techniques can be applied for detecting the microstructure in metallic glass (MG is studied. The unit cells are the basic structural units in crystals, though it has been suggested that the co-existence of various clusters may be the universal structural feature in MG. Therefore, it is a challenge to detect microstructures of MG even at the short-range scale by directly using synchrotron radiation techniques, such as X-ray diffraction and X-ray absorption methods. Here, a feasible scheme is developed where some state-of-the-art synchrotron radiation-based experiments can be combined with simulations to investigate the microstructure in MG. By studying a typical MG composition (Zr70Pd30, it is found that various clusters do co-exist in its microstructure, and icosahedral-like clusters are the popular structural units. This is the structural origin where there is precipitation of an icosahedral quasicrystalline phase prior to phase transformation from glass to crystal when heating Zr70Pd30 MG.

  11. IMAGE-BASED MODELING TECHNIQUES FOR ARCHITECTURAL HERITAGE 3D DIGITALIZATION: LIMITS AND POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    C. Santagati

    2013-07-01

    Full Text Available 3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS, the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases to large scale buildings for practitioner purpose.

  12. Adaptive subdomain modeling: A multi-analysis technique for ocean circulation models

    Science.gov (United States)

    Altuntas, Alper; Baugh, John

    2017-07-01

    Many coastal and ocean processes of interest operate over large temporal and geographical scales and require a substantial amount of computational resources, particularly when engineering design and failure scenarios are also considered. This study presents an adaptive multi-analysis technique that improves the efficiency of these computations when multiple alternatives are being simulated. The technique, called adaptive subdomain modeling, concurrently analyzes any number of child domains, with each instance corresponding to a unique design or failure scenario, in addition to a full-scale parent domain providing the boundary conditions for its children. To contain the altered hydrodynamics originating from the modifications, the spatial extent of each child domain is adaptively adjusted during runtime depending on the response of the model. The technique is incorporated in ADCIRC++, a re-implementation of the popular ADCIRC ocean circulation model with an updated software architecture designed to facilitate this adaptive behavior and to utilize concurrent executions of multiple domains. The results of our case studies confirm that the method substantially reduces computational effort while maintaining accuracy.

  13. Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach

    Science.gov (United States)

    Denolle, M.; Van Houtte, C.

    2017-12-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.

  14. Model Proposition for the Fiscal Policies Analysis Applied in Economic Field

    Directory of Open Access Journals (Sweden)

    Larisa Preda

    2007-05-01

    Full Text Available This paper presents a study about fiscal policy applied in economic development. Correlations between macroeconomics and fiscal indicators signify the first steep in our analysis. Next step is a new model proposal for the fiscal and budgetary choices. This model is applied on the date of the Romanian case.

  15. Personnel Audit Using a Forensic Mining Technique

    OpenAIRE

    Adesesan B. Adeyemo; Oluwafemi Oriola

    2010-01-01

    This paper applies forensic data mining to determine the true status of employees and thereafter provide useful evidences for proper administration of administrative rules in a Typical Nigerian Teaching Service. The conventional technique of personnel audit was studied and a new technique for personnel audit was modeled using Artificial Neural Networks and Decision Tree algorithms. Atwo-layer classifier architecture was modeled. The outcome of the experiment proved that Radial Basis Function ...

  16. Model techniques for testing heated concrete structures

    International Nuclear Information System (INIS)

    Stefanou, G.D.

    1983-01-01

    Experimental techniques are described which may be used in the laboratory to measure strains of model concrete structures representing to scale actual structures of any shape or geometry, operating at elevated temperatures, for which time-dependent creep and shrinkage strains are dominant. These strains could be used to assess the distribution of stress in the scaled structure and hence to predict the actual behaviour of concrete structures used in nuclear power stations. Similar techniques have been employed in an investigation to measure elastic, thermal, creep and shrinkage strains in heated concrete models representing to scale parts of prestressed concrete pressure vessels for nuclear reactors. (author)

  17. Spectral deformation techniques applied to the study of quantum statistical irreversible processes

    International Nuclear Information System (INIS)

    Courbage, M.

    1978-01-01

    A procedure of analytic continuation of the resolvent of Liouville operators for quantum statistical systems is discussed. When applied to the theory of irreversible processes of the Brussels School, this method supports the idea that the restriction to a class of initial conditions is necessary to obtain an irreversible behaviour. The general results are tested on the Friedrichs model. (Auth.)

  18. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  19. Numerical model updating technique for structures using firefly algorithm

    Science.gov (United States)

    Sai Kubair, K.; Mohan, S. C.

    2018-03-01

    Numerical model updating is a technique used for updating the existing experimental models for any structures related to civil, mechanical, automobiles, marine, aerospace engineering, etc. The basic concept behind this technique is updating the numerical models to closely match with experimental data obtained from real or prototype test structures. The present work involves the development of numerical model using MATLAB as a computational tool and with mathematical equations that define the experimental model. Firefly algorithm is used as an optimization tool in this study. In this updating process a response parameter of the structure has to be chosen, which helps to correlate the numerical model developed with the experimental results obtained. The variables for the updating can be either material or geometrical properties of the model or both. In this study, to verify the proposed technique, a cantilever beam is analyzed for its tip deflection and a space frame has been analyzed for its natural frequencies. Both the models are updated with their respective response values obtained from experimental results. The numerical results after updating show that there is a close relationship that can be brought between the experimental and the numerical models.

  20. Applying Quality Function Deployment Model in Burn Unit Service Improvement.

    Science.gov (United States)

    Keshtkaran, Ali; Hashemi, Neda; Kharazmi, Erfan; Abbasi, Mehdi

    2016-01-01

    Quality function deployment (QFD) is one of the most effective quality design tools. This study applies QFD technique to improve the quality of the burn unit services in Ghotbedin Hospital in Shiraz, Iran. First, the patients' expectations of burn unit services and their priorities were determined through Delphi method. Thereafter, burn unit service specifications were determined through Delphi method. Further, the relationships between the patients' expectations and service specifications and also the relationships between service specifications were determined through an expert group's opinion. Last, the final importance scores of service specifications were calculated through simple additive weighting method. The findings show that burn unit patients have 40 expectations in six different areas. These expectations are in 16 priority levels. Burn units also have 45 service specifications in six different areas. There are four-level relationships between the patients' expectations and service specifications and four-level relationships between service specifications. The most important burn unit service specifications have been identified in this study. The QFD model developed in the study can be a general guideline for QFD planners and executives.

  1. Modeling in applied sciences a kinetic theory approach

    CERN Document Server

    Pulvirenti, Mario

    2000-01-01

    Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process Topics and Features * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker–Doring equations * Nonlinear kinetic models with chemical reactions * Kinet...

  2. The Limitations of Applying Rational Decision-Making Models

    African Journals Online (AJOL)

    decision-making models as applied to child spacing and more. specificaDy to the use .... also assumes that the individual operates as a rational decision- making organism in ..... work involves: Motivation; Counselling; Distribution ofIEC mate-.

  3. Nonlinear Model-Based Predictive Control applied to Large Scale Cryogenic Facilities

    CERN Document Server

    Blanco Vinuela, Enrique; de Prada Moraga, Cesar

    2001-01-01

    The thesis addresses the study, analysis, development, and finally the real implementation of an advanced control system for the 1.8 K Cooling Loop of the LHC (Large Hadron Collider) accelerator. The LHC is the next accelerator being built at CERN (European Center for Nuclear Research), it will use superconducting magnets operating below a temperature of 1.9 K along a circumference of 27 kilometers. The temperature of these magnets is a control parameter with strict operating constraints. The first control implementations applied a procedure that included linear identification, modelling and regulation using a linear predictive controller. It did improve largely the overall performance of the plant with respect to a classical PID regulator, but the nature of the cryogenic processes pointed out the need of a more adequate technique, such as a nonlinear methodology. This thesis is a first step to develop a global regulation strategy for the overall control of the LHC cells when they will operate simultaneously....

  4. Unified Modeling of Discrete Event and Control Systems Applied in Manufacturing

    Directory of Open Access Journals (Sweden)

    Amanda Arêas de Souza

    2015-05-01

    Full Text Available For the development of both a simulation modeland a control system, it is necessary to build, inadvance, a conceptual model. This is what isusually suggested by the methodologies applied inprojects of this nature. Some conceptual modelingtechniques allow for a better understanding ofthe simulation model, and a clear descriptionof the logic of control systems. Therefore, thispaper aims to present and evaluate conceptuallanguages for unified modeling of models ofdiscrete event simulation and control systemsapplied in manufacturing. The results show thatthe IDEF-SIM language can be applied both insimulation systems and in process control.

  5. Efficiency assessment of runoff harvesting techniques using a 3D coupled surface-subsurface hydrological model

    International Nuclear Information System (INIS)

    Verbist, K.; Cronelis, W. M.; McLaren, R.; Gabriels, D.; Soto, G.

    2009-01-01

    In arid and semi-arid zones runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Both in literature and in the field, a large variety of runoff collecting systems are found, as well as large variations in design and dimensions. Therefore, detailed measurements were performed on a semi-arid slope in central Chile to allow identification of the effect of a simple water harvesting technique on soil water availability. For this purpose, twenty two TDR-probes were installed and were monitored continuously during and after a simulated rainfall event. These data were used to calibrate the 3D distributed flow model HydroGeoSphere, to assess the runoff components and soil water retention as influenced by the water harvesting technique, both under simulated and natural rainfall conditions. (Author) 6 refs.

  6. Ion backscattering techniques applied in materials science research

    International Nuclear Information System (INIS)

    Sood, D.K.

    1978-01-01

    The applications of Ion Backscattering Technique (IBT) to material analysis have expanded rapidly during the last decade. It is now regarded as an analysis tool indispensable for a versatile materials research program. The technique consists of simply shooting a beam of monoenergetic ions (usually 4 He + ions at about 2 MeV) onto a target, and measuring their energy distribution after backscattering at a fixed angle. Simple Rutherford scattering analysis of the backscattered ion spectrum yields information on the mass, the absolute amount and the depth profile of elements present upto a few microns of the target surface. The technique is nondestructive, quick, quantitative and the only known method of analysis which gives quantitative results without recourse to calibration standards. Its major limitations are the inability to separate elements of similar mass and a complete absence of chemical-binding information. A typical experimental set up and spectrum analysis have been described. Examples, some of them based on the work at the Bhabha Atomic Research Centre, Bombay, have been given to illustrate the applications of this technique to semiconductor technology, thin film materials science and nuclear energy materials. Limitations of IBT have been illustrated and a few remedies to partly overcome these limitations are presented. (auth.)

  7. Markov chain Monte Carlo techniques applied to parton distribution functions determination: Proof of concept

    Science.gov (United States)

    Gbedo, Yémalin Gabin; Mangin-Brinet, Mariane

    2017-07-01

    We present a new procedure to determine parton distribution functions (PDFs), based on Markov chain Monte Carlo (MCMC) methods. The aim of this paper is to show that we can replace the standard χ2 minimization by procedures grounded on statistical methods, and on Bayesian inference in particular, thus offering additional insight into the rich field of PDFs determination. After a basic introduction to these techniques, we introduce the algorithm we have chosen to implement—namely Hybrid (or Hamiltonian) Monte Carlo. This algorithm, initially developed for Lattice QCD, turns out to be very interesting when applied to PDFs determination by global analyses; we show that it allows us to circumvent the difficulties due to the high dimensionality of the problem, in particular concerning the acceptance. A first feasibility study is performed and presented, which indicates that Markov chain Monte Carlo can successfully be applied to the extraction of PDFs and of their uncertainties.

  8. Model order reduction techniques with applications in finite element analysis

    CERN Document Server

    Qu, Zu-Qing

    2004-01-01

    Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...

  9. Enhanced performance of CdS/CdTe thin-film devices through temperature profiling techniques applied to close-spaced sublimation deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiaonan Li; Sheldon, P.; Moutinho, H.; Matson, R. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    The authors describe a methodology developed and applied to the close-spaced sublimation technique for thin-film CdTe deposition. The developed temperature profiles consisted of three discrete temperature segments, which the authors called the nucleation, plugging, and annealing temperatures. They have demonstrated that these temperature profiles can be used to grow large-grain material, plug pinholes, and improve CdS/CdTe photovoltaic device performance by about 15%. The improved material and device properties have been obtained while maintaining deposition temperatures compatible with commercially available substrates. This temperature profiling technique can be easily applied to a manufacturing environment by adjusting the temperature as a function of substrate position instead of time.

  10. Model-checking techniques based on cumulative residuals.

    Science.gov (United States)

    Lin, D Y; Wei, L J; Ying, Z

    2002-03-01

    Residuals have long been used for graphical and numerical examinations of the adequacy of regression models. Conventional residual analysis based on the plots of raw residuals or their smoothed curves is highly subjective, whereas most numerical goodness-of-fit tests provide little information about the nature of model misspecification. In this paper, we develop objective and informative model-checking techniques by taking the cumulative sums of residuals over certain coordinates (e.g., covariates or fitted values) or by considering some related aggregates of residuals, such as moving sums and moving averages. For a variety of statistical models and data structures, including generalized linear models with independent or dependent observations, the distributions of these stochastic processes tinder the assumed model can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be easily generated by computer simulation. Each observed process can then be compared, both graphically and numerically, with a number of realizations from the Gaussian process. Such comparisons enable one to assess objectively whether a trend seen in a residual plot reflects model misspecification or natural variation. The proposed techniques are particularly useful in checking the functional form of a covariate and the link function. Illustrations with several medical studies are provided.

  11. Applied research in uncertainty modeling and analysis

    CERN Document Server

    Ayyub, Bilal

    2005-01-01

    Uncertainty has been a concern to engineers, managers, and scientists for many years. For a long time uncertainty has been considered synonymous with random, stochastic, statistic, or probabilistic. Since the early sixties views on uncertainty have become more heterogeneous. In the past forty years numerous tools that model uncertainty, above and beyond statistics, have been proposed by several engineers and scientists. The tool/method to model uncertainty in a specific context should really be chosen by considering the features of the phenomenon under consideration, not independent of what is known about the system and what causes uncertainty. In this fascinating overview of the field, the authors provide broad coverage of uncertainty analysis/modeling and its application. Applied Research in Uncertainty Modeling and Analysis presents the perspectives of various researchers and practitioners on uncertainty analysis and modeling outside their own fields and domain expertise. Rather than focusing explicitly on...

  12. AN ACCURACY ASSESSMENT OF GEOREFERENCED POINT CLOUDS PRODUCED VIA MULTI-VIEW STEREO TECHNIQUES APPLIED TO IMAGERY ACQUIRED VIA UNMANNED AERIAL VEHICLE

    Directory of Open Access Journals (Sweden)

    S. Harwin

    2012-08-01

    Full Text Available Low-cost Unmanned Aerial Vehicles (UAVs are becoming viable environmental remote sensing tools. Sensor and battery technology is expanding the data capture opportunities. The UAV, as a close range remote sensing platform, can capture high resolution photography on-demand. This imagery can be used to produce dense point clouds using multi-view stereopsis techniques (MVS combining computer vision and photogrammetry. This study examines point clouds produced using MVS techniques applied to UAV and terrestrial photography. A multi-rotor micro UAV acquired aerial imagery from a altitude of approximately 30–40 m. The point clouds produced are extremely dense (<1–3 cm point spacing and provide a detailed record of the surface in the study area, a 70 m section of sheltered coastline in southeast Tasmania. Areas with little surface texture were not well captured, similarly, areas with complex geometry such as grass tussocks and woody scrub were not well mapped. The process fails to penetrate vegetation, but extracts very detailed terrain in unvegetated areas. Initially the point clouds are in an arbitrary coordinate system and need to be georeferenced. A Helmert transformation is applied based on matching ground control points (GCPs identified in the point clouds to GCPs surveying with differential GPS. These point clouds can be used, alongside laser scanning and more traditional techniques, to provide very detailed and precise representations of a range of landscapes at key moments. There are many potential applications for the UAV-MVS technique, including coastal erosion and accretion monitoring, mine surveying and other environmental monitoring applications. For the generated point clouds to be used in spatial applications they need to be converted to surface models that reduce dataset size without loosing too much detail. Triangulated meshes are one option, another is Poisson Surface Reconstruction. This latter option makes use of point normal

  13. 2012 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Crone, Wendy; Jin, Helena; Sciammarella, Cesar; Furlong, Cosme; Furlong, Cosme; Chalivendra, Vijay; Song, Bo; Casem, Daniel; Antoun, Bonnie; Qi, H; Hall, Richard; Tandon, GP; Lu, Hongbing; Lu, Charles; Yoshida, Sanichiro; Shaw, Gordon; Prorok, Barton; Barthelat, François; Korach, Chad; Grande-Allen, K; Lipke, Elizabeth; Lykofatitits, George; Zavattieri, Pablo; Starman, LaVern; Patterson, Eann; Backman, David; Cloud, Gary; Vol.1 Dynamic Behavior of Materials; Vol.2 Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Vol.3 Imaging Methods for Novel Materials and Challenging Applications; Vol.4 Experimental and Applied Mechanics; Vol.5 Mechanics of Biological Systems and Materials; Vol.6 MEMS and Nanotechnology; Vol.7 Composite Materials and Joining Technologies for Composites

    2013-01-01

    Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on:  Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites.

  14. A Strategy Modelling Technique for Financial Services

    OpenAIRE

    Heinrich, Bernd; Winter, Robert

    2004-01-01

    Strategy planning processes often suffer from a lack of conceptual models that can be used to represent business strategies in a structured and standardized form. If natural language is replaced by an at least semi-formal model, the completeness, consistency, and clarity of strategy descriptions can be drastically improved. A strategy modelling technique is proposed that is based on an analysis of modelling requirements, a discussion of related work and a critical analysis of generic approach...

  15. Digital prototyping technique applied for redesigning plastic products

    Science.gov (United States)

    Pop, A.; Andrei, A.

    2015-11-01

    After products are on the market for some time, they often need to be redesigned to meet new market requirements. New products are generally derived from similar but outdated products. Redesigning a product is an important part of the production and development process. The purpose of this paper is to show that using modern technology, like Digital Prototyping in industry is an effective way to produce new products. This paper tries to demonstrate and highlight the effectiveness of the concept of Digital Prototyping, both to reduce the design time of a new product, but also the costs required for implementing this step. The results of this paper show that using Digital Prototyping techniques in designing a new product from an existing one available on the market mould offers a significantly manufacturing time and cost reduction. The ability to simulate and test a new product with modern CAD-CAM programs in all aspects of production (designing of the 3D model, simulation of the structural resistance, analysis of the injection process and beautification) offers a helpful tool for engineers. The whole process can be realised by one skilled engineer very fast and effective.

  16. Modeling rainfall-runoff process using soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal; Tombul, Mustafa

    2013-02-01

    Rainfall-runoff process was modeled for a small catchment in Turkey, using 4 years (1987-1991) of measurements of independent variables of rainfall and runoff values. The models used in the study were Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Gene Expression Programming (GEP) which are Artificial Intelligence (AI) approaches. The applied models were trained and tested using various combinations of the independent variables. The goodness of fit for the model was evaluated in terms of the coefficient of determination (R2), root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and scatter index (SI). A comparison was also made between these models and traditional Multi Linear Regression (MLR) model. The study provides evidence that GEP (with RMSE=17.82 l/s, MAE=6.61 l/s, CE=0.72 and R2=0.978) is capable of modeling rainfall-runoff process and is a viable alternative to other applied artificial intelligence and MLR time-series methods.

  17. Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea

    International Nuclear Information System (INIS)

    Palit, Mousumi; Tudu, Bipan; Bhattacharyya, Nabarun; Dutta, Ankur; Dutta, Pallab Kumar; Jana, Arun; Bandyopadhyay, Rajib; Chatterjee, Anutosh

    2010-01-01

    In an electronic tongue, preprocessing on raw data precedes pattern analysis and choice of the appropriate preprocessing technique is crucial for the performance of the pattern classifier. While attempting to classify different grades of black tea using a voltammetric electronic tongue, different preprocessing techniques have been explored and a comparison of their performances is presented in this paper. The preprocessing techniques are compared first by a quantitative measurement of separability followed by principle component analysis; and then two different supervised pattern recognition models based on neural networks are used to evaluate the performance of the preprocessing techniques.

  18. Reduced order modelling techniques for mesh movement strategies as applied to fluid structure interactions

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2010-01-01

    Full Text Available of Laplacian or Bi-harmonic equations [7], radial basis function (RBF) interpolation [3, 15] or through mesh optimization [1, 6]. Despite the successes of these algorithms in reducing the frequency and necessity for re- meshing, they still account for a... simulations of a real system. What makes POD remarkable is that the selected modes are not only appropriate but make up the optimal linear basis for describing any given system. POD has been applied in a wide range of disciplines including image processing...

  19. Application of the Lorentz-transform technique to meson photoproduction

    International Nuclear Information System (INIS)

    Reiss, C.; Leidemann, W.; Orlandini, G.; Tomusiak, E.L.

    2003-01-01

    We show that the Lorentz integral transform (LIT) technique which has been successfully applied to photoreactions in light nuclei can also be applied to photoreactions involving particle production. A simple model where results are easily calculable in the traditional fashion is used to test the technique. Specifically, we compute inclusive π + photoproduction from deuterium for photon energies less than 200 MeV using a Yamaguchi model for the NN interaction. It is demonstrated that, although the response functions for inclusive meson production do not have favourable asymptotic behavior, one can nonetheless extract them by inversion of the transform. The implication is that one can treat realistic problems of photo-meson production, including all final-state interactions, by means of the LIT technique. (orig.)

  20. Small area estimation of obesity prevalence and dietary patterns: a model applied to Rio de Janeiro city, Brazil.

    Science.gov (United States)

    Cataife, Guido

    2014-03-01

    We propose the use of previously developed small area estimation techniques to monitor obesity and dietary habits in developing countries and apply the model to Rio de Janeiro city. We estimate obesity prevalence rates at the Census Tract through a combinatorial optimization spatial microsimulation model that matches body mass index and socio-demographic data in Brazil's 2008-9 family expenditure survey with Census 2010 socio-demographic data. Obesity ranges from 8% to 25% in most areas and affects the poor almost as much as the rich. Male and female obesity rates are uncorrelated at the small area level. The model is an effective tool to understand the complexity of the problem and to aid in policy design. © 2013 Published by Elsevier Ltd.

  1. Computational modeling applied to stress gradient analysis for metallic alloys

    International Nuclear Information System (INIS)

    Iglesias, Susana M.; Assis, Joaquim T. de; Monine, Vladimir I.

    2009-01-01

    Nowadays composite materials including materials reinforced by particles are the center of the researcher's attention. There are problems with the stress measurements in these materials, connected with the superficial stress gradient caused by the difference of the stress state of particles on the surface and in the matrix of the composite material. Computer simulation of diffraction profile formed by superficial layers of material allows simulate the diffraction experiment and gives the possibility to resolve the problem of stress measurements when the stress state is characterized by strong gradient. The aim of this paper is the application of computer simulation technique, initially developed for homogeneous materials, for diffraction line simulation of composite materials and alloys. Specifically we applied this technique for siluminum fabricated by powder metallurgy. (author)

  2. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

    International Nuclear Information System (INIS)

    Hoang Duc Tam; VNUHCM-University of Science, Ho Chi Minh City; Huynh Dinh Chuong; Tran Thien Thanh; Vo Hoang Nguyen; Hoang Thi Kieu Trang; Chau Van Tao

    2015-01-01

    In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness. (author)

  3. Basic principles of applied nuclear techniques

    International Nuclear Information System (INIS)

    Basson, J.K.

    1976-01-01

    The technological applications of radioactive isotopes and radiation in South Africa have grown steadily since the first consignment of man-made radioisotopes reached this country in 1948. By the end of 1975 there were 412 authorised non-medical organisations (327 industries) using hundreds of sealed sources as well as their fair share of the thousands of radioisotope consignments, annually either imported or produced locally (mainly for medical purposes). Consequently, it is necessary for South African technologists to understand the principles of radioactivity in order to appreciate the industrial applications of nuclear techniques [af

  4. Characterising and modelling regolith stratigraphy using multiple geophysical techniques

    Science.gov (United States)

    Thomas, M.; Cremasco, D.; Fotheringham, T.; Hatch, M. A.; Triantifillis, J.; Wilford, J.

    2013-12-01

    -registration, depth correction, etc.) each geophysical profile was evaluated by matching the core data. Applying traditional geophysical techniques, the best profiles were inverted using the core data creating two-dimensional (2-D) stratigraphic regolith models for each transect, and evaluated using independent validation. Next, in a test of an alternative method borrowed from digital soil mapping, the best preprocessed geophysical profiles were co-registered and stratigraphic models for each property created using multivariate environmental correlation. After independent validation, the qualities of the latest models were compared to the traditionally derived 2-D inverted models. Finally, the best overall stratigraphic models were used in conjunction with local environmental data (e.g. geology, geochemistry, terrain, soils) to create conceptual regolith hillslope models for each transect highlighting important features and processes, e.g. morphology, hydropedology and weathering characteristics. Results are presented with recommendations regarding the use of geophysics in modelling regolith stratigraphy at fine scales.

  5. Condition monitoring and signature analysis techniques as applied to Madras Atomic Power Station (MAPS) [Paper No.: VIA - 1

    International Nuclear Information System (INIS)

    Rangarajan, V.; Suryanarayana, L.

    1981-01-01

    The technique of vibration signature analysis for identifying the machine troubles in their early stages is explained. The advantage is that a timely corrective action can be planned to avoid breakdowns and unplanned shutdowns. At the Madras Atomic Power Station (MAPS), this technique is applied to regularly monitor vibrations of equipment and thus is serving as a tool for doing corrective maintenance of equipment. Case studies of application of this technique to main boiler feed pumps, moderation pump motors, centrifugal chiller, ventilation system fans, thermal shield ventilation fans, filtered water pumps, emergency process sea water pumps, and antifriction bearings of MAPS are presented. Condition monitoring during commissioning and subsequent operation could indicate defects. Corrective actions which were taken are described. (M.G.B.)

  6. Learning-based computing techniques in geoid modeling for precise height transformation

    Science.gov (United States)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  7. 3D laser scanning techniques applying to tunnel documentation and geological mapping at Aespoe hard rock laboratory, Sweden

    International Nuclear Information System (INIS)

    Feng, Q.; Wang, G.; Roeshoff, K.

    2008-01-01

    3D terrestrial laser scanning is nowadays one of the most attractive methods to applying for 3D mapping and documentation of rock faces and tunnels, and shows the most potential to improve the data quality and provide some good solutions in rock engineering projects. In this paper, the state-of-the-art methods are described for different possibility to tunnel documentation and geological mapping based on 3D laser scanning data. Some results are presented from the case study performed at the Hard Rock Laboratory, Aespoe run by SKB, Swedish Nuclear Fuel and Waste Management Co. Comparing to traditional methods, 3D laser scanning techniques can not only provide us with a rapid and 3D digital way for tunnel documentation, but also create a potential chance to achieve high quality data, which might be beneficial to different rock engineering project procedures, including field data acquisition, data processing, data retrieving and management, and also modeling and design. (authors)

  8. On a Graphical Technique for Evaluating Some Rational Expectations Models

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders R.

    2011-01-01

    Campbell and Shiller (1987) proposed a graphical technique for the present value model, which consists of plotting estimates of the spread and theoretical spread as calculated from the cointegrated vector autoregressive model without imposing the restrictions implied by the present value model....... In addition to getting a visual impression of the fit of the model, the purpose is to see if the two spreads are nevertheless similar as measured by correlation, variance ratio, and noise ratio. We extend these techniques to a number of rational expectation models and give a general definition of spread...

  9. Agent-Based Modelling applied to 5D model of the HIV infection

    Directory of Open Access Journals (Sweden)

    Toufik Laroum

    2016-12-01

    The simplest model was the 3D mathematical model. But the complexity of this phenomenon and the diversity of cells and actors which affect its evolution requires the use of new approaches such as multi-agents approach that we have applied in this paper. The results of our simulator on the 5D model are promising because they are consistent with biological knowledge’s. Therefore, the proposed approach is well appropriate to the study of population dynamics in general and could help to understand and predict the dynamics of HIV infection.

  10. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    International Nuclear Information System (INIS)

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion

  11. Using wavelet denoising and mathematical morphology in the segmentation technique applied to blood cells images.

    Science.gov (United States)

    Boix, Macarena; Cantó, Begoña

    2013-04-01

    Accurate image segmentation is used in medical diagnosis since this technique is a noninvasive pre-processing step for biomedical treatment. In this work we present an efficient segmentation method for medical image analysis. In particular, with this method blood cells can be segmented. For that, we combine the wavelet transform with morphological operations. Moreover, the wavelet thresholding technique is used to eliminate the noise and prepare the image for suitable segmentation. In wavelet denoising we determine the best wavelet that shows a segmentation with the largest area in the cell. We study different wavelet families and we conclude that the wavelet db1 is the best and it can serve for posterior works on blood pathologies. The proposed method generates goods results when it is applied on several images. Finally, the proposed algorithm made in MatLab environment is verified for a selected blood cells.

  12. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  13. Identifying and prioritizing the tools/techniques of knowledge management based on the Asian Productivity Organization Model (APO) to use in hospitals.

    Science.gov (United States)

    Khajouei, Hamid; Khajouei, Reza

    2017-12-01

    Appropriate knowledge, correct information, and relevant data are vital in medical diagnosis and treatment systems. Knowledge Management (KM) through its tools/techniques provides a pertinent framework for decision-making in healthcare systems. The objective of this study was to identify and prioritize the KM tools/techniques that apply to hospital setting. This is a descriptive-survey study. Data were collected using a -researcher-made questionnaire that was developed based on experts' opinions to select the appropriate tools/techniques from 26 tools/techniques of the Asian Productivity Organization (APO) model. Questions were categorized into five steps of KM (identifying, creating, storing, sharing, and applying the knowledge) according to this model. The study population consisted of middle and senior managers of hospitals and managing directors of Vice-Chancellor for Curative Affairs in Kerman University of Medical Sciences in Kerman, Iran. The data were analyzed in SPSS v.19 using one-sample t-test. Twelve out of 26 tools/techniques of the APO model were identified as the tools applicable in hospitals. "Knowledge café" and "APO knowledge management assessment tool" with respective means of 4.23 and 3.7 were the most and the least applicable tools in the knowledge identification step. "Mentor-mentee scheme", as well as "voice and Voice over Internet Protocol (VOIP)" with respective means of 4.20 and 3.52 were the most and the least applicable tools/techniques in the knowledge creation step. "Knowledge café" and "voice and VOIP" with respective means of 3.85 and 3.42 were the most and the least applicable tools/techniques in the knowledge storage step. "Peer assist and 'voice and VOIP' with respective means of 4.14 and 3.38 were the most and the least applicable tools/techniques in the knowledge sharing step. Finally, "knowledge worker competency plan" and "knowledge portal" with respective means of 4.38 and 3.85 were the most and the least applicable tools/techniques

  14. Reliability analysis techniques in power plant design

    International Nuclear Information System (INIS)

    Chang, N.E.

    1981-01-01

    An overview of reliability analysis techniques is presented as applied to power plant design. The key terms, power plant performance, reliability, availability and maintainability are defined. Reliability modeling, methods of analysis and component reliability data are briefly reviewed. Application of reliability analysis techniques from a design engineering approach to improving power plant productivity is discussed. (author)

  15. Base Oils Biodegradability Prediction with Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Malika Trabelsi

    2010-02-01

    Full Text Available In this paper, we apply various data mining techniques including continuous numeric and discrete classification prediction models of base oils biodegradability, with emphasis on improving prediction accuracy. The results show that highly biodegradable oils can be better predicted through numeric models. In contrast, classification models did not uncover a similar dichotomy. With the exception of Memory Based Reasoning and Decision Trees, tested classification techniques achieved high classification prediction. However, the technique of Decision Trees helped uncover the most significant predictors. A simple classification rule derived based on this predictor resulted in good classification accuracy. The application of this rule enables efficient classification of base oils into either low or high biodegradability classes with high accuracy. For the latter, a higher precision biodegradability prediction can be obtained using continuous modeling techniques.

  16. Applying squeezing technique to clay-rocks: lessons learned from ten years experiments at Mont Terri

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Melon, A.; Sanchez-Ledesma, D.M.; Tournassat, C.; Gaucher, E.; Astudillo, J.; Vinsot, A.

    2012-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in several countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. The migration of radionuclides through the geosphere will occur predominantly in the aqueous phase, and hence the pore water chemistry plays an important role in determining ion diffusion characteristics in argillaceous formations. Consequently, a great effort has been made to characterise the pore water chemistry in clay-rocks formations. In the last 10 years various techniques were developed for determining pore water composition of clay-rocks including both direct and indirect methods: 1) In situ pore water sampling (water and gas) from sealed boreholes (Pearson et al., 2003; Vinsot et al. 2008); 2) Laboratory pore water sampling from unaltered core samples by the squeezing technique at high pressures (Fernandez et al., 2009); and 3) Characterization of the water chemistry by geochemical modelling (Gaucher et al. 2009). Pore water chemistry in clay-rocks and extraction techniques were documented and reviewed in different studies (Sacchi et al., 2001). Recovering pristine pore water from low permeable and low water content systems is very difficult and sometimes impossible. Besides, uncertainties are associated to each method used for the pore water characterization. In this paper, a review about the high pressure squeezing technique applied to indurate clay-rocks was performed. For this purpose, the experimental work on Opalinus Clay at the Mont Terri Research Laboratory during the last ten years was evaluated. A complete discussion was made about different issues such as: a) why is necessary to obtain the pore water by squeezing in the context of radioactive waste

  17. New tools, technology and techniques applied in geological sciences: current situation and future perspectives

    International Nuclear Information System (INIS)

    Ulloa, Andres

    2014-01-01

    Technological tools and work methodologies most used in the area of geological sciences are reviewed and described. The various electronic devices such as laptops, palmtops or PDA (personal digital assistant), tablets and smartphones have allowed to take field geological data and store them efficiently. Tablets and smartphones have been convenient for data collection of scientific data by the diversity of sensors that present, portability, autonomy and the possibility to install specific applications. High precision GPS in conjunction with LIDAR technology and sonar technology have been more accessible and used for geological research, generating high resolution three-dimensional models to complement geological studies. Remote sensing techniques such as high penetration radar are used to perform models of the ice thickness and topography in Antarctic. Modern three-dimensional scanning and printing techniques are used in geological science research and teaching. Currently, the advance in the computer technology has allowed to handle three-dimensional models on personal computers efficiently way and with different display options. Some, of the new areas of geology, emerged recently, are mentioned to generate a broad panorama toward where can direct geological researches in the next years [es

  18. Sensitivity Analysis Techniques Applied in Video Streaming Service on Eucalyptus Cloud Environments

    Directory of Open Access Journals (Sweden)

    Rosangela Melo

    2018-01-01

    Full Text Available Nowdays, several streaming servers are available to provide a variety of multimedia applications such as Video on Demand in cloud computing environments. These environments have the business potential because of the pay-per-use model, as well as the advantages of easy scalability and, up-to-date of the packages and programs. This paper uses hierarchical modeling and different sensitivity analysis techniques to determine the parameters that cause the greatest impact on the availability of a Video on Demand. The results show that distinct approaches provide similar results regarding the sensitivity ranking, with specific exceptions. A combined evaluation indicates that system availability may be improved effectively by focusing on a reduced set of factors that produce large variation on the measure of interest.

  19. A simple pulse shape discrimination technique applied to a silicon strip detector

    International Nuclear Information System (INIS)

    Figuera, P.; Lu, J.; Amorini, F.; Cardella, G.; DiPietro, A.; Papa, M.; Musumarra, A.; Pappalardo, G.; Rizzo, F.; Tudisco, S.

    2001-01-01

    Full text: Since the early sixties, it has been known that the shape of signals from solid state detectors can be used for particle identification. Recently, this idea has been revised in a group of papers where it has been shown that the shape of current signals from solid state detectors is mainly governed by the combination of plasma erosion time and charge carrier collection time effects. We will present the results of a systematic study on a pulse shape identification method which, contrary to the techniques proposed, is based on the use of the same electronic chain normally used in the conventional time of flight technique. The method is based on the use of charge preamplifiers, low polarization voltages (i.e. just above full depletion ones), rear side injection of the incident particles, and on a proper setting of the constant fraction discriminators which enhances the dependence of the timing output on the rise time of the input signals (which depends on the charge and energy of the incident ions). The method has been applied to an annular Si strip detector with an inner radius of about 16 mm and an outer radius of about 88 mm. The detector, manufactured by Eurisys Measures (Type Ips.73.74.300.N9), is 300 microns thick and consists of 8 independent sectors each divided into 9 circular strips. On beam tests have been performed at the cyclotron of the Laboratori Nazionali del Sud in Catania using a 25.7 MeV/nucleon 58 Ni beam impinging on a 51 V and 45 Sc composite target. Excellent charge identification from H up to the Ni projectile has been observed and typical charge identification thresholds are: ∼ 1.7 MeV/nucleon for Z ≅ 6, ∼ 3.0 MeV/nucleon for Z ≅ 11, and ∼ 5.5 MeV/nucleon for Z ≅ 20. Isotope identification up to A ≅ 13 has been observed with an energy threshold of about 6 MeV/nucleon. The identification quality has been studied as a function of the constant fraction settings. The method has been applied to all the 72 independent strips

  20. Applying machine-learning techniques to Twitter data for automatic hazard-event classification.

    Science.gov (United States)

    Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.

    2017-12-01

    The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy

  1. Applying Mixed Methods Techniques in Strategic Planning

    Science.gov (United States)

    Voorhees, Richard A.

    2008-01-01

    In its most basic form, strategic planning is a process of anticipating change, identifying new opportunities, and executing strategy. The use of mixed methods, blending quantitative and qualitative analytical techniques and data, in the process of assembling a strategic plan can help to ensure a successful outcome. In this article, the author…

  2. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    Science.gov (United States)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  3. Possibilities and limitations of applying software reliability growth models to safety-critical software

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jang, Seung Cheol; Ha, Jae Joo

    2007-01-01

    It is generally known that software reliability growth models such as the Jelinski-Moranda model and the Goel-Okumoto's Non-Homogeneous Poisson Process (NHPP) model cannot be applied to safety-critical software due to a lack of software failure data. In this paper, by applying two of the most widely known software reliability growth models to sample software failure data, we demonstrate the possibility of using the software reliability growth models to prove the high reliability of safety-critical software. The high sensitivity of a piece of software's reliability to software failure data, as well as a lack of sufficient software failure data, is also identified as a possible limitation when applying the software reliability growth models to safety-critical software

  4. A probabilistic evaluation procedure for process model matching techniques

    NARCIS (Netherlands)

    Kuss, Elena; Leopold, Henrik; van der Aa, Han; Stuckenschmidt, Heiner; Reijers, Hajo A.

    2018-01-01

    Process model matching refers to the automatic identification of corresponding activities between two process models. It represents the basis for many advanced process model analysis techniques such as the identification of similar process parts or process model search. A central problem is how to

  5. Statistical and Computational Techniques in Manufacturing

    CERN Document Server

    2012-01-01

    In recent years, interest in developing statistical and computational techniques for applied manufacturing engineering has been increased. Today, due to the great complexity of manufacturing engineering and the high number of parameters used, conventional approaches are no longer sufficient. Therefore, in manufacturing, statistical and computational techniques have achieved several applications, namely, modelling and simulation manufacturing processes, optimization manufacturing parameters, monitoring and control, computer-aided process planning, etc. The present book aims to provide recent information on statistical and computational techniques applied in manufacturing engineering. The content is suitable for final undergraduate engineering courses or as a subject on manufacturing at the postgraduate level. This book serves as a useful reference for academics, statistical and computational science researchers, mechanical, manufacturing and industrial engineers, and professionals in industries related to manu...

  6. Prostate Cancer Probability Prediction By Machine Learning Technique.

    Science.gov (United States)

    Jović, Srđan; Miljković, Milica; Ivanović, Miljan; Šaranović, Milena; Arsić, Milena

    2017-11-26

    The main goal of the study was to explore possibility of prostate cancer prediction by machine learning techniques. In order to improve the survival probability of the prostate cancer patients it is essential to make suitable prediction models of the prostate cancer. If one make relevant prediction of the prostate cancer it is easy to create suitable treatment based on the prediction results. Machine learning techniques are the most common techniques for the creation of the predictive models. Therefore in this study several machine techniques were applied and compared. The obtained results were analyzed and discussed. It was concluded that the machine learning techniques could be used for the relevant prediction of prostate cancer.

  7. Applying Spatial-Temporal Model and Game Theory to Asymmetric Threat Prediction

    National Research Council Canada - National Science Library

    Wei, Mo; Chen, Genshe; Cruz, Jr., Jose B; Haynes, Leonard; Kruger, Martin

    2007-01-01

    .... In most Command and Control "C2" applications, the existing techniques, such as spatial-temporal point models for ECOA prediction or Discrete Choice Model "DCM", assume that insurgent attack features...

  8. Applying Student Team Achievement Divisions (STAD) Model on Material of Basic Programme Branch Control Structure to Increase Activity and Student Result

    Science.gov (United States)

    Akhrian Syahidi, Aulia; Asyikin, Arifin Noor; Asy’ari

    2018-04-01

    Based on my experience of teaching the material of branch control structure, it is found that the condition of the students is less active causing the low activity of the students on the attitude assessment during the learning process on the material of the branch control structure i.e. 2 students 6.45% percentage of good activity and 29 students percentage 93.55% enough and less activity. Then from the low activity resulted in low student learning outcomes based on a daily re-examination of branch control material, only 8 students 26% percentage reached KKM and 23 students 74% percent did not reach KKM. The purpose of this research is to increase the activity and learning outcomes of students of class X TKJ B SMK Muhammadiyah 1 Banjarmasin after applying STAD type cooperative learning model on the material of branch control structure. The research method used is Classroom Action Research. The study was conducted two cycles with six meetings. The subjects of this study were students of class X TKJ B with a total of 31 students consisting of 23 men and 8 women. The object of this study is the activity and student learning outcomes. Data collection techniques used are test and observation techniques. Data analysis technique used is a percentage and mean. The results of this study indicate that: an increase in activity and learning outcomes of students on the basic programming learning material branch control structure after applying STAD type cooperative learning model.

  9. Applying modern psychometric techniques to melodic discrimination testing: Item response theory, computerised adaptive testing, and automatic item generation.

    Science.gov (United States)

    Harrison, Peter M C; Collins, Tom; Müllensiefen, Daniel

    2017-06-15

    Modern psychometric theory provides many useful tools for ability testing, such as item response theory, computerised adaptive testing, and automatic item generation. However, these techniques have yet to be integrated into mainstream psychological practice. This is unfortunate, because modern psychometric techniques can bring many benefits, including sophisticated reliability measures, improved construct validity, avoidance of exposure effects, and improved efficiency. In the present research we therefore use these techniques to develop a new test of a well-studied psychological capacity: melodic discrimination, the ability to detect differences between melodies. We calibrate and validate this test in a series of studies. Studies 1 and 2 respectively calibrate and validate an initial test version, while Studies 3 and 4 calibrate and validate an updated test version incorporating additional easy items. The results support the new test's viability, with evidence for strong reliability and construct validity. We discuss how these modern psychometric techniques may also be profitably applied to other areas of music psychology and psychological science in general.

  10. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  11. Plasticity models of material variability based on uncertainty quantification techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Reese E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Rizzi, Francesco [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Boyce, Brad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Templeton, Jeremy Alan [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-11-01

    The advent of fabrication techniques like additive manufacturing has focused attention on the considerable variability of material response due to defects and other micro-structural aspects. This variability motivates the development of an enhanced design methodology that incorporates inherent material variability to provide robust predictions of performance. In this work, we develop plasticity models capable of representing the distribution of mechanical responses observed in experiments using traditional plasticity models of the mean response and recently developed uncertainty quantification (UQ) techniques. Lastly, we demonstrate that the new method provides predictive realizations that are superior to more traditional ones, and how these UQ techniques can be used in model selection and assessing the quality of calibrated physical parameters.

  12. Recent progress and modern challenges in applied mathematics, modeling and computational science

    CERN Document Server

    Makarov, Roman; Belair, Jacques

    2017-01-01

    This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science.  The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

  13. Different approaches in Partial Least Squares and Artificial Neural Network models applied for the analysis of a ternary mixture of Amlodipine, Valsartan and Hydrochlorothiazide

    Science.gov (United States)

    Darwish, Hany W.; Hassan, Said A.; Salem, Maissa Y.; El-Zeany, Badr A.

    2014-03-01

    Different chemometric models were applied for the quantitative analysis of Amlodipine (AML), Valsartan (VAL) and Hydrochlorothiazide (HCT) in ternary mixture, namely, Partial Least Squares (PLS) as traditional chemometric model and Artificial Neural Networks (ANN) as advanced model. PLS and ANN were applied with and without variable selection procedure (Genetic Algorithm GA) and data compression procedure (Principal Component Analysis PCA). The chemometric methods applied are PLS-1, GA-PLS, ANN, GA-ANN and PCA-ANN. The methods were used for the quantitative analysis of the drugs in raw materials and pharmaceutical dosage form via handling the UV spectral data. A 3-factor 5-level experimental design was established resulting in 25 mixtures containing different ratios of the drugs. Fifteen mixtures were used as a calibration set and the other ten mixtures were used as validation set to validate the prediction ability of the suggested methods. The validity of the proposed methods was assessed using the standard addition technique.

  14. Inverse geothermal modelling applied to Danish sedimentary basins

    Science.gov (United States)

    Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.

    2017-10-01

    This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures

  15. Making Faces - State-Space Models Applied to Multi-Modal Signal Processing

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2005-01-01

    The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...... application an information theoretic vector quantizer is also proposed. Based on interactions between particles, it is shown how a quantizing scheme based on an analytic cost function can be derived....

  16. An extended gravity model with substitution applied to international trade

    NARCIS (Netherlands)

    Bikker, J.A.|info:eu-repo/dai/nl/06912261X

    The traditional gravity model has been applied many times to international trade flows, especially in order to analyze trade creation and trade diversion. However, there are two fundamental objections to the model: it cannot describe substitutions between flows and it lacks a cogent theoretical

  17. Study of electron-molecule collisions via the finite-element method and R-matrix propagation technique: Model exchange

    International Nuclear Information System (INIS)

    Abdolsalami, F.; Abdolsalami, M.; Gomez, P.

    1994-01-01

    We have applied the finite-element method to electron-molecule collisions. All the calculations are done in the body frame within the fixed-nuclei approximation. A model potential, which is added to the static and polarization potential, has been used to represent the exchange effect. The method is applied to electron-H 2 scattering and the eigenphase sums and the cross sections obtained are in very good agreement with the corresponding results from the linear-algebraic approach. Finite-element calculations of the R matrix in the region where the static and exchange interactions are strong, however, has about one-half to one-fourth of the memory requirement of the linear-algebraic technique

  18. Application of nonliner reduction techniques in chemical process modeling: a review

    International Nuclear Information System (INIS)

    Muhaimin, Z; Aziz, N.; Abd Shukor, S.R.

    2006-01-01

    Model reduction techniques have been used widely in engineering fields for electrical, mechanical as well as chemical engineering. The basic idea of reduction technique is to replace the original system by an approximating system with much smaller state-space dimension. A reduced order model is more beneficial to process and industrial field in terms of control purposes. This paper is to provide a review on application of nonlinear reduction techniques in chemical processes. The advantages and disadvantages of each technique reviewed are also highlighted

  19. Summary on several key techniques in 3D geological modeling.

    Science.gov (United States)

    Mei, Gang

    2014-01-01

    Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.

  20. Rabbit tissue model (RTM) harvesting technique.

    Science.gov (United States)

    Medina, Marelyn

    2002-01-01

    A method for creating a tissue model using a female rabbit for laparoscopic simulation exercises is described. The specimen is called a Rabbit Tissue Model (RTM). Dissection techniques are described for transforming the rabbit carcass into a small, compact unit that can be used for multiple training sessions. Preservation is accomplished by using saline and refrigeration. Only the animal trunk is used, with the rest of the animal carcass being discarded. Practice exercises are provided for using the preserved organs. Basic surgical skills, such as dissection, suturing, and knot tying, can be practiced on this model. In addition, the RTM can be used with any pelvic trainer that permits placement of larger practice specimens within its confines.

  1. Sensitivity analysis technique for application to deterministic models

    International Nuclear Information System (INIS)

    Ishigami, T.; Cazzoli, E.; Khatib-Rahbar, M.; Unwin, S.D.

    1987-01-01

    The characterization of sever accident source terms for light water reactors should include consideration of uncertainties. An important element of any uncertainty analysis is an evaluation of the sensitivity of the output probability distributions reflecting source term uncertainties to assumptions regarding the input probability distributions. Historically, response surface methods (RSMs) were developed to replace physical models using, for example, regression techniques, with simplified models for example, regression techniques, with simplified models for extensive calculations. The purpose of this paper is to present a new method for sensitivity analysis that does not utilize RSM, but instead relies directly on the results obtained from the original computer code calculations. The merits of this approach are demonstrated by application of the proposed method to the suppression pool aerosol removal code (SPARC), and the results are compared with those obtained by sensitivity analysis with (a) the code itself, (b) a regression model, and (c) Iman's method

  2. A predictive model for dysphagia following IMRT for head and neck cancer: Introduction of the EMLasso technique

    International Nuclear Information System (INIS)

    Kim, De Ruyck; Duprez, Fréderic; Werbrouck, Joke; Sabbe, Nick; Sofie, De Langhe; Boterberg, Tom; Madani, Indira; Thas, Olivier; Wilfried, De Neve; Thierens, Hubert

    2013-01-01

    Background and purpose: Design a model for prediction of acute dysphagia following intensity-modulated radiotherapy (IMRT) for head and neck cancer. Illustrate the use of the EMLasso technique for model selection. Material and methods: Radiation-induced dysphagia was scored using CTCAE v.3.0 in 189 head and neck cancer patients. Clinical data (gender, age, nicotine and alcohol use, diabetes, tumor location), treatment parameters (chemotherapy, surgery involving the primary tumor, lymph node dissection, overall treatment time), dosimetric parameters (doses delivered to pharyngeal constrictor (PC) muscles and esophagus) and 19 genetic polymorphisms were used in model building. The predicting model was achieved by EMLasso, i.e. an EM algorithm to account for missing values, applied to penalized logistic regression, which allows for variable selection by tuning the penalization parameter through crossvalidation on AUC, thus avoiding overfitting. Results: Fifty-three patients (28%) developed acute ⩾ grade 3 dysphagia. The final model has an AUC of 0.71 and contains concurrent chemotherapy, D 2 to the superior PC and the rs3213245 (XRCC1) polymorphism. The model’s false negative rate and false positive rate in the optimal operation point on the ROC curve are 21% and 49%, respectively. Conclusions: This study demonstrated the utility of the EMLasso technique for model selection in predictive radiogenetics

  3. Personnel contamination protection techniques applied during the TMI-2 [Three Mile Island Unit 2] cleanup

    International Nuclear Information System (INIS)

    Hildebrand, J.E.

    1988-01-01

    The severe damage to the Three Mile Island Unit 2 (TMI-2) core and the subsequent discharge of reactor coolant to the reactor and auxiliary buildings resulted in extremely hostile radiological environments in the TMI-2 plant. High fission product surface contamination and radiation levels necessitated the implementation of innovative techniques and methods in performing cleanup operations while assuring effective as low as reasonably achievable (ALARA) practices. The approach utilized by GPU Nuclear throughout the cleanup in applying protective clothing requirements was to consider the overall health risk to the worker including factors such as cardiopulmonary stress, visual and hearing acuity, and heat stress. In applying protective clothing requirements, trade-off considerations had to be made between preventing skin contaminations and possibly overprotecting the worker, thus impacting his ability to perform his intended task at maximum efficiency and in accordance with ALARA principles. The paper discusses the following topics: protective clothing-general use, beta protection, skin contamination, training, personnel access facility, and heat stress

  4. A spatial model with pulsed releases to compare strategies for the sterile insect technique applied to the mosquito Aedes aegypti.

    Science.gov (United States)

    Oléron Evans, Thomas P; Bishop, Steven R

    2014-08-01

    We present a simple mathematical model to replicate the key features of the sterile insect technique (SIT) for controlling pest species, with particular reference to the mosquito Aedes aegypti, the main vector of dengue fever. The model differs from the majority of those studied previously in that it is simultaneously spatially explicit and involves pulsed, rather than continuous, sterile insect releases. The spatially uniform equilibria of the model are identified and analysed. Simulations are performed to analyse the impact of varying the number of release sites, the interval between pulsed releases and the overall volume of sterile insect releases on the effectiveness of SIT programmes. Results show that, given a fixed volume of available sterile insects, increasing the number of release sites and the frequency of releases increases the effectiveness of SIT programmes. It is also observed that programmes may become completely ineffective if the interval between pulsed releases is greater that a certain threshold value and that, beyond a certain point, increasing the overall volume of sterile insects released does not improve the effectiveness of SIT. It is also noted that insect dispersal drives a rapid recolonisation of areas in which the species has been eradicated and we argue that understanding the density dependent mortality of released insects is necessary to develop efficient, cost-effective SIT programmes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Remarks on orthotropic elastic models applied to wood

    Directory of Open Access Journals (Sweden)

    Nilson Tadeu Mascia

    2006-09-01

    Full Text Available Wood is generally considered an anisotropic material. In terms of engineering elastic models, wood is usually treated as an orthotropic material. This paper presents an analysis of two principal anisotropic elastic models that are usually applied to wood. The first one, the linear orthotropic model, where the material axes L (Longitudinal, R( radial and T(tangential are coincident with the Cartesian axes (x, y, z, is more accepted as wood elastic model. The other one, the cylindrical orthotropic model is more adequate of the growth caracteristics of wood but more mathematically complex to be adopted in practical terms. Specifically due to its importance in wood elastic parameters, this paper deals with the fiber orientation influence in these models through adequate transformation of coordinates. As a final result, some examples of the linear model, which show the variation of elastic moduli, i.e., Young´s modulus and shear modulus, with fiber orientation are presented.

  6. The ring cycle: an iterative lens reconstruction technique applied to MG1131 + 0456

    International Nuclear Information System (INIS)

    Kochanek, C.S.; Blandford, R.D.; Lawrence, C.R.; Narayan, R.

    1989-01-01

    A new technique is described for the analysis of well-resolved gravitational lens images. This method allows us to solve for the brightness distribution of the unlensed source as well as a parametrized model of the lens. Our algorithm computes a figure of merit for a lens model based on the scatter in the surface brightnesses of image elements that, according to the model, come from the same source element. Minimization of the figure of merit leads to an optimum solution for the source and the lens. We present a successful application of the method to VLA maps of the 'Einstein ring' radio source MG1131 + 0456 observed by previous authors. The inversion gives a normal galaxy-like elliptical potential for the lens and an ordinary double-lobed structure for the background radio source. (author)

  7. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Culp, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schweizer, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additional quantitative benchmark tests and updating the model as needed.

  8. Constructing canine carotid artery stenosis model by endovascular technique

    International Nuclear Information System (INIS)

    Cheng Guangsen; Liu Yizhi

    2005-01-01

    Objective: To establish a carotid artery stenosis model by endovascular technique suitable for neuro-interventional therapy. Methods: Twelve dogs were anesthetized, the unilateral segments of the carotid arteries' tunica media and intima were damaged by a corneous guiding wire of home made. Twenty-four carotid artery stenosis models were thus created. DSA examination was performed on postprocedural weeks 2, 4, 8, 10 to estimate the changes of those stenotic carotid arteries. Results: Twenty-four carotid artery stenosis models were successfully created in twelve dogs. Conclusions: Canine carotid artery stenosis models can be created with the endovascular method having variation of pathologic characters and hemodynamic changes similar to human being. It is useful for further research involving the new technique and new material for interventional treatment. (authors)

  9. Replacement Value - Representation of Fair Value in Accounting. Techniques and Modeling Suitable for the Income Based Approach

    OpenAIRE

    Manea Marinela – Daniela

    2011-01-01

    The term fair value is spread within the sphere of international standards without reference to any detailed guidance on how to apply. However, specialized tangible assets, which are rarely sold, the rule IAS 16 "Intangible assets " makes it possible to estimate fair value using an income approach or a replacement cost or depreciation. The following material is intended to identify potential modeling of fair value as an income-based approach, appealing to techniques used by professional evalu...

  10. Applied systems ecology: models, data, and statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L L

    1976-01-01

    In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.

  11. [Intestinal lengthening techniques: an experimental model in dogs].

    Science.gov (United States)

    Garibay González, Francisco; Díaz Martínez, Daniel Alberto; Valencia Flores, Alejandro; González Hernández, Miguel Angel

    2005-01-01

    To compare two intestinal lengthening procedures in an experimental dog model. Intestinal lengthening is one of the methods for gastrointestinal reconstruction used for treatment of short bowel syndrome. The modification to the Bianchi's technique is an alternative. The modified technique decreases the number of anastomoses to a single one, thus reducing the risk of leaks and strictures. To our knowledge there is not any clinical or experimental report that studied both techniques, so we realized the present report. Twelve creole dogs were operated with the Bianchi technique for intestinal lengthening (group A) and other 12 creole dogs from the same race and weight were operated by the modified technique (Group B). Both groups were compared in relation to operating time, difficulties in technique, cost, intestinal lengthening and anastomoses diameter. There were no statistical difference in the anastomoses diameter (A = 9.0 mm vs. B = 8.5 mm, p = 0.3846). Operating time (142 min vs. 63 min) cost and technique difficulties were lower in group B (p anastomoses (of Group B) and intestinal segments had good blood supply and were patent along their full length. Bianchi technique and the modified technique offer two good reliable alternatives for the treatment of short bowel syndrome. The modified technique improved operating time, cost and technical issues.

  12. A Systematic Approach to Applying Lean Techniques to Optimize an Office Process at the Y-12 National Security Complex

    Energy Technology Data Exchange (ETDEWEB)

    Credille, Jennifer [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Owens, Elizabeth [Y-12 National Security Complex, Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-10-11

    This capstone offers the introduction of Lean concepts to an office activity to demonstrate the versatility of Lean. Traditionally Lean has been associated with process improvements as applied to an industrial atmosphere. However, this paper will demonstrate that implementing Lean concepts within an office activity can result in significant process improvements. Lean first emerged with the conception of the Toyota Production System. This innovative concept was designed to improve productivity in the automotive industry by eliminating waste and variation. Lean has also been applied to office environments, however the limited literature reveals most Lean techniques within an office are restricted to one or two techniques. Our capstone confronts these restrictions by introducing a systematic approach that utilizes multiple Lean concepts. The approach incorporates: system analysis, system reliability, system requirements, and system feasibility. The methodical Lean outline provides tools for a successful outcome, which ensures the process is thoroughly dissected and can be achieved for any process in any work environment.

  13. Nonequilibrium Green function techniques applied to hot electron quantum transport

    International Nuclear Information System (INIS)

    Jauho, A.P.

    1989-01-01

    During the last few years considerable effort has been devoted to deriving quantum transport equations for semiconductors under extreme conditions (high electric fields, spatial quantization in one or two directions). Here we review the results obtained with nonequilibrium Green function techniques as formulated by Baym and Kadanoff, or by Keldysh. In particular, the following topics will be discussed: (i) Systematic approaches to reduce the transport equation governing the correlation function to a transport equation for the Wigner function; (ii) Approximations reducing the nonmarkovian quantum transport equation to a numerically tractable form, and results for model semiconductors; (iii) Recent progress in extending the formalism to inhomogeneous systems; and (iv) Nonequilibrium screening. In all sections we try to direct the reader's attention to points where the present understanding is (at best) incomplete, and indicate possible lines for future work. (orig.)

  14. Feasibility to apply the steam assisted gravity drainage (SAGD) technique in the country's heavy crude-oil fields

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Orjuela, Jaime

    2004-01-01

    The steam assisted gravity drainage (SAGD) processes are one of the most efficient and profitable technologies for the production of heavy crude oils and oil sands. These processes involve the drilling of a couple of parallel horizontal wells, separated by a vertical distance and located near the oil field base. The upper well is used to continuously inject steam into the zone of interest, while the lower well collects all resulting fluids (oil, condensate and formation water) and takes them to the surface (Butler, 1994). This technology has been successfully implemented in countries such as Canada, Venezuela and United States, reaching recovery factors in excess of 50%. This article provides an overview of the technique's operation mechanism and the process most relevant characteristics, as well as the various categories this technology is divided into, including all its advantages and limitations. Furthermore, the article sets the oil field's minimal conditions under which the SAGD process is efficient, which conditions, as integrated to a series of mathematical models, allow to make forecasts on production, thermal efficiency (ODR) and oil to be recovered, as long as it is feasible (from a technical point of view) to apply this technique to a defined oil field. The information and concepts compiled during this research prompted the development of software, which may be used as an information, analysis and interpretation tool to predict and quantify this technology's performance. Based on the article, preliminary studies were started for the country's heavy crude-oil fields, identifying which provide the minimum conditions for the successful development of a pilot project

  15. Exponential models applied to automated processing of radioimmunoassay standard curves

    International Nuclear Information System (INIS)

    Morin, J.F.; Savina, A.; Caroff, J.; Miossec, J.; Legendre, J.M.; Jacolot, G.; Morin, P.P.

    1979-01-01

    An improved computer processing is described for fitting of radio-immunological standard curves by means of an exponential model on a desk-top calculator. This method has been applied to a variety of radioassays and the results are in accordance with those obtained by more sophisticated models [fr

  16. Liquid-drop model applied to heavy ions irradiation

    International Nuclear Information System (INIS)

    De Cicco, Hernan; Alurralde, Martin A.; Saint-Martin, Maria L. G.; Bernaola, Omar A.

    1999-01-01

    Liquid-drop model is used, previously applied in the study of radiation damage in metals, in an energy range not covered by molecular dynamics, in order to understand experimental data of particle tracks in an organic material (Makrofol E), which cannot be accurately described by the existing theoretical methods. The nuclear and electronic energy depositions are considered for each ion considered and the evolution of the thermal explosion is evaluated. The experimental observation of particle tracks in a region previously considered as 'prohibited' are justified. Although the model used has free parameters and some discrepancies with the experimental diametrical values exist, the agreement obtained is highly superior than that of other existing models. (author)

  17. The differential dieaway technique applied to the measurement of the fissile content of drums of cement encapsulated waste

    International Nuclear Information System (INIS)

    Swinhoe, M.T.

    1986-01-01

    This report describes calculations of the differential dieaway technique as applied to cement encapsulated waste. The main difference from previous applications of the technique are that only one detector position is used (diametrically opposite the neutron source) and the chamber walls are made of concrete. The results show that by rotating the drum the response to fissile material across the central plane of the drum can be made relatively uniform. The absolute size of the response is about 0.4. counts per minute per gram fissile for a neutron source of 10 8 neutrons per second. Problems of neutron and gamma background and water content are considered. (author)

  18. Non-destructive electrochemical techniques applied to the corrosion evaluation of the liner structures in nuclear power plants

    International Nuclear Information System (INIS)

    Martinez, I.; Castillo, A.; Andrade, C.

    2008-01-01

    The liner structure in nuclear power plants provides containment for the operation and therefore the study of its durability and integrity during its service life is an important issue. There are several causes for the deterioration of the liner, which in general involve corrosion due to its metallic nature. The present paper is aimed at describing the assessment of corrosion problems of two liners from two different nuclear power plants, which were evaluated using non-destructive electrochemical techniques. In spite of the testing difficulties arisen, from the results extracted it can be concluded that the electrochemical techniques applied are adequate for the corrosion evaluation. They provide important information about the integrity of the structure and allow for its evolution with time to be assessed

  19. Using of Structural Equation Modeling Techniques in Cognitive Levels Validation

    Directory of Open Access Journals (Sweden)

    Natalija Curkovic

    2012-10-01

    Full Text Available When constructing knowledge tests, cognitive level is usually one of the dimensions comprising the test specifications with each item assigned to measure a particular level. Recently used taxonomies of the cognitive levels most often represent some modification of the original Bloom’s taxonomy. There are many concerns in current literature about existence of predefined cognitive levels. The aim of this article is to investigate can structural equation modeling techniques confirm existence of different cognitive levels. For the purpose of the research, a Croatian final high-school Mathematics exam was used (N = 9626. Confirmatory factor analysis and structural regression modeling were used to test three different models. Structural equation modeling techniques did not support existence of different cognitive levels in this case. There is more than one possible explanation for that finding. Some other techniques that take into account nonlinear behaviour of the items as well as qualitative techniques might be more useful for the purpose of the cognitive levels validation. Furthermore, it seems that cognitive levels were not efficient descriptors of the items and so improvements are needed in describing the cognitive skills measured by items.

  20. The sdg interacting-boson model applied to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1986-03-01

    The sdg interacting-boson model is applied to 168Er. Energy levels and E2 transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. The level scheme including the Kπ=3+ band is well reproduced and the calculated B(E2)'s are consistent with the experimental data.

  1. A comparison of economic evaluation models as applied to geothermal energy technology

    Science.gov (United States)

    Ziman, G. M.; Rosenberg, L. S.

    1983-01-01

    Several cost estimation and financial cash flow models have been applied to a series of geothermal case studies. In order to draw conclusions about relative performance and applicability of these models to geothermal projects, the consistency of results was assessed. The model outputs of principal interest in this study were net present value, internal rate of return, or levelized breakeven price. The models used were VENVAL, a venture analysis model; the Geothermal Probabilistic Cost Model (GPC Model); the Alternative Power Systems Economic Analysis Model (APSEAM); the Geothermal Loan Guarantee Cash Flow Model (GCFM); and the GEOCOST and GEOCITY geothermal models. The case studies to which the models were applied include a geothermal reservoir at Heber, CA; a geothermal eletric power plant to be located at the Heber site; an alcohol fuels production facility to be built at Raft River, ID; and a direct-use, district heating system in Susanville, CA.

  2. Beyond Astro 101: A First Report on Applying Interactive Education Techniques to an Astronphysics Class for Majors

    Science.gov (United States)

    Perrin, Marshall D.; Ghez, A. M.

    2009-05-01

    Learner-centered interactive instruction methods now have a proven track record in improving learning in "Astro 101" courses for non-majors, but have rarely been applied to higher-level astronomy courses. Can we hope for similar gains in classes aimed at astrophysics majors, or is the subject matter too fundamentally different for those techniques to apply? We present here an initial report on an updated calculus-based Introduction to Astrophysics class at UCLA that suggests such techniques can indeed result in increased learning for major students. We augmented the traditional blackboard-derivation lectures and challenging weekly problem sets by adding online questions on pre-reading assignments (''just-in-time teaching'') and frequent multiple-choice questions in class ("Think-Pair-Share''). We describe our approach, and present examples of the new Think-Pair-Share questions developed for this more sophisticated material. Our informal observations after one term are that with this approach, students are more engaged and alert, and score higher on exams than typical in previous years. This is anecdotal evidence, not hard data yet, and there is clearly a vast amount of work to be done in this area. But our first impressions strongly encourage us that interactive methods should be able improve the astrophysics major just as they have improved Astro 101.

  3. Comparison of a new expert elicitation model with the Classical Model, equal weights and single experts, using a cross-validation technique

    Energy Technology Data Exchange (ETDEWEB)

    Flandoli, F. [Dip.to di Matematica Applicata, Universita di Pisa, Pisa (Italy); Giorgi, E. [Dip.to di Matematica Applicata, Universita di Pisa, Pisa (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola 32, 56126 Pisa (Italy); Aspinall, W.P. [Dept. of Earth Sciences, University of Bristol, and Aspinall and Associates, Tisbury (United Kingdom); Neri, A., E-mail: neri@pi.ingv.it [Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Pisa, via della Faggiola 32, 56126 Pisa (Italy)

    2011-10-15

    The problem of ranking and weighting experts' performances when quantitative judgments are being elicited for decision support is considered. A new scoring model, the Expected Relative Frequency model, is presented, based on the closeness between central values provided by the expert and known values used for calibration. Using responses from experts in five different elicitation datasets, a cross-validation technique is used to compare this new approach with the Cooke Classical Model, the Equal Weights model, and individual experts. The analysis is performed using alternative reward schemes designed to capture proficiency either in quantifying uncertainty, or in estimating true central values. Results show that although there is only a limited probability that one approach is consistently better than another, the Cooke Classical Model is generally the most suitable for assessing uncertainties, whereas the new ERF model should be preferred if the goal is central value estimation accuracy. - Highlights: > A new expert elicitation model, named Expected Relative Frequency (ERF), is presented. > A cross-validation approach to evaluate the performance of different elicitation models is applied. > The new ERF model shows the best performance with respect to the point-wise estimates.

  4. Modeling and Simulation of Voids in Composite Tape Winding Process Based on Domain Superposition Technique

    Science.gov (United States)

    Deng, Bo; Shi, Yaoyao

    2017-11-01

    The tape winding technology is an effective way to fabricate rotationally composite materials. Nevertheless, some inevitable defects will seriously influence the performance of winding products. One of the crucial ways to identify the quality of fiber-reinforced composite material products is examining its void content. Significant improvement in products' mechanical properties can be achieved by minimizing the void defect. Two methods were applied in this study, finite element analysis and experimental testing, respectively, to investigate the mechanism of how void forming in composite tape winding processing. Based on the theories of interlayer intimate contact and Domain Superposition Technique (DST), a three-dimensional model of prepreg tape void with SolidWorks has been modeled in this paper. Whereafter, ABAQUS simulation software was used to simulate the void content change with pressure and temperature. Finally, a series of experiments were performed to determine the accuracy of the model-based predictions. The results showed that the model is effective for predicting the void content in the composite tape winding process.

  5. Modelling of composite concrete block pavement systems applying a cohesive zone model

    DEFF Research Database (Denmark)

    Skar, Asmus; Poulsen, Peter Noe

    This paper presents a numerical analysis of the fracture behaviour of the cement bound base material in composite concrete block pavement systems, using a cohesive zone model. The functionality of the proposed model is tested on experimental and numerical investigations of beam bending tests....... The pavement is modelled as a simple slab on grade structure and parameters influencing the response, such as analysis technique, geometry and material parameters are studied. Moreover, the analysis is extended to a real scale example, modelling the pavement as a three-layered structure. It is found...... block pavements. It is envisaged that the methodology implemented in this study can be extended and thereby contribute to the ongoing development of rational failure criteria that can replace the empirical formulas currently used in pavement engineering....

  6. Usage of laser techniques and digital aerial coverage as a layer for as-built applied to the LPG pipeline Urucu-Coari right-of-way

    Energy Technology Data Exchange (ETDEWEB)

    Furquim, Antonio J. [ESTEIO Engenharia e Aerolevantamentos S.A, Curitiba, PR (Brazil)

    2009-07-01

    The usage of taking of digital aerial images is a reality worldwide, but in Brazil there is few sensors in use available, which makes recognize the pioneer aspect of the technique. Something similar also occurs with the airborne LASER scanning, whose technique has been applied for more time, used in the obtaining of digital terrain models. The use of digital imaging along with the LASER survey can offer an option for the generation of high quality products in a very fast and efficient way, aiming at numberless applications. Among such applications, the generation of cartographic products for the implantation of pipelines, as well as the as-built drawings of these same rights-of-ways after the implantation can be highlighted. The pipeline sector has been the focus of great investments and keeps on presenting demand for new projects and implantations. That allows to deduce that the speed in the generation of accurate bases for such purpose shall progress towards the continuous development of such aerial survey techniques. This paper presents the application of images and LASER survey to obtain ortho photos of Urucu-Coari liquefied petroleum gas (LPG) pipeline. (author)

  7. Applying incentive sensitization models to behavioral addiction

    DEFF Research Database (Denmark)

    Rømer Thomsen, Kristine; Fjorback, Lone; Møller, Arne

    2014-01-01

    The incentive sensitization theory is a promising model for understanding the mechanisms underlying drug addiction, and has received support in animal and human studies. So far the theory has not been applied to the case of behavioral addictions like Gambling Disorder, despite sharing clinical...... symptoms and underlying neurobiology. We examine the relevance of this theory for Gambling Disorder and point to predictions for future studies. The theory promises a significant contribution to the understanding of behavioral addiction and opens new avenues for treatment....

  8. Increasing the reliability of ecological models using modern software engineering techniques

    Science.gov (United States)

    Robert M. Scheller; Brian R. Sturtevant; Eric J. Gustafson; Brendan C. Ward; David J. Mladenoff

    2009-01-01

    Modern software development techniques are largely unknown to ecologists. Typically, ecological models and other software tools are developed for limited research purposes, and additional capabilities are added later, usually in an ad hoc manner. Modern software engineering techniques can substantially increase scientific rigor and confidence in ecological models and...

  9. A systematic review of applying modern software engineering techniques to developing robotic systems

    Directory of Open Access Journals (Sweden)

    Claudia Pons

    2012-01-01

    Full Text Available Robots have become collaborators in our daily life. While robotic systems become more and more complex, the need to engineer their software development grows as well. The traditional approaches used in developing these software systems are reaching their limits; currently used methodologies and tools fall short of addressing the needs of such complex software development. Separating robotics’ knowledge from short-cycled implementation technologies is essential to foster reuse and maintenance. This paper presents a systematic review (SLR of the current use of modern software engineering techniques for developing robotic software systems and their actual automation level. The survey was aimed at summarizing existing evidence concerning applying such technologies to the field of robotic systems to identify any gaps in current research to suggest areas for further investigation and provide a background for positioning new research activities.

  10. An acceleration technique for the Gauss-Seidel method applied to symmetric linear systems

    Directory of Open Access Journals (Sweden)

    Jesús Cajigas

    2014-06-01

    Full Text Available A preconditioning technique to improve the convergence of the Gauss-Seidel method applied to symmetric linear systems while preserving symmetry is proposed. The preconditioner is of the form I + K and can be applied an arbitrary number of times. It is shown that under certain conditions the application of the preconditioner a finite number of steps reduces the matrix to a diagonal. A series of numerical experiments using matrices from spatial discretizations of partial differential equations demonstrates that both versions of the preconditioner, point and block version, exhibit lower iteration counts than its non-symmetric version. Resumen. Se propone una técnica de precondicionamiento para mejorar la convergencia del método Gauss-Seidel aplicado a sistemas lineales simétricos pero preservando simetría. El precondicionador es de la forma I + K y puede ser aplicado un número arbitrario de veces. Se demuestra que bajo ciertas condiciones la aplicación del precondicionador un número finito de pasos reduce la matriz del sistema precondicionado a una diagonal. Una serie de experimentos con matrices que provienen de la discretización de ecuaciones en derivadas parciales muestra que ambas versiones del precondicionador, por punto y por bloque, muestran un menor número de iteraciones en comparación con la versión que no preserva simetría.

  11. Applying a Particle-only Model to the HL Tau Disk

    OpenAIRE

    Tabeshian, Maryam; Wiegert, Paul A.

    2018-01-01

    Observations have revealed rich structures in protoplanetary disks, offering clues about their embedded planets. Due to the complexities introduced by the abundance of gas in these disks, modeling their structure in detail is computationally intensive, requiring complex hydrodynamic codes and substantial computing power. It would be advantageous if computationally simpler models could provide some preliminary information on these disks. Here we apply a particle-only model (that we developed f...

  12. THE COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR PREDICTIONS - ARTIFICIAL NEURAL NETWORKS

    OpenAIRE

    Mary Violeta Bar

    2014-01-01

    The computational intelligence techniques are used in problems which can not be solved by traditional techniques when there is insufficient data to develop a model problem or when they have errors.Computational intelligence, as he called Bezdek (Bezdek, 1992) aims at modeling of biological intelligence. Artificial Neural Networks( ANNs) have been applied to an increasing number of real world problems of considerable complexity. Their most important advantage is solving problems that are too c...

  13. Model predictive control based on reduced order models applied to belt conveyor system.

    Science.gov (United States)

    Chen, Wei; Li, Xin

    2016-11-01

    In the paper, a model predictive controller based on reduced order model is proposed to control belt conveyor system, which is an electro-mechanics complex system with long visco-elastic body. Firstly, in order to design low-degree controller, the balanced truncation method is used for belt conveyor model reduction. Secondly, MPC algorithm based on reduced order model for belt conveyor system is presented. Because of the error bound between the full-order model and reduced order model, two Kalman state estimators are applied in the control scheme to achieve better system performance. Finally, the simulation experiments are shown that balanced truncation method can significantly reduce the model order with high-accuracy and model predictive control based on reduced-model performs well in controlling the belt conveyor system. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    Science.gov (United States)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  15. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    Science.gov (United States)

    Rasam, A. R. A.; Ghazali, R.; Noor, A. M. M.; Mohd, W. M. N. W.; Hamid, J. R. A.; Bazlan, M. J.; Ahmad, N.

    2014-02-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia.

  16. Spatial epidemiological techniques in cholera mapping and analysis towards a local scale predictive modelling

    International Nuclear Information System (INIS)

    Rasam, A R A; Ghazali, R; Noor, A M M; Mohd, W M N W; Hamid, J R A; Bazlan, M J; Ahmad, N

    2014-01-01

    Cholera spatial epidemiology is the study of the spread and control of the disease spatial pattern and epidemics. Previous studies have shown that multi-factorial causation such as human behaviour, ecology and other infectious risk factors influence the disease outbreaks. Thus, understanding spatial pattern and possible interrelationship factors of the outbreaks are crucial to be explored an in-depth study. This study focuses on the integration of geographical information system (GIS) and epidemiological techniques in exploratory analyzing the cholera spatial pattern and distribution in the selected district of Sabah. Spatial Statistic and Pattern tools in ArcGIS and Microsoft Excel software were utilized to map and analyze the reported cholera cases and other data used. Meanwhile, cohort study in epidemiological technique was applied to investigate multiple outcomes of the disease exposure. The general spatial pattern of cholera was highly clustered showed the disease spread easily at a place or person to others especially 1500 meters from the infected person and locations. Although the cholera outbreaks in the districts are not critical, it could be endemic at the crowded areas, unhygienic environment, and close to contaminated water. It was also strongly believed that the coastal water of the study areas has possible relationship with the cholera transmission and phytoplankton bloom since the areas recorded higher cases. GIS demonstrates a vital spatial epidemiological technique in determining the distribution pattern and elucidating the hypotheses generating of the disease. The next research would be applying some advanced geo-analysis methods and other disease risk factors for producing a significant a local scale predictive risk model of the disease in Malaysia

  17. Geochronological study of the Guanabara Bay (Rio de Janeiro State, Brazil) using 2'10 Pb dating technique and the constant rate of supply model

    International Nuclear Information System (INIS)

    Silva Braganca, Maura Julia Camara da; Oliveira Godoy, Jose Marcos de

    1995-01-01

    A geochronological study of the Guanabara Bay (RJ, Brazil) based on 210 Pb dating technique using the Constant Rate of Supply Model CRS is presented. A low energy gamma spectrometry ( 210 Pb for samples collected from Estrela and Sao Joao de Meriti rivers. Radiochemical method was applied to determine the amount of 210 Pb in samples from Guapimirim, Guaxindiba and Imbuacu rivers. Atomic absorption spectrometry with air-acetylene flame technique was used to determine the amount of copper in all the samples. The CRS model showed adequate in this estuarine system. (author). 19 refs., 5 figs., 6 tabs

  18. Applying Model Based Systems Engineering to NASA's Space Communications Networks

    Science.gov (United States)

    Bhasin, Kul; Barnes, Patrick; Reinert, Jessica; Golden, Bert

    2013-01-01

    System engineering practices for complex systems and networks now require that requirement, architecture, and concept of operations product development teams, simultaneously harmonize their activities to provide timely, useful and cost-effective products. When dealing with complex systems of systems, traditional systems engineering methodology quickly falls short of achieving project objectives. This approach is encumbered by the use of a number of disparate hardware and software tools, spreadsheets and documents to grasp the concept of the network design and operation. In case of NASA's space communication networks, since the networks are geographically distributed, and so are its subject matter experts, the team is challenged to create a common language and tools to produce its products. Using Model Based Systems Engineering methods and tools allows for a unified representation of the system in a model that enables a highly related level of detail. To date, Program System Engineering (PSE) team has been able to model each network from their top-level operational activities and system functions down to the atomic level through relational modeling decomposition. These models allow for a better understanding of the relationships between NASA's stakeholders, internal organizations, and impacts to all related entities due to integration and sustainment of existing systems. Understanding the existing systems is essential to accurate and detailed study of integration options being considered. In this paper, we identify the challenges the PSE team faced in its quest to unify complex legacy space communications networks and their operational processes. We describe the initial approaches undertaken and the evolution toward model based system engineering applied to produce Space Communication and Navigation (SCaN) PSE products. We will demonstrate the practice of Model Based System Engineering applied to integrating space communication networks and the summary of its

  19. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    Science.gov (United States)

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Construct canine intracranial aneurysm model by endovascular technique

    International Nuclear Information System (INIS)

    Liang Xiaodong; Liu Yizhi; Ni Caifang; Ding Yi

    2004-01-01

    Objective: To construct canine bifurcation aneurysms suitable for evaluating the exploration of endovascular devices for interventional therapy by endovascular technique. Methods: The right common carotid artery of six dogs was expanded with a pliable balloon by means of endovascular technique, then embolization with detached balloon was taken at their originations DAS examination were performed on 1, 2, 3 d after the procedurse. Results: 6 aneurysm models were created in six dogs successfully with the mean width and height of the aneurysms decreasing in 3 days. Conclusions: This canine aneurysm model presents the virtue in the size and shape of human cerebral bifurcation saccular aneurysms on DSA image, suitable for developing the exploration of endovascular devices for aneurismal therapy. The procedure is quick, reliable and reproducible. (authors)

  1. Circuit oriented electromagnetic modeling using the PEEC techniques

    CERN Document Server

    Ruehli, Albert; Jiang, Lijun

    2017-01-01

    This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.

  2. Laser--Doppler anemometry technique applied to two-phase dispersed flows in a rectangular channel

    International Nuclear Information System (INIS)

    Lee, S.L.; Srinivasan, J.

    1979-01-01

    A new optical technique using Laser--Doppler anemometry has been applied to the local measurement of turbulent upward flow of a dilute water droplet--air two-phase dispersion in a vertical rectangular channel. Individually examined were over 20,000 droplet signals coming from each of a total of ten transversely placed measuring points, the closest of which to the channel wall was 250 μ away from the wall. Two flows of different patterns due to different imposed flow conditions were investigated, one with and the other without a liquid film formed on the channel wall. Reported are the size and number density distribution and the axial and lateral velocity distributions for the droplets as well as the axial and lateral velocity distributions for the air

  3. Experiences in applying Bayesian integrative models in interdisciplinary modeling: the computational and human challenges

    DEFF Research Database (Denmark)

    Kuikka, Sakari; Haapasaari, Päivi Elisabet; Helle, Inari

    2011-01-01

    We review the experience obtained in using integrative Bayesian models in interdisciplinary analysis focusing on sustainable use of marine resources and environmental management tasks. We have applied Bayesian models to both fisheries and environmental risk analysis problems. Bayesian belief...... be time consuming and research projects can be difficult to manage due to unpredictable technical problems related to parameter estimation. Biology, sociology and environmental economics have their own scientific traditions. Bayesian models are becoming traditional tools in fisheries biology, where...

  4. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  5. Addressing dependability by applying an approach for model-based risk assessment

    International Nuclear Information System (INIS)

    Gran, Bjorn Axel; Fredriksen, Rune; Thunem, Atoosa P.-J.

    2007-01-01

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development

  6. Addressing dependability by applying an approach for model-based risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gran, Bjorn Axel [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: bjorn.axel.gran@hrp.no; Fredriksen, Rune [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: rune.fredriksen@hrp.no; Thunem, Atoosa P.-J. [Institutt for energiteknikk, OECD Halden Reactor Project, NO-1751 Halden (Norway)]. E-mail: atoosa.p-j.thunem@hrp.no

    2007-11-15

    This paper describes how an approach for model-based risk assessment (MBRA) can be applied for addressing different dependability factors in a critical application. Dependability factors, such as availability, reliability, safety and security, are important when assessing the dependability degree of total systems involving digital instrumentation and control (I and C) sub-systems. In order to identify risk sources their roles with regard to intentional system aspects such as system functions, component behaviours and intercommunications must be clarified. Traditional risk assessment is based on fault or risk models of the system. In contrast to this, MBRA utilizes success-oriented models describing all intended system aspects, including functional, operational and organizational aspects of the target. The EU-funded CORAS project developed a tool-supported methodology for the application of MBRA in security-critical systems. The methodology has been tried out within the telemedicine and e-commerce areas, and provided through a series of seven trials a sound basis for risk assessments. In this paper the results from the CORAS project are presented, and it is discussed how the approach for applying MBRA meets the needs of a risk-informed Man-Technology-Organization (MTO) model, and how methodology can be applied as a part of a trust case development.

  7. Signed directed social network analysis applied to group conflict

    DEFF Research Database (Denmark)

    Zheng, Quan; Skillicorn, David; Walther, Olivier

    2015-01-01

    Real-world social networks contain relationships of multiple different types, but this richness is often ignored in graph-theoretic modelling. We show how two recently developed spectral embedding techniques, for directed graphs (relationships are asymmetric) and for signed graphs (relationships...... are both positive and negative), can be combined. This combination is particularly appropriate for intelligence, terrorism, and law enforcement applications. We illustrate by applying the novel embedding technique to datasets describing conflict in North-West Africa, and show how unusual interactions can...

  8. Modeling and Simulation Techniques for Large-Scale Communications Modeling

    National Research Council Canada - National Science Library

    Webb, Steve

    1997-01-01

    .... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.

  9. Digital filtering techniques applied to electric power systems protection; Tecnicas de filtragem digital aplicadas a protecao de sistemas eletricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Helio Glauco Ferreira

    1996-12-31

    This work introduces an analysis and a comparative study of some of the techniques for digital filtering of the voltage and current waveforms from faulted transmission lines. This study is of fundamental importance for the development of algorithms applied to digital protection of electric power systems. The techniques studied are based on the Discrete Fourier Transform theory, the Walsh functions and the Kalman filter theory. Two aspects were emphasized in this study: Firstly, the non-recursive techniques were analysed with the implementation of filters based on Fourier theory and the Walsh functions. Secondly, recursive techniques were analyzed, with the implementation of the filters based on the Kalman theory and once more on the Fourier theory. (author) 56 refs., 25 figs., 16 tabs.

  10. Delphi technique applied to risk identification and assessment on pipe supports fabrication and erection contracts; Aplicacao da tecnica Delphi para identificacao e avaliacao de riscos na contratacao e montagem de suportes de tubulacao

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Rodrigo Luiz Neves; Balbi, Diego Junca de Gonzaga [Promon Engenharia, Sao Paulo, SP (Brazil)

    2012-07-01

    Through the years, Risk Management became an accepted subject in Brazilian Organizations, with its own language, techniques and tools; and its processes are being more and more often introduced in its management models. However, risk identification, assessment and management is a difficult task, and can be even more difficult for construction industry-related projects, for these ventures tend to be more dynamic and complex. In this sense, the objective of this paper is to present the application of Delphi technique for risk identification in the erection of piping support. To achieve the desired objective, a literature review of theory references was conducted to understand concepts involved. To apply the technique itself, experts in plant erection were involving. (author)

  11. Pre-analysis techniques applied to area-based correlation aiming Digital Terrain Model generation

    Directory of Open Access Journals (Sweden)

    Maurício Galo

    2005-12-01

    Full Text Available Area-based matching is an useful procedure in some photogrammetric processes and its results are of crucial importance in applications such as relative orientation, phototriangulation and Digital Terrain Model generation. The successful determination of correspondence depends on radiometric and geometric factors. Considering these aspects, the use of procedures that previously estimate the quality of the parameters to be computed is a relevant issue. This paper describes these procedures and it is shown that the quality prediction can be computed before performing matching by correlation, trough the analysis of the reference window. This procedure can be incorporated in the correspondence process for Digital Terrain Model generation and Phototriangulation. The proposed approach comprises the estimation of the variance matrix of the translations from the gray levels in the reference window and the reduction of the search space using the knowledge of the epipolar geometry. As a consequence, the correlation process becomes more reliable, avoiding the application of matching procedures in doubtful areas. Some experiments with simulated and real data are presented, evidencing the efficiency of the studied strategy.

  12. Numerical modeling techniques for flood analysis

    Science.gov (United States)

    Anees, Mohd Talha; Abdullah, K.; Nawawi, M. N. M.; Ab Rahman, Nik Norulaini Nik; Piah, Abd. Rahni Mt.; Zakaria, Nor Azazi; Syakir, M. I.; Mohd. Omar, A. K.

    2016-12-01

    Topographic and climatic changes are the main causes of abrupt flooding in tropical areas. It is the need to find out exact causes and effects of these changes. Numerical modeling techniques plays a vital role for such studies due to their use of hydrological parameters which are strongly linked with topographic changes. In this review, some of the widely used models utilizing hydrological and river modeling parameters and their estimation in data sparse region are discussed. Shortcomings of 1D and 2D numerical models and the possible improvements over these models through 3D modeling are also discussed. It is found that the HEC-RAS and FLO 2D model are best in terms of economical and accurate flood analysis for river and floodplain modeling respectively. Limitations of FLO 2D in floodplain modeling mainly such as floodplain elevation differences and its vertical roughness in grids were found which can be improve through 3D model. Therefore, 3D model was found to be more suitable than 1D and 2D models in terms of vertical accuracy in grid cells. It was also found that 3D models for open channel flows already developed recently but not for floodplain. Hence, it was suggested that a 3D model for floodplain should be developed by considering all hydrological and high resolution topographic parameter's models, discussed in this review, to enhance the findings of causes and effects of flooding.

  13. Machine-learning techniques applied to antibacterial drug discovery.

    Science.gov (United States)

    Durrant, Jacob D; Amaro, Rommie E

    2015-01-01

    The emergence of drug-resistant bacteria threatens to revert humanity back to the preantibiotic era. Even now, multidrug-resistant bacterial infections annually result in millions of hospital days, billions in healthcare costs, and, most importantly, tens of thousands of lives lost. As many pharmaceutical companies have abandoned antibiotic development in search of more lucrative therapeutics, academic researchers are uniquely positioned to fill the pipeline. Traditional high-throughput screens and lead-optimization efforts are expensive and labor intensive. Computer-aided drug-discovery techniques, which are cheaper and faster, can accelerate the identification of novel antibiotics, leading to improved hit rates and faster transitions to preclinical and clinical testing. The current review describes two machine-learning techniques, neural networks and decision trees, that have been used to identify experimentally validated antibiotics. We conclude by describing the future directions of this exciting field. © 2015 John Wiley & Sons A/S.

  14. Plants status monitor: Modelling techniques and inherent benefits

    International Nuclear Information System (INIS)

    Breeding, R.J.; Lainoff, S.M.; Rees, D.C.; Prather, W.A.; Fickiessen, K.O.E.

    1987-01-01

    The Plant Status Monitor (PSM) is designed to provide plant personnel with information on the operational status of the plant and compliance with the plant technical specifications. The PSM software evaluates system models using a 'distributed processing' technique in which detailed models of individual systems are processed rather than by evaluating a single, plant-level model. In addition, development of the system models for PSM provides inherent benefits to the plant by forcing detailed reviews of the technical specifications, system design and operating procedures, and plant documentation. (orig.)

  15. Advanced nondestructive techniques applied for the detection of discontinuities in aluminum foams

    Science.gov (United States)

    Katchadjian, Pablo; García, Alejandro; Brizuela, Jose; Camacho, Jorge; Chiné, Bruno; Mussi, Valerio; Britto, Ivan

    2018-04-01

    Metal foams are finding an increasing range of applications by their lightweight structure and physical, chemical and mechanical properties. Foams can be used to fill closed moulds for manufacturing structural foam parts of complex shape [1]; foam filled structures are expected to provide good mechanical properties and energy absorption capabilities. The complexity of the foaming process and the number of parameters to simultaneously control, demand a preliminary and hugely wide experimental activity to manufacture foamed components with a good quality. That is why there are many efforts to improve the structure of foams, in order to obtain a product with good properties. The problem is that even for seemingly identical foaming conditions, the effective foaming can vary significantly from one foaming trial to another. The variation of the foams often is related by structural imperfections, joining region (foam-foam or foam-wall mold) or difficulties in achieving a complete filling of the mould. That is, in a closed mold, the result of the mold filling and its structure or defects are not known a priori and can eventually vary significantly. These defects can cause a drastic deterioration of the mechanical properties [2] and lead to a low performance in its application. This work proposes the use of advanced nondestructive techniques for evaluating the foam distribution after filling the mold to improve the manufacturing process. To achieved this purpose ultrasonic technique (UT) and cone beam computed tomography (CT) were applied on plate and structures of different thicknesses filled with foam of different porosity. UT was carried out on transmission mode with low frequency air-coupled transducers [3], in focused and unfocused configurations.

  16. Modelling of ground penetrating radar data in stratified media using the reflectivity technique

    International Nuclear Information System (INIS)

    Sena, Armando R; Sen, Mrinal K; Stoffa, Paul L

    2008-01-01

    Horizontally layered media are often encountered in shallow exploration geophysics. Ground penetrating radar (GPR) data in these environments can be modelled by techniques that are more efficient than finite difference (FD) or finite element (FE) schemes because the lateral homogeneity of the media allows us to reduce the dependence on the horizontal spatial variables through Fourier transforms on these coordinates. We adapt and implement the invariant embedding or reflectivity technique used to model elastic waves in layered media to model GPR data. The results obtained with the reflectivity and FDTD modelling techniques are in excellent agreement and the effects of the air–soil interface on the radiation pattern are correctly taken into account by the reflectivity technique. Comparison with real wide-angle GPR data shows that the reflectivity technique can satisfactorily reproduce the real GPR data. These results and the computationally efficient characteristics of the reflectivity technique (compared to FD or FE) demonstrate its usefulness in interpretation and possible model-based inversion schemes of GPR data in stratified media

  17. Study of different ultrasonic focusing methods applied to non destructive testing

    International Nuclear Information System (INIS)

    El Amrani, M.

    1995-01-01

    The work presented in this thesis concerns the study of different ultrasonic focusing techniques applied to Nondestructive Testing (mechanical focusing and electronic focusing) and compares their capabilities. We have developed a model to predict the ultrasonic field radiated into a solid by water-coupled transducers. The model is based upon the Rayleigh integral formulation, modified to take account the refraction at the liquid-solid interface. The model has been validated by numerous experiments in various configurations. Running this model and the associated software, we have developed new methods to optimize focused transducers and studied the characteristics of the beam generated by transducers using various focusing techniques. (author). 120 refs., 95 figs., 4 appends

  18. Real-time emergency forecasting technique for situation management systems

    Science.gov (United States)

    Kopytov, V. V.; Kharechkin, P. V.; Naumenko, V. V.; Tretyak, R. S.; Tebueva, F. B.

    2018-05-01

    The article describes the real-time emergency forecasting technique that allows increasing accuracy and reliability of forecasting results of any emergency computational model applied for decision making in situation management systems. Computational models are improved by the Improved Brown’s method applying fractal dimension to forecast short time series data being received from sensors and control systems. Reliability of emergency forecasting results is ensured by the invalid sensed data filtering according to the methods of correlation analysis.

  19. Terahertz spectroscopy applied to food model systems

    DEFF Research Database (Denmark)

    Møller, Uffe

    Water plays a crucial role in the quality of food. Apart from the natural water content of a food product, the state of that water is very important. Water can be found integrated into the biological material or it can be added during production of the product. Currently it is difficult...... to differentiate between these types of water in subsequent quality controls. This thesis describes terahertz time-domain spectroscopy applied on aqueous food model systems, with particular focus on ethanol-water mixtures and confined water pools in inverse micelles....

  20. Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells

    Energy Technology Data Exchange (ETDEWEB)

    Durlofsky, Louis J.

    2000-08-28

    This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

  1. Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt

    Directory of Open Access Journals (Sweden)

    Yasmine Megahed

    2015-09-01

    Full Text Available This study modeled the urban growth in the Greater Cairo Region (GCR, one of the fastest growing mega cities in the world, using remote sensing data and ancillary data. Three land use land cover (LULC maps (1984, 2003 and 2014 were produced from satellite images by using Support Vector Machines (SVM. Then, land cover changes were detected by applying a high level mapping technique that combines binary maps (change/no-change and post classification comparison technique. The spatial and temporal urban growth patterns were analyzed using selected statistical metrics developed in the FRAGSTATS software. Major transitions to urban were modeled to predict the future scenarios for year 2025 using Land Change Modeler (LCM embedded in the IDRISI software. The model results, after validation, indicated that 14% of the vegetation and 4% of the desert in 2014 will be urbanized in 2025. The urban areas within a 5-km buffer around: the Great Pyramids, Islamic Cairo and Al-Baron Palace were calculated, highlighting an intense urbanization especially around the Pyramids; 28% in 2014 up to 40% in 2025. Knowing the current and estimated urbanization situation in GCR will help decision makers to adjust and develop new plans to achieve a sustainable development of urban areas and to protect the historical locations.

  2. Analysis and simulation of wireless signal propagation applying geostatistical interpolation techniques

    Science.gov (United States)

    Kolyaie, S.; Yaghooti, M.; Majidi, G.

    2011-12-01

    This paper is a part of an ongoing research to examine the capability of geostatistical analysis for mobile networks coverage prediction, simulation and tuning. Mobile network coverage predictions are used to find network coverage gaps and areas with poor serviceability. They are essential data for engineering and management in order to make better decision regarding rollout, planning and optimisation of mobile networks.The objective of this research is to evaluate different interpolation techniques in coverage prediction. In method presented here, raw data collected from drive testing a sample of roads in study area is analysed and various continuous surfaces are created using different interpolation methods. Two general interpolation methods are used in this paper with different variables; first, Inverse Distance Weighting (IDW) with various powers and number of neighbours and second, ordinary kriging with Gaussian, spherical, circular and exponential semivariogram models with different number of neighbours. For the result comparison, we have used check points coming from the same drive test data. Prediction values for check points are extracted from each surface and the differences with actual value are computed. The output of this research helps finding an optimised and accurate model for coverage prediction.

  3. Bioremediation techniques applied to aqueous media contaminated with mercury.

    Science.gov (United States)

    Velásquez-Riaño, Möritz; Benavides-Otaya, Holman D

    2016-12-01

    In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.

  4. The Influence of Socioeconomic Status on Changes in Young People's Expectations of Applying to University

    Science.gov (United States)

    Anders, Jake

    2017-01-01

    A much larger proportion of English 14-year-olds expect to apply to university than ultimately make an application by age 21, but the proportion expecting to apply falls from age 14 onwards. In order to assess the role of socioeconomic status in explaining changes in expectations, this paper applies duration modelling techniques to the…

  5. MACHINE LEARNING TECHNIQUES APPLIED TO LIGNOCELLULOSIC ETHANOL IN SIMULTANEOUS HYDROLYSIS AND FERMENTATION

    Directory of Open Access Journals (Sweden)

    J. Fischer

    Full Text Available Abstract This paper investigates the use of machine learning (ML techniques to study the effect of different process conditions on ethanol production from lignocellulosic sugarcane bagasse biomass using S. cerevisiae in a simultaneous hydrolysis and fermentation (SHF process. The effects of temperature, enzyme concentration, biomass load, inoculum size and time were investigated using artificial neural networks, a C5.0 classification tree and random forest algorithms. The optimization of ethanol production was also evaluated. The results clearly depict that ML techniques can be used to evaluate the SHF (R2 between actual and model predictions higher than 0.90, absolute average deviation lower than 8.1% and RMSE lower than 0.80 and predict optimized conditions which are in close agreement with those found experimentally. Optimal conditions were found to be a temperature of 35 ºC, an SHF time of 36 h, enzymatic load of 99.8%, inoculum size of 29.5 g/L and bagasse concentration of 24.9%. The ethanol concentration and volumetric productivity for these conditions were 12.1 g/L and 0.336 g/L.h, respectively.

  6. Tracer techniques applied to groundwater studies

    International Nuclear Information System (INIS)

    Sanchez, W.

    1975-01-01

    The determination of several aquifer characteristics, primarily in the satured zone, namely: porosity, permeability, transmissivity, dispersivity, direction and velocity of sub-surface water is presented. These techniques are based on artificial radioisotopes utilization. Only field determination of porosity are considered here and their advantage over laboratory measurements are: better representation of volume average, insensibility to local inhomogenities and no distortion of the structure due to sampling. The radioisotope dilution method is used to obtain an independent and direct measurement of the filtration velocity in a water-bearing formation under natural or induced hydraulic gradient. The velocity of the flow is usually calculated from Darcy's formula through the measurement of gradients and requires a knowledge of the permeability of the formation. The filtration velocity interpreted in conjunction with other parameters can, under favourable conditions, provide valuable information on the permeability, transmissibility and amount of water moving through an aquifer

  7. Proposal of requirements for performance in Brazil for systems of external individual monitoring for neutrons applying the TLD-albedo technique

    International Nuclear Information System (INIS)

    Martins, Marcelo M.; Mauricio, Claudia L.P.; Pereira, Walsan W.; Fonseca, Evaldo S. da; Silva, Ademir X.

    2009-01-01

    This work presents a criteria and conditions proposal for the regulations in Brazil of individual monitoring systems for neutrons applying the albedo technique with thermoluminescent detectors. Tests are proposed for the characterization performance of the system based on the Regulation ISO 21909 and on the experience of the authors

  8. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    Science.gov (United States)

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  9. fuzzy control technique fuzzy control technique applied to modified

    African Journals Online (AJOL)

    eobe

    epidemiological parameters) to the malaria model simulated by 9 fully ... The Mamdani controllers use a standard max-min inference process and a fast centre of min inference process and a ... Numerical results obtained using Matlab 2008a software software .... simulation environment using the 9 ODE Simulators. The test ...

  10. Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations.

    LENUS (Irish Health Repository)

    Colgan, Niall C

    2010-12-01

    The in-vivo mechanical response of neural tissue during impact loading of the head is simulated using geometrically accurate finite element (FE) head models. However, current FE models do not account for the anisotropic elastic material behaviour of brain tissue. In soft biological tissue, there is a correlation between internal microscopic structure and macroscopic mechanical properties. Therefore, constitutive equations are important for the numerical analysis of the soft biological tissues. By exploiting diffusion tensor techniques the anisotropic orientation of neural tissue is incorporated into a non-linear viscoelastic material model for brain tissue and implemented in an explicit FE analysis. The viscoelastic material parameters are derived from published data and the viscoelastic model is used to describe the mechanical response of brain tissue. The model is formulated in terms of a large strain viscoelastic framework and considers non-linear viscous deformations in combination with non-linear elastic behaviour. The constitutive model was applied in the University College Dublin brain trauma model (UCDBTM) (i.e. three-dimensional finite element head model) to predict the mechanical response of the intra-cranial contents due to rotational injury.

  11. Analysis of Multipath Mitigation Techniques with Land Mobile Satellite Channel Model

    Directory of Open Access Journals (Sweden)

    M. Z. H. Bhuiyan J. Zhang

    2012-12-01

    Full Text Available Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this is of utmost importance to analyze the performance of different multipath mitigation techniques in some realistic measurement-based channel models, for example, the Land Multipath is undesirable for Global Navigation Satellite System (GNSS receivers, since the reception of multipath can create a significant distortion to the shape of the correlation function leading to an error in the receivers’ position estimate. Many multipath mitigation techniques exist in the literature to deal with the multipath propagation problem in the context of GNSS. The multipath studies in the literature are often based on optimistic assumptions, for example, assuming a static two-path channel or a fading channel with a Rayleigh or a Nakagami distribution. But, in reality, there are a lot of channel modeling issues, for example, satellite-to-user geometry, variable number of paths, variable path delays and gains, Non Line-Of-Sight (NLOS path condition, receiver movements, etc. that are kept out of consideration when analyzing the performance of these techniques. Therefore, this

  12. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi

    2013-12-01

    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  13. Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

    Directory of Open Access Journals (Sweden)

    J. S. de Villiers

    2014-10-01

    Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.

  14. Changes in speed distribution: Applying aggregated safety effect models to individual vehicle speeds.

    Science.gov (United States)

    Vadeby, Anna; Forsman, Åsa

    2017-06-01

    This study investigated the effect of applying two aggregated models (the Power model and the Exponential model) to individual vehicle speeds instead of mean speeds. This is of particular interest when the measure introduced affects different parts of the speed distribution differently. The aim was to examine how the estimated overall risk was affected when assuming the models are valid on an individual vehicle level. Speed data from two applications of speed measurements were used in the study: an evaluation of movable speed cameras and a national evaluation of new speed limits in Sweden. The results showed that when applied on individual vehicle speed level compared with aggregated level, there was essentially no difference between these for the Power model in the case of injury accidents. However, for fatalities the difference was greater, especially for roads with new cameras where those driving fastest reduced their speed the most. For the case with new speed limits, the individual approach estimated a somewhat smaller effect, reflecting that changes in the 15th percentile (P15) were somewhat larger than changes in P85 in this case. For the Exponential model there was also a clear, although small, difference between applying the model to mean speed changes and individual vehicle speed changes when speed cameras were used. This applied both for injury accidents and fatalities. There were also larger effects for the Exponential model than for the Power model, especially for injury accidents. In conclusion, applying the Power or Exponential model to individual vehicle speeds is an alternative that provides reasonable results in relation to the original Power and Exponential models, but more research is needed to clarify the shape of the individual risk curve. It is not surprising that the impact on severe traffic crashes was larger in situations where those driving fastest reduced their speed the most. Further investigations on use of the Power and/or the

  15. High speed resonant frequency determination applied to field mapping using perturbation techniques

    International Nuclear Information System (INIS)

    Smith, B.H.; Burton, R.J.; Hutcheon, R.M.

    1992-01-01

    Perturbation techniques are commonly used for measuring electric and magnetic field distributions in resonant structures. A field measurement system has been assembled using a Hewlett Packard model 8753C network analyzer interfaced via an HPIB bus to a personal computer to form an accurate, rapid and flexible system for data acquisition, control, and analysis of such measurements. Characterization of long linac structures (up to 3 m) is accomplished in about three minutes, minimizing thermal drift effects. This paper describes the system, its application and its extension to applications such as confirming the presence of weak, off-axis quadrupole fields in an on-axis coupled linac. (Author) 5 figs., 10 refs

  16. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    Science.gov (United States)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  17. The ordering operator technique applied to open systems

    International Nuclear Information System (INIS)

    Pedrosa, I.A.; Baseia, B.

    1982-01-01

    A normal ordering technique and the coherent representation are used to discribe the time evolution of an open system of a single oscillator, linearly coupled with an infinite number of reservoir oscillators and it is shown how to include the dissipation and get the exponential decay. (Author) [pt

  18. X-diffraction technique applied for nano system metrology

    International Nuclear Information System (INIS)

    Kuznetsov, Alexei Yu.; Machado, Rogerio; Robertis, Eveline de; Campos, Andrea P.C.; Archanjo, Braulio S.; Gomes, Lincoln S.; Achete, Carlos A.

    2009-01-01

    The application of nano materials are fast growing in all industrial sectors, with a strong necessity in nano metrology and normalizing in the nano material area. The great potential of the X-ray diffraction technique in this field is illustrated at the example of metals, metal oxides and pharmaceuticals

  19. Applying different quality and safety models in healthcare improvement work: Boundary objects and system thinking

    International Nuclear Information System (INIS)

    Wiig, Siri; Robert, Glenn; Anderson, Janet E.; Pietikainen, Elina; Reiman, Teemu; Macchi, Luigi; Aase, Karina

    2014-01-01

    A number of theoretical models can be applied to help guide quality improvement and patient safety interventions in hospitals. However there are often significant differences between such models and, therefore, their potential contribution when applied in diverse contexts. The aim of this paper is to explore how two such models have been applied by hospitals to improve quality and safety. We describe and compare the models: (1) The Organizing for Quality (OQ) model, and (2) the Design for Integrated Safety Culture (DISC) model. We analyze the theoretical foundations of the models, and show, by using a retrospective comparative case study approach from two European hospitals, how these models have been applied to improve quality and safety. The analysis shows that differences appear in the theoretical foundations, practical approaches and applications of the models. Nevertheless, the case studies indicate that the choice between the OQ and DISC models is of less importance for guiding the practice of quality and safety improvement work, as they are both systemic and share some important characteristics. The main contribution of the models lay in their role as boundary objects directing attention towards organizational and systems thinking, culture, and collaboration

  20. Modelling of Evaporator in Waste Heat Recovery System using Finite Volume Method and Fuzzy Technique

    Directory of Open Access Journals (Sweden)

    Jahedul Islam Chowdhury

    2015-12-01

    Full Text Available The evaporator is an important component in the Organic Rankine Cycle (ORC-based Waste Heat Recovery (WHR system since the effective heat transfer of this device reflects on the efficiency of the system. When the WHR system operates under supercritical conditions, the heat transfer mechanism in the evaporator is unpredictable due to the change of thermo-physical properties of the fluid with temperature. Although the conventional finite volume model can successfully capture those changes in the evaporator of the WHR process, the computation time for this method is high. To reduce the computation time, this paper develops a new fuzzy based evaporator model and compares its performance with the finite volume method. The results show that the fuzzy technique can be applied to predict the output of the supercritical evaporator in the waste heat recovery system and can significantly reduce the required computation time. The proposed model, therefore, has the potential to be used in real time control applications.

  1. The gauge technique in supersymmetric QED2

    NARCIS (Netherlands)

    Roo, M. de; Steringa, J.J.

    1988-01-01

    We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge

  2. Recent developments in health risks modeling techniques applied to hazardous waste site assessment and remediation

    International Nuclear Information System (INIS)

    Mendez, W.M. Jr.

    1990-01-01

    Remediation of hazardous an mixed waste sites is often driven by assessments of human health risks posed by the exposures to hazardous substances released from these sites. The methods used to assess potential health risk involve, either implicitly or explicitly, models for pollutant releases, transport, human exposure and intake, and for characterizing health effects. Because knowledge about pollutant fate transport processes at most waste sites is quite limited, and data cost are quite high, most of the models currently used to assess risk, and endorsed by regulatory agencies, are quite simple. The models employ many simplifying assumptions about pollutant fate and distribution in the environment about human pollutant intake, and toxicologic responses to pollutant exposures. An important consequence of data scarcity and model simplification is that risk estimates are quite uncertain and estimates of the magnitude uncertainty associated with risk assessment has been very difficult. A number of methods have been developed to address the issue of uncertainty in risk assessments in a manner that realistically reflects uncertainty in model specification and data limitations. These methods include definition of multiple exposure scenarios, sensitivity analyses, and explicit probabilistic modeling of uncertainty. Recent developments in this area will be discussed, along with their possible impacts on remediation programs, and remaining obstacles to their wider use and acceptance by the scientific and regulatory communities

  3. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    Science.gov (United States)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2017-08-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  4. On a Numerical and Graphical Technique for Evaluating some Models Involving Rational Expectations

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  5. On a numerical and graphical technique for evaluating some models involving rational expectations

    DEFF Research Database (Denmark)

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  6. Photoacoustic technique applied to the study of skin and leather

    International Nuclear Information System (INIS)

    Vargas, M.; Varela, J.; Hernandez, L.; Gonzalez, A.

    1998-01-01

    In this paper the photoacoustic technique is used in bull skin for the determination of thermal and optical properties as a function of the tanning process steps. Our results show that the photoacoustic technique is sensitive to the study of physical changes in this kind of material due to the tanning process

  7. New techniques on oil spill modelling applied in the Eastern Mediterranean sea

    Science.gov (United States)

    Zodiatis, George; Kokinou, Eleni; Alves, Tiago; Lardner, Robin

    2016-04-01

    Small or large oil spills resulting from accidents on oil and gas platforms or due to the maritime traffic comprise a major environmental threat for all marine and coastal systems, and they are responsible for huge economic losses concerning the human infrastructures and the tourism. This work aims at presenting the integration of oil-spill model, bathymetric, meteorological, oceanographic, geomorphological and geological data to assess the impact of oil spills in maritime regions such as bays, as well as in the open sea, carried out in the Eastern Mediterranean Sea within the frame of NEREIDs, MEDESS-4MS and RAOP-Med EU projects. The MEDSLIK oil spill predictions are successfully combined with bathymetric analyses, the shoreline susceptibility and hazard mapping to predict the oil slick trajectories and the extend of the coastal areas affected. Based on MEDSLIK results, oil spill spreading and dispersion scenarios are produced both for non-mitigated and mitigated oil spills. MEDSLIK model considers three response combating methods of floating oil spills: a) mechanical recovery using skimmers or similar mechanisms; b) destruction by fire, c) use of dispersants or other bio-chemical means and deployment of booms. Shoreline susceptibility map can be compiled for the study areas based on the Environmental Susceptibility Index. The ESI classification considers a range of values between 1 and 9, with level 1 (ESI 1) representing areas of low susceptibility, impermeable to oil spilt during accidents, such as linear shorelines with rocky cliffs. In contrast, ESI 9 shores are highly vulnerable, and often coincide with natural reserves and special protected areas. Additionally, hazard maps of the maritime and coastal areas, possibly exposed to the danger on an oil spill, evaluate and categorize the hazard in levels from low to very high. This is important because a) Prior to an oil spill accident, hazard and shoreline susceptibility maps are made available to design

  8. Validation of a computer modelled forensic facial reconstruction technique using CT data from live subjects: a pilot study.

    Science.gov (United States)

    Short, Laura J; Khambay, Balvinder; Ayoub, Ashraf; Erolin, Caroline; Rynn, Chris; Wilkinson, Caroline

    2014-04-01

    Human forensic facial soft tissue reconstructions are used when post-mortem deterioration makes identification difficult by usual means. The aim is to trigger recognition of the in vivo countenance of the individual by a friend or family member. A further use is in the field of archaeology. There are a number of different methods that can be applied to complete the facial reconstruction, ranging from two dimensional drawings, three dimensional clay models and now, with the advances of three dimensional technology, three dimensional computerised modelling. Studies carried out to assess the accuracy of facial reconstructions have produced variable results over the years. Advances in three dimensional imaging techniques in the field of oral and maxillofacial surgery, particularly cone beam computed tomography (CBCT), now provides an opportunity to utilise the data of live subjects and assess the accuracy of the three dimensional computerised facial reconstruction technique. The aim of this study was to assess the accuracy of a computer modelled facial reconstruction technique using CBCT data from live subjects. This retrospective pilot study was carried out at the Glasgow Dental Hospital Orthodontic Department and the Centre of Anatomy and Human Identification, Dundee University School of Life Sciences. Ten patients (5 male and 5 female; mean age 23 years) with mild skeletal discrepancies with pre-surgical cone beam CT data (CBCT) were included in this study. The actual and forensic reconstruction soft tissues were analysed using 3D software to look at differences between landmarks, linear and angular measurements and surface meshes. There were no statistical differences for 18 out of the 23 linear and 7 out of 8 angular measurements between the reconstruction and the target (p<0.05). The use of Procrustes superimposition has highlighted potential problems with soft tissue depth and anatomical landmarks' position. Surface mesh analysis showed that this virtual

  9. A Log Logistic Survival Model Applied to Hypobaric Decompression Sickness

    Science.gov (United States)

    Conkin, Johnny

    2001-01-01

    Decompression sickness (DCS) is a complex, multivariable problem. A mathematical description or model of the likelihood of DCS requires a large amount of quality research data, ideas on how to define a decompression dose using physical and physiological variables, and an appropriate analytical approach. It also requires a high-performance computer with specialized software. I have used published DCS data to develop my decompression doses, which are variants of equilibrium expressions for evolved gas plus other explanatory variables. My analytical approach is survival analysis, where the time of DCS occurrence is modeled. My conclusions can be applied to simple hypobaric decompressions - ascents lasting from 5 to 30 minutes - and, after minutes to hours, to denitrogenation (prebreathing). They are also applicable to long or short exposures, and can be used whether the sufferer of DCS is at rest or exercising at altitude. Ultimately I would like my models to be applied to astronauts to reduce the risk of DCS during spacewalks, as well as to future spaceflight crews on the Moon and Mars.

  10. Line impedance estimation using model based identification technique

    DEFF Research Database (Denmark)

    Ciobotaru, Mihai; Agelidis, Vassilios; Teodorescu, Remus

    2011-01-01

    The estimation of the line impedance can be used by the control of numerous grid-connected systems, such as active filters, islanding detection techniques, non-linear current controllers, detection of the on/off grid operation mode. Therefore, estimating the line impedance can add extra functions...... into the operation of the grid-connected power converters. This paper describes a quasi passive method for estimating the line impedance of the distribution electricity network. The method uses the model based identification technique to obtain the resistive and inductive parts of the line impedance. The quasi...

  11. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    Science.gov (United States)

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  12. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae habitat and population densities

    Directory of Open Access Journals (Sweden)

    Khalifa M. Al-Kindi

    2017-08-01

    Full Text Available In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  13. Novel Techniques for Dialectal Arabic Speech Recognition

    CERN Document Server

    Elmahdy, Mohamed; Minker, Wolfgang

    2012-01-01

    Novel Techniques for Dialectal Arabic Speech describes approaches to improve automatic speech recognition for dialectal Arabic. Since speech resources for dialectal Arabic speech recognition are very sparse, the authors describe how existing Modern Standard Arabic (MSA) speech data can be applied to dialectal Arabic speech recognition, while assuming that MSA is always a second language for all Arabic speakers. In this book, Egyptian Colloquial Arabic (ECA) has been chosen as a typical Arabic dialect. ECA is the first ranked Arabic dialect in terms of number of speakers, and a high quality ECA speech corpus with accurate phonetic transcription has been collected. MSA acoustic models were trained using news broadcast speech. In order to cross-lingually use MSA in dialectal Arabic speech recognition, the authors have normalized the phoneme sets for MSA and ECA. After this normalization, they have applied state-of-the-art acoustic model adaptation techniques like Maximum Likelihood Linear Regression (MLLR) and M...

  14. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  15. Eddy current technique applied to automated tube profilometry

    International Nuclear Information System (INIS)

    Dobbeni, D.; Melsen, C. van

    1982-01-01

    The use of eddy current methods in the first totally automated pre-service inspection of the internal diameter of PWR steam generator tubes is described. The technique was developed at Laborelec, the Belgian Laboratory of the Electricity Supply Industry. Details are given of the data acquisition system and of the automated manipulator. Representative tube profiles are illustrated. (U.K.)

  16. The limitations of applying rational decision-making models to ...

    African Journals Online (AJOL)

    The aim of this paper is to show the limitations of rational decision-making models as applied to child spacing and more specifically to the use of modern methods of contraception. In the light of factors known to influence low uptake of child spacing services in other African countries, suggestions are made to explain the ...

  17. Applying Probabilistic Decision Models to Clinical Trial Design

    Science.gov (United States)

    Smith, Wade P; Phillips, Mark H

    2018-01-01

    Clinical trial design most often focuses on a single or several related outcomes with corresponding calculations of statistical power. We consider a clinical trial to be a decision problem, often with competing outcomes. Using a current controversy in the treatment of HPV-positive head and neck cancer, we apply several different probabilistic methods to help define the range of outcomes given different possible trial designs. Our model incorporates the uncertainties in the disease process and treatment response and the inhomogeneities in the patient population. Instead of expected utility, we have used a Markov model to calculate quality adjusted life expectancy as a maximization objective. Monte Carlo simulations over realistic ranges of parameters are used to explore different trial scenarios given the possible ranges of parameters. This modeling approach can be used to better inform the initial trial design so that it will more likely achieve clinical relevance.

  18. Dutch Young Adults Ratings of Behavior Change Techniques Applied in Mobile Phone Apps to Promote Physical Activity: A Cross-Sectional Survey.

    Science.gov (United States)

    Belmon, Laura S; Middelweerd, Anouk; Te Velde, Saskia J; Brug, Johannes

    2015-11-12

    Interventions delivered through new device technology, including mobile phone apps, appear to be an effective method to reach young adults. Previous research indicates that self-efficacy and social support for physical activity and self-regulation behavior change techniques (BCT), such as goal setting, feedback, and self-monitoring, are important for promoting physical activity; however, little is known about evaluations by the target population of BCTs applied to physical activity apps and whether these preferences are associated with individual personality characteristics. This study aimed to explore young adults' opinions regarding BCTs (including self-regulation techniques) applied in mobile phone physical activity apps, and to examine associations between personality characteristics and ratings of BCTs applied in physical activity apps. We conducted a cross-sectional online survey among healthy 18 to 30-year-old adults (N=179). Data on participants' gender, age, height, weight, current education level, living situation, mobile phone use, personality traits, exercise self-efficacy, exercise self-identity, total physical activity level, and whether participants met Dutch physical activity guidelines were collected. Items for rating BCTs applied in physical activity apps were selected from a hierarchical taxonomy for BCTs, and were clustered into three BCT categories according to factor analysis: "goal setting and goal reviewing," "feedback and self-monitoring," and "social support and social comparison." Most participants were female (n=146), highly educated (n=169), physically active, and had high levels of self-efficacy. In general, we observed high ratings of BCTs aimed to increase "goal setting and goal reviewing" and "feedback and self-monitoring," but not for BCTs addressing "social support and social comparison." Only 3 (out of 16 tested) significant associations between personality characteristics and BCTs were observed: "agreeableness" was related to

  19. Applied discrete-time queues

    CERN Document Server

    Alfa, Attahiru S

    2016-01-01

    This book introduces the theoretical fundamentals for modeling queues in discrete-time, and the basic procedures for developing queuing models in discrete-time. There is a focus on applications in modern telecommunication systems. It presents how most queueing models in discrete-time can be set up as discrete-time Markov chains. Techniques such as matrix-analytic methods (MAM) that can used to analyze the resulting Markov chains are included. This book covers single node systems, tandem system and queueing networks. It shows how queues with time-varying parameters can be analyzed, and illustrates numerical issues associated with computations for the discrete-time queueing systems. Optimal control of queues is also covered. Applied Discrete-Time Queues targets researchers, advanced-level students and analysts in the field of telecommunication networks. It is suitable as a reference book and can also be used as a secondary text book in computer engineering and computer science. Examples and exercises are includ...

  20. GORE PRECLUDE MVP dura substitute applied as a nonwatertight "underlay" graft for craniotomies: product and technique evaluation.

    Science.gov (United States)

    Chappell, E Thomas; Pare, Laura; Salehpour, Mohammed; Mathews, Marlon; Middlehof, Charles

    2009-01-01

    While watertight closure of the dura is a long-standing tenet of cranial surgery, it is often not possible and sometimes unnecessary. Many graft materials with various attributes and drawbacks have been in use for many years. A novel synthetic dural graft material called GORE PRECLUDE MVP dura substitute (WL Gore & Associates, Inc, Flagstaff, Ariz) (henceforth called "MVP") is designed for use both in traditional watertight dural closure and as a dural "underlay" graft in a nonwatertight fashion. One surface of MVP is engineered to facilitate fibroblast in-growth so that its proximity to the underside of the dura will lead to rapid incorporation, whereas the other surface acts as a barrier to reduce tissue adhesion to the device. A series of 59 human subjects undergoing craniotomy and available for clinical and radiographic follow-up underwent nonwatertight underlay grafting of their durotomy with MVP. This is an assessment of the specific product and technique. No attempt is made to compare this to other products or techniques. The mean follow-up in this group was more than 4 months. All subjects have ultimately experienced excellent outcomes related to use of the graft implanted with the underlay technique. No complications occurred related directly to MVP, but the wound-related complication rate attributed to the underlay technique was higher than expected (17%). However, careful analysis found a high rate of risk factors for wound complications and determined that complications with the underlay technique could be avoided by assuring close approximation of the graft material to the underside of the dura. MVP can be used as an underlay graft in a nonwatertight fashion. However, if used over large voids (relaxed brain or large tumor bed), "tacking" or traditional watertight closure techniques should be used. The underlay application of MVP is best applied over the convexities and is particularly well-suited to duraplasty after hemicraniectomy.

  1. Review of hardware cost estimation methods, models and tools applied to early phases of space mission planning

    Science.gov (United States)

    Trivailo, O.; Sippel, M.; Şekercioğlu, Y. A.

    2012-08-01

    of an estimate, and techniques and/or methods to attain representative and justifiable cost estimates are consequently discussed. Ultimately, the aim of the paper is to establish a baseline for development of a non-commercial, low cost, transparent cost estimation methodology to be applied during very early program research phases at a complete vehicle system level, for largely unprecedented manned launch vehicles in the future. This paper takes the first step to achieving this through the identification, analysis and understanding of established, existing techniques, models, tools and resources relevant within the space sector.

  2. A comparison of linear and nonlinear statistical techniques in performance attribution.

    Science.gov (United States)

    Chan, N H; Genovese, C R

    2001-01-01

    Performance attribution is usually conducted under the linear framework of multifactor models. Although commonly used by practitioners in finance, linear multifactor models are known to be less than satisfactory in many situations. After a brief survey of nonlinear methods, nonlinear statistical techniques are applied to performance attribution of a portfolio constructed from a fixed universe of stocks using factors derived from some commonly used cross sectional linear multifactor models. By rebalancing this portfolio monthly, the cumulative returns for procedures based on standard linear multifactor model and three nonlinear techniques-model selection, additive models, and neural networks-are calculated and compared. It is found that the first two nonlinear techniques, especially in combination, outperform the standard linear model. The results in the neural-network case are inconclusive because of the great variety of possible models. Although these methods are more complicated and may require some tuning, toolboxes are developed and suggestions on calibration are proposed. This paper demonstrates the usefulness of modern nonlinear statistical techniques in performance attribution.

  3. Applied research on air pollution using nuclear-related analytical techniques. Report on the second research co-ordination meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which started in 1992, and is scheduled to run until early 1997. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XRF, and PIXE for the analysis of toxic and other trace elements in air particulate matter. The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for research and monitoring studies on air pollution, ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural area). This document reports the discussions held during the second Research Co-ordination Meeting (RCM) for the CRP which took place at ANSTO in Menai, Australia. (author)

  4. Applied research on air pollution using nuclear-related analytical techniques. Report on the second research co-ordination meeting

    International Nuclear Information System (INIS)

    1995-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which started in 1992, and is scheduled to run until early 1997. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XRF, and PIXE for the analysis of toxic and other trace elements in air particulate matter. The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for research and monitoring studies on air pollution, ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural area). This document reports the discussions held during the second Research Co-ordination Meeting (RCM) for the CRP which took place at ANSTO in Menai, Australia. (author)

  5. A fermionic molecular dynamics technique to model nuclear matter

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2009-01-01

    Full text: At sub-nuclear densities of about 10 14 g/cm 3 , nuclear matter arranges itself in a variety of complex shapes. This can be the case in the crust of neutron stars and in core-collapse supernovae. These slab like and rod like structures, designated as nuclear pasta, have been modelled with classical molecular dynamics techniques. We present a technique, based on fermionic molecular dynamics, to model nuclear matter at sub-nuclear densities in a semi classical framework. The dynamical evolution of an antisymmetric ground state is described making the assumption of periodic boundary conditions. Adding the concepts of antisymmetry, spin and probability distributions to classical molecular dynamics, brings the dynamical description of nuclear matter to a quantum mechanical level. Applications of this model vary from investigation of macroscopic observables and the equation of state to the study of fundamental interactions on the microscopic structure of the matter. (author)

  6. Using an inverse modelling approach to evaluate the water retention in a simple water harvesting technique

    Directory of Open Access Journals (Sweden)

    K. Verbist

    2009-10-01

    Full Text Available In arid and semi-arid zones, runoff harvesting techniques are often applied to increase the water retention and infiltration on steep slopes. Additionally, they act as an erosion control measure to reduce land degradation hazards. Nevertheless, few efforts were observed to quantify the water harvesting processes of these techniques and to evaluate their efficiency. In this study, a combination of detailed field measurements and modelling with the HYDRUS-2D software package was used to visualize the effect of an infiltration trench on the soil water content of a bare slope in northern Chile. Rainfall simulations were combined with high spatial and temporal resolution water content monitoring in order to construct a useful dataset for inverse modelling purposes. Initial estimates of model parameters were provided by detailed infiltration and soil water retention measurements. Four different measurement techniques were used to determine the saturated hydraulic conductivity (Ksat independently. The tension infiltrometer measurements proved a good estimator of the Ksat value and a proxy for those measured under simulated rainfall, whereas the pressure and constant head well infiltrometer measurements showed larger variability. Six different parameter optimization functions were tested as a combination of soil-water content, water retention and cumulative infiltration data. Infiltration data alone proved insufficient to obtain high model accuracy, due to large scatter on the data set, and water content data were needed to obtain optimized effective parameter sets with small confidence intervals. Correlation between the observed soil water content and the simulated values was as high as R2=0.93 for ten selected observation points used in the model calibration phase, with overall correlation for the 22 observation points equal to 0.85. The model results indicate that the infiltration trench has a

  7. Commercial Consolidation Model Applied to Transport Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Guilherme de Aragão, J.J.; Santos Fontes Pereira, L. dos; Yamashita, Y.

    2016-07-01

    Since the 1990s, transport concessions, including public-private partnerships (PPPs), have been increasingly adopted by governments as an alternative for financing and operations in public investments, especially in transport infrastructure. The advantage pointed out by proponents of these models lies in merging the expertise and capital of the private sector to the public interest. Several arrangements are possible and have been employed in different cases. After the duration of the first PPP contracts in transportation, many authors have analyzed the success and failure factors of partnerships. The occurrence of failures in some stages of the process can greatly encumber the public administration, incurring losses to the fiscal responsibility of the competent bodies. This article aims to propose a new commercial consolidation model applied to transport infrastructure to ensure fiscal sustainability and overcome the weaknesses of current models. Initially, a systematic review of the literature covering studies on transport concessions between 1990 and 2015 is offered, where the different approaches between various countries are compared and the critical success factors indicated in the studies are identified. In the subsequent part of the paper, an approach for the commercial consolidation of the infrastructure concessions is presented, where the concessionary is paid following a finalistic performance model, which includes the overall fiscal balance of regional growth. Finally, the papers analyses the usefulness of the model in coping with the critical success factors explained before. (Author)

  8. Performance values for non destructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Guardini, S.

    2003-01-01

    The first evaluation of NDA performance values undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques (WGNDA) was published in 1993. Almost 10 years later the Working Group decided to review those values, to report about improvements and to issue new performance values for techniques which were not applied in the early nineties, or were at that time only emerging. Non-Destructive Assay techniques have become more and more important in recent years, and they are used to a large extent in nuclear material accountancy and control both by operators and control authorities. As a consequence, the performance evaluation for NDA techniques is of particular relevance to safeguards authorities in optimising Safeguards operations and reducing costs. Performance values are important also for NMAC regulators, to define detection levels, limits for anomalies, goal quantities and to negotiate basic audit rules. This paper presents the latest evaluation of ESARDA Performance Values (EPVs) for the most common NDA techniques currently used for the assay of nuclear materials for Safeguards purposes. The main topics covered by the document are: techniques for plutonium bearing materials: PuO 2 and MOX; techniques for U-bearing materials; techniques for U and Pu in liquid form; techniques for spent fuel assay. This issue of the performance values is the result of specific international round robin exercises, field measurements and ad hoc experiments, evaluated and discussed in the ESARDA NDA Working Group. (author)

  9. Applied economic model development algorithm for electronics company

    Directory of Open Access Journals (Sweden)

    Mikhailov I.

    2017-01-01

    Full Text Available The purpose of this paper is to report about received experience in the field of creating the actual methods and algorithms that help to simplify development of applied decision support systems. It reports about an algorithm, which is a result of two years research and have more than one-year practical verification. In a case of testing electronic components, the time of the contract conclusion is crucial point to make the greatest managerial mistake. At this stage, it is difficult to achieve a realistic assessment of time-limit and of wage-fund for future work. The creation of estimating model is possible way to solve this problem. In the article is represented an algorithm for creation of those models. The algorithm is based on example of the analytical model development that serves for amount of work estimation. The paper lists the algorithm’s stages and explains their meanings with participants’ goals. The implementation of the algorithm have made possible twofold acceleration of these models development and fulfilment of management’s requirements. The resulting models have made a significant economic effect. A new set of tasks was identified to be further theoretical study.

  10. Flash radiographic technique applied to fuel injector sprays

    International Nuclear Information System (INIS)

    Vantine, H.C.

    1977-01-01

    A flash radiographic technique, using 50 ns exposure times, was used to study the pattern and density distribution of a fuel injector spray. The experimental apparatus and method are described. An 85 kVp flash x-ray generator, designed and fabricated at the Lawrence Livermore Laboratory, is utilized. Radiographic images, recorded on standard x-ray films, are digitized and computer processed

  11. Use of Random and Site-Directed Mutagenesis to Probe Protein Structure-Function Relationships: Applied Techniques in the Study of Helicobacter pylori.

    Science.gov (United States)

    Whitmire, Jeannette M; Merrell, D Scott

    2017-01-01

    Mutagenesis is a valuable tool to examine the structure-function relationships of bacterial proteins. As such, a wide variety of mutagenesis techniques and strategies have been developed. This chapter details a selection of random mutagenesis methods and site-directed mutagenesis procedures that can be applied to an array of bacterial species. Additionally, the direct application of the techniques to study the Helicobacter pylori Ferric Uptake Regulator (Fur) protein is described. The varied approaches illustrated herein allow the robust investigation of the structural-functional relationships within a protein of interest.

  12. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  13. An applied general equilibrium model for Dutch agribusiness policy analysis

    NARCIS (Netherlands)

    Peerlings, J.

    1993-01-01

    The purpose of this thesis was to develop a basic static applied general equilibrium (AGE) model to analyse the effects of agricultural policy changes on Dutch agribusiness. In particular the effects on inter-industry transactions, factor demand, income, and trade are of

  14. Wind Turbine Tower Vibration Modeling and Monitoring by the Nonlinear State Estimation Technique (NSET

    Directory of Open Access Journals (Sweden)

    Peng Guo

    2012-12-01

    Full Text Available With appropriate vibration modeling and analysis the incipient failure of key components such as the tower, drive train and rotor of a large wind turbine can be detected. In this paper, the Nonlinear State Estimation Technique (NSET has been applied to model turbine tower vibration to good effect, providing an understanding of the tower vibration dynamic characteristics and the main factors influencing these. The developed tower vibration model comprises two different parts: a sub-model used for below rated wind speed; and another for above rated wind speed. Supervisory control and data acquisition system (SCADA data from a single wind turbine collected from March to April 2006 is used in the modeling. Model validation has been subsequently undertaken and is presented. This research has demonstrated the effectiveness of the NSET approach to tower vibration; in particular its conceptual simplicity, clear physical interpretation and high accuracy. The developed and validated tower vibration model was then used to successfully detect blade angle asymmetry that is a common fault that should be remedied promptly to improve turbine performance and limit fatigue damage. The work also shows that condition monitoring is improved significantly if the information from the vibration signals is complemented by analysis of other relevant SCADA data such as power performance, wind speed, and rotor loads.

  15. Interval Mathematics Applied to Critical Point Transitions

    Directory of Open Access Journals (Sweden)

    Benito A. Stradi

    2012-03-01

    Full Text Available The determination of critical points of mixtures is important for both practical and theoretical reasons in the modeling of phase behavior, especially at high pressure. The equations that describe the behavior of complex mixtures near critical points are highly nonlinear and with multiplicity of solutions to the critical point equations. Interval arithmetic can be used to reliably locate all the critical points of a given mixture. The method also verifies the nonexistence of a critical point if a mixture of a given composition does not have one. This study uses an interval Newton/Generalized Bisection algorithm that provides a mathematical and computational guarantee that all mixture critical points are located. The technique is illustrated using several example problems. These problems involve cubic equation of state models; however, the technique is general purpose and can be applied in connection with other nonlinear problems.

  16. Techniques for discrimination-free predictive models (Chapter 12)

    NARCIS (Netherlands)

    Kamiran, F.; Calders, T.G.K.; Pechenizkiy, M.; Custers, B.H.M.; Calders, T.G.K.; Schermer, B.W.; Zarsky, T.Z.

    2013-01-01

    In this chapter, we give an overview of the techniques developed ourselves for constructing discrimination-free classifiers. In discrimination-free classification the goal is to learn a predictive model that classifies future data objects as accurately as possible, yet the predicted labels should be

  17. Air quality modelling using chemometric techniques | Azid | Journal ...

    African Journals Online (AJOL)

    This study presents that the chemometric techniques and modelling become an excellent tool in API assessment, air pollution source identification, apportionment and can be setbacks in designing an API monitoring network for effective air pollution resources management. Keywords: air pollutant index; chemometric; ANN; ...

  18. Fiscal 1997 report of the verification research on geothermal prospecting technology. Theme 5-2. Development of a reservoir change prospecting method (reservoir change prediction technique (modeling support technique)); 1997 nendo chinetsu tansa gijutsu nado kensho chosa. 5-2. Choryuso hendo tansaho kaihatsu (choryuso hendo yosoku gijutsu (modeling shien gijutsu)) hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    To evaluate geothermal reservoirs in the initial stage of development, to keep stable output in service operation, and to develop a technology effective for extraction from peripheral reservoirs, study was made on a reservoir variation prediction technique, in particular, a modeling support technique. This paper describes the result in fiscal 1997. Underground temperature estimation technique using homogenization temperatures of fluid inclusions among core fault system measurement systems was applied to Wasabizawa field. The effect of stretching is important to estimate reservoir temperatures, and use of a minimum homogenization temperature of fluid inclusions in quartz was suitable. Even in the case of no quartz in hydrothermal veins, measured data of quartz (secondary fluid inclusion) in parent rocks adjacent to hydrothermal veins well agreed with measured temperature data. The developmental possibility of a new modeling support technique was confirmed enough through collection of documents and information. Based on the result, measurement equipment suitable for R and D was selected, and a measurement system was established through preliminary experiments. 39 refs., 35 figs., 6 tabs.

  19. Knowledge Creation and Conversion in Military Organizations: How the SECI Model is Applied Within Armed Forces

    Directory of Open Access Journals (Sweden)

    Andrzej Lis

    2014-01-01

    Full Text Available The aim of the paper is to analyze the knowledge creation and conversion processes in military organizations using the SECI model as a framework. First of all, knowledge creation activities in military organizations are identified and categorized. Then, knowledge socialization, externalization, combination and internalization processes are analyzed. The paper studies methods, techniques and tools applied by NATO and the U.S. Army to support the aforementioned processes. As regards the issue of knowledge socialization, counseling, coaching, mentoring and communities of practice are discussed. Lessons Learned systems and After Action Reviews illustrate the military approaches to knowledge externalization. Producing doctrines in the process of operational standardization is presented as a solution used by the military to combine knowledge in order to codify it. Finally, knowledge internalization through training and education is explored.

  20. Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.

    Science.gov (United States)

    Stimpson, B.

    1979-01-01

    Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)

  1. Functional techniques in quantum field theory and two-dimensional models

    International Nuclear Information System (INIS)

    Souza, C. Farina de.

    1985-03-01

    Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)

  2. Applying Tiab’s direct synthesis technique to dilatant non-Newtonian/Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Javier Andrés Martínez

    2011-09-01

    Full Text Available Non-Newtonian fluids, such as polymer solutions, have been used by the oil industry for many years as fracturing agents and drilling mud. These solutions, which normally include thickened water and jelled fluids, are injected into the formation to enhanced oil recovery by improving sweep efficiency. It is worth noting that some heavy oils behave non-Newtonianly. Non-Newtonian fluids do not have direct proportionality between applied shear stress and shear rate and viscosity varies with shear rate depending on whether the fluid is either pseudoplastic or dilatant. Viscosity decreases as shear rate increases for the former whilst the reverse takes place for dilatants. Mathematical models of conventional fluids thus fail when applied to non-Newtonian fluids. The pressure derivative curve is introduced in this descriptive work for a dilatant fluid and its pattern was observed. Tiab’s direct synthesis (TDS methodology was used as a tool for interpreting pressure transient data to estimate effective permeability, skin factors and non-Newtonian bank radius. The methodology was successfully verified by its application to synthetic examples. Also, comparing it to pseudoplastic behavior, it was found that the radial flow regime in the Newtonian zone of dilatant fluids took longer to form regarding both the flow behavior index and consistency factor.

  3. Spotted star light curve numerical modeling technique and its application to HII 1883 surface imaging

    Science.gov (United States)

    Kolbin, A. I.; Shimansky, V. V.

    2014-04-01

    We developed a code for imaging the surfaces of spotted stars by a set of circular spots with a uniform temperature distribution. The flux from the spotted surface is computed by partitioning the spots into elementary areas. The code takes into account the passing of spots behind the visible stellar limb, limb darkening, and overlapping of spots. Modeling of light curves includes the use of recent results of the theory of stellar atmospheres needed to take into account the temperature dependence of flux intensity and limb darkening coefficients. The search for spot parameters is based on the analysis of several light curves obtained in different photometric bands. We test our technique by applying it to HII 1883.

  4. Modeling and design techniques for RF power amplifiers

    CERN Document Server

    Raghavan, Arvind; Laskar, Joy

    2008-01-01

    The book covers RF power amplifier design, from device and modeling considerations to advanced circuit design architectures and techniques. It focuses on recent developments and advanced topics in this area, including numerous practical designs to back the theoretical considerations. It presents the challenges in designing power amplifiers in silicon and helps the reader improve the efficiency of linear power amplifiers, and design more accurate compact device models, with faster extraction routines, to create cost effective and reliable circuits.

  5. Mass Movement Hazards in the Mediterranean; A review on applied techniques and methodologies

    Science.gov (United States)

    Ziade, R.; Abdallah, C.; Baghdadi, N.

    2012-04-01

    Emergent population and expansions of settlements and life-lines over hazardous areas in the Mediterranean region have largely increased the impact of Mass Movements (MM) both in industrialized and developing countries. This trend is expected to continue in the next decades due to increased urbanization and development, continued deforestation and increased regional precipitation in MM-prone areas due to changing climatic patterns. Consequently, and over the past few years, monitoring of MM has acquired great importance from the scientific community as well as the civilian one. This article begins with a discussion of the MM classification, and the different topographic, geologic, hydrologic and environmental impacting factors. The intrinsic (preconditioning) variables determine the susceptibility of MM and extrinsic factors (triggering) can induce the probability of MM occurrence. The evolution of slope instability studies is charted from geodetic or observational techniques, to geotechnical field-based origins to recent higher levels of data acquisition through Remote Sensing (RS) and Geographic Information System (GIS) techniques. Since MM detection and zoning is difficult in remote areas, RS and GIS have enabled regional studies to predominate over site-based ones where they provide multi-temporal images hence facilitate greatly MM monitoring. The unusual extent of the spectrum of MM makes it difficult to define a single methodology to establish MM hazard. Since the probability of occurrence of MM is one of the key components in making rational decisions for management of MM risk, scientists and engineers have developed physical parameters, equations and environmental process models that can be used as assessment tools for management, education, planning and legislative purposes. Assessment of MM is attained through various modeling approaches mainly divided into three main sections: quantitative/Heuristic (1:2.000-1:10.000), semi-quantitative/Statistical (1

  6. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  7. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  8. Automatic diameter control system applied to the laser heated pedestal growth technique

    Directory of Open Access Journals (Sweden)

    Andreeta M.R.B.

    2003-01-01

    Full Text Available We described an automatic diameter control system (ADC, for the laser heated pedestal growth technique, that reduces the diameter fluctuations in oxide fibers grown from unreacted and non-sinterized pedestals, to less than 2% of the average fiber diameter, and diminishes the average diameter fluctuation, over the entire length of the fiber, to less than 1%. The ADC apparatus is based on an artificial vision system that controls the pulling speed and the height of the molten zone within a precision of 30 mum. We also show that this system can be used for periodic in situ axial doping the fiber. Pure and Cr3+ doped LaAlO3 and pure LiNbO3 were usedas model materials.

  9. Research in Model-Based Change Detection and Site Model Updating

    National Research Council Canada - National Science Library

    Nevatia, R

    1998-01-01

    .... Some of these techniques also are applicable to automatic site modeling and some of our change detection techniques may apply to detection of larger mobile objects, such as airplanes. We have implemented an interactive modeling system that works in conjunction with our automatic system to minimize the need for tedious interaction.

  10. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders.

    Science.gov (United States)

    Fanjul-Vélez, Félix; Salas-García, Irene; Ortega-Quijano, Noé; Arce-Diego, José Luis

    2015-01-01

    Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. New Techniques Used in Modeling the 2017 Total Solar Eclipse: Energizing and Heating the Large-Scale Corona

    Science.gov (United States)

    Downs, Cooper; Mikic, Zoran; Linker, Jon A.; Caplan, Ronald M.; Lionello, Roberto; Torok, Tibor; Titov, Viacheslav; Riley, Pete; Mackay, Duncan; Upton, Lisa

    2017-08-01

    Over the past two decades, our group has used a magnetohydrodynamic (MHD) model of the corona to predict the appearance of total solar eclipses. In this presentation we detail recent innovations and new techniques applied to our prediction model for the August 21, 2017 total solar eclipse. First, we have developed a method for capturing the large-scale energized fields typical of the corona, namely the sheared/twisted fields built up through long-term processes of differential rotation and flux-emergence/cancellation. Using inferences of the location and chirality of filament channels (deduced from a magnetofrictional model driven by the evolving photospheric field produced by the Advective Flux Transport model), we tailor a customized boundary electric field profile that will emerge shear along the desired portions of polarity inversion lines (PILs) and cancel flux to create long twisted flux systems low in the corona. This method has the potential to improve the morphological shape of streamers in the low solar corona. Second, we apply, for the first time in our eclipse prediction simulations, a new wave-turbulence-dissipation (WTD) based model for coronal heating. This model has substantially fewer free parameters than previous empirical heating models, but is inherently sensitive to the 3D geometry and connectivity of the coronal field---a key property for modeling/predicting the thermal-magnetic structure of the solar corona. Overall, we will examine the effect of these considerations on white-light and EUV observables from the simulations, and present them in the context of our final 2017 eclipse prediction model.Research supported by NASA's Heliophysics Supporting Research and Living With a Star Programs.

  12. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    Science.gov (United States)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  13. Dynamic p-technique for modeling patterns of data: applications to pediatric psychology research.

    Science.gov (United States)

    Nelson, Timothy D; Aylward, Brandon S; Rausch, Joseph R

    2011-10-01

    Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples.

  14. A model for website analysis and\tconception: the Website Canvas Model applied to\tEldiario.es

    Directory of Open Access Journals (Sweden)

    Carles Sanabre Vives

    2015-11-01

    Full Text Available This article presents the model of ideation and analysis called Website CanvasModel. It allows identifying the key aspects for a website to be successful, and shows how ithas been applied to Eldiario.es. As a result, the key factors prompting the success of thisdigital newspaper have been identified.

  15. Applying circular economy innovation theory in business process modeling and analysis

    Science.gov (United States)

    Popa, V.; Popa, L.

    2017-08-01

    The overall aim of this paper is to develop a new conceptual framework for business process modeling and analysis using circular economy innovative theory as a source for business knowledge management. The last part of the paper presents an author’s proposed basic structure for a new business models applying circular economy innovation theories. For people working on new innovative business models in the field of the circular economy this paper provides new ideas for clustering their concepts.

  16. A Framework for Prediction of Response to HCV Therapy Using Different Data Mining Techniques

    Directory of Open Access Journals (Sweden)

    Enas M. F. El Houby

    2014-01-01

    Full Text Available Hepatitis C which is a widely spread disease all over the world is a fatal liver disease caused by Hepatitis C Virus (HCV. The only approved therapy is interferon plus ribavirin. The number of responders to this treatment is low, while its cost is high and side effects are undesirable. Treatment response prediction will help in reducing the patients who suffer from the side effects and high costs without achieving recovery. The aim of this research is to develop a framework which can select the best model to predict HCV patients’ response to the treatment of HCV from clinical information. The framework contains three phases which are preprocessing phase to prepare the data for applying Data Mining (DM techniques, DM phase to apply different DM techniques, and evaluation phase to evaluate and compare the performance of the built models and select the best model as the recommended one. Different DM techniques had been applied which are associative classification, artificial neural network, and decision tree to evaluate the framework. The experimental results showed the effectiveness of the framework in selecting the best model which is the model built by associative classification using histology activity index, fibrosis stage, and alanine amino transferase.

  17. Neutron Filter Technique and its use for Fundamental and applied Investigations

    International Nuclear Information System (INIS)

    Gritzay, V.; Kolotyi, V.

    2008-01-01

    At Kyiv Research Reactor (KRR) the neutron filtered beam technique is used for more than 30 years and its development continues, the new and updated facilities for neutron cross section measurements provide the receipt of neutron cross sections with rather high accuracy: total neutron cross sections with accuracy 1% and better, neutron scattering cross sections with 3-6% accuracy. The main purpose of this paper is presentation of the neutron measurement techniques, developed at KRR, and demonstration some experimental results, obtained using these techniques

  18. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Deutsch, Jared L., E-mail: jdeutsch@ualberta.ca [University of Alberta, School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering (Canada); Palmer, Kevin [Teck Resources Limited (Canada); Deutsch, Clayton V.; Szymanski, Jozef [University of Alberta, School of Mining and Petroleum Engineering, Department of Civil and Environmental Engineering (Canada); Etsell, Thomas H. [University of Alberta, Department of Chemical and Materials Engineering (Canada)

    2016-06-15

    High-resolution spatial numerical models of metallurgical properties constrained by geological controls and more extensively by measured grade and geomechanical properties constitute an important part of geometallurgy. Geostatistical and other numerical techniques are adapted and developed to construct these high-resolution models accounting for all available data. Important issues that must be addressed include unequal sampling of the metallurgical properties versus grade assays, measurements at different scale, and complex nonlinear averaging of many metallurgical parameters. This paper establishes techniques to address each of these issues with the required implementation details and also demonstrates geometallurgical mineral deposit characterization for a copper–molybdenum deposit in South America. High-resolution models of grades and comminution indices are constructed, checked, and are rigorously validated. The workflow demonstrated in this case study is applicable to many other deposit types.

  19. Dosimetry techniques applied to thermoluminescent age estimation

    International Nuclear Information System (INIS)

    Erramli, H.

    1986-12-01

    The reliability and the ease of the field application of the measuring techniques of natural radioactivity dosimetry are studied. The natural radioactivity in minerals in composed of the internal dose deposited by alpha and beta radiations issued from the sample itself and the external dose deposited by gamma and cosmic radiations issued from the surroundings of the sample. Two technics for external dosimetry are examined in details. TL Dosimetry and field gamma dosimetry. Calibration and experimental conditions are presented. A new integrated dosimetric method for internal and external dose measure is proposed: the TL dosimeter is placed in the soil in exactly the same conditions as the sample ones, during a time long enough for the total dose evaluation [fr

  20. A Research on the E-commerce Applied to the Construction of Marketing Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The function of E-commerce is becoming more and more widely applied to many fields,which bring about some new challenges and opportunities for the construction of marketing model.It is proved that the more E-com- merce applied to the construction of marketing,the more precision of forecast for the enterprises can acquire,which is very helpful for the production and marketing of enterprises.Therefore,the research on the E-commerce applied to the construction of marketing is popular today.This paper applie...

  1. Modern problems in applied analysis

    CERN Document Server

    Rogosin, Sergei

    2018-01-01

    This book features a collection of recent findings in Applied Real and Complex Analysis that were presented at the 3rd International Conference “Boundary Value Problems, Functional Equations and Applications” (BAF-3), held in Rzeszow, Poland on 20-23 April 2016. The contributions presented here develop a technique related to the scope of the workshop and touching on the fields of differential and functional equations, complex and real analysis, with a special emphasis on topics related to boundary value problems. Further, the papers discuss various applications of the technique, mainly in solid mechanics (crack propagation, conductivity of composite materials), biomechanics (viscoelastic behavior of the periodontal ligament, modeling of swarms) and fluid dynamics (Stokes and Brinkman type flows, Hele-Shaw type flows). The book is addressed to all readers who are interested in the development and application of innovative research results that can help solve theoretical and real-world problems.

  2. Apply Functional Modelling to Consequence Analysis in Supervision Systems

    DEFF Research Database (Denmark)

    Zhang, Xinxin; Lind, Morten; Gola, Giulio

    2013-01-01

    This paper will first present the purpose and goals of applying functional modelling approach to consequence analysis by adopting Multilevel Flow Modelling (MFM). MFM Models describe a complex system in multiple abstraction levels in both means-end dimension and whole-part dimension. It contains...... consequence analysis to practical or online applications in supervision systems. It will also suggest a multiagent solution as the integration architecture for developing tools to facilitate the utilization results of functional consequence analysis. Finally a prototype of the multiagent reasoning system...... causal relations between functions and goals. A rule base system can be developed to trace the causal relations and perform consequence propagations. This paper will illustrate how to use MFM for consequence reasoning by using rule base technology and describe the challenges for integrating functional...

  3. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    International Nuclear Information System (INIS)

    Hadas, T; Kaplon, J; Bosy, J; Sierny, J; Wilgan, K

    2013-01-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed. (paper)

  4. Applied survival analysis using R

    CERN Document Server

    Moore, Dirk F

    2016-01-01

    Applied Survival Analysis Using R covers the main principles of survival analysis, gives examples of how it is applied, and teaches how to put those principles to use to analyze data using R as a vehicle. Survival data, where the primary outcome is time to a specific event, arise in many areas of biomedical research, including clinical trials, epidemiological studies, and studies of animals. Many survival methods are extensions of techniques used in linear regression and categorical data, while other aspects of this field are unique to survival data. This text employs numerous actual examples to illustrate survival curve estimation, comparison of survivals of different groups, proper accounting for censoring and truncation, model variable selection, and residual analysis. Because explaining survival analysis requires more advanced mathematics than many other statistical topics, this book is organized with basic concepts and most frequently used procedures covered in earlier chapters, with more advanced topics...

  5. Applied multidimensional scaling and unfolding

    CERN Document Server

    Borg, Ingwer; Mair, Patrick

    2018-01-01

    This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfoldin...

  6. Level-set techniques for facies identification in reservoir modeling

    Science.gov (United States)

    Iglesias, Marco A.; McLaughlin, Dennis

    2011-03-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil-water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301-29 2004 Inverse Problems 20 259-82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg-Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush-Kuhn-Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies.

  7. Level-set techniques for facies identification in reservoir modeling

    International Nuclear Information System (INIS)

    Iglesias, Marco A; McLaughlin, Dennis

    2011-01-01

    In this paper we investigate the application of level-set techniques for facies identification in reservoir models. The identification of facies is a geometrical inverse ill-posed problem that we formulate in terms of shape optimization. The goal is to find a region (a geologic facies) that minimizes the misfit between predicted and measured data from an oil–water reservoir. In order to address the shape optimization problem, we present a novel application of the level-set iterative framework developed by Burger in (2002 Interfaces Free Bound. 5 301–29; 2004 Inverse Problems 20 259–82) for inverse obstacle problems. The optimization is constrained by (the reservoir model) a nonlinear large-scale system of PDEs that describes the reservoir dynamics. We reformulate this reservoir model in a weak (integral) form whose shape derivative can be formally computed from standard results of shape calculus. At each iteration of the scheme, the current estimate of the shape derivative is utilized to define a velocity in the level-set equation. The proper selection of this velocity ensures that the new shape decreases the cost functional. We present results of facies identification where the velocity is computed with the gradient-based (GB) approach of Burger (2002) and the Levenberg–Marquardt (LM) technique of Burger (2004). While an adjoint formulation allows the straightforward application of the GB approach, the LM technique requires the computation of the large-scale Karush–Kuhn–Tucker system that arises at each iteration of the scheme. We efficiently solve this system by means of the representer method. We present some synthetic experiments to show and compare the capabilities and limitations of the proposed implementations of level-set techniques for the identification of geologic facies

  8. Methodology to evaluate the impact of the erosion in cultivated floors applying the technique of the 137CS

    International Nuclear Information System (INIS)

    Gil Castillo, R.; Peralta Vital, J.L.; Carrazana, J.; Riverol, M.; Penn, F.; Cabrera, E.

    2004-01-01

    The present paper shows the results obtained in the framework of 2 Nuclear Projects, in the topic of application of nuclear techniques to evaluate the erosion rates in cultivated soils. Taking into account the investigations with the 137 CS technique, carried out in the Province of Pinar del Rio, was obtained and validated (first time) a methodology to evaluate the erosion impact in a cropland. The obtained methodology includes all relevant stages for the adequate application of the 137 CS technique, from the initial step of area selection, the soil sampling process, selection of the models and finally, the results evaluation step. During the methodology validation process in soils of the Municipality of San Juan y Martinez, the erosion rates estimated by the methodology and the obtained values by watershed segment measures (traditional technique) were compared in a successful manner. The methodology is a technical guide, for the adequate application of the 137 CS technique to estimate the soil redistribution rates in cultivated soils

  9. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Science.gov (United States)

    Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  10. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Energy Technology Data Exchange (ETDEWEB)

    Amicarelli, A; Pelliccioni, A [ISPESL - Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1 00040 Monteporzio Catone (RM) Italy (Italy); Finardi, S; Silibello, C [ARIANET, via Gilino 9, 20128 Milano (Italy); Gariazzo, C

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM{sub 10} concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  11. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    International Nuclear Information System (INIS)

    Amicarelli, A; Pelliccioni, A; Finardi, S; Silibello, C; Gariazzo, C

    2008-01-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM 10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode

  12. Low-dimensional and Data Fusion Techniques Applied to a Rectangular Supersonic Multi-stream Jet

    Science.gov (United States)

    Berry, Matthew; Stack, Cory; Magstadt, Andrew; Ali, Mohd; Gaitonde, Datta; Glauser, Mark

    2017-11-01

    Low-dimensional models of experimental and simulation data for a complex supersonic jet were fused to reconstruct time-dependent proper orthogonal decomposition (POD) coefficients. The jet consists of a multi-stream rectangular single expansion ramp nozzle, containing a core stream operating at Mj , 1 = 1.6 , and bypass stream at Mj , 3 = 1.0 with an underlying deck. POD was applied to schlieren and PIV data to acquire the spatial basis functions. These eigenfunctions were projected onto their corresponding time-dependent large eddy simulation (LES) fields to reconstruct the temporal POD coefficients. This reconstruction was able to resolve spectral peaks that were previously aliased due to the slower sampling rates of the experiments. Additionally, dynamic mode decomposition (DMD) was applied to the experimental and LES datasets, and the spatio-temporal characteristics were compared to POD. The authors would like to acknowledge AFOSR, program manager Dr. Doug Smith, for funding this research, Grant No. FA9550-15-1-0435.

  13. Assessment of ground-based monitoring techniques applied to landslide investigations

    Science.gov (United States)

    Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.

    2016-01-01

    A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements

  14. Applying data mining techniques to improve diagnosis in neonatal jaundice

    Directory of Open Access Journals (Sweden)

    Ferreira Duarte

    2012-12-01

    Full Text Available Abstract Background Hyperbilirubinemia is emerging as an increasingly common problem in newborns due to a decreasing hospital length of stay after birth. Jaundice is the most common disease of the newborn and although being benign in most cases it can lead to severe neurological consequences if poorly evaluated. In different areas of medicine, data mining has contributed to improve the results obtained with other methodologies. Hence, the aim of this study was to improve the diagnosis of neonatal jaundice with the application of data mining techniques. Methods This study followed the different phases of the Cross Industry Standard Process for Data Mining model as its methodology. This observational study was performed at the Obstetrics Department of a central hospital (Centro Hospitalar Tâmega e Sousa – EPE, from February to March of 2011. A total of 227 healthy newborn infants with 35 or more weeks of gestation were enrolled in the study. Over 70 variables were collected and analyzed. Also, transcutaneous bilirubin levels were measured from birth to hospital discharge with maximum time intervals of 8 hours between measurements, using a noninvasive bilirubinometer. Different attribute subsets were used to train and test classification models using algorithms included in Weka data mining software, such as decision trees (J48 and neural networks (multilayer perceptron. The accuracy results were compared with the traditional methods for prediction of hyperbilirubinemia. Results The application of different classification algorithms to the collected data allowed predicting subsequent hyperbilirubinemia with high accuracy. In particular, at 24 hours of life of newborns, the accuracy for the prediction of hyperbilirubinemia was 89%. The best results were obtained using the following algorithms: naive Bayes, multilayer perceptron and simple logistic. Conclusions The findings of our study sustain that, new approaches, such as data mining, may support

  15. Dynamic P-Technique for Modeling Patterns of Data: Applications to Pediatric Psychology Research

    Science.gov (United States)

    Aylward, Brandon S.; Rausch, Joseph R.

    2011-01-01

    Objective Dynamic p-technique (DPT) is a potentially useful statistical method for examining relationships among dynamic constructs in a single individual or small group of individuals over time. The purpose of this article is to offer a nontechnical introduction to DPT. Method An overview of DPT analysis, with an emphasis on potential applications to pediatric psychology research, is provided. To illustrate how DPT might be applied, an example using simulated data is presented for daily pain and negative mood ratings. Results The simulated example demonstrates the application of DPT to a relevant pediatric psychology research area. In addition, the potential application of DPT to the longitudinal study of adherence is presented. Conclusion Although it has not been utilized frequently within pediatric psychology, DPT could be particularly well-suited for research in this field because of its ability to powerfully model repeated observations from very small samples. PMID:21486938

  16. Hyper-heuristic applied to nuclear reactor core design

    International Nuclear Information System (INIS)

    Domingos, R P; Platt, G M

    2013-01-01

    The design of nuclear reactors gives rises to a series of optimization problems because of the need for high efficiency, availability and maintenance of security levels. Gradient-based techniques and linear programming have been applied, as well as genetic algorithms and particle swarm optimization. The nonlinearity, multimodality and lack of knowledge about the problem domain makes de choice of suitable meta-heuristic models particularly challenging. In this work we solve the optimization problem of a nuclear reactor core design through the application of an optimal sequence of meta-heuritics created automatically. This combinatorial optimization model is known as hyper-heuristic.

  17. Spatial Analysis for Potential Water Catchment Areas using GIS: Weighted Overlay Technique

    Science.gov (United States)

    Awanda, Disyacitta; Anugrah Nurul, H.; Musfiroh, Zahrotul; Dinda Dwi, N. P.

    2017-12-01

    The development of applied GIS is growing rapidly and has been widely applied in various fields. Preparation of a model to obtain information is one of the benefits of GIS. Obtaining information for water resources such as water catchment areas is one part of GIS modelling. Water catchment model can be utilized to see the distribution of potential and ability of a region in water absorbing. The use of overlay techniques with the weighting obtained from the literature from previous research is used to build the model. Model builder parameters are obtained through remote sensing interpretation techniques such as land use, landforms, and soil texture. Secondary data such as rock type maps are also used as water catchment model parameters. The location of this research is in the upstream part of the Opak river basin. The purpose of this research is to get information about potential distribution of water catchment area with overlay technique. The results of this study indicate the potential of water catchment areas with excellent category, good, medium, poor and very poor. These results may indicate that the Upper river basin is either good or in bad condition, so it can be used for better water resources management policy determination.

  18. Characterization technique for inhomogeneous 4H-SiC Schottky contacts: A practical model for high temperature behavior

    Science.gov (United States)

    Brezeanu, G.; Pristavu, G.; Draghici, F.; Badila, M.; Pascu, R.

    2017-08-01

    In this paper, a characterization technique for 4H-SiC Schottky diodes with varying levels of metal-semiconductor contact inhomogeneity is proposed. A macro-model, suitable for high-temperature evaluation of SiC Schottky contacts, with discrete barrier height non-uniformity, is introduced in order to determine the temperature interval and bias domain where electrical behavior of the devices can be described by the thermionic emission theory (has a quasi-ideal performance). A minimal set of parameters, the effective barrier height and peff, the non-uniformity factor, is associated. Model-extracted parameters are discussed in comparison with literature-reported results based on existing inhomogeneity approaches, in terms of complexity and physical relevance. Special consideration was given to models based on a Gaussian distribution of barrier heights on the contact surface. The proposed methodology is validated by electrical characterization of nickel silicide Schottky contacts on silicon carbide (4H-SiC), where a discrete barrier distribution can be considered. The same method is applied to inhomogeneous Pt/4H-SiC contacts. The forward characteristics measured at different temperatures are accurately reproduced using this inhomogeneous barrier model. A quasi-ideal behavior is identified for intervals spanning 200 °C for all measured Schottky samples, with Ni and Pt contact metals. A predictable exponential current-voltage variation over at least 2 orders of magnitude is also proven, with a stable barrier height and effective area for temperatures up to 400 °C. This application-oriented characterization technique is confirmed by using model parameters to fit a SiC-Schottky high temperature sensor's response.

  19. Local regression type methods applied to the study of geophysics and high frequency financial data

    Science.gov (United States)

    Mariani, M. C.; Basu, K.

    2014-09-01

    In this work we applied locally weighted scatterplot smoothing techniques (Lowess/Loess) to Geophysical and high frequency financial data. We first analyze and apply this technique to the California earthquake geological data. A spatial analysis was performed to show that the estimation of the earthquake magnitude at a fixed location is very accurate up to the relative error of 0.01%. We also applied the same method to a high frequency data set arising in the financial sector and obtained similar satisfactory results. The application of this approach to the two different data sets demonstrates that the overall method is accurate and efficient, and the Lowess approach is much more desirable than the Loess method. The previous works studied the time series analysis; in this paper our local regression models perform a spatial analysis for the geophysics data providing different information. For the high frequency data, our models estimate the curve of best fit where data are dependent on time.

  20. Processing ultrafine-grained Aluminum alloy using Multi-ECAP-Conform technique

    International Nuclear Information System (INIS)

    Fakhretdinova, Elvira; Raab, Georgy; Valiev, Ruslan; Ryzhikov, Oleg

    2014-01-01

    The stress-strained state (SSS), contact and force parameters of a new SPD technique – Multi-ECAP-Conform – have been studied. The new technique ensures a high level of accumulated strain □=4...5 per one processing cycle. Physical and computer modeling by finite element method in Deform-3D software was applied to evaluate the parameters. It is shown that the results of physical and computer modeling correlate with each other. Equipment has been upgraded, and experimental samples of Al-Mg-Si system alloy have been processed

  1. Automata Techniques for Epistemic Protocol Synthesis

    Directory of Open Access Journals (Sweden)

    Guillaume Aucher

    2014-04-01

    Full Text Available In this work we aim at applying automata techniques to problems studied in Dynamic Epistemic Logic, such as epistemic planning. To do so, we first remark that repeatedly executing ad infinitum a propositional event model from an initial epistemic model yields a relational structure that can be finitely represented with automata. This correspondence, together with recent results on uniform strategies, allows us to give an alternative decidability proof of the epistemic planning problem for propositional events, with as by-products accurate upper-bounds on its time complexity, and the possibility to synthesize a finite word automaton that describes the set of all solution plans. In fact, using automata techniques enables us to solve a much more general problem, that we introduce and call epistemic protocol synthesis.

  2. Communication Efficacy and Couples’ Cancer Management: Applying a Dyadic Appraisal Model

    OpenAIRE

    Magsamen-Conrad, Kate; Checton, Maria G.; Venetis, Maria K.; Greene, Kathryn

    2014-01-01

    The purpose of the present study was to apply Berg and Upchurch’s (2007) developmental-conceptual model to understand better how couples cope with cancer. Specifically, we hypothesized a dyadic appraisal model in which proximal factors (relational quality), dyadic appraisal (prognosis uncertainty), and dyadic coping (communication efficacy) predicted adjustment (cancer management). The study was cross-sectional and included 83 dyads in which one partner had been diagnosed with and/or treated ...

  3. The asymmetric rotator model applied to odd-mass iridium isotopes

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1980-04-01

    The method of inversion of the eigenvalue problem previously developed for nuclei with axial symmetry is extended to asymmetric equilibrium shapes. This new approach of the asymmetric rotator model is applied to the odd-mass iridium isotopes. A satisfactory and coherent description of the observed energy spectra is obtained, especially for the lighter isotopes

  4. Prediction of lung cancer patient survival via supervised machine learning classification techniques.

    Science.gov (United States)

    Lynch, Chip M; Abdollahi, Behnaz; Fuqua, Joshua D; de Carlo, Alexandra R; Bartholomai, James A; Balgemann, Rayeanne N; van Berkel, Victor H; Frieboes, Hermann B

    2017-12-01

    Outcomes for cancer patients have been previously estimated by applying various machine learning techniques to large datasets such as the Surveillance, Epidemiology, and End Results (SEER) program database. In particular for lung cancer, it is not well understood which types of techniques would yield more predictive information, and which data attributes should be used in order to determine this information. In this study, a number of supervised learning techniques is applied to the SEER database to classify lung cancer patients in terms of survival, including linear regression, Decision Trees, Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and a custom ensemble. Key data attributes in applying these methods include tumor grade, tumor size, gender, age, stage, and number of primaries, with the goal to enable comparison of predictive power between the various methods The prediction is treated like a continuous target, rather than a classification into categories, as a first step towards improving survival prediction. The results show that the predicted values agree with actual values for low to moderate survival times, which constitute the majority of the data. The best performing technique was the custom ensemble with a Root Mean Square Error (RMSE) value of 15.05. The most influential model within the custom ensemble was GBM, while Decision Trees may be inapplicable as it had too few discrete outputs. The results further show that among the five individual models generated, the most accurate was GBM with an RMSE value of 15.32. Although SVM underperformed with an RMSE value of 15.82, statistical analysis singles the SVM as the only model that generated a distinctive output. The results of the models are consistent with a classical Cox proportional hazards model used as a reference technique. We conclude that application of these supervised learning techniques to lung cancer data in the SEER database may be of use to estimate patient survival time

  5. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.

    Science.gov (United States)

    Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa

    2015-04-13

    Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Methodology for Applying Cyber Security Risk Evaluation from BN Model to PSA Model

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Soo; Heo, Gyun Young [Kyung Hee University, Youngin (Korea, Republic of); Kang, Hyun Gook [KAIST, Dajeon (Korea, Republic of); Son, Han Seong [Joongbu University, Chubu (Korea, Republic of)

    2014-08-15

    There are several advantages to use digital equipment such as cost, convenience, and availability. It is inevitable to use the digital I and C equipment replaced analog. Nuclear facilities have already started applying the digital system to I and C system. However, the nuclear facilities also have to change I and C system even though it is difficult to use digital equipment due to high level of safety, irradiation embrittlement, and cyber security. A cyber security which is one of important concerns to use digital equipment can affect the whole integrity of nuclear facilities. For instance, cyber-attack occurred to nuclear facilities such as the SQL slammer worm, stuxnet, DUQU, and flame. The regulatory authorities have published many regulatory requirement documents such as U.S. NRC Regulatory Guide 5.71, 1.152, IAEA guide NSS-17, IEEE Standard, and KINS Regulatory Guide. One of the important problem of cyber security research for nuclear facilities is difficulty to obtain the data through the penetration experiments. Therefore, we make cyber security risk evaluation model with Bayesian network (BN) for nuclear reactor protection system (RPS), which is one of the safety-critical systems to trip the reactor when the accident is happened to the facilities. BN can be used for overcoming these problems. We propose a method to apply BN cyber security model to probabilistic safety assessment (PSA) model, which had been used for safety assessment of system, structure and components of facility. The proposed method will be able to provide the insight of safety as well as cyber risk to the facility.

  7. Methodology for Applying Cyber Security Risk Evaluation from BN Model to PSA Model

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Heo, Gyun Young; Kang, Hyun Gook; Son, Han Seong

    2014-01-01

    There are several advantages to use digital equipment such as cost, convenience, and availability. It is inevitable to use the digital I and C equipment replaced analog. Nuclear facilities have already started applying the digital system to I and C system. However, the nuclear facilities also have to change I and C system even though it is difficult to use digital equipment due to high level of safety, irradiation embrittlement, and cyber security. A cyber security which is one of important concerns to use digital equipment can affect the whole integrity of nuclear facilities. For instance, cyber-attack occurred to nuclear facilities such as the SQL slammer worm, stuxnet, DUQU, and flame. The regulatory authorities have published many regulatory requirement documents such as U.S. NRC Regulatory Guide 5.71, 1.152, IAEA guide NSS-17, IEEE Standard, and KINS Regulatory Guide. One of the important problem of cyber security research for nuclear facilities is difficulty to obtain the data through the penetration experiments. Therefore, we make cyber security risk evaluation model with Bayesian network (BN) for nuclear reactor protection system (RPS), which is one of the safety-critical systems to trip the reactor when the accident is happened to the facilities. BN can be used for overcoming these problems. We propose a method to apply BN cyber security model to probabilistic safety assessment (PSA) model, which had been used for safety assessment of system, structure and components of facility. The proposed method will be able to provide the insight of safety as well as cyber risk to the facility

  8. Fuzzy uncertainty modeling applied to AP1000 nuclear power plant LOCA

    International Nuclear Information System (INIS)

    Ferreira Guimaraes, Antonio Cesar; Franklin Lapa, Celso Marcelo; Lamego Simoes Filho, Francisco Fernando; Cabral, Denise Cunha

    2011-01-01

    Research highlights: → This article presents an uncertainty modelling study using a fuzzy approach. → The AP1000 Westinghouse NPP was used and it is provided of passive safety systems. → The use of advanced passive safety systems in NPP has limited operational experience. → Failure rates and basic events probabilities used on the fault tree analysis. → Fuzzy uncertainty approach was employed to reliability of the AP1000 large LOCA. - Abstract: This article presents an uncertainty modeling study using a fuzzy approach applied to the Westinghouse advanced nuclear reactor. The AP1000 Westinghouse Nuclear Power Plant (NPP) is provided of passive safety systems, based on thermo physics phenomenon, that require no operating actions, soon after an incident has been detected. The use of advanced passive safety systems in NPP has limited operational experience. As it occurs in any reliability study, statistically non-significant events report introduces a significant uncertainty level about the failure rates and basic events probabilities used on the fault tree analysis (FTA). In order to model this uncertainty, a fuzzy approach was employed to reliability analysis of the AP1000 large break Loss of Coolant Accident (LOCA). The final results have revealed that the proposed approach may be successfully applied to modeling of uncertainties in safety studies.

  9. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J. (comps.)

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques.

  10. Low level waste management: a compilation of models and monitoring techniques. Volume 1

    International Nuclear Information System (INIS)

    Mosier, J.E.; Fowler, J.R.; Barton, C.J.

    1980-04-01

    In support of the National Low-Level Waste (LLW) Management Research and Development Program being carried out at Oak Ridge National Laboratory, Science Applications, Inc., conducted a survey of models and monitoring techniques associated with the transport of radionuclides and other chemical species from LLW burial sites. As a result of this survey, approximately 350 models were identified. For each model the purpose and a brief description are presented. To the extent possible, a point of contact and reference material are identified. The models are organized into six technical categories: atmospheric transport, dosimetry, food chain, groundwater transport, soil transport, and surface water transport. About 4% of the models identified covered other aspects of LLW management and are placed in a miscellaneous category. A preliminary assessment of all these models was performed to determine their ability to analyze the transport of other chemical species. The models that appeared to be applicable are identified. A brief survey of the state-of-the-art techniques employed to monitor LLW burial sites is also presented, along with a very brief discussion of up-to-date burial techniques

  11. A Numerical Procedure for Model Identifiability Analysis Applied to Enzyme Kinetics

    DEFF Research Database (Denmark)

    Daele, Timothy, Van; Van Hoey, Stijn; Gernaey, Krist

    2015-01-01

    The proper calibration of models describing enzyme kinetics can be quite challenging. In the literature, different procedures are available to calibrate these enzymatic models in an efficient way. However, in most cases the model structure is already decided on prior to the actual calibration...... and Pronzato (1997) and which can be easily set up for any type of model. In this paper the proposed approach is applied to the forward reaction rate of the enzyme kinetics proposed by Shin and Kim(1998). Structural identifiability analysis showed that no local structural model problems were occurring......) identifiability problems. By using the presented approach it is possible to detect potential identifiability problems and avoid pointless calibration (and experimental!) effort....

  12. Applied techniques for high bandwidth data transfers across wide area networks

    International Nuclear Information System (INIS)

    Lee, Jason; Gunter, Dan; Tierney, Brian; Allcock, Bill; Bester, Joe; Bresnahan, John; Tuecke, Steve

    2001-01-01

    Large distributed systems such as Computational/Data Grids require large amounts of data to be co-located with the computing facilities for processing. Ensuring that the data is there in time for the computation in today's Internet is a massive problem. From our work developing a scalable distributed network cache, we have gained experience with techniques necessary to achieve high data throughput over high bandwidth Wide Area Networks (WAN). In this paper, we discuss several hardware and software design techniques and issues, and then describe their application to an implementation of an enhanced FTP protocol called GridFTP. We also describe results from two applications using these techniques, which were obtained at the Supercomputing 2000 conference

  13. Examining Interior Grid Nudging Techniques Using Two-Way Nesting in the WRF Model for Regional Climate Modeling

    Science.gov (United States)

    This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...

  14. Enhancing photogrammetric 3d city models with procedural modeling techniques for urban planning support

    International Nuclear Information System (INIS)

    Schubiger-Banz, S; Arisona, S M; Zhong, C

    2014-01-01

    This paper presents a workflow to increase the level of detail of reality-based 3D urban models. It combines the established workflows from photogrammetry and procedural modeling in order to exploit distinct advantages of both approaches. The combination has advantages over purely automatic acquisition in terms of visual quality, accuracy and model semantics. Compared to manual modeling, procedural techniques can be much more time effective while maintaining the qualitative properties of the modeled environment. In addition, our method includes processes for procedurally adding additional features such as road and rail networks. The resulting models meet the increasing needs in urban environments for planning, inventory, and analysis

  15. Zero order and signal processing spectrophotometric techniques applied for resolving interference of metronidazole with ciprofloxacin in their pharmaceutical dosage form.

    Science.gov (United States)

    Attia, Khalid A M; Nassar, Mohammed W I; El-Zeiny, Mohamed B; Serag, Ahmed

    2016-02-05

    Four rapid, simple, accurate and precise spectrophotometric methods were used for the determination of ciprofloxacin in the presence of metronidazole as interference. The methods under study are area under the curve, simultaneous equation in addition to smart signal processing techniques of manipulating ratio spectra namely Savitsky-Golay filters and continuous wavelet transform. All the methods were validated according to the ICH guidelines where accuracy, precision and repeatability were found to be within the acceptable limits. The selectivity of the proposed methods was tested using laboratory prepared mixtures and assessed by applying the standard addition technique. So, they can therefore be used for the routine analysis of ciprofloxacin in quality-control laboratories. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Applying a Knowledge Management Modeling Tool for Manufacturing Vision (MV) Development

    DEFF Research Database (Denmark)

    Wang, Chengbo; Luxhøj, James T.; Johansen, John

    2004-01-01

    This paper introduces an empirical application of an experimental model for knowledge management within an organization, namely a case-based reasoning model for manufacturing vision development (CBRM). The model integrates the development process of manufacturing vision with the methodology of case......-based reasoning. This paper briefly describes the model's theoretical fundamentals and its conceptual structure; conducts a detailed introduction of the critical elements within the model; exhibits a real world application of the model; and summarizes the review of the model through academia and practice. Finds...... that the CBRM is supportive to the decision-making process of applying and augmenting organizational knowledge. It provides a new angle to tackle strategic management issues within the manufacturing system of a business operation. Explores a new proposition within strategic manufacturing management by enriching...

  17. Nuclear analytical techniques applied to forensic chemistry

    International Nuclear Information System (INIS)

    Nicolau, Veronica; Montoro, Silvia; Pratta, Nora; Giandomenico, Angel Di

    1999-01-01

    Gun shot residues produced by firing guns are mainly composed by visible particles. The individual characterization of these particles allows distinguishing those ones containing heavy metals, from gun shot residues, from those having a different origin or history. In this work, the results obtained from the study of gun shot residues particles collected from hands are presented. The aim of the analysis is to establish whether a person has shot a firing gun has been in contact with one after the shot has been produced. As reference samples, particles collected hands of persons affected to different activities were studied to make comparisons. The complete study was based on the application of nuclear analytical techniques such as Scanning Electron Microscopy, Energy Dispersive X Ray Electron Probe Microanalysis and Graphite Furnace Atomic Absorption Spectrometry. The essays allow to be completed within time compatible with the forensic requirements. (author)

  18. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D D; Bailey, G; Martin, J; Garton, D; Noorman, H; Stelcer, E; Johnson, P [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1994-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  19. Ion beam analysis techniques applied to large scale pollution studies

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Bailey, G.; Martin, J.; Garton, D.; Noorman, H.; Stelcer, E.; Johnson, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1993-12-31

    Ion Beam Analysis (IBA) techniques are ideally suited to analyse the thousands of filter papers a year that may originate from a large scale aerosol sampling network. They are fast multi-elemental and, for the most part, non-destructive so other analytical methods such as neutron activation and ion chromatography can be performed afterwards. ANSTO in collaboration with the NSW EPA, Pacific Power and the Universities of NSW and Macquarie has established a large area fine aerosol sampling network covering nearly 80,000 square kilometres of NSW with 25 fine particle samplers. This network known as ASP was funded by the Energy Research and Development Corporation (ERDC) and commenced sampling on 1 July 1991. The cyclone sampler at each site has a 2.5 {mu}m particle diameter cut off and runs for 24 hours every Sunday and Wednesday using one Gillman 25mm diameter stretched Teflon filter for each day. These filters are ideal targets for ion beam analysis work. Currently ANSTO receives 300 filters per month from this network for analysis using its accelerator based ion beam techniques on the 3 MV Van de Graaff accelerator. One week a month of accelerator time is dedicated to this analysis. Four simultaneous accelerator based IBA techniques are used at ANSTO, to analyse for the following 24 elements: H, C, N, O, F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Cu, Ni, Co, Zn, Br and Pb. The IBA techniques were proved invaluable in identifying sources of fine particles and their spatial and seasonal variations accross the large area sampled by the ASP network. 3 figs.

  20. Risk assessment and food allergy: the probabilistic model applied to allergens

    NARCIS (Netherlands)

    Spanjersberg, M.Q.I.; Kruizinga, A.G.; Rennen, M.A.J.; Houben, G.F.

    2007-01-01

    In order to assess the risk of unintended exposure to food allergens, traditional deterministic risk assessment is usually applied, leading to inconsequential conclusions as 'an allergic reaction cannot be excluded'. TNO therefore developed a quantitative risk assessment model for allergens based on