WorldWideScience

Sample records for modeling system developments

  1. A View of Earth System Model Development

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tianjun; YU Yongqiang; WANG Bin

    2009-01-01

    This paper gives a definition of earth system model and shows three development phases of it, including physical climate system model, earth climate system model, and earth system model, based on an inves-tigation of climate system models in the world. It provides an expatiation on the strategic significance of future development of earth system model, an introduction of some representative scientific research plans on development of earth system model home and abroad, and a review of its status and trends based on the models of the fourth assessment report (AR4) of the Intergovernmental Panel on Climate Change (IPCC).Some suggestions on future development of earth system model in China are given, which are expected to be helpful to advance the development.

  2. Model Driven Development of Data Sensitive Systems

    DEFF Research Database (Denmark)

    Olsen, Petur

    2014-01-01

    Model-driven development strives to use formal artifacts during the development process. Formal artifacts enables automatic analyses of some aspects of the system under development. This serves to increase the understanding of the (intended) behavior of the system as well as increasing error...... detection and pushing error detection to earlier stages of development. The complexity of modeling and the size of systems which can be analyzed is severely limited when introducing data variables. The state space grows exponentially in the number of variable and the domain size of the variables...... to the values of variables. This theses strives to improve model-driven development of such data-sensitive systems. This is done by addressing three research questions. In the first we combine state-based modeling and abstract interpretation, in order to ease modeling of data-sensitive systems, while allowing...

  3. MODEL DRIVEN DEVELOPMENT OF ONLINE BANKING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Bresfelean Vasile Paul

    2011-07-01

    Full Text Available In case of online applications the cycle of software development varies from the routine. The online environment, the variety of users, the treatability of the mass of information created by them, the reusability and the accessibility from different devices are all factors of these systems complexity. The use of model drive approach brings several advantages that ease up the development process. Working prototypes that simplify client relationship and serve as the base of model tests can be easily made from models describing the system. These systems make possible for the banks clients to make their desired actions from anywhere. The user has the possibility of accessing information or making transactions.

  4. Development and Integration of Control System Models

    Science.gov (United States)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  5. Modelling energy systems for developing countries

    NARCIS (Netherlands)

    Urban, F.; Benders, R.M.J.; Moll, H.C.

    2007-01-01

    Developing countries' energy use is rapidly increasing, which affects global climate change and global and regional energy settings. Energy models are helpful for exploring the future of developing and industrialised countries. However, energy systems of developing countries differ from those of ind

  6. Development and application of earth system models

    OpenAIRE

    Prinn, Ronald G.

    2012-01-01

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important “systems” problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels address...

  7. Clover development during spaceflight: A model system

    Science.gov (United States)

    Guikema, James A.; Debell, Lynnette; Paulsen, Avelina; Spooner, Brian S.; Wong, Peter P.

    1994-08-01

    The development of legume root nodules was studied as a model system for the examination of gravitational effects on plant root development. In order to examine whether rhizobial association with clover roots can be achieved in microgravity, experiments were performed aboard the KC-135 parabolic aircraft and aboard the sounding rocket mission Consort 3. Binding of rhizobia to roots and the initial stages of root nodule development successfully occurred in microgravity. Seedling germination experiments were performed in the sliding block device, the Materials Dispersion Apparatus, aboard STS-37. When significant hydration of the seeds was achieved, normal rates of germination and seedling development were observed.

  8. Recent developments in modeling groundwater systems

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, T.N.; Witherspoon, P.A.

    1977-05-20

    This paper reviews the developments in the mathematical modeling of groundwater systems over the past decde. The first part of the paper is devoted to a description of the physics of the different types of problems that are of interest in hydrogeology and a statement of the related initial-boundary-value problems. The various numerical techniques that have been employed to solve the governing equations are discussed in the second part. In the third section a few typical case histories are presented to illustrate the trend of progress that has occurred in the application of mathematical modeling to actual field problems.

  9. Development and application of earth system models.

    Science.gov (United States)

    Prinn, Ronald G

    2013-02-26

    The global environment is a complex and dynamic system. Earth system modeling is needed to help understand changes in interacting subsystems, elucidate the influence of human activities, and explore possible future changes. Integrated assessment of environment and human development is arguably the most difficult and most important "systems" problem faced. To illustrate this approach, we present results from the integrated global system model (IGSM), which consists of coupled submodels addressing economic development, atmospheric chemistry, climate dynamics, and ecosystem processes. An uncertainty analysis implies that without mitigation policies, the global average surface temperature may rise between 3.5 °C and 7.4 °C from 1981-2000 to 2091-2100 (90% confidence limits). Polar temperatures, absent policy, are projected to rise from about 6.4 °C to 14 °C (90% confidence limits). Similar analysis of four increasingly stringent climate mitigation policy cases involving stabilization of greenhouse gases at various levels indicates that the greatest effect of these policies is to lower the probability of extreme changes. The IGSM is also used to elucidate potential unintended environmental consequences of renewable energy at large scales. There are significant reasons for attention to climate adaptation in addition to climate mitigation that earth system models can help inform. These models can also be applied to evaluate whether "climate engineering" is a viable option or a dangerous diversion. We must prepare young people to address this issue: The problem of preserving a habitable planet will engage present and future generations. Scientists must improve communication if research is to inform the public and policy makers better.

  10. The Guided System Development Framework: Modeling and Verifying Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming

    2014-01-01

    In a world that increasingly relies on the Internet to function, application developers rely on the implementations of protocols to guarantee the security of data transferred. Whether a chosen protocol gives the required guarantees, and whether the implementation does the same, is usually unclear....... The Guided System Development framework contributes to more secure communication systems by aiding the development of such systems. The framework features a simple modelling language, step-wise refinement from models to implementation, interfaces to security verification tools, and code generation from...

  11. Enhancing System Realisation in Formal Model Development

    DEFF Research Database (Denmark)

    Tran-Jørgensen, Peter Würtz Vinther

    of formal methods tools into the software development life cycle, and which leverage the formal specification in the subsequent validation of the system. The tools developed use a new code generation infrastructure that has been built as part of this PhD project and implemented in the Overture tool...... of the steps involved in realising the formal specification. This PhD dissertation investigates ways to improve the automation of the steps involved in realising and validating a system based on a formal specification. The approach aims to develop properly designed software tools which support the integration......Software for mission-critical systems is sometimes analysed using formal specification to increase the chances of the system behaving as intended. When sufficient insights into the system have been obtained from the formal analysis, the formal specification is realised in the form of a software...

  12. Enhancing System Realisation in Formal Model Development

    DEFF Research Database (Denmark)

    Tran-Jørgensen, Peter Würtz Vinther

    – a formal methods tool that supports the Vienna Development Method. The development of the code generation infrastructure has involved the re-design of the software architecture of Overture. The new architecture brings forth the reuse and extensibility features of Overture to take into account the needs......Software for mission-critical systems is sometimes analysed using formal specification to increase the chances of the system behaving as intended. When sufficient insights into the system have been obtained from the formal analysis, the formal specification is realised in the form of a software...... implementation. One way to realise the system’s software is by automatically generating it from the formal specification – a technique referred to as code generation. However, in general it is difficult to make guarantees about the correctness of the generated code – especially while requiring automation...

  13. Model driven geo-information systems development

    NARCIS (Netherlands)

    Morales Guarin, J.M.; Ferreira Pires, Luis; van Sinderen, Marten J.; Williams, A.D.

    Continuous change of user requirements has become a constant for geo-information systems. Designing systems that can adapt to such changes requires an appropriate design methodology that supports abstraction, modularity and other mechanisms to capture the essence of the system and help controlling

  14. Developing a Model for a CHP System with Storage

    Directory of Open Access Journals (Sweden)

    M. Abunku

    2016-04-01

    Full Text Available A model for a Combined Heat and Power (CHP system developed using Matlab is presented in this project. The model developed includes sub-models of Internal Combustion Engine (ICE and generator, electrical and thermal storage systems, and power converters (rectifier and inverter. The model developed is able to simulate the performance of a CHP system when supplying user load. The battery electrical storage system is modelled and used as the electrical storage for this project, and the water storage tank is modelled and used as thermal storage. The project presents the model developed, and the results of the analysis done on the model. The model considered only heat from engine cooling, which is used to heat water to supply the DHW (District Hot Water needs of the user. The results show that by the addition of storage to the CHP system, the overall system efficiency is increased by 32% indicating that the model developed is reliable, and the project is a feasible one

  15. A Model-Based Systems Engineering Methodology for Employing Architecture In System Analysis: Developing Simulation Models Using Systems Modeling Language Products to Link Architecture and Analysis

    Science.gov (United States)

    2016-06-01

    ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK... ENGINEERING METHODOLOGY FOR EMPLOYING ARCHITECTURE IN SYSTEM ANALYSIS: DEVELOPING SIMULATION MODELS USING SYSTEMS MODELING LANGUAGE PRODUCTS TO LINK...to model-based systems engineering (MBSE) by formally defining an MBSE methodology for employing architecture in system analysis (MEASA) that presents

  16. A Dynamic Systems Theory Model of Visual Perception Development

    Science.gov (United States)

    Coté, Carol A.

    2015-01-01

    This article presents a model for understanding the development of visual perception from a dynamic systems theory perspective. It contrasts to a hierarchical or reductionist model that is often found in the occupational therapy literature. In this proposed model vision and ocular motor abilities are not foundational to perception, they are seen…

  17. Information System Development Model: Theories Analysis and Guidelines

    Science.gov (United States)

    Nayan, Norshita Mat; Badioze Zaman, Halimah

    Development of information system project is one of the IT projects which have been developed to offer the best facilities for publics. Process of system development will go through its own life cycle and every process must be refined in order to fulfill aims and objectives. Eventhough information system development is always correlate with failure but a few key factors will help the systems to succeed. There are multiple success factors being discussed by other researches in the information system development but failure figure still at the higher side. The main purpose of this research is to discuss processes involved in the development of information system which positively contribute towards its success. Model of information system development which has been developed (PADM Model) consists of four fundamental processes; planning, requirement analysis, design and maintenance. All processes will be monitored by a main process namely quality as the key performance indicator. Quality plays a vital role in assessing the ability of information system developed in order to fulfill users' expectations. Analysis of theory can be used as a guideline and measurement base towards the system with hope that percentage of failure will reduce subsequently.

  18. Embedded systems development from functional models to implementations

    CERN Document Server

    Zeng, Haibo; Natale, Marco; Marwedel, Peter

    2014-01-01

    This book offers readers broad coverage of techniques to model, verify and validate the behavior and performance of complex distributed embedded systems.  The authors attempt to bridge the gap between the three disciplines of model-based design, real-time analysis and model-driven development, for a better understanding of the ways in which new development flows can be constructed, going from system-level modeling to the correct and predictable generation of a distributed implementation, leveraging current and future research results.     Describes integration of heterogeneous models; Discusses synthesis of task model implementations and code implementations; Compares model-based design vs. model-driven approaches; Explains how to enforce correctness by construction in the functional and time domains; Includes optimization techniques for control performance.

  19. Developing a model of forecasting information systems performance

    Directory of Open Access Journals (Sweden)

    G. N. Isaev

    2017-01-01

    Full Text Available Research aim: to develop a model to forecast the performance ofinformation systems as a mechanism for preliminary assessment of the information system effectiveness before the beginning of financing the information system project.Materials and methods: the starting material used the results of studying the parameters of the statistical structure of information system data processing defects. Methods of cluster analysis and regression analysis were applied.Results: in order to reduce financial risks, information systems customers try to make decisions on the basis of preliminary calculations on the effectiveness of future information systems. However, the assumptions on techno-economic justification of the project can only be obtained when the funding for design work is already open. Its evaluation can be done before starting the project development using a model of forecasting information system performance. The model is developed using regression analysis in the form of a multiple linear regression. The value of information system performance is the predicted variable in the regression equation. The values of data processing defects in the classes of accuracy, completeness and timeliness are the forecast variables. Measurement and evaluation of parameters of the statistical structure of defects were done through programmes of cluster analysis and regression analysis. The calculations for determining the actual and forecast values of the information system performance were conducted.Conclusion: in terms of implementing the model, a research of information systems was carried out, as well as the development of forecasting model of information system performance. The conducted experimental work showed the adequacy of the model. The model is implemented in the complex task of designing information systems in education and industry.

  20. Modelling Sustainable Development Scenarios of Croatian Power System

    Science.gov (United States)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  1. A Product Development Decision Model for Cockpit Weather Information System

    Science.gov (United States)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin; Johnson, Edward J., Jr. (Technical Monitor)

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  2. A Product Development Decision Model for Cockpit Weather Information Systems

    Science.gov (United States)

    Sireli, Yesim; Kauffmann, Paul; Gupta, Surabhi; Kachroo, Pushkin

    2003-01-01

    There is a significant market demand for advanced cockpit weather information products. However, it is unclear how to identify the most promising technological options that provide the desired mix of consumer requirements by employing feasible technical systems at a price that achieves market success. This study develops a unique product development decision model that employs Quality Function Deployment (QFD) and Kano's model of consumer choice. This model is specifically designed for exploration and resolution of this and similar information technology related product development problems.

  3. Engine System Model Development for Nuclear Thermal Propulsion

    Science.gov (United States)

    Nelson, Karl W.; Simpson, Steven P.

    2006-01-01

    In order to design, analyze, and evaluate conceptual Nuclear Thermal Propulsion (NTP) engine systems, an improved NTP design and analysis tool has been developed. The NTP tool utilizes the Rocket Engine Transient Simulation (ROCETS) system tool and many of the routines from the Enabler reactor model found in Nuclear Engine System Simulation (NESS). Improved non-nuclear component models and an external shield model were added to the tool. With the addition of a nearly complete system reliability model, the tool will provide performance, sizing, and reliability data for NERVA-Derived NTP engine systems. A new detailed reactor model is also being developed and will replace Enabler. The new model will allow more flexibility in reactor geometry and include detailed thermal hydraulics and neutronics models. A description of the reactor, component, and reliability models is provided. Another key feature of the modeling process is the use of comprehensive spreadsheets for each engine case. The spreadsheets include individual worksheets for each subsystem with data, plots, and scaled figures, making the output very useful to each engineering discipline. Sample performance and sizing results with the Enabler reactor model are provided including sensitivities. Before selecting an engine design, all figures of merit must be considered including the overall impacts on the vehicle and mission. Evaluations based on key figures of merit of these results and results with the new reactor model will be performed. The impacts of clustering and external shielding will also be addressed. Over time, the reactor model will be upgraded to design and analyze other NTP concepts with CERMET and carbide fuel cores.

  4. Role of neural network models for developing speech systems

    Indian Academy of Sciences (India)

    K Sreenivasa Rao

    2011-10-01

    This paper discusses the application of neural networks for developing different speech systems. Prosodic parameters of speech at syllable level depend on positional, contextual and phonological features of the syllables. In this paper, neural networks are explored to model the prosodic parameters of the syllables from their positional, contextual and phonological features. The prosodic parameters considered in this work are duration and sequence of pitch $(F_0)$ values of the syllables. These prosody models are further examined for applications such as text to speech synthesis, speech recognition, speaker recognition and language identification. Neural network models in voice conversion system are explored for capturing the mapping functions between source and target speakers at source, system and prosodic levels. We have also used neural network models for characterizing the emotions present in speech. For identification of dialects in Hindi, neural network models are used to capture the dialect specific information from spectral and prosodic features of speech.

  5. Setting development goals using stochastic dynamical system models

    Science.gov (United States)

    Nicolis, Stamatios C.; Bali Swain, Ranjula; Sumpter, David J. T.

    2017-01-01

    The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers. PMID:28241057

  6. Setting development goals using stochastic dynamical system models.

    Science.gov (United States)

    Ranganathan, Shyam; Nicolis, Stamatios C; Bali Swain, Ranjula; Sumpter, David J T

    2017-01-01

    The Millennium Development Goals (MDG) programme was an ambitious attempt to encourage a globalised solution to important but often-overlooked development problems. The programme led to wide-ranging development but it has also been criticised for unrealistic and arbitrary targets. In this paper, we show how country-specific development targets can be set using stochastic, dynamical system models built from historical data. In particular, we show that the MDG target of two-thirds reduction of child mortality from 1990 levels was infeasible for most countries, especially in sub-Saharan Africa. At the same time, the MDG targets were not ambitious enough for fast-developing countries such as Brazil and China. We suggest that model-based setting of country-specific targets is essential for the success of global development programmes such as the Sustainable Development Goals (SDG). This approach should provide clear, quantifiable targets for policymakers.

  7. Business models and information systems for sustainable development

    NARCIS (Netherlands)

    Sinderen, van Marten; Shishkov, Boris

    2011-01-01

    Businesses are expected to explore market opportunities in the area of sustainable development, thus contributing to finding solutions aiming at sustainable quality of life. This will require adaptation and innovation of business models and information systems, with challenges of particular interest

  8. Development of a gas systems analysis model (GSAM)

    Energy Technology Data Exchange (ETDEWEB)

    Godec, M.L. [IFC Resources Inc., Fairfax, VA (United States)

    1995-04-01

    The objectives of developing a Gas Systems Analysis Model (GSAM) are to create a comprehensive, non-proprietary, PC based model of domestic gas industry activity. The system is capable of assessing the impacts of various changes in the natural gas system within North America. The individual and collective impacts due to changes in technology and economic conditions are explicitly modeled in GSAM. Major gas resources are all modeled, including conventional, tight, Devonian Shale, coalbed methane, and low-quality gas sources. The modeling system asseses all key components of the gas industry, including available resources, exploration, drilling, completion, production, and processing practices, both for now and in the future. The model similarly assesses the distribution, storage, and utilization of natural gas in a dynamic market-based analytical structure. GSAM is designed to provide METC managers with a tool to project the impacts of future research, development, and demonstration (RD&D) benefits in order to determine priorities in a rapidly changing, market-driven gas industry.

  9. Regional knowledge economy development indicative planning system conceptual model

    Directory of Open Access Journals (Sweden)

    Elena Davidovna Vaisman

    2012-12-01

    Full Text Available The subject of the research is the processes of Russian knowledge economy development, its progress on the regional level is taken as a theme, which determined the purpose of research: development of the regional knowledge economy development indicative planning method conceptual model. The methodological base of the research is the knowledge economy concept and supply and demand theory, the methods of comparative and system analysis and theoretical modeling; common generalization and classification methods and regression models are used in the work. As a result, we managed to create the regional knowledge economy development indicative planning method conceptual model, which includes the choice of the types of indicative plans and the justification for the complex of indicators according to the stated requirements to this complex. The model of supply and demand for knowledge dependency from the knowledge cost, allowing to determine the acceptable range for the indicators proceeding from the demand and supply levels and their interrelation, is developed. The obtained results may be used by the regional government authorities while planning the regional innovative development and consulting companies while making the proposals for this development

  10. Development of a system model for advanced small modular reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Tom Goslee,; Holschuh, Thomas Vernon,

    2014-01-01

    This report describes a system model that can be used to analyze three advance small modular reactor (SMR) designs through their lifetime. Neutronics of these reactor designs were evaluated using Monte Carlo N-Particle eXtended (MCNPX/6). The system models were developed in Matlab and Simulink. A major thrust of this research was the initial scoping analysis of Sandias concept of a long-life fast reactor (LLFR). The inherent characteristic of this conceptual design is to minimize the change in reactivity over the lifetime of the reactor. This allows the reactor to operate substantially longer at full power than traditional light water reactors (LWRs) or other SMR designs (e.g. high temperature gas reactor (HTGR)). The system model has subroutines for lifetime reactor feedback and operation calculations, thermal hydraulic effects, load demand changes and a simplified SCO2 Brayton cycle for power conversion.

  11. Model-Based Development of Control Systems for Forestry Cranes

    Directory of Open Access Journals (Sweden)

    Pedro La Hera

    2015-01-01

    Full Text Available Model-based methods are used in industry for prototyping concepts based on mathematical models. With our forest industry partners, we have established a model-based workflow for rapid development of motion control systems for forestry cranes. Applying this working method, we can verify control algorithms, both theoretically and practically. This paper is an example of this workflow and presents four topics related to the application of nonlinear control theory. The first topic presents the system of differential equations describing the motion dynamics. The second topic presents nonlinear control laws formulated according to sliding mode control theory. The third topic presents a procedure for model calibration and control tuning that are a prerequisite to realize experimental tests. The fourth topic presents the results of tests performed on an experimental crane specifically equipped for these tasks. Results of these studies show the advantages and disadvantages of these control algorithms, and they highlight their performance in terms of robustness and smoothness.

  12. Model development of integrated CPOx reformer and SOFC stack system

    Directory of Open Access Journals (Sweden)

    Pianko-Oprych Paulina

    2016-12-01

    Full Text Available The main purpose of this study was to develop a mathematical model, in a steady state and dynamic mode, of a Catalytic Partial Oxidation (CPOx reformer – Solid Oxide Fuel Cell (SOFC stack integrated system in order to assess the system performance. Mass balance equations were written for each component in the system together with energy equation and implemented into the MATLAB Simulink simulation tool. Temperature, gas concentrations, pressure and current density were computed in the steady-state mode and validated against experimental data. The calculated I–V curve matched well the experimental one. In the dynamic modelling, several different conditions including step changes in fuel flow rates, stack voltage as well as temperature values were applied to estimate the system response against the load variations. Results provide valuable insight into the operating conditions that have to be achieved to ensure efficient CPOx performance for fuel processing for the SOFC stack applications.

  13. The Guided System Development Framework: Modeling and Verifying Communication Systems

    DEFF Research Database (Denmark)

    Carvalho Quaresma, Jose Nuno; Probst, Christian W.; Nielson, Flemming

    2014-01-01

    In a world that increasingly relies on the Internet to function, application developers rely on the implementations of protocols to guarantee the security of data transferred. Whether a chosen protocol gives the required guarantees, and whether the implementation does the same, is usually unclear...... tool based on belief logics and explicit attacker knowledge....

  14. System Simulation Modeling: A Case Study Illustration of the Model Development Life Cycle

    Science.gov (United States)

    Janice K. Wiedenbeck; D. Earl Kline

    1994-01-01

    Systems simulation modeling techniques offer a method of representing the individual elements of a manufacturing system and their interactions. By developing and experimenting with simulation models, one can obtain a better understanding of the overall physical system. Forest products industries are beginning to understand the importance of simulation modeling to help...

  15. Development of a hydraulic model of the human systemic circulation

    Science.gov (United States)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  16. Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems

    NARCIS (Netherlands)

    Kardas, G.; Göknil, Arda; Dikenelli, O.; Topaloglu, N.Y.; Weyns, D.; Holvoet, T.

    2007-01-01

    Model Driven Development (MDD) provides an infrastructure that simplifies Multi-agent System (MAS) development by increasing the abstraction level. In addition to defining models, transformation process for those models is also crucial in MDD. On the other hand, MAS modeling should also take care of

  17. Model Transformation for Model Driven Development of Semantic Web Enabled Multi-Agent Systems

    NARCIS (Netherlands)

    Kardas, G.; Göknil, A.; Dikenelli, O.; Topaloglu, N.Y.

    2007-01-01

    Model Driven Development (MDD) provides an infrastructure that simplifies Multi-agent System (MAS) development by increasing the abstraction level. In addition to defining models, transformation process for those models is also crucial in MDD. On the other hand, MAS modeling should also take care of

  18. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  19. REQUIREMENTS FOR SYSTEMS DEVELOPMENT LIFE CYCLE MODELS FOR LARGE-SCALE DEFENSE SYSTEMS

    Directory of Open Access Journals (Sweden)

    Kadir Alpaslan DEMIR

    2015-10-01

    Full Text Available TLarge-scale defense system projects are strategic for maintaining and increasing the national defense capability. Therefore, governments spend billions of dollars in the acquisition and development of large-scale defense systems. The scale of defense systems is always increasing and the costs to build them are skyrocketing. Today, defense systems are software intensive and they are either a system of systems or a part of it. Historically, the project performances observed in the development of these systems have been signifi cantly poor when compared to other types of projects. It is obvious that the currently used systems development life cycle models are insuffi cient to address today’s challenges of building these systems. Using a systems development life cycle model that is specifi cally designed for largescale defense system developments and is effective in dealing with today’s and near-future challenges will help to improve project performances. The fi rst step in the development a large-scale defense systems development life cycle model is the identifi cation of requirements for such a model. This paper contributes to the body of literature in the fi eld by providing a set of requirements for system development life cycle models for large-scale defense systems. Furthermore, a research agenda is proposed.

  20. Oil spill model development and application for emergency response system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The paper introduces systematically the developing principle ofCWCM 1.0 oil spill model based on Lagrange system and oil spill fate processes in environment, reviews two oil spill incidents of "East Ambassador" in Jiaozhou Bay and "Min Fuel 2" in the mouth of Pearl River, and designs the predict system simulating oil spill applied in contingency plans. It is indicated that CWCM 1.0 has met preliminarily the demands for functions of precision simulating and oil spill predicting, and can plan an important role to support oil spill response.

  1. A Multiscale Modeling System: Developments, Applications, and Critical Issues

    Science.gov (United States)

    Tao, Wei-Kuo; Lau, William; Simpson, Joanne; Chern, Jiun-Dar; Atlas, Robert; Khairoutdinov, David Randall Marat; Li, Jui-Lin; Waliser, Duane E.; Jiang, Jonathan; Hou, Arthur; Lin, Xin; Peters-Lidard, Christa

    2009-01-01

    The foremost challenge in parameterizing convective clouds and cloud systems in large-scale models are the many coupled dynamical and physical processes that interact over a wide range of scales, from microphysical scales to the synoptic and planetary scales. This makes the comprehension and representation of convective clouds and cloud systems one of the most complex scientific problems in Earth science. During the past decade, the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) has pioneered the use of single-column models (SCMs) and cloud-resolving models (CRMs) for the evaluation of the cloud and radiation parameterizations in general circulation models (GCMs; e.g., GEWEX Cloud System Science Team 1993). These activities have uncovered many systematic biases in the radiation, cloud and convection parameterizations of GCMs and have led to the development of new schemes (e.g., Zhang 2002; Pincus et al, 2003; Zhang and Wu 2003; Wu et al. 2003; Liang and Wu 2005; Wu and Liang 2005, and others). Comparisons between SCMs and CRMs using the same large-scale forcing derived from field campaigns have demonstrated that CRMs are superior to SCMs in the prediction of temperature and moisture tendencies (e.g., Das et al. 1999; Randall et al 2003b; Xie et al. 2005).

  2. A Multiscale Modeling System: Developments, Applications, and Critical Issues

    Science.gov (United States)

    Tao, Wei-Kuo; Lau, William; Simpson, Joanne; Chern, Jiun-Dar; Atlas, Robert; Khairoutdinov, David Randall Marat; Li, Jui-Lin; Waliser, Duane E.; Jiang, Jonathan; Hou, Arthur; hide

    2009-01-01

    The foremost challenge in parameterizing convective clouds and cloud systems in large-scale models are the many coupled dynamical and physical processes that interact over a wide range of scales, from microphysical scales to the synoptic and planetary scales. This makes the comprehension and representation of convective clouds and cloud systems one of the most complex scientific problems in Earth science. During the past decade, the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) has pioneered the use of single-column models (SCMs) and cloud-resolving models (CRMs) for the evaluation of the cloud and radiation parameterizations in general circulation models (GCMs; e.g., GEWEX Cloud System Science Team 1993). These activities have uncovered many systematic biases in the radiation, cloud and convection parameterizations of GCMs and have led to the development of new schemes (e.g., Zhang 2002; Pincus et al, 2003; Zhang and Wu 2003; Wu et al. 2003; Liang and Wu 2005; Wu and Liang 2005, and others). Comparisons between SCMs and CRMs using the same large-scale forcing derived from field campaigns have demonstrated that CRMs are superior to SCMs in the prediction of temperature and moisture tendencies (e.g., Das et al. 1999; Randall et al 2003b; Xie et al. 2005).

  3. ESPC Common Model Architecture Earth System Modeling Framework (ESMF) Software and Application Development

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. ESPC Common Model Architecture Earth System Modeling...LONG-TERM GOALS To expedite the development of numerical weather prediction (NWP) systems, the National Unified Operational Prediction...Capability (NUOPC) was established between NOAA and Navy to develop a common software architecture for easy and efficient interoperability. The

  4. Avians as a model system of vascular development.

    Science.gov (United States)

    Bressan, Michael; Mikawa, Takashi

    2015-01-01

    For more than 2,000 years, philosophers and scientists have turned to the avian embryo with questions of how life begins (Aristotle and Peck Generations of Animals. Loeb Classics, vol. XIII. Harvard University Press, Cambridge, 1943; Needham, A history of embryology. Abelard-Schuman, New York, 1959). Then, as now, the unique accessibility of the embryo both in terms of acquisition of eggs from domesticated fowl and ease at which the embryo can be visualized by simply opening the shell has made avians an appealing and powerful model system for the study of development. Thus, as the field of embryology has evolved through observational, comparative, and experimental embryology into its current iteration as the cellular and molecular biology of development, avians have remained a useful and practical system of study.

  5. Development Of An Econometric Model Case Study: Romanian Classification System

    Directory of Open Access Journals (Sweden)

    Savescu Roxana

    2015-08-01

    Full Text Available The purpose of the paper is to illustrate an econometric model used to predict the lean meat content in pig carcasses, based on the muscle thickness and back fat thickness measured by the means of an optical probe (OptiGrade PRO.The analysis goes through all steps involved in the development of the model: statement of theory, specification of the mathematical model, sampling and collection of data, estimation of the parameters of the chosen econometric model, tests of the hypothesis derived from the model and prediction equations. The data have been in a controlled experiment conducted by the Romanian Carcass Classification Commission in 2007. The purpose of the experiment was to develop the prediction formulae to be used in the implementation of SEUROP classification system, imposed by European Union legislation. The research methodology used by the author in this study consisted in reviewing the existing literature and normative acts, analyzing the primary data provided by and organization conducting the experiment and interviewing the representatives of the working team that participated in the trial.

  6. Development of RF System Model for CERN Linac2 Tanks

    CERN Document Server

    Joshi, G; Vretenar, M; Kumar, G; Agarwal, V

    2010-01-01

    An RF system model has been created for the CERN Linac2 Tanks. RF systems in this linac have both single and double feed architectures. The main elements of these systems are: RF power amplifier, main resonator, feed-line and the amplitude and phase feedback loops. The model of the composite system is derived by suitably concatenating the models of these individual sub-systems. For computational efficiency the modeling has been carried out in the base band. The signals are expressed in in-phase - quadrature domain, where the response of the resonator is expressed using two linear differential equations, making it valid for large signal conditions. MATLAB/SIMULINK has been used for creating the model. The model has been found useful in predicting the system behaviour, especially during the transients. In the paper we present the details of the model, highlighting the methodology, which could be easily extended to multiple feed RF systems.

  7. A geomagnetically induced current warning system: model development and validation

    Science.gov (United States)

    McKay, A.; Clarke, E.; Reay, S.; Thomson, A.

    Geomagnetically Induced Currents (GIC), which can flow in technological systems at the Earth's surface, are a consequence of magnetic storms and Space Weather. A well-documented practical problem for the power transmission industry is that GIC can affect the lifetime and performance of transformers within the power grid. Operational mitigation is widely considered to be one of the best strategies to manage the Space Weather and GIC risk. Therefore in the UK a magnetic storm warning and GIC monitoring and analysis programme has been under development by the British Geological Survey and Scottish Power plc (the power grid operator for Central Scotland) since 1999. Under the auspices of the European Space Agency's service development activities BGS is developing the capability to meet two key user needs that have been identified. These needs are, firstly, the development of a near real-time solar wind shock/ geomagnetic storm warning, based on L1 solar wind data and, secondly, the development of an integrated surface geo-electric field and power grid network model that should allow prediction of GIC throughout the power grid in near real time. While the final goal is a `seamless package', the components of the package utilise diverse scientific techniques. We review progress to date with particular regard to the validation of the individual components of the package. The Scottish power grid response to the October 2003 magnetic storms is also discussed and model and validation data are presented.

  8. Development and implication of a human-volcano system model

    Science.gov (United States)

    Bachri, Syamsul; Stötter, Johann; Monreal, Matthias; Sartohadi, Junun

    2014-05-01

    In an attempt to understand the complexity of human-environment systems, models help to define, quantify, describe, or simulate complex interactions. With regards to the human-volcano system, we develop a conceptual model in order to assist analysis of its two basic elements, the physical and the social environment. A field survey of the human environment interaction of two of the most active volcanic areas in Indonesia (Mt. Merapi and Mt. Bromo) and a corresponding literature review from other case studies was carried out. A differentiated understanding of human interaction with hazard potential elements within the human-volcano system is the main focus of the model development. We classified volcanic processes and effects as three pairs of dichotomies: positive or negative impacts, on society or environment in an indirect or direct way. Each volcanically induced process or effect characterized accordingly leads to eight distinct process/effect classes. They are positive direct effects on society (PDS); positive direct effects on natural resources (PDN); positive indirect effects on society (PIS); positive indirect effects on natural resources (PIN); negative direct effects on society (NDS); negative direct effects on natural resources (NDN); negative indirect effects on society (NIS) and lastly negative indirect effects on natural resources (NIN). Such differentiated view of volcanic process/effects bears several advantages. First, whereas volcanic processes have hitherto been viewed as hazards only, it becomes possible now to describe a particular process/effect in a particular context as negative or positive. Secondly, such a categorization makes it possible to account for processes of the human-volcano system that do not have a direct physical expression but are of socio-cultural relevance. Thirdly, the greater degree of differentiation that is made possible when evaluating volcanic processes has significant repercussions on the way volcanic risk must be

  9. Development of Hydro-Informatic Modelling System and its application

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  10. Avian Information Systems: Developing Web-Based Bird Avoidance Models

    Directory of Open Access Journals (Sweden)

    Judy Shamoun-Baranes

    2008-12-01

    Full Text Available Collisions between aircraft and birds, so-called "bird strikes," can result in serious damage to aircraft and even in the loss of lives. Information about the distribution of birds in the air and on the ground can be used to reduce the risk of bird strikes and their impact on operations en route and in and around air fields. Although a wealth of bird distribution and density data is collected by numerous organizations, these data are not readily available nor interpretable by aviation. This paper presents two national efforts, one in the Netherlands and one in the United States, to develop bird avoidance nodels for aviation. These models integrate data and expert knowledge on bird distributions and migratory behavior to provide hazard maps in the form of GIS-enabled Web services. Both models are in operational use for flight planning and flight alteration and for airfield and airfield vicinity management. These models and their presentation on the Internet are examples of the type of service that would be very useful in other fields interested in species distribution and movement information, such as conservation, disease transmission and prevention, or assessment and mitigation of anthropogenic risks to nature. We expect that developments in cyber-technology, a transition toward an open source philosophy, and higher demand for accessible biological data will result in an increase in the number of biological information systems available on the Internet.

  11. Development of Hydro-Informatic Modelling System and its application

    Institute of Scientific and Technical Information of China (English)

    LIU ChangMing; WANG ZhongGen; ZHENG HongXing; ZHANG Lu; WU XianFeng

    2008-01-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activi-ties. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  12. Development of an Electronic Portfolio System Success Model: An Information Systems Approach

    Science.gov (United States)

    Balaban, Igor; Mu, Enrique; Divjak, Blazenka

    2013-01-01

    This research has two main goals: to develop an instrument for assessing Electronic Portfolio (ePortfolio) success and to build a corresponding ePortfolio success model using DeLone and McLean's information systems success model as the theoretical framework. For this purpose, we developed an ePortfolio success measurement instrument and structural…

  13. Developing Metrics in Systems Integration (ISS Program COTS Integration Model)

    Science.gov (United States)

    Lueders, Kathryn

    2007-01-01

    This viewgraph presentation reviews some of the complications in developing metrics for systems integration. Specifically it reviews a case study of how two programs within NASA try to develop and measure performance while meeting the encompassing organizational goals.

  14. Development of a natural gas systems analysis model (GSAM)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    This report provides an overview of the activities to date and schedule for future testing, validation, and authorized enhancements of Natural Gas Systems Analysis Model (GSAM). The goal of this report is to inform DOE managers of progress in model development and to provide a benchmark for ongoing and future research. Section II of the report provides a detailed discussion on the major GSAM development programs performed and completed during the period of performance, July 1, 1998 to September 30, 1999. Key improvements in the new GSAM version are summarized in Section III. Programmer's guides for GSAM main modules were produced to provide detailed descriptions of all major subroutines and main variables of the computer code. General logical flowcharts of the subroutines are also presented in the guides to provide overall picture of interactions between the subroutines. A standard structure of routine explanation is applied in every programmer's guide. The explanation is started with a brief description or main purpose of the routine, lists of input and output files read and created, and lists of invoked/child and calling/parent routines. In some of the guides, interactions between the routine itself and its parent and child routines are presented in the form of graphical flowchart. The explanation is then proceeded with step by step description of computer code in the subroutine where each step delegates a section of related code. Between steps, if a certain section of code needs further explanation, a Note is inserted with relevant explanation.

  15. Developing a Model of the Irish Energy-System

    DEFF Research Database (Denmark)

    Connolly, David; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    to be created. This paper focuses on the construction of this reference model, in terms of the data gathered, the assumptions made and the accuracy achieved. In future work, this model will be used to investigate alternative energy-systems for Ireland, with the aim to determine the most effective energy system......The transition from a fossil-fuel to a renewable energy system is a modern and complicated challenge for numerous countries. However, as Ireland is an island that is poorly interconnected to other energy systems, this challenge becomes even more complicated. Identifying how to make this transition...... is a vital step due to the scale of the change required for large-scale renewable penetrations. In this paper, a model of the Irish energy system is created to identify how Ireland can transform from a fossil-fuel to a renewable energy-system. The energy-systems-analysis tool, EnergyPLAN, was chosen...

  16. Organic livestock production systems as a model of sustainability development

    Directory of Open Access Journals (Sweden)

    Mariano Pauselli

    2010-01-01

    Full Text Available Organic farming and livestock production offer effective means of satisfying consumer demand for healthy and safe foods and reducing the environmental pressure of agricultural production. In Mediterranean areas organic livestock production could be considered a feasible systems to improve rural development in unfavourable areas and to maintain rural landscape. Constrains, like pasture availability during the year, determine the evolution of different strategies in livestock rearing to improve or maintain net income of population. Moreover the evaluation of the sustainability using a holistic approach using assessment criteria like Life Cycle Assessment (LCA and Emergy Assessment could be considered models to evaluate organic and conventional livestock production sustainability and at the same time new research fields.

  17. Development of a model colloidal system for rheology simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Tallant, David Robert; Piech, Martin (United Technologies Research Center, East Hartford, CT); Bell, Nelson Simmons; Frischknecht, Amalie Lucile

    2008-10-01

    The objective of the experimental effort is to provide a model particle system that will enable modeling of the macroscopic rheology from the interfacial and environmental structure of the particles and solvent or melt as functions of applied shear and volume fraction of the solid particles. This chapter describes the choice of the model particle system, methods for synthesis and characterization, and results from characterization of colloidal dispersion, particle film formation, and the shear and oscillatory rheology in the system. Surface characterization of the grafted PDMS interface, dispersion characterization of the colloids, and rheological characterization of the dispersions as a function of volume fraction were conducted.

  18. Development of Probabilistic Reliability Models of Photovoltaic System Topologies for System Adequacy Evaluation

    Directory of Open Access Journals (Sweden)

    Ahmad Alferidi

    2017-02-01

    Full Text Available The contribution of solar power in electric power systems has been increasing rapidly due to its environmentally friendly nature. Photovoltaic (PV systems contain solar cell panels, power electronic converters, high power switching and often transformers. These components collectively play an important role in shaping the reliability of PV systems. Moreover, the power output of PV systems is variable, so it cannot be controlled as easily as conventional generation due to the unpredictable nature of weather conditions. Therefore, solar power has a different influence on generating system reliability compared to conventional power sources. Recently, different PV system designs have been constructed to maximize the output power of PV systems. These different designs are commonly adopted based on the scale of a PV system. Large-scale grid-connected PV systems are generally connected in a centralized or a string structure. Central and string PV schemes are different in terms of connecting the inverter to PV arrays. Micro-inverter systems are recognized as a third PV system topology. It is therefore important to evaluate the reliability contribution of PV systems under these topologies. This work utilizes a probabilistic technique to develop a power output model for a PV generation system. A reliability model is then developed for a PV integrated power system in order to assess the reliability and energy contribution of the solar system to meet overall system demand. The developed model is applied to a small isolated power unit to evaluate system adequacy and capacity level of a PV system considering the three topologies.

  19. A Development of Empirical Models for Equipment Condition Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Song Kyu; Baik, Se Jin [KEPCO Engineering and Construction Company, Daejeon (Korea, Republic of); An, Sang Ha [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-10-15

    A great deal of effort is recently put into on-line monitoring (OLM), specially using empirical model to detect earlier the fault of components or the calibration reduction/extension of instrument. The empirical model is constructed with historical data obtained during operation and it mainly relies on regression techniques. Various models are used in OLM and the role of models is to describe the relation among signals that have been collected. Ultimate goal of empirical models is to best estimate parameter as soon as possible close to actual value. Typically some of the historical data are used for model training, and some data are used for verification and assessment of model performance. Several different models for OLM of nuclear power systems are currently being used. Examples include the ANL Multivariate State Estimation Techniques (MSET) used in EPI center of SmartSignal, the expert state estimation engine (ESEE) used in SureSense software of Expert Microsystems, Process Evaluation and Analysis by Neural Operators (PEANO) OECD of Halden Reactor Project and linear regression model used in RCP seal integrity monitoring system (SIMON) of KEPCO E and C

  20. System of developing scale modeling and simulation for URAV

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The unmanned reconnaissance aerial vehicle (URAV) plays an important role in battlefield monitoring and information acquiring because of its advantage of zero casualties, and has thus attracted considerable attention of the world. The URAV was developed rapidly in our country, however, no scientific assessment methods have yet been provided owing to different fight requirements of armed forces. Considering the demand of the missile artillery on the martial information, the model of information requirement of combat force, the reconnaissance ability of URAV, the survivability of URAV, and the task reliability of URAV were constructed, respectively. By synthesizing the mathematic models above, the model of developing demand was constructed on the URAV equipment. It simulated and calculated some URAV equipment developing scales, and explored a way of settling the problem of URAV equipment developing demand.

  1. MODEL-BASED DEVELOPMENT OF REAL-TIME SOFTWARE SYSTEM FOR ELECTRONIC UNIT PUMP SYSTEM

    Institute of Scientific and Technical Information of China (English)

    YU Shitao; YANG Shiwei; YANG Lin; GONG Yuanming; ZHUO Bin

    2007-01-01

    A real-time operating system (RTOS), also named OS, is designed based on the hardware platform of MC68376, and is implemented in the electronic control system for unit pump in diesel engine. A parallel and time-based task division method is introduced and the multi-task software architecture is built in the software system for electronic unit pump (EUP) system. The V-model software development process is used to control algorithm of each task. The simulation results of the hardware-in-the-loop simulation system (HILSS) and the engine experimental results show that the OS is an efficient real-time kernel, and can meet the real-time demands of EUP system; The built multi-task software system is real-time, determinate and reliable. V-model development is a good development process of control algorithms for EUP system, the control precision of control system can be ensured, and the development cycle and cost are also decreased.

  2. Using the object modeling system for hydrological model development and application

    Directory of Open Access Journals (Sweden)

    S. Kralisch

    2005-01-01

    Full Text Available State of the art challenges in sustainable management of water resources have created demand for integrated, flexible and easy to use hydrological models which are able to simulate the quantitative and qualitative aspects of the hydrological cycle with a sufficient degree of certainty. Existing models which have been de-veloped to fit these needs are often constrained to specific scales or purposes and thus can not be easily adapted to meet different challenges. As a solution for flexible and modularised model development and application, the Object Modeling System (OMS has been developed in a joint approach by the USDA-ARS, GPSRU (Fort Collins, CO, USA, USGS (Denver, CO, USA, and the FSU (Jena, Germany. The OMS provides a modern modelling framework which allows the implementation of single process components to be compiled and applied as custom tailored model assemblies. This paper describes basic principles of the OMS and its main components and explains in more detail how the problems during coupling of models or model components are solved inside the system. It highlights the integration of different spatial and temporal scales by their representation as spatial modelling entities embedded into time compound components. As an exam-ple the implementation of the hydrological model J2000 is discussed.

  3. Identity Bargaining: A Policy Systems Research Model of Career Development.

    Science.gov (United States)

    Slawski, Carl

    A detailed, general and comprehensive accounting scheme is presented, consisting of nine stages of career development, three major sets of elements contributing to career choice (in terms of personal, cultural and situational roles), and 20 hypotheses relating the separate elements. Implicit in the model is a novel procedure and method for…

  4. Model-based application development for massively parallel embedded systems

    NARCIS (Netherlands)

    Jacobs, Johannes Wilhelmus Maria

    2008-01-01

    The development of embedded systems in information-rich contexts is governed by some intertwined trends. The increase of both volume of data to be processed and the related processing functionality feeds the growing complexity of applications. Independently, the processing hardware that is needed to

  5. Project management system model development and experimental research

    OpenAIRE

    Golubeva, Viktorija

    2006-01-01

    Project management is the application of knowledge, skills, tools and techniques to project activities to meet project requirements. Project Management Information System is tightly connected with organizational structure and particularity of executed projects. However the main objective of this research was to identify project management model that would be universal, helpful and easily used with small and medium projects In analysis phase we reviewed different methodologies, project ...

  6. Multilingual Phoneme Models for Rapid Speech Processing System Development

    Science.gov (United States)

    2006-09-01

    clusters. It was found that multilingual bootstrapping methods out- perform monolingual English bootstrapping methods on the Arabic evaluation data initially...International Phonetic Alphabet . . . . . . . . . 7 2.3.2 Multilingual vs. Monolingual Speech Recognition 7 2.3.3 Data-Driven Approaches...one set of models and monolingual speech recognition systems that draw from a multilingual training space. The second approach is the focus of this

  7. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  8. Developing a Total Quality Management Model for Health Care Systems

    Directory of Open Access Journals (Sweden)

    AM Mosadegh Rad

    2005-10-01

    Full Text Available Background: Total quality management (TQM is a managerial practice to improve the effectiveness, efficiency, flexibility, and competitiveness of a business as a whole. However, in practice, these TQM benefits are not easy to achieve. Despite its theoretical promise and the enthusiastic response to TQM, recent evidence suggests that attempts to implement it are often unsuccessful. Many of these TQM programmes have been cancelled, or are in the process of being cancelled, as a result of the negative impact on profits. Therefore, there is a pressing need for a clinical approach to establishing TQM. Method: The aim of this article is therefore: “To identify the strengths and weakness of TQM, the logical steps towards TQM, and to develop a model so that health care organizations aiming at using TQM to achieve excellence can follow through easily”. Based on the research questions proposed in this study, the research strategies of a literature review, a questionnaire survey, semi-structured interviews, and a participatory action research were adopted in this study. For determining the success and barriers of TQM in health care organizations, a questionnaire survey has done in 90 health acre organizations in Isfahan Province, which implement TQM. The results of this survey were used for introducing a new model of TQM. This model will be developed via a semi-structured interview with at minimum 10 health care and quality managers. Then, through a participatory action research, this model will be implemented in 3 sites. At this time, the questionnaire survey has done and the model is introduced. Therefore, developing the model and its implementation will be done later. Results: In this survey, the mean score of TQM success was 3.48±0.68 (medium from 5 credits. Implementation of TQM was very low, low, medium, high and very high successful respectively in 3.6, 10.9, 21.8, 56.4 and 7.3 percent of health care organizations. TQM had the most effect on

  9. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F. [Arab Academy for Science and Technology and Maritime Transport, Alexandria (Egypt). Dept. of Mechanical and Marine Engineering; Fath, H.E. [Alexandria Univ., Alexandria (Egypt). Dept. of Mechanical Engineering

    2007-07-01

    Desalination, as a non-conventional water resource, has become one of the most promising alternative water sources to address the fresh water shortage in the near future. Desalination technologies are constrained in that they are driven almost entirely by the combustion of fuels which are still of finite supply, pollute the air, and contribute to the risk of global climate change. Solar distillation is preferred to other processes of distillation because of the low operating cost, low maintenance, lack of moving parts, and clean energy offered. The development of solar distillation has demonstrated its suitability for saline water desalination when weather conditions are favorable and when demand is not large. Solar energy in the Arab region is available at relatively high intensity during most of the year. This paper presented a general mathematical model for a newly developed solar still that uses a parabolic reflector-tube absorber desalination technology. A computer program was developed to simulate the still operation and to solve the governing heat and mass transfer action which occurred during the operation. The program was used to study the still production in different cases. The paper provided a description of the mathematical model and discussed the governing equations. It was concluded that unit productivity improved by increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area and evaporation area. In addition, increasing the wind velocity, saline water depth, condenser emissivity and condenser thickness had only a small effect on the productivity. 3 refs., 1 tab., 14 figs.

  10. Training Systems Modelers through the Development of a Multi-scale Chagas Disease Risk Model

    Science.gov (United States)

    Hanley, J.; Stevens-Goodnight, S.; Kulkarni, S.; Bustamante, D.; Fytilis, N.; Goff, P.; Monroy, C.; Morrissey, L. A.; Orantes, L.; Stevens, L.; Dorn, P.; Lucero, D.; Rios, J.; Rizzo, D. M.

    2012-12-01

    The goal of our NSF-sponsored Division of Behavioral and Cognitive Sciences grant is to create a multidisciplinary approach to develop spatially explicit models of vector-borne disease risk using Chagas disease as our model. Chagas disease is a parasitic disease endemic to Latin America that afflicts an estimated 10 million people. The causative agent (Trypanosoma cruzi) is most commonly transmitted to humans by blood feeding triatomine insect vectors. Our objectives are: (1) advance knowledge on the multiple interacting factors affecting the transmission of Chagas disease, and (2) provide next generation genomic and spatial analysis tools applicable to the study of other vector-borne diseases worldwide. This funding is a collaborative effort between the RSENR (UVM), the School of Engineering (UVM), the Department of Biology (UVM), the Department of Biological Sciences (Loyola (New Orleans)) and the Laboratory of Applied Entomology and Parasitology (Universidad de San Carlos). Throughout this five-year study, multi-educational groups (i.e., high school, undergraduate, graduate, and postdoctoral) will be trained in systems modeling. This systems approach challenges students to incorporate environmental, social, and economic as well as technical aspects and enables modelers to simulate and visualize topics that would either be too expensive, complex or difficult to study directly (Yasar and Landau 2003). We launch this research by developing a set of multi-scale, epidemiological models of Chagas disease risk using STELLA® software v.9.1.3 (isee systems, inc., Lebanon, NH). We use this particular system dynamics software as a starting point because of its simple graphical user interface (e.g., behavior-over-time graphs, stock/flow diagrams, and causal loops). To date, high school and undergraduate students have created a set of multi-scale (i.e., homestead, village, and regional) disease models. Modeling the system at multiple spatial scales forces recognition that

  11. Wind turbine control systems: Dynamic model development using system identification and the fast structural dynamics code

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, J.G.; Wright, A.D.; Butterfield, C.P.

    1996-10-01

    Mitigating the effects of damaging wind turbine loads and responses extends the lifetime of the turbine and, consequently, reduces the associated Cost of Energy (COE). Active control of aerodynamic devices is one option for achieving wind turbine load mitigation. Generally speaking, control system design and analysis requires a reasonable dynamic model of {open_quotes}plant,{close_quotes} (i.e., the system being controlled). This paper extends the wind turbine aileron control research, previously conducted at the National Wind Technology Center (NWTC), by presenting a more detailed development of the wind turbine dynamic model. In prior research, active aileron control designs were implemented in an existing wind turbine structural dynamics code, FAST (Fatigue, Aerodynamics, Structures, and Turbulence). In this paper, the FAST code is used, in conjunction with system identification, to generate a wind turbine dynamic model for use in active aileron control system design. The FAST code is described and an overview of the system identification technique is presented. An aileron control case study is used to demonstrate this modeling technique. The results of the case study are then used to propose ideas for generalizing this technique for creating dynamic models for other wind turbine control applications.

  12. Development of a system emulating the global carbon cycle in Earth system models

    Directory of Open Access Journals (Sweden)

    K. Tachiiri

    2010-08-01

    Full Text Available Recent studies have indicated that the uncertainty in the global carbon cycle may have a significant impact on the climate. Since state of the art models are too computationally expensive for it to be possible to explore their parametric uncertainty in anything approaching a comprehensive fashion, we have developed a simplified system for investigating this problem. By combining the strong points of general circulation models (GCMs, which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs, which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM which can represent the outputs of a GCM-based Earth system model, using much smaller computational resources. We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean (COCO including an ocean carbon cycle (an NPZD-type marine ecosystem model; a state of the art vegetation model (Sim-CYCLE; and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario.

    By adjusting the effective climate sensitivity (equivalent to the equilibrium climate sensitivity for an energy balance model of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (with an equilibrium

  13. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications (RAL), Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  14. Mathematical model development for a new solar desalination system (SDS)

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Amer, A.M. [Mechanical and Marine Engineering Department, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, P.O. Box 1029, Alexandria (Egypt); Fath, H.E. [Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria (Egypt)

    2008-11-15

    Supply of adequate quantities of fresh potable water is one of the most serious problems confronting human especially when we know that one third of the world population are suffering from water shortage and it is expected to reach two thirds in the near future. Therefore, desalination, as a non-conventional water resource, has become one of the most interesting alternative water sources to partially face the fresh water shortage in the near future. The objective of this study is to obtain a general mathematical model for a newly developed solar still that uses parabolic reflector-tube absorber desalination technology. A computer program has been developed to simulate the still operation and to solve the governing heat and mass transfer action, which occurs during the operation. The program will then be used to study the still production in different cases. The study revealed that increasing the solar intensity, ambient temperature, efficiency of reflector material, reflector aperture area, and evaporation area increases the unit productivity. On the other hand, increasing wind velocity, saline water depth, condenser emissivity, and condenser thickness have a small effect on the productivity. (author)

  15. Development of CCF modeling and analysis methodology for diverse system status

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Tae Jin; Byun, Si Sub; Yoon, Tae Kwan [Soongsil University, Seoul (Korea); Moon, Jae Pil [Seoul National University, Seoul (Korea)

    1999-04-01

    The objectives of this project is to develop a procedure for modeling and analyzing CCF efficiently according to various system status. CCF events change according to the change of the system status due to maintenance, accidents, or alternating success criteria for various missions. The objective of the first year's research is to develope a CCF model for various system status. We reviewed and evaluated current CCF models, and analyze their merits and deficiency in modeling various system status. An approximate model is developed as a CCF model. The model is compatible with MGL model. Extensive sensitivity study shows the accuracy and efficiency of the proposed model. Second year's research aims to the development of an integrated CCF procedure for PSA and risk monitor. We develope an adaptive method for the approximate model in a k/m/G system with multiple common cause groups. The accuracy of the method is proved by comparing with the implicit method. Next, we develope a method for modeling CCF in a fault tree. Three alternatives are considered. It is proved to be most efficient to model the CCF events under the gate of individual component failure. The we provides a method for estimating the CCF probability, and develope a software for this purpose. We finally provide a fundamental procedure for modeling CCF in a risk monitor. The modeling procedure is applied to HPSI system, and it is proved to be efficient and accurate. (author). 48 refs., 11 figs., 53 tabs.

  16. Developing land use scenario dynamics model by the integration of system dynamics model and cellular automata model

    Institute of Scientific and Technical Information of China (English)

    HE; Chunyang; SHI; Peijun; CHEN; Jin; Li; Xiaobing; PAN; Ya

    2005-01-01

    Modeling land use scenario changes and its potential impacts on the structure and function of the ecosystem in the typical regions are helpful to understanding the interactive mechanism between land use system and ecological system. A Land Use Scenario Dynamics (LUSD) model by the integration of System Dynamics (SD) model and Cellular Automata (CA) model is developed with land use scenario changes in northern China in the next 20 years simulated in this paper. The basic idea of LUSD model is to simulate the land use scenario demands by using SD model at first, then allocate the land use scenario patterns at the local scale with the considerations of land use suitability, inheritance ability and neighborhood effect by using CA model to satisfy the balance between land use scenario demands and supply. The application of LUSD model in northern China suggests that the model has the ability to reflect the complex behavior of land use system at different scales to some extent and is a useful tool for assessing the potential impacts of land use system on ecological system. In addition, the simulated results also indicate that obvious land use changes will take place in the farming-pastoral zone of northern China in the next 20 years with cultivated land and urban land being the most active land use types.

  17. Developing open systems using theories and models of the world

    Energy Technology Data Exchange (ETDEWEB)

    Kokar, M.M.; Korona, Z. [Northeastern Univ., Boston, MA (United States)

    1996-12-31

    This paper considers an open system as such that can deal with inputs that were not anticipated by the designer. Using an ATR system as an example, we show how the combination of logic with software engineering techniques allowed us to improve the performance of the system.

  18. Behavior of the gypsy moth life system model and development of synoptic model formulations

    Science.gov (United States)

    J. J. Colbert; Xu Rumei

    1991-01-01

    Aims of the research: The gypsy moth life system model (GMLSM) is a complex model which incorporates numerous components (both biotic and abiotic) and ecological processes. It is a detailed simulation model which has much biological reality. However, it has not yet been tested with life system data. For such complex models, evaluation and testing cannot be adequately...

  19. Using Model Based Systems Engineering and the Systems Modeling Language to Develop Space Mission Area Architectures

    Science.gov (United States)

    2013-09-01

    else” (Harry Hillaker 1993, quoted in Maier and Rechtin 2009, 405). a. Discussion Throughout my career and professional development, and more recently...Rechtin 2009, 40). a. Discussion I tend to be a naturally indecisive person, a characteristic that I’ve identified to be both strength and weakness...in myself. Indecisiveness can be a weakness in a leader if decisions are never made resulting in a lack of guidance and direction, but

  20. HyPEP FY-07 Report: System Integration Model Development

    Energy Technology Data Exchange (ETDEWEB)

    C. H. Oh; E. S. Kim; S. R. Sherman; R. Vilim

    2007-04-01

    The integrated system of a Very High Temperature Gas-Cooled Reactor (VHTR) and a High Temperature Steam Electrolysis (HTSE) process is one of systems being investigated by the U.S. Department of Energy and Idaho National Laboratory. This system will produce hydrogen by utilizing a highly efficient VHTR with an outlet temperature of 900 °C and supplying necessary energy and electricity to the HTSE process for electrolysis of high temperature steam. This report includes a description of five configurations including an indirect parallel cycle, an indirect serial cycle, a direct serial cycle, a steam combined cycle, and a reheat cycle. HYSYS simulations were performed for each of these configurations coupled to a HTSE process. Final results are presented along with parametric studies and process optimization.

  1. Development of a system emulating the global carbon cycle in Earth system models

    Directory of Open Access Journals (Sweden)

    K. Tachiiri

    2010-02-01

    Full Text Available By combining the strong points of general circulation models (GCMs, which contain detailed and complex processes, and Earth system models of intermediate complexity (EMICs, which are quick and capable of large ensembles, we have developed a loosely coupled model (LCM which can represent the outputs of a GCM-based Earth system model using much smaller computational resources.

    We address the problem of relatively poor representation of precipitation within our EMIC, which prevents us from directly coupling it to a vegetation model, by coupling it to a precomputed transient simulation using a full GCM. The LCM consists of three components: an EMIC (MIROC-lite which consists of a 2-D energy balance atmosphere coupled to a low resolution 3-D GCM ocean including an ocean carbon cycle; a state of the art vegetation model (Sim-CYCLE; and a database of daily temperature, precipitation, and other necessary climatic fields to drive Sim-CYCLE from a precomputed transient simulation from a state of the art AOGCM. The transient warming of the climate system is calculated from MIROC-lite, with the global temperature anomaly used to select the most appropriate annual climatic field from the pre-computed AOGCM simulation which, in this case, is a 1% pa increasing CO2 concentration scenario.

    By adjusting the climate sensitivity of MIROC-lite, the transient warming of the LCM could be adjusted to closely follow the low sensitivity (4.0 K version of MIROC3.2. By tuning of the physical and biogeochemical parameters it was possible to reasonably reproduce the bulk physical and biogeochemical properties of previously published CO2 stabilisation scenarios for that model. As an example of an application of the LCM, the behavior of the high sensitivity version of MIROC3.2 (with 6.3 K climate sensitivity is also demonstrated. Given the highly tunable nature of the model, we believe that the LCM should be a very useful tool for

  2. Model Driven Development of m-Health Systems (with a Touch of Formality)

    NARCIS (Netherlands)

    Jones, Val

    2006-01-01

    We propose a model driven design and development methodology augmented with formal validation and verification (V&V) for the development of mobile health systems. Systems which deliver healthcare services remotely should be developed using robust and trusted engineering technologies. The methodology

  3. Developing social-ecological system indicators using group model building

    NARCIS (Netherlands)

    Vugteveen, P.; Rouwette, E.A.J.A.; Stouten, H.J.; Katwijk, M.M. van; Hanssen, L.S.A.M.

    2015-01-01

    In many coastal regions, activities of multiple users present a growing strain on the ecological state of the area. The necessity of using integrative system approaches to understand and solve coastal problems has become obvious in the last decades. Integrated management strategies for social-ecolog

  4. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  5. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  6. A Case of Energy and Ecology System Development and a New Approach to System Dynamics Modeling

    Institute of Scientific and Technical Information of China (English)

    JIA Ren-an; YANG Bo; WU Fu-ming; HU Ling

    2002-01-01

    This paper uses SD rate variable fundamental in-tree modeling, SD branch-vector determinant method and systems archetype as tools to understand the structure and functions of energy and ecology system in Wangheqiu.

  7. Performance modelling for product development of advanced window systems

    DEFF Research Database (Denmark)

    Appelfeld, David

    and thus increase the net energy gain of the window. However, the usage of the window for such a purpose is limited by the low heat recovery efficiency, which drops with the increase of the airflow. The heat balance of the ventilated window varies significantly from the heat balance of standard window....... The theoretical heat balance of the ventilated window was defined in the study. In this thesis, properties of several shading systems were investigated including an analysis of the visual comfort. The simulations of daylight, lighting demand and glare were accomplished by ray tracing simulations in the software...... and methods,which can address interrelated performance parameters of CFS, are sought. It is possible to evaluate such systems by measurements, however the high cost and complexity of the measurements are limiting factors. The studies in this thesis confirmed that the results from the performance measurements...

  8. Modelling production system architectures in the early phases of product development

    DEFF Research Database (Denmark)

    Guðlaugsson, Tómas Vignir; Martin Ravn, Poul; Mortensen, Niels Henrik;

    2016-01-01

    on – leading to an improved basis for prioritizing activities in the project. Requirements for the contents of the framework are presented, and literature on production and system models is reviewed. The production system architecture modelling framework is founded on methods and approaches in literature......This article suggests a framework for modelling a production system architecture in the early phases of product development.The challenge in these phases is that the products to be produced are not completely defined and yet decisions need to be made early in the process on what investments...... and adjusted to fit the modelling requirements of a production system architecture at an early phase of development. The production system architecture models capture and describe the structure, capabilities and expansions of the production system architecture underdevelopment. The production system...

  9. Multiple Perspective Approach for the Development of Information Systems Based on Advanced Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    modeling (AMM) in scheduling and control systems. Advanced mathematical techniques are relatively new in scheduling and control systems, at least in real production situations, and therefore the project included the research of methods and tools for the development of these systems. Because of the novelty...... are grounded in an understanding of reality as a socially constructed phenomenon where the multiple perspectives of the actors involved (weltanschauung in the dissertation) are used as filters to understand the process of creation of the information system. Soft systems theory was used as the theoretical lens....... Keywords: Information systems development, information systems development methodology, advanced mathematical models, loosely coupled systems, distributed systems, knowledge exchange, boundary objects, systems theory, multiple perspectives, weltanschauung....

  10. Introduction of the NWP Model Development Project at Korea Institute of Atmospheric Prediction Systems - KIAPS

    Science.gov (United States)

    Kim, Y.

    2012-12-01

    Korea Meteorological Administration (KMA) launched a 9-year project in 2011 to develop Korea's own global NWP system with the total funding of about 100 million US dollars. To lead the effort, Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded by KMA as a non-profit foundation. The project consists of three stages. We are in the middle of the first stage (2011-2013), which is to set up the Institute, recruit researchers, lay out plans for the research and development, and design the basic structure and explore/develop core NWP technologies. The second stage (2014-2016) aims at developing the modules for the dynamical core, physical parameterizations and data assimilation systems as well as the system framework and couplers to connect the modules in a systematic and efficient way, and eventually building a prototype NWP system. The third stage (2017-2019) is for evaluating the prototype system by selecting/improving modules, and refining/finalizing it for operational use at KMA as well as developing necessary post-processing systems. In 2012, we are designing key modules for the dynamical core by adopting existing and/or developing new cores, and developing the barographic model first and the baroclinic model later with code parallelization and optimization in mind. We are collecting various physical parameterization schemes, mostly developed by Korean scientists, and evaluating and improving them by using single-column and LES models, etc. We are designing control variables for variational data assimilation systems, constructing testbeds for observational data pre-processing systems, developing linear models for a barographic system, designing modules for cost function minimization. We are developing the module framework, which is flexible for prognostic and diagnostic variables, designing the I/O structure of the system, coupling modules for external systems, and also developing post-processing systems. At the meeting, we will present the

  11. SSBRP Communication & Data System Development using the Unified Modeling Language (UML)

    Science.gov (United States)

    Windrem, May; Picinich, Lou; Givens, John J. (Technical Monitor)

    1998-01-01

    The Unified Modeling Language (UML) is the standard method for specifying, visualizing, and documenting the artifacts of an object-oriented system under development. UML is the unification of the object-oriented methods developed by Grady Booch and James Rumbaugh, and of the Use Case Model developed by Ivar Jacobson. This paper discusses the application of UML by the Communications and Data Systems (CDS) team to model the ground control and command of the Space Station Biological Research Project (SSBRP) User Operations Facility (UOF). UML is used to define the context of the system, the logical static structure, the life history of objects, and the interactions among objects.

  12. Progress report on terrestrial model development (TERRA and HABITAT): Research in support of the CERES earth system modeling project

    Energy Technology Data Exchange (ETDEWEB)

    Kercher, J.R.; Axelrod, M.C.; Amthor, J.S. [Lawrence Livermore National Lab., CA (United States); Chambers, J.Q. [Lawrence Livermore National Lab., CA (United States)]|[California Univ., Santa Barbara, CA (United States). Dept. of Biological Sciences

    1994-05-01

    Although there is only a developing understanding of the many processes affecting and coupling the atmosphere, oceans, and land systems of the earth, we are embarked on an effort to construct a prototype model (CERES) of the full Earth system. As part of this effort, we have proposed to the EPA to construct an Earth System Framework for the CERES model that supports flexible, modular development, coupling, and replacement of Earth System submodel components. This project has two specific areas of study. These areas are (1) the terrestrial contribution to the biogeochemical cycling and (2) the interactions of climate and the land ecosystems. The objectives of these two areas of study are: development of a globally distributed model of terrestrial ecosystem productivity, linking model to the submodels, using coupled system to explore biogeochemical cycles, exploration of greenhouse effect, development of models of surface, and the study of the dynamics of climate change and vegetation response.

  13. Using Models to Develop Measurement Systems: A Method and Its Industrial Use

    Science.gov (United States)

    Staron, Miroslaw; Meding, Wilhelm

    Making the measurement processes work in large software development organizations requires collecting right metrics and collecting them automatically. Collecting the right metrics requires development custom measurement systems which fulfill the actual needs of the company. Effective communication between stakeholders (persons who have the information needs) and the designers of measurement systems are cornerstones in identifying the right metrics and the right amount of them. In this paper we describe a method for developing measurement systems based on models which make this communication more effective. The method supports the designers of measurement systems and managers, for whom the measurement systems are created, in developing more effective measurement systems based on MS Excel. The method comprises of platform independent modeling, platform specific modeling and automated code generation. This method has been used in one of action research projects at Ericsson. We present the results of the evaluation of this method at Ericsson by the end of this paper.

  14. Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems

    DEFF Research Database (Denmark)

    Grujic, Ivan; Nilsson, Rene

    A Cyber-Physical System (CPS) incorporates sensing, actuating, computing and communicative capabilities, which are often combined to control the system. The development of CPSs poses a challenge, since the complexity of the physical system dynamics must be taken into account when designing...... the control application. The physical system dynamics are often defined within mechanical and electrical engineering domains, with the control application residing in software and control engineering domains. Therefore, such a system can be considered multi-domain. With the constant increase in the complexity...... of such systems, caused by technological advances in all domains, new ways of approaching multi- domain system development are needed. One methodology, which excels in complexity management, is model-based development. Multidomain systems require collaborative modeling, where the physical system dynamics...

  15. Towards Quality of Service and Resource Aware Robotic Systems through Model-Driven Software Development

    CERN Document Server

    Steck, Andreas

    2010-01-01

    Engineering the software development process in robotics is one of the basic necessities towards industrial-strength service robotic systems. A major challenge is to make the step from code-driven to model-driven systems. This is essential to replace hand-crafted single-unit systems by systems composed out of components with explicitly stated properties. Furthermore, this fosters reuse by separating robotics knowledge from short-cycled implementational technologies. Altogether, this is one but important step towards "able" robots. This paper reports on a model-driven development process for robotic systems. The process consists of a robotics metamodel with first explications of non-functional properties. A model-driven toolchain based on Eclipse provides the model transformation and code generation steps. It also provides design time analysis of resource parameters (e.g. schedulability analysis of realtime tasks) as a first step towards overall resource awareness in the development of integrated robotic syste...

  16. Development of models and methods for the molecular simulation of large systems and molecules

    CERN Document Server

    Walter, Jonathan; Horsch, Martin; Vrabec, Jadran; Hasse, Hans

    2010-01-01

    The most important factor for quantitative results in molecular dynamics simulation are well developed force fields and models. In the present work, the development of new models and the usage of force fields from the literature in large systems are presented. Both tasks lead to time consuming simulations that require massively parallel high performance computing. In the present work, new models for carbon dioxide and cyclohexanolare discussed and a new method for the model development is introduced. Force fields and models for the simulation of PNIPAAm hydrogel in pure water and sodium chloride solution are tested and verified and applied to the simulation of nucleation processes.

  17. Virtual Community Life Cycle: a Model to Develop Systems with Fluid Requirements

    OpenAIRE

    El Morr, Christo; Maret, Pierre de; Rioux, Marcia; Dinca-Panaitescu, Mihaela; Subercaze, Julien

    2011-01-01

    This paper reports the results of an investigation into the life cycle model needed to develop information systems for group of people with fluid requirements. For this purpose, we developed a modified spiral model and applied to the analysis, design and implementation of a virtual community for a group of researchers and organizations that collaborated in a research project and had changing system requirements? The virtual knowledge community was dedicated to support mobilization and dissemi...

  18. Modeling and simulation for cyber-physical system security research, development and applications.

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Guylaine M.; Atkins, William Dee; Schwartz, Moses Daniel; Chavez, Adrian R.; Urrea, Jorge Mario; Pattengale, Nicholas; McDonald, Michael James; Cassidy, Regis H.; Halbgewachs, Ronald D.; Richardson, Bryan T.; Mulder, John C.

    2010-02-01

    This paper describes a new hybrid modeling and simulation architecture developed at Sandia for understanding and developing protections against and mitigations for cyber threats upon control systems. It first outlines the challenges to PCS security that can be addressed using these technologies. The paper then describes Virtual Control System Environments (VCSE) that use this approach and briefly discusses security research that Sandia has performed using VCSE. It closes with recommendations to the control systems security community for applying this valuable technology.

  19. Development of geoinformation zoning model of urban territories for use in urban cadaster systems

    Directory of Open Access Journals (Sweden)

    Денис Вікторович Горковчук

    2016-12-01

    Full Text Available The structure and composition of zoning spatial resources is explored. Geoinformation mode of geospatial zoning data on the basis of object-relational database management system is developed. Developed zoning model is tested in the environment of open-source database management system PostgreSQL. Applied SQL-function for automatic creation of build conditions and restrictions of land development is implemented

  20. Conceptual modular description of the high-level waste management system for system studies model development

    Energy Technology Data Exchange (ETDEWEB)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1992-08-01

    This document presents modular descriptions of possible alternative components of the federal high-level radioactive waste management system and the procedures for combining these modules to obtain descriptions for alternative configurations of that system. The 20 separate system component modules presented here can be combined to obtain a description of any of the 17 alternative system configurations (i.e., scenarios) that were evaluated in the MRS Systems Studies program (DOE 1989a). First-approximation descriptions of other yet-undefined system configurations could also be developed for system study purposes from this database. The descriptions include, in a modular format, both functional descriptions of the processes in the waste management system, plus physical descriptions of the equipment and facilities necessary for performance of those functions.

  1. Breeding objectives for indigenous chicken: model development and application to different production systems.

    Science.gov (United States)

    Okeno, Tobias O; Magothe, Thomas M; Kahi, Alexander K; Peters, Kurt J

    2013-01-01

    A bio-economic model was developed to evaluate the utilisation of indigenous chickens (IC) under different production systems accounting for the risk attitude of the farmers. The model classified the production systems into three categories based on the level of management: free-range system (FRS), where chickens were left to scavenge for feed resources with no supplementation and healthcare; intensive system (IS), where the chickens were permanently confined and supplied with rationed feed and healthcare; and semi-intensive system (SIS), a hybrid of FRS and IS, where the chickens were partially confined, supplemented with rationed feeds, provided with healthcare and allowed to scavenge within the homestead or in runs. The model allows prediction of the live weights and feed intake at different stages in the life cycle of the IC and can compute the profitability of each production system using both traditional and risk-rated profit models. The input parameters used in the model represent a typical IC production system in developing countries but are flexible and therefore can be modified to suit specific situations and simulate profitability and costs of other poultry species production systems. The model has the capability to derive the economic values as changes in the genetic merit of the biological parameter results in marginal changes in profitability and costs of the production systems. The results suggested that utilisation of IC in their current genetic merit and production environment is more profitable under FRS and SIS but not economically viable under IS.

  2. Developing a Fundamental Model for an Integrated GPS/INS State Estimation System with Kalman Filtering

    Science.gov (United States)

    Canfield, Stephen

    1999-01-01

    This work will demonstrate the integration of sensor and system dynamic data and their appropriate models using an optimal filter to create a robust, adaptable, easily reconfigurable state (motion) estimation system. This state estimation system will clearly show the application of fundamental modeling and filtering techniques. These techniques are presented at a general, first principles level, that can easily be adapted to specific applications. An example of such an application is demonstrated through the development of an integrated GPS/INS navigation system. This system acquires both global position data and inertial body data, to provide optimal estimates of current position and attitude states. The optimal states are estimated using a Kalman filter. The state estimation system will include appropriate error models for the measurement hardware. The results of this work will lead to the development of a "black-box" state estimation system that supplies current motion information (position and attitude states) that can be used to carry out guidance and control strategies. This black-box state estimation system is developed independent of the vehicle dynamics and therefore is directly applicable to a variety of vehicles. Issues in system modeling and application of Kalman filtering techniques are investigated and presented. These issues include linearized models of equations of state, models of the measurement sensors, and appropriate application and parameter setting (tuning) of the Kalman filter. The general model and subsequent algorithm is developed in Matlab for numerical testing. The results of this system are demonstrated through application to data from the X-33 Michael's 9A8 mission and are presented in plots and simple animations.

  3. Advanced High-Temperature Reactor Dynamic System Model Development: April 2012 Status

    Energy Technology Data Exchange (ETDEWEB)

    Qualls, A L; Cetiner, M S; Wilson, Jr, T L

    2012-04-30

    The Advanced High-Temperature Reactor (AHTR) is a large-output fluoride-salt-cooled high-temperature reactor (FHR). An early-phase preconceptual design of a 1500 MW(e) power plant was developed in 2011 [Refs. 1 and 2]. An updated version of this plant is shown as Fig. 1. FHRs feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The AHTR is designed to be a “walk away” reactor that requires no action to prevent large off-site releases following even severe reactor accidents. This report describes the development of dynamic system models used to further the AHTR design toward that goal. These models predict system response during warmup, startup, normal operation, and limited off-normal operating conditions. Severe accidents that include a loss-of-fluid inventory are not currently modeled. The scope of the models is limited to the plant power system, including the reactor, the primary and intermediate heat transport systems, the power conversion system, and safety-related or auxiliary heat removal systems. The primary coolant system, the intermediate heat transport system and the reactor building structure surrounding them are shown in Fig. 2. These systems are modeled in the most detail because the passive interaction of the primary system with the surrounding structure and heat removal systems, and ultimately the environment, protects the reactor fuel and the vessel from damage during severe reactor transients. The reactor silo also plays an important role during system warmup. The dynamic system modeling tools predict system performance and response. The goal is to accurately predict temperatures and pressures within the primary, intermediate, and power conversion systems and to study the impacts of design changes on those responses. The models are design tools and are not intended to be used in reactor qualification. The important details to capture in the primary

  4. Modelling the spatial organization of cell proliferation in the developing central nervous system

    CERN Document Server

    Clairambault, Jean; Perthame, Benoit; Rapacioli, Melina; Rofman, Edmundo; Verdes, Rafael

    2010-01-01

    How far is neuroepithelial cell proliferation in the developing central nervous system a deterministic process? Or, to put it in a more precise way, how accurately can it be described by a deterministic mathematical model? To provide tracks to answer this question, a deterministic system of transport and diffusion partial differential equations, both physiologically and spatially structured, is introduced as a model to describe the spatially organized process of cell proliferation during the development of the central nervous system. As an initial step towards dealing with the three-dimensional case, a unidimensional version of the model is presented. Numerical analysis and numerical tests are performed. In this work we also achieve a first experimental validation of the proposed model, by using cell proliferation data recorded from histological sections obtained during the development of the optic tectum in the chick embryo.

  5. Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development.

    Science.gov (United States)

    Aryee, Ken-Edwin; Shultz, Leonard D; Brehm, Michael A

    2014-01-01

    Immunodeficient mice engrafted with human immune systems provide an exciting model to study human immunobiology in an in vivo setting without placing patients at risk. The essential parameter for creation of these "humanized models" is engraftment of human hematopoietic stem cells (HSC) that will allow for optimal development of human immune systems. However, there are a number of strategies to generate humanized mice and specific protocols can vary significantly among different laboratories. Here we describe a protocol for the co-implantation of human HSC with autologous fetal liver and thymic tissues into immunodeficient mice to create a humanized model with optimal human T cell development. This model, often referred to as the Thy/Liv or BLT (bone marrow, liver, thymus) mouse, develops a functional human immune system, including HLA-restricted human T cells, B cells, and innate immune cells.

  6. Modeling integrated urban water systems in developing countries: case study of Port Vila, Vanuatu.

    Science.gov (United States)

    Poustie, Michael S; Deletic, Ana

    2014-12-01

    Developing countries struggle to provide adequate urban water services, failing to match infrastructure with urban expansion. Despite requiring an improved understanding of alternative infrastructure performance when considering future investments, integrated modeling of urban water systems is infrequent in developing contexts. This paper presents an integrated modeling methodology that can assist strategic planning processes, using Port Vila, Vanuatu, as a case study. 49 future model scenarios designed for the year 2050, developed through extensive stakeholder participation, were modeled with UVQ (Urban Volume and Quality). The results were contrasted with a 2015 model based on current infrastructure, climate, and water demand patterns. Analysis demonstrated that alternative water servicing approaches can reduce Port Vila's water demand by 35 %, stormwater generation by 38 %, and nutrient release by 80 % in comparison to providing no infrastructural development. This paper demonstrates that traditional centralized infrastructure will not solve the wastewater and stormwater challenges facing rapidly growing urban cities in developing countries.

  7. Mechanistic Models for Process Development and Optimization of Fed-batch Fermentation Systems

    DEFF Research Database (Denmark)

    Mears, Lisa; Stocks, Stuart M.; Albæk, Mads O.

    2016-01-01

    into account the oxygen transfer conditions, as well as the evaporation rates of the system. Mechanistic models are valuable tools which are applicable for both process development and optimization. The state estimator described will be a valuable tool for future work as part of control strategy development...... for on-line process control and optimization....

  8. Predicting infiltration pollutant retention in bioretention sustainable drainage systems: model development and validation

    OpenAIRE

    Quinn, Ruth; Dussaillant, Alejandro

    2014-01-01

    A major problem of increased urbanization is the rise in pollution caused by runoff. A solution to this problem can be found through the use of Sustainable Urban Drainage Systems (SUDS) such as rain gardens. Previous research has focused primarily on hydrologic design including the degree to which groundwater is replenished by these systems and models have been developed to quantify the extent of that recharge. However these models do not simulate the transport or fate of pollutants. In this ...

  9. A System Dynamics Model of the Development of New Technologies for Ship Systems

    OpenAIRE

    Monga, Pavinder

    2001-01-01

    System Dynamics has been applied to various fields in the natural and social sciences. There still remain countless problems and issues where understanding is lacking and the dominant theories are event-oriented rather than dynamic in nature. One such research area is the application of the traditional systems engineering process in new technology development. The Navy has been experiencing large cost overruns in projects dealing with the implementation of new technologies on complex ship ...

  10. DEVELOPMENT OF MATHEMATICAL MODEL OF THE HEATING SYSTEM OF THE MULTI-STORIED HOUSE

    Directory of Open Access Journals (Sweden)

    Postolatii V.M.

    2009-08-01

    Full Text Available The mathematical model of a heating system of the multi-storied house is developed, allowing solving a problem of distribution between apartments of heat of the centralized heat supply. It is taken into account own independently developed heat, which is determinate by means of individual counters of gas and the electric power. Basic feature of model is the opportunity of the account of mutual heat exchange between apartments.

  11. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    Science.gov (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  12. Data-driven aerosol development in the GEOS-5 modeling and data assimilation system

    Science.gov (United States)

    Darmenov, A.; da Silva, A.; Liu, X.; Colarco, P. R.

    2013-12-01

    Atmospheric aerosols are important radiatively active agents that also affect clouds, atmospheric chemistry, the water cycle, land and ocean biogeochemistry. Furthermore, exposure to anthropogenic and/or natural fine particulates can have negative health effects. No single instrument or model is capable of quantifying the diverse and dynamic nature of aerosols at the range of spatial and temporal scales at which they interact with the other constituents and components of the Earth system. However, applying model-data integration techniques can minimize limitations of individual data products and remedy model deficiencies. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is the latest version of the NASA Global Modeling and Assimilation Office (GMAO) Earth system model. GEOS-5 is a modeling and data assimilation framework well suited for aerosol research. It is being used to perform aerosol re-analysis and near real-time aerosol forecast on a global scale at resolutions comparable to those of aerosol products from modern spaceborne instruments. The aerosol processes in GEOS-5 derive from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) but it is implemented on-line, within the climate model. GEOS-5 aerosol modeling capabilities have recently been enhanced by inclusion of the Modal Aerosol Microphysics module (MAM-7) originally developed in the Community Earth System Model (CESM) model. This work will present examples of data driven model development that include refining parameterization of sea-salt emissions, tuning of biomass burning emissions from vegetation fires and the effect of the updated emissions on the modeled direct aerosol forcing. We will also present results from GOES-5/MAM-7 model evaluation against AOD and particulate pollution datasets, and outline future directions of aerosol data assimilation in the GEOS-5 system.

  13. Development and Applications of the FV3 GEOS-5 Adjoint Modeling System

    Science.gov (United States)

    Holdaway, Daniel; Kim, Jong G.; Lin, Shian-Jiann; Errico, Ron; Gelaro, Ron; Kent, James; Coy, Larry; Doyle, Jim; Goldstein, Alex

    2017-01-01

    GMAO has developed a highly sophisticated adjoint modeling system based on the most recent version of the finite volume cubed sphere (FV3) dynamical core. This provides a mechanism for investigating sensitivity to initial conditions and examining observation impacts. It also allows for the computation of singular vectors and for the implementation of hybrid 4DVAR. In this work we will present the scientific assessment of the new adjoint system and show results from a number of research application of the adjoint system.

  14. A Study of Developing a System Dynamics Model for the Learning Effectiveness Evaluation

    Directory of Open Access Journals (Sweden)

    Tian-Syung Lan

    2013-01-01

    Full Text Available This study used the research method of system dynamics and applied the Vensim software to develop a learning effectiveness evaluation model. This study developed four cause-and-effect chains affecting learning effectiveness, including teachers’ teaching enthusiasm, family involvement, school’s implementation of scientific activities, and creative teaching method, as well as the system dynamics model based on the four cause-and-effect chains. Based on the developed system dynamic model, this study performed simulation to investigate the relationship among family involvement, learning effectiveness, teaching achievement, creative teaching method, and students’ learning interest. The results of this study verified that there are positive correlations between family involvement and students’ learning effectiveness, as well as students’ learning effectiveness and teachers’ teaching achievements. The results also indicated that the use of creative teaching method is able to increase students’ learning interest and learning achievement.

  15. A Petri Net-Based Software Process Model for Developing Process-Oriented Information Systems

    Science.gov (United States)

    Li, Yu; Oberweis, Andreas

    Aiming at increasing flexibility, efficiency, effectiveness, and transparency of information processing and resource deployment in organizations to ensure customer satisfaction and high quality of products and services, process-oriented information systems (POIS) represent a promising realization form of computerized business information systems. Due to the complexity of POIS, explicit and specialized software process models are required to guide POIS development. In this chapter we characterize POIS with an architecture framework and present a Petri net-based software process model tailored for POIS development with consideration of organizational roles. As integrated parts of the software process model, we also introduce XML nets, a variant of high-level Petri nets as basic methodology for business processes modeling, and an XML net-based software toolset providing comprehensive functionalities for POIS development.

  16. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Li Rong; Yang Fuquan; Sloan, James J [Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON N2L 3G1 (Canada); Scholtz, M Trevor, E-mail: sloanj@connect.uwaterloo.ca [ORTECH Environmental, 2395 Speakman Drive, Mississauga, ON L5K 1B3 (Canada)

    2011-07-15

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  17. A multimedia fate and chemical transport modeling system for pesticides: I. Model development and implementation

    Science.gov (United States)

    Li, Rong; Scholtz, M. Trevor; Yang, Fuquan; Sloan, James J.

    2011-07-01

    We have combined the US EPA MM5/MCIP/SMOKE/CMAQ modeling system with a dynamic soil model, the pesticide emission model (PEM), to create a multimedia chemical transport model capable of describing the important physical and chemical processes involving pesticides in the soil, in the atmosphere, and on the surface of vegetation. These processes include: agricultural practices (e.g. soil tilling and pesticide application mode); advection and diffusion of pesticides, moisture, and heat in the soil; partitioning of pesticides between soil organic carbon and interstitial water and air; emissions from the soil to the atmosphere; gas-particle partitioning and transport in the atmosphere; and atmospheric chemistry and dry and wet deposition of pesticides to terrestrial and water surfaces. The modeling system was tested by simulating toxaphene in a domain that covers most of North America for the period from 1 January 2000 to 31 December 2000. The results show obvious transport of the pesticide from the heavily contaminated soils in the southern United States and Mexico to water bodies including the Atlantic Ocean, the Gulf of Mexico and the Great Lakes, leading to significant dry and wet deposition into these ecosystems. The spatial distributions of dry and wet depositions differ because of their different physical mechanisms; the former follows the distribution of air concentrations whereas the latter is more biased to the North East due to the effect of precipitation.

  18. Prototype Development of an ICT System to Support Construction Management Based on Virtual Models and RFID

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2009-01-01

    assurance and inventory management. In this paper a number of user needs for future ICT systems are presented. The needs are captured during the prototype development process and include that future ICT systems must be more user-friendly, enable object-oriented quality assurance procedures, capture data......There is a need to develop new information and communication technology (ICT) systems with better support of the contractor's working practice in order to gain more advantages from the virtual models created during the design of buildings. For this reason, a Contextual Design of a prototype (an...... early example) of an ICT system was carried out to identify and formalise user needs in relation to construction management based on virtual models and radio frequency identification (RFID). The prototype was developed to support working processes in real-time project progress management, quality...

  19. Development and application of a model for analysis and design phases of Web-based system development

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Despite a short history of the Web development, Web-related technologies are rapidly develop-ing. However, the Web application quality is improving slowly, which requires efficient methods for devel-oping Web systems. This study presents a model for Web-based software development for analysis and design phases based on the ISO/IEC 12207 standard. It describes the methods used to define processes and entities in order to reflect the contents in Web applications. It applies the methodology of Web-Road Map by KCC Information and Technology using this model to the public project. As a result, Web-Road Map is proven to be an efficient model to analyze and design Web-applications.

  20. Development of computer program for simulation of an ice bank system operation, Part I: Mathematical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Halasz, Boris; Grozdek, Marino; Soldo, Vladimir [Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lucica 5, 10 000 Zagreb (Croatia)

    2009-09-15

    Since the use of standard engineering methods in the process of an ice bank performance evaluation offers neither adequate flexibility nor accuracy, the aim of this research was to provide a powerful tool for an industrial design of an ice storage system allowing to account for the various design parameters and system arrangements over a wide range of time varying operating conditions. In this paper the development of a computer application for the prediction of an ice bank system operation is presented. Static, indirect, cool thermal storage systems with external ice on coil building/melting were considered. The mathematical model was developed by means of energy and mass balance relations for each component of the system and is basically divided into two parts, the model of an ice storage system and the model of a refrigeration unit. Heat transfer processes in an ice silo were modelled by use of empirical correlations while the performance of refrigeration unit components were based on manufacturers data. Programming and application design were made in Fortran 95 language standard. Input of data is enabled through drop down menus and dialog boxes, while the results are presented via figures, diagrams and data (ASCII) files. In addition, to demonstrate the necessity for development of simulation program a case study was performed. Simulation results clearly indicate that no simple engineering methods or rule of thumb principles could be utilised in order to validate performance of an ice bank system properly. (author)

  1. Framework of Lower-Limb Musculoskeletal Modeling for FES Control System Development

    Directory of Open Access Journals (Sweden)

    M.K.I Ahmad

    2015-10-01

    Full Text Available In recent years, the demand of interest in functional electrical stimulation (FES is increasing due to the applications especially on spinal cord injury (SCI patients. Numerous studies have been done to regain mobility function and for health benefits especially due to FES control development for the paralyzed person. In this paper, the existing general framework modeling methods have been reviewed and the new modeling framework approach has been discussed. In general modeling and simulation can greatly facilitate to test and tune various FES control strategies. In fact, the modeling of musculoskeletal properties in people with SCI is significantly challenging for researchers due to the complexity of the system. The complexities are due to the complex structural anatomy, complicated movement and dynamics, as well as indeterminate muscle function. Although there are some models have been developed, the complexities of the system resulting mathematical representation that have a large number of parameters which make the model identification process even more difficult. Therefore, a new approach of modeling has been presented which is comparatively less burdened compared with mathematical representations. Hence this musculoskeletal model can be used for FES control system development.

  2. A Two-Stage Combining Classifier Model for the Development of Adaptive Dialog Systems.

    Science.gov (United States)

    Griol, David; Iglesias, José Antonio; Ledezma, Agapito; Sanchis, Araceli

    2016-02-01

    This paper proposes a statistical framework to develop user-adapted spoken dialog systems. The proposed framework integrates two main models. The first model is used to predict the user's intention during the dialog. The second model uses this prediction and the history of dialog up to the current moment to predict the next system response. This prediction is performed with an ensemble-based classifier trained for each of the tasks considered, so that a better selection of the next system can be attained weighting the outputs of these specialized classifiers. The codification of the information and the definition of data structures to store the data supplied by the user throughout the dialog makes the estimation of the models from the training data and practical domains manageable. We describe our proposal and its application and detailed evaluation in a practical spoken dialog system.

  3. Modelling the impact of mining on socio-economic infrastructure development: a system dynamics approach

    Directory of Open Access Journals (Sweden)

    Maluleke, George

    2016-12-01

    Full Text Available The contribution of mining activities to social infrastructure and human development is a complex socio-economic development issue in South Africa. Complexity theory has introduced a new approach to solving problems in social systems, recognising them as complex systems. The socio-economic development system in South Africa falls into this category of complex systems. Analysing such a system requires that a number of feedback loops and details about the issues be analysed simultaneously. This level of complexity is above a human’s ability to comprehend without the aid of tools such as systems thinking and system dynamics. The causality between investment in infrastructure capacity and socio-economic development is dynamic. The relationship is influenced by exogenous feedback that, if not managed, is likely to reverse itself. This paper presents the results of a system dynamics modelling of the relationship, based on the principle of relative attractiveness developed in previous system dynamics research. A Monte Carlo analysis is used to determine the sensitivity of the system to changes in feedback. The paper concludes that the limits to growth in a socio-economic environment are determined by more factors than the availability of capital, and also include land capacity constraints and skills shortage.

  4. [Development method of healthcare information system integration based on business collaboration model].

    Science.gov (United States)

    Li, Shasha; Nie, Hongchao; Lu, Xudong; Duan, Huilong

    2015-02-01

    Integration of heterogeneous systems is the key to hospital information construction due to complexity of the healthcare environment. Currently, during the process of healthcare information system integration, people participating in integration project usually communicate by free-format document, which impairs the efficiency and adaptability of integration. A method utilizing business process model and notation (BPMN) to model integration requirement and automatically transforming it to executable integration configuration was proposed in this paper. Based on the method, a tool was developed to model integration requirement and transform it to integration configuration. In addition, an integration case in radiology scenario was used to verify the method.

  5. Simulation of cow-calf production systems in a range environment: I. Model development.

    Science.gov (United States)

    Tess, M W; Kolstad, B W

    2000-05-01

    A mathematical computer model of beef cattle production systems was developed at Montana State University. The objective of this report was to describe the rationale and procedures used to simulate animal and system performance. The model was designed to simulate the dynamic relationships among cattle genotype, physiological state, forage quality, and management in range environments. Forage intake, energy and protein metabolism, growth, reproduction, lactation, and changes in chemical body composition are simulated for individual animals over complete life cycles. Expenses driven by animal performance, management decisions, and land resources are tabulated. Several biological and economic measures of system performance can be computed, including ratios of inputs (e.g., DM, CP, ME, dollars) to outputs (e.g., weight, lean), break even prices, and annual gross margin per cow or ranch. Primary uses of the model include the evaluation of system responses to changes in breeding strategies and management in range production/marketing systems.

  6. Development of a system dynamics model for financially sustainable management of municipal watermain networks.

    Science.gov (United States)

    Rehan, R; Knight, M A; Unger, A J A; Haas, C T

    2013-12-15

    This paper develops causal loop diagrams and a system dynamics model for financially sustainable management of urban water distribution networks. The developed causal loop diagrams are a novel contribution in that it illustrates the unique characteristics and feedback loops for financially self-sustaining water distribution networks. The system dynamics model is a mathematical realization of the developed interactions among system variables over time and is comprised of three sectors namely watermains network, consumer, and finance. This is the first known development of a water distribution network system dynamics model. The watermains network sector accounts for the unique characteristics of watermain pipes such as service life, deterioration progression, pipe breaks, and water leakage. The finance sector allows for cash reserving by the utility in addition to the pay-as-you-go and borrowing strategies. The consumer sector includes controls to model water fee growth as a function of service performance and a household's financial burden due to water fees. A series of policy levers are provided that allow the impact of various financing strategies to be evaluated in terms of financial sustainability and household affordability. The model also allows for examination of the impact of different management strategies on the water fee in terms of consistency and stability over time. The paper concludes with a discussion on how the developed system dynamics water model can be used by water utilities to achieve a variety of utility short and long-term objectives and to establish realistic and defensible water utility policies. It also discusses how the model can be used by regulatory bodies, government agencies, the financial industry, and researchers.

  7. Model development and system performance optimization for staring infrared search and track (IRST) sensors

    Science.gov (United States)

    Olson, Craig; Theisen, Michael; Pace, Teresa; Halford, Carl; Driggers, Ronald

    2016-05-01

    The mission of an Infrared Search and Track (IRST) system is to detect and locate (sometimes called find and fix) enemy aircraft at significant ranges. Two extreme opposite examples of IRST applications are 1) long range offensive aircraft detection when electronic warfare equipment is jammed, compromised, or intentionally turned off, and 2) distributed aperture systems where enemy aircraft may be in the proximity of the host aircraft. Past IRST systems have been primarily long range offensive systems that were based on the LWIR second generation thermal imager. The new IRST systems are primarily based on staring infrared focal planes and sensors. In the same manner that FLIR92 did not work well in the design of staring infrared cameras (NVTherm was developed to address staring infrared sensor performance), current modeling techniques do not adequately describe the performance of a staring IRST sensor. There are no standard military IRST models (per AFRL and NAVAIR), and each program appears to perform their own modeling. For this reason, L-3 has decided to develop a corporate model, working with AFRL and NAVAIR, for the analysis, design, and evaluation of IRST concepts, programs, and solutions. This paper provides some of the first analyses in the L-3 IRST model development program for the optimization of staring IRST sensors.

  8. Development of a growth model-based decision support system for crop management

    Institute of Scientific and Technical Information of China (English)

    ZHU Yan; TANG Liang; LIU Xiaojun; TIAN Yongchao; YAO Xia; CAO Weixing

    2007-01-01

    A growth model-based decision support system for crop management (GMDSSCM) was developed,which integrates process-based models of four different crops-wheat,rice,rape and cotton-and realized decision support function,thus facilitating the simulation and application of the crop models for different purposes.The individual models include six sub models for simulating phase development,organ formation,biomass production,yield and quality formation,soil-crop water relations and nutrient (N,P,K)balance.The implemented system can be used for evaluating individual and comprehensive management strategies based on the results of crop growth simulation under various environments and different genotypes.A stand-alone edition (GMDSSCMA) was established on VC++ and VB platforms by adopting the characteristics of object-oriented and component-based software and with the effective integration and coupling of the growth prediction and decision-making functions.A web-based system (GMDSSCMw) was then further developed on the .net platform using C# language.These GMDSSCM systems have realized dynamic prediction of crop growth and decision making on cultural management,and thus should be helpful for the construction and application of informational and digital fanning system.

  9. Model-centric approaches for the development of health information systems.

    Science.gov (United States)

    Tuomainen, Mika; Mykkänen, Juha; Luostarinen, Heli; Pöyhölä, Assi; Paakkanen, Esa

    2007-01-01

    Modeling is used increasingly in healthcare to increase shared knowledge, to improve the processes, and to document the requirements of the solutions related to health information systems (HIS). There are numerous modeling approaches which aim to support these aims, but a careful assessment of their strengths, weaknesses and deficiencies is needed. In this paper, we compare three model-centric approaches in the context of HIS development: the Model-Driven Architecture, Business Process Modeling with BPMN and BPEL and the HL7 Development Framework. The comparison reveals that all these approaches are viable candidates for the development of HIS. However, they have distinct strengths and abstraction levels, they require local and project-specific adaptation and offer varying levels of automation. In addition, illustration of the solutions to the end users must be improved.

  10. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling

    Science.gov (United States)

    Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick

    2015-01-01

    The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing. PMID:26528976

  11. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling.

    Science.gov (United States)

    Shahbazi, Mozhdeh; Sohn, Gunho; Théau, Jérôme; Menard, Patrick

    2015-10-30

    The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing.

  12. Development and Evaluation of a UAV-Photogrammetry System for Precise 3D Environmental Modeling

    Directory of Open Access Journals (Sweden)

    Mozhdeh Shahbazi

    2015-10-01

    Full Text Available The specific requirements of UAV-photogrammetry necessitate particular solutions for system development, which have mostly been ignored or not assessed adequately in recent studies. Accordingly, this paper presents the methodological and experimental aspects of correctly implementing a UAV-photogrammetry system. The hardware of the system consists of an electric-powered helicopter, a high-resolution digital camera and an inertial navigation system. The software of the system includes the in-house programs specifically designed for camera calibration, platform calibration, system integration, on-board data acquisition, flight planning and on-the-job self-calibration. The detailed features of the system are discussed, and solutions are proposed in order to enhance the system and its photogrammetric outputs. The developed system is extensively tested for precise modeling of the challenging environment of an open-pit gravel mine. The accuracy of the results is evaluated under various mapping conditions, including direct georeferencing and indirect georeferencing with different numbers, distributions and types of ground control points. Additionally, the effects of imaging configuration and network stability on modeling accuracy are assessed. The experiments demonstrated that 1.55 m horizontal and 3.16 m vertical absolute modeling accuracy could be achieved via direct geo-referencing, which was improved to 0.4 cm and 1.7 cm after indirect geo-referencing.

  13. Study on development of education model and its evaluation system for radiation safety

    CERN Document Server

    Seo, K W; Nam, Y M

    2002-01-01

    As one of the detailed action strategy of multi object preparedness for strengthening of radiation safety management by MOST, this project was performed, in order to promote the safety culture for user and radiation worker through effective education program. For the prevention of radiological accident and effective implementation of radiation safety education and training, this project has been carried out the development of education model and its evaluation system on radiation safety. In the development of new education model, education course was classified; new and old radiation worker, temporary worker, lecturer and manager. The education model includes the contents of expanding the education opportunity and workplace training. In the development of evaluation system, the recognition criteria for commission-education institute and inside-education institute which should establish by law were suggested for evaluation program. The recognition criteria contains classification, student, method, facilities, ...

  14. Development of engineering model of medium-sized aperture camera system

    Science.gov (United States)

    Kim, Ee-Eul; Choi, Young-Wan; Soon Yang, Ho; Kang, Myung-Seok; Jeong, Seong-Keun; Yang, Seung-Uk; Kim, Jong-Un; Rasheed, Ad. Aziz Ad.; Nasir, Hafizah Md.; Rosdi, Md. Rushdan Md.; Hai, Asma Hani Ad.; Ismail, Ismahadi; Sabirin Arshad, Ahmad

    2005-01-01

    SaTReC i and ATSB are developing medium-sized aperture camera (MAC) system for earth observation. Following the first model, the development of the engineering model (EM) was completed. The optical subsystem incorporates a conventional approach of using low-expansion optical and structural materials. It is a 300-mm on-axis system with two aspheric mirrors and two field correction lenses. It has five linear detectors aligned on its focal plane together with proximity electronics. The electronics subsystem consists of five modules; two for management and control in cold redundancy, two for image data storage and one for power supply. EM was developed to have a storage capacity of 16 Gbits, which can be easily increased to 32 Gbits by adding memory packs for following models. EM weighs about 41.9 kg and consumes about 45.4 W of peak power.

  15. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  16. Technical & Entrepreneurial Research Information System: An applied e-model For Sustainable Entrepreneurship Development

    Directory of Open Access Journals (Sweden)

    Dr. Dhrupad Mahtur

    2005-01-01

    Full Text Available This article stresses on the need for an e-application like Technical and Entrepreneurial Research Information System (TERIS, which enables interaction among academia, industry and various agencies related to researchers for sustainable entrepreneurship development. The functional details of the model are also discussed. This article is based on inputs with reference to the state of Rajasthan. However, the model can very well be replicated elsewhere.

  17. Developing the next-generation climate system models: challenges and achievements.

    Science.gov (United States)

    Slingo, Julia; Bates, Kevin; Nikiforakis, Nikos; Piggott, Matthew; Roberts, Malcolm; Shaffrey, Len; Stevens, Ian; Vidale, Pier Luigi; Weller, Hilary

    2009-03-13

    Although climate models have been improving in accuracy and efficiency over the past few decades, it now seems that these incremental improvements may be slowing. As tera/petascale computing becomes massively parallel, our legacy codes are less suitable, and even with the increased resolution that we are now beginning to use, these models cannot represent the multiscale nature of the climate system. This paper argues that it may be time to reconsider the use of adaptive mesh refinement for weather and climate forecasting in order to achieve good scaling and representation of the wide range of spatial scales in the atmosphere and ocean. Furthermore, the challenge of introducing living organisms and human responses into climate system models is only just beginning to be tackled. We do not yet have a clear framework in which to approach the problem, but it is likely to cover such a huge number of different scales and processes that radically different methods may have to be considered. The challenges of multiscale modelling and petascale computing provide an opportunity to consider a fresh approach to numerical modelling of the climate (or Earth) system, which takes advantage of the computational fluid dynamics developments in other fields and brings new perspectives on how to incorporate Earth system processes. This paper reviews some of the current issues in climate (and, by implication, Earth) system modelling, and asks the question whether a new generation of models is needed to tackle these problems.

  18. Prototype Development of an ICT System to Support Construction Management Based on Virtual Models and RFID

    DEFF Research Database (Denmark)

    Sørensen, Kristian Birch; Christiansson, Per; Svidt, Kjeld

    2009-01-01

    early example) of an ICT system was carried out to identify and formalise user needs in relation to construction management based on virtual models and radio frequency identification (RFID). The prototype was developed to support working processes in real-time project progress management, quality...

  19. A Model-Driven Engineering Approach to Develop a Cooperative Information System

    Directory of Open Access Journals (Sweden)

    Jean Michel Inglebert

    2013-06-01

    Full Text Available To reuse one or several existing systems in orderto develop a complex system isa common practice insoftware engineering. This approach can be justified by thefact that it is often difficult for a singleInformation System(IS to accomplish all the requested tasks. So, one solution isto combine many differentISs and make them collaboratein order to realize these tasks. We proposed anapproach named AspeCiS(An Aspect-oriented Approach toDevelop a Cooperative Information System to develop aCooperativeInformation System from existing ISs by usingtheir artifacts such as existing requirements, and design.AspeCiS covers the three following phases: (i discoveryand analysis of Cooperative Requirements, (iidesign ofCooperative Requirements models, and (iii preparation ofthe implementation phase. The mainissue of AspeCiS is thedefinition of Cooperative Requirements using the ExistingRequirements andAdditional Requirements, which shouldbe composed with Aspectual Requirements. We earlier studiedhowto elicit the Cooperative Requirements in AspeCiS(phase ofdiscoveryand analysis of CooperativeRequirementsin AspeCiS.We studyherethe second phase of AspeCiS(design ofCooperativeRequirements models, by the way of a model weavingprocess. This process uses so-called AspeCiSWeaving Metamodel, and it weaves Existing andAdditional Requirementsmodels to realize CooperativeRequirements models

  20. DEVELOPING OF THE SYSTEM INFORMATION SECURITY MODEL FOR COMPUTER TRAINING COMPLEX

    Directory of Open Access Journals (Sweden)

    Viktoriia N. Kovalchuk

    2010-08-01

    Full Text Available The regulatory documents regarding the computer training rooms and information communication technologies in respect to the information safety are being analyzed in the given paper. The model of information security system of the computer training complex is developed. In particular there are considered the requirements to the security system construction, its functioning and the stages of the lifecycle. The analysis of typical risks for the information resources is conducted, the main methods of their information security are offered.

  1. Development Of Manpower System For Enhancement Of Industrial Output Using Mathematical Programming Model

    Directory of Open Access Journals (Sweden)

    Dr Onuke Oscar Sunny

    2015-03-01

    Full Text Available Abstract The study dwelt on the problem of developing manpower supply for establishing new industries more especially an engineering program for generating the skills required for a refinery project. A mathematical programming model was developed for planning the establishment of a new manpower system such as Nigeria would be establishing in the next several decades. The manpower planning model developed here deals with the problem of how to optimize the process of developing new skills so that they are available as needed during the process of setting up new industries especially in the sector of developing economy. Many developmental projects in the public sector of Nigeria are now leveled up for lack of trained manpower. The method developed will also estimate the probable availability of skills required and plan to meet the shortfalls if any.

  2. Role of the national energy system modelling in the process of the policy development

    Directory of Open Access Journals (Sweden)

    Merse Stane

    2012-01-01

    Full Text Available Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning environment, allowing integration of past, present and planned (calculated data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources.

  3. Development of a percentile based three-dimensional model of the buttocks in computer system

    Science.gov (United States)

    Wang, Lijing; He, Xueli; Li, Hongpeng

    2016-05-01

    There are diverse products related to human buttocks, which need to be designed, manufactured and evaluated with 3D buttock model. The 3D buttock model used in present research field is just simple approximate model similar to human buttocks. The 3D buttock percentile model is highly desired in the ergonomics design and evaluation for these products. So far, there is no research on the percentile sizing system of human 3D buttock model. So the purpose of this paper is to develop a new method for building three-dimensional buttock percentile model in computer system. After scanning the 3D shape of buttocks, the cloud data of 3D points is imported into the reverse engineering software (Geomagic) for the reconstructing of the buttock surface model. Five characteristic dimensions of the buttock are measured through mark-points after models being imported into engineering software CATIA. A series of space points are obtained by the intersecting of the cutting slices and 3D buttock surface model, and then are ordered based on the sequence number of the horizontal and vertical slices. The 1st, 5th, 50th, 95th, 99th percentile values of the five dimensions and the spatial coordinate values of the space points are obtained, and used to reconstruct percentile buttock models. This research proposes a establishing method of percentile sizing system of buttock 3D model based on the percentile values of the ischial tuberosities diameter, the distances from margin to ischial tuberosity and the space coordinates value of coordinate points, for establishing the Nth percentile 3D buttock model and every special buttock types model. The proposed method also serves as a useful guidance for the other 3D percentile models establishment for other part in human body with characteristic points.

  4. Development of a definition, classification system, and model for cultural geology

    Science.gov (United States)

    Mitchell, Lloyd W., III

    The concept for this study is based upon a personal interest by the author, an American Indian, in promoting cultural perspectives in undergraduate college teaching and learning environments. Most academicians recognize that merged fields can enhance undergraduate curricula. However, conflict may occur when instructors attempt to merge social science fields such as history or philosophy with geoscience fields such as mining and geomorphology. For example, ideologies of Earth structures derived from scientific methodologies may conflict with historical and spiritual understandings of Earth structures held by American Indians. Specifically, this study addresses the problem of how to combine cultural studies with the geosciences into a new merged academic discipline called cultural geology. This study further attempts to develop the merged field of cultural geology using an approach consisting of three research foci: a definition, a classification system, and a model. Literature reviews were conducted for all three foci. Additionally, to better understand merged fields, a literature review was conducted specifically for academic fields that merged social and physical sciences. Methodologies concentrated on the three research foci: definition, classification system, and model. The definition was derived via a two-step process. The first step, developing keyword hierarchical ranking structures, was followed by creating and analyzing semantic word meaning lists. The classification system was developed by reviewing 102 classification systems and incorporating selected components into a system framework. The cultural geology model was created also utilizing a two-step process. A literature review of scientific models was conducted. Then, the definition and classification system were incorporated into a model felt to reflect the realm of cultural geology. A course syllabus was then developed that incorporated the resulting definition, classification system, and model. This

  5. Modeling of development of regional systems of agriculture of Republic Mordovia

    Directory of Open Access Journals (Sweden)

    Arthur Modestovich Nosonov

    2012-09-01

    Full Text Available This paper considers the development of regional systems of agriculture (on the example of the Republic of Mordovia on the basis of the systemic approach. The original technique of modeling with use of the modernized method of structural and parametrical identification of simulation model is offered. The block diagram of model is represented, the inclusion into its structure of the corresponding components is substantiated: expenses of appliances and work, agroclimatic conditions, indicators of soil fertility, structure of the ground area and the use of processed lands. Coefficients of the importance of the separate parameters influencing criterion function of regional systems of agriculture are revealed. Areas with various economic efficiencies of arable grounds are shown and the factors determining these distinctions are opened. A model of mathematical simulation is developed, allowing to estimate the degree of influence of territorial structure of agriculture and socio-economic factors on the efficiency of regional systems of agriculture and to define various possible scenarios of their sustainable development on the basis of the chosen criterion of stability — of economic efficiency.

  6. Development of distributed time-variant gain model for nonlinear hydrological systems

    Institute of Scientific and Technical Information of China (English)

    XIA; Jun; WANG; Gangsheng; TAN; Ge; YE; Aizhong; G.; H.; Hua

    2005-01-01

    In this paper, a rainfall-runoff modeling system is developed based on a nonlinear Volterra functional series and a hydrological conceptual modeling approach. Two models, i.e. the time-variant gain model (TVGM) and the distributed time-variant gain model (DTVGM) that are built on the platform of Digital Elevation Model (DEM), Remote Sensing (RS) and Unit Hydrological Process were proposed. The developed DTVGM model was applied to two cases in the Heihe River Basin that is located in the arid and semiarid region of northwestern China and the Chaobai River basin located in the semihumid region of northern China. The results indicate that, in addition to the classic dynamic differential approach to describe nonlinear processes in hydrological systems, it is possible to study such complex processes through the proposed systematic approach to identify prominent hydrological relations. The DTVGM, coupling the advantages of both nonlinear and distributed hydrological models, can simulate variant hydrological processes under different environment conditions. Satisfactory results were obtained in forecasting the time-space variations of hydrological processes and the relationships between land use/cover change and surface runoff variation.

  7. Development Model and Characteristics of Rural Land Joint Stock-cooperative System

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    We introduce and analyze operating mechanism of three major rural land joint-stock cooperative systems in China,including community type(Nanhai model),collective leasing type(Ningxia Pingluo model) and joint operating type(Zhejiang Jiande model).Current rural land joint-stock cooperative system has following characteristics.Firstly,adhere to the collective ownership and household contract responsibility system in rural areas.Secondly,safeguard farmers’ land contractual rights and interests.Thirdly,implement large-scale agricultural production and operation.Fourthly,carry out normative operation of farmers’ cooperatives.On the basis of these,we point out such problems as backward technology and short of funds in development of rural land joint-stock cooperative system.Finally,we conclude that the development of rural land joint-stock cooperative system should fully draw lessons from foreign advanced experience,actively try new model like securitization of rural land,to explore a road suitable for current national conditions.

  8. Development and Operationalization of a Model of Innovation Management System as Part of an Integrated Quality-Environment-Safety System

    Directory of Open Access Journals (Sweden)

    Dorin Maier

    2017-02-01

    Full Text Available The results of the research, presented in this article, have the purpose to contribute in the area of innovation management and its relation to other management systems. The research objective is to give to organizations a model of innovation management system as part of an integrated management system. Defining the model of innovation management system is based on the four perspectives of the balanced scorecard tool, namely: financial perspective, learning and development, internal processes and customers. In the process of defining the model several steps were taken, such as: literature review, data collection from the enterprise level through a questionnaire, analysis and correlation of data and finally the proposed model has been operationalized. In order to have a working model that can be easily adopted by any interested company, the research was deepen to the organizational processes, identifying nine processes specific for innovation that exist in an organization. Each of the nine processes have been operationalized using a SIPOC model (Suppliers − Inputs − Process − Outputs − Customers. The system for managing innovation may therefore have a positive influence on the ability and awareness of enterprises in innovation actions, and by defining this model the research conducted in this article helps to improve the efficiency of innovation, with direct implications in business performance.

  9. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  10. New Challenges for the Management of the Development of Information Systems Based on Complex Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    2002-01-01

    has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information......’ skills in the development process. Further observations also indicate that flexibility and adaptability, based on grounded theory, are valuable tools when information systems development involves a new technology.......The advancements in complexity and sophistication of mathematical models for manufacturing scheduling and control and the increase of the ratio power/cost of computers are beginning to provide the manufacturing industry with new software tools to improve production. A Danish action research project...

  11. Hot-gas cleanup system model development. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  12. Development of an Autonomous Flight Control System for Small Size Unmanned Helicopter Based on Dynamical Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    It is devoted to the development of an autonomous flight control system for small size unmanned helicopter based on dynamical model. At first, the mathematical model of a small size helicopter is described. After that simple but effective MTCV control algorithm was proposed. The whole flight control algorithm is composed of two parts:orientation controller based on the model for rotation dynamics and a robust position controller for a double integrator. The MTCV block is also used to achieve translation velocity control. To demonstrate the performance of the presented algorithm, simulation results and results achieved in real flight experiments were presented.

  13. TRW’s Ada Process Model for Incremental Development of Large Software Systems

    Science.gov (United States)

    1990-01-01

    TRW’s Ada Process Model has proven to be key to the Command Center Processing and Display System-Replacement (CCPDS-R) project’s success to data in...developing over 3000,000 lines of Ada source code executing in a distributed VAX VMS environment. The Ada Process Model is, in simplest terms, a...software progress metrics. This paper provides an overview of the techniques and benefits of the Ada Process Model and describes some of the experience and

  14. Goal Model to Business Process Model: A Methodology for Enterprise Government Tourism System Development

    National Research Council Canada - National Science Library

    Ahmad Nurul Fajar; Imam Marzuki Shofi

    2016-01-01

    .... However, the goal model could not used directly to make business process model. In order to solve this problem,this paper presents and proposed a Methodology to extract goal model into business process model that called GBPM Methodology...

  15. Graph model of behavior simulator. [Interactive simulator developed as part of UCLA SARA system

    Energy Technology Data Exchange (ETDEWEB)

    Razouk, R.R.; Estrin, G.

    1966-01-01

    An interactive simulator developed at UCLA as part of the SARA system is described. This simulator, in conjunction with other design tools of the SARA system, allows the user to model the behavior of the system being designed at various levels of detail. The models which drive the simulator are control graphs and associated data graphs. The simulator uses the control graph to express synchronization of sequences of events. Initiation of any control node triggers the simulator to call on the data graph model to provide interpretation of a process at a desired level of abstraction. The simulator gives the user the capability to examine, or modify, the state of the control and data graphs during a simulation. 8 figures.

  16. The Role of Systems Modeling for Sustainable Development Policy Analysis: the Case of Bio-Ethanol

    Directory of Open Access Journals (Sweden)

    Albert W. Chan

    2004-12-01

    Full Text Available A dynamic systems modeling technique has been developed to assess technologies according to the criterion of sustainability. In a case study, the potential contribution of bio-ethanol toward achieving Canada’s commitment to the Kyoto targets for greenhouse gas reductions is analyzed. The analysis concludes that, although bio-ethanol may help reduce greenhouse gas emissions, the technology by itself is insufficient to meet the Kyoto target. Applying the systems modeling approach to analyze sustainability helps highlight those policy issues that warrant more in-depth study. Although the systems model may not provide definitive answers, it raises relevant questions about physical constraints that might be encountered and estimates the extent to which sustainability targets may be met under various scenarios.

  17. Selection of Model in Developing Information Security Criteria for Smart Grid Security System

    CERN Document Server

    Ling, Amy Poh Ai

    2011-01-01

    At present, the "Smart Grid" has emerged as one of the best advanced energy supply chains. This paper looks into the security system of smart grid via the smart planet system. The scope focused on information security criteria that impact on consumer trust and satisfaction. The importance of information security criteria is perceived as the main aspect to impact on customer trust throughout the entire smart grid system. On one hand, this paper also focuses on the selection of the model for developing information security criteria on a smart grid.

  18. DEVELOPING VERIFICATION SYSTEMS FOR BUILDING INFORMATION MODELS OF HERITAGE BUILDINGS WITH HETEROGENEOUS DATASETS

    Directory of Open Access Journals (Sweden)

    L. Chow

    2017-08-01

    Full Text Available The digitization and abstraction of existing buildings into building information models requires the translation of heterogeneous datasets that may include CAD, technical reports, historic texts, archival drawings, terrestrial laser scanning, and photogrammetry into model elements. In this paper, we discuss a project undertaken by the Carleton Immersive Media Studio (CIMS that explored the synthesis of heterogeneous datasets for the development of a building information model (BIM for one of Canada’s most significant heritage assets – the Centre Block of the Parliament Hill National Historic Site. The scope of the project included the development of an as-found model of the century-old, six-story building in anticipation of specific model uses for an extensive rehabilitation program. The as-found Centre Block model was developed in Revit using primarily point cloud data from terrestrial laser scanning. The data was captured by CIMS in partnership with Heritage Conservation Services (HCS, Public Services and Procurement Canada (PSPC, using a Leica C10 and P40 (exterior and large interior spaces and a Faro Focus (small to mid-sized interior spaces. Secondary sources such as archival drawings, photographs, and technical reports were referenced in cases where point cloud data was not available. As a result of working with heterogeneous data sets, a verification system was introduced in order to communicate to model users/viewers the source of information for each building element within the model.

  19. LCA of waste management systems: Development of tools for modeling and uncertainty analysis

    DEFF Research Database (Denmark)

    Clavreul, Julie

    to be modelled rather than monitored as in classical LCA (e.g. landfilling or the application of processed waste on agricultural land). Therefore LCA-tools are needed which specifically address these issues and enable practitioners to model properly their systems. In this thesis several pieces of work...... are presented. First a review was carried out on all LCA studies of waste management systems published before mid-2012. This provided a global overview of the technologies and waste fractions which have attracted focus within LCA while enabling an analysis of methodological tendencies, the use of tools...... and databases and the application of uncertainty analysis methods. The major outcome of this thesis was the development of a new LCA model, called EASETECH, building on the experience with previous LCA-tools, in particular the EASEWASTE model. Before the actual implementation phase, a design phase involved...

  20. Developing of National Accreditation Model for Rural Health Centers in Iran Health System.

    Directory of Open Access Journals (Sweden)

    Jafar Sadegh Tabrizi

    2013-12-01

    Full Text Available The primary health care has notable effects on community health and accreditation is one of the appropriate evaluation methods that led to health system performance improvement, therefore, this study aims to developing of national accreditation model for rural health centers in Iran Health System.Firstly the suitable accreditation models selected to benchmarking worldwide via systematic review, the related books and medical university's web site surveyed and some interviews hold with experts. Then the obtain standards surveyed from the experts' perspectives via Delphi technique. Finally, the obtainedmodel assessedvia the experts' perspective and pilot study.The researchers identified JCAHO and CCHSA as the most excellent models. The obtained standards and their quality accepted from experts' perspective and pilot study, and finally the number of 55 standards acquired.The designed model has standards with acceptable quality and quantity, and researchers' hopeful that its application in rural health centers led to continues quality improvement.

  1. Development and Calibration of a System-Integrated Rotorcraft Finite Element Model for Impact Scenarios

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Jackson, Karen E.; Polanco, Michael A.; Littell, Justin D.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber (DEA) under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. The presence of this energy absorbing device reduced the peak impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to a system-integrated finite element model of the test article developed in parallel with the test program. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests were conducted to evaluate the impact performances of various components and subsystems, including new crush tubes and the DEA blocks. Parameters defined for the system-integrated finite element model were determined from these tests. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the full-scale crash test without the DEA. This combination of heuristic and quantitative methods identified modeling deficiencies, evaluated parameter importance, and proposed required model changes. The multidimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were

  2. Development and application of a large scale river system model for National Water Accounting in Australia

    Science.gov (United States)

    Dutta, Dushmanta; Vaze, Jai; Kim, Shaun; Hughes, Justin; Yang, Ang; Teng, Jin; Lerat, Julien

    2017-04-01

    Existing global and continental scale river models, mainly designed for integrating with global climate models, are of very coarse spatial resolutions and lack many important hydrological processes, such as overbank flow, irrigation diversion, groundwater seepage/recharge, which operate at a much finer resolution. Thus, these models are not suitable for producing water accounts, which have become increasingly important for water resources planning and management at regional and national scales. A continental scale river system model called Australian Water Resource Assessment River System model (AWRA-R) has been developed and implemented for national water accounting in Australia using a node-link architecture. The model includes major hydrological processes, anthropogenic water utilisation and storage routing that influence the streamflow in both regulated and unregulated river systems. Two key components of the model are an irrigation model to compute water diversion for irrigation use and associated fluxes and stores and a storage-based floodplain inundation model to compute overbank flow from river to floodplain and associated floodplain fluxes and stores. The results in the Murray-Darling Basin shows highly satisfactory performance of the model with median daily Nash-Sutcliffe Efficiency (NSE) of 0.64 and median annual bias of less than 1% for the period of calibration (1970-1991) and median daily NSE of 0.69 and median annual bias of 12% for validation period (1992-2014). The results have demonstrated that the performance of the model is less satisfactory when the key processes such as overbank flow, groundwater seepage and irrigation diversion are switched off. The AWRA-R model, which has been operationalised by the Australian Bureau of Meteorology for continental scale water accounting, has contributed to improvements in the national water account by substantially reducing accounted different volume (gain/loss).

  3. Mathematical simulation of soil vapor extraction systems: Model development and numerical examples

    Science.gov (United States)

    Rathfelder, Klaus; Yeh, William W.-G.; Mackay, Douglas

    1991-12-01

    This paper describes the development of a numerical model for prediction of soil vapor extraction processes. The major emphasis is placed on field-scale predictions with the objective to advance development of planning tools for design and operation of venting systems. The numerical model solves two-dimensional flow and transport equations for general n-component contaminant mixtures. Flow is limited to the gas phase and local equilibrium partitioning is assumed in tracking contaminants in the immiscible fluid, water, gas, and solid phase. Model predictions compared favorably with analytical solutions and multicomponent column venting experiments. Sensitivity analysis indicates equilibrium phase partitioning is a good assumption in modeling organic liquid volatilization occurring in field venting operations. Mass transfer rates in volatilization from the water phase and contaminant desorption are potentially rate limiting. Simulations of hypothetical field-scale problems show efficiency of venting operations is most sensitive to vapor pressure and the magnitude and distribution of soil permeability.

  4. Development of an Integrated Hydrologic Modeling System for Rainfall-Runoff Simulation

    Science.gov (United States)

    Lu, B.; Piasecki, M.

    2008-12-01

    This paper aims to present the development of an integrated hydrological model which involves functionalities of digital watershed processing, online data retrieval, hydrologic simulation and post-event analysis. The proposed system is intended to work as a back end to the CUAHSI HIS cyberinfrastructure developments. As a first step into developing this system, a physics-based distributed hydrologic model PIHM (Penn State Integrated Hydrologic Model) is wrapped into OpenMI(Open Modeling Interface and Environment ) environment so as to seamlessly interact with OpenMI compliant meteorological models. The graphical user interface is being developed from the openGIS application called MapWindows which permits functionality expansion through the addition of plug-ins. . Modules required to set up through the GUI workboard include those for retrieving meteorological data from existing database or meteorological prediction models, obtaining geospatial data from the output of digital watershed processing, and importing initial condition and boundary condition. They are connected to the OpenMI compliant PIHM to simulate rainfall-runoff processes and includes a module for automatically displaying output after the simulation. Online databases are accessed through the WaterOneFlow web services, and the retrieved data are either stored in an observation database(OD) following the schema of Observation Data Model(ODM) in case for time series support, or a grid based storage facility which may be a format like netCDF or a grid-based-data database schema . Specific development steps include the creation of a bridge to overcome interoperability issue between PIHM and the ODM, as well as the embedding of TauDEM (Terrain Analysis Using Digital Elevation Models) into the model. This module is responsible for developing watershed and stream network using digital elevation models. Visualizing and editing geospatial data is achieved by the usage of MapWinGIS, an ActiveX control developed

  5. Modeling and Development of a Magnetic Bearing Controller for a High Speed Flywheel System

    Science.gov (United States)

    Dever, Timothy P.; Brown, Gerald V.; Duffy, Kirsten P.; Jansen, Ralph H.

    2005-01-01

    This paper describes a modeling effort used to develop an improved type of magnetic bearing controller, called a modal controller, for use on high speed flywheel systems. The controller design is based on models of the flywheel system, is designed to directly control the natural dynamics of the spinning rotor, and is generic enough to be readily adapted to future flywheel systems. Modeling and development are described for two key controller subsystems: the modal controller subsystem, which allows direct control over the rotor rigid body modes, and the bending mode compensation subsystem, which tracks, and prevents interference from, the rotor bending modes during flywheel operation. Integration of modeling results into the final controller is described and data taken on the NASA Glenn D1 flywheel module during high speed operation are presented and discussed. The improved modal controller described in this paper has been successfully developed and implemented and has been used for regular hands-free operation of the D1 flywheel module up to its maximum operating speed of 60,000 RPM.

  6. Development of the physics driver in NOAA Environmental Modeling System (NEMS)

    Science.gov (United States)

    Lei, H.; Iredell, M.; Tripp, P.

    2016-12-01

    As a key component of the Next Generation Global Prediction System (NGGPS), a physics driver is developed in the NOAA Environmental Modeling System (NEMS) in order to facilitate the research, development, and transition to operations of innovations in atmospheric physical parameterizations. The physics driver connects the atmospheric dynamic core, the Common Community Physics Package and the other NEMS-based forecast components (land, ocean, sea ice, wave, and space weather). In current global forecasting system, the physics driver has incorporated major existing physics packages including radiation, surface physics, cloud and microphysics, ozone, and stochastic physics. The physics driver is also applicable to external physics packages. The structure adjustment in NEMS by separating the PHYS trunk is to create an open physics package pool. This open platform is beneficial to the enhancement of U.S. weather forecast ability. In addition, with the universal physics driver, the NEMS can also be used for specific functions by connecting external target physics packages through physics driver. The test of its function is to connect a physics dust-radiation model in the system. Then the modified system can be used for dust storm prediction and forecast. The physics driver is also developed into a standalone form. This is to facilitate the development works on physics packages. The developers can save instant fields of meteorology data and snapshots from the running system , and then used them as offline driving data fields to test the new individual physics modules or small modifications to current modules. This prevents the run of whole system for every test.

  7. Using model based systems engineering for the development of the Large Synoptic Survey Telescope's operational plan

    Science.gov (United States)

    Selvy, Brian M.; Claver, Charles; Willman, Beth; Petravick, Don; Johnson, Margaret; Reil, Kevin; Marshall, Stuart; Thomas, Sandrine; Lotz, Paul; Schumacher, German; Lim, Kian-Tat; Jenness, Tim; Jacoby, Suzanne; Emmons, Ben; Axelrod, Tim

    2016-08-01

    We† provide an overview of the Model Based Systems Engineering (MBSE) language, tool, and methodology being used in our development of the Operational Plan for Large Synoptic Survey Telescope (LSST) operations. LSST's Systems Engineering (SE) team is using a model-based approach to operational plan development to: 1) capture the topdown stakeholders' needs and functional allocations defining the scope, required tasks, and personnel needed for operations, and 2) capture the bottom-up operations and maintenance activities required to conduct the LSST survey across its distributed operations sites for the full ten year survey duration. To accomplish these complimentary goals and ensure that they result in self-consistent results, we have developed a holistic approach using the Sparx Enterprise Architect modeling tool and Systems Modeling Language (SysML). This approach utilizes SysML Use Cases, Actors, associated relationships, and Activity Diagrams to document and refine all of the major operations and maintenance activities that will be required to successfully operate the observatory and meet stakeholder expectations. We have developed several customized extensions of the SysML language including the creation of a custom stereotyped Use Case element with unique tagged values, as well as unique association connectors and Actor stereotypes. We demonstrate this customized MBSE methodology enables us to define: 1) the rolls each human Actor must take on to successfully carry out the activities associated with the Use Cases; 2) the skills each Actor must possess; 3) the functional allocation of all required stakeholder activities and Use Cases to organizational entities tasked with carrying them out; and 4) the organization structure required to successfully execute the operational survey. Our approach allows for continual refinement utilizing the systems engineering spiral method to expose finer levels of detail as necessary. For example, the bottom-up, Use Case

  8. Development of Systems Engineering Competency Career Development Model: An Analytical Approach using Blooms Taxonomy

    Science.gov (United States)

    2014-06-01

    highlight application. LIST OF REFERENCES Whitcomb, Clifford, Rabia Khan, and Corina White. 2013. “Systems Engineering Competency Report” Paper...thank my colleagues Rabia Khan, Juli Alexander, Paul Castanzo, and Paul Walter. As a result of Dr. Whitcomb’s vision, each of our projects fits...Master’s thesis, Naval Postgraduate School. Whitcomb, Clifford, Rabia Khan, and Corina White. 2013. “Systems Engineering Competency Report.” Paper

  9. A generic concept for the development of model-guided clinical decision support systems

    Directory of Open Access Journals (Sweden)

    Denecke Kerstin

    2015-09-01

    Full Text Available Disease development and progression are very complex processes which make clinical decision making non-trivial. On the one hand, examination results that are stored in multiple formats and data types in clinical information systems need to be considered. Beyond, biological or molecular-biological processes can influence clinical decision making. So far, biological knowledge and patient data is separated from each other. This complicates inclusion of all relevant knowledge and information into the decision making. In this paper, we describe a concept of model-based decision support that links knowledge about biological processes, treatment decisions and clinical data. It consists of three models: 1 a biological model, 2 a decision model encompassing medical knowledge about the treatment workflow and decision parameters, and 3 a patient data model generated from clinical data. Requirements and future steps for realizing the concept will be presented and it will be shown how the concept can support the clinical decision making.

  10. Modeling of a combined ultraviolet-biofilter system to treat gaseous chlorobenzene I: model development and parametric sensitivity.

    Science.gov (United States)

    Wang, Can; Xi, Jin-Ying; Hu, Hong-Ying; Kang, In-Sun

    2011-03-01

    A new type of a combined ultraviolet (UV)-biofilter system for air pollution control is developed. In this paper, two conceptual mathematical submodels of the UV reactor and standalone biofilter are developed. All model parameters have been determined by independent experiments or have been taken from literature. Results from UV and the standalone biofilter submodels are in a good agreement with experimental data. However, the performance of the combined system has significantly deviated from those of the UV or standalone submodels because of the stimulating effects of UV irradiation products on the subsequent biofilter performance. A modified model that considers the stimulating effects has agreed well with experimental data over a wide range of operating conditions. Further analysis of the primary parametric sensitivity of the model has shown that inlet chlorobenzene concentrations, gas empty-bed residence time in the UV reactor, and light intensity are important operating conditions.

  11. A flexible hydrological modelling system developed using an object oriented methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rinde, Trond

    1998-12-31

    The report presents a software system called Process Integrating Network (PINE). The capabilities, working principles, programming technical design and principles of use of the system are described as are some practical applications. PINE is a simulation tool for modelling of hydrological and hydrologically related phenomena. The system is based on object oriented programming principles and was specially designed to provide freedom in the choice of model structures and algorithms for process descriptions. It supports full freedom with regards to spatial distribution and temporal resolution. Geographical information systems (GIS) may be integrated with PINE in order to provide full spatial distribution in system parametrisation, process simulation and visualisation of simulation results. Simulation models are developed by linking components for process description together in a structure. The system can handle compound working media such as water with chemical or biological constituents. Non-hydrological routines may then be included to describe the responses of such constituents. Features such as extensibility and reuse of program components are emphasised in the program design. Separation between process topology, process descriptions and process data facilitates simple and consistent implementation of components for process description. Such components may be automatically prototyped and their response functions may be implemented without knowledge of other parts of the program system and without the need to program import or export routines or a user interface. Model extension is thus a rapid process that does not require extensive programming skills. Components for process descriptions may further be placed in separate program libraries, which can be included in the program as required. The program system can thus be very compact while it still has a large number of process algorithms available. The system can run on both PC and UNIX platforms. 106 figs., 20

  12. Investigation of the Nonlinear Model of the Cellular Population System Development

    Directory of Open Access Journals (Sweden)

    M. S. Vinogradova

    2014-01-01

    Full Text Available An isolated population system is considered which consists of two types of human stem cells: normal cells and cells with chromosomal anomalies (abnormal. In the paper the nonlinear dynamic model which describes dynamics of cell populations developing in vitro is elaborated. The model allows to investigate the processes of the formation of the abnormal cells population from the abnormal cells population of normal cells as well as joint development of these populations. The model takes into account the limited resources.An important feature of the developed model is the use of biological characteristics of processes in the cell population system, such as the proportion of cells, divided over a specified time, the proportion of cells whish are not divided, and which are "lost" and which are passed in the population of abnormal cells from the normal population. This approach allows a more detailed analysis of the impact of various "primary" parameters on the evolution of the population system.Under cultivation of cell populations in vitro a struggle for resources primarily affects the processes of the cell reproduction. This is reflected in the existence of the dividing cells frequency dependence of the total population of normal and abnormal cells. For the account of such dependencies different non-linear functions are typically used. However, the use of such non-linear relationships leads to the difficulties in finding confidence intervals for the estimates of the model parameters at subsequent stages of research. At the same time, the problem of the system parameters estimating and finding of the corresponding confidence intervals for estimates can be solved easy in case when the nonlinear system is linear with respect to the unknown parameters. In the paper it is achieved due to the piecewise linear approximation of nonlinear dependencies.An important feature of the model is a different view of the right part of the differential equations system

  13. Modeling and analysis of real-time and embedded systems with UML and MARTE developing cyber-physical systems

    CERN Document Server

    Selic, Bran

    2013-01-01

    Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE explains how to apply the complex MARTE standard in practical situations. This approachable reference provides a handy user guide, illustrating with numerous examples how you can use MARTE to design and develop real-time and embedded systems and software. Expert co-authors Bran Selic and Sébastien Gérard lead the team that drafted and maintain the standard and give you the tools you need apply MARTE to overcome the limitations of cyber-physical systems. The functional sophistication required of modern cyber-physical

  14. Development of visualization tools and data processing for the PRISM earth system model

    Science.gov (United States)

    de Martino, G.; Prism Work Package 4a Visualization Group

    2003-04-01

    The PRISM project includes development of a set of visualization and processing tools for use by earth system scientists. A list of requirements has been formulated, based upon information provided by the PRISM community. After having conducted a review of the requirements and of the software packages available, the team is ready to begin development of two visualization systems: a web-enabled system designed for monitoring and quality controlling model runs as they are running (Low-End graphics), and another system for high quality analysis of data which includes the ability to do 3-D plots, animations etc. with the option of controlling plot generation through scripts or using graphical interfaces (High-End graphics). Both Low-End and High-End graphics tools will use netCDF-CF metadata, the chosen PRISM System standard type of data. This poster is intended to be a showcase for our current ideas and early plans. We wish to invite comments from the wide community of earth system modellers about what functionalities would be most useful.

  15. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    Science.gov (United States)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    The environmental impact is one of the major concerns of biofuel development. While many other studies have examined the impact of biofuel expansion on stream flow and water quality, this study examines the problem from the other side - will and how a biofuel production target be affected by given environmental constraints. For this purpose, an integrated model comprises of different sub-systems of biofuel refineries, transportation, agriculture, water resources and crops/ethanol market has been developed. The sub-systems are integrated into one large-scale model to guide the optimal development plan considering the interdependency between the subsystems. The optimal development plan includes biofuel refineries location and capacity, refinery operation, land allocation between biofuel and food crops, and the corresponding stream flow and nitrate load in the watershed. The watershed is modeled as a network flow, in which the nodes represent sub-watersheds and the arcs are defined as the linkage between the sub-watersheds. The runoff contribution of each sub-watershed is determined based on the land cover and the water uses in that sub-watershed. Thus, decisions of other sub-systems such as the land allocation in the land use sub-system and the water use in the refinery sub-system define the sources and the sinks of the network. Environmental policies will be addressed in the integrated model by imposing stream flow and nitrate load constraints. These constraints can be specified by location and time in the watershed to reflect the spatial and temporal variation of the regulations. Preliminary results show that imposing monthly water flow constraints and yearly nitrate load constraints will change the biofuel development plan dramatically. Sensitivity analysis is performed to examine how the environmental constraints and their spatial and the temporal distribution influence the overall biofuel development plan and the performance of each of the sub-systems

  16. Development and evaluation of an Earth-System model – HadGEM2

    Directory of Open Access Journals (Sweden)

    W. J. Collins

    2011-11-01

    Full Text Available We describe here the development and evaluation of an Earth system model suitable for centennial-scale climate prediction. The principal new components added to the physical climate model are the terrestrial and ocean ecosystems and gas-phase tropospheric chemistry, along with their coupled interactions.

    The individual Earth system components are described briefly and the relevant interactions between the components are explained. Because the multiple interactions could lead to unstable feedbacks, we go through a careful process of model spin up to ensure that all components are stable and the interactions balanced. This spun-up configuration is evaluated against observed data for the Earth system components and is generally found to perform very satisfactorily. The reason for the evaluation phase is that the model is to be used for the core climate simulations carried out by the Met Office Hadley Centre for the Coupled Model Intercomparison Project (CMIP5, so it is essential that addition of the extra complexity does not detract substantially from its climate performance. Localised changes in some specific meteorological variables can be identified, but the impacts on the overall simulation of present day climate are slight.

    This model is proving valuable both for climate predictions, and for investigating the strengths of biogeochemical feedbacks.

  17. Waterhammer Modeling for the Ares I Upper Stage Reaction Control System Cold Flow Development Test Article

    Science.gov (United States)

    Williams, Jonathan H.

    2010-01-01

    The Upper Stage Reaction Control System provides three-axis attitude control for the Ares I launch vehicle during active Upper Stage flight. The system design must accommodate rapid thruster firing to maintain the proper launch trajectory and thus allow for the possibility to pulse multiple thrusters simultaneously. Rapid thruster valve closure creates an increase in static pressure, known as waterhammer, which propagates throughout the propellant system at pressures exceeding nominal design values. A series of development tests conducted in the fall of 2009 at Marshall Space Flight Center were performed using a water-flow test article to better understand fluid performance characteristics of the Upper Stage Reaction Control System. A subset of the tests examined waterhammer along with the subsequent pressure and frequency response in the flight-representative system and provided data to anchor numerical models. This thesis presents a comparison of waterhammer test results with numerical model and analytical results. An overview of the flight system, test article, modeling and analysis are also provided.

  18. METHODS AND MODELS FOR ANALYSIS OF THE ORGANIZATIONAL ECONOMICS ACTIVITY USED FOR DEVELOPMENT OF INFORMATICS SYSTEMS

    Directory of Open Access Journals (Sweden)

    TEODORA VĂTUIU

    2014-10-01

    Full Text Available Study of organizational activity and highlighting problem situations that require specific solutions, require a detailed analysis of the models defined for the real system of the economic companies, regarded not as a sum of assets, but as organizations in which there are activities related into processes. In addition to the usual approach of using modeling languages in the development of information systems, in this paper we intend to present some examples that demonstrate the usefulness of a standard modeling language (UML to analyze organizational activities and to report problem situations that may occur in data management registered on primary documents or in processes that bring together activities. Examples that have been focused on a travel agency can be extrapolated to any other organization, and the diagrams can be used in different contexts, depending on the complexity of the activities identified.

  19. Development of a Multi-functional Physical Model Testing System for Deep Coal Petrography Engineering

    Science.gov (United States)

    Lu, Yiyu; Wang, Haiyang; Xia, Binwei; Li, Xiaohong; Ge, Zhaolong; Tang, JiRen

    2017-02-01

    Physical model testing is an important research tool for coal petrography engineering as it can solve many difficult problems associated with high risks and requiring long time periods to investigate with field studies. However, the accuracy of physical model tests can be reduced by problems with testing equipment, such as small model specimen size, poor airtightness and insufficient stress and pressure loading ability. To study the problems of coal petrography engineering in complicated stress environments, especially those in fluid-solid coupling, we designed and developed a multi-functional physical model testing system. The entire testing system consists of several specific sub-systems: loading, specimen shaping and installation, data monitoring and acquisition, pumping and gas injection, excavation simulating. The testing system can simulate complicated stress environments of coal-rock mass, and it can also be used to study the characteristics of strength-deformation, seepage-rheology and instability-failure under the conditions of gas-solid coupling and gas-liquid-solid multi-phase coupling. A load-unload experiment of air pressure and three-dimensional stress was conducted using the testing system. The experiment verified major technical indicators such as the loading capacity, sealing pressure and test precision, as well as operational stability of the testing system. The strain fields within the model specimen are well distributed and approximately linear with the stress. The stress of the specimen surface is approximately well distributed, and the specimen is subjected to uniform stresses. The testing system meets the requirements of the design parameters and has great potential significance to help reveal the scientific laws and inherent mechanisms of coal petrography engineering.

  20. An amphibian model to test the effects of xenobiotic chemicals on development of the hematopoietic system.

    Science.gov (United States)

    Rollins-Smith, Louise A; Hopkins, B Diane; Reinert, Laura K

    2004-12-01

    A number of manmade chemicals have deleterious effects on the developing immune system. Very few assay systems are available to study the effects of xenobiotics on hematopoietic stem cells. In rodent models, assays require exposure of pregnant females and analysis of the hematopoietic potential of stem cells from the offspring. These models are less relevant to lower vertebrates such as fish or amphibians where exposure of embryos is direct. To overcome this problem, an amphibian model was developed. Diploid (2N) embryos (16-20 h of age) of the South African clawed frog, Xenopus laevis, were exposed to 10 microg/ml diazinon or 10(-6) M lead acetate for 2 h. After 2 h, the ventral blood island (VBI) was transplanted from a chemically treated or untreated control embryo to an untreated triploid (3N) host embryo. After 55 d, the contribution of the donor VBI-derived stem cells to populations in the blood, thymus, and spleen was assessed by flow cytometry. Diazinon, but not lead acetate, interfered with the ability of transplanted stem cells to contribute to hematopoiesis. Because amphibian embryos are very sensitive indicators of the toxic effects of chemicals, this VBI assay could be employed to test any toxic chemical that is suspected of having a negative effect on development of the hematopoietic system.

  1. Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems

    Science.gov (United States)

    Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki

    A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.

  2. New Challenges for the Management of the Development of Information Systems Based on Complex Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    2002-01-01

    has been initiated with the scope of investigating the questions that mathematical modelling technology poses to traditional information systems development projects. Based on the past body of research, this study proposes a framework to guide decision making for managing projects of information......The advancements in complexity and sophistication of mathematical models for manufacturing scheduling and control and the increase of the ratio power/cost of computers are beginning to provide the manufacturing industry with new software tools to improve production. A Danish action research project...

  3. Development of a natural gas systems analysis model (GSAM). Annual report, July 1996--July 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The objective of GSAM development is to create a comprehensive, non-proprietary, microcomputer model of the North American natural gas system. GSAM explicitly evaluates the key components of the system, including the resource base, exploration and development practices, extraction technology performance and costs, project economics, transportation costs and restrictions, storage, and end-use. The primary focus is the detailed characterization of the resource base at the reservoir and subreservoir level. This disaggregation allows direct evaluation of alternative extraction technologies based on discretely estimated, individual well productivity, required investments, and associated operating costs. GSAM`s design allows users to evaluate complex interactions of current and alternative future technology and policy initiatives as they directly impact the gas market. GSAM development has been ongoing for the past five years. Key activities completed during the past year are described.

  4. Multiple Perspective Approach for the Development of Information Systems Based on Advanced Mathematical Models

    DEFF Research Database (Denmark)

    Carugati, Andrea

    with a relativist approach. Arriving at the design of an ISD methodology required the combination of previous theoretical results with the observations from the case study. The case study showed some of the key elements to be integrated in the methodology. Firstly, plans and models are subject of a high degree......This dissertation presents the results of a three-year long case study of an information systems development project where a scheduling and control system was developed for a manufacturing company. The project goal was to test the feasibility of a new technology called advanced mathematical...... organizations that are both distributed and loosely coupled. Given the current trends towards telecommuting and international mergers, the development project presented a setting for research that was addressing both a theoretical hole and also pressing practical needs. In order to achieve this goal I had...

  5. Kinetics of color development in glucose/Amino Acid model systems at different temperatures

    Directory of Open Access Journals (Sweden)

    Ana Paola Echavarría

    2016-01-01

    Full Text Available This study investigated the influence of temperature on the color development of melanoidins formed from a single combination of glucose with amino acid. The selected amino acid, commonly found in apple juice and highly reactive in the Maillard reaction, were asparagine (Asn, aspartic acid (Asp and glutamic acid (Glu. For this, the color development was evaluated by measuring browning at 420 nm and color measurements by spectrophotometry and colorimetry methods. The effect of temperature on the color intensity, the absorption of melanoidins were also measured at different wavelengths (280, 325, 405. The value of melanoidins formed from all model systems was located on a dominant wavelength of 325 nm, the ultra violet zone of the diagram. A first-order kinetic model was applied to L* and the evolution of color difference ΔE*. In addition, a*, b* values, significantly differences were found in the glucose/aspartic acid model system in the brown-red zone. Therefore, the color development of the melanoidins was influenced by the type of amino acid and temperature, and it is thought that the a* and b* values can be used to explain the differences among the amino acid in the color development of melanoidins.

  6. Model Development and Hindcast Simulations of NOAA’s Gulf of Maine Operational Forecast System

    Directory of Open Access Journals (Sweden)

    Zizang Yang

    2016-11-01

    Full Text Available The National Ocean Service (NOS of National Oceanic and Atmospheric Administration is developing an operational nowcast/forecast system for the Gulf of Maine (GoMOFS. The system aims to produce real-time nowcasts and short-range forecast guidance for water levels, 3-dimensional currents, water temperature, and salinity over the broad GoM region. GoMOFS will be implemented using the Regional Ocean Model System (ROMS. This paper describes the system setup and results from a one-year (2012 hindcast simulation. The hindcast performance was evaluated using the NOS standard skill assessment software. The results indicate favorable agreement between observations and model forecasts. The root-mean-squared errors are about 0.12 m for water level, less than 1.5 °C for temperature, less than 1.5 psu for salinity, and less than 0.2 m/s for currents. It is anticipated to complete the system development and the transition into operations in fiscal year 2017.

  7. Development of a Comprehensive Fouling Model for a Rotating Membrane Bioreactor System Treating Wastewater

    Directory of Open Access Journals (Sweden)

    Parneet Paul

    2015-01-01

    Full Text Available Membrane bioreactors (MBRs are now main stream wastewater treatment technologies. In recent times, novel pressure driven rotating membrane disc modules have been specially developed that induce high shear on the membrane surface, thereby reducing fouling. Previous research has produced dead-end filtration fouling model which combines all three classical mechanisms that was later used by another researcher as a starting point for a greatly refined model of a cross flow side-stream MBR that incorporated both hydrodynamics and soluble microbial products’ (SMP effects. In this study, a comprehensive fouling model was created based on this earlier work that incorporated all three classical fouling mechanisms for a rotating MBR system. It was tested and validated for best fit using appropriate data sets. The initial model fit appeared good for all simulations, although it still needs to be calibrated using further appropriate data sets.

  8. The Development of the Model for the Park and Ride System in the Major Lithuanian Cities

    Directory of Open Access Journals (Sweden)

    Vytautas Palevičius

    2014-10-01

    Full Text Available Park and Ride (P&R is the original transport system of public passengers, acting as a traditional supplement of public transport. The system is becoming widely popular in European cities. The central core of this system is composed of parking facilities in the specified parking areas at the approaches to the city with connections to public transport or special buses that allow people reach the city centre. The P&R system is based on a reduction in car density in the city centre as well as on a decrease in traffic noise, air and visual pollution. Furthermore, the P&R system is an economical and time-saving way to travel. This article has been prepared according to structural support provided by the European Union (EU for the purpose of developing the P&R system in five major Lithuanian cities – Vilnius, Kaunas, Klaipeda, Siauliai and Panevezys. Therefore, this paper is aimed at the development and application of the theoretical model of the P&R system to Lithuanian cities according to external good and bad practice.

  9. Developing and testing temperature models for regulated systems: a case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-01-01

    well; the HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = −4.1 to −10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77–0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  10. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River

    Science.gov (United States)

    Cole, Jeffrey C.; Maloney, Kelly O.; Schmid, Matthias; McKenna, James E.

    2014-11-01

    HFM model was the most accurate compared other models (RMSE = 0.92, both NSE = 0.98, d = 0.99) and the ARIMA model was least accurate (RMSE = 2.06, NSE = 0.92, d = 0.98); however, all models had an overestimation bias (PBIAS = -4.1 to -10.20). Aside from the one day forecast ARIMA model (md = 0.53), all models forecasted fairly well at the one, three, and five day forecasts (md = 0.77-0.96). Overall, we were successful in developing models predicting daily mean temperature across a broad range of temperatures. These models, specifically the GLScos, ANN, and HFM, may serve as important tools for predicting conditions and managing thermal releases in regulated river systems such as the Delaware River. Further model development may be important in customizing predictions for particular biological or ecological needs, or for particular temporal or spatial scales.

  11. Delayed development of systemic immunity in preterm pigs as a model for preterm infants

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Frøkiær, Hanne;

    2016-01-01

    Preterm neonates are highly sensitive to systemic infections in early life but little is known about systemic immune development following preterm birth. We hypothesized that preterm neonates have immature systemic immunity with distinct developmental trajectory for the first several weeks of life......, relative to those born at near-term or term. Using pigs as a model, we characterized blood leukocyte subsets, antimicrobial activities and TLR-mediated cytokine production during the first weeks after preterm birth. Relative to near-term and term pigs, newborn preterm pigs had low blood leukocyte counts......, poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2...

  12. Delayed development of systemic immunity in preterm pigs as a model for preterm infants

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Frøkiær, Hanne

    2016-01-01

    Preterm neonates are highly sensitive to systemic infections in early life but little is known about systemic immune development following preterm birth. We hypothesized that preterm neonates have immature systemic immunity with distinct developmental trajectory for the first several weeks of life......, relative to those born at near-term or term. Using pigs as a model, we characterized blood leukocyte subsets, antimicrobial activities and TLR-mediated cytokine production during the first weeks after preterm birth. Relative to near-term and term pigs, newborn preterm pigs had low blood leukocyte counts......, poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2...

  13. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  14. The CMIP5 Model Documentation Questionnaire: Development of a Metadata Retrieval System for the METAFOR Common Information Model

    Science.gov (United States)

    Pascoe, Charlotte; Lawrence, Bryan; Moine, Marie-Pierre; Ford, Rupert; Devine, Gerry

    2010-05-01

    The EU METAFOR Project (http://metaforclimate.eu) has created a web-based model documentation questionnaire to collect metadata from the modelling groups that are running simulations in support of the Coupled Model Intercomparison Project - 5 (CMIP5). The CMIP5 model documentation questionnaire will retrieve information about the details of the models used, how the simulations were carried out, how the simulations conformed to the CMIP5 experiment requirements and details of the hardware used to perform the simulations. The metadata collected by the CMIP5 questionnaire will allow CMIP5 data to be compared in a scientifically meaningful way. This paper describes the life-cycle of the CMIP5 questionnaire development which starts with relatively unstructured input from domain specialists and ends with formal XML documents that comply with the METAFOR Common Information Model (CIM). Each development step is associated with a specific tool. (1) Mind maps are used to capture information requirements from domain experts and build a controlled vocabulary, (2) a python parser processes the XML files generated by the mind maps, (3) Django (python) is used to generate the dynamic structure and content of the web based questionnaire from processed xml and the METAFOR CIM, (4) Python parsers ensure that information entered into the CMIP5 questionnaire is output as CIM compliant xml, (5) CIM compliant output allows automatic information capture tools to harvest questionnaire content into databases such as the Earth System Grid (ESG) metadata catalogue. This paper will focus on how Django (python) and XML input files are used to generate the structure and content of the CMIP5 questionnaire. It will also address how the choice of development tools listed above provided a framework that enabled working scientists (who we would never ordinarily get to interact with UML and XML) to be part the iterative development process and ensure that the CMIP5 model documentation questionnaire

  15. Model-driven system development: Experimental design and report of the pilot experiment

    CERN Document Server

    España, Sergio; Wieringa, Roel; González, Arturo; Pastor, Óscar

    2011-01-01

    This report describes de design of an experiment that intends to compare two variants of a modeldriven system development method, so as to assess the impact of requirements engineering practice in the quality of the conceptual models. The conceptual modelling method being assessed is the OO-Method [Pastor and Molina 2007]. One of its variants includes Communication Analysis, a communication-oriented requirements engineering method [Espa\\~na, Gonz\\'alez et al. 2009] and a set of guidelines to derive conceptual models from requirements models [Espa\\~na, Ruiz et al. 2011; Gonz\\'alez, Espa\\~na et al. 2011]. The other variant is an ad-hoc, text-based requirements practice similar to the one that is applied in industrial projects by OO-Method practitioners. The goal of the research, summarised according to the Goal/Question/Metric template [Basili and Rombach 1988], is to: *) analyse the resulting models of two model-based information systems analysis method variants; namely, the OO-Method (OOM) and the integration...

  16. Development of unmatched system model for iterative image reconstruction for pinhole collimator of imaging systems in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Keon; Bae, Seung Bin; Lee, Ki Sung; Kim, Yong Kwon; Joung, Jin Hun [Korea Univ., Seoul (Korea, Republic of)

    2012-12-15

    Diverse designs of collimator have been applied to Single Photon Emission Computed Tomography (SPECT) according to the purpose of acquisition; thus, it is necessary to reflect geometric characteristic of each collimator for successive image reconstruction. This study carry out reconstruction algorithm for imaging system in nuclear medicine with pinhole collimator. Especially, we study to solve sampling problem which caused in the system model of pinhole collimator. System model for a maximum likelihood expectation maximization (MLEM) was developed based on the geometry of the collimator. The projector and back-projector were separately implemented based on the ray-driven and voxel-driven methods, respectively, to overcome sparse sampling problem. We perform phantom study for pinhole collimator by using geant4 application for tomographic emission(GATE) simulation tool. The reconstructed images show promising results. Designed iterative reconstruction algorithm with unmatched system model effective to remove sampling problem artefact. Proposed algorithm can be used not only for pinhole collimator but also for various collimator system of imaging system in nuclear medicine.

  17. Risk transfer modeling among hierarchically associated stakeholders in development of space systems

    Science.gov (United States)

    Henkle, Thomas Grove, III

    Research develops an empirically derived cardinal model that prescribes handling and transfer of risks between organizations with hierarchical relationships. Descriptions of mission risk events, risk attitudes, and conditions for risk transfer are determined for client and underwriting entities associated with acquisition, production, and deployment of space systems. The hypothesis anticipates that large client organizations should be able to assume larger dollar-value risks of a program in comparison to smaller organizations even though many current risk transfer arrangements via space insurance violate this hypothesis. A literature survey covers conventional and current risk assessment methods, current techniques used in the satellite industry for complex system development, cardinal risk modeling, and relevant aspects of utility theory. Data gathered from open literature on demonstrated launch vehicle and satellite in-orbit reliability, annual space insurance premiums and losses, and ground fatalities and range damage associated with satellite launch activities are presented. Empirically derived models are developed for risk attitudes of space system clients and third-party underwriters associated with satellite system development and deployment. Two application topics for risk transfer are examined: the client-underwriter relationship on assumption or transfer of risks associated with first-year mission success, and statutory risk transfer agreements between space insurance underwriters and the US government to promote growth in both commercial client and underwriting industries. Results indicate that client entities with wealth of at least an order of magnitude above satellite project costs should retain risks to first-year mission success despite present trends. Furthermore, large client entities such as the US government should never pursue risk transfer via insurance under previously demonstrated probabilities of mission success; potential savings may

  18. Development of the breeding blanket and shield model for the fusion power reactors system SYCOMORE

    Energy Technology Data Exchange (ETDEWEB)

    Li-Puma, Antonella, E-mail: antonella.lipuma@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Jaboulay, Jean-Charles, E-mail: Jean-Charles.jaboulay@cea.fr [CEA, DEN, Saclay, DM2S, SERMA, F-91191 Gif-sur-Yvette (France); Martin, Brunella, E-mail: brunella.martin@gmail.com [Incka, 19-21 Rue du 8 mai 1945, F-94110 Arcueil (France)

    2014-10-15

    SYCOMORE, a fusion reactor system code based on a modular approach is under development at CEA. Within this framework, this paper describes the relevant sub-modules which have been implemented to model the main outputs of the breeding blanket and shield block of the system code: tritium breeding ratio, peak energy deposition in toroidal field coils, reactor layout and power deposition, blanket pressure drops and materials inventory. Blanket and shield requirements are calculated by several sub-modules: the blanket assembly and layout sub-module, the neutronic sub-module, the blanket design sub-module (thermal hydraulic and thermo-mechanic pre-design tool). A power flow module has also been developed which is directly linked to the blanket thermo-dynamic performances, which is not described in this paper. For the blanket assembly and layout and the blanket module design sub-modules, explicit analytic models have been developed and implemented; for the neutronic sub-module neural networks that replicate the results of appropriate simplified 1D and 2D neutronic simulations have been built. Presently, relevant model for the Helium Cooled Lithium Lead is available. Sub-modules have been built in a way that they can run separately or coupled into the breeding blanket and shield module in order to be integrated in SYCOMORE. In the paper, the objective and main input/output parameters of each sub-module are reported and relevant models discussed. The application to previous studied reactor models (PPCS model AB, DEMO-HCLL 2006–2007 studies) is also presented.

  19. Computerized Simulation of Automotive Air-Conditioning System: Development of Mathematical Model and Its Validation

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2012-03-01

    Full Text Available A semi-empirical model for simulating thermal and energy performance of an automotive air-conditioning (AAC system in passenger vehicles has been developed. The model consists of two sections, namely empirical evaporator correlations and dynamic load simulation. The correlations used consider sensible and latent heat transfer performance of the evaporator coil. The correlations were obtained from the experimental data of actual air conditioning system for a compact size passenger car. The sensible heat transfer correlation relates the evaporator air off dry-bulb temperature to inlet air dry-bulb temperature, humidity ratio, evaporator air velocity, condenser inlet air dry-bulb temperature, condenser air velocity and compressor speed. The latent heat transfer correlation relates the coil air-off humidity ratio to the same six independent variables. The dynamic load simulation model was developed based on the z-transfer function method with a one-minute time step. The cooling load calculations were performed using heat gain weighting factors. Heat extraction rate and cabin air dry-bulb temperature calculations were carried out using air temperature weighting factors. The empirical evaporator sensible and latent heat transfer correlations were embedded in the loads calculation program to enable the determination of evaporator inlet and outlet air conditions, the cabin air temperature and relative humidity. Comparisons with road test data indicated that the program was capable of predicting the performance of the automotive air-conditioning system with reasonable accuracy.

  20. Modeling Indicator Systems for Evaluating Environmental Sustainable Development Based on Factor Analysis

    Institute of Scientific and Technical Information of China (English)

    WU Hao; CHEN Xiaoling; HE Ying; HE Xiaorong; CAI Xiaobin; XU Keyan

    2006-01-01

    Indicator systems of environmental sustainable development in the Poyang Lake Basin are established from 51 elementary indexes by factor analysis, which is composed of four steps such as the factor model, the parameter estimation, the factor rotation and the factor score. Under the condition that the cumulative proportion is greater than 85%, 5 explicit factors of environmental sustainable development as well as its factor score by region are carried out. The result indicates some impact factors to the basin environmental in descending sort order are volume of water, volume of waste gas discharge, volume of solid wastes, the degree to comprehensive utilization of waste gas, waste water and solid wastes, the emission volume of waste gas, waste water and solid wastes. It is helpful and important to provide decision support for constituting sustainable development strategies and evaluate the sustainable development status of each city.

  1. Development of a Physiologically-Based Pharmacokinetic Model of the Rat Central Nervous System

    Directory of Open Access Journals (Sweden)

    Raj K. Singh Badhan

    2014-03-01

    Full Text Available Central nervous system (CNS drug disposition is dictated by a drug’s physicochemical properties and its ability to permeate physiological barriers. The blood–brain barrier (BBB, blood-cerebrospinal fluid barrier and centrally located drug transporter proteins influence drug disposition within the central nervous system. Attainment of adequate brain-to-plasma and cerebrospinal fluid-to-plasma partitioning is important in determining the efficacy of centrally acting therapeutics. We have developed a physiologically-based pharmacokinetic model of the rat CNS which incorporates brain interstitial fluid (ISF, choroidal epithelial and total cerebrospinal fluid (CSF compartments and accurately predicts CNS pharmacokinetics. The model yielded reasonable predictions of unbound brain-to-plasma partition ratio (Kpuu,brain and CSF:plasma ratio (CSF:Plasmau using a series of in vitro permeability and unbound fraction parameters. When using in vitro permeability data obtained from L-mdr1a cells to estimate rat in vivo permeability, the model successfully predicted, to within 4-fold, Kpuu,brain and CSF:Plasmau for 81.5% of compounds simulated. The model presented allows for simultaneous simulation and analysis of both brain biophase and CSF to accurately predict CNS pharmacokinetics from preclinical drug parameters routinely available during discovery and development pathways.

  2. Development of a dynamical systems model of plant programmatic performance on nuclear power plant safety risk

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Stephen M. [Sensortex, Inc., 515 Schoolhouse Road, Kennett Square, PA 19348 (United States)]. E-mail: smhess@sensortex.com; Albano, Alfonso M. [Department of Physics, Bryn Mawr College, Bryn Mawr, PA 19010 (United States); Gaertner, John P. [Electric Power Research Institute, 1300 Harris Boulevard, Charlotte, NC 28262 (United States)

    2005-10-01

    Application of probabilistic risk assessment (PRA) techniques to model nuclear power plant accident sequences has provided a significant contribution to understanding the potential initiating events, equipment failures and operator errors that can lead to core damage accidents. Application of the lessons learned from these analyses has resulted in significant improvements in plant operation and safety. However, this approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. The research described in this paper presents an alternative approach to addressing this issue. In this paper we propose a dynamical systems model that describes the interaction of important plant processes on nuclear safety risk. We discuss development of the mathematical model including the identification and interpretation of significant inter-process interactions. Next, we review the techniques applicable to analysis of nonlinear dynamical systems that are utilized in the characterization of the model. This is followed by a preliminary analysis of the model that demonstrates that its dynamical evolution displays features that have been observed at commercially operating plants. From this analysis, several significant insights are presented with respect to the effective control of nuclear safety risk. As an important example, analysis of the model dynamics indicates that significant benefits in effectively managing risk are obtained by integrating the plant operation and work management processes such that decisions are made utilizing a multidisciplinary and collaborative approach. We note that although the model was developed specifically to be applicable to nuclear power plants, many of the insights and conclusions obtained are likely applicable to other process industries.

  3. The development of a recruiting-drawing-inventory model for a community blood bank system.

    Science.gov (United States)

    Smackey, B M

    1975-01-01

    A community blood bank system is a multiorganizational program that is designed to supply the blood needs of a community. Participating in such a program are hospitals, a central blood bank, industrial donor groups, the American Red Cross, advisory committees, and the community at large. The underlying determinant of the community's success or failure with its blood program is the degree of cooperation among the various organizations. Intertwined with organizational considerations are the management problems associated with the operation of a responsive and efficient inventory control system. This paper reports on the development of a system for a community blood bank that is in its third year of operation. The system that has been developed can be operated manually by a part-time clerk. Details of the model include an integration of the donor scheduling function and the inventory control function. Simulated testing of the model has been conducted and full-scale implementation is awaiting the expansion of the known donor base.

  4. Develop a Model Component

    Science.gov (United States)

    Ensey, Tyler S.

    2013-01-01

    During my internship at NASA, I was a model developer for Ground Support Equipment (GSE). The purpose of a model developer is to develop and unit test model component libraries (fluid, electrical, gas, etc.). The models are designed to simulate software for GSE (Ground Special Power, Crew Access Arm, Cryo, Fire and Leak Detection System, Environmental Control System (ECS), etc. .) before they are implemented into hardware. These models support verifying local control and remote software for End-Item Software Under Test (SUT). The model simulates the physical behavior (function, state, limits and 110) of each end-item and it's dependencies as defined in the Subsystem Interface Table, Software Requirements & Design Specification (SRDS), Ground Integrated Schematic (GIS), and System Mechanical Schematic.(SMS). The software of each specific model component is simulated through MATLAB's Simulink program. The intensiv model development life cycle is a.s follows: Identify source documents; identify model scope; update schedule; preliminary design review; develop model requirements; update model.. scope; update schedule; detailed design review; create/modify library component; implement library components reference; implement subsystem components; develop a test script; run the test script; develop users guide; send model out for peer review; the model is sent out for verifictionlvalidation; if there is empirical data, a validation data package is generated; if there is not empirical data, a verification package is generated; the test results are then reviewed; and finally, the user. requests accreditation, and a statement of accreditation is prepared. Once each component model is reviewed and approved, they are intertwined together into one integrated model. This integrated model is then tested itself, through a test script and autotest, so that it can be concluded that all models work conjointly, for a single purpose. The component I was assigned, specifically, was a

  5. SYSTEM-COGNITIVE MODEL OF FORECASTING THE DEVELOPMENT OF DIVERSIFIED AGRO-INDUSTRIAL CORPORATIONS. PART II. SYNTHESIS AND MODEL VERIFICATION

    Directory of Open Access Journals (Sweden)

    Lutsenko Y. V.

    2015-11-01

    Full Text Available In this article, in accordance with the methodology of the Automated system-cognitive analysis (ASCanalysis, we examine the implementation of the 3rd ASC-analysis: synthesis and verification of forecasting models of development of diversified agro-industrial corporations. In this step, we have synthesis and verification of 3 statistical and 7 system-cognitive models: ABS – matrix of the absolute frequencies, PRC1 and PRC2 – matrix of the conditional and unconditional distributions, INF1 and INF2 private criterion: the amount of knowledge based on A. Kharkevich, INF3 – private criterion: the Chi-square test: difference between the actual and the theoretically expected absolute frequencies INF4 and INF5 – private criterion: ROI - Return On Investment, INF6 and INF7 – private criterion: the difference between conditional and unconditional probability (coefficient of relationship. The reliability of the created models was assessed in accordance with the proposed metric is similar to the known F-test, but does not involve the performance of normal distribution, linearity of the object modeling, the independence and additivity acting factors. The accuracy of the obtained models was high enough to resolve the subsequent problems of identification, forecasting and decision making, as well as studies of the modeled object by studying its model, scheduled for consideration in future articles

  6. Modeling, analysis and control system development for the Italian hydrogen house

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, E.M. [Sandia National Laboratories, CA (United States); Institute for Energy and Environment, University of Strathclyde, Glasgow (United Kingdom); Lutz, A.E.; Keller, J.O. [Sandia National Laboratories, CA (United States); Schoenung, S. [Longitude 122 West Inc., CA (United States); Chiesa, M. [Catholic University of the Sacred Heart, Brescia (Italy); Fletcher, J.; Ault, G.; McDonald, J.; Cruden, A. [Institute for Energy and Environment, University of Strathclyde, Glasgow (United Kingdom)

    2009-02-15

    This paper provides an analysis of the ''Hydrogen from the Sun'' project at the ''Ecological House'' in northern Italy. The modeling and analysis work is being performed in conjunction with the International Energy Agency Hydrogen Implementing Agreement Annex 18: Integrated Systems Evaluation. A customized library of Matlab/Simulink component models is used to simulate the system and evaluate the hydrogen economics and energy production efficiencies. Two control algorithms are developed for the house using a fuzzy logic and an adaptive control strategy. The economic and steady state effects of these two strategies are compared as are the energy sources used to supply the energy demand of the house. The hydrogen production system consists of an electrolyzer, a photo-voltaic collector, and a battery, linked to both a metal hydride and high pressure gas storage system. The hydrogen supplies a fuel cell, which powers a residential estate. The analysis shows the contribution of the different system components to the overall efficiency and cost of hydrogen. However, the control systems presented also have a significant effect on the hydrogen and electricity cost. Reduction of these costs and an increase in system efficiency require optimal use of the hydrogen stored, as well as the optimized distribution of power supply from the generating components. The analysis shows the initial cost of hydrogen to be 9.36 $/kg, with electricity produced at 0.65 $/kWh using a fuzzy logic control system at an electrical efficiency of 50% (of the full hydrogen house system), based on the lower heating value of hydrogen. The result of using an active control strategy is presented. (author)

  7. Development of realistic thermal-hydraulic system analysis codes ; development of thermal hydraulic test requirements for multidimensional flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Kune Yull; Yoon, Sang Hyuk; Noh, Sang Woo; Lee, Il Suk [Seoul National University, Seoul (Korea)

    2002-03-01

    This study is concerned with developing a multidimensional flow model required for the system analysis code MARS to more mechanistically simulate a variety of thermal hydraulic phenomena in the nuclear stem supply system. The capability of the MARS code as a thermal hydraulic analysis tool for optimized system design can be expanded by improving the current calculational methods and adding new models. In this study the relevant literature was surveyed on the multidimensional flow models that may potentially be applied to the multidimensional analysis code. Research items were critically reviewed and suggested to better predict the multidimensional thermal hydraulic behavior and to identify test requirements. A small-scale preliminary test was performed in the downcomer formed by two vertical plates to analyze multidimensional flow pattern in a simple geometry. The experimental result may be applied to the code for analysis of the fluid impingement to the reactor downcomer wall. Also, data were collected to find out the controlling parameters for the one-dimensional and multidimensional flow behavior. 22 refs., 40 figs., 7 tabs. (Author)

  8. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  9. A biofidelic 3D culture model to study the development of brain cellular systems

    Science.gov (United States)

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  10. An effort for developing a seamless transport modeling and remote sensing system for air pollutants

    Science.gov (United States)

    Nakajima, T.; Goto, D.; Dai, T.; Misawa, S.; Uchida, J.; Schutgens, N.; Hashimoto, M.; Oikawa, E.; Takenaka, H.; Tsuruta, H.; Inoue, T.; Higurashi, A.

    2015-12-01

    Wide area of the globe, like Asian region, still suffers from a large emission of air pollutants and cause serious impacts on the earth's climate and the public health of the area. Launch of an international initiative, Climate and Clean Air Coalition (CCAC), is an example of efforts to ease the difficulties by reducing Short-Lived Climate Pollutants (SLCPs), i.e., black carbon aerosol, methane and other short-lived atmospheric materials that heat the earth's system, along with long-lived greenhouse gas mitigation. Impact evaluation of the air pollutants, however, has large uncertainties. We like to introduce a recent effort of projects MEXT/SALSA and MOEJ/S-12 to develop a seamless transport model for atmospheric constituents, NICAM-Chem, that is flexible enough to cover global scale to regional scale by the NICAM nonhydrostatic dynamic core (NICAM), coupled with SPRINTARS aerosol model, CHASER atmospheric chemistry model and with their three computational grid systems, i.e. quasi homogeneous grids, stretched grids and diamond grids. A local ensemble transform Kalman filter/smoother with this modeling system was successfully applied to data from MODIS, AERONET, and CALIPSO for global assimilation/inversion and surface SPM and SO2 air pollution monitoring networks for Japanese area assimilation. My talk will be extended to discuss an effective utility of satellite remote sensing of aerosols using Cloud and Aerosol Imager (CAI) on board the GOSAT satellite and Advanced Himawari Imager (AHI) on board the new third generation geostationary satellite, Himawari-8. The CAI has a near-ultraviolet channel of 380nm with 500m spatial resolution and the AHI has high frequency measurement capability of every 10 minutes. These functions are very effective for accurate land aerosol remote sensing, so that a combination with the developed aerosol assimilation system is promising.

  11. Analysis and Design Environment for Large Scale System Models and Collaborative Model Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As NASA modeling efforts grow more complex and more distributed among many working groups, new tools and technologies are required to integrate their efforts...

  12. Development and Analysis of Group Contribution Plus Models for Property Prediction of Organic Chemical Systems

    DEFF Research Database (Denmark)

    Mustaffa, Azizul Azri

    the molecular fragmentation that relates properties which is the molecular interactions with the molecular structures. One well known and established group-contribution method is the UNIFAC model, used to predict liquid phase activity coefficients for mixtures. The needed values of the group interaction...... parameters (GIPs) are obtained by fitting phase equilibrium data. There are, however many gaps in the UNIFAC parameter table due to lack of data. Alternative to performing measurements, which may not be feasible, values of the missing GIPs, can be predicted through the GCPlus approach. The predicted values...... further developed by including chlorinated and sulfurated VLE systems. Finally, in Chapter 7, the developed Original UNIFAC-CI (VLE/SLE) model has been highlighted in selected case studies involving the design of a working solution for hydrogen peroxide production and solubility investigation...

  13. Development of a Transient Model of a Stirling-Based CHP System

    Directory of Open Access Journals (Sweden)

    Antón Cacabelos

    2013-06-01

    Full Text Available Although the Stirling engine was invented in 1816, this heat engine still continues to be investigated due to the variety of energy sources that can be used to power it (e.g., solar energy, fossil fuels, biomass, and geothermal energy. To study the performance of these machines, it is necessary to develop and simulate models under different operating conditions. In this paper, we present a one-dimensional dynamic model based on components from Trnsys: principally, a lumped mass and a heat exchanger. The resulting model is calibrated using GenOpt. Furthermore, the obtained model can be used to simulate the machine both under steady-state operation and during a transient response. The results provided by the simulations are compared with data measured in a Stirling engine that has been subjected to different operating conditions. This comparison shows good agreement, indicating that the model is an appropriate method for transient thermal simulations. This new proposed model requires few configuration parameters and is therefore easily adaptable to a wide range of commercial models of Stirling engines. A detailed analysis of the system results reveals that the power is directly related to the difference of temperatures between the hot and cold sources during the transient and steady-state processes.

  14. Real-time Model Development of Core Protection and Monitoring System for SMART Simulator Application

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bonseung; Hwang, Daehyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    Important features of the software models are described for the application to SMART simulator. A real-time performance of the models was examined for various simulation scenarios. Areal-time model development of core protection and monitoring algorithms for SMART simulator is being studied. Software algorithms as well as design bases and requirements for core protection and monitoring are developed and various performance tests are done. From test results, it is judged that SCOPS{sub S}SIM and SCOMS{sub S}SIM algorithms and calculational capabilities are appropriate for core protection and monitoring program in SMART simulator. A multi-purpose best-estimate simulator for the SMART is being established which is purposed to be used as a tool to evaluate the impacts of design changes on the safety performance, and to improve and/or optimize the operating procedure of the SMART. In keeping with these purposes, a real-time model of the digital core protection and monitoring systems was developed on the basis of SCOPS and SCOMS algorithms of SMART.

  15. Development of an operator`s mental model acquisition system. 1. Estimation of a physical mental model acquisition system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Mitsuru; Mizoguchi, Riichirou [Inst. of Scientific and Industrial Research, Osaka Univ., Ibaraki (Japan); Yoshikawa, Shinji; Ozawa, Kenji

    1997-03-01

    This report describes a technical survey of acquisition method of an operator`s understanding for functions and structures of his target nuclear plant. This method is to play a key role in the information processing framework to support on-training operators in forming their knowledge of the nuclear plants. This kind of technical framework is aiming at enhancing human operator`s ability to cope with anomaly plant situations which are difficult to expect from preceding experiences or engineering surveillance. In these cases, cause identifications and responding operation selections are desired to made not only empirically but also based on thoughts about possible phenomena to take place within the nuclear plant. This report focuses on a particular element technique, defined as `explanation-based knowledge acquisition`, as the candidate technique to potentially be extended to meet the requirement written above, and discusses about applicability to the learning support system and about necessary improvements, to identify future technical developments. (author)

  16. Development of a Corrosion Potential Measuring System Based on the Generalization of DACS Physical Scale Modeling

    Directory of Open Access Journals (Sweden)

    Song Dalei

    2015-01-01

    Full Text Available A feasible method in evaluating the protection effect and corrosion state of marine cathodic protection (CP systems is collecting sufficient electric potential data around a submarine pipeline and then establishing the mapping relations between these data and corrosion states of pipelines. However, it is difficult for scientists and researchers to obtain those data accurately due to the harsh marine environments and absence of dedicated potential measurement device. In this paper, to alleviate these two problems, firstly, the theory of dimension and conductivity scaling (DACS physical scale modeling of marine impressed current cathodic protection (ICCP systems is generalized to marine CP systems, secondly, a potential measurement device is developed specially and analogue experiment is designed according to DACS physical scale modeling to verify the feasibility of the measuring system. The experimental results show that 92 percent of the measurement errors are less than 0.25mv, thereby providing an economical and feasible measuring system to get electric potential data around an actual submarine pipeline under CP.

  17. Development of the Computerized Model of Performance-Based Measurement System to Measure Nurses' Clinical Competence.

    Science.gov (United States)

    Liou, Shwu-Ru; Liu, Hsiu-Chen; Tsai, Shu-Ling; Cheng, Ching-Yu; Yu, Wei-Chieh; Chu, Tsui-Ping

    2016-04-01

    Critical thinking skills and clinical competence are for providing quality patient care. The purpose of this study is to develop the Computerized Model of Performance-Based Measurement system based on the Clinical Reasoning Model. The system can evaluate and identify learning needs for clinical competency and be used as a learning tool to increase clinical competency by using computers. The system includes 10 high-risk, high-volume clinical case scenarios coupled with questions testing clinical reasoning, interpersonal, and technical skills. Questions were sequenced to reflect patients' changing condition and arranged by following the process of collecting and managing information, diagnosing and differentiating urgency of problems, and solving problems. The content validity and known-groups validity was established. The Kuder-Richardson Formula 20 was 0.90 and test-retest reliability was supported (r = 0.78). Nursing educators can use the system to understand students' needs for achieving clinical competence, and therefore, educational plans can be made to better prepare students and facilitate their smooth transition to a future clinical environment. Clinical nurses can use the system to evaluate their performance-based abilities and weakness in clinical reasoning. Appropriate training programs can be designed and implemented to practically promote nurses' clinical competence and quality of patient care.

  18. Development of CO2 inversion system based on the adjoint of the global coupled transport model

    Science.gov (United States)

    Belikov, Dmitry; Maksyutov, Shamil; Chevallier, Frederic; Kaminski, Thomas; Ganshin, Alexander; Blessing, Simon

    2014-05-01

    We present the development of an inverse modeling system employing an adjoint of the global coupled transport model consisting of the National Institute for Environmental Studies (NIES) Eulerian transport model (TM) and the Lagrangian plume diffusion model (LPDM) FLEXPART. NIES TM is a three-dimensional atmospheric transport model, which solves the continuity equation for a number of atmospheric tracers on a grid spanning the entire globe. Spatial discretization is based on a reduced latitude-longitude grid and a hybrid sigma-isentropic coordinate in the vertical. NIES TM uses a horizontal resolution of 2.5°×2.5°. However, to resolve synoptic-scale tracer distributions and to have the ability to optimize fluxes at resolutions of 0.5° and higher we coupled NIES TM with the Lagrangian model FLEXPART. The Lagrangian component of the forward and adjoint models uses precalculated responses of the observed concentration to the surface fluxes and 3-D concentrations field simulated with the FLEXPART model. NIES TM and FLEXPART are driven by JRA-25/JCDAS reanalysis dataset. Construction of the adjoint of the Lagrangian part is less complicated, as LPDMs calculate the sensitivity of measurements to the surrounding emissions field by tracking a large number of "particles" backwards in time. Developing of the adjoint to Eulerian part was performed with automatic differentiation tool the Transformation of Algorithms in Fortran (TAF) software (http://www.FastOpt.com). This method leads to the discrete adjoint of NIES TM. The main advantage of the discrete adjoint is that the resulting gradients of the numerical cost function are exact, even for nonlinear algorithms. The overall advantages of our method are that: 1. No code modification of Lagrangian model is required, making it applicable to combination of global NIES TM and any Lagrangian model; 2. Once run, the Lagrangian output can be applied to any chemically neutral gas; 3. High-resolution results can be obtained over

  19. Development of HT-BP nueral network system for the identification of well test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Sung, W.; Hanyang, U.; Yoo, I. [and others

    1995-12-31

    The neural network technique that is a field of artificial intelligence (AI) has proved to be a good model classifier in all areas of engineering and especially, it has gained a considerable acceptance in well test interpretation model (WTIM) identification of petroleum engineering. Conventionally, identification of the WTIM has been approached by graphical analysis method that requires an experienced expert. Recently, neural network technique equipped with back propagation (BP) learning algorithm was presented and it differs from the AI technique such as symbolic approach that must be accompanied with the data preparation procedures such as smoothing, segmenting, and symbolic transformation. In this paper, we developed BP neural network with Hough transform (HT) technique to overcome data selection problem and to use single neural network rather sequential nets. The Hough transform method was proved to be a powerful tool for the shape detection in image processing and computer vision technologies. Along these lines, a number of exercises were conducted with the actual well test data in two steps. First, the newly developed AI model, namely, ANNIS (Artificial intelligence Neural Network Identification System) was utilized to identify WTIM. Secondly, we obtained reservoir characteristics with the well test model equipped with modified Levenberg-Marquart method. The results show that ANNIS was proved to be quite reliable model for the data having noisy, missing, and extraneous points. They also demonstrate that reservoir parameters were successfully estimated.

  20. A development of logistics management models for the Space Transportation System

    Science.gov (United States)

    Carrillo, M. J.; Jacobsen, S. E.; Abell, J. B.; Lippiatt, T. F.

    1983-01-01

    A new analytic queueing approach was described which relates stockage levels, repair level decisions, and the project network schedule of prelaunch operations directly to the probability distribution of the space transportation system launch delay. Finite source population and limited repair capability were additional factors included in this logistics management model developed specifically for STS maintenance requirements. Data presently available to support logistics decisions were based on a comparability study of heavy aircraft components. A two-phase program is recommended by which NASA would implement an integrated data collection system, assemble logistics data from previous STS flights, revise extant logistics planning and resource requirement parameters using Bayes-Lin techniques, and adjust for uncertainty surrounding logistics systems performance parameters. The implementation of these recommendations can be expected to deliver more cost-effective logistics support.

  1. VRS Model: A Model for Estimation of Efforts and Time Duration in Development of IVR Software System

    Directory of Open Access Journals (Sweden)

    Devesh Kumar Srivastava

    2012-01-01

    Full Text Available Accurate software effort estimates are critical to measure for developers, leaders, project managers. Underestimating the costs may result in management approving proposed systems which can exceed their budgets, with underdeveloped functions and poor quality, and failure to complete on time. Various models have been derived to calculate the effort of large number of completed software projects from various organizations and applications to explore how project sizes mapped into project effort. But, still there is a need to prediction accuracy of the models. Day to day there is rapid change and growth to get new techniques and model to estimate the accurate size, effort and cost of software but still there is lack of accuracy to meet exactly the accurate effort as per company norms and standards. A BPO Company takes up a process of another company. The Company which is handling the incoming calls of customers, queries, solution, services through software is known as IVR software. In this paper the author has proposed a model named ?VRS Model? to estimate the accurate effort and schedule of IVR software applications. This model will be helpful for project managers, developers and customers to estimate accurate effort and schedule of only IVR Projects.

  2. Matrix Representation of the Kaliningrad Regional Accounts System: Experimental Development and Modelling Prospects

    Directory of Open Access Journals (Sweden)

    Soldatova S.

    2015-12-01

    Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system.

  3. Matrix Representation of the Kaliningrad Regional Accounts System: Experimental Development and Modelling Prospects

    Directory of Open Access Journals (Sweden)

    Soldatova S.

    2015-08-01

    Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system

  4. Matrix Representation of the Kaliningrad Regional Accounts System: Experimental Development and Modelling Prospects

    Directory of Open Access Journals (Sweden)

    Soldatova Svetlana

    2015-09-01

    Full Text Available This article addresses the task of creating a regional Social Accounting Matrix (SAM in the Kaliningrad region. Analyzing the behavior of economic systems of national and sub-national levels in the changing environment is one of the main objectives of macroeconomic research. Matrices are used in examining the flow of financial resources, which makes it possible to conduct a comprehensive analysis of commodity and cash flows at the regional level. The study identifies key data sources for matrix development and presents its main results: the data sources for the accounts development and filling the social accounting matrix are identified, regional accounts consolidated, the structure of regional matrix devised, and the multiplier of the regional social accounting matrix calculated. An important aspect of this approach is the set target, which determines the composition of matrix accounts representing different aspects of regional performance. The calculated multiplier suggests the possibility of modelling of a socioeconomic system for the region using a social accounting matrix. The regional modelling approach ensures the matrix compliance with the methodological requirements of the national system

  5. Thermodynamic database development-modeling and phase diagram calculations in oxide systems

    Institute of Scientific and Technical Information of China (English)

    Arthur D. Pelton

    2006-01-01

    The databases of the FactSage thermodynamic computer system have been under development for 30 years. These databases contain critically evaluated and optimized data for thousands of compounds and hundreds of multicomponent solutions of solid and liquid metals, oxides, salts, sulfides, etc. The databases are automatically accessed by user-friendly software that calculates complex multiphase equilibria in large multicomponent systems for a wide variety of possible input/output constraints. The databases for solutions have been developed by critical evaluation/optimization of all available phase equilibrium and thermodynamic data. The databases contain parameters of models specifically developed for different types of solutions involving sublattices, ordering, etc. Through the optimization process, model parameters are found which reproduce all thermodynamic and phase equilibrium data within experimental error limits and permit extrapolation into regions of temperature and composition where data are unavailable. The present article focuses on the databases for solid and liquid oxide phases involving 25 elements. A short review of the available databases is presented along with the models used for the molten slag and the solid solutions such as spinel, pyroxene, olivine, monoxide, corundum, etc. The critical evaluation/optimization procedure is outlined using examples from the A12O3-SiO2-CaO-FeO-Fe2O3 system. Sample calculations are presented in which the oxide databases are used in conjunction with the FactSage databases for metallic and other phases. In particular, the use of the FactSage module for the calculation of multicomponent phase diagrams is illustrated.

  6. Development of a new model system to dissect isoform specific Akt signalling in adipocytes

    Science.gov (United States)

    Kajno, Esi; McGraw, Timothy E.; Gonzalez, Eva

    2015-01-01

    Protein kinase B (Akt) kinases are critical signal transducers mediating insulin action. Genetic studies revealed that Akt1 and Akt2 signalling differentially contribute to sustain lipid and glucose homoeostasis; however Akt isoform-specific effectors remain elusive due to the lack of a suitable model system to mechanistically interrogate Akt isoform-specific signalling. To overcome those technical limitations we developed a novel model system that provides acute and specific control of signalling by Akt isoforms. We generated mutants of Akt1 and Akt2 resistant to the allosteric Akt inhibitor MK-2206. We then developed adipocyte cell lines, in which endogenous Akt1 or Akt2 has been replaced by their corresponding drug-resistant Akt mutant. Treatment of those cells with MK-2206 allowed for acute and specific control of either Akt1 or Akt2 function. Our data showed that Akt1W80A and Akt2W80A mutants are resistant to MK-2206, dynamically regulated by insulin and able to signal to Akt downstream effectors. Analyses of insulin action in this cellular system showed that Akt1 and Akt2 are both able to mediate insulin regulation of the transcription factor forkhead box O1 (FoxO1) and the glucose transporter 4 (GLUT4), revealing a redundant role for these Akt kinases in the control of glucose transport into fat cells. In contrast, Akt1 signalling is uniquely required for adipogenesis, by controlling the mitotic clonal expansion (MCE) of pre-adipocytes that precedes white adipose cell differentiation. Our data provide new insights into the role of Akt kinases in glucose transport and adipogenesis and support our model system as a valuable tool for the biochemical characterization of signalling by specific Akt isoforms. PMID:25856301

  7. System dynamics model for hospital waste characterization and generation in developing countries.

    Science.gov (United States)

    Eleyan, Derar; Al-Khatib, Issam A; Garfield, Joy

    2013-10-01

    Waste management policy makers always face the problem of how to predict the future amount and composition of medical solid waste, which, in turn, helps to determine the most appropriate treatment, recycling and disposal strategy. An accurate prediction can assist in both the planning and design of medical solid waste management systems. Insufficient budget and unavailable management capacity are the main reasons for the scarcity of medical solid waste quantities and components historical records, which are so important in long-term system planning and short-term expansion programs. This article presents a new technique, using System Dynamics modeling, to predict generated medical solid waste in a developing urban area, based on a set of limited samples from Jenin District hospitals, Palestine. The findings of the model present the trend of medical solid waste generation together with its different components and indicate that a new forecasting approach may cover a variety of possible causative models and track inevitable uncertainties when traditional statistical least-squared regression methods are unable to handle such issues.

  8. Development of a multi-scale data assimilation system for model-observation integration and climate model evaluation (Invited)

    Science.gov (United States)

    Li, Z.; Liu, Y.; Lin, W.; Vogelmann, A. M.; Feng, S.; Fridlind, A. M.

    2013-12-01

    To improve our understanding and the representation of subgrid processes in climate models, an increasing number of ground-based long-term observing systems have been established. These systems focus on detailed measurements over a domain of a typical climate model grid size. An example is the US DOE Atmospheric Radiation Measurement (ARM) program, which has been collecting data related to radiation, clouds and precipitation at three primary sites, the Southern Great Plains (SGP) of the USA, the North Slope of Alaska, and the Tropical West Pacific, for approximately 20 years. A well-established approach to use ARM-like measurements in climate model evaluation is jointly using the Single Column Model (SCM), Cloud Resolving Models (CRMs), and/or large eddy simulations (LESs). To enhance the effectiveness of this approach, we have developed multi-scale data assimilation (MS-DA) system on top of the NCEP Gridpoint Statistical Interpolation (GSI) System and implemented in the Weather Research and Forecasting (WRF) model at the cloud resolving resolution (WRF-CRM) over the ARM Climate Research Facility's Southern Great Plains (SGP) site. It is demonstrated that the MS-DA effectively assimilate the dense ARM in-situ observations and high-resolution satellite data, thus significantly reducing uncertainties in the WRF CRM simulation. We have used the WRF CRM simulation constrained by the MS-DA to derive multi-scale forcing that is used to drive SCMs, CRMs, and LESs, expand the large scale forcing parameters to hydrometeors that are not provided in the existing continuous forcing product, and characterize dependency of large-scale forcing on domain-size that represents SCM grid-sizes, sub-grid processes, and cloud-regimes.

  9. Advanced human-system interface design review guideline. General evaluation model, technical development, and guideline description

    Energy Technology Data Exchange (ETDEWEB)

    O`Hara, J.M.

    1994-07-01

    Advanced control rooms will use advanced human-system interface (HSI) technologies that may have significant implications for plant safety in that they will affect the operator`s overall role in the system, the method of information presentation, and the ways in which operators interact with the system. The U.S. Nuclear Regulatory Commission (NRC) reviews the HSI aspects of control rooms to ensure that they are designed to good human factors engineering principles and that operator performance and reliability are appropriately supported to protect public health and safety. The principal guidance available to the NRC, however, was developed more than ten years ago, well before these technological changes. Accordingly, the human factors guidance needs to be updated to serve as the basis for NRC review of these advanced designs. The purpose of this project was to develop a general approach to advanced HSI review and the human factors guidelines to support NRC safety reviews of advanced systems. This two-volume report provides the results of the project. Volume I describes the development of the Advanced HSI Design Review Guideline (DRG) including (1) its theoretical and technical foundation, (2) a general model for the review of advanced HSIs, (3) guideline development in both hard-copy and computer-based versions, and (4) the tests and evaluations performed to develop and validate the DRG. Volume I also includes a discussion of the gaps in available guidance and a methodology for addressing them. Volume 2 provides the guidelines to be used for advanced HSI review and the procedures for their use.

  10. New developments in modeling network constraints in techno-economic energy system expansion planning models. An overview of existing models and prospects for future approaches

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, Martin; Esser-Frey, Anke; Fichtner, Wolf [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Chair of Energy Economics; Schick, Michael; Heuveline, Vincent [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Engineering Mathematics and Computing Lab.; Leibfried, Thomas [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Inst. of Electric Energy Systems and High-Voltage Technology

    2012-03-15

    This paper is based on Groschke et al. (Z. Energiewirtsch. 33(1):14-22 2009) and continues the description of new developments in modeling network constraints in techno-economic energy system models with a focus on capacity expansion planning and a long-term time horizon. Based on the presentation of recent and future developments in the German energy system, current challenges in energy system modeling are derived. The following analysis of the state of research reveals a lack of high-precision load flow calculation in current energy system models with a long-term time horizon. Hence, this paper presents an outlook on a new mathematical approach, which already proved as a promising method to meet the challenges identified. (orig.)

  11. The Development of Evaluation Model for Internal Quality Assurance System of Dramatic Arts College of Bunditpattanasilpa Institute

    Science.gov (United States)

    Sinthukhot, Kittisak; Srihamongkol, Yannapat; Luanganggoon, Nuchwana; Suwannoi, Paisan

    2013-01-01

    The research purpose was to develop an evaluation model for the internal quality assurance system of the dramatic arts College of Bunditpattanasilpa Institute. The Research and Development method was used as research methodology which was divided into three phases; "developing the model and its guideline", "trying out the actual…

  12. Development of the human aortic arch system captured in an interactive three-dimensional reference model.

    Science.gov (United States)

    Rana, M Sameer; Sizarov, Aleksander; Christoffels, Vincent M; Moorman, Antoon F M

    2014-06-01

    Variations and mutations in the human genome, such as 22q11.2 microdeletion, can increase the risk for congenital defects, including aortic arch malformations. Animal models are increasingly expanding our molecular and genetic insights into aortic arch development. However, in order to justify animal-to-human extrapolations, a human morphological, and molecular reference model would be of great value, but is currently lacking. Here, we present interactive three-dimensional reconstructions of the developing human aortic arch system, supplemented with the protein distribution of developmental markers for patterning and growth, including T-box transcription factor TBX1, a major candidate for the phenotypes found in patients with the 22q11.2 microdeletion. These reconstructions and expression data facilitate unbiased interpretations, and reveal previously unappreciated aspects of human aortic arch development. Based on our reconstructions and on reported congenital anomalies of the pulmonary trunk and tributaries, we postulate that the pulmonary arteries originate from the aortic sac, rather than from the sixth pharyngeal arch arteries. Similar to mouse, TBX1 is expressed in pharyngeal mesenchyme and epithelia. The endothelium of the pharyngeal arch arteries is largely negative for TBX1 and family member TBX2 but expresses neural crest marker AP2α, which gradually decreases with ongoing development of vascular smooth muscle. At early stages, the pharyngeal arch arteries, aortic sac, and the dorsal aortae in particular were largely negative for proliferation marker Ki67, potentially an important parameter during aortic arch system remodeling. Together, our data support current animal-to-human extrapolations and future genetic and molecular analyses using animal models of congenital heart disease. © 2013 Wiley Periodicals, Inc.

  13. Developing R&D portfolio business validity simulation model and system.

    Science.gov (United States)

    Yeo, Hyun Jin; Im, Kwang Hyuk

    2015-01-01

    The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker's burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry's R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator's business validity work in each evaluation module by integrate to one screen.

  14. Developing R&D Portfolio Business Validity Simulation Model and System

    Directory of Open Access Journals (Sweden)

    Hyun Jin Yeo

    2015-01-01

    Full Text Available The R&D has been recognized as critical method to take competitiveness by not only companies but also nations with its value creation such as patent value and new product. Therefore, R&D has been a decision maker’s burden in that it is hard to decide how much money to invest, how long time one should spend, and what technology to develop which means it accompanies resources such as budget, time, and manpower. Although there are diverse researches about R&D evaluation, business factors are not concerned enough because almost all previous studies are technology oriented evaluation with one R&D technology based. In that, we early proposed R&D business aspect evaluation model which consists of nine business model components. In this research, we develop a simulation model and system evaluating a company or industry’s R&D portfolio with business model point of view and clarify default and control parameters to facilitate evaluator’s business validity work in each evaluation module by integrate to one screen.

  15. Development of Shallow Footing Anti-Ram Bollard System Through Modeling and Testing

    Institute of Scientific and Technical Information of China (English)

    LAN Shengrui; CRAWFORD John E; XIN Xudong

    2006-01-01

    In past terrorist attacks,vehicle borne improvised explosive devices (VBIED) have been the primary manner of attacking buildings and infrastructures.Preventing unauthorized vehicles from approaching a protected area with anti-ram systems would maintain an established standoff distance against moving and stationary vehicles and consequently reduce blast and debris threats.This strategy has been considered the first line of defence against terrorists.Several types of anti-ram devices have been developed in accordance with U.S.Department of State K-rating criteria,for example,wedge barriers,rising beams,sliding/swing gates,and drop arms.However,these devices typically need a deep foundation for installation and can't be implemented into many locations where a depth of excavation is limited in order to protect utility lines of buildings and infrastructures.This paper presents a recent development of a series of shallow footing anti-ram bollard systems (SFABS) that can satisfy K-12 rating with only five-inch thick footing.A high-fidelity physics based finite element technique with a vehicle crash model is used for predicting anti-ram capacity and determining design parameters of the SFABS.Full-scale vehicle crash tests of the developed SFABS systems have been carried out to validate the design and analysis.

  16. The Development of Multi-Agent System of State Estimation of Electric Power Systems Using Event Models

    Directory of Open Access Journals (Sweden)

    L. V. Massel

    2015-01-01

    connected again to become a single one. The paper presents future system architecture, shows the Joiner- network of the agent-based scenarios describing operation algorithm of the system, and describes starting and flag functions. A breakdown agent is designed to be responsible for diagram decomposition  into separate subsystems. Computational experiment based on the illustrative model was conducted.The described approach is used to develop the specific MAS for estimating EPS states, but it cannot be replicated to solve other typical problems. Its using enables making changes in existing system, scaling and adding functionality without any need to edit the source code of already existing modules.

  17. Developing a probabilistic fire risk model and its application to fire danger systems

    Science.gov (United States)

    Penman, T.; Bradstock, R.; Caccamo, G.; Price, O.

    2012-04-01

    Wildfires can result in significant economic losses where they encounter human assets. Management agencies have large budgets devoted to both prevention and suppression of fires, but little is known about the extent to which they alter the probability of asset loss. Prediction of the risk of asset loss as a result of wildfire requires an understanding of a number of complex processes from ignition, fire growth and impact on assets. These processes need to account for the additive or multiplicative effects of management, weather and the natural environment. Traditional analytical methods can only examine only a small subset of these. Bayesian Belief Networks (BBNs) provide a methodology to examine complex environmental problems. Outcomes of a BBN are represented as likelihoods, which can then form the basis for risk analysis and management. Here we combine a range of data sources, including simulation models, empirical statistical analyses and expert opinion to form a fire management BBN. Various management actions have been incorporated into the model including landscape and interface prescribed burning, initial attack and fire suppression. Performance of the model has been tested against fire history datasets with strong correlations being found. Adapting the BBN presented here we are capable of developing a spatial and temporal fire danger rating system. Currently Australian fire danger rating systems are based on the weather. Our model accounts for existing fires, as well as the risk of new ignitions combined with probabilistic weather forecasts to identify those areas which are most at risk of asset loss. Fire growth is modelled with consideration given to management prevention efforts, as well as suppression resources that are available in each geographic locality. At a 10km resolution the model will provide a probability of asset loss which represents a significant step forward in the level of information that can be provided to the general public.

  18. Development of JPSS VIIRS Global Gridded Vegetation Index products for NOAA NCEP Environmental Modeling Systems

    Science.gov (United States)

    Vargas, Marco; Miura, Tomoaki; Csiszar, Ivan; Zheng, Weizhong; Wu, Yihua; Ek, Michael

    2017-04-01

    The first Joint Polar Satellite System (JPSS) mission, the Suomi National Polar-orbiting Partnership (S-NPP) satellite, was successfully launched in October, 2011, and it will be followed by JPSS-1, slated for launch in 2017. JPSS provides operational continuity of satellite-based observations and products for NOAA's Polar Operational Environmental Satellites (POES). Vegetation products derived from satellite measurements are used for weather forecasting, land modeling, climate research, and monitoring the environment including drought, the health of ecosystems, crop monitoring and forest fires. The operationally produced S-NPP VIIRS Vegetation Index (VI) Environmental Data Record (EDR) includes two vegetation indices: the Top of the Atmosphere (TOA) Normalized Difference Vegetation Index (NDVI), and the Top of the Canopy (TOC) Enhanced Vegetation Index (EVI). For JPSS-1, the S-NPP Vegetation Index EDR algorithm has been updated to include the TOC NDV. The current JPSS operational VI products are generated in granule style at 375 meter resolution at nadir, but these products in granule format cannot be ingested into NOAA operational monitoring and decision making systems. For that reason, the NOAA JPSS Land Team is developing a new global gridded Vegetation Index (VI) product suite for operational use by the NOAA National Centers for Environmental Prediction (NCEP). The new global gridded VIs will be used in the Multi-Physics (MP) version of the Noah land surface model (Noah-MP) in NCEP NOAA Environmental Modeling System (NEMS) for plant growth and data assimilation and to describe vegetation coverage and density in order to model the correct surface energy partition. The new VI 4km resolution global gridded products (TOA NDVI, TOC NDVI and TOC EVI) are being designed to meet the needs of directly ingesting vegetation index variables without the need to develop local gridding and compositing procedures. These VI products will be consistent with the already

  19. Modelling the transport system in China and evaluating the current strategies towards the sustainable transport development

    DEFF Research Database (Denmark)

    Liu, W.; Lund, H.; Mathiesen, B.V.

    2013-01-01

    in China. With this purpose in mind, a Chinese transport model has been created and three current transport strategies which are high speed railway (HSR), urban rail transit (URT) and electric vehicle (EV) were evaluated together with a reference transport system in 2020. As conservative results, 13......Transport is one of the most challenge sectors when addressing energy security and climate change due to its high reliance on oil products and lack of the alternative fuels. This paper explores the ability of three transport strategies to contribute to the development of a sustainable transport......% of the energy saving and 12% of the CO2 emission reduction can be attained by accomplishing three strategies compared with the reference transport system. However, the energy demand of transport in 2020 with the implementation of three strategies will be about 1.7 times as much as today. The three strategies...

  20. System Dynamics Model to develop resilience management strategies for lifelines exposed to natural hazards

    Science.gov (United States)

    Pagano, Alessandro; Pluchinotta, Irene; Giordano, Raffaele; Vurro, Michele

    2016-04-01

    Resilience has recently become a key concept, and a crucial paradigm in the analysis of the impacts of natural disasters, mainly concerning Lifeline Systems (LS). Indeed, the traditional risk management approaches require a precise knowledge of all potential hazards and a full understanding of the interconnections among different infrastructures, based on past events and trends analysis. Nevertheless, due to the inner complexity of LS, their interconnectedness and the dynamic context in which they operate (i.e. technology, economy and society), it is difficult to gain a complete comprehension of the processes influencing vulnerabilities and threats. Therefore, resilience thinking addresses the complexities of large integrated systems and the uncertainty of future threats, emphasizing the absorbing, adapting and responsive behavior of the system. Resilience thinking approaches are focused on the capability of the system to deal with the unforeseeable. The increasing awareness of the role played by LS, has led governmental agencies and institutions to develop resilience management strategies. Risk prone areas, such as cities, are highly dependent on infrastructures providing essential services that support societal functions, safety, economic prosperity and quality of life. Among the LS, drinking water supply is critical for supporting citizens during emergency and recovery, since a disruption could have a range of serious societal impacts. A very well-known method to assess LS resilience is the TOSE approach. The most interesting feature of this approach is the integration of four dimensions: Technical, Organizational, Social and Economic. Such issues are all concurrent to the resilience level of an infrastructural system, and should be therefore quantitatively assessed. Several researches underlined that the lack of integration among the different dimensions, composing the resilience concept, may contribute to a mismanagement of LS in case of natural disasters

  1. A "Kane's Dynamics" Model for the Active Rack Isolation System Part Two: Nonlinear Model Development, Verification, and Simplification

    Science.gov (United States)

    Beech, G. S.; Hampton, R. D.; Rupert, J. K.

    2004-01-01

    Many microgravity space-science experiments require vibratory acceleration levels that are unachievable without active isolation. The Boeing Corporation's active rack isolation system (ARIS) employs a novel combination of magnetic actuation and mechanical linkages to address these isolation requirements on the International Space Station. Effective model-based vibration isolation requires: (1) An isolation device, (2) an adequate dynamic; i.e., mathematical, model of that isolator, and (3) a suitable, corresponding controller. This Technical Memorandum documents the validation of that high-fidelity dynamic model of ARIS. The verification of this dynamics model was achieved by utilizing two commercial off-the-shelf (COTS) software tools: Deneb's ENVISION(registered trademark), and Online Dynamics Autolev(trademark). ENVISION is a robotics software package developed for the automotive industry that employs three-dimensional computer-aided design models to facilitate both forward and inverse kinematics analyses. Autolev is a DOS-based interpreter designed, in general, to solve vector-based mathematical problems and specifically to solve dynamics problems using Kane's method. The simplification of this model was achieved using the small-angle theorem for the joint angle of the ARIS actuators. This simplification has a profound effect on the overall complexity of the closed-form solution while yielding a closed-form solution easily employed using COTS control hardware.

  2. Development of a 3D Potential Field Forward Modelling System in Python

    Science.gov (United States)

    Cole, P.

    2012-12-01

    The collection of potential field data has long been a standard part of geophysical exploration. Specifically, airborne magnetic data is collected routinely in any brown-fields area, because of the low cost and fast acquisition rate compared to other geophysical techniques. However, the interpretation of such data can be a daunting task, especially when 3D models are becoming more necessary. The current trend in modelling software is to follow either the modelling of individual profiles, which are then "joined" up into 3D sections, or to model in a full 3D using polygonal based models (Singh and Guptasarma, 2001). Unfortunately, both techniques have disadvantages. When modelling in 2.5D the impact of other profiles is not truly available on your current profile being modelled, and vice versa. The problem is not present in 3D, but 3D polygonal models, while being easy to construct the initial model, are not as easy to make fast changes to. In some cases, the entire model must be recreated from scratch. The ability to easily change a model is the very basis of forward modelling. With this is mind, the objective of the project was to: 1) Develop software which was truly modelling in 3D 2) Create a system which would allow the rapid changing of the 3D model, without the need to recreate the model. The solution was to adopt a voxel based approach, rather than a polygonal approach. The solution for a cube (Blakely 1996) was used to calculate potential field for each voxel. The voxels are then summed over the entire volume. The language used was python, because of its huge capacity for scientific development. It enables full 3D visualisation as well as complex mathematical routines. Some properties worth noting are: 1) Although 200 rows by 200 columns by 200 layers would imply 8 million calculations, in reality, since the calculation for adjacent voxels produces the same result, only 200 calculations are necessary. 2) Changes to susceptibility and density do not affect

  3. Development of a Techno-economic Model of Intelligent Transportation System (ITS) for Deployment in Ghana

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi; Tadayoni, Reza

    2011-01-01

    The concept of Intelligent Transportation System (ITS) is about the development and deployment of advanced Traffic Management Systems, Traveler Information Systems, Commercial Vehicle Operations, Public and Private Transportation Systems, and Rural Transportation Systems. Several key technologies....... The results show that deployment of Intelligent Vehicle Tracking Technology (IVTT) will address the problems of inefficiencies experienced in the Ghanaian road transport haulage tracking industry. Research for ITS development and eployment in these countries should be cost effective....

  4. An Overview of BCC Climate System Model Development and Application for Climate Change Studies

    Institute of Scientific and Technical Information of China (English)

    WU Tongwen; WU Fanghua; LIU Yiming; ZHANG Fang; SHI Xueli; CHU Min; ZHANG Jie; FANG Yongjie; WANG Fang; LU Yixiong; LIU Xiangwen; SONG Lianchun; WEI Min; LIU Qianxia; ZHOU Wenyan; DONG Min; ZHAO Qigeng; JI Jinjun; Laurent LI; ZHOU Mingyu; LI Weiping; WANG Zaizhi; ZHANG Hua; XIN Xiaoge; ZHANG Yanwu; ZHANG Li; LI Jianglong

    2014-01-01

    This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model (BCC-CSM) and its four component models (atmosphere, land surface, ocean, and sea ice). Two recent versions are described: BCC-CSM1.1 with coarse resolution (approximately 2.8125◦×2.8125◦) and BCC-CSM1.1(m) with moderate resolution (approximately 1.125◦×1.125◦). Both versions are fully cou-pled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation. Both models well simulate the concentration and temporal evolution of atmospheric CO2 during the 20th century with anthropogenic CO2 emissions prescribed. Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase fi ve (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). These simulations are available for use by both national and international communities for investigating global climate change and for future climate pro jections. Simulations of the 20th century climate using BCC-CSM1.1 and BCC-CSM1.1(m) are presented and validated, with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales. Simulations of climate during the last millennium and pro jections of climate change during the next century are also presented and discussed. Both BCC-CSM1.1 and BCC-CSM1.1(m) perform well when compared with other CMIP5 models. Preliminary analyses in-dicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSM1.1, particularly on regional scales.

  5. Distributed Photovoltaics in the Swedish Energy System. Model Development and Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Widen, Joakim

    2009-06-15

    Application of photovoltaics (PV) is increasing worldwide, mainly due to extensive subsidy schemes for introducing CO{sub 2}-free power generation. A majority of newly installed systems are distributed small-scale systems located in distribution grids, often at residential customers. Recent developments suggest that such distributed PV generation (PV-DG) could gain more interest in Sweden in the near future. With prospects of decreasing module prices, an extensive integration could be possible. This licentiate thesis presents the first part of a PhD project with the aim to determine the potential for domestic PV-DG in Sweden. Two aspects are treated in detail in the thesis: (1) the ability of PV to match a local domestic power demand and (2) impacts of extensive integration of PV-DG on power flow in low-voltage (LV) distribution grids. To make realistic studies for high-latitude conditions, there is a need for representative demand and PV generation data. As there is a lack of detailed domestic load data in Sweden, a major part of the work has been devoted to development of a stochastic load model. Interdisciplinary studies of household activities were performed to get insight into how domestic electricity use is embedded in the structure of everyday life. It was found that time-use (TU) data, normally used in the social sciences, can be used to model domestic power demand. Both a conversion model for estimating power demand from empirical TU data and a stochastic Markov-chain model for generating synthetic activity patterns and power demand were developed and extensively validated against measurements. Importantly, a realistic model of domestic lighting demand from occupancy patterns and irradiation data was developed, that preserves the negative correlation between irradiation and lighting demand. The models provide a basis for load matching studies and power-flow simulations, but can be used for other purposes as well. Case studies of individual households

  6. Polymerization of immunoglobulin domains: A model system for the development of facilitated macromolecular assembly

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, F.J.; Myatt, E.A.

    1991-12-31

    We have recently determined that monoclonal immunoglobulin light chains (Bence Jones proteins) are capable of reversible polymerization at room temperature. This property, as exhibited by immunoglobulin light chains (normally a component of an intact antibody molecule), may have novel implications for the development of ``molecular nanotechnology.`` The polymerization capability of the immunoglobulin light chain is associated with the so-called variable domain of this molecule. The variable domain is a durable, compact beta-sheet structure of molecular weight approximately 12,000. Most of the primary sequence variation is limited to one portion of the molecule, that portion associated with the contribution of immunoglobulin light chains to the recognition and binding of thousand of different antigens by antibodies. As a consequence of these variations, different light chains polymerize with different degrees of avidity, from negligible to extensive. The polymerization process depends on solution parameters such as Ph. Thus, polymerization might be induced at one pH and suppressed or reversed at another. Combinations of molecules of appropriate specificities could assemble into structures of predetermined three-dimensional forms and properties. These features suggest that Bence Jones proteins represent a powerful model system within which to develop empirical rules relevant to a technology of protein-based ``construction``. Development of these rules will require the combined efforts of biophysical and crystallographic studies, protein engineering, and molecular modeling. 53 refs., 5 figs.

  7. Polymerization of immunoglobulin domains: A model system for the development of facilitated macromolecular assembly

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, F.J.; Myatt, E.A.

    1991-01-01

    We have recently determined that monoclonal immunoglobulin light chains (Bence Jones proteins) are capable of reversible polymerization at room temperature. This property, as exhibited by immunoglobulin light chains (normally a component of an intact antibody molecule), may have novel implications for the development of molecular nanotechnology.'' The polymerization capability of the immunoglobulin light chain is associated with the so-called variable domain of this molecule. The variable domain is a durable, compact beta-sheet structure of molecular weight approximately 12,000. Most of the primary sequence variation is limited to one portion of the molecule, that portion associated with the contribution of immunoglobulin light chains to the recognition and binding of thousand of different antigens by antibodies. As a consequence of these variations, different light chains polymerize with different degrees of avidity, from negligible to extensive. The polymerization process depends on solution parameters such as Ph. Thus, polymerization might be induced at one pH and suppressed or reversed at another. Combinations of molecules of appropriate specificities could assemble into structures of predetermined three-dimensional forms and properties. These features suggest that Bence Jones proteins represent a powerful model system within which to develop empirical rules relevant to a technology of protein-based construction''. Development of these rules will require the combined efforts of biophysical and crystallographic studies, protein engineering, and molecular modeling. 53 refs., 5 figs.

  8. Development of an Innovation Model Based on a Service-Oriented Product Service System (PSS

    Directory of Open Access Journals (Sweden)

    Seungkyum Kim

    2015-10-01

    Full Text Available Recently, there have been many attempts to cope with increasingly-diversified and ever-changing customer needs by combining products and services that are critical components of innovation models. Although not only manufacturers, but also service providers, try to integrate products and services, most of the previous studies on Product Service System (PSS development deal with how to effectively integrate services into products from the product-centric point of view. Services provided by manufacturers’ PSSes, such as delivery services, training services, disposal services, and so on, offer customers ancillary value, whereas products of service providers’ PSSes enrich core value by enhancing the functionality and quality of the service. Thus, designing an effective PSS development process from the service-centric point of view is an important research topic. Accordingly, the purpose of this paper is to propose a service-oriented PSS development process, which consists of four stages: (1 strategic planning; (2 idea generation and selection; (3 service design; and (4 product development. In the proposed approach, the PSS development project is initiated and led by a service provider from a service-centric point of view. From the perspective of methodology, customer needs are converted into product functions according to Quality Function Deployment (QFD, while Analytic Hierarchy Process (AHP is employed to prioritize the functions. Additionally, this paper illustrates a service-oriented PSS development that demonstrates the application of the proposed process. The proposed process and illustration are expected to serve as a foundation for research on service-oriented PSS development and as a useful guideline for service providers who are considering the development of a service-oriented PSS.

  9. Model documentation natural gas transmission and distribution model (NGTDM) of the national energy modeling system. Volume II: Model developer`s report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-03

    To partially fulfill the requirements for {open_quotes}Model Acceptance{close_quotes} as stipulated in EIA Standard 91-01-01 (effective February 3, 1991), the Office of Integrated Analysis and Forecasting has conducted tests of the Natural Gas Transmission and Distribution Model (NGTDM) for the specific purpose of validating the forecasting model. This volume of the model documentation presents the results of {open_quotes}one-at-a-time{close_quotes} sensitivity tests conducted in support of this validation effort. The test results are presented in the following forms: (1) Tables of important model outputs for the years 2000 and 2010 are presented with respect to change in each input from the reference case; (2) Tables of percent changes from base case results for the years 2000 and 2010 are presented for important model outputs; (3) Tables of conditional sensitivities (percent change in output/percent change in input) for the years 2000 and 2010 are presented for important model outputs; (4) Finally, graphs presenting the percent change from base case results for each year of the forecast period are presented for selected key outputs. To conduct the sensitivity tests, two main assumptions are made in order to test the performance characteristics of the model itself and facilitate the understanding of the effects of the changes in the key input variables to the model on the selected key output variables: (1) responses to the amount demanded do not occur since there are no feedbacks of inputs from other NEMS models in the stand-alone NGTDM run. (2) All the export and import quantities from and to Canada and Mexico, and liquefied natural gas (LNG) imports and exports are held fixed (i.e., there are no changes in imports and exports between the reference case and the sensitivity cases) throughout the forecast period.

  10. Developing a New Integrated Model to improve the using of Classical Approach in Designing Management Information Systems

    OpenAIRE

    Mohammad M M Abu Omar; Khairul Anuar Abdullah

    2015-01-01

    Management information system (MIS) is used to solve management problems in the practical life, the designing and building of the management information systems is done by using one of the systems development methodologies. Classical approach is one of these methodologies which still suffer from some critical problems when it is used in designing and building the management information systems, it consumes more time and cost during its life cycle. This paper develops a new integrated model to...

  11. Development of Parametric Mass and Volume Models for an Aerospace SOFC/Gas Turbine Hybrid System

    Science.gov (United States)

    Tornabene, Robert; Wang, Xiao-yen; Steffen, Christopher J., Jr.; Freeh, Joshua E.

    2005-01-01

    In aerospace power systems, mass and volume are key considerations to produce a viable design. The utilization of fuel cells is being studied for a commercial aircraft electrical power unit. Based on preliminary analyses, a SOFC/gas turbine system may be a potential solution. This paper describes the parametric mass and volume models that are used to assess an aerospace hybrid system design. The design tool utilizes input from the thermodynamic system model and produces component sizing, performance, and mass estimates. The software is designed such that the thermodynamic model is linked to the mass and volume model to provide immediate feedback during the design process. It allows for automating an optimization process that accounts for mass and volume in its figure of merit. Each component in the system is modeled with a combination of theoretical and empirical approaches. A description of the assumptions and design analyses is presented.

  12. [Amphibians as a model system for the investigation of respiratory control development].

    Science.gov (United States)

    Belzile, Olivier; Simard, Edith; Gulemetova, Roumiana; Bairam, Aida; Kinkead, Richard

    2004-10-01

    Recent medical advances have made it possible for babies to survive premature birth at increasingly earlier developmental stages. This population requires costly and sophisticated medical care to address the problems associated with immaturity of the respiratory system. In addition to pulmonary complications, respiratory instability and apnea reflecting immaturity of the respiratory control system are major causes of hospitalization and morbidity in this highly vulnerable population. These medical concerns, combined with the curiosity of physiologists, have contributed to the expansion of research in respiratory neurobiology. While most researchers working in this field commonly use rodents as an animal model, recent research using in vitro brainstem preparation from bullfrogs (Rana catesbeiana) have revealed the technical advantages of this animal model, and shown that the basic principles underlying respiratory control and its ontogeny are very similar between these two groups of vertebrates. The present review highlights the recent advances in the area of research with a focus on intermittent (episodic) breathing and the role of serotonergic and GABAergic modulation of respiratory activity during development.

  13. Zebrafish: an exciting model for investigating the spatio-temporal pattern of enteric nervous system development.

    LENUS (Irish Health Repository)

    Doodnath, Reshma

    2012-02-01

    AIM: Recently, the zebrafish (Danio rerio) has been shown to be an excellent model for human paediatric research. Advantages over other models include its small size, externally visually accessible development and ease of experimental manipulation. The enteric nervous system (ENS) consists of neurons and enteric glia. Glial cells permit cell bodies and processes of neurons to be arranged and maintained in a proper spatial arrangement, and are essential in the maintenance of basic physiological functions of neurons. Glial fibrillary acidic protein (GFAP) is expressed in astrocytes, but also expressed outside of the central nervous system. The aim of this study was to investigate the spatio-temporal pattern of GFAP expression in developing zebrafish ENS from 24 h post-fertilization (hpf), using transgenic fish that express green fluorescent protein (GFP). METHODS: Zebrafish embryos were collected from transgenic GFP Tg(GFAP:GFP)(mi2001) adult zebrafish from 24 to 120 hpf, fixed and processed for whole mount immunohistochemistry. Antibodies to Phox2b were used to identify enteric neurons. Specimens were mounted on slides and imaging was performed using a fluorescent laser confocal microscope. RESULTS: GFAP:GFP labelling outside the spinal cord was identified in embryos from 48 hpf. The patterning was intracellular and consisted of elongated profiles that appeared to migrate away from the spinal cord into the periphery. At 72 and 96 hpf, GFAP:GFP was expressed dorsally and ventrally to the intestinal tract. At 120 hpf, GFAP:GFP was expressed throughout the intestinal wall, and clusters of enteric neurons were identified using Phox2b immunofluorescence along the pathway of GFAP:GFP positive processes, indicative of a migratory pathway of ENS precursors from the spinal cord into the intestine. CONCLUSION: The pattern of migration of GFAP:GFP expressing cells outside the spinal cord suggests an organized, early developing migratory pathway to the ENS. This shows for the

  14. An investigation of a professional development model in science education: A systems approach

    Science.gov (United States)

    Bell, Glenda Love

    The Mathematics and Science Cooperative (MSEC), a four year longevity model of professional development education for in-service teachers, is closely aligned with the spirit and tenets of science for all. This partnership of a university, a school district, and a higher education coordinating board, seeks to promote and improve science and mathematics achievement for underserved and underrepresented populations. This study sought to explore how this model affects elementary in-service teachers' feelings of self-efficacy toward science and science teaching. Interactive Qualitative Research (IQR), a systems approach of natural inquiry, was used for this study. Theory is grounded in the data collected and analyzed through group processes. A core group of teachers, key teachers representing grades one through six and lead teachers the campus contact representatives, received professional development education from university professors in semi-monthly after school workshops and in a three week summer science institute held on-site. In this study, (N = 18) key and lead teachers participated in a focus group, a picture board exercise (a projective type exercise), interviews, and classroom observations. Within the system of the MSEC professional development model, cause and effect relationships among eleven phenomena were identified which had the greatest impact on the teachers' feelings of self-efficacy and science teaching practices. Changed teaching practices were indicated by inquiry-based science lessons with students as active learners. Five principles of self-efficacy: (1) efficacy; (2) goals setting; (3) values; (4) expectancy; and, (5) control beliefs were used to evaluate efficacy beliefs. Findings from the data collection and analysis identified two phenomena, the university instructional leadership role and teacher time commitments and time constraints, both internally and externally imposed, which seemed to have the greatest impact on elementary teachers

  15. GIBSI: an integrated modelling system for watershed management – sample applications and current developments

    Directory of Open Access Journals (Sweden)

    A. N. Rousseau

    2007-11-01

    Full Text Available Hydrological and pollutant fate models have long been developed for research purposes. Today, they find an application in integrated watershed management, as decision support systems (DSS. GIBSI is such a DSS designed to assist stakeholders in watershed management. It includes a watershed database coupled to a GIS and accessible through a user-friendly interface, as well as modelling tools that simulate, on a daily time step, hydrological processes such as evapotranspiration, runoff, soil erosion, agricultural pollutant transport and surface water quality. Therefore, GIBSI can be used to assess a priori the effect of management scenarios (reservoirs, land use, waste water effluents, diffuse sources of pollution that is agricultural pollution on surface hydrology and water quality. For illustration purposes, this paper presents several management-oriented applications using GIBSI on the 6680 km2 Chaudière River watershed, located near Quebec City (Canada. They include impact assessments of: (i municipal clean water program; (ii agricultural nutrient management scenarios; (iii past and future land use changes, as well as (iv determination of achievable performance standards of pesticides management practices. Current and future developments of GIBSI are also presented as these will extend current uses of this tool and make it useable and applicable by stakeholders on other watersheds. Finally, the conclusion emphasizes some of the challenges that remain for a better use of DSS in integrated watershed management.

  16. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.

    Science.gov (United States)

    van Duijvenvoorde, A C K; Achterberg, M; Braams, B R; Peters, S; Crone, E A

    2016-01-01

    The current study aimed to test a dual-systems model of adolescent brain development by studying changes in intrinsic functional connectivity within and across networks typically associated with cognitive-control and affective-motivational processes. To this end, resting-state and task-related fMRI data were collected of 269 participants (ages 8-25). Resting-state analyses focused on seeds derived from task-related neural activation in the same participants: the dorsal lateral prefrontal cortex (dlPFC) from a cognitive rule-learning paradigm and the nucleus accumbens (NAcc) from a reward-paradigm. Whole-brain seed-based resting-state analyses showed an age-related increase in dlPFC connectivity with the caudate and thalamus, and an age-related decrease in connectivity with the (pre)motor cortex. nAcc connectivity showed a strengthening of connectivity with the dorsal anterior cingulate cortex (ACC) and subcortical structures such as the hippocampus, and a specific age-related decrease in connectivity with the ventral medial PFC (vmPFC). Behavioral measures from both functional paradigms correlated with resting-state connectivity strength with their respective seed. That is, age-related change in learning performance was mediated by connectivity between the dlPFC and thalamus, and age-related change in winning pleasure was mediated by connectivity between the nAcc and vmPFC. These patterns indicate (i) strengthening of connectivity between regions that support control and learning, (ii) more independent functioning of regions that support motor and control networks, and (iii) more independent functioning of regions that support motivation and valuation networks with age. These results are interpreted vis-à-vis a dual-systems model of adolescent brain development.

  17. Simulation Model developed for a Small-Scale PV-System in a Distribution Network

    DEFF Research Database (Denmark)

    Koch-Ciobotaru, C.; Mihet-Popa, Lucian; Isleifsson, Fridrik Rafn

    2012-01-01

    This paper presents a PV panel simulation model using the single-diode four-parameter model based on data sheet values. The model was implemented first in MATLAB/Simulink, and the results have been compared with the data sheet values and characteristics of the PV panels in standard test conditions....... Moreover to point out the strong dependency on ambient conditions and its influence on array operation and to validate simulation results with measured data a complex model has also been developed. A PV inverter model, using the same equations and parameters as in MATLAB/Simulink has also been developed...

  18. Stakeholder Engagement in the Development and Application of a Regional Earth Systems Model: Analysis of Researchers' Perceptions

    Science.gov (United States)

    Allen, E. R.; Stephens, J. C.; Kruger, C.; Leung, F. T.

    2011-12-01

    Engaging stakeholders in the development of regional earth systems models has potential to improve model accuracy and enhance model relevance for decision makers. BioEarth is one earth systems modeling project currently under development aimed at investigating how climate and human-induced changes impact environmental nitrogen and carbon cycling. One proposed application of this model is to predict impacts on natural resource management in the Pacific Northwest to inform decision-making by stakeholders in the forestry and agriculture sectors. Integrating input from natural resource managers and other stakeholders into the model development process, therefore, is critical. However, many model developers have limited experience in engaging stakeholders throughout model development processes. Understanding researchers' perceptions of the potential value and challenges of stakeholder engagement in model development at the early phase of the project provides general insights related to science communication as well as project-specific insights. For BioEarth, findings about project scientists' perspectives may inform the design of information exchange mechanisms between researchers and stakeholders. To assess researchers' perceptions of the relevance of the model to decision-making and understand researchers' previous experiences, expectations and concerns regarding stakeholder input and interaction we conducted a semi-formal interview and a quantitative questionnaire with each of the project's 18 principal investigators. Interview transcripts were coded and interpreted following a thematic content analysis approach. We expect to find a range of perceptions among BioEarth researchers regarding the kind of involvement and degree of influence that stakeholders may have in the model development process. We also expect a range of attitudes and approaches toward participatory research processes. In addition to improving the effectiveness of stakeholder engagement in the

  19. Multiscale systems analysis of root growth and development: modeling beyond the network and cellular scales.

    Science.gov (United States)

    Band, Leah R; Fozard, John A; Godin, Christophe; Jensen, Oliver E; Pridmore, Tony; Bennett, Malcolm J; King, John R

    2012-10-01

    Over recent decades, we have gained detailed knowledge of many processes involved in root growth and development. However, with this knowledge come increasing complexity and an increasing need for mechanistic modeling to understand how those individual processes interact. One major challenge is in relating genotypes to phenotypes, requiring us to move beyond the network and cellular scales, to use multiscale modeling to predict emergent dynamics at the tissue and organ levels. In this review, we highlight recent developments in multiscale modeling, illustrating how these are generating new mechanistic insights into the regulation of root growth and development. We consider how these models are motivating new biological data analysis and explore directions for future research. This modeling progress will be crucial as we move from a qualitative to an increasingly quantitative understanding of root biology, generating predictive tools that accelerate the development of improved crop varieties.

  20. PRINCIPLES OF DEVELOPMENT MATHEMATICAL MODEL FOR RESEARCHING OF NONPULSATILE FLOW PUMP AND CARDIAC SYSTEM

    Directory of Open Access Journals (Sweden)

    I. V. Bykov

    2013-01-01

    Full Text Available Aim. The presented research uncovers the using of mathematical modeling methods for cardio-vascular system and axial blood pump interaction analysis under heart failure with combined valve pathology. The research will pro- vide data for automated pump control algorithm synthesis. Materials and methods. Mathematical model is build up by using experiments results from mock cardio-vascular circulation loop and mathematical representation of Newtonian fluid dynamics in pulsing circulation loop. The model implemented in modeling environment Simulink (Matlab. Results. Authors implemented mathematical model which describe cardio-vascular system and left-ven- tricular assistive device interaction for intact conditions. Values of parameters for intact conditions were acquired in the experiments on animals with implanted axial pump, experiments were conducted in FRCTAO. The model was verified by comparison of instantaneous blood flowrate values in experiments and in model. Conclusion. The paper present implemented mathematical model of cardio-vascular system and axial pump interaction for intact conditions, where the pump connected between left ventricle and aorta. In the next part of research authors will use the presented model to evaluate using the biotechnical system in conditions of heart failure and valve pathology. 

  1. Hydrologic modeling of Low Impact Development systems at the urban catchment scale

    Science.gov (United States)

    Palla, Anna; Gnecco, Ilaria

    2015-09-01

    In this paper, the implementation of Low Impact Development systems (LIDs) as source control solutions that contribute to restore the critical components of natural flow regimes, is analyzed at the urban catchment scale. The hydrologic response of a small urban catchment is investigated under different land use conversion scenarios including the installation of green roofs and permeable pavements. The modeling is undertaken using the EPA SWMM; the "do nothing" scenario is calibrated and validated based on field measurements while the LID control modules are calibrated and validated based on laboratory test measurements. The simulations are carried out by using as input the synthetic hyetographs derived for three different return periods (T = 2, 5 and 10 years). Modeling results confirm the effectiveness of LID solutions even for the design storm event (T = 10 years): in particular a minimum land use conversion area, corresponding to the Effective Impervious Area reduction of 5%, is required to obtain noticeable hydrologic benefits. The conversion scenario response is analyzed by using the peak flow reduction, the volume reduction and the hydrograph delay as hydrologic performance indexes. Findings of the present research show that the hydrologic performance linearly increases with increasing the EIA reduction percentages: at 36% EIA reduction (corresponding to the whole conversion of rooftops and parking lot areas), the peak and volume reductions rise till 0.45 and 0.23 respectively while the hydrograph delay increases till 0.19.

  2. Developing an emulsion model system containing canthaxanthin biosynthesized by Dietzia natronolimnaea HS-1.

    Science.gov (United States)

    Gharibzahedi, Seyed Mohammad Taghi; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad

    2012-11-01

    An acceptable strategy to incorporate canthaxanthin (CX) as a natural colorant into products is by means of oil-in-water emulsions. The used CX in this study was produced by bacterium Dietzia natronolimnaea HS-1 using a batch bioreactor system. A central composite rotatable design-response surface methodology (CCRD-RSM) consisting of three-factored factorial design with five levels was applied for analysis of the results to obtain the optimal formulation of emulsions. Three independent variables including fenugreek gum (FG, 0.2-0.5%, w/w), coconut oil (CO, 6-10%, w/w), and CO/CX ratio (10:1-50:1) were transformed to coded values and second-order polynomial models was developed to predict the responses (pproperties such as volume-weighted mean diameter (D₄₃), specific surface area (S(v)) and polydispersity index (PDI) of emulsions. The 3-D response surface plot derived from the mathematical models was used to determine the optimal conditions. Main emulsion components under the optimum conditions ascertained presently by RSM: 50:1 CO/CX ratio, 0.49% (w/w) FG content and 6.28% (w/w) CO concentration. At this optimum point, stability, viscosity, D₄₃, S(v) and PDI were 90.6%, 0.0118 Pas, 0.595 μm, 12.03 m²/ml and 1.380, respectively.

  3. Development and application of an interactive climate-ecosystem model system

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; D. Pollard

    2003-01-01

    A regional climate-ecosystem model system is developed in this study. It overcomes the weakness in traditional one-way coupling models and enables detailed description of interactive process between climate and natural ecosystem. It is applied to interaction study between monsoon climate and ecosystem in East Asia, with emphasis on future climate and ecosystem change scenario forced by doubled CO2. The climate tends to be warmer and wetter under doubled CO2 in Jianghuai and the Yangzi River valley, but it becomes warmer and drier in inland areas of northern and northwestern China. The largest changes and feedbacks between vegetation and climate occur in northern China. Northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change. The strongest vegetation response to climate change occurs in northern China and the weakest in southern China. Vegetation feedbacks intensify warming and reduce drying due to increased CO2 during summer in northern China. Generally, vegetation-climate interactions are much stronger in northern China than in southern China.

  4. DEVELOPING A CONCEPTUAL INFORMATION SYSTEMS (IS) SUCCESS MODEL FOR INTELLIGENT VEHICLE TRACKING SYSTEMS USED IN DEVELOPING COUNTRIES – THE CASE OF GHANA

    DEFF Research Database (Denmark)

    Adjin, Daniel Michael Okwabi

    single case study method. Grounded Theory (GT) method is employed to collect and analyze data. Research population is users of IVTS in Ghana. Purposive sampling technique is employed. Research Tools: Qualitative survey questionnaires & face-to-face interviews were used. Research Results: Most IVTS...... and service usefulness and successfulness, low system and service impacts & benefits. To address these worrying problems, a conceptual IS success model usable in measuring the performance of IVTS and services deployed in developing countries is proposed. Methodology: Qualitative, Exploratory & Descriptive...

  5. Developing a disability determination model using a decision support system in Taiwan: a pilot study.

    Science.gov (United States)

    Chi, Wen-Chou; Liou, Tsan-Hon; Wennie Huang, Wen-Ni; Yen, Chia-Feng; Teng, Sue-Wen; Chang, I-Chiu

    2013-08-01

    The aims of our study were to: (1) develop the Disability Grading Decision Support System (DGDSS) and to (2) compare the new International Classification of Functioning, Disability, and Health (ICF)-based disability determination tool (ICF-DDT) with the diagnosis-based disability determination tool (D-DDT). A total of 9357 patients recruited from 236 accredited institutions were evaluated using the ICF-DDT and the D-DDT, and the presence, severity, and category of the disability identified using the two determination tools were compared. In the DGDSS, the ICF-DDT consisted of four models comprising nine modules to determine the presence and the severity of the disability. The differences between models (modules) are the different combinations of World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) and Scale of Body Functions and Structures. Compared with the D-DDT, more patients were determined to be disability-free when using the ICF-DDT. Module 1-1 had the highest profoundly severe rate, and module 2-2 had the highest mild and moderate disability rates. Module 2-1 had the highest severe disability rate. Module 1-1 resulted in the smallest difference, and module 3-1 resulted in the largest difference, compared with the D-DDT. Feedback from users suggested that the DGDSS is a robust system if the original data are accurate. The presence, severity, and category of the disability determined using the ICF-DDT and the D-DDT were significantly different. The results of the DGDSS provide information for policymakers to determine the optimal allocation of social welfare and medical resources for people with disabilities. Copyright © 2013. Published by Elsevier B.V.

  6. Modeling Acequia Irrigation Systems Using System Dynamics: Model Development, Evaluation, and Sensitivity Analyses to Investigate Effects of Socio-Economic and Biophysical Feedbacks

    Directory of Open Access Journals (Sweden)

    Benjamin L. Turner

    2016-10-01

    Full Text Available Agriculture-based irrigation communities of northern New Mexico have survived for centuries despite the arid environment in which they reside. These irrigation communities are threatened by regional population growth, urbanization, a changing demographic profile, economic development, climate change, and other factors. Within this context, we investigated the extent to which community resource management practices centering on shared resources (e.g., water for agricultural in the floodplains and grazing resources in the uplands and mutualism (i.e., shared responsibility of local residents to maintaining traditional irrigation policies and upholding cultural and spiritual observances embedded within the community structure influence acequia function. We used a system dynamics modeling approach as an interdisciplinary platform to integrate these systems, specifically the relationship between community structure and resource management. In this paper we describe the background and context of acequia communities in northern New Mexico and the challenges they face. We formulate a Dynamic Hypothesis capturing the endogenous feedbacks driving acequia community vitality. Development of the model centered on major stock-and-flow components, including linkages for hydrology, ecology, community, and economics. Calibration metrics were used for model evaluation, including statistical correlation of observed and predicted values and Theil inequality statistics. Results indicated that the model reproduced trends exhibited by the observed system. Sensitivity analyses of socio-cultural processes identified absentee decisions, cumulative income effect on time in agriculture, and land use preference due to time allocation, community demographic effect, effect of employment on participation, and farm size effect as key determinants of system behavior and response. Sensitivity analyses of biophysical parameters revealed that several key parameters (e.g., acres per

  7. Development of a hybrid 3-D hydrological model to simulate hillslopes and the regional unconfined aquifer system in Earth system models

    Science.gov (United States)

    Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.

    2015-12-01

    The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate

  8. Development of a Low-Order Model of an X-Wing Aircraft by System Identification.

    Science.gov (United States)

    1982-02-01

    The original purpose of this contract was to prepare a flight test plan for the proposed X-wing demonstrator using system identification to extract...demonstration of the feasibility of using system identification techniques to extract low-order math models from time history data from a detailed X-wing rotor simulation (REXOR).

  9. Model-based temperature measurement system development for marine methane hydrate-bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Fukuhara, Masafumi; Sugiyama, Hitoshi; Igarashi, Juei; Fujii, Kasumi; Shun' etsu, Onodera; Tertychnyi, Vladimir; Shandrygin, Alexander; Pimenov, Viacheslav; Shako, Valery; Matsubayashi, Osamu; Ochiai, Koji

    2005-07-01

    This paper describes the effect of the sensor installation on the temperature of the hydrate-bearing sediments through modeling, how the system was deployed in Nankai Trough area in Japan, and the features of the marine methane hydrate temperature measurement system. (Author)

  10. System model development for a methanol reformed 5 kW high temperature PEM fuel cell system

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    This work investigates the system performance when reforming methanol in an oil heated reformer system for a 5 kW fuel cell system. A dynamic model of the system is created and evaluated. The system is divided into 4 separate components. These components are the fuel cell, reformer, burner...... and evaporator, which are connected by two separate oil circuits, one with a burner and reformer and one with a fuel cell and evaporator. Experiments were made on the reformer and measured oil and bed temperatures are presented in multiple working points. The system is examined at loads from 0 to 5000 W electric...

  11. Thermal hydraulic test for reactor safety system - Critical heat flux experiment and development of prediction models

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Yang, Soo Hyung; No, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea)

    2000-04-01

    To acquire CHF data through the experiments and develop prediction models, research was conducted. Final objectives of research are as follows: 1) Production of tube CHF data for low and middle pressure and mass flux and Flow Boiling Visualization. 2) Modification and suggestion of tube CHF prediction models. 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. The major results of research are as follows: 1) Production of the CHF data for low and middle pressure and mass flux. - Acquisition of CHF data (764) for low and middle pressure and flow conditions - Analysis of CHF trends based on the CHF data - Assessment of existing CHF prediction methods with the CHF data 2) Modification and suggestion of tube CHF prediction models. - Development of a unified CHF model applicable for a wide parametric range - Development of a threshold length correlation - Improvement of CHF look-up table using the threshold length correlation 3) Development of fuel bundle CHF prediction methodology base on tube CHF prediction models. - Development of bundle CHF prediction methodology using correction factor. 11 refs., 134 figs., 25 tabs. (Author)

  12. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    Energy Technology Data Exchange (ETDEWEB)

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  13. A predictive model of the development of national mental health systems.

    Science.gov (United States)

    Hudson, Christopher G

    2010-12-01

    An emerging body of research in the field of international mental health, in part stimulated by the World Mental Health Survey Initiative, has made only limited progress in understanding variations in levels of development in mental health services across nations. However, the World Health Organization's recent initiatives involving the Assessment Instrument for Mental Health Systems (WHO-AIMS) and its publication of the Mental Health Atlas now present new opportunities for understanding transnational mental health policy development. This study, thus, aims to increase understanding of the dimensions and conditions associated with the differential levels of development of national mental health. Specifically, it addresses two questions: Are there one or multiple dimensions characteristic of this development? What are the relative contributions of demographic, economic, political, social, cultural, and geographic conditions in predicting the levels of various nations on these dimensions? This study employs a secondary analysis of existing data derived from both WHO's Mental Health Atlas and other archival sources to address the above questions. Analyses of patterns of missing data supported decisions to restrict the sample to 138 nations. The first question on dimensions of development was addressed with a Varimax factor analysis using a matrix of polychoric, tetrachoric, and Pearson correlations. Factor scores were calculated for the resulting three factors, and to address the second question on predictors, these were each analyzed with multiple regression models. Three orthogonal or uncorrelated dimensions were identified that are characteristic of the 138 nations: (i) General Mental Health Services (professionals and inpatient beds), (ii) Public Mental Health Program; and (iii) Community Mental Health that collectively accounted for 45% of the variance in the database of WHO predictors. Only one, General Mental Health Services, was substantially explained (Adj. R

  14. Vaccine safety monitoring systems in developing countries: an example of the Vietnam model.

    Science.gov (United States)

    Ali, Mohammad; Rath, Barbara; Thiem, Vu Dinh

    2015-01-01

    Only few health intervention programs have been as successful as vaccination programs with respect to preventing morbidity and mortality in developing countries. However, the success of a vaccination program is threatened by rumors and misunderstanding about the risks of vaccines. It is short-sighted to plan the introduction of vaccines into developing countries unless effective vaccine safety monitoring systems are in place. Such systems that track adverse events following immunization (AEFI) is currently lacking in most developing countries. Therefore, any rumor may affect the entire vaccination program. Public health authorities should implement the safety monitoring system of vaccines, and disseminate safety issues in a proactive mode. Effective safety surveillance systems should allow for the conduct of both traditional and alternative epidemiologic studies through the use of prospective data sets. The vaccine safety data link implemented in Vietnam in mid-2002 indicates that it is feasible to establish a vaccine safety monitoring system for the communication of vaccine safety in developing countries. The data link provided the investigators an opportunity to evaluate AEFI related to measles vaccine. Implementing such vaccine safety monitoring system is useful in all developing countries. The system should be able to make objective and clear communication regarding safety issues of vaccines, and the data should be reported to the public on a regular basis for maintaining their confidence in vaccination programs.

  15. Optimal management of reconfigurable manufacturing system modeling with Petri nets developed three-dimensional - RPD3D

    Science.gov (United States)

    Teodor, F.; Marinescu, V.; Epureanu, A.

    2016-11-01

    Modeling of reconfigurable manufacturing systems would have done using existing Petri net types, but the complexity and dynamics of the new manufacturing system, mainly data reconfiguration feature, required looking for a more compact representation with many variables that to model as accurately not only the normal operation of the production system but can capture and model and reconfiguration process. Thus, it was necessary to create a new class of Petri nets, called RPD3D (Developed Petri nets with three dimensional) showing the name of both lineage (new class derived from Petri nets developed, created in 2000 by Prof. Dr. Ing Vasile Marinescu in his doctoral thesis) [1], but the most important of the new features defining (transformation from one 2D model into a 3D model).The idea was to introduce the classical model of a Petri third dimension to be able to overlay multiple levels (layers) formed in 2D or 3D Petri nets that interact with each other (receiving or giving commands to enable or disable the various modules together simulating the operation of reconfigurable manufacturing systems). The aim is to present a new type of Petri nets called RPD3D - Developed Petri three-dimensional model used for optimal control and simulation of reconfigurable manufacturing systems manufacture of products such systems.

  16. Development of a Diagnostic and Remedial Learning System Based on an Enhanced Concept--Effect Model

    Science.gov (United States)

    Panjaburees, Patcharin; Triampo, Wannapong; Hwang, Gwo-Jen; Chuedoung, Meechoke; Triampo, Darapond

    2013-01-01

    With the rapid advances in computer technology during recent years, researchers have demonstrated the pivotal influences of computer-assisted diagnostic systems on student learning performance improvement. This research aims to develop a Diagnostic and Remedial Learning System (DRLS) for an algebra course in a Thai lower secondary school context…

  17. A Biomechanical Model for the Development of Myoelectric Hand Prosthesis Control Systems

    NARCIS (Netherlands)

    Peerdeman, Bart; Boere, Daphne; Kallenberg, Laura; Stramigioli, Stefano; Misra, Sarthak

    2010-01-01

    Advanced myoelectric hand prostheses aim to reproduce as much of the human hand's functionality as possible. Development of the control system of such a prosthesis is strongly connected to its mechanical design; the control system requires accurate information on the prosthesis' structure and the su

  18. Engineering Model Propellant Feed System Development for an Iodine Hall Thruster Demonstration Mission

    Science.gov (United States)

    Polzin, Kurt A.

    2016-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cu cm and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high (Delta)v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (< 100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum

  19. Development of a Human Motor Model for the Evaluation of an Integrated Alerting and Notification Flight Deck System

    Science.gov (United States)

    Daiker, Ron; Schnell, Thomas

    2010-01-01

    A human motor model was developed on the basis of performance data that was collected in a flight simulator. The motor model is under consideration as one component of a virtual pilot model for the evaluation of NextGen crew alerting and notification systems in flight decks. This model may be used in a digital Monte Carlo simulation to compare flight deck layout design alternatives. The virtual pilot model is being developed as part of a NASA project to evaluate multiple crews alerting and notification flight deck configurations. Model parameters were derived from empirical distributions of pilot data collected in a flight simulator experiment. The goal of this model is to simulate pilot motor performance in the approach-to-landing task. The unique challenges associated with modeling the complex dynamics of humans interacting with the cockpit environment are discussed, along with the current state and future direction of the model.

  20. IN VITRO COMPARISON OF MAXIMUM PRESSURE DEVELOPED BY IRRIGATION SYSTEMS IN A KIDNEY MODEL.

    Science.gov (United States)

    Proietti, Silvia; Dragos, Laurian; Somani, Bhaskar K; Butticè, Salvatore; Talso, Michele; Emiliani, Esteban; Baghdadi, Mohammed; Giusti, Guido; Traxer, Olivier

    2017-04-05

    To evaluate in vitro the maximum pressure generated in an artificial kidney model when people of different levels of strengths used various irrigation systems. Fifteen people were enrolled and divided in 3 groups based on their strengths. Individual strength was evaluated according to the maximum pressure each participant was able to achieve using an Encore™ Inflator. The irrigation systems evaluated were: T-FlowTM Dual Port, HilineTM, continuous flow single action pumping system (SAPSTM) with the system close and open, Irri-flo IITM, a simple 60-ml syringe and PeditrolTM . Each irrigation system was connected to URF-V2 ureteroscope, which was inserted into an artificial kidney model. Each participant was asked to produce the maximum pressure possible with every irrigation device. Pressure was measured with the working channel (WC) empty, with a laser fiber and a basket inside. The highest pressure was achieved with the 60 ml-syringe system and the lowest with SAPS continuous version system (with continuous irrigation open), compared to the other irrigation devices (p< 0.0001). Irrespective of the irrigation system, there was a significant difference in the pressure between the WC empty and when occupied with the laser fiber or the basket inside it (p<0.0001). The stratification between the groups showed that the most powerful group could produce the highest pressure in the kidney model with all the irrigation devices in almost any situation. The exception to this was the T-Flow system, which was the only device where no statistical differences were detected among these groups. The use of irrigation systems can often generate excessive pressure in an artificial kidney model, especially with an unoccupied WC of the ureteroscope. Depending on the strength of force applied, very high pressure can be generated by most irrigation devices irrespective of whether the scope is occupied or not.

  1. Investigation and Development of Data-Driven D-Region Model for HF Systems Impacts

    Science.gov (United States)

    Eccles, J. V.; Rice, D.; Sojka, J. J.; Hunsucker, R. D.

    2002-01-01

    Space Environment Corporation (SEC) and RP Consultants (RPC) are to develop and validate a weather-capable D region model for making High Frequency (HF) absorption predictions in support of the HF communications and radar communities. The weather-capable model will assimilate solar and earth space observations from NASA satellites. The model will account for solar-induced impacts on HF absorption, including X-rays, Solar Proton Events (SPE's), and auroral precipitation. The work plan includes: I . Optimize D-region model to quickly obtain ion and electron densities for proper HF absorption calculations. 2. Develop indices-driven modules for D-region ionization sources for low, mid, & high latitudes including X-rays, cosmic rays, auroral precipitation, & solar protons. (Note: solar spectrum & auroral modules already exist). 3. Setup low-cost monitors of existing HF beacons and add one single-frequency beacon. 4. Use PENEX HF-link database with HF monitor data to validate D-region/HF absorption model using climatological ionization drivers. 5. Develop algorithms to assimilate NASA satellite data of solar, interplanetary, and auroral observations into ionization source modules. 6. Use PENEX HF-link & HF-beacon data for skill score comparison of assimilation versus climatological D-region/HF absorption model. Only some satellites are available for the PENEX time period, thus, HF-beacon data is necessary. 7. Use HF beacon monitors to develop HF-link data assimilation algorithms for regional improvement to the D-region/HF absorption model.

  2. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    Science.gov (United States)

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and the…

  3. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    Science.gov (United States)

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and…

  4. Development of Experienced Science Teachers' Pedagogical Content Knowledge of Models of the Solar System and the Universe

    Science.gov (United States)

    Henze, Ineke; van Driel, Jan H.; Verloop, Nico

    2008-01-01

    This paper investigates the developing pedagogical content knowledge (PCK) of nine experienced science teachers in their first few years of teaching a new science syllabus in the Dutch secondary education system. We aimed to identify the content and structure of the PCK for a specific topic in the new syllabus, "Models of the Solar System and…

  5. Applying an MVC Framework for The System Development Life Cycle with Waterfall Model Extended

    Science.gov (United States)

    Hardyanto, W.; Purwinarko, A.; Sujito, F.; Masturi; Alighiri, D.

    2017-04-01

    This paper describes the extension of the waterfall model using MVC architectural pattern for software development. The waterfall model is the based model of the most widely used in software development, yet there are still many problems in it. The general issue usually happens on data changes that cause the delays on the process itself. On the other hand, the security factor on the software as well as one of the major problems. This study uses PHP programming language for implementation. Although this model can be implemented in several programming languages with the same concept. This study is based on MVC architecture so that it can improve the performance of both software development and maintenance, especially concerning security, validation, database access, and routing.

  6. Development of simplified ecosystem models for applications in Earth system studies: The Century experience

    Science.gov (United States)

    Parton, William J.; Ojima, Dennis S.; Schimel, David S.; Kittel, Timothy G. F.

    1992-01-01

    During the past decade, a growing need to conduct regional assessments of long-term trends of ecosystem behavior and the technology to meet this need have converged. The Century model is the product of research efforts initially intended to develop a general model of plant-soil ecosystem dynamics for the North American central grasslands. This model is now being used to simulate plant production, nutrient cycling, and soil organic matter dynamics for grassland, crop, forest, and shrub ecosystems in various regions of the world, including temperate and tropical ecosystems. This paper will focus on the philosophical approach used to develop the structure of Century. The steps included were model simplification, parameterization, and testing. In addition, the importance of acquiring regional data bases for model testing and the present regional application of Century in the Great Plains, which focus on regional ecosystem dynamics and the effect of altering environmental conditions, are discussed.

  7. A precise electromagnetic field model useful for development of microwave imaging systems

    DEFF Research Database (Denmark)

    Chaber, Bartosz; Mohr, Johan Jacob

    2016-01-01

    Purpose - The paper describes a fast forward electromagnetic model built with help of commercial software. The purpose of this paper is to create an efficient and robust electromagnetic field model that could be easily plugged into a working microwave imaging system. The secondary purpose...... is to evaluate advantages and disadvantages of such a commercial packages for creating such a model.Design/methodology/approach - In this paper the authors decided to build the model using COMSOL Multiphysics software suite, ultimately comparing its result to measurements of a real device. The numerical model...... the team changes. Transfer of knowledge associated with the numerical tools is much easier when the tools are constructed using a common platform, i.e. commercial packages. It does not really matter if the software is free or proprietary as long as the platform provides efficient tools assisting in model...

  8. Systems Science for Caribbean Health: the development and piloting of a model for guiding policy on diabetes in the Caribbean.

    Science.gov (United States)

    Guariguata, L; Guell, C; Samuels, T A; Rouwette, E A J A; Woodcock, J; Hambleton, I R; Unwin, N

    2016-10-26

    Diabetes is highly prevalent in the Caribbean, associated with a high morbidity and mortality and is a recognised threat to economic and social development. Heads of Government in the Caribbean Community came together in 2007 and declared their commitment to reducing the burden of non-communicable diseases (NCDs), including diabetes, by calling for a multi-sectoral, systemic response. To facilitate the development of effective policies, policymakers are being engaged in the development and use of a system dynamics (SD) model of diabetes for Caribbean countries. Previous work on a diabetes SD model from the United States of America (USA) is being adapted to a local context for three countries in the region using input from stakeholders, a review of existing qualitative and quantitative data, and collection of new qualitative data. Three country models will be developed using one-on-one stakeholder engagement and iterative revision. An inter-country model will also be developed following a model-building workshop. Models will be compared to each other and to the USA model. The inter-country model will be used to simulate policies identified as priorities by stakeholders and to develop targets for prevention and control. The model and model-building process will be evaluated by stakeholders and a manual developed for use in other high-burden developing regions. SD has been applied with success for health policy development in high-income country settings. The utility of SD in developing countries as an aid to policy decision-making related to NCDs has not been tested. This study represents the first of its kind.

  9. Development of an Accurate Urban Modeling System Using CAD/GIS Data for Atmosphere Environmental Simulation

    Institute of Scientific and Technical Information of China (English)

    Tomosato Takada; Kazuo Kashiyama

    2008-01-01

    This paper presents an urban modeling system using CAD/GIS data for atmosphere environ- mental simulation, such as wind flow and contaminant spread in urban area. The CAD data is used for the shape modeling for the high-storied buildings and civil structures with complicated shape since the data for that is not included in the 3D-GIS data accurately. The unstructured mesh based on the tetrahedron element is employed in order to express the urban structures with complicated shape accurately. It is difficult to un- derstand the quality of shape model and mesh by the conventional visualization technique. In this paper, the stereoscopic visualization using virtual reality (VR) technology is employed for the vedfication of the quality of shape model and mesh. The present system is applied to the atmosphere environmental simulation in ur- ban area and is shown to be an useful planning and design tool to investigate the atmosphere environmental problem.

  10. Hot-gas cleanup system model development. Volume II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    Under Contract to the Department of Energy (DOE) through the Morgantown Energy Technology Center (METC), Flow Industries, Inc., has developed computer models to simulate the physical performance of five hot-gas cleanup devices for pressurized, fluidized-bed combustion (PFBC), combined-cycle power plants. Separate cost models have also been developed to estimate the cost of each device. The work leading to the development of these models is described in Volume I of this report. This volume contains the user's manuals for both the physical and cost models. The manuals for the physical models are given first followed by those for the cost models. Each manual is a complete and separate document. The model names and devices and their respective subroutine names are: (1) Moving Granular Bed Filter by Combustion Power Company, USRCGB, QFCOST; (2) Ceramic Bag Filter by Acurex, USRACB, QDCOST; (3) Electrostatic Granular Bed Filter by General Electric, USRGGB, QACOST; (4) Electrostatic Precipitator by Research Cottrell, USRCEP, QECOST; and (5) Electrocyclone by General Electric, USRGCY, QBCOST.

  11. Modeling, Analysis and Simulation Approaches Used in Development of the National Aeronautics and Space Administration Max Launch Abort System

    Science.gov (United States)

    Yuchnovicz, Daniel E.; Dennehy, Cornelius J.; Schuster, David M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center was chartered to develop an alternate launch abort system (LAS) as risk mitigation for the Orion Project. Its successful flight test provided data for the design of future LAS vehicles. Design of the flight test vehicle (FTV) and pad abort trajectory relied heavily on modeling and simulation including computational fluid dynamics for vehicle aero modeling, 6-degree-of-freedom kinematics models for flight trajectory modeling, and 3-degree-of-freedom kinematics models for parachute force modeling. This paper highlights the simulation techniques and the interaction between the aerodynamics, flight mechanics, and aerodynamic decelerator disciplines during development of the Max Launch Abort System FTV.

  12. Developing a Model Component

    Science.gov (United States)

    Fields, Christina M.

    2013-01-01

    The Spaceport Command and Control System (SCCS) Simulation Computer Software Configuration Item (CSCI) is responsible for providing simulations to support test and verification of SCCS hardware and software. The Universal Coolant Transporter System (UCTS) was a Space Shuttle Orbiter support piece of the Ground Servicing Equipment (GSE). The initial purpose of the UCTS was to provide two support services to the Space Shuttle Orbiter immediately after landing at the Shuttle Landing Facility. The UCTS is designed with the capability of servicing future space vehicles; including all Space Station Requirements necessary for the MPLM Modules. The Simulation uses GSE Models to stand in for the actual systems to support testing of SCCS systems during their development. As an intern at Kennedy Space Center (KSC), my assignment was to develop a model component for the UCTS. I was given a fluid component (dryer) to model in Simulink. I completed training for UNIX and Simulink. The dryer is a Catch All replaceable core type filter-dryer. The filter-dryer provides maximum protection for the thermostatic expansion valve and solenoid valve from dirt that may be in the system. The filter-dryer also protects the valves from freezing up. I researched fluid dynamics to understand the function of my component. The filter-dryer was modeled by determining affects it has on the pressure and velocity of the system. I used Bernoulli's Equation to calculate the pressure and velocity differential through the dryer. I created my filter-dryer model in Simulink and wrote the test script to test the component. I completed component testing and captured test data. The finalized model was sent for peer review for any improvements. I participated in Simulation meetings and was involved in the subsystem design process and team collaborations. I gained valuable work experience and insight into a career path as an engineer.

  13. The KIAPS global NWP model development project at the Korea Institute of Atmospheric Prediction Systems (KIAPS.org)

    Science.gov (United States)

    Kim, Young-Joon; Shin, Dong-Wook; Jin, Emilia; Oh, Tae-Jin; Song, Hyo-Jong; Song, In-Sun

    2013-04-01

    A nine-year project to develop Korea's own global Numerical Weather Prediction (NWP) system was launched in 2011 by the Korea Meteorological Administration (KMA) with the total funding of about 100 million US dollars. For the task, the Korea Institute of Atmospheric Prediction Systems (KIAPS) was founded by KMA as an independent, non-profit organization. The project consists of three main stages. The first stage (2011-2013) is to set up the Institute, recruit researchers, lay out plans for the research and development, and design the basic structure and explore/develop core NWP technologies. The second stage (2014-2016) aims at developing the basic modules for the dynamical core, physical parameterizations and data assimilation systems as well as the applied module for the system framework and couplers to connect the basic modules and external models, respectively, in a systematic and efficient way. The third stage (2017-2019) is for validating the prototype NWP system built in stage 2, including necessary post-processing systems, by selecting/improving modules and refining/finalizing the system for operational use at KMA. KIAPS designed key modules for the dynamical core by adopting existing and/or developing new cores, and developed a barotropic model first and a baroclinic model later with code parallelization and optimization in mind. Various physical parameterization schemes, including those used operationally in NWP models as well as those developed by Korean scientists, are being evaluated and improved by using single-column and LES models, and explicit simulations, etc. The control variables for variational data assimilation systems, the testbeds for observational data pre-processing systems, have been designed, the linear models for a barotropic system have been constructed, and the modules for cost function minimization have been developed. The module framework, which is flexible for prognostic and diagnostic variables, is being developed, the I

  14. Description and development of the means of a model experiment for load balancing in distributed computing systems

    Science.gov (United States)

    Nagiyev, A. E.; Sherstnyova, A. I.; Botygin, I. A.; Galanova, N. Y.

    2016-06-01

    The results of the statistical model experiments research of various load balancing algorithms in distributed computing systems are presented. Software tools were developed. These tools, which allow to create a virtual infrastructure of distributed computing system in accordance with the intended objective of the research focused on multi-agent and multithreaded data processing were developed. A diagram of the control processing of requests from the terminal devices, providing an effective dynamic horizontal scaling of computing power at peak loads, is proposed.

  15. A Multilevel Design Model: the mutual relationship between product-service system development and societal change processes

    OpenAIRE

    Joore, J.P.; J.C. Brezet

    2014-01-01

    Change actors like designers play a strategic role in innovation and transition processes towards a sustainable society. They act at all levels of society and need help to find their way through increasingly interrelated innovation systems. To support their efforts, there is a need for a design supportive model that (1) can provide insight into the development of new products and product-service systems, as well as in developments that occur in society as a whole; (2) can provide insight into...

  16. A development process meta-model for Web based expert systems: The Web engineering point of view

    DEFF Research Database (Denmark)

    Dokas, I.M.; Alapetite, Alexandre

    2006-01-01

    Similar to many legacy computer systems, expert systems can be accessed via the Web, forming a set of Web applications known as Web based expert systems. The tough Web competition, the way people and organizations rely on Web applications and theincreasing user requirements for better services have...... raised their complexity. Unfortunately, there is so far no clear answer to the question: How may the methods and experience of Web engineering and expert systems be combined and applied in order todevelop effective and successful Web based expert systems? In an attempt to answer this question......, a development process meta-model for Web based expert systems will be presented. Based on this meta-model, a publicly available Web based expert systemcalled Landfill Operation Management Advisor (LOMA) was developed. In addition, the results of an accessibility evaluation on LOMA – the first ever reported...

  17. Performance study of a heat pump dryer system for speciality crops - Pt. 1: development of a simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Adapa, P.K.; Schoenau, G.J.; Sokhansanj, S. [University of Saskatchewan (Canada). College of Engineering

    2002-07-01

    This research is concerned with the technology of heat pump assisted drying of specialty crops. A simplified procedure for modelling the performance of a low temperature heat pump dryer was developed. The system modelled consists of a vapour compression heat pump coupled to a continuous cross flow bed dryer. The model takes into account the detailed heat and mass transfer phenomena taking place in the heat pump and dryer circuits. (author)

  18. L-Py: an L-System simulation framework for modeling plant development based on a dynamic language

    Directory of Open Access Journals (Sweden)

    Frederic eBoudon

    2012-05-01

    Full Text Available The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e. languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: i by keeping a simple syntax while allowing for high-level programming constructs, ii by making code execution easy and avoiding compilation overhead iii allowing a high level of model reusability and the building of complex modular models iv and by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  19. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language.

    Science.gov (United States)

    Boudon, Frédéric; Pradal, Christophe; Cokelaer, Thomas; Prusinkiewicz, Przemyslaw; Godin, Christophe

    2012-01-01

    The study of plant development requires increasingly powerful modeling tools to help understand and simulate the growth and functioning of plants. In the last decade, the formalism of L-systems has emerged as a major paradigm for modeling plant development. Previous implementations of this formalism were made based on static languages, i.e., languages that require explicit definition of variable types before using them. These languages are often efficient but involve quite a lot of syntactic overhead, thus restricting the flexibility of use for modelers. In this work, we present an adaptation of L-systems to the Python language, a popular and powerful open-license dynamic language. We show that the use of dynamic language properties makes it possible to enhance the development of plant growth models: (i) by keeping a simple syntax while allowing for high-level programming constructs, (ii) by making code execution easy and avoiding compilation overhead, (iii) by allowing a high-level of model reusability and the building of complex modular models, and (iv) by providing powerful solutions to integrate MTG data-structures (that are a common way to represent plants at several scales) into L-systems and thus enabling to use a wide spectrum of computer tools based on MTGs developed for plant architecture. We then illustrate the use of L-Py in real applications to build complex models or to teach plant modeling in the classroom.

  20. Modelica-based Modeling and Simulation to Support Research and Development in Building Energy and Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-02-12

    Traditional building simulation programs possess attributes that make them difficult to use for the design and analysis of building energy and control systems and for the support of model-based research and development of systems that may not already be implemented in these programs. This article presents characteristic features of such applications, and it shows how equation-based object-oriented modelling can meet requirements that arise in such applications. Next, the implementation of an open-source component model library for building energy systems is presented. The library has been developed using the equation-based object-oriented Modelica modelling language. Technical challenges of modelling and simulating such systems are discussed. Research needs are presented to make this technology accessible to user groups that have more stringent requirements with respect to the numerical robustness of simulation than a research community may have. Two examples are presented in which models from the here described library were used. The first example describes the design of a controller for a nonlinear model of a heating coil using model reduction and frequency domain analysis. The second example describes the tuning of control parameters for a static pressure reset controller of a variable air volume flow system. The tuning has been done by solving a non-convex optimization problem that minimizes fan energy subject to state constraints.

  1. Is Model-Based Development a Favorable Approach for Complex and Safety-Critical Computer Systems on Commercial Aircraft?

    Science.gov (United States)

    Torres-Pomales, Wilfredo

    2014-01-01

    A system is safety-critical if its failure can endanger human life or cause significant damage to property or the environment. State-of-the-art computer systems on commercial aircraft are highly complex, software-intensive, functionally integrated, and network-centric systems of systems. Ensuring that such systems are safe and comply with existing safety regulations is costly and time-consuming as the level of rigor in the development process, especially the validation and verification activities, is determined by considerations of system complexity and safety criticality. A significant degree of care and deep insight into the operational principles of these systems is required to ensure adequate coverage of all design implications relevant to system safety. Model-based development methodologies, methods, tools, and techniques facilitate collaboration and enable the use of common design artifacts among groups dealing with different aspects of the development of a system. This paper examines the application of model-based development to complex and safety-critical aircraft computer systems. Benefits and detriments are identified and an overall assessment of the approach is given.

  2. Development and modeling of a stereo vision focusing system for a field programmable gate array robot

    Science.gov (United States)

    Tickle, Andrew J.; Buckle, James; Grindley, Josef E.; Smith, Jeremy S.

    2010-10-01

    Stereo vision is a situation where an imaging system has two or more cameras in order to make it more robust by mimicking the human vision system. By using two inputs, knowledge of their own relative geometry can be exploited to derive depth information from the two views they receive. 3D co-ordinates of an object in an observed scene can be computed from the intersection of the two sets of rays. Presented here is the development of a stereo vision system to focus on an object at the centre of a baseline between two cameras at varying distances. This has been developed primarily for use on a Field Programmable Gate Array (FPGA) but an adaptation of this developed methodology is also presented for use with a PUMA 560 Robotic Manipulator with a single camera attachment. The two main vision systems considered here are a fixed baseline with an object moving at varying distances from this baseline, and a system with a fixed distance and a varying baseline. These two differing situations provide enough data so that the co-efficient variables that determine the system operation can be calibrated automatically with only the baseline value needing to be entered, the system performs all the required calculations for the user for use with a baseline of any distance. The limits of system with regards to the focusing accuracy obtained are also presented along with how the PUMA 560 controls its joints for the stereo vision and how it moves from one position to another to attend stereo vision compared to the two camera system for the FPGA. The benefits of such a system for range finding in mobile robotics are discussed and how this approach is more advantageous when compared against laser range finders or echolocation using ultrasonics.

  3. Developing and Evaluating Creativity Gamification Rehabilitation System: The Application of PCA-ANFIS Based Emotions Model

    Science.gov (United States)

    Su, Chung-Ho; Cheng, Ching-Hsue

    2016-01-01

    This study aims to explore the factors in a patient's rehabilitation achievement after a total knee replacement (TKR) patient exercises, using a PCA-ANFIS emotion model-based game rehabilitation system, which combines virtual reality (VR) and motion capture technology. The researchers combine a principal component analysis (PCA) and an adaptive…

  4. Developing and Evaluating Creativity Gamification Rehabilitation System: The Application of PCA-ANFIS Based Emotions Model

    Science.gov (United States)

    Su, Chung-Ho; Cheng, Ching-Hsue

    2016-01-01

    This study aims to explore the factors in a patient's rehabilitation achievement after a total knee replacement (TKR) patient exercises, using a PCA-ANFIS emotion model-based game rehabilitation system, which combines virtual reality (VR) and motion capture technology. The researchers combine a principal component analysis (PCA) and an adaptive…

  5. A system dynamics approach to develop a recovery model in the Malaysian automotive industry

    Science.gov (United States)

    Mohamad-Ali, N.; Ghazilla, R. A. R.; Abdul-Rashid, S. H.; Sakundarini, N.; Ahmad-Yazid, A.; Stephenie, L.

    2017-06-01

    Design strategies play a significant role to enhance recovery effectiveness at the end of product life cycle. By reviewing previous study, there are many factors involved to enhance recovery effectiveness but limited to linking design strategies factors in holistic and dynamics view. Proposed method are explained and an initial model for end-of-life vehicles (ELVs) recovery model illustrated in graphical and numerical data is presented. However this is limited to authors understanding and preliminary data which requires collaboration between designers and other stakeholders to develop a model based on actual situation.

  6. Developing microfinance models to facilitate adoption of biogas systems in rural Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Gabrielle [PlaNet Finance, Beijing (China)

    2011-07-01

    This paper discusses a successful means of increasing low-income populations' access to renewable energy technology. Actions included the tailoring of micro-credits to the needs of low-income investors in biogas, the development of systems to assure long-term and efficient use of the technology, and the integration of more comprehensive trainings which increase awareness on the system's requirements for year-long operations especially during the cold winters of Northwest China. (orig.)

  7. Recent developments in imaging system assessment methodology, FROC analysis and the search model.

    Science.gov (United States)

    Chakraborty, Dev P

    2011-08-21

    A frequent problem in imaging is assessing whether a new imaging system is an improvement over an existing standard. Observer performance methods, in particular the receiver operating characteristic (ROC) paradigm, are widely used in this context. In ROC analysis lesion location information is not used and consequently scoring ambiguities can arise in tasks, such as nodule detection, involving finding localized lesions. This paper reviews progress in the free-response ROC (FROC) paradigm in which the observer marks and rates suspicious regions and the location information is used to determine whether lesions were correctly localized. Reviewed are FROC data analysis, a search-model for simulating FROC data, predictions of the model and a method for estimating the parameters. The search model parameters are physically meaningful quantities that can guide system optimization.

  8. Development of a model of machine hand eye coordination and program specifications for a topological machine vision system

    Science.gov (United States)

    1972-01-01

    A unified approach to computer vision and manipulation is developed which is called choreographic vision. In the model, objects to be viewed by a projected robot in the Viking missions to Mars are seen as objects to be manipulated within choreographic contexts controlled by a multimoded remote, supervisory control system on Earth. A new theory of context relations is introduced as a basis for choreographic programming languages. A topological vision model is developed for recognizing objects by shape and contour. This model is integrated with a projected vision system consisting of a multiaperture image dissector TV camera and a ranging laser system. System program specifications integrate eye-hand coordination and topological vision functions and an aerospace multiprocessor implementation is described.

  9. Development, testing, and certification of Owens-Illinois model SEC-601 solar energy collector system

    Science.gov (United States)

    Parker, J. C.

    1979-01-01

    The final results are presented of the additional development work on the existing air-cooled solar energy collector subsystem for use with solar heating and cooling systems. The report discusses the intended use of the final report, describes the deliverable end items, lists program objectives, relates how they were accomplished, deals with problems encountered during fabrication and testing, and includes a certification statement of performance. The report shows that the products developed are marketable and suitable for public use.

  10. Model-Based Development and Evaluation of Control for Complex Multi-Domain Systems

    DEFF Research Database (Denmark)

    Grujic, Ivan; Nilsson, Rene

    Unmanned Aerial Vehicle (UAV) has been constructed and used to develop an attitude controller based on Model Predictive Control (MPC). The MPC controller has been compared to an existing open source Proportional Integral Derivative (PID) attitude controller. This thesis contributes to the discipline...

  11. Remote Medical Diagnosis System (RMDS) Advanced Development Model (ADM) Laboratory Test Results.

    Science.gov (United States)

    1982-01-01

    Develop- ment Model (AD[4) Test and Evaluacion Sumnary Report, WT Rasmussen and I Stevens (NOSC), April 1979. NOSC TNs are informal documents intended...shift was due to simple delay and that the integrity of the waveform was maintained in transmission. For this line, 57 0a 0 0o 0 4xe 000 00 00 E 0 000 a

  12. Advancing hydrometeorological prediction capabilities through standards-based cyberinfrastructure development: The community WRF-Hydro modeling system

    Science.gov (United States)

    gochis, David; Parodi, Antonio; Hooper, Rick; Jha, Shantenu; Zaslavsky, Ilya

    2013-04-01

    The need for improved assessments and predictions of many key environmental variables is driving a multitude of model development efforts in the geosciences. The proliferation of weather and climate impacts research is driving a host of new environmental prediction model development efforts as society seeks to understand how climate does and will impact key societal activities and resources and, in turn, how human activities influence climate and the environment. This surge in model development has highlighted the role of model coupling as a fundamental activity itself and, at times, a significant bottleneck in weather and climate impacts research. This talk explores some of the recent activities and progress that has been made in assessing the attributes of various approaches to the coupling of physics-based process models for hydrometeorology. One example modeling system that is emerging from these efforts is the community 'WRF-Hydro' modeling system which is based on the modeling architecture of the Weather Research and Forecasting (WRF). An overview of the structural components of WRF-Hydro will be presented as will results from several recent applications which include the prediction of flash flooding events in the Rocky Mountain Front Range region of the U.S. and along the Ligurian coastline in the northern Mediterranean. Efficient integration of the coupled modeling system with distributed infrastructure for collecting and sharing hydrometeorological observations is one of core themes of the work. Specifically, we aim to demonstrate how data management infrastructures used in the US and Europe, in particular data sharing technologies developed within the CUAHSI Hydrologic Information System and UNIDATA, can interoperate based on international standards for data discovery and exchange, such as standards developed by the Open Geospatial Consortium and adopted by GEOSS. The data system we envision will help manage WRF-Hydro prediction model data flows, enabling

  13. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    Science.gov (United States)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  14. Development of Linear Irreversible Thermodynamic Model for Oxidation Reduction Potential in Environmental Microbial System

    Science.gov (United States)

    Cheng, Hong-Bang; Kumar, Mathava; Lin, Jih-Gaw

    2007-01-01

    Nernst equation has been directly used to formulate the oxidation reduction potential (ORP) of reversible thermodynamic conditions but applied to irreversible conditions after several assumptions and/or modifications. However, the assumptions are sometimes inappropriate in the quantification of ORP in nonequilibrium system. We propose a linear nonequilibrium thermodynamic model, called microbial related reduction and oxidation reaction (MIRROR Model No. 1) for the interpretation of ORP in biological process. The ORP was related to the affinities of catabolism and anabolism. The energy expenditure of catabolism and anabolism was directly proportional to overpotential (η), straight coefficient of electrode (LEE), and degree of coupling between catabolism and ORP electrode, respectively. Finally, the limitations of MIRROR Model No. 1 were discussed for expanding the applicability of the model. PMID:17496027

  15. Development of an integrated model system to simulate transport and fate of oil spills in seas

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A three-dimensional integrated model is developed for simulating transport and final fate of oil spills in seas.The model contains two main modules,flow and transport-fate modules.The flow module uses an unstructured finite-volume wave-ocean coupling model.Using unstructured meshes provides great flexibility for modeling the flow in complex geometries of tidal creeks,barriers and islands.In the transport-fate module the oil dispersion is solved using a particle-tracking method.Horizontal diffusion is simulated using random walk techniques in a Monte Carlo framework,whereas the vertical diffusion process is solved on the basis of the Langeven equation.The model simulates the most significant processes that affect the motion of oil particles,such as advection,surface spreading,evaporation,dissolution,emulsification and turbulent diffusion as well as the interaction of the oil particles with the shoreline,sedimentation and the temporal variations of oil viscosity,density and surface tension.The model simulates either continuous or instantaneous oil spills,and also other toxic matter.This model has been applied to simulate the oil spill accident in the Bohai Sea.In comparison with the observations,the numerical results indicate that the model is reasonably accurate.

  16. BioEarth: Envisioning and developing a new regional earth system model to inform natural and agricultural resource management

    Energy Technology Data Exchange (ETDEWEB)

    Adam, J. C.; Stephens, J. C.; Chung, Serena; Brady, M. P.; Evans, R. D.; Kruger, C. E.; Lamb, Brian K.; Liu, M. L.; Stockle, Claudio O.; Vaughan, Joseph K.; Rajagopalan, K.; Harrison, John; Tague, C. L.; Kalyanaraman, Anantharaman; Chen, Yong; Guenther, Alex B.; Leung, F. Y.; Leung, Lai-Yung R.; Perleberg, A. B.; Yoder, J.; Allen, Elizabeth; Anderson, S.; Chandrasekharan, B.; Malek, K.; Mullis, T.; Miller, C.; Nergui, T.; Poinsatte, J.; Reyes, J.; Zhu, J.; Choate, J. S.; Jiang, X.; Nelson, R.; Yoon, Jin-Ho; Yorgey, G. G.; Johnson, Kristen; Chinnayakanhalli, K. J.; Hamlet, A. F.; Nijssen, B.; Walden, Von

    2015-04-01

    As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (land, air, water, economics, etc). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers’ needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a current research initiative with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a "bottom-up" approach, upscaling a catchment-scale model to basin and regional scales, as opposed to the "top-down" approach of downscaling global models utilized by most other EaSM efforts. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.

  17. Simulation models developed for voltage control in a distribution network using energy storage systems for PV penetration

    DEFF Research Database (Denmark)

    Mihet-Popa, Lucian; Bindner, Henrik W.

    2013-01-01

    This paper presents the development of simulation models for DER components in a distribution network, with focus on voltage controllers using energy storage systems for PV penetration. The Vanadium Redox Battery (VRB) system model, used as an energy storage system, was implemented in MATLAB....../Simulink and DIgSILENT PowerFactory, based on the efficiency of different components-such as: cell stacks, electrolytes, pumps and power converters, whilst power losses were also taken into account. The simulation results have been validated against measurements using experimental facility of a distributed power...... system laboratory. To study the variability and the interaction between feeders including VRB, PV system and active units an overvoltage controller has also been developed, implemented and tested successfully....

  18. Analysis of enamel development using murine model systems: approaches and limitations

    Science.gov (United States)

    Pugach, Megan K.; Gibson, Carolyn W.

    2014-01-01

    A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI). Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: (1) generating transgenic, knockout, and knockin mouse models, and (2) analyzing rodent enamel mineral density and functional properties (structure and mechanics) of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure, and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex. PMID:25278900

  19. Analysis of enamel development using murine model systems: approaches and limitations.

    Directory of Open Access Journals (Sweden)

    Megan K Pugach

    2014-09-01

    Full Text Available A primary goal of enamel research is to understand and potentially treat or prevent enamel defects related to amelogenesis imperfecta (AI. Rodents are ideal models to assist our understanding of how enamel is formed because they are easily genetically modified, and their continuously erupting incisors display all stages of enamel development and mineralization. While numerous methods have been developed to generate and analyze genetically modified rodent enamel, it is crucial to understand the limitations and challenges associated with these methods in order to draw appropriate conclusions that can be applied translationally, to AI patient care. We have highlighted methods involved in generating and analyzing rodent enamel and potential approaches to overcoming limitations of these methods: 1 generating transgenic, knockout and knockin mouse models, and 2 analyzing rodent enamel mineral density and functional properties (structure, mechanics of mature enamel. There is a need for a standardized workflow to analyze enamel phenotypes in rodent models so that investigators can compare data from different studies. These methods include analyses of gene and protein expression, developing enamel histology, enamel pigment, degree of mineralization, enamel structure and mechanical properties. Standardization of these methods with regard to stage of enamel development and sample preparation is crucial, and ideally investigators can use correlative and complementary techniques with the understanding that developing mouse enamel is dynamic and complex.

  20. Microphysiological models of the developing nervous system (SOT workshop session overview)

    Science.gov (United States)

    Recent advances using human stem cells and other cells that can be ushered through differentiation and developmental maturation offer an unprecedented opportunity to develop predictive systems for toxicological assessment. The use of human cells is an advantage because there is n...

  1. Microphysiological models of the developing nervous system (SOT workshop session overview)

    Science.gov (United States)

    Recent advances using human stem cells and other cells that can be ushered through differentiation and developmental maturation offer an unprecedented opportunity to develop predictive systems for toxicological assessment. The use of human cells is an advantage because there is n...

  2. Development of Simulation System for the Disaster Evacuation Based on Multi-Agent Model Using GIS

    Institute of Scientific and Technical Information of China (English)

    Keisuke Uno; Kazuo Kashitama

    2008-01-01

    This paper presents a simulation system for the disaster evacuation based on multi-agent model considering geographical information. This system consists of three parts, the modeling for the land and buildings using GIS data, the analysis of disaster evacuation using multi-agent model, and the visualization for the numerical results using the virtual reality technique. By introducing the numerical solver of the natural disaster to the present system, it is possible to evaluate not only the damage of structure but also the dam- age of human being. Furthermore, it is possible to investigate the appropriate evacuation route by the simu- lation. The Dijkstra algorithm is used to obtain shortest route to the refuge. In addition, the visualization us- ing virtual reality technique is curried out to understand the feeling of refugee. The present system is applied to the evacuation analysis by the flood flow in urban area and is shown to be a useful tool to investigate the damage by natural disasters.

  3. Application and Development of Energy System Optimisation Models to Meet Challenges of the Future

    DEFF Research Database (Denmark)

    Balyk, Olexandr

    Climate change, security of supply and local air pollution are among the challenges that are shaping the future of energy systems worldwide. In response to these challenges, various goals are set nationally and internationally that energy systems are supposed to fulfil. These include e.g. EU 20...... them. The challenges of climate change, security of supply, and local air pollution are addressed in the papers by focusing on renewable energy systems, demand side management options, climate change mitigation and resource potentials. In the process of the study the energy system optimisation models...... energy, and an increased climate change mitigation potential.Other results highlight among others, the possible future roles of individual technologies (i.e. wind power in Denmark and carbon capture and storage in China) in the climate constrained world, the difficulty to achieve the 2°C target agreed...

  4. Development and testing of laser Doppler system components for wake vortex monitoring. Volume 1: Scanner development, laboratory and field testing and system modeling

    Science.gov (United States)

    Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.

    1974-01-01

    A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.

  5. Development of a System Model for Non-Invasive Quantification of Bilirubin in Jaundice Patients

    Science.gov (United States)

    Alla, Suresh K.

    Neonatal jaundice is a medical condition which occurs in newborns as a result of an imbalance between the production and elimination of bilirubin. Excess bilirubin in the blood stream diffuses into the surrounding tissue leading to a yellowing of the skin. An optical system integrated with a signal processing system is used as a platform to noninvasively quantify bilirubin concentration through the measurement of diffuse skin reflectance. Initial studies have lead to the generation of a clinical analytical model for neonatal jaundice which generates spectral reflectance data for jaundiced skin with varying levels of bilirubin concentration in the tissue. The spectral database built using the clinical analytical model is then used as a test database to validate the signal processing system in real time. This evaluation forms the basis for understanding the translation of this research to human trials. The clinical analytical model and signal processing system have been successful validated on three spectral databases. First spectral database is constructed using a porcine model as a surrogate for neonatal skin tissue. Samples of pig skin were soaked in bilirubin solutions of varying concentrations to simulate jaundice skin conditions. The resulting skins samples were analyzed with our skin reflectance systems producing bilirubin concentration values that show a high correlation (R2 = 0.94) to concentration of the bilirubin solution that each porcine tissue sample is soaked in. The second spectral database is the spectral measurements collected on human volunteers to quantify the different chromophores and other physical properties of the tissue such a Hematocrit, Hemoglobin etc. The third spectral database is the spectral data collected at different time periods from the moment a bruise is induced.

  6. Developing a dengue early warning system using time series model: Case study in Tainan, Taiwan

    Science.gov (United States)

    Chen, Xiao-Wei; Jan, Chyan-Deng; Wang, Ji-Shang

    2017-04-01

    Dengue fever (DF) is a climate-sensitive disease that has been emerging in southern regions of Taiwan over the past few decades, causing a significant health burden to affected areas. This study aims to propose a predictive model to implement an early warning system so as to enhance dengue surveillance and control in Tainan, Taiwan. The Seasonal Autoregressive Integrated Moving Average (SARIMA) model was used herein to forecast dengue cases. Temporal correlation between dengue incidences and climate variables were examined by Pearson correlation analysis and Cross-correlation tests in order to identify key determinants to be included as predictors. The dengue surveillance data between 2000 and 2009, as well as their respective climate variables were then used as inputs for the model. We validated the model by forecasting the number of dengue cases expected to occur each week between January 1, 2010 and December 31, 2015. In addition, we analyzed historical dengue trends and found that 25 cases occurring in one week was a trigger point that often led to a dengue outbreak. This threshold point was combined with the season-based framework put forth by the World Health Organization to create a more accurate epidemic threshold for a Tainan-specific warning system. A Seasonal ARIMA model with the general form: (1,0,5)(1,1,1)52 is identified as the most appropriate model based on lowest AIC, and was proven significant in the prediction of observed dengue cases. Based on the correlation coefficient, Lag-11 maximum 1-hr rainfall (r=0.319, Pdengue surveillance and control in Tainan, Taiwan. We conclude that this timely dengue early warning system will enable public health services to allocate limited resources more effectively, and public health officials to adjust dengue emergency response plans to their maximum capabilities.

  7. Investigating transportation system in container terminals and developing a yard crane scheduling model

    Directory of Open Access Journals (Sweden)

    Hassan Javanshir

    2012-01-01

    Full Text Available The world trade has tremendous growth in marine transportation. This paper studies yard crane scheduling problem between different blocks in container terminal. Its purpose is to minimize total travel time of cranes between blocks and total delayed workload in blocks at different periods. In this way the problem is formulated as a mixed integer programming (MIP model. The block pairs between which yard cranes will be transferred, during the various periods, is determined by this model. Afterwards the model is coded in LINGO software, which benefits from branch and bound algorithm to solve. Computational results determine the yard cranes movement sequence among blocks to achieve minimum total travel time for cranes and minimum total delayed workload in blocks at different planning periods. Also the results show capability and adequacy of the developed model.

  8. Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)

    Science.gov (United States)

    Baklanov, Alexander; Smith Korsholm, Ulrik; Nuterman, Roman; Mahura, Alexander; Pagh Nielsen, Kristian; Hansen Sass, Bent; Rasmussen, Alix; Zakey, Ashraf; Kaas, Eigil; Kurganskiy, Alexander; Sørensen, Brian; González-Aparicio, Iratxe

    2017-08-01

    The Environment - High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform - HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  9. Enviro-HIRLAM online integrated meteorology–chemistry modelling system: strategy, methodology, developments and applications (v7.2

    Directory of Open Access Journals (Sweden)

    A. Baklanov

    2017-08-01

    Full Text Available The Environment – High Resolution Limited Area Model (Enviro-HIRLAM is developed as a fully online integrated numerical weather prediction (NWP and atmospheric chemical transport (ACT model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2, in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct on radiation and (first and second indirect effects on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform – HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  10. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This first part of a two-part report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. Part 1 of this two-part document discusses three generic models. The second, separate part of the document provides a number of examples demonstrating the models described. This report focuses on the implementation of SHS. However, a considerable amount of the PV market in developing countries is stated as consisting of large systems providing electricity for social services, such as light for schools, mosques, churches, communal centres, refrigeration for health centres and drinking water for communities. It is noted that there are considerable differences between the 'social market' and the 'private market' for SHS. The 'social market' generally consists of large systems but fewer in number. The guide does not cover the detailed technical aspects of a Solar Home System or the issue of recycling old batteries.

  11. Task 9. Deployment of photovoltaic technologies: co-operation with developing countries. Summary of models for the implementation of solar home systems in developing countries - Part 1: Summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-15

    This first part of a two-part report for the International Energy Agency (IEA) made by Task 9 of the Photovoltaic Power Systems (PVPS) programme takes a look at the implementation of Solar Home systems in developing countries. The objective of Task 9 is to increase the successful deployment of PV systems in developing countries. This summary outlines various models for the implementation of small domestic photovoltaic (PV) systems (Solar Home Systems, SHS) in developing countries. Part 1 of this two-part document discusses three generic models. The second, separate part of the document provides a number of examples demonstrating the models described. This report focuses on the implementation of SHS. However, a considerable amount of the PV market in developing countries is stated as consisting of large systems providing electricity for social services, such as light for schools, mosques, churches, communal centres, refrigeration for health centres and drinking water for communities. It is noted that there are considerable differences between the 'social market' and the 'private market' for SHS. The 'social market' generally consists of large systems but fewer in number. The guide does not cover the detailed technical aspects of a Solar Home System or the issue of recycling old batteries.

  12. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources.

  13. Developing economic order quantity model for non-instantaneous deteriorating items in vendor-managed inventory (VMI) system

    Science.gov (United States)

    Tat, Roya; Allah Taleizadeh, Ata; Esmaeili, Maryam

    2015-05-01

    This paper develops an economic order quantity model for non-instantaneous deteriorating items with and without shortages to investigate the performance of the vendor-managed inventory (VMI) system. This model is developed for a two-level supply chain consisting of a single supplier and single retailer with a single non-instantaneous deteriorating item. A numerical example and sensitivity analysis are provided to illustrate how increasing or reducing the related parameters change the optimal values of the decision variables of the two proposed models. The results show that VMI works better and charges lower cost in all conditions.

  14. Update on mathematical modeling research to support the development of automated insulin delivery systems.

    Science.gov (United States)

    Steil, Garry M; Hipszer, Brian; Reifman, Jaques

    2010-05-01

    One year after its initial meeting, the Glycemia Modeling Working Group reconvened during the 2009 Diabetes Technology Meeting in San Francisco, CA. The discussion, involving 39 scientists, again focused on the need for individual investigators to have access to the clinical data required to develop and refine models of glucose metabolism, the need to understand the differences among the distinct models and control algorithms, and the significance of day-to-day subject variability. The key conclusion was that model-based comparisons of different control algorithms, or the models themselves, are limited by the inability to access individual model-patient parameters. It was widely agreed that these parameters, as opposed to the average parameters that are typically reported, are necessary to perform such comparisons. However, the prevailing view was that, if investigators were to make the parameters available, it would limit their ability (and that of their institution) to benefit from the invested work in developing their models. A general agreement was reached regarding the importance of each model having an insulin pharmacokinetic/pharmacodynamic profile that is not different from profiles reported in the literature (88% of the respondents agreed that the model should have similar curves or be analyzed separately) and the importance of capturing intraday variance in insulin sensitivity (91% of the respondents indicated that this could result in changes in fasting glucose of >or=15%, with 52% of the respondents believing that the variability could effect changes of >or=30%). Seventy-six percent of the participants indicated that high-fat meals were thought to effect changes in other model parameters in addition to gastric emptying. There was also widespread consensus as to how a closed-loop controller should respond to day-to-day changes in model parameters (with 76% of the participants indicating that fasting glucose should be within 15% of target, with 30% of the

  15. Development of a numerical model to simulate groundwater flow in the shallow aquifer system of Assateague Island, Maryland and Virginia

    Science.gov (United States)

    Masterson, John P.; Fienen, Michael N.; Gesch, Dean B.; Carlson, Carl S.

    2013-01-01

    A three-dimensional groundwater-flow model was developed for Assateague Island in eastern Maryland and Virginia to simulate both groundwater flow and solute (salt) transport to evaluate the groundwater system response to sea-level rise. The model was constructed using geologic and spatial information to represent the island geometry, boundaries, and physical properties and was calibrated using an inverse modeling parameter-estimation technique. An initial transient solute-transport simulation was used to establish the freshwater-saltwater boundary for a final calibrated steady-state model of groundwater flow. This model was developed as part of an ongoing investigation by the U.S. Geological Survey Climate and Land Use Change Research and Development Program to improve capabilities for predicting potential climate-change effects and provide the necessary tools for adaptation and mitigation of potentially adverse impacts.

  16. Introducing a Method for Modeling Knowledge Bases in Expert Systems Using the Example of Large Software Development Projects

    Directory of Open Access Journals (Sweden)

    Franz Felix Füssl

    2015-12-01

    Full Text Available Goal of this paper is to develop a meta-model, which provides the basis for developing highly scalable artificial intelligence systems that should be able to make autonomously decisions based on different dynamic and specific influences. An artificial neural network builds the entry point for developing a multi-layered human readable model that serves as knowledge base and can be used for further investigations in deductive and inductive reasoning. A graph-theoretical consideration gives a detailed view into the model structure. In addition to it the model is introduced using the example of large software development projects. The integration of Constraints and Deductive Reasoning Element Pruning are illustrated, which are required for executing deductive reasoning efficiently.

  17. The California Current System: A Multiscale Overview and the Development of a Feature-Oriented Regional Modeling System (FORMS)

    Science.gov (United States)

    2010-01-01

    for their help and support in procuring the datasets from various sources. We appreciate the editorial assistance provided by Mr. Frank Smith and...Current System. Part II: Frontal Processes. J. Phys. Oceanogr., 38, 44–64. Castelao, R.M., E.J.D. Campos and J.L. Miller, 2004. A Modelling Study of

  18. Development of the Model of Decision Support for Alternative Choice in the Transportation Transit System

    Directory of Open Access Journals (Sweden)

    Kabashkin Igor

    2015-02-01

    Full Text Available The decision support system is one of the instruments for choosing the most effective decision for cargo owner in constant fluctuated business environment. The objective of this Paper is to suggest the multiple-criteria approach for evaluation and choice the alternatives of cargo transportation in the large scale transportation transit system for the decision makers - cargo owners. The large scale transportation transit system is presented by directed finite graph. Each of 57 alternatives is represented by the set of key performance indicators Kvi and set of parameters Paj. There has been developed a two-level hierarchy system of criteria with ranging expert evaluations based on Analytic Hierarchy Process Method. The best alternatives were suggested according to this method.

  19. A Proposed Model for Examining the Organizational Readiness Assessment of Information Systems Development: A case study of a public university

    Directory of Open Access Journals (Sweden)

    Mohammad Lagzian

    2014-03-01

    Full Text Available The findings of several prior studies indicate high failure rate of Information systems implementation projects in different organizations. These studies also point to the fact that many of these failures are as a result of organizational issues as well as not paying attention to current situation of the organization in early stages of Information system development, rather than technical issues. In other words, successful implementation of an information system is directly depending on current situation of the organization. Considering high needed investment for implementing an information system project, it seems to be necessary to assess its current organizational readiness level. In this study, on the basis of a comprehensive reviewing various relevant models of readiness assessment for information systems development has been attempted to present a model about the existing realities and internal circumstances in public sector organizations and institutions emphasizing on universities and higher education institutions. Based on proposed model, to assess organizational readiness, six major dimensions (Strategic, Structural, Resources, Cultural, Managerial, and Legal were identified from the literature which was divided into 47 sub-dimensions and 142 indicators. The identified indicators can be used to assess organizational readiness in order to facilitate a purposeful and appropriate information system development and consequently to prevent the waste of organizational resources. The proposed model also was used in a public university as a case with the aim of determination of organizational readiness level, and finally several action plans were suggested based on the obtained research results.

  20. An Extensible and Scalable Framework for Formal Modeling, Analysis, and Development of Distributed Systems

    Science.gov (United States)

    2008-11-30

    the project personnel. All publications are available on request. [Pl| R. Canetti , L. Cheung, D. Kaynar, M. Liskov, N". Lynch, O. Pereira, and R...March 2008. [P2] Ran Canetti , Ling Cheung, Dilsun Kaynar, Nancy Lynch, and Oliviei Pereira. Modeling Bounded Computation in Long-Lived Systems. CONCUR...pages 153-1G2, 2001. [4] R. Canetti , L. Cheung. D. Kaynar, M. Liskov, N. Lynch, O. Pereirt, and R. Segala. Analyz- ing Security Protocol Using Thne

  1. Distributed generation systems model

    Energy Technology Data Exchange (ETDEWEB)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  2. Development of a System Dynamics Model for Evaluating the Economics of an Advanced CANDU Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jong Yeob; Park, Joo Hwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    failure risk of commercializing CANFLEX-NU fuel. The power de-rating of Wolsong Unit 2, 3 and 4 will be expected from 2012, 2013 and 2014, respectively, and the compensation effect of the de-rated power by using CANFLEX-NU fuel is increased as the time goes. Therefore, the starting point of license study affects to the economic profits because it requires usually more than 4 years. A system dynamics model (SD model) was developed to carry out the economic evaluation by using the commercial SD code Vensim DSS Professional. From the economic evaluation results, it was found that the early starting of a licensing study from 2009 results in better economic profits than the late starting of a licensing study from 2012 if the probability of a successful implementation is higher than 20%.

  3. Telemedicine as an innovative model for rebuilding medical systems in developing countries through multipartnership collaboration: the case of Albania.

    Science.gov (United States)

    Latifi, Rifat; Dasho, Erion; Shatri, Zhaneta; Tilley, Elizabeth; Osmani, Kalterina L; Doarn, Charles R; Dogjani, Agron; Olldashi, Fatos; Koçiraj, Agim; Merrell, Ronald C

    2015-06-01

    The U.S. Government and other developed nations provide billions of dollars annually in relief assistance to countries around the world. The long-term benefits of this aid, however, are often difficult to elucidate. The aim of this article is to present a model of a multipartnership collaboration among U.S. governmental, nongovernmental organizations, and academia to rebuild medical systems using telemedicine as a sustainable model of foreign aid. The International Virtual e-Hospital implemented the "initiate-build-operate-transfer" strategy to establish an effective telemedicine system in Albania that includes the National Telemedicine Center and 12 regional telemedicine centers. This nationwide telemedicine network has active clinical programs, virtual educational programs, and an electronic library that has substantially improved the access to care while advancing medical education. We propose that telemedicine is an optimal, sustainable, low-cost model for rebuilding medical systems of developing countries when implemented through a multipartnership approach.

  4. Low-order dynamical system model of a fully developed turbulent channel flow

    Science.gov (United States)

    Hamilton, Nicholas; Tutkun, Murat; Cal, Raúl Bayoán

    2017-06-01

    A reduced order model of a turbulent channel flow is composed from a direct numerical simulation database hosted at the Johns Hopkins University. Snapshot proper orthogonal decomposition (POD) is used to identify the Hilbert space from which the reduced order model is obtained, as the POD basis is defined to capture the optimal energy content by mode. The reduced order model is defined by coupling the evolution of the dynamic POD mode coefficients through their respective time derivative with a least-squares polynomial fit of terms up to third order. Parameters coupling the dynamics of the POD basis are defined in analog to those produced in the classical Galerkin projection. The resulting low-order dynamical system is tested for a range of basis modes demonstrating that the non-linear mode interactions do not lead to a monotonic decrease in error propagation. A basis of five POD modes accounts for 50% of the integrated turbulence kinetic energy but captures only the largest features of the turbulence in the channel flow and is not able to reflect the anticipated flow dynamics. Using five modes, the low-order model is unable to accurately reproduce Reynolds stresses, and the root-mean-square error of the predicted stresses is as great as 30%. Increasing the basis to 28 modes accounts for 90% of the kinetic energy and adds intermediate scales to the dynamical system. The difference between the time derivatives of the random coefficients associated with individual modes and their least-squares fit is amplified in the numerical integration leading to unstable long-time solutions. Periodic recalibration of the dynamical system is undertaken by limiting the integration time to the range of the sampled data and offering the dynamical system new initial conditions. Renewed initial conditions are found by pushing the mode coefficients in the end of the integration time toward a known point along the original trajectories identified through a least-squares projection. Under

  5. Recent Developments and Applications of the WRF-Hydro Modeling System for Continental Scale Water Cycle Predictions

    Science.gov (United States)

    Gochis, D. J.; Yu, W.; Dugger, A. L.; McCreight, J. L.; Yates, D. N.; Clark, M. P.; Wood, A. W.; Sampson, K. M.; Rasmussen, R.

    2014-12-01

    The translation of weather and climate forcing through complex landscapes to drive terrestrial hydrologic processes is a true multi-scale problem. Model architectures that attempt to capture these processes and feedbacks in a physically realistic way must be able to bridge spatial scales from meters to kilometers. To represent these processes across continental domains modeling systems must fully embrace high performance computing. Also, because there are both scientific and computational trade-offs in modeling many terrestrial hydrologic and land-atmosphere exchange processes, it is often highly advantageous to support multiple physics options in order to test competing hypotheses and apply scale-appropriate parameterizations for different prediction problems. In this talk we provide an update of new developments to the WRF-Hydro system in meeting these needs from both a process representation and high performance computing perspective. A key feature of these developments centers on new multi-scale modeling capabilities recently added to WRF-Hydro. We will discuss prediction and computational performance metrics for several recent large river basin and continental scale applications of the WRF-Hydro system over the coterminous U.S. and over Mexico in modes both coupled and uncoupled to the Weather Research and Forecasting (WRF) model. We will also provide updates on new developments to the WRF-Hydro system in the areas of water management applications and hydrologic data assimilation.

  6. The Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing: Proceedings of a Symposium.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…

  7. Soft Systems Methodology and Problem Framing: Development of an Environmental Problem Solving Model Respecting a New Emergent Reflexive Paradigm.

    Science.gov (United States)

    Gauthier, Benoit; And Others

    1997-01-01

    Identifies the more representative problem-solving models in environmental education. Suggests the addition of a strategy for defining a problem situation using Soft Systems Methodology to environmental education activities explicitly designed for the development of critical thinking. Contains 45 references. (JRH)

  8. The Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing: Proceedings of a Symposium.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Inst. of Lab. Animal Resources.

    This volume contains the prepared papers and discussions of a National Academy of Sciences - National Research Council Symposium on the Future of Animals, Cells, Models, and Systems in Research, Development, Education, and Testing. The purpose of the symposium was to examine the past, present, and future contributions of animals to human health…

  9. Development of Residential Prototype Building Models and Analysis System for Large-Scale Energy Efficiency Studies Using EnergyPlus

    Energy Technology Data Exchange (ETDEWEB)

    Mendon, Vrushali V.; Taylor, Zachary T.

    2014-09-10

    ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype building models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.

  10. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    Science.gov (United States)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  11. What Happens to Integrated Product Development Models with Product/Service-System Approaches?

    DEFF Research Database (Denmark)

    Tan, Adrian; McAloone, Timothy Charles; Andreasen, Mogens Myrup

    2006-01-01

    Integrated Product Development (IPD) has traditionally focused on the development activities relating to physical technological artefacts. With the advent of business approaches for manufacturing firms based on providing customers the utility of integrated products and services – a term dubbed...... ‘product/service-systems (PSS)’ – companies need to extend their activities to include new dimensions of development. Within the paradigm of mass production and consumption, traditional product-oriented business strategies regarded physical technological artefacts (products) as the mediators of customer...... value. Value was based on the exchange of products between a providing company and a receiving customer. The more products the company could sell, the more revenue it generated. At the point of sale the ownership and responsibility of the product was transferred from company to customer. A customer...

  12. Innovation in Integrated Chemical Product-Process Design - Development through a Model-based Systems Approach

    DEFF Research Database (Denmark)

    Conte, Elisa

    in the design and verification of such products. The objective of this project is to tackle the problem with computer-aided tools at first, using experimental techniques for final testing, evaluation and amendment. In this way, time and resources can be spared and the product can reach the market faster...... in which experiments are planned and a third stage in which experiments are performed to validate the final product formula. The main focus of the project is on the development of the computer-aided stage of the methodology described above. The methodology considers two different scenarios: the design...... systems are proposed, and the associated computer programs are also developed; the computer-aided stage of the methodology for formulation design and verification is implemented as an option in the software the ‘virtual Product-Process Design laboratory’. Four case studies have been developed...

  13. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  14. Rate control system algorithm developed in state space for models with parameter uncertainties

    Directory of Open Access Journals (Sweden)

    Adilson Jesus Teixeira

    2011-09-01

    Full Text Available Researching in weightlessness above the atmosphere needs a payload to carry the experiments. To achieve the weightlessness, the payload uses a rate control system (RCS in order to reduce the centripetal acceleration within the payload. The rate control system normally has actuators that supply a constant force when they are turned on. The development of an algorithm control for this rate control system will be based on the minimum-time problem method in the state space to overcome the payload and actuators dynamics uncertainties of the parameters. This control algorithm uses the initial conditions of optimal trajectories to create intermediate points or to adjust existing points of a switching function. It associated with inequality constraint will form a decision function to turn on or off the actuators. This decision function, for linear time-invariant systems in state space, needs only to test the payload state variables instead of spent effort in solving differential equations and it will be tuned in real time to the payload dynamic. It will be shown, through simulations, the results obtained for some cases of parameters uncertainties that the rate control system algorithm reduced the payload centripetal acceleration below μg level and keep this way with no limit cycle.

  15. A model system and technique to study the effects of ultrasound irradiation on embryonic development.

    Science.gov (United States)

    Rosenthal, M S; Yip, Y P; Capriotti, C; Yip, J W

    1991-08-01

    To study the effects of ultrasound on development it is important to have a system which provides reliable results. We have designed a system which allows for reproducible irradiations of chick embryos in ovo. The irradiation system includes a heated sonation tank with ultrasound absorbers and a PC/AT computer-based data acquisition system for on-line monitoring of irradiations. The ultrasound detection microprobe and irradiation transducers were calibrated against an NBS traceable balance meter. An acoustic spacer was utilized to provide a more uniform profile of the irradiation beam. At the position of the embryo the ultrasound field geometry was determined. To maintain the chick embryo in its natural physiological state while minimizing ultrasonic reflections and standing-wave generation, two diametrically opposed windows were made in the eggshell along the ultrasound pathway and covered with polyethylene membranes. Using this irradiation system at intensity levels as high as 1.1 W/cm2 (spatial average, temporal average) for 10 min, the temperature rise is minimal.

  16. Toxic effects of lead in the developing nervous system: in oculo experimental models

    Energy Technology Data Exchange (ETDEWEB)

    Hoffer, B.J.; Olson, L.; Palmer, M.R.

    1987-10-01

    The authors have developed in oculo test systems, which permit temporal and spatial discrimination of possible effects of lead and other potential neurotoxic agents in the environment on the developing central nervous system as well as on different types of peripheral nerves in the adult. In one experimental protocol, defined areas of the fetal rat brain are grafted to the anterior chamber of the eye of adult rat recipients that are exposed to lead. Such grafts will become vascularized from the host iris and continue developing in oculo. Studies of cerebellar grafts revealed that, although there was a normal gross cytological development in the presence of lead, there was a marked and permanent impairment of spontaneous discharge rates of the grafted Purkinje neurons as observed with electrophysiological techniques long after cessation of lead treatment. The host Purkinje neurons were not affected. A similar, although less dramatic, impairment of cerebellar function could be subsequently demonstrated in intact animals when newborn rats were given lead during the first 20 days of life and studied as adults. In other areas of the fetal central nervous system grafted to the eye, lead caused disturbed growth. A screening technique for potentially harmful effects of heavy metals on autonomic and sensory nerve terminals in adult rats makes use of intraocular injections of agents to be tested. Morphological and histochemical changes of the innervation of the iris are then studied in whole mount preparations. These studies demonstrate the usefulness of the intraocular grafts and the intraocular injection technique, and the necessity to use both structural and functional techniques in order to detect potential neurotoxic actions. The techniques have revealed hitherto unknown toxic actions of lead on cerebellar function.

  17. Simulation tools for developing policies for complex systems: modeling the health and safety of refugee communities.

    Science.gov (United States)

    Anderson, James; Chaturvedi, Alok; Cibulskis, Mike

    2007-12-01

    The U.S. Committee for Refugees and Immigrants estimated that there were over 33 million refugees and internally displaced persons (IDPs) in the world at the beginning of 2005. IDP/Refugee communities behave in complex ways making it difficult to make policy decisions regarding the provision of humanitarian aid and health and safety. This paper reports the construction of an agent-based model that has been used to study humanitarian assistance policies executed by governments and NGOs that provide for the health and safety of refugee communities. Agent-based modeling (ABM) was chosen because the more widely used alternatives impose unrealistic restrictions and assumptions on the system being modeled and primarily apply to aggregate data. We created intelligent agents representing institutions, organizations, individuals, infrastructure, and governments and analyzed the resulting interactions and emergent behavior using a Central Composite Design of Experiments with five factors. The resulting model allows policy makers and analysts to create scenarios, to make rapid changes in parameters, and provides a test bed for concepts and strategies. Policies can be examined to see how refugee communities might respond to alternative courses of action and how these actions are likely to affect the health and well-being of the community.

  18. DEVELOPING AND MODELING A NEW E-LOTTERY SYSTEM USING ANONYMOUS SIGNATURES

    Directory of Open Access Journals (Sweden)

    FLORIN MEDELEANU

    2016-06-01

    Full Text Available In traditional lottery systems, the players choose some numbers on a ticket, enroll it to the lottery organizer and pay an amount of money for it. But this perspective offers no guarantee to the players that the lottery organizer doesn’t manipulate the number selection in order to pay the least. This suspicion could be avoided if the lottery organizer didn’t know the numbers selected by the players before the draw. Such a system is possible to be realized by using anonymous signatures, but the design should also guarantee that forging lottery tickets after the moment of the draw or claim of a different ticket is not possible. This paper will propose and analyze a model in order to fulfill all requirement described before, using several cryptographic primitives

  19. Development of PIN and Prostate Adenocarcinoma Cell Lines: A Model System for Multistage Tumor Progression

    Directory of Open Access Journals (Sweden)

    Colin R. Soares

    2002-01-01

    Full Text Available Existing prostate cancer cell lines have been derived from late stages of human prostate cancer. In this paper, we present two cell lines generated from prostatic intraepithelial neoplasia (PIN, the precursor lesion for prostate adenocarcinoma. Pr-111 and Pr-117 were established from PIN lesions that developed in the C3(1/Tag transgenic model of prostate cancer. Pr-111 and Pr-117 cells express simian virus 40 large T antigen (SV40 Tag and are immortalized in culture, distinguishing them from normal prostate cells. The growth rates of these two cell lines are quite different; with Pr-111 cells growing much more slowly (doubling time approximately 40 hours compared to Pr-117 cells (doubling time approximately 22 hours, and also show significantly different growth rates in different media. Both prostate cell lines express cytokeratin and androgen receptor (AR with Pr-111 cells demonstrating androgen-dependent growth and Pr-117 cells exhibiting androgen-responsive growth characteristics. Athymic nude mice injected with Pr-111 cells either do not develop tumors or develop tumors after a long latency period of 14 weeks. Pr-117 cells, however, develop tumors by 3 to 6 weeks, suggesting that Pr-117 cells represent a later stage of tumor progression. These two novel cell lines will be useful for studying early stages of prostate tumor development and androgen responsiveness.

  20. Contingent Information Systems Development

    NARCIS (Netherlands)

    van Slooten, C.; Schoonhoven, Bram

    1996-01-01

    Situated approaches based on project contingencies are becoming more and more an important research topic for information systems development organizations. The Information Services Organization, which was investigated, has recognized that it should tune its systems development approaches to the

  1. Small scale hybrid concentrated solar power - biomass system. Development, time dependent modelling and validation.

    OpenAIRE

    Tortora, Eileen

    2011-01-01

    Proceeding from the sustainable development principle and the current energy issues, in the present work a small-scale fully renewable power plant was designed, modelled in a time-dependent environment and validated. The plant is design in order to produce both thermal and electric power either in on- or off-grid configuration. With respect to the state of the art, the power plant is composed by standard and well-known technologies. The novelties brought with the present study are entailed...

  2. Tourism Cluster Competitiveness and Sustainability: Proposal for a Systemic Model to Measure the Impact of Tourism on Local Development

    Directory of Open Access Journals (Sweden)

    Sieglinde Kindl da Cunha

    2005-07-01

    Full Text Available This article proposes a model to measure tourism cluster impact on local development with a view to assessing tourism cluster interaction, competitiveness and sustainability impacts on the economy, society and the environment. The theoretical basis for this model is founded on cluster concept and typology adapting and integrating the systemic competitiveness and sustainability concepts within economic, social, cultural, environmental and political dimensions. The proposed model shows a holistic, multidisciplinary and multi-sector view of local development brought back through a systemic approach to the concepts of competitiveness, social equity and sustainability. Its results make possible strategic guidance to agents responsible for public sector tourism policies, as well as the strategies for competitiveness, competition, cooperation and sustainability in private companies and institutions.

  3. Development and evaluation of CNRM Earth system model - CNRM-ESM1

    Science.gov (United States)

    Séférian, Roland; Delire, Christine; Decharme, Bertrand; Voldoire, Aurore; Salas y Melia, David; Chevallier, Matthieu; Saint-Martin, David; Aumont, Olivier; Calvet, Jean-Christophe; Carrer, Dominique; Douville, Hervé; Franchistéguy, Laurent; Joetzjer, Emilie; Sénési, Séphane

    2016-04-01

    We document the first version of the Centre National de Recherches Météorologiques Earth system model (CNRM-ESM1). This model is based on the physical core of the CNRM climate model version 5 (CNRM-CM5) model and employs the Interactions between Soil, Biosphere and Atmosphere (ISBA) and the Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES) as terrestrial and oceanic components of the global carbon cycle. We describe a preindustrial and 20th century climate simulation following the CMIP5 protocol. We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers. Over the 1986-2005 period, CNRM-ESM1 reproduces satisfactorily several aspects of the modern carbon cycle. On land, the model captures the carbon cycling through vegetation and soil, resulting in a net terrestrial carbon sink of 2.2 Pg C year-1. In the ocean, the large-scale distribution of hydrodynamical and biogeochemical tracers agrees with a modern climatology from the World Ocean Atlas. The combination of biological and physical processes induces a net CO2 uptake of 1.7 Pg C year-1 that falls within the range of recent estimates. Our analysis shows that the atmospheric climate of CNRM-ESM1 compares well with that of CNRM-CM5. Biases in precipitation and shortwave radiation over the tropics generate errors in gross primary productivity and ecosystem respiration. Compared to CNRM-CM5, the revised ocean-sea ice coupling has modified the sea-ice cover and ocean ventilation, unrealistically strengthening the flow of North Atlantic deep water (26.1 ± 2 Sv). It results in an accumulation of anthropogenic carbon in the deep ocean.

  4. Development of a Knowledge Management Model for the Development of a Quality Public Sector Management System for the Office of the Primary Educational Service Area

    Science.gov (United States)

    Khotbancha, Wijitra; Chantarasombat, Chalard; Sriampai, Anan

    2015-01-01

    The objectives of this research were: 1) to study the current situation and problem of Knowledge Management of the office of the primary education service area, 2) to develop a Knowledge Management model, 3) to study the success of the implementation of the Knowledge Management system. There were 25 persons in the target group. There were 2 kinds…

  5. Model Systems

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez-Trelles

    1998-12-01

    Full Text Available Current efforts to study the biological effects of global change have focused on ecological responses, particularly shifts in species ranges. Mostly ignored are microevolutionary changes. Genetic changes may be at least as important as ecological ones in determining species' responses. In addition, such changes may be a sensitive indicator of global changes that will provide different information than that provided by range shifts. We discuss potential candidate systems to use in such monitoring programs. Studies of Drosophila subobscura suggest that its chromosomal inversion polymorphisms are responding to global warming. Drosophila inversion polymorphisms can be useful indicators of the effects of climate change on populations and ecosystems. Other species also hold the potential to become important indicators of global change. Such studies might significantly influence ecosystem conservation policies and research priorities.

  6. CAE "FOCUS" for modelling and simulating electron optics systems: development and application

    Science.gov (United States)

    Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor

    2017-02-01

    Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.

  7. The Toyota product development system applied to a design management workshop model

    DEFF Research Database (Denmark)

    Thyssen, Mikael Hygum; Emmitt, Stephen; Bonke, Sten

    2008-01-01

    reports the early findings of a research project which aims to develop a workshop method for lean design management in construction through a deeper understanding of the Toyota product development system (TPDS) and value theory in general. Results from a case-study will be presented and a theoretical......Within a lean framework the goal is to enhance productivity by maximizing client value and minimizing waste known as muda. In the construction industry focus has mainly been on minimizing waste within the construction site production process. However, research has shown that a great amount...... of the waste experienced during site assembly can be traced back to the early design phase. In addition minimizing waste does not guarantee overall project success if client values are not fully under-stood. Indeed it is possible to effectively produce a product that the client does not value. This paper...

  8. CFD Model Development and validation for High Temperature Gas Cooled Reactor Cavity Cooling System (RCCS) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Univ. of Wisconsin, Madison, WI (United Texas A & M Univ., College Station, TX (United States); Corradini, Michael; Tokuhiro, Akira; Wei, Thomas Y.C.

    2014-07-14

    The Reactor Cavity Cooling Systems (RCCS) is a passive safety system that will be incorporated in the VTHR design. The system was designed to remove the heat from the reactor cavity and maintain the temperature of structures and concrete walls under desired limits during normal operation (steady-state) and accident scenarios. A small scale (1:23) water-cooled experimental facility was scaled, designed, and constructed in order to study the complex thermohydraulic phenomena taking place in the RCCS during steady-state and transient conditions. The facility represents a portion of the reactor vessel with nine stainless steel coolant risers and utilizes water as coolant. The facility was equipped with instrumentation to measure temperatures and flow rates and a general verification was completed during the shakedown. A model of the experimental facility was prepared using RELAP5-3D and simulations were performed to validate the scaling procedure. The experimental data produced during the steady-state run were compared with the simulation results obtained using RELAP5-3D. The overall behavior of the facility met the expectations. The facility capabilities were confirmed to be very promising in performing additional experimental tests, including flow visualization, and produce data for code validation.

  9. Development of an information system for flood defences using a simulation model for operational management

    Energy Technology Data Exchange (ETDEWEB)

    Petkovski, L. [Univ. Sts Cyril and Methodius, Skopje (Yugoslavia). Faculty of Civil Engineering

    2000-07-01

    A flood defense system can be divided in two parts: physical and management. The physical part comprises the catchment area, the natural water network, the dynamism of the manmade structures (housing, infrastructure and industrial facilities) and the passive and active flood defense structures (reservoirs and riverbed alterations). The management part of the flood defense system is an information system for storage and processing of a large number of heterogeneous data which will be used as support in the process of making decisions on the regulated flows in the endangered region. The aim of the presented research is to contribute to the clarification of the basic components (hydrological, hydraulic and water resource related) in the development of the information system in both the planning and the implementation phase. A particular emphasis is given to the water resource module for operational management of a controlled retention space in a flood wave event. In this paper are described the basic approximations of the simulation module and the results of its application on a real water resource system, the flood defense of Skopje (the capital of Macedonia). The flood defense of the city is provided by a combination of two hydro-technical structures: the regulated river bed of Vardar River, with a maximum capacity of 1150 m{sup 3}/s and the Kozjak Reservoir (formed by a 114.1 m tall rock-Earth-fill dam on River Treska, a tributary of Vardar River) with a controlled retention space of 10{sup 8} m{sup 3}. (orig.)

  10. Model Development for Power System Analysis with a Substantial Wind Energy Capacity Installed in the Nordic grid

    DEFF Research Database (Denmark)

    Carlson, Ola; Perdana, Abram; Chen, Peiyuan

    2011-01-01

    in the model. By cooperation within the Nordic countries the existing knowledge has been spread, new knowledge has been created and the results have been transferred to utilities. Over 35 journal or conference publications and five PhD-theses have been presented. Two more PhD theses are on the way next during......The worldwide development of wind power installations now includes planning and construction of large-scale wind farms ranging in magnitudes of 1000 MW and more. As part of the planning and design of such systems, it is well established that the transient and dynamic stability of the electrical...... power system needs to be studied. Modelling work of the electrical behaviour of wind turbines and wind farms as well as model validation by measurements have been important parts of this project work. The models have been used to study dynamic phenomena during normal operation and fault occasions...

  11. The development of evaporative liquid film model for analysis of passive containment cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hong June; Hwang, Young Dong; Kim, Hee Cheol; Kim, Young In; Chang, Moon Hee

    2000-07-01

    An analytical model was developed to simulate behavior of the liquid film formed on the outside surface of the steel containment vessel of PCCS including the ellipsoidal dome and the vertical wall. The model was coupled with CFX code using the user subroutines provided by the code, and a series of numerical calculations were performed to evaluate the evaporative heat transfer coefficient at the interface. Numerical results for Sherwood number and evaporative heat transfer coefficient were compared with the experimental data. The results were in good agreement with the experimental data. The calculated liquid film thickness showed good agreement with that of Sun except an upper portion of the channel. The model was applied to the full scale of PCCS to investigate the effects of dome and chimney on the evaporation rate. The results showed that the heat transfer coefficient in the dome region, where the flow cross-sectional area decreases and the swirling occurs, was lower than that of the vertical annulus region. The calculated evaporative heat transfer coefficient was about 20 times larger than that of the dry cooling. Sensitivity studies on the gap size and the wall temperature were also performed to figure out their effects on the heat transfer coefficient and inlet air average velocity. Through the analysis of the dryout point, the minimum liquid film flow rate to cover the entire surface of the vessel was estimated.

  12. Social network analysis and network connectedness analysis for industrial symbiotic systems: model development and case study

    Institute of Scientific and Technical Information of China (English)

    Yan ZHANG; Hongmei ZHENG; Bin CHEN; Naijin YANG

    2013-01-01

    An important and practical pattern of industrial symbiosis is rapidly developing:eco-industrial parks.In this study,we used social network analysis to study the network connectedness (i.e.,the proportion of the theoretical number of connections that had been achieved) and related attributes of these hybrid ecological and industrial symbiotic systems.This approach provided insights into details of the network's interior and analyzed the overall degree of connectedness and the relationships among the nodes within the network.We then characterized the structural attributes of the network and subnetwork nodes at two levels (core and periphery),thereby providing insights into the operational problems within each eco-industrial park.We chose ten typical ecoindustrial parks in China and around the world and compared the degree of network connectedness of these systems that resulted from exchanges of products,byproducts,and wastes.By analyzing the density and nodal degree,we determined the relative power and status of the nodes in these networks,as well as other structural attributes such as the core-periphery structure and the degree of sub-network connectedness.The results reveal the operational problems created by the structure of the industrial networks and provide a basis for improving the degree of completeness,thereby increasing their potential for sustainable development and enriching the methods available for the study of industrial symbiosis.

  13. Japansese style production system developing as world model; Sekai no moderu ka shitsutsu aru Nihon teki seisan system

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, M. [Chuo Univ., Tokyo (Japan). Faculty of Economist

    1996-07-05

    Limiting production system to the relationship of finished product makers with part makers and subcontract enterprises, the actual state of introduction of Japanese style production system to European and American enterprises is introduced. The competitive export power of Japan has been supported not only by large enterprises assembling finished products but also by the characteristic relationship between large enterprises with part makers and subcontractors. Automobile industry is taken up for study as an example, and the production rate of the finished makers, numbers of part makers and subcontractors, business relation between finished product makers and part makers, and design and development system for parts are discussed. Full-scale introduction of Japanese production system began in Europe and America in the 1990`s with the automobile industry taking the lead in the introduction, producing excellent results steadily. A new movement is in progress in a part of the cost reduction and rationalization activity which the Japanese automobile industry is now tackling, and it may be expected that the Japanese production system will hold a dominant position for a fairly long time.

  14. Explicit Finite Element Modeling of Multilayer Composite Fabric for Gas Turbine Engine Containment Systems, Phase II. Part 3; Material Model Development and Simulation of Experiments

    Science.gov (United States)

    Simmons, J.; Erlich, D.; Shockey, D.

    2009-01-01

    A team consisting of Arizona State University, Honeywell Engines, Systems & Services, the National Aeronautics and Space Administration Glenn Research Center, and SRI International collaborated to develop computational models and verification testing for designing and evaluating turbine engine fan blade fabric containment structures. This research was conducted under the Federal Aviation Administration Airworthiness Assurance Center of Excellence and was sponsored by the Aircraft Catastrophic Failure Prevention Program. The research was directed toward improving the modeling of a turbine engine fabric containment structure for an engine blade-out containment demonstration test required for certification of aircraft engines. The research conducted in Phase II began a new level of capability to design and develop fan blade containment systems for turbine engines. Significant progress was made in three areas: (1) further development of the ballistic fabric model to increase confidence and robustness in the material models for the Kevlar(TradeName) and Zylon(TradeName) material models developed in Phase I, (2) the capability was improved for finite element modeling of multiple layers of fabric using multiple layers of shell elements, and (3) large-scale simulations were performed. This report concentrates on the material model development and simulations of the impact tests.

  15. Posterior gut development in Drosophila:a model system for identifying genes controlling epithelial morphogenesis

    Institute of Scientific and Technical Information of China (English)

    LENGYELJUEITHA; SUEJUNLIU

    1998-01-01

    The posterior gut of the Drosophila embryo,consisting of hindgut and Malpighian tubules,provides a simple,well-defined system where it is possible to use a genetic approach to define components essential for epithelial morphogenesis.We review here the advantages of Drosophila as a model genetic organism,the morphogenesis of the epithelial structures of the posterior gut,and what is known about the genetic requirements to form these structures.In overview,primordia are patterned by expression of hierarchies of transcription factors;this leads to localized expression of cell signaling molecules,and finally,to the least understood step:modulation of cell adhesion and cell shape.We describe approaches to identify additional genes that are required for morphogenesis of these simple epithelia,particularly those that might play a structural role by affecting cell adhesion and cell shape.

  16. Development and assessment of Multi-dimensional flow models in the thermal-hydraulic system analysis code MARS

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. D.; Bae, S. W.; Jeong, J. J.; Lee, S. M

    2005-04-15

    A new multi-dimensional component has been developed to allow for more flexible 3D capabilities in the system code, MARS. This component can be applied in the Cartesian and cylindrical coordinates. For the development of this model, the 3D convection and diffusion terms are implemented in the momentum and energy equation. And a simple Prandtl's mixing length model is applied for the turbulent viscosity. The developed multi-dimensional component was assessed against five conceptual problems with analytic solution. And some SETs are calculated and compared with experimental data. With this newly developed multi-dimensional flow module, the MARS code can realistic calculate the flow fields in pools such as those occurring in the core, steam generators and IRWST.

  17. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    Science.gov (United States)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  18. Optimizing the Project Development in Transportation Systems: Economical and Mathematical Models

    Directory of Open Access Journals (Sweden)

    Simeon Schreiber

    2003-07-01

    Full Text Available Construction of high-speed transportation systems often requirescalendar planning of the job complex. This paper describesan optimized model of construction project, which includestime parameters as well as cost factors. Project optimizationcan be achieved by solving the following two problems:1 minimizing expenditures within the predetermined durationof construction;2 determining the minimum duration of project constructionunder the set spending level.Both tasks are based on the idea of reducing the duration ofcertain sequence of operations down to the set level, ensuringthe highest effect of accelerating the construction. Under theknown time-cost relationship, the optimal solution can be reducedto search for such types of activities within the networkmodel, acceleration of which is the most efficacious in terms ofboth spending and finishing the overall project. The algorithmfor solving the above problems using the network model of jobcomplex is offered in the current paper. This method can beused for planning and managing the work logistics/calendar inconstruction and related types of industry, for research and developmentprojects in other areas.

  19. Cracking the Egg: Potential of the Developing Chicken as a Model System for Nonclinical Safety Studies of Pharmaceuticals.

    Science.gov (United States)

    Bjørnstad, Sigrid; Austdal, Lars Peter Engeset; Roald, Borghild; Glover, Joel Clinton; Paulsen, Ragnhild Elisabeth

    2015-12-01

    The advance of perinatal medicine has improved the survival of extremely premature babies, thereby creating a new and heterogeneous patient group with limited information on appropriate treatment regimens. The developing fetus and neonate have traditionally been ignored populations with regard to safety studies of drugs, making medication during pregnancy and in newborns a significant safety concern. Recent initiatives of the Food and Drug Administration and European Medicines Agency have been passed with the objective of expanding the safe pharmacological treatment options in these patients. There is a consensus that neonates should be included in clinical trials. Prior to these trials, drug leads are tested in toxicity and pharmacology studies, as governed by several guidelines summarized in the multidisciplinary International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use M3 (R2). Pharmacology studies must be performed in the major organ systems: cardiovascular, respiratory, and central nervous system. The chicken embryo and fetus have features that make the chicken a convenient animal model for nonclinical safety studies in which effects on all of these organ systems can be tested. The developing chicken is inexpensive, accessible, and nutritionally self-sufficient with a short incubation time and is ideal for drug-screening purposes. Other high-throughput models have been implemented. However, many of these have limitations, including difficulty in mimicking natural tissue architecture and function (human stem cells) and obvious differences from mammals regarding the respiratory organ system and certain aspects of central nervous system development (Caenorhabditis elegans, zebrafish).This minireview outlines the potential and limitations of the developing chicken as an additional model for the early exploratory phase of development of new pharmaceuticals.

  20. Collaborative development of embedded systems

    NARCIS (Netherlands)

    Verhoef, Marcel; Pierce, Kenneth; Gamble, Carl; Broenink, Jan; Fitzgerald, John; Larsen, Peter Gorm; Verhoef, Marcel

    2014-01-01

    This chapter presents motivation for taking a collaborative multi-disciplinary approach to the model-based development of embedded systems. Starting from a consideration of the ubiquity of embedded systems in daily life it identifies challenges faced by industry in developing products in a timely ma

  1. A Model for Effective Systems Engineering Workforce Development at Space and Naval Warfare Systems Center (SSC) Atlantic

    Science.gov (United States)

    2013-09-01

    Taxonomy of educational objectives handbook I: The cognitive domain. New York: David McKay Co Inc. Bloom B. S . (n.d.). Bloom’s taxonomy of learning... Bloom created Bloom’s taxonomy in 1956 in order to encourage the developing of KSAs in ways other than just memorization of facts. This led to the...Statement (PWS) /  Statement of  Objectives  (SOO)  Entry  Activity  25.0 SYSTEM OF  S YSTEMS   Understands that SoS capability needs  impact the system

  2. Developments of theory of effective prepotential from extended Seiberg-Witten system and matrix models

    CERN Document Server

    Itoyama, Hiroshi

    2015-01-01

    This is a semi-pedagogical review of a medium size on the exact determination of and the role played by the low energy effective prepotential ${\\cal F}$ in QFT with (broken) extended supersymmetry, which began with the work of Seiberg and Witten in 1994. While paying an attention to an overall view of this subject lasting long over the two decades, we probe several corners marked in the three major stages of the developments, emphasizing uses of the deformation theory on the attendant Riemann surface as well as its close relation to matrix models. Examples picked here in different contexts tell us that the effective prepotential is to be identified as the suitably defined free energy $F$ of a matrix model: ${\\cal F} = F$. To be submitted to PTEP as an invited review article and based in part on the talk delivered by one of the authors (H.I.) in the workshop held at Shizuoka University, Shizuoka, Japan, on December 5, 2014.

  3. Development of radiation detection and measurement systems - The development of a domestic model of portable radiation survey meter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Koo; Choi, Kang; Kim, Jong Nam; Son, Keum Jong; Kim, Ji Kwang [Radiation Technology Research Lab., Seoul (Korea)

    2000-03-01

    The internal circuit board and operating program were developed for the portable radiation survey meter with a small GM tube, and then tested for the performance verification. The signal of GM tube in the detection unit is taken form the cathode and pulsed out to be a standard digital pulse by a signal processor. The control and operation unit counts the signals and also calculates the counting errors. The data of signal counts and errors are transferred to the display unit. The LCD panel of the display unit is manufactured as the design resulted from this work. The panel attached with EL back-light displays in multiplex mode. The whole circuit is designed to have a small power consumption sufficiently for the portable instrument. The operating program is coded by C language. The program is on-power performs a self-test on counting circuit and then operates the main functions of the pulse counting, switch scanning, LCD panel controlling and the battery voltage measuring of the detector system with the time-interrupter. The prototype board of the internal circuit is tested with respect to the functional operation, counting performance, signal response characteristics and battery life-time. It was founded that the circuit is operated as the design functions. Also, these test result shows that those performances of the prototype board are better than those of the existing foreign products. 23 refs., 27 figs., 9 tabs. (Author)

  4. Development Expert System

    Institute of Scientific and Technical Information of China (English)

    CAI Heng

    2010-01-01

    The expert system is a high-level technology.It is a sub-field of artificial intelligence.We demonstrated the character and software evaluation,carrying out an initial study of expert system.A good development expert system was developed.

  5. Representing nursing guideline with unified modeling language to facilitate development of a computer system: a case study.

    Science.gov (United States)

    Choi, Jeeyae; Choi, Jeungok E

    2014-01-01

    To provide best recommendations at the point of care, guidelines have been implemented in computer systems. As a prerequisite, guidelines are translated into a computer-interpretable guideline format. Since there are no specific tools to translate nursing guidelines, only a few nursing guidelines are translated and implemented in computer systems. Unified modeling language (UML) is a software writing language and is known to well and accurately represent end-users' perspective, due to the expressive characteristics of the UML. In order to facilitate the development of computer systems for nurses' use, the UML was used to translate a paper-based nursing guideline, and its ease of use and the usefulness were tested through a case study of a genetic counseling guideline. The UML was found to be a useful tool to nurse informaticians and a sufficient tool to model a guideline in a computer program.

  6. Vibrations of double-nanotube systems with mislocation via a newly developed van der Waals model

    Science.gov (United States)

    Kiani, Keivan

    2015-06-01

    This study deals with transverse vibrations of two adjacent-parallel-mislocated single-walled carbon nanotubes (SWCNTs) under various end conditions. These tubes interact with each other and their surrounding medium through the intertube van der Waals (vdW) forces, and existing bonds between their atoms and those of the elastic medium. The elastic energy of such forces due to the deflections of nanotubes is appropriately modeled by defining a vdW force density function. In the previous works, vdW forces between two identical tubes were idealized by a uniform form of this function. The newly introduced function enables us to investigate the influences of both intertube free distance and longitudinal mislocation on the natural transverse frequencies of the nanosystem which consists of two dissimilar tubes. Such crucial issues have not been addressed yet, even for simply supported tubes. Using nonlocal Timoshenko and higher-order beam theories as well as Hamilton's principle, the strong form of the equations of motion is established. Seeking for an explicit solution to these integro-partial differential equations is a very problematic task. Thereby, an energy-based method in conjunction with an efficient meshfree method is proposed and the nonlocal frequencies of the elastically embedded nanosystem are determined. For simply supported nanosystems, the predicted first five frequencies of the proposed model are checked with those of assumed mode method, and a reasonably good agreement is achieved. Through various studies, the roles of the tube's length ratio, intertube free space, mislocation, small-scale effect, slenderness ratio, radius of SWCNTs, and elastic constants of the elastic matrix on the natural frequencies of the nanosystem with various end conditions are explained. The limitations of the nonlocal Timoshenko beam theory are also addressed. This work can be considered as a vital step towards better realizing of a more complex system that consists of

  7. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  8. Developing a simplified geographical information system approach to dilute lahar modelling for rapid hazard assessment

    Science.gov (United States)

    Darnell, A. R.; Phillips, J. C.; Barclay, J.; Herd, R. A.; Lovett, A. A.; Cole, P. D.

    2013-04-01

    In this study, we present a geographical information system (GIS)-based approach to enable the estimation of lahar features important to rapid hazard assessment (including flow routes, velocities and travel times). Our method represents a simplified first stage in extending the utility of widely used existing GIS-based inundation models, such as LAHARZ, to provide estimates of flow speeds. LAHARZ is used to determine the spatial distribution of a lahar of constant volume, and for a given cell in a GIS grid, a single-direction flow routing technique incorporating the effect of surface roughness directs the flow according to steepest descent. The speed of flow passing through a cell is determined from coupling the flow depth, change in elevation and roughness using Manning's formula, and in areas where there is little elevation difference, flow is routed to locally maximum increase in velocity. Application of this methodology to lahars on Montserrat, West Indies, yielded support for this GIS-based approach as a hazard assessment tool through tests on small volume (5,000-125,000 m3) dilute lahars (consistent with application of Manning's law). Dominant flow paths were mapped, and for the first time in this study area, velocities (magnitudes and spatial distribution) and average travel times were estimated for a range of lahar volumes. Flow depth approximations were also made using (modified) LAHARZ, and these refined the input to Manning's formula. Flow depths were verified within an order of magnitude by field observations, and velocity predictions were broadly consistent with proxy measurements and published data. Forecasts from this coupled method can operate on short to mid-term timescales for hazard management. The methodology has potential to provide a rapid preliminary hazard assessment in similar systems where data acquisition may be difficult.

  9. Development of the Architectural Simulation Model for Future Launch Systems and its Application to an Existing Launch Fleet

    Science.gov (United States)

    Rabadi, Ghaith

    2005-01-01

    A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required

  10. Development of a Trip Energy Estimation Model Using Real-World Global Positioning System Driving Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Holden, Jacob [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhu, Lei [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Gonder, Jeffrey D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    A data-driven technique for estimation of energy requirements for a proposed vehicle trip has been developed. Based on over 700,000 miles of driving data, the technique has been applied to generate a model that estimates trip energy requirements. The model uses a novel binning approach to categorize driving by road type, traffic conditions, and driving profile. The trip-level energy estimations can easily be aggregated to any higher-level transportation system network desired. The model has been tested and validated on the Austin, Texas, data set used to build this model. Ground-truth energy consumption for the data set was obtained from Future Automotive Systems Technology Simulator (FASTSim) vehicle simulation results. The energy estimation model has demonstrated 12.1 percent normalized total absolute error. The energy estimation from the model can be used to inform control strategies in routing tools, such as change in departure time, alternate routing, and alternate destinations, to reduce energy consumption. The model can also be used to determine more accurate energy consumption of regional or national transportation networks if trip origin and destinations are known. Additionally, this method allows the estimation tool to be tuned to a specific driver or vehicle type.

  11. Jackson System Development, Entity-relationship Analysis and Data Flow Models: a comparative study

    NARCIS (Netherlands)

    Wieringa, R.J.

    1994-01-01

    This report compares JSD with ER modeling and data flow modeling. It is shown that JSD can be combined with ER modeling and that the result is a richer method than either of the two. The resulting method can serve as a basis for a pratical object-oriented modeling method and has some resemblance to

  12. Jackson System Development, Entity-relationship Analysis and Data Flow Models: a comparative study

    NARCIS (Netherlands)

    Wieringa, Roelf J.

    1994-01-01

    This report compares JSD with ER modeling and data flow modeling. It is shown that JSD can be combined with ER modeling and that the result is a richer method than either of the two. The resulting method can serve as a basis for a pratical object-oriented modeling method and has some resemblance to

  13. Interrelations Between Socio-economic Development and Environmental Quality: a Simulation Integrating System Dynamics Models with GIS

    Institute of Scientific and Technical Information of China (English)

    YU Jie; BIAN Fuling; PETERSON Jim; LI Pingxiang

    2005-01-01

    System dynamics (SD) theory has long been deployed in modeling complex non-linear interrelationships but, so far it has not been common to do the kind of modeling in support of bringing environmental sustainability policies to practice. This is largely because the challenge of including spatial data has not yet been well met. Potential for adoption of SD and GIS methods in combination is exemplified with the results of a decision-support exercise designed for simulation and prediction of the dynamic inter-relationships between socio-economic development and environmental quality for the "Wen, Pi, Du" county in Sichuan province,southwestern China.

  14. A Computer Model of the Evaporator for the Development of an Automatic Control System

    Science.gov (United States)

    Kozin, K. A.; Efremov, E. V.; Kabrysheva, O. P.; Grachev, M. I.

    2016-08-01

    For the implementation of a closed nuclear fuel cycle it is necessary to carry out a series of experimental studies to justify the choice of technology. In addition, the operation of the radiochemical plant is impossible without high-quality automatic control systems. In the technologies of spent nuclear fuel reprocessing, the method of continuous evaporation is often used for a solution conditioning. Therefore, the effective continuous technological process will depend on the operation of the evaporation equipment. Its essential difference from similar devices is a small size. In this paper the method of mathematic simulation is applied for the investigation of one-effect evaporator with an external heating chamber. Detailed modelling is quite difficult because the phase equilibrium dynamics of the evaporation process is not described. Moreover, there is a relationship with the other process units. The results proved that the study subject is a MIMO plant, nonlinear over separate control channels and not selfbalancing. Adequacy was tested using the experimental data obtained at the laboratory evaporation unit.

  15. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Science.gov (United States)

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  16. Mobile systems development

    DEFF Research Database (Denmark)

    Pedersen, Ole; Kristiansen, Martin Lund; Kammersgaard, Marc N.

    2007-01-01

    Development of mobile software is Surrounded by much uncertainty. Immature software platforms on mobile clients, a highly competitive market calling for innovation, efficiency and effectiveness in the development life cycle, and lacking end-user adoption are just some of the realities facing...... development teams in the mobile software industry. By taking a process view on development of mobile systems we seek to explore the strengths and limitations of eXtreme Programming (XP) in the context of mobile software development. Following an experimental approach a mobile systems development project...... running for four months is conducted. Experiences from the project are used for analysis and discussion of the fit of XP in mobile systems development. First, requirements for mobile systems development projects are proposed. Second, these are analysed and compared to the prescribed principles suggested...

  17. Mobile systems development

    DEFF Research Database (Denmark)

    Pedersen, Ole; Kristiansen, Martin Lund; Kammersgaard, Marc N.

    2007-01-01

    Development of mobile software is Surrounded by much uncertainty. Immature software platforms on mobile clients, a highly competitive market calling for innovation, efficiency and effectiveness in the development life cycle, and lacking end-user adoption are just some of the realities facing...... development teams in the mobile software industry. By taking a process view on development of mobile systems we seek to explore the strengths and limitations of eXtreme Programming (XP) in the context of mobile software development. Following an experimental approach a mobile systems development project...... running for four months is conducted. Experiences from the project are used for analysis and discussion of the fit of XP in mobile systems development. First, requirements for mobile systems development projects are proposed. Second, these are analysed and compared to the prescribed principles suggested...

  18. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].

    Science.gov (United States)

    Sun, Fu; Chen, Ji-ning; Zeng, Si-yu

    2008-12-01

    A conceptual multi-species water quality model for water distribution systems was developed on the basis of the toolkit of the EPANET-MSX software. The model divided the pipe segment into four compartments including pipe wall, biofilm, boundary layer and bulk liquid. The involved processes were substrate utilization and microbial growth, decay and inactivation of microorganisms, mass transfer of soluble components through the boundary layer, adsorption and desorption of particular components between bulk liquid and biofilm, oxidation and halogenation of organic matter by residual chlorine, and chlorine consumption by pipe wall. The fifteen simulated variables included the seven common variables both in the biofilm and in the bulk liquid, i.e. soluble organic matter, particular organic matter, ammonia nitrogen, residual chlorine, heterotrophic bacteria, autotrophic bacteria and inert solids, as well as biofilm thickness on the pipe wall. The model was validated against the data from a series of pilot experiments, and the simulation accuracy for residual chlorine and turbidity were 0.1 mg/L and 0.3 NTU respectively. A case study showed that the model could reasonably reflect the dynamic variation of residual chlorine and turbidity in the studied water distribution system, while Monte Carlo simulation, taking into account both the variability of finished water from the waterworks and the uncertainties of model parameters, could be performed to assess the violation risk of water quality in the water distribution system.

  19. Improved computational model (AQUIFAS) for activated sludge, integrated fixed-film activated sludge, and moving-bed biofilm reactor systems, Part I: Semi-empirical model development.

    Science.gov (United States)

    Sen, Dipankar; Randall, Clifford W

    2008-05-01

    Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and

  20. Jackson System Development, Entity-relationship Analysis and Data Flow Models: a comparative study

    OpenAIRE

    Wieringa, R.J.

    1994-01-01

    This report compares JSD with ER modeling and data flow modeling. It is shown that JSD can be combined with ER modeling and that the result is a richer method than either of the two. The resulting method can serve as a basis for a pratical object-oriented modeling method and has some resemblance to parts of well-known methods, like OMT. It is also argued that JSD and data flow modeling rest on opposite philosophies and cannot be combined in one modeling effort. This is illustrated by transfor...

  1. Model-based development of robotic systems and services in construction robotics

    DEFF Research Database (Denmark)

    Schlette, Christian; Roßmann, Jürgen

    2017-01-01

    More and more of our indoor/outdoor environments are available as 3D digital models. In particular, digital models such as the CityGML (City Geography Markup Language) format for cities and the BIM (Building Information Modeling) methodology for buildings are becoming important standards for proj......More and more of our indoor/outdoor environments are available as 3D digital models. In particular, digital models such as the CityGML (City Geography Markup Language) format for cities and the BIM (Building Information Modeling) methodology for buildings are becoming important standards...

  2. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  3. The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas

    Science.gov (United States)

    Freitas, Saulo R.; Panetta, Jairo; Longo, Karla M.; Rodrigues, Luiz F.; Moreira, Demerval S.; Rosário, Nilton E.; Silva Dias, Pedro L.; Silva Dias, Maria A. F.; Souza, Enio P.; Freitas, Edmilson D.; Longo, Marcos; Frassoni, Ariane; Fazenda, Alvaro L.; Silva, Cláudio M. Santos e.; Pavani, Cláudio A. B.; Eiras, Denis; França, Daniela A.; Massaru, Daniel; Silva, Fernanda B.; Santos, Fernando C.; Pereira, Gabriel; Camponogara, Gláuber; Ferrada, Gonzalo A.; Campos Velho, Haroldo F.; Menezes, Isilda; Freire, Julliana L.; Alonso, Marcelo F.; Gácita, Madeleine S.; Zarzur, Maurício; Fonseca, Rafael M.; Lima, Rafael S.; Siqueira, Ricardo A.; Braz, Rodrigo; Tomita, Simone; Oliveira, Valter; Martins, Leila D.

    2017-01-01

    We present a new version of the Brazilian developments on the Regional Atmospheric Modeling System (BRAMS), in which different previous versions for weather, chemistry, and carbon cycle were unified in a single integrated modeling system software. This new version also has a new set of state-of-the-art physical parameterizations and greater computational parallel and memory usage efficiency. The description of the main model features includes several examples illustrating the quality of the transport scheme for scalars, radiative fluxes on surface, and model simulation of rainfall systems over South America at different spatial resolutions using a scale aware convective parameterization. Additionally, the simulation of the diurnal cycle of the convection and carbon dioxide concentration over the Amazon Basin, as well as carbon dioxide fluxes from biogenic processes over a large portion of South America, are shown. Atmospheric chemistry examples show the model performance in simulating near-surface carbon monoxide and ozone in the Amazon Basin and the megacity of Rio de Janeiro. For tracer transport and dispersion, the model capabilities to simulate the volcanic ash 3-D redistribution associated with the eruption of a Chilean volcano are demonstrated. The gain of computational efficiency is described in some detail. BRAMS has been applied for research and operational forecasting mainly in South America. Model results from the operational weather forecast of BRAMS on 5 km grid spacing in the Center for Weather Forecasting and Climate Studies, INPE/Brazil, since 2013 are used to quantify the model skill of near-surface variables and rainfall. The scores show the reliability of BRAMS for the tropical and subtropical areas of South America. Requirements for keeping this modeling system competitive regarding both its functionalities and skills are discussed. Finally, we highlight the relevant contribution of this work to building a South American community of model

  4. Research on the Coupling Development of Ecology Economic System Based on the PSR Model

    Science.gov (United States)

    Li, Min

    The coupling of eco-economic system is a systematic project in region with soil erosion. The system coupling, harmony, rebalancing and self-evolution can be achieved by reducing system pressure, improving system state and enhancing positive human response. While there are basic requirements regarding availability of input and output boundary flows and sinks, sustainability is centrally a feature of system configuration. A system must provide a basis of positionally-balancing, wholeness-enhancing centers of activity. One aspect of this system balance is between efficiency and redundancy which can be measured in ecological and economic systems using information-based network analysis. This paper overviews these concepts and methods and provide examples from economic and ecological systems and discuss the meaning of the differences in outcome.

  5. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management - Part 1: Model development

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Effective policies, leading to sustainable management solutions for land and water resources, require a full understanding of interactions between socio-economic and physical processes. However, the complex nature of these interactions, combined with limited stakeholder engagement, hinders the incorporation of socio-economic components into physical models. The present study addresses this challenge by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory group-built system dynamics model (GBSDM) that includes socio-economic factors. A stepwise process to quantify the GBSDM is presented, along with governing equations and model assumptions. Sub-modules of the GBSDM, describing agricultural, economic, water and farm management factors, are linked together with feedbacks and finally coupled with the physically based SAHYSMOD model through commonly used tools (i.e., MS Excel and a Python script). The overall integrated model (GBSDM-SAHYSMOD) can be used to help facilitate the role of stakeholders with limited expertise and resources in model and policy development and implementation. Following the development of the integrated model, a testing methodology was used to validate the structure and behavior of the integrated model. Model robustness under different operating conditions was also assessed. The model structure was able to produce anticipated real behaviours under the tested scenarios, from which it can be concluded that the formulated structures generate the right behaviour for the right reasons.

  6. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review.

    Science.gov (United States)

    Bicker, Joana; Alves, Gilberto; Fortuna, Ana; Falcão, Amílcar

    2014-08-01

    During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.

  7. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    Directory of Open Access Journals (Sweden)

    Swapnalee Sarmah

    2016-12-01

    Full Text Available Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.

  8. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    Science.gov (United States)

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  9. Development of a middle and low latitude theoretical ionospheric model and an observation system data assimilation experiment

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    On the basis of previous work,we develop a middle and low latitude theoretical ionospheric model in this paper,named Theoretical lonospheric Model of the Earth in the InstRute of Geology and Geophysics,Chinese Academy of Sciences(TIME-IGGCAS).TIME-IGGCAS solves the equations of mass continuity,motion and energy of electron and ions self-consistently and uses an eccentric dipole field approximation to the Earth's magnetic field.We combine the Eulerian and Lagrangian approaches in the model and take account of the plasma ExB drift velocity.Calculation results reveal that the model is steady and credible and can reproduce most large-scale features of ionosphere.By using TIME-IGGCAS,we carried out an observation system data assimilation experiment.Assimilation results show that the ExB drift velocity can be accurately estimated by ingesting the observed foF2 and hmF2 into the model applying nonlinear least-square fit method.We suggest that this work is of great significance in the development of ionospheric data assimilation model to give better nowcast and forecast of ionosphere.

  10. Towards Fully Coupled Atmosphere-Hydrology Model Systems: Recent Developments and Performance Evaluation For Different Climate Regions

    Science.gov (United States)

    Kunstmann, Harald; Fersch, Benjamin; Rummler, Thomas; Wagner, Sven; Arnault, Joel; Senatore, Alfonso; Gochis, David

    2015-04-01

    Limitations in the adequate representation of terrestrial hydrologic processes controlling the land-atmosphere coupling are assumed to be a significant factor currently limiting prediction skills of regional atmospheric models. The necessity for more comprehensive process descriptions accounting for the interdependencies between water- and energy fluxes at the compartmental interfaces are driving recent developments in hydrometeorological modeling towards more sophisticated treatment of terrestrial hydrologic processes. It is particularly the lateral surface and subsurface water fluxes that are neglected in standard regional atmospheric models. Current developments in enhanced lateral hydrological process descriptions in the WRF model system will be presented. Based on WRF and WRF-Hydro, new modules and concepts for integrating the saturated zone by a 2-dim groundwater scheme and coupling approaches to the unsaturated zone will be presented. The fully coupled model system allows to model the complete regional water cycle, from the top of the atmosphere, via the boundary layer, the land surface, the unsaturated zone and the saturated zone till the flow in the river beds. With this increasing complexity, that also allows to describe the complex interaction of the regional water cycle on different spatial and temporal scales, the reliability and predictability of model simulations can only be shown, if performance is tested for a variety of hydrological variables for different climatological environments. We will show results of fully coupled simulations for the regions of sempiternal humid Southern Bavaria/Germany (rivers Isar and Ammer) and semiarid to subhumid Westafrica (river Sissilli). In both regions, in addition to streamflow measurements, also the validation of heat fluxes is possible via Eddy-Covariance stations within hydrometeorological testbeds. In the German Isar/Ammer region, e.g., we apply the extended WRF-Hydro modeling system in 3km atmospheric- grid

  11. Variations in trihalomethane levels in three French water distribution systems and the development of a predictive model.

    Science.gov (United States)

    Mouly, Damien; Joulin, Eric; Rosin, Christophe; Beaudeau, Pascal; Zeghnoun, Abdelkrim; Olszewski-Ortar, Agnès; Munoz, Jean François; Welté, Bénédicte; Joyeux, Michel; Seux, René; Montiel, Antoine; Rodriguez, M J

    2010-10-01

    Epidemiological studies have demonstrated that chlorination by-products in drinking water may cause some types of cancer in humans. However, due to differences in methodology between the various studies, it is not possible to establish a dose-response relationship. This shortcoming is due primarily to uncertainties about how exposure is measured-made difficult by the great number of compounds present-the exposure routes involved and the variation in concentrations in water distribution systems. This is especially true for trihalomethanes for which concentrations can double between the water treatment plant and the consumer tap. The aim of this study is to describe the behaviour of trihalomethanes in three French water distribution systems and develop a mathematical model to predict concentrations in the water distribution system using data collected from treated water at the plant (i.e. the entrance of the distribution system). In 2006 and 2007, samples were taken successively from treated water at the plant and at several points in the water distribution system in three French cities. In addition to the concentrations of the four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), many other parameters involved in their formation that affect their concentration were also measured. The average trihalomethane concentration in the three water distribution systems ranged from 21.6 μg/L to 59.9 μg/L. The increase in trihalomethanes between the treated water at the plant and a given point in the water distribution system varied by a factor of 1.1-5.7 over all of the samples. A log-log linear regression model was constructed to predict THM concentrations in the water distribution system. The five variables used were trihalomethane concentration and free residual chlorine for treated water at the plant, two variables that characterize the reactivity of organic matter (specific UV absorbance (SUVA), an indicator developed for the free

  12. ECO-BIOLOGICAL SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    T. I. Burak

    2015-01-01

    Full Text Available The methodology for computer modeling of complex eco-biological models is presented in this paper. It is based on system approach of J. Forrester. Developed methodology is universal for complex ecological and biological systems. Modeling algorithm considers specialties of eco-biological systems and shows adequate and accurate results in practice. 

  13. Doing Systems Development

    DEFF Research Database (Denmark)

    Koch, Christian; Mathiasen, John Bang

    2014-01-01

    Systems development of wind turbine control is competitive with respect to innovation, time and cost. So how can learning possibly occur under such circumstances? Dewey’s pragmatist approach to learning is adopted, emphasising reciprocity between the systems developer’s individual experience...... and the sociotechnical practice. The framework involves the concepts of sociotechnical practice, anchoring of indeterminate situation, and strip of doings towards determinate situation. An ethnographic study was made of four cases of systems development and learning do occur in the cases, enabled by converging anchoring...... of the indeterminate situation and the systems developers different experience. However, an extreme case reveals initiated learning processes and that the interchanges between materiality of the artefacts and systems developers block the learning processes due to a customer with imprecise demands and unclear system...

  14. 信息模型驱动的信息系统开发与元信息系统%Information Model Driven Development of Information System and Meta Information System

    Institute of Scientific and Technical Information of China (English)

    梁军; 何建邦

    2003-01-01

    The development of Information System has been experienced four phases: Computing Central ,Data Cen-tral,Object Central phase,and Model Central phase under developing. Information Model in UML will be the core ofdevelopment of Information System. In order to manage Information Model,Artifacts of system development (such asmodels, documents ,source codes and components),the development process and the running of information system,an information system of information systems,Meta Information System ,must be built. Meta Information Systemwill become a Computer Integrated Manufacture System (CIMS)of Software Enterprise.

  15. Development of an expert system for the simulation model for casting metal substructure of a metal-ceramic crown design.

    Science.gov (United States)

    Matin, Ivan; Hadzistevic, Miodrag; Vukelic, Djordje; Potran, Michal; Brajlih, Tomaz

    2017-07-01

    Nowadays, the integrated CAD/CAE systems are favored solutions for the design of simulation models for casting metal substructures of metal-ceramic crowns. The worldwide authors have used different approaches to solve the problems using an expert system. Despite substantial research progress in the design of experts systems for the simulation model design and manufacturing have insufficiently considered the specifics of casting in dentistry, especially the need for further CAD, RE, CAE for the estimation of casting parameters and the control of the casting machine. The novel expert system performs the following: CAD modeling of the simulation model for casting, fast modeling of gate design, CAD eligibility and cast ability check of the model, estimation and running of the program code for the casting machine, as well as manufacturing time reduction of the metal substructure. The authors propose an integration method using common data model approach, blackboard architecture, rule-based reasoning and iterative redesign method. Arithmetic mean roughness values was determinated with constant Gauss low-pass filter (cut-off length of 2.5mm) according to ISO 4287 using Mahr MARSURF PS1. Dimensional deviation between the designed model and manufactured cast was determined using the coordinate measuring machine Zeiss Contura G2 and GOM Inspect software. The ES allows for obtaining the castings derived roughness grade number N7. The dimensional deviation between the simulation model of the metal substructure and the manufactured cast is 0.018mm. The arithmetic mean roughness values measured on the casting substructure are from 1.935µm to 2.778µm. The realized developed expert system with the integrated database is fully applicable for the observed hardware and software. Values of the arithmetic mean roughness and dimensional deviation indicate that casting substructures are surface quality, which is more than enough and useful for direct porcelain veneering. The

  16. Development of a technology-based behavioral vaccine to prevent adolescent depression: A health system integration model

    Directory of Open Access Journals (Sweden)

    Benjamin W. Van Voorhees

    2015-09-01

    Full Text Available Efforts to prevent depression have become a key health system priority. Currently, there is a high prevalence of depression among adolescents, and treatment has become costly due to the recurrence patterns of the illness, impairment among patients, and the complex factors needed for a treatment to be effective. Primary care may be the optimal location to identify those at risk by offering an Internet-based preventive intervention to reduce costs and improve outcomes. Few practical interventions have been developed. The models for Internet intervention development that have been put forward focus primarily on the Internet component rather than how the program fits within a broader context. This paper describes the conceptualization for developing technology based preventive models for primary care by integrating the components within a behavioral vaccine framework. CATCH-IT (Competent Adulthood Transition with Cognitive-behavioral, Humanistic and Interpersonal Training has been developed and successfully implemented within various health systems over a period of 14 years among adolescents and young adults aged 13–24.

  17. PENGENDALIAN ASET NIRWUJUD DALAM MANAJEMEN SISTEM IRIGASI: KONSEP DAN PENGEMBANGAN MODEL (Controlling Intangible Assets in Irrigation System Management:Concept and Model Development

    Directory of Open Access Journals (Sweden)

    Nugroho Tri Waskitho

    2013-06-01

    Full Text Available Irrigation was an important component of the agricultural development in Indonesia, but it had many problems. Irrigation management was inefficient, irrigation networks were damaged and farmers participation were poor. These problems were caused by poor of intangible assets. The research aimed at developing the concept and the model of controlling intangible assets in irrigation system management. The research method consisted of two stages. The first stage was developing the concept. The concept of controlling intangible assets in irrigation system management was developed based on principles of knowledge management. The concept stated that intangible assets in irrigation system can be controlled using knowledge management. The second stage was developing the model which consisted of model building and sensivity analysis. Model of controlling intangible assets in irrigation system management was build using neuro-fuzzy. The model had three submodels: knowledge management, intangible assets and performance of irrigation system. Evaluating the model was done in Sapon irrigation system in Kulon Progo, Yogyakarta. Data collecting was done using questionnaire on nine Water Use Associations. Data analysis was done using Adaptive Neuro Fuzzy Inference System. The model had been evaluated using correlation coefficient, Mean Absolute Percentage Error and Root Mean Square Error. Result of the study indicated that the concept of controlling intangible assets in irrigation system management had developed based on knowledge management. The concept stated that irrigation system management had to balance between tangible assets and intangible assets. Intangible assets which had amortization need be controlled. Controlling intangible assets can be done by knowledge management. The model of controlling intangible assets in irrigation system management could predict intangible assets and performance of irrigation system well. The model linked knowledge

  18. Development of a simplified simulation model for performance characterization of a pixellated CdZnTe multimodality imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Guerra, P; Santos, A [Departamento de IngenierIa Electronica, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Darambara, D G [Joint Department of Physics, Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Fulham Road, London SW3 6JJ (United Kingdom)], E-mail: pguerra@die.um.es

    2008-02-21

    Current requirements of molecular imaging lead to the complete integration of complementary modalities in a single hybrid imaging system to correlate function and structure. Among the various existing detector technologies, which can be implemented to integrate nuclear modalities (PET and/or single-photon emission computed tomography with x-rays (CT) and most probably with MR, pixellated wide bandgap room temperature semiconductor detectors, such as CdZnTe and/or CdTe, are promising candidates. This paper deals with the development of a simplified simulation model for pixellated semiconductor radiation detectors, as a first step towards the performance characterization of a multimodality imaging system based on CdZnTe. In particular, this work presents a simple computational model, based on a 1D approximate solution of the Schockley-Ramo theorem, and its integration into the Geant4 application for tomographic emission (GATE) platform in order to perform accurately and, therefore, improve the simulations of pixellated detectors in different configurations with a simultaneous cathode and anode pixel readout. The model presented here is successfully validated against an existing detailed finite element simulator, the multi-geometry simulation code, with respect to the charge induced at the anode, taking into consideration interpixel charge sharing and crosstalk, and to the detector charge induction efficiency. As a final point, the model provides estimated energy spectra and time resolution for {sup 57}Co and {sup 18}F sources obtained with the GATE code after the incorporation of the proposed model.

  19. Development of new methods for the modeling of technical systems and result evaluation for reactor safety simulation codes. Modeling, simulation models; Entwicklung neuer Methoden zur Modellierung technischer Systeme und zur Ergebnisauswertung fuer Simulationsprogramme der Reaktorsicherheit. Modellierung, Simulationsprogramme

    Energy Technology Data Exchange (ETDEWEB)

    Cester, Francesco; Deitenbeck, Helmuth; Kuentzel, Matthias; Scheuer, Josef; Voggenberger, Thomas

    2015-04-15

    The overall objective of the project is to develop a general simulation environment for program systems used in reactor safety analysis. The simulation environment provides methods for graphical modeling and evaluation of results for the simulation models. The terms of graphical modeling and evaluation of results summarize computerized methods of pre- and postprocessing for the simulation models, which can assist the user in the execution of the simulation steps. The methods comprise CAD (''Computer Aided Design'') based input tools, interactive user interfaces for the execution of the simulation and the graphical representation and visualization of the simulation results. A particular focus was set on the requirements of the system code ATHLET. A CAD tool was developed that allows the specification of 3D geometry of the plant components and the discretization with a simulation grid. The system provides inter-faces to generate the input data of the codes and to export the data for the visualization software. The CAD system was applied for the modeling of a cooling circuit and reactor pressure vessel of a PWR. For the modeling of complex systems with many components, a general purpose graphical network editor was adapted and expanded. The editor is able to simulate networks with complex topology graphically by suitable building blocks. The network editor has been enhanced and adapted to the modeling of balance of plant and thermal fluid systems in ATHLET. For the visual display of the simulation results in the local context of the 3D geometry and the simulation grid, the open source program ParaView is applied, which is widely used for 3D visualization of field data, offering multiple options for displaying and ana-lyzing the data. New methods were developed, that allow the necessary conversion of the results of the reactor safety codes and the data of the CAD models. The trans-formed data may then be imported into ParaView and visualized. The

  20. System of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E. (Intera, Inc., Austin, TX); Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  1. Development of Longitudinal Equivalent System Models for Selected U.S. Navy Tactical Aircraft

    Science.gov (United States)

    1981-08-01

    revaraa side II nacaaaary and Identlly by block number) Aircraft Longitudinal Flying Qualities Equivalent Systems Frequency Response Matching...is a twin turbofan powered, land and carrier based, subsonic, anti- submarine warfare aircraft . Longitudinal control is accomplished via a...based, supersonic fighter aircraft . Longitudinal control is accomplished via an irreversible mechanical flight control system which transmits

  2. Coordinate systems and transformations for 3D modeling: the unifying concept in the RADIUS common development environment

    Science.gov (United States)

    Quam, Lynn H.; Heller, Aaron J.

    1996-02-01

    The RADIUS Common Development Environment pulls together many diverse functions into an integrated whole. The main goal of the environment is to provide a system to do interactive modeling of 3-dimensional scenes from multiple images, as well as, providing an infrastructure to support the research in and implementation of image understanding-based algorithms for this and other tasks. The RCDE contains facilities for: CAD-system-like 3D modeling; image processing; electronic-light-table image viewing and exploitation; frame and non-frame camera photogrammetry; and photo realistic rendering. The major achievement of the system is the high level of integration and interoperability between and among these facilities. The key realization that enables this is that every entity represented in the RCDE has an associated local coordinate system. This includes cartographic and cultural features, images and sub-images, text annotations, graphical user interface elements, photogrammetric conjugate points and even the earth itself. These entities are tied together through a flexible and efficient network of coordinate transformations. This allows each type of data to be represented, manipulated, and displayed in the most convenient and precise form, without sacrificing functionality or generality, in addition to enabling the fusion of different types of geometric data. In this paper, we explain the coordinate system representations and transformation facilities in the RCDE and outline some of the rationale and strategies behind the current design and implementation. Also included are examples drawn from its use in the government sponsored RADIUS program.

  3. Optimally combined regional geoid models for the realization of height systems in developing countries - ORG4heights

    Science.gov (United States)

    Lieb, Verena; Schmidt, Michael; Willberg, Martin; Pail, Roland

    2017-04-01

    Precise height systems require high-resolution and high-quality gravity data. However, such data sets are sparse especially in developing or newly industrializing countries. Thus, we initiated the DFG-project "ORG4heights" for the formulation of a general scientific concept how to (1) optimally combine all available data sets and (2) estimate realistic errors. The resulting regional gravity field models then deliver the fundamental basis for (3) establishing physical national height systems. The innovative key aspects of the project incorporate the development of a method which links (low- up to mid-resolution) gravity satellite mission data and (high- down to low-quality) terrestrial data. Hereby, an optimal combination of the data utilizing their highest measure of information including uncertainty quantification and analyzing systematic omission errors is pursued. Regional gravity field modeling via Multi-Resolution Representation (MRR) and Least Squares Collocation (LSC) are studied in detail and compared based on their theoretical fundamentals. From the findings, MRR shall be further developed towards implementing a pyramid algorithm. Within the project, we investigate comprehensive case studies in Saudi Arabia and South America, i. e. regions with varying topography, by means of simulated data with heterogeneous distribution, resolution, quality and altitude. GPS and tide gauge records serve as complementary input or validation data. The resulting products include error propagation, internal and external validation. A generalized concept then is derived in order to establish physical height systems in developing countries. The recommendations may serve as guidelines for sciences and administration. We present the ideas and strategies of the project, which combines methodical development and practical applications with high socio-economic impact.

  4. Cascade Distillation System Development

    Science.gov (United States)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  5. Spatial Econometric Model for Economics Development in Archipelago of Riau, as a Defense System Development in Republic of Indonesia

    Directory of Open Access Journals (Sweden)

    Susanti Linuwih

    2010-08-01

    Full Text Available Province of Archipelago of Riau is a region in Indonesia which is adjacent to Singapore and Malaysia. This province has a great potential conditions diversity and natural resources. Planning on public prosperity improvement is necessary in order to increase loyalty and nationalism to Republic of Indonesia. The aim of this research is to build a spatial econometric model of economic growth in Province of Archipelago of Riau. One of the results shows that in recent 4 years Batam always gives the largest contribution to GRDP in Province of Archipelago of Riau. This can be understood that the contribution is more than 72.0% not only based on GRDP at current prices, but also based on GRDP at constant prices. Economic growth rate in regions in Province of Archipelago of Riau is higher than national economic growth rate. The model fits well because the coefficient of determination R2 is more than 85%. There are only 3 worse models, i.e. based on building construction in Batam (with R2= 59.6%, in Tanjungpinang (with R2=74.0%, and based on transportation and communication in Tanjungpinang (with R2=37.1%.

  6. A Model for Enhancing Education for Sustainable Development with Management Systems

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou; Holm, Tove; Sammalisto, Kaisu;

    2012-01-01

    Enhancing education for sustainable development in higher education is a global challenge. National quality assurance demands for higher education were studied in the context of ESD......Enhancing education for sustainable development in higher education is a global challenge. National quality assurance demands for higher education were studied in the context of ESD...

  7. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  8. Systems dynamics modelling to assess the sustainability of renewable energy technologies in developing countries

    CSIR Research Space (South Africa)

    Brent, AC

    2011-04-01

    Full Text Available supply, and the related cost implications, for water supply; concentrated solar thermal technology options are currently considered. In this paper a systems dynamics approach is used to assess the sustainability of these types of renewable energy...

  9. Developing Flexible, Integrated Hydrologic Modeling Systems for Multiscale Analysis in the Midwest and Great Lakes Region

    Science.gov (United States)

    Hamlet, A. F.; Chiu, C. M.; Sharma, A.; Byun, K.; Hanson, Z.

    2016-12-01

    Physically based hydrologic modeling of surface and groundwater resources that can be flexibly and efficiently applied to support water resources policy/planning/management decisions at a wide range of spatial and temporal scales are greatly needed in the Midwest, where stakeholder access to such tools is currently a fundamental barrier to basic climate change assessment and adaptation efforts, and also the co-production of useful products to support detailed decision making. Based on earlier pilot studies in the Pacific Northwest Region, we are currently assembling a suite of end-to-end tools and resources to support various kinds of water resources planning and management applications across the region. One of the key aspects of these integrated tools is that the user community can access gridded products at any point along the end-to-end chain of models, looking backwards in time about 100 years (1915-2015), and forwards in time about 85 years using CMIP5 climate model projections. The integrated model is composed of historical and projected future meteorological data based on station observations and statistical and dynamically downscaled climate model output respectively. These gridded meteorological data sets serve as forcing data for the macro-scale VIC hydrologic model implemented over the Midwest at 1/16 degree resolution. High-resolution climate model (4km WRF) output provides inputs for the analyses of urban impacts, hydrologic extremes, agricultural impacts, and impacts to the Great Lakes. Groundwater recharge estimated by the surface water model provides input data for fine-scale and macro-scale groundwater models needed for specific applications. To highlight the multi-scale use of the integrated models in support of co-production of scientific information for decision making, we briefly describe three current case studies addressing different spatial scales of analysis: 1) Effects of climate change on the water balance of the Great Lakes, 2) Future

  10. Visualization of geoscience data on Google Earth: Development of a data converter system for seismic tomographic models

    Science.gov (United States)

    Yamagishi, Yasuko; Yanaka, Hiroshi; Suzuki, Katsuhiko; Tsuboi, Seiji; Isse, Takehi; Obayashi, Masayuki; Tamura, Hajimu; Nagao, Hiromichi

    2010-03-01

    We have developed a visualization system for multidisciplinary geoscience data, which visualizes seismic tomographic models, geochemical datasets of rocks, and geomagnetic field models by exploiting Google Earth technologies. As Google Earth supports the ad hoc language, Keyhole Markup Language (KML), we have developed software packages to convert datasets of different fields of geosciences into KML files; we call these software packages "KML generators." The software consists of two components: the engines of the KML generator and the user interface (UI). We provide both desktop and web UI applications for the KML generators. The web applications are now available ( http://www.jamstec.go.jp/pacific21/google_earth). The KML generators provide a graphical UI and a flexible visualization scheme that enable both expert and nonexpert users to handle various geoscience data. In this paper, we describe a visualization schema of seismic tomography on Google Earth. The KML generator for the tomography enables us to display vertical and horizontal cross sections of the model on Google Earth in three-dimensions (3D), which can be useful for understanding the structure of the Earth's interior. In our visualization system, with multiple KML files produced from the KML generators, various geoscience data can be visualized with the same 3D graphics. This contribution can promote cross-disciplinary studies and provide new insights into the Earth's dynamics.

  11. Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems.

    Science.gov (United States)

    Kumar, Amit; Sokhansanj, Shahab; Flynn, Peter C

    2006-01-01

    This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8 x 10(6) dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/ stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4 x 10(6) dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.

  12. Developing mathematical modelling competence

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Jensen, Tomas Højgaard

    2003-01-01

    In this paper we introduce the concept of mathematical modelling competence, by which we mean being able to carry through a whole mathematical modelling process in a certain context. Analysing the structure of this process, six sub-competences are identified. Mathematical modelling competence...... cannot be reduced to these six sub-competences, but they are necessary elements in the development of mathematical modelling competence. Experience from the development of a modelling course is used to illustrate how the different nature of the sub-competences can be used as a tool for finding...... the balance between different kinds of activities in a particular educational setting. Obstacles of social, cognitive and affective nature for the students' development of mathematical modelling competence are reported and discussed in relation to the sub-competences....

  13. Industrialized Information Systems Development

    DEFF Research Database (Denmark)

    Havn, Erling; Bansler, Jørgen P.

    1996-01-01

    with such generic products, instead of custom made software. We discuss how the move away from traditional in-house development and the increasing use of generic software is likely to transform IS development in the near future. We conclude that these developments will make new demands on the information systems......The production of application software is rapidly being industrialized. Computer manufacturers and software houses produce a rapidly growing number of generic software applications and systems, and more and more user companies choose to build their computer-based information systems...

  14. Development and validation of a sensor- and expert model-based training system for laparoscopic surgery: the iSurgeon.

    Science.gov (United States)

    Kowalewski, Karl-Friedrich; Hendrie, Jonathan D; Schmidt, Mona W; Garrow, Carly R; Bruckner, Thomas; Proctor, Tanja; Paul, Sai; Adigüzel, Davud; Bodenstedt, Sebastian; Erben, Andreas; Kenngott, Hannes; Erben, Young; Speidel, Stefanie; Müller-Stich, Beat P; Nickel, Felix

    2017-05-01

    Training and assessment outside of the operating room is crucial for minimally invasive surgery due to steep learning curves. Thus, we have developed and validated the sensor- and expert model-based laparoscopic training system, the iSurgeon. Participants of different experience levels (novice, intermediate, expert) performed four standardized laparoscopic knots. Instruments and surgeons' joint motions were tracked with an NDI Polaris camera and Microsoft Kinect v1. With frame-by-frame image analysis, the key steps of suturing and knot tying were identified and registered with motion data. Construct validity, concurrent validity, and test-retest reliability were analyzed. The Objective Structured Assessment of Technical Skills (OSATS) was used as the gold standard for concurrent validity. The system showed construct validity by discrimination between experience levels by parameters such as time (novice = 442.9 ± 238.5 s; intermediate = 190.1 ± 50.3 s; expert = 115.1 ± 29.1 s; p Concurrent validity of OSATS and iSurgeon parameters was established. Test-retest reliability was given for 7 out of 8 parameters. The key steps "wrapping the thread around the instrument" and "needle positioning" were most difficult to learn. Validity and reliability of the self-developed sensor-and expert model-based laparoscopic training system "iSurgeon" were established. Using multiple parameters proved more reliable than single metric parameters. Wrapping of the needle around the thread and needle positioning were identified as difficult key steps for laparoscopic suturing and knot tying. The iSurgeon could generate automated real-time feedback based on expert models which may result in shorter learning curves for laparoscopic tasks. Our next steps will be the implementation and evaluation of full procedural training in an experimental model.

  15. Development of a fully 3D system model in iterative expectation-maximization reconstruction for cone-beam SPECT

    Science.gov (United States)

    Ye, Hongwei; Vogelsang, Levon; Feiglin, David H.; Lipson, Edward D.; Krol, Andrzej

    2008-03-01

    In order to improve reconstructed image quality for cone-beam collimator SPECT, we have developed and implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm, along with a volumetric system model - cone-volume system model (CVSM), a modified attenuation compensation, and a 3D depth- and angle-dependent resolution and sensitivity correction. SPECT data were acquired in a 128×128 matrix, in 120 views with a single circular orbit. Two sets of numerical Defrise phantoms were used to simulate CBC SPECT scans, and low noise and scatter-free projection datasets were obtained using the SimSET Monte Carlo package. The reconstructed images, obtained using OSEM with a line-length system model (LLSM) and a 3D Gaussian post-filter, and OSEM with FVSM and a 3D Gaussian post-filter were quantitatively studied. Overall improvement in the image quality has been observed, including better transaxial resolution, higher contrast-to-noise ratio between hot and cold disks, and better accuracy and lower bias in OSEM-CVSM, compared with OSEM-LLSM.

  16. Earth System Model Development and Analysis using FRE-Curator and Live Access Servers: On-demand analysis of climate model output with data provenance.

    Science.gov (United States)

    Radhakrishnan, A.; Balaji, V.; Schweitzer, R.; Nikonov, S.; O'Brien, K.; Vahlenkamp, H.; Burger, E. F.

    2016-12-01

    There are distinct phases in the development cycle of an Earth system model. During the model development phase, scientists make changes to code and parameters and require rapid access to results for evaluation. During the production phase, scientists may make an ensemble of runs with different settings, and produce large quantities of output, that must be further analyzed and quality controlled for scientific papers and submission to international projects such as the Climate Model Intercomparison Project (CMIP). During this phase, provenance is a key concern:being able to track back from outputs to inputs. We will discuss one of the paths taken at GFDL in delivering tools across this lifecycle, offering on-demand analysis of data by integrating the use of GFDL's in-house FRE-Curator, Unidata's THREDDS and NOAA PMEL's Live Access Servers (LAS).Experience over this lifecycle suggests that a major difficulty in developing analysis capabilities is only partially the scientific content, but often devoted to answering the questions "where is the data?" and "how do I get to it?". "FRE-Curator" is the name of a database-centric paradigm used at NOAA GFDL to ingest information about the model runs into an RDBMS (Curator database). The components of FRE-Curator are integrated into Flexible Runtime Environment workflow and can be invoked during climate model simulation. The front end to FRE-Curator, known as the Model Development Database Interface (MDBI) provides an in-house web-based access to GFDL experiments: metadata, analysis output and more. In order to provide on-demand visualization, MDBI uses Live Access Servers which is a highly configurable web server designed to provide flexible access to geo-referenced scientific data, that makes use of OPeNDAP. Model output saved in GFDL's tape archive, the size of the database and experiments, continuous model development initiatives with more dynamic configurations add complexity and challenges in providing an on

  17. High-performance work systems in health care management, part 1: development of an evidence-informed model.

    Science.gov (United States)

    Garman, Andrew N; McAlearney, Ann Scheck; Harrison, Michael I; Song, Paula H; McHugh, Megan

    2011-01-01

    : Although management practices are recognized as important factors in improving health care quality and efficiency, most research thus far has focused on individual practices, ignoring or underspecifying the contexts within which these practices are operating. Research from other industries, which has increasingly focused on systems rather than individual practices, has yielded results that may benefit health services management. : Our goal was to develop a conceptual model on the basis of prior research from health care as well as other industries that could be used to inform important contextual considerations within health care. : Using theoretical frameworks from A. Donabedian (1966), P. M. Wright, T. M. Gardner, and L. M. Moynihan (2003), and B. Schneider, D. B. Smith, and H. W. Goldstein (2000) and review methods adapted from R. Pawson (2006b), we reviewed relevant research from peer-reviewed and other industry-relevant sources to inform our model. The model we developed was then reviewed with a panel of practitioners, including experts in quality and human resource management, to assess the applicability of the model to health care settings. : The resulting conceptual model identified four practice bundles, comprising 14 management practices as well as nine factors influencing adoption and perceived sustainability of these practices. The mechanisms by which these practices influence care outcomes are illustrated using the example of hospital-acquired infections. In addition, limitations of the current evidence base are discussed, and an agenda for future research in health care settings is outlined. : Results may help practitioners better conceptualize management practices as part of a broader system of work practices. This may, in turn, help practitioners to prioritize management improvement efforts more systematically.

  18. [Quality system in cardiology: practical example to develop an organizational model for management certification without bureaucracy].

    Science.gov (United States)

    Colonna, Paolo; Pasini, Evasio; Pitocchi, Oreste; Bovenzi, Francesco; Sorino, Margherita; de Luca, Italo

    2003-04-01

    It is a difficult task to define practical guidelines and a pragmatic achievement for the new document of the Italian Ministry of Health for structures of the national health system obtaining a quality system according to the ISO 9000 standard. The present article illustrates the different steps to accomplish the quality management in our cardiology department, recently internationally certified, and it gives several practical examples of the path followed in the different sections of the department to obtain the best management of all the Operative Units, identifying customer requests and measuring customer satisfaction.

  19. Continuous system modeling

    Science.gov (United States)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  20. A Case for Declarative Process Modelling: Agile Development of a Grant Application System

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2014-01-01

    We present a new declarative model with composition and hierarchical definition of processes, featuring (a) incremental refinement, (b) adaptation of processes, and (c) dynamic creation of sub-processes. The approach is motivated and exemplified by a recent case management solution delivered by our...

  1. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  2. Development of an end-of-life vehicle recovery model using system dynamics and future research needs

    Science.gov (United States)

    Mohamad-Ali, N.; Ghazilla, R. A. R.; Abdul-Rashid, S. H.; Sakundarini, N.; Ahmad-Yazid, A.; Stephenie, L.

    2017-06-01

    The implementation of end-of-life vehicle (ELV) recovery policy in Malaysia has led vehicle manufacturers to look at different ways to improve design and development of vehicles. Nowadays, it is crucial to incorporate end-of-life (EOL) design strategies into the vehicle design in order to enhance the effectiveness of the ELV recovery network. Although recent studies have shown that product design has a significant effect on the product recovery rate, there is a lack of studies on how EOL design strategies affects the effectiveness of ELV recovery, particularly when there are dynamic changes in the behaviour of the product recovery network. Thus, in this study, we developed a preliminary model based on the system dynamics approach in order to predict the effectiveness of ELV recovery in response to dynamic changes of various factors (including EOL design strategies) in the business environment. We developed this model based on preliminary data that we had gathered from unstructured interviews with the key stakeholders of ELV management in Malaysia. We believe that our model will greatly benefit product designers in incorporating the appropriate EOL design strategies in order to boost ELV recovery effectiveness in Malaysia.

  3. Development of the HT-BP neural network system for the identification of a well-test interpretation model

    Energy Technology Data Exchange (ETDEWEB)

    Sung, W.; Yoo, I.; Ra, S. [Hanyang Univ., Seoul (Korea, Republic of). Mineral and Petroleum Engineering Dept.; Park, H.

    1996-08-01

    The back propagation (BP) neural network approach has been the subject of recent focus because it can identify models for incomplete or distorted data without performing data preparation procedures. However, this approach uses only partial sets of data to reduce computing time and memory, and it may miss the points representing characteristics of the curve shape. Therefore, the resulted model may not be correct, forcing one to use sequential neural nets to find the correct model. The authors present the Hough Transform (HT) method combined with the BP neural network to improve this problem. With the aid of an HT, one can extract one simple pattern, including noisy and extraneous points, from the full-set data. A number of exercises also have been conducted for the published well-test data with the artificial intelligence neutral network identification system (ANNIS) they developed. The results show that ANNIS is quite reliable, especially for the incomplete or distorted data. They also demonstrate that the modified Levenberg-Marquart interpretation model, also developed in this work, successfully estimates reservoir parameters.

  4. Organization-based Model-driven Development of High-assurance Multiagent Systems

    Science.gov (United States)

    2009-02-27

    There has been work in incorporating abstract qualities into multiagent systems. Tropos defines the concept of a soft-goal (Bresciani, Giorgini...York, NY, USA: ACM Press. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004). Tropos : An agent-oriented software

  5. American Guild of Musical Artists: A Case for System Development, Data Modeling, and Analytics

    Science.gov (United States)

    Harris, Ranida; Wedel, Thomas

    2017-01-01

    This article presents a case scenario that may be used in system analysis and design, database management, and business analytics classes. The case document includes realistic, detailed information on the operations at the American Guild of Musical Artists (AGMA). Examples of assignments for each class and suggested reading are presented. In each…

  6. Delayed development of systemic immunity in preterm pigs as a model for preterm infants

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Jiang, Pingping; Frøkiær, Hanne

    2016-01-01

    , poor neutrophil phagocytic rate, and limited cytokine responses to TLR1/2/5/7/9 and NOD1/2 agonists. The preterm systemic responses remained immature during the first postnatal week, but thereafter showed increased blood leukocyte numbers, NK cell proportion, neutrophil phagocytic rate and TLR2...

  7. Development of a contemporary animal model of Candida albicans-associated denture stomatitis using a novel intraoral denture system.

    Science.gov (United States)

    Johnson, Clorinda C; Yu, Alika; Lee, Heeje; Fidel, Paul L; Noverr, Mairi C

    2012-05-01

    Denture stomatitis (DS) is a fungal infection characterized by inflammation of the oral mucosa in direct contact with the denture and affects up to 50% of denture wearers. Despite the prevalence, very little is known about the role of fungal or host factors that contribute to pathogenesis. Recently, we developed a novel intraoral denture system for rodent research. This denture system consists of custom-fitted fixed and removable parts to allow repeated sampling and longitudinal studies. The purpose of this study was to use this denture system to develop a clinically relevant animal model of DS. To establish DS, rats were inoculated with pelleted Candida albicans, which resulted in sustained colonization of the denture and palate for 8 weeks postinoculation. Biofilm formation on the denture was observed by week 4 and on the palate by week 6 postinoculation. Rats were monitored for clinical signs of disease by assigning a clinical score after macroscopic examination of the palate tissue according to Newton's method. By week 4 postinoculation, the majority of inoculated rats with dentures exhibited a clinical score of 1 (pinpoint erythema). By week 6 and week 8 postinoculation, increasing percentages of rats exhibited a clinical score of 2 (diffuse erythema/edema). Histological analysis of palate tissue demonstrated progressively increasing inflammatory cell recruitment throughout the time course of the infection. Palatal biofilm formation was commensurate with development of palatal erythema, which suggests a role for biofilm in the inflammatory response.

  8. The Genetics of Biofuel Traits in Panicum Grasses: Developing a Model System with Diploid Panicum Hallii

    Energy Technology Data Exchange (ETDEWEB)

    Juenger, Thomas [Univ. of Texas, Austin, TX (United States). Dept. of Integrative Biology; Wolfrum, Ed [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-07-31

    Our DOE funded project focused on characterizing natural variation in C4 perennial grasses including switchgrass (Panicum virgatum) and Hall’s panicgrass (Panicum hallii). The main theme of our project was to better understand traits linked with plant performance and that impact the utility of plant biomass as a biofuel feedstock. In addition, our project developed tools and resources for studying genetic variation in Panicum hallii. Our project successfully screened both Panicum virgatum and Panicum hallii diverse natural collections for a host of phenotypes, developed genetic mapping populations for both species, completed genetic mapping for biofuel related traits, and helped in the development of genomic resources of Panicum hallii. Together, these studies have improved our understanding of the role of genetic and environmental factors in impacting plant performance. This information, along with new tools, will help foster the improvement of perennial grasses for feedstock applications.

  9. HACCP models for quality control of entrée production in hospital foodservice systems. I. Development of hazard analysis critical control point models.

    Science.gov (United States)

    Bobeng, B J; David, B D

    1978-11-01

    HACCP models were developed as part of a research project for quality control of entrée production in three types of hospital foodservice systems: Conventional, cook/chill, and cook/freeze. Critical control points at process stages were identified. Time-temperature was a critical control point throughout entrée production in each model; time-temperature parameters were established for critical control points. Equipment sanitation and personnel sanitation are critical control points for which standards must be established by each foodservice system. Determination of the effectiveness of control measures included continuous monitoring of critical control points for time-temperature. Sanitation of equipment and personnel should be monitored using standards established by the foodservice system.

  10. RISK ANALYSIS DEVELOPED MODEL

    Directory of Open Access Journals (Sweden)

    Georgiana Cristina NUKINA

    2012-07-01

    Full Text Available Through Risk analysis developed model deciding whether control measures suitable for implementation. However, the analysis determines whether the benefits of a data control options cost more than the implementation.

  11. Apomixis in Achnanthes (Bacillariophyceae); development of a model system for diatom reproductive biology

    OpenAIRE

    Sabbe, K; Chepurnov, V.A.; Vyverman, W.; Mann, D. G.

    2004-01-01

    The availability of extensive experimental data and remarkable intra- and interspecific variation in breeding behaviour make Achnanthes Bory sensu stricto an especially good model for studying the reproductive and population biology of pennate diatoms. In most Achnanthes species studied, auxospore formation is accompanied by biparental sexual reproduction, but we found uniparental auxosporulation in Achnanthes cf. subsessilis. Auxosporulation appears to be apomictic and follows contraction of...

  12. Drosophila melanogaster as a model system for assessing development under conditions of microgravity

    Science.gov (United States)

    Abbott, M. K.; Hilgenfeld, R. B.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    More is known about the regulation of early developmental events in Drosophila than any other animal. In addition, its size and short life cycle make it a facile experimental system. Since developmental perturbations have been demonstrated when both oogenesis and embryogenesis occur in the space environment, there is a strong rationale for using this organism for the elucidation of specific gravity-sensitive developmental events.

  13. Development of a Corrosion Potential Measuring System Based on the Generalization of DACS Physical Scale Modeling

    OpenAIRE

    Song Dalei; Fan Xinjian; Ma Xueyan; Shi Weiguo; Wang Xiangdong

    2015-01-01

    A feasible method in evaluating the protection effect and corrosion state of marine cathodic protection (CP) systems is collecting sufficient electric potential data around a submarine pipeline and then establishing the mapping relations between these data and corrosion states of pipelines. However, it is difficult for scientists and researchers to obtain those data accurately due to the harsh marine environments and absence of dedicated potential measurement device. In this paper, to allevia...

  14. Modelling river dune development

    NARCIS (Netherlands)

    Paarlberg, Andries; Weerts, H.J.T.; Dohmen-Janssen, Catarine M.; Ritsema, I.L; Hulscher, Suzanne J.M.H.; van Os, A.G.; Termes, A.P.P.

    2005-01-01

    Since river dunes influence flow resistance, predictions of dune dimensions are required to make accurate water level predictions. A model approach to simulate developing river dunes is presented. The model is set-up to be appropriate, i.e. as simple as possible, but with sufficient accuracy for

  15. Neutrophil apoptosis is delayed in an equine model of colitis: Implications for the development of systemic inflammatory response syndrome.

    Science.gov (United States)

    Anderson, S L; Singh, B

    2017-05-01

    Horses that develop colitis invariably exhibit signs of a systemic inflammatory response syndrome (SIRS). A significant contributor to the development of SIRS in human subjects is delayed neutrophil apoptosis, but this has not been specifically studied in horses. To determine the occurrence of ex vivo neutrophil apoptosis and its contribution to the development of SIRS in an equine colitis model. Experiment using a colitis model. Neutrophils were isolated before and after the induction of colitis using an oligofructose overdose model, placed into culture for 12 h or 24 h with or without lipopolysaccharide (LPS) at various concentrations, and assessed for the occurrence of apoptosis using Annexin V and propidium iodide staining with flow cytometric quantification. Levels of caspase-3, -8 and -9 activity were measured after 12 h of incubation in neutrophil lysates. Ex vivo neutrophil apoptosis was significantly delayed in neutrophils isolated after the induction of colitis (12-h incubation: P = 0.004; 24-h incubation: P = 0.003) with concomitant reductions in caspase-3, -8 and -9 activity (caspase-3: P = 0.004; caspase-8: P = 0.02; caspase-9: P = 0.02). Neutrophils isolated after the induction of colitis were refractory to LPS-delayed apoptosis. Neutrophil apoptosis was delayed with increasing cell concentration in vitro. The main limitation of the study is the that the exact mechanism for delayed neutrophil apoptosis following the induction of colitis was not fully elucidated. The data show that neutrophil apoptosis is delayed in horses following the induction of colitis as a result of interference with the intrinsic and extrinsic apoptotic pathways, which may contribute to the development of equine SIRS. Concurrent development of neutrophilia may contribute to a prolonged neutrophil lifespan through a concentration-dependent delay in apoptosis. © 2016 EVJ Ltd.

  16. Status on the Development of a Modeling and Simulation Framework for the Economic Assessment of Nuclear Hybrid Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon Michelle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Deason, Wesley Ray [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard Doin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    An effort to design and build a modeling and simulation framework to assess the economic viability of Nuclear Hybrid Energy Systems (NHES) was undertaken in fiscal year 2015 (FY15). The purpose of this report is to document the various tasks associated with the development of such a framework and to provide a status on its progress. Several tasks have been accomplished. First, starting from a simulation strategy, a rigorous mathematical formulation has been achieved in which the economic optimization of a Nuclear Hybrid Energy System is presented as a constrained robust (under uncertainty) optimization problem. Some possible algorithms for the solution of the optimization problem are presented. A variation of the Simultaneous Perturbation Stochastic Approximation algorithm has been implemented in RAVEN and preliminary tests have been performed. The development of the software infrastructure to support the simulation of the whole NHES has also moved forward. The coupling between RAVEN and an implementation of the Modelica language (OpenModelica) has been implemented, migrated under several operating systems and tested using an adapted model of a desalination plant. In particular, this exercise was focused on testing the coupling of the different code systems; testing parallel, computationally expensive simulations on the INL cluster; and providing a proof of concept for the possibility of using surrogate models to represent the different NHES subsystems. Another important step was the porting of the RAVEN code under the Windows™ operating system. This accomplishment makes RAVEN compatible with the development environment that is being used for dynamic simulation of NHES components. A very simplified model of a NHES on the electric market has been built in RAVEN to confirm expectations on the analysis capability of RAVEN to provide insight into system economics and to test the capability of RAVEN to identify limit surfaces even for stochastic constraints. This

  17. Analysis and Modeling of Complex Geomorphic Systems: Technique Development, Data Collection, and Application to Rangeland Terrain

    Science.gov (United States)

    2008-10-01

    Resources Research, 38(5). Feynman , R.P., Leighton, R.B. and Sands, M., 1963. The Feynman Lectures on Physics , 1. Addison-Wesley Publishing Company...16. SECURITY CLASSIFICATION OF: This report describes the results of a four-year, multi-faceted investigation into the physics of sediment transport...investigation into the physics of sediment transport and erosion in channels and hillslopes. The project addressed two objectives: (1) develop and

  18. Development of a Design-Based Computational Model of Bioretention Systems

    OpenAIRE

    Liu, Jia

    2013-01-01

    Multiple problems caused by urban runoff have emerged as a consequence to the continuing development of urban areas in recent decades. The increase of impervious land areas can significantly alter watershed hydrology and water quality. Typical impacts to downstream hydrologic regimes include higher peak flows and runoff volumes, shorter concentration times, and reduced infiltration. Urban runoff increases the transport of pollutants and nutrients and thus degrades water bodies adjacent to urb...

  19. Evolutionary Information System Development

    DEFF Research Database (Denmark)

    Kristensen, Jan

    This paper offers advice to companies and professionals that implement e-commerce systems in business organizations. Implementing e-commerce systems is different from traditional IT implementation and thus requires a new set of tools and skills. The need for a novel approach is illustrated...... and necessary items that must be taken into account are pointed out by narrating two stories of e-commerce implementation processes in wholesale companies. The empirical evidence suggests the following: Managing the continued development on an operational level requires operational insight and understanding...... of business priorities. On a more theoretical level this suggests that we must revise our current understanding of systems development to cope....

  20. Evolutionary Information System Development

    DEFF Research Database (Denmark)

    Kristensen, Jan

    This paper offers advice to companies and professionals that implement e-commerce systems in business organizations. Implementing e-commerce systems is different from traditional IT implementation and thus requires a new set of tools and skills. The need for a novel approach is illustrated...... and necessary items that must be taken into account are pointed out by narrating two stories of e-commerce implementation processes in wholesale companies. The empirical evidence suggests the following: Managing the continued development on an operational level requires operational insight and understanding...... of business priorities. On a more theoretical level this suggests that we must revise our current understanding of systems development to cope....

  1. Complex systems approach to scientific publication and peer-review system: development of an agent-based model calibrated with empirical journal data.

    Science.gov (United States)

    Kovanis, Michail; Porcher, Raphaël; Ravaud, Philippe; Trinquart, Ludovic

    Scientific peer-review and publication systems incur a huge burden in terms of costs and time. Innovative alternatives have been proposed to improve the systems, but assessing their impact in experimental studies is not feasible at a systemic level. We developed an agent-based model by adopting a unified view of peer review and publication systems and calibrating it with empirical journal data in the biomedical and life sciences. We modeled researchers, research manuscripts and scientific journals as agents. Researchers were characterized by their scientific level and resources, manuscripts by their scientific value, and journals by their reputation and acceptance or rejection thresholds. These state variables were used in submodels for various processes such as production of articles, submissions to target journals, in-house and external peer review, and resubmissions. We collected data for a sample of biomedical and life sciences journals regarding acceptance rates, resubmission patterns and total number of published articles. We adjusted submodel parameters so that the agent-based model outputs fit these empirical data. We simulated 105 journals, 25,000 researchers and 410,000 manuscripts over 10 years. A mean of 33,600 articles were published per year; 19 % of submitted manuscripts remained unpublished. The mean acceptance rate was 21 % after external peer review and rejection rate 32 % after in-house review; 15 % publications resulted from the first submission, 47 % the second submission and 20 % the third submission. All decisions in the model were mainly driven by the scientific value, whereas journal targeting and persistence in resubmission defined whether a manuscript would be published or abandoned after one or many rejections. This agent-based model may help in better understanding the determinants of the scientific publication and peer-review systems. It may also help in assessing and identifying the most promising alternative systems of peer

  2. Job Aid Manuals for Phase 2-DESIGN of the Instructional Systems Development Model

    Science.gov (United States)

    1980-05-01

    FROM POINT A TO POINT B AND OMP A]S INTERPRET 1 USE CMPS F ] APPI Y ROLES IJS[ GRID SIG O UIN USE LEGEND SSTE[READ COMIPASS C A FRUSM SYSTEM PAS...34 "him," and "his," as well as "men," are intended to include both the masculine and feminine gender . Any exceptions to this usage will be so noted. F-1...eTask No & t 15 cah . Test lhent The Tod To record a task eletenhs -1 h,c, U. -ton Shet Zare to e Tasted t, addT,on each ask element ecotdea olassrTed s

  3. Optimal development of the future Danish energy system – insights from TIMES-DTU model

    DEFF Research Database (Denmark)

    Petrovic, Stefan; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2015-01-01

    of CHP-based district heating and heat saving measures. In the same period Denmark became well-known by integration and export of wind turbines. In line with the changes in the past, Denmark currently has very ambitious renewable energy targets, most ambitious being the 100 % renewable energy system......) WLP with the constraint that 50 % of electricity production should come from wind starting from 2020, and (iii) WLP-NFE scenario with the constraint that power and heat sector should be fossil fuel-free starting from 2035 and Denmark should be 100 % renewable starting from 2050. In all scenarios...

  4. Mobile systems development

    DEFF Research Database (Denmark)

    Hosbond, Jens Henrik

    2005-01-01

    This paper takes a systems development perspective on mobility, building on preliminary findings of an on-going multiple case study covering 7 companies. The questions driving this paper are: What are the challenges facing development practice in the mobile industry, how do they affect practice...... and a development dimension. Finally, implications stemming from these challenges are discussed and issues inviting for future research are proposed....

  5. Research on Nontraditional Development Model of Secure Operating Systems%安全操作系统非传统开发模式研究

    Institute of Scientific and Technical Information of China (English)

    石文昌; 孙玉芳

    2003-01-01

    The TCSEC-based traditional development model of secure operating systems is exhibiting more and more obviously inability in the rapidly changing world of computer applications. With an experiment of building a secure operating system in accordance with the philosophy of the international standard for computer security evaluation,i. e.the Common Criteria,research on nontraditional development model of secure operating systems is conducted in this paper.

  6. Hydrogeological investigation of an oasis-system aquifer in arid southeastern Morocco by development of a groundwater flow model

    Science.gov (United States)

    Bouaamlat, Ilias; Larabi, Abdelkader; Faouzi, Mohamed

    2016-09-01

    Groundwater of the Tafilalet oasis system (TOS) is an important water resource in the lower Ziz and Rheris valleys of arid southeastern Morocco. The unconfined aquifer is exploited for domestic consumption and irrigation. A groundwater flow model was developed to assess the impact of climatic variations and development, including the construction of hydraulic structures, on the hydrodynamic behavior of the aquifer. Numerical simulations were performed by implementing a spatial database within a geographic information system and using the Arc Hydro Groundwater tool with the code MODFLOW-2000. The results of steady-state and transient simulations between 1960 and 2011 show that the water table is at equilibrium between recharge, which is mainly by surface-water infiltration, and discharge by evapotranspiration. After the commissioning of the Hassan Addakhil dam in 1971, hydraulic heads became more sensitive to annual variations than to seasonal variations. Heads are also influenced by recurrent droughts and the highest water-level changes are recorded in irrigated areas. The model provides a way of managing groundwater resources in the TOS. It can be used as a tool to predict the impact of different management plans for the protection of groundwater against overexploitation and deterioration of water quality.

  7. Beam Instrument Development System

    Energy Technology Data Exchange (ETDEWEB)

    2016-01-08

    Beam Instrumentation Development System (BIDS) is a collection of common support libraries and modules developed during a series of Low-Level Radio Frequency (LLRF) control and timing/synchronization projects. BIDS includes a collection of Hardware Description Language (HDL) libraries and software libraries. The BIDS can be used for the development of any FPGA-based system, such as LLRF controllers. HDL code in this library is generic and supports common Digital Signal Processing (DSP) functions, FPGA-specific drivers (high-speed serial link wrappers, clock generation, etc.), ADC/DAC drivers, Ethernet MAC implementation, etc.

  8. Ecological network analysis of an urban water metabolic system: model development, and a case study for Beijing.

    Science.gov (United States)

    Zhang, Yan; Yang, Zhifeng; Fath, Brian D

    2010-09-15

    Using ecological network analysis, we analyzed the network structure and ecological relationships in an urban water metabolic system. We developed an ecological network model for the system, and used Beijing as an example of analysis based on the model. We used network throughflow analysis to determine the flows among components, and measured both indirect and direct flows. Using a network utility matrix, we determined the relationships and degrees of mutualism among six compartments--1) local environment, 2) rainwater collection, 3) industry, 4) agriculture, 5) domestic sector, and 6) wastewater recycling--which represent producer, consumer, and reducer trophic levels. The capacity of producers to provide water for Beijing decreased from 2003 to 2007, and consumer demand for water decreased due to decreasing industrial and agricultural demand; the recycling capacity of reducers also improved, decreasing the discharge pressure on the environment. The ecological relationships associated with the local environment or the wastewater recycling sector changed little from 2003 to 2007. From 2003 to 2005, the main changes in the ecological relationships among components of Beijing's water metabolic system mostly occurred between the local environment, the industrial and agricultural sectors, and the domestic sector, but by 2006 and 2007, the major change was between the local environment, the agricultural sector, and the industrial sector. The other ecological relationships did not change during the study period. Although Beijing's mutualism indices remained generally stable, the ecological relationships among compartments changed greatly. Our analysis revealed ways to further optimize this system and the relationships among compartments, thereby optimizing future urban water resources development.

  9. Power Systems Development Facility

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  10. Meta-hierarchical-heuristic-mathematical- model of loading problems in flexible manufacturing system for development of an intelligent approach

    Directory of Open Access Journals (Sweden)

    Ranbir Singh

    2016-04-01

    Full Text Available Flexible manufacturing system (FMS promises a wide range of manufacturing benefits in terms of flexibility and productivity. These benefits are targeted by efficient production planning. Part type selection, machine grouping, deciding production ratio, resource allocation and machine loading are five identified production planning problems. Machine loading is the most identified complex problem solved with aid of computers. System up gradation and newer technology adoption are the primary needs of efficient FMS generating new scopes of research in the field. The literature review is carried and the critical analysis is being executed in the present work. This paper presents the outcomes of the mathematical modelling techniques for loading of machines in FMS’s. It was also analysed that the mathematical modelling is necessary for accurate and reliable analysis for practical applications. However, excessive computations need to be avoided and heuristics have to be used for real-world problems. This paper presents the heuristics-mathematical modelling of loading problem with machine processing time as primary input. The aim of the present work is to solve a real-world machine loading problem with an objective of balancing the workload of the FMS with decreased computational time. A Matlab code is developed for the solution and the results are found most accurate and reliable as presented in the paper.

  11. Development of a farm-firm modelling system for evaluation of herbaceous energy crops

    Energy Technology Data Exchange (ETDEWEB)

    English, B.C.; Alexander, R.R.; Loewen, K.H.; Coady, S.A.; Cole, G.V.; Goodman, W.R. (Tennessee Univ., Knoxville, TN (United States). Dept. of Agricultural Economics and Rural Sociology)

    1992-01-01

    A complete analysis is performed to simulate biomass production incorporated into a realistic whole farm situation, including or replacing a typical crop mix. Representative farms are constructed to accommodate such simulation. Four management systems are simulated for each firm, with each simulation depicting a different crop mix and/or use of different farming technologies and production methods. The first simulation was a base farm plan in which the operator would maintain the historical crop mix for the area, participate in all price support programs, and not participate in either a conservative reserve or a biomass production program. In the second simulation, the operator would again maintain the historical crop mix, would not participate in a conservation reserve or biomass production program, and would be ineligible to participate in any price support system. The third simulation introduced the Conservation Reserve Program (CRP) and included participation in all price support programs. The fourth simulation introduced a biomass crop production enterprise (switchgrass) as an alternative to enrolling highly erodible cropland in the CRP and allowed participation in price support programs. Simulations were made for three farms, two in West Tennessee and on in South Georgia. Results indicate that erosion is likely to be reduced more by the diversion of cropland to permanent vegetative cover on farms similar to the more highly erodible West Tennessee farms than on the less erodible Tift County, Georgia farm. Equivalent reductions in erosion rates result from entering highly erodible cropland in the CRP and from production of switchgrass as a biomass energy crop. Both switchgrass and CRP farm plans result in decreased net returns from the base plan, although the biomass farm plans are, in general, more profitable than the CRP plans.

  12. Methodology for Developing Hydrological Models Based on an Artificial Neural Network to Establish an Early Warning System in Small Catchments

    Directory of Open Access Journals (Sweden)

    Ivana Sušanj

    2016-01-01

    Full Text Available In some situations, there is no possibility of hazard mitigation, especially if the hazard is induced by water. Thus, it is important to prevent consequences via an early warning system (EWS to announce the possible occurrence of a hazard. The aim and objective of this paper are to investigate the possibility of implementing an EWS in a small-scale catchment and to develop a methodology for developing a hydrological prediction model based on an artificial neural network (ANN as an essential part of the EWS. The methodology is implemented in the case study of the Slani Potok catchment, which is historically recognized as a hazard-prone area, by establishing continuous monitoring of meteorological and hydrological parameters to collect data for the training, validation, and evaluation of the prediction capabilities of the ANN model. The model is validated and evaluated by visual and common calculation approaches and a new evaluation for the assessment. This new evaluation is proposed based on the separation of the observed data into classes based on the mean data value and the percentages of classes above or below the mean data value as well as on the performance of the mean absolute error.

  13. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  14. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  15. Developments in optical system evaluation, spatial modeling, chemometrics and applications with atomic spectroscopy

    Science.gov (United States)

    Rider, Michael Eugene

    1998-11-01

    High temperature plasma emission sources have spatial characteristics. The Abel inversion calculates radial responses from lateral measurements of cylindrically symmetric emission sources. This dissertation presents three aspects of making spatial measurements: (1) Evaluation of an optical setup; (2) New numerically exact routine for improved spatial modeling; and (3) Radial and lateral measurements. Optical ray tracing software was been used for critical evaluation of the design of a unique imaging spectrometer. Position, area, and angles of view are calculated as a function of position of a translating lens and the optical properties of the quartz tube. The translating lens imaging spectrometer is compared to the more common alternative of moving the source or detector and found to perform comparatively well. A new Abel inversion technique, based on numerical improvements in a matrix-based algorithm, is described. The new approach (Mabel) combines exact computation of area terms for the Abel inversion with matrix calculation capabilities present in the MATLAB TM computational environment to generate radial profiles from lateral scans of the plasma with the best accuracy possible. Results of four 1000 ring Mabel inversions are presented. Comparisons between Mabel and two other numerical methods are made for test cases commonly cited in literature and for test cases having radial and lateral profiles with analytic solutions. The effects of noise propagation and of incomplete viewing of the plasma are also presented. Temperature is one of the most fundamental characteristic of high temperature plasmas. Lateral and radial temperatures measured from different views result in different values for a given plasma emission source. Four radial temperature profiles were used to generate radial intensities of five different wavelengths on the basis of a Boltzmann distribution of energies at each temperature. Forward Mabel transforms were performed on the radial intensities

  16. Business system: Sustainable development and anticipatory system

    Directory of Open Access Journals (Sweden)

    Vojko Potočan

    2002-01-01

    Full Text Available The existence and development of humankind depends mainly upon the co-ordinated operation of all areas and levels of human activity. However, in theory and in practice there is no model of operation, which would provide a harmonized and target oriented development. A partial solution is offered by sustainable development, which tries to define and carry out common goals of mankind with a harmonized implementation of human activities at all levels of its living and behaviour. Companies belong to central institutions of modern society which essentially co–create the sustainability of society. The company’s endeavour by simulation to prepare models of their goals concerning their internal and external environment. On the base of systemic treatment, we can define companies as business system, which can survive in a log-run only on the basis of sustainable development. The business system can also be supported by the application of the anticipatory systems. The anticipatory systems can be, in this sense, understood as an entity of the methodological approach, techniques and modes of work. Their characteristics have, a direct impact on the determination of goals, on the orientation of operation, and hence on the achievement of the business system results.

  17. Development and application of centrifugal model test system for break of earth-rock dams%Development and application of centrifugal model test system for break of earth-rock dams

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    A centrifugal model test system is successfully developed for the study of the break of earth-rock dams. A rotational water-supply ring is fixed to ensure adequate water amount for simulating scouring flow against the dam body in the test under accelerated velocity conditions. Advanced data measur- ing methods and image capturing devices are used to capture in multiple directions the images of overall dam break processes under accelerated velocity and mud flow conditions. A model dam with height 32cm is used to