WorldWideScience

Sample records for modeling synthesis characterization

  1. Synthesis and characterization of new 5-linked pinoresinol lignin models.

    Science.gov (United States)

    Yue, Fengxia; Lu, Fachuang; Sun, Runcang; Ralph, John

    2012-12-14

    Pinoresinol structures, featuring a β-β'-linkage between lignin monomer units, are important in softwood lignins and in dicots and monocots, particularly those that are downregulated in syringyl-specific genes. Although readily detected by NMR spectroscopy, pinoresinol structures largely escaped detection by β-ether-cleaving degradation analyses presumably due to the presence of the linkages at the 5 positions, in 5-5'- or 5-O-4'-structures. In this study, which is aimed at helping better understand 5-linked pinoresinol structures by providing the required data for NMR characterization, new lignin model compounds were synthesized through biomimetic peroxidase-mediated oxidative coupling reactions between pre-formed (free-phenolic) coniferyl alcohol 5-5'- or 5-O-4'-linked dimers and a coniferyl alcohol monomer. It was found that such dimers containing free-phenolic coniferyl alcohol moieties can cross-couple with the coniferyl alcohol producing pinoresinol-containing trimers (and higher oligomers) in addition to other homo- and cross-coupled products. Eight new lignin model compounds were obtained and characterized by NMR spectroscopy, and one tentatively identified cross-coupled β-O-4'-product was formed from a coniferyl alcohol 5-O-4'-linked dimer. It was demonstrated that the 5-5'- and 5-O-4'-linked pinoresinol structures could be readily differentiated by using heteronuclear multiple-bond correlation (HMBC) NMR spectroscopy. With appropriate modification (etherification or acetylation) to the newly obtained model compounds, it would be possible to identify the 5-5'- or 5-O-4'-linked pinoresinol structures in softwood lignins by 2D HMBC NMR spectroscopic methods. Identification of the cross-coupled dibenzodioxocin from a coniferyl alcohol 5-5'-linked moiety suggested that thioacidolysis or derivatization followed by reductive cleavage (DFRC) could be used to detect and identify whether the coniferyl alcohol itself undergoes 5-5'-cross-linking during

  2. Graphene Synthesis and Characterization

    Science.gov (United States)

    2015-04-08

    AFRL-OSR-VA-TR-2015-0086 Graphene Synthesis and Characterization 130060 Andrea Cortes UNIVERSIDAD TECNICA FEDERICO SANTA MARIA Final Report 04/08...AND SUBTITLE Grant: Graphene synthesis and characterizatión 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0060 5c. PROGRAM ELEMENT NUMBER 6...13. SUPPLEMENTARY NOTES 14. ABSTRACT Here is reported graphene synthesis by two methods, Chemical Vapor Deposition (CVD) using Acetylene as a

  3. Synthesis, Characterization, and Modeling of Naphthyl-Terminated sp Carbon Chains: Dinaphthylpolyynes

    CERN Document Server

    Cataldo, Franco; Cinquanta, Eugenio; Castelli, Ivano Eligio; Manini, Nicola; Onida, Giovanni; Milani, Paolo; 10.1021/jp104863v

    2010-01-01

    We report a combined study on the synthesis, spectroscopic characterization and theoretical modelling of a series of {\\alpha},{\\omega}-dinaphthylpolyynes. We synthesized this family of naphtyl-terminated sp carbon chains by reacting diiodoacetylene and 1-ethynylnaphthalene under the Cadiot-Chodkiewicz reaction conditions. By means of liquid chromatography (HPLC), we separated the products and recorded their electronic absorption spectra, which enabled us to identify the complete series of dinaphthylpolyynes Ar-C2n-Ar (with Ar = naphthyl group and n = number of acetilenic units) with n ranging from 2 to 6. The longest wavelength transition (LWT) in the electronic spectra of the dinaphthylpolyynes red shifts linearly with n away from the LWT of the bare termination. This result is also supported by DFT-LDA simulations. Finally, we probed the stability of the dinaphthylpolyynes in a solid-state precipitate by Fourier-transform infrared spectroscopy and by differential scanning calorimetry (DSC).

  4. SYNTHESIS, CHARACTERIZATION AND ANTIBACTERIAL ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    conductance measurements, elemental analysis, infrared, UV/Vis, nuclear ... antipyretic properties [1, 2] and also used in the design and development of ... All chemicals used for the preparation of the complexes were of analytical ...... complexes also disturb the respiration process of the cell and thus block the synthesis of.

  5. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ...

    African Journals Online (AJOL)

    Preferred Customer

    Institute of Chemical Sciences, University of Peshawar, N.W.F.P., Pakistan ... The inverse process, i.e. coordinating a metal ion from an important biomolecule for instance, a zinc finger protein has been used to design novel .... earlier [34], whereas, the complexes were characterized on the basis of elemental analysis,.

  6. A singing voices synthesis system to characterize vocal registers using ARX-LF model

    OpenAIRE

    Motoda, Hiroki; Akagi, Masato

    2013-01-01

    This paper proposes a singing voices synthesis system to synthesize singing voices having characteristics of vocal registers, such as vocal fly, modal and falsetto. Human can sing songs naturally in wide range of frequency by training how to use vocal fold vibrations to represent vocal registers. However, even state-of-the-art singing voices synthesis systems cannot produce vocal registers appropriately. Naturalness of the synthesized singing voices using these systems is reduced in low and h...

  7. Synthesis and Characterization of Multithiouracils

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LIU Hui-Min; ZHANG Wei; ZHANG Wen-Qin

    2003-01-01

    @@ Alkylation of bases group of nucleic acid, thymine and uracil, has attracted great attention. In order to investigate the intermolecular interactions, [1,2] and the photoreactions[3,4] between bases group of nucleic acid, many studies were focused on the synthesis of bisbases in the formation of B-(CH2)n-B (B′) in which trimethylene was commonly used as linker. Thiouracil is an important derivative of nucleic acid bases, and it can interfere with the synthesis of thyroxine, especially in the treatment of hyperthyroidism and angina. However, to our knowledge, the synthesis of bisthiouracils, even trithiouracils, using flexible or rigid linkers has not been reported. Herein, we have synthesized eight thiouracil derivatives by nucleophilic reaction between thiouracil and varied bromides. All the compounds have been characterized by IR, 1H NMR and element analysis.

  8. Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Youness, Rasha A. [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Taha, Mohammed A. [Solid-State Physics Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt); Elhaes, Hanan [Physics Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, 11757 Cairo (Egypt); Ibrahim, Medhat, E-mail: medahmed6@yahoo.com [Spectroscopy Department, National Research Centre, El-Bohouth Str., 12622, Dokki, Giza (Egypt)

    2017-04-01

    Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder has been successively synthesized by mechanochemical method. The effect of milling times on the formation of B-CHA was investigated by Fourier transform infrared spectroscopy, X-ray diffraction technique and scanning electron microscopy. Moreover, physical as well as mechanical properties were examined as a function of milling time. Furthermore, theoretical model was presented for hydroxyapatite (HA). Semiempirical calculations at PM6 level were used to calculate thermal parameters including entropy; enthalpy; heat capacity; free energy and heat of formation in the temperature range from 200 up to 500 k. The results revealed that single phase B-CHA was successfully formed after 8 h of milling when Ball to Powder Ratio (BPR) equals to 10:1. Results revealed that entropy; enthalpy and heat capacity gradually increased as a function of temperature while, free energy and heat of formation decreased with the increasing of temperature. Comparison with higher level of theory was conducted at HF and DFT using the models HF/3-21g**; B3LYP/6-31G(d,p) and B3LYP/LANL2DZ, respectively and indicated that PM6 could be utilized with appropriate accuracy and time to study physical and thermochemical parameters for HA. - Highlights: • Preparation of Nanocrystalline B-type carbonate substituted hydroxyapatite (B-CHA) powder by mechanochemical method. • Characterization of CHA. • Semiemperical and DFT models for CHA.

  9. Synthesis, molecular modeling and structural characterization of vanillin derivatives as antimicrobial agents

    Science.gov (United States)

    Sun, Juan; Yin, Yong; Sheng, Gui-Hua; Yang, Zhi-Bo; Zhu, Hai-Liang

    2013-05-01

    Two vanillin derivatives have been designed and synthesized and their biological activities were also evaluated for antimicrobial activity. Their chemical structures are characterized by single crystal X-ray diffraction studies, 1H NMR, MS, and elemental analysis. Structural stabilization of them followed by intramolecular as well as intermolecular H-bonds makes these molecules as perfect examples in molecular recognition with self-complementary donor and acceptor units within a single molecule. Docking simulations have been performed to position compounds into the FtsZ active site to determine their probable binding model. Compound 3a shows the most potent biological activity, which may be a promising antimicrobial leading compound for the further research.

  10. Electrospun cerium nitrate/polymer composite fibres:synthesis, characterization and fibre-division model

    Institute of Scientific and Technical Information of China (English)

    Li Meng-Meng; Long Yun-Ze; Yin Hong-Xing; Zhang Zhi-Ming

    2011-01-01

    Cerium (III)nitrate/poly(vinylpyrrolidone)(Ce(NO3)3/PVP)composite fibres have been prepared by electrospinning. After calcining the composite fibres in air at 500℃, CeO2 nanowires were obtained. The characterizations of the as-spun composite fibres and resultant nanowires have been carried out by a scanning electron microscope (SEM),an infrared spectrometer, an x-ray diffractometer and a fluorescence spectrophotometer. Interestingly, some unusual ribbon-like or twin fibres were observed besides the common fibres with circular or elliptic cross sections. We developed a fibre-division model resulting from Coulomb repulsion and solvent vaporization to interpret the formation of the ribbona or twin fibres, which has been confirmed by the SEM studies. Our results also indicate that the formation of the ribbons or twin fibres is less dependent on operation voltage and work distance.

  11. Synthesis, rheological characterization, and constitutive modeling of polyhydroxy triglycerides derived from milkweed oil.

    Science.gov (United States)

    Harry-O'kuru, R E; Carriere, C J

    2002-05-22

    Asclepias syriaca L., the common milkweed, is a new industrial crop. The seed contains about 20-30 wt % of a highly unsaturated oil having unusual fatty acids. Exploring value-added products from the oil, milkweed triglycerides have been oxidized by in situ performic acid to the polyoxirane and polyhydroxy triglycerides (PHTG). The rheological properties of milkweed PHTG were characterized in various shear flows. Milkweed PHTG displayed nonlinear viscoelastic behavior at applied strains greater than 1%. Milkweed PHTG was found to obey time-strain separability. A nonlinear Wagner constitutive model was used successfully to qualitatively predict the behavior of milkweed PHTG in both start-up and cessation of steady-state shear flow.

  12. SYNTHESIS, SPECTRAL CHARACTERIZATIONS AND ...

    African Journals Online (AJOL)

    Preferred Customer

    1Istanbul University, Faculty of Engineering, Department of Chemistry, ... for physicochemical properties and practical application of Schiff bases, this process has been ... applications in biological modeling, catalysis, design of molecular magnets ... The Electron Spray Ionization-Mass Spectroscopy (ESI-MS) analyses were ...

  13. Characterization of eicosanoid synthesis in a genetic ablation model of ceramide kinase.

    Science.gov (United States)

    Mietla, Jennifer A; Wijesinghe, Dayanjan S; Hoeferlin, L Alexis; Shultz, Michael D; Natarajan, Ramesh; Fowler, Alpha A; Chalfant, Charles E

    2013-07-01

    Multiple reports have demonstrated a role for ceramide kinase (CERK) in the production of eicosanoids. To examine the effects of the genetic ablation of CERK on eicosanoid synthesis, primary mouse embryonic fibroblasts (MEFs) and macrophages were isolated from CERK(-/-) and CERK(+/+) mice, and the ceramide-1-phosphate (C1P) and eicosanoid profiles were investigated. Significant decreases were observed in multiple C1P subspecies in CERK-/- cells as compared to CERK(+/+) cells with overall 24% and 48% decreases in total C1P. In baseline experiments, the levels of multiple eicosanoids were significantly lower in the CERK(-/-) cells compared with wild-type cells. Importantly, induction of eicosanoid synthesis by calcium ionophore was significantly reduced in the CERK(-/-) MEFs. Our studies also demonstrate that the CERK(-/-) mouse has adapted to loss of CERK in regards to airway hyper-responsiveness as compared with CERK siRNA treatment. Overall, we demonstrate that there are significant differences in eicosanoid levels in ex vivo CERK(-/-) cells compared with wild-type counterparts, but the effect of the genetic ablation of CERK on eicosanoid synthesis and the serum levels of C1P was not apparent in vivo.

  14. Synthesis, characterization and cytotoxic evaluation of chitosan nanoparticles: in vitro liver cancer model

    Science.gov (United States)

    Loutfy, Samah A.; Alam El-Din, Hanaa M.; Elberry, Mostafa H.; Allam, Nanis G.; Hasanin, M. T. M.; Abdellah, Ahmed M.

    2016-09-01

    To evaluate the cytotoxic effect of chitosan nanoparticles (CS-NPs) on an in vitro human liver cancer cell model (HepG2) and their possible application as a drug delivery system, we synthesized water-soluble CS-NPs, investigated their properties and extensively evaluated their cytotoxic activity on the cellular and molecular levels. A human liver cancer cell line was used as a model of human liver cancer. The CS-NPs were characterized using transmission electron microscopy, Fourier transform infrared spectroscopy, and zeta analysis. The cytotoxic effects of the CS-NPs on HepG2 cells were monitored by sulforhodamine B colorimetric assays for cytotoxicity screening and flow cytometric analysis. Molecular investigations including DNA fragmentation and the expression of some apoptotic genes on the transcriptional RNA level were conducted. Treatment of HepG2 with different concentrations of 150 nm diameter CS-NPs did not show alteration of cell morphology after 24 h of cell exposure. Also, when cells were treated with 100 μg ml-1 of CS-NPs, 12% of them were killed and IC50 reached 239 μg ml-1 after 48 h of cell exposure. Flow cytometry evaluation of the CS-NPs revealed mild accumulation in the G2/M phase followed by cellular DNA fragmentation after 48 h of cell exposure. Extensive evaluation of the cytotoxic effect of the CS-NPs showed messenger RNA (mRNA) apoptotic gene expression (p53, Bak, Caspase3) after 24 h of cell exposure with no expression of the mRNA of the caspase 3 gene after 48 h of cell exposure, suggesting the involvement of an intrinsic apoptotic caspase-independent pathway by increasing the exposure time of 100 μg ml-1 of the CS-NPs. The engineered CS-NPs were controlled to a 150 nm size and charges of 40 mV and a concentration of 100 μg ml-1 revealed a genotoxic effect on HepG2 after 48 h of cell exposure through intrinsic apoptotic caspase-independent mechanisms. Further quantitative analysis on the molecular and protein levels is still required

  15. Solid-phase synthesis, characterization, and cellular activities of collagen-model nanodiamond-peptide conjugates.

    Science.gov (United States)

    Knapinska, Anna M; Tokmina-Roszyk, Dorota; Amar, Sabrina; Tokmina-Roszyk, Michal; Mochalin, Vadym N; Gogotsi, Yury; Cosme, Patrick; Terentis, Andrew C; Fields, Gregg B

    2015-05-01

    Nanodiamonds (NDs) have received considerable attention as potential drug delivery vehicles. NDs are small (∼5 nm diameter), can be surface modified in a controllable fashion with a variety of functional groups, and have little observed toxicity in vitro and in vivo. However, most biomedical applications of NDs utilize surface adsorption of biomolecules, as opposed to covalent attachment. Covalent modification provides reliable and reproducible ND-biomolecule ratios, and alleviates concerns over biomolecule desorption prior to delivery. The present study has outlined methods for the efficient solid-phase conjugation of ND to peptides and characterization of ND-peptide conjugates. Utilizing collagen-derived peptides, the ND was found to support or even enhance the cell adhesion and viability activities of the conjugated sequence. Thus, NDs can be incorporated into peptides and proteins in a selective manner, where the presence of the ND could potentially enhance the in vivo activities of the biomolecule it is attached to.

  16. Synthesis and characterization of Taurine

    Directory of Open Access Journals (Sweden)

    B Bayarmaa

    2014-10-01

    Full Text Available Have been obtained 2-aminoethanesulfonic acid (taurine from ethanolamine, sulfuric acid and sodium sulfite during the synthesis in laboratory condition. The process involves two steps of reactions, the first was esterification of ethanolamine with sulfuric acid to produce the intermediate product of 2-aminoethyl ester which than was extended to the second step by sulfonation with sodium sulfite to produce 2-aminoethanesulfonic acid. Resulting product was analyzed using 1H-NMR, IR, FAB-MS analysis and examined purity characterizations of the synthesized products. DOI: http://dx.doi.org/10.5564/mjc.v14i0.200 Mongolian Journal of Chemistry 14 (40, 2013, p57-60

  17. Synthesis, characterization and modeling structures of isatin-3-Girard T (IGT) and P (IGP) hydrazone complexes.

    Science.gov (United States)

    Salah, Sabah; El-Wahab, Zeinab H Abd; Farag, Rabei S; Mostafa, Mohsen M

    2014-04-24

    The reactions of isatin Girard's T hydrazone, N,N,N-trimethyl-2-oxo-2[(2z)-2-(2-oxo-1,2-dihydro-3H-indole-3-ylidene)hydrazino]ethan ammonium chloride (IGT) and isatin Girard's P hydrazone, 1-{2-oxo-2-[(2z)(2-oxo-1,2-dihydro-3H-indole-3-ylidene)hydrazine]ethyl} pyridinium chloride (IGP), with Fe(3+), Al(3+), Sb(3+) and Sn(2+) salts afford different types of complexes. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, (1)H NMR, mass), magnetic moment and thermal measurements. The results suggest that all the complexes are conducting in polar solvents (EtOH, H2O and DMF). The IR spectral data suggest that the ligands coordinate in a tridentate manner via the two carbonyl of both isatin and Girard's and the azomethine (C=N) groups. The amounts of solvents inside and outside the coordination sphere were determined using thermal data (TGA) and weight loss method. The octahedral geometry of the complexes is confirmed using DFT method from DMOL(3) calculations. The ligands and their metal complexes were tested against different strains of bacteria and fungi. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Synthesis, Characterization, Molecular Modeling, and DNA Interaction Studies of Copper Complex Containing Food Additive Carmoisine Dye.

    Science.gov (United States)

    Shahabadi, Nahid; Akbari, Alireza; Jamshidbeigi, Mina; Khodarahmi, Reza

    2016-06-02

    A copper complex of carmoisine dye; [Cu(carmoisine)2(H2O)2]; was synthesized and characterized by using physico-chemical and spectroscopic methods. The binding of this complex with calf thymus (ct) DNA was investigated by circular dichroism, absorption studies, emission spectroscopy, and viscosity measurements. UV-vis results confirmed that the Cu complex interacted with DNA to form a ground-state complex and the observed binding constant (2× 10(4) M(-1)) is more in keeping with the groove bindings with DNA. Furthermore, the viscosity measurement result showed that the addition of complex causes no significant change on DNA viscosity and it indicated that the intercalation mode is ruled out. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrogen bonds and van der Waals interactions played major roles in the reaction. The results of circular dichroism (CD) suggested that the complex can change the conformation of DNA from B-like form toward A-like conformation. The cytotoxicity studies of the carmoisine dye and its copper complex indicated that both of them had anticancer effects on HT-29 (colon cancer) cell line and they may be new candidates for treatment of the colon cancer.

  19. Synthesis and characterization of nanocrystalline apatites from solution modeling human blood

    Science.gov (United States)

    Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga

    2016-09-01

    Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.

  20. Synthesis, spectroscopic characterization, molecular modeling and eukaryotic DNA degradation of new hydrazone complexes

    Directory of Open Access Journals (Sweden)

    Ahmed A. El-Asmy

    2017-02-01

    Full Text Available 2,5-Hexanedione bis(salicyloylhydrazone [H4L] formed novel complexes with some transition metal ions. H4L and its complexes were characterized by elemental analyses, spectral (IR, 1H NMR, ESR and MS, thermal and magnetic measurements. The complexes have the formulae [VO(H2L]·2H2O, [Ni(H2L]·3H2O, [Zn(H2L], [Ni(H4LCl2]·2H2O and [Cr2(H2L(OAc2(OH2]–·2H2O, [Cu(H4L (H2L(EtOH2]·2H2O, [Co2(H2L(OAc2]·H2O, [Mn2(H2L–(OH2]·H2O [Cu2(H2L(OAc2(H2O6], and [Co2(H2L(H2O4Cl2]·2H2O. H4L released its OH or NH protons during the complex formation. Acetate and hydroxo groups bridged the two chromium in [Cr2(H2L(OAc2(OH2]·2H2O. The magnetic moments and electronic spectra of all complexes provide: tetrahedral for [Co2(H2L(OAc2]·H2O, [Ni(H2L]·3H2O and [Zn(H2L]; square-pyramidal for [VO(H2L]·2H2O and octahedral for the rest. In DMF solution, the bands are shifted to higher energy suggesting a weak interaction with the solvent. The ESR spectra support the mononuclear geometry for [VO(H2L]·2H2O and [Cu(H3L2(EtOH2]·2H2O. The thermal decomposition of the complexes revealed the outer and inner solvents as well as the end product which in most cases is metal oxide.

  1. Synthesis, characterization, antimicrobial activity and molecular ...

    African Journals Online (AJOL)

    Synthesis, characterization, antimicrobial activity and molecular .... The solid product was filtered, washed with ether (3 × 20 ... dimethyl sulfoxide (DMSO) to obtain 5120 mg/mL ...... catalysts for direct diastereo-and regioselective Mannich.

  2. Synthesis and characterization of mibolerone

    Institute of Scientific and Technical Information of China (English)

    YANG Qing; FAN Bo-lin; TANG Rui-ren

    2007-01-01

    A simple and effective route for the synthesis of mibolerone was described starting from the estr-5(10)-en-3,17-dione in four steps with the overall yield of 47.0%. Thus, two methods for key intermediate methylnorandrost were investigated: one(method A) starting from estr-4-en-3,17-dione underwent 3-keto group protected with ethyl orthoformate to give 3-ethoxy-3,5-dien-estr-17-one, the other(method B) from estr-5(10)-en-3,17-dione and protected 3-keto group to give 3,3-dimethoxy-estr-5(10)-7-one in a mild acidic condition. Then, two intermediates were subsequently reacted with methyllithium followed by a mild hydrolytic procedure and gave methylnorandrost with total yield 25.0% and 86.0%, respectively. In the preparation of 6-dehydrogenation product of methylnorandrost, two procedures(method C and method D) were investigated: one was the protected 17α-methyl-17β-hydroxy △3,-5-enol ethers estrendiene brominated and the resulting 6-bromo-19-methylnortestosterone was then immediately dehydrohaloenated to give 6-dehydro-19-methylnortestosterone, the total yield only reaches 36.0%; the other was directly dehydrogenated with chloranil and the yield reaches 75.6% under the optimum conditions: in refluxing tetrahydrofuran,the molar ratio of methylnorandrost to chloranil is 0.66 and reaction time of 5 h. The titled compound and intermediates were characterized by 1H and 13C NMR, IRMS and elemental analysis.

  3. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    Science.gov (United States)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  4. Coinage Metal Hydrides: Synthesis, Characterization, and Reactivity.

    Science.gov (United States)

    Jordan, Abraham J; Lalic, Gojko; Sadighi, Joseph P

    2016-08-10

    Hydride complexes of copper, silver, and gold encompass a broad array of structures, and their distinctive reactivity has enabled dramatic recent advances in synthesis and catalysis. This Review summarizes the synthesis, characterization, and key stoichiometric reactions of isolable or observable coinage metal hydrides. It discusses catalytic processes in which coinage metal hydrides are known or probable intermediates, and presents mechanistic studies of selected catalytic reactions. The purpose of this Review is to convey how developments in coinage metal hydride chemistry have led to new organic transformations, and how developments in catalysis have in turn inspired the synthesis of reactive new complexes.

  5. Synthesis and characterization of gold graphene composite with dyes as model substrates for decolorization: a surfactant free laser ablation approach.

    Science.gov (United States)

    Sai Siddhardha, R S; Lakshman Kumar, V; Kaniyoor, Adarsh; Sai Muthukumar, V; Ramaprabhu, S; Podila, Ramakrishna; Rao, A M; Ramamurthy, Sai Sathish

    2014-12-10

    A facile surfactant free laser ablation mediated synthesis (LAMS) of gold-graphene composite is reported here. The material was characterized using transmission electron microscopy, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, powdered X-ray diffraction, Raman spectroscopy, Zeta potential measurements and UV-Visible spectroscopic techniques. The as-synthesized gold-graphene composite was effectively utilized as catalyst for decolorization of 4 important textile and laser dyes. The integration of gold nanoparticles (AuNPs) with high surface area graphene has enhanced the catalytic activity of AuNPs. This enhanced activity is attributed to the synergistic interplay of pristine gold's electronic relay and π-π stacking of graphene with the dyes. This is evident when the Rhodamine B (RB) reduction rate of the composite is nearly twice faster than that of commercial citrate capped AuNPs of similar size. In case of Methylene blue (MB) the rate of reduction is 17,000 times faster than uncatalyzed reaction. This synthetic method opens door to laser ablation based fabrication of metal catalysts on graphene for improved performance without the aid of linkers and surfactants.

  6. Synthesis and Characterization of Porphyrin.Trisbenzimidazole Dinucleating Ligand and Its Heterodinuclear Complex as CcO Active Site Model

    Institute of Scientific and Technical Information of China (English)

    LuWei-bing; WangCun-xin; DengLi-zhi; ZhouXiao-hai; RenJian-guo

    2003-01-01

    A new dinucleating ligand having two metalbinding sites has been designed and synthesized as model ligand for Cytochrome c Oxidase. The corresponding heterodinuclear complex, as an active site model of Cytochrome c Oxidase, consisting of a porphyrinatocobalt compound covalently linked with a copper derivative of tris(2-benzimidazylmethyl)amine bearing three benzimidazole ligands for copper was synthesized and spectroscopically characterized. The spectra data suggest that there are interactions between the cobalt and copper coordination units. The cobalt is coordinated to four central nitrogens of the porphyrin and the copper has pentacoordinate geometry with the four tertiary amine nitrogens and a chloride.

  7. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Curtis [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  8. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brian Curtis Anderson

    2002-08-27

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  9. Synthesis and characterization of polypyrrole grafted chitin

    Science.gov (United States)

    Ramaprasad, A. T.; Latha, D.; Rao, Vijayalakshmi

    2017-05-01

    Synthesis and characterization of chitin grafted with polypyrrole (PPy) is reported in this paper. Chitin is soaked in pyrrole solution of various concentrations for different time intervals and polymerized using ammonium peroxy disulphate (APS) as an initiator. Grafting percentage of polypyrrole onto chitin is calculated from weight of chitin before and after grafting. Grafting of polymer is further verified by dissolution studies. The grafted polymer samples are characterized by FTIR, UV-Vis absorption spectrum, XRD, DSC, TGA, AFM, SEM and conductivity studies.

  10. Synthesis, characterization, molecular modeling, and potential antimicrobial and anticancer activities of novel 2-aminoisoindoline-1,3-dione derivatives.

    Science.gov (United States)

    Ahmed, Hany Emary Ali; Abdel-Salam, Hassan A; Shaker, Mohamed A

    2016-06-01

    In an effort to establish new drug candidates with improved antimicrobial and anticancer activities, we report here synthesis, molecular modeling, and in vitro biological evaluation of novel substituted N-amino phthalamide derivatives (3a-b, 4a-b, 5a-j, and 6). Structures of the newly synthesized compounds were described by IR, (1)H &(13)CNMR and LC-MS spectral data. The novel compounds were evaluated for their antibacterial activity against four types of Gm+ve and two for Gm-ve types, and antifungal activity against three fungi microorganisms by well diffusion method. Of these novel compounds, Schiff bases showed mostly promising antibacterial activity compared to reference drugs. A successful step was done for explanation of their mode of action through molecular docking of most active molecules at DNA gyrase B enzyme and further were biologically tested. Moreover, the antiproliferative activity was tested against two human carcinoma cell lines (Human colon carcinoma (HCT-116) and human breast adenocarcinoma (MCF-7)) showing promising anticancer activity compared to doxorubicin drug. The data from structure-activity relationship (SAR) analysis revealed that the lypophilic properties of these compounds might be essential parameter for their activity and suggest that 2-amino phthalamide scaffold derivatives 5g and 5h exhibited good antimicrobial and anticancer activities and might used as leads for further optimization.

  11. Synthesis and Characterization of Porphyrin- Trisbenzimidazole Dinucleating Ligand and Its Heterodinuclear Complex as CcO Active Site Model

    Institute of Scientific and Technical Information of China (English)

    Lu Wei-bing; Wang Cun-xin; Deng Li-zhi; Zhou Xiao-hai; Ren Jian-guo

    2003-01-01

    A new dinucleating ligand having two metal-binding sites has been designed and synthesized as model lig-and for Cytochrome c Oxidase. The corresponding heterodi-nuclear complex, as an active site model of Cytochrome c Oxi-dase, consisting of a porphyrinatocobalt compound covalently linked with a copper derivative of tris(2-benzimidazylmethyl)amine bearing three benzimidazole ligands for copper was syn-thesized and spectroscopically characterized. The spectra data suggest that there are interactions between the cobalt and copper coordination units. The cobalt is coordinated to four central nitrogens of the porphyrin and the copper has pentaeo-ordinate geometry with the four tertiary amine nitrogens and a chloride.

  12. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    Science.gov (United States)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  13. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  14. Synthesis, Characterization, Acetylcholinesterase Inhibition, Molecular Modeling and Antioxidant Activities of Some Novel Schiff Bases Derived from 1-(2-Ketoiminoethylpiperazines

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2011-11-01

    Full Text Available Some novel Schiff bases derived from 1-(2-ketoiminoethylpiperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE, antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH and ferric reducing antioxidant power (FRAP assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.

  15. Synthesis, characterization, and catalysis of metal nanoparticles

    Science.gov (United States)

    Mott, Derrick M.

    The goal of the dissertation work is the understanding of the physical and chemical properties of materials in the nanoscale regime. As discussed in this dissertation, the goal is accomplished by specifically focusing on the investigation of the synthesis and characterization of metal nanoparticles and supported catalysts. The findings have provided us with new and important insights into the physical and chemical properties of metal nanoparticles and supported catalysts. Several new routes allowed us to synthesize copper, gold-platinum, core-shell nanoparticles with monodispersed sizes, controlled shapes and tunable surface properties. For example, we have demonstrated the ability to control the formation of copper nanorods with high monodispersity and ordering by controlled thermal processing. Another of our studies has focused on the exploitation of the synergistic properties of multimetallic nanoparticles by monitoring the CO adsorption on bimetallic gold-platinum nanoparticles using infrared spectroscopy. The size correlation between using different microscopic techniques such as TEM and AFM has been established for the size determination of nanoparticles. This correlation is important in understanding their physical or chemical properties of nanoparticles on different substrate surfaces. The quantitative correlation demonstrates the ability of AFM in determining sizes of nanoparticles, which has implications to the understanding of the relative radius of curvature of the tip vs. the particle sizes as well as the surface properties of the particles. The preliminary results using computational modeling to elucidate some of the surface binding and energy properties of nanoparticles provides some guidelines to experimental measurements, and also helps in the explanation of the complex experimental data. Overall, these findings and results have provided new insights into the fundamental factors governing the physical and chemical properties in the synthesis and

  16. Synthesis, characterization, and potential application of Mn2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation

    Science.gov (United States)

    Mudzielwana, Rabelani; Gitari, Wilson M.; Akinyemi, Segun A.; Msagati, Titus A. M.

    2017-09-01

    The study synthesizes a low-cost adsorbent made from Mn2+-modified bentonite clay for groundwater defluoridation. The clays were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, and Fourier transform infrared techniques. The fluoride adsorption capacity of the modified clay was evaluated using batch experiments. The adsorption kinetics results showed that the optimum fluoride (F-) uptake was achieved within the 30 min' contact time. The data fitted well to pseudo-second-order of reaction kinetics indicating that adsorption of F- occurred via chemisorption. In addition, the adsorption isotherm data fitted well to Langmuir isotherm model indicating that adsorption occurred on a mono-layered surface. Maximum F- removal of 57% was achieved from groundwater with an initial F- concentration of 5.4 mg L-1 and natural pH of 8.6 using adsorbent dosage of 1 g/100 mL. Fluoride adsorption occurred through ligands and ion exchange mechanisms. The synthesized adsorbent was successfully regenerated for up to five times. The study shows that Mn2+-intercalated bentonite clay has potential for application in defluoridation of groundwater.

  17. Instrument Modeling and Synthesis

    Science.gov (United States)

    Horner, Andrew B.; Beauchamp, James W.

    During the 1970s and 1980s, before synthesizers based on direct sampling of musical sounds became popular, replicating musical instruments using frequency modulation (FM) or wavetable synthesis was one of the “holy grails” of music synthesis. Synthesizers such as the Yamaha DX7 allowed users great flexibility in mixing and matching sounds, but were notoriously difficult to coerce into producing sounds like those of a given instrument. Instrument design wizards practiced the mysteries of FM instrument design.

  18. Electrolytic Synthesis and Characterizations of Silver Nanopowder

    CERN Document Server

    Theivasanthi, T

    2011-01-01

    This work reports a simple, novel, cost effective and eco-friendly electrolytic synthesis of silver nanoparticles using AgNO3 as metal precursor. The synthesis rate is much faster than other methods and this approach is suitable for large scale production. They are characterized by XRD, SEM and FT-IR techniques to analyze size, morphology and functional groups. XRD studies reveal a high degree of crystallinity and monophasic Ag nanoparticles. Their particle size is found to be 24 nm and specific surface area (SSA) is 24 m2/g. Analysis of Ag nanoparticles SSA reports that increasing their SSA improves their antibacterial actions. Microbiology assay founds that Ag nanoparticles are effective against E.coli and B.megaterium bacteria. SSA of bacteria analysis reveals that it plays a major role while reacting with antimicrobial agents.

  19. Graphene optoelectronics synthesis, characterization, properties, and applications

    CERN Document Server

    bin M Yusoff, Abdul Rashid

    2014-01-01

    This first book on emerging applications for this innovative material gives an up-to-date account of the many opportunities graphene offers high-end optoelectronics.The text focuses on potential as well as already realized applications, discussing metallic and passive components, such as transparent conductors and smart windows, as well as high-frequency devices, spintronics, photonics, and terahertz devices. Also included are sections on the fundamental properties, synthesis, and characterization of graphene. With its unique coverage, this book will be welcomed by materials scientists, solid-

  20. Design, synthesis, characterization and study of novel conjugated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wu [Iowa State Univ., Ames, IA (United States)

    1997-06-24

    After introducing the subject of conjugated polymers, the thesis has three sections each containing a literature survey, results and discussion, conclusions, and experimental methods on the following: synthesis, characterization of electroluminescent polymers containing conjugated aryl, olefinic, thiophene and acetylenic units and their studies for use in light-emitting diodes; synthesis, characterization and study of conjugated polymers containing silole unit in the main chain; and synthesis, characterization and study of silicon-bridged and butadiene-linked polythiophenes.

  1. Synthesis, characterization and applications of graphene architectures

    Science.gov (United States)

    Thomas, Abhay Varghese

    Graphene, a two--dimensional sheet of sp2 hybridized carbon atoms arranged in a honeycomb lattice structure, has garnered tremendous interest from the scientific community for its unique combination of properties. It has interesting electrical, thermal, optical and mechanical properties that scientists and engineers are trying to understand and harness to improve current products as well as focus on disruptive technologies that can be made possible by this next generation material. In this thesis the synthesis, characterization and applications of various graphene architectures were explored from the context of a bottom--up and top--down synthesis approach. The work is divided into three main chapters and each one deals with a unique architecture of graphene as well as its properties and an application to a real world problem. In Chapter 2, we focus on bottom--up synthesis of graphene sheets by chemical vapor deposition. We then studied the wetting properties of graphene coated surfaces. More specifically the wetting properties of single and multilayer graphene films on flat and nanoscale rough surfaces are explored and the insights gained are used in improving heat transfer performance of copper surfaces. Single layer graphene, on certain flat surfaces, was shown to exhibit `wetting transparency' as a result of its sheer thinness and this property is of interest in various wetting related applications. Surface protection from corrosion and/or oxidation without change in wetting properties is tremendously useful in multiple fields and we looked to apply this property to dehumidification of copper surfaces. The short time scales results demonstrated that graphene indeed served to prevent oxidation of the surface which in turn promoted increased heat transfer co--efficients with respect to the oxidized copper surfaces. Closer inspection of the surface over long time scales however revealed that the oxide layer changed the wetting properties and this was detrimental

  2. Synthesis and Characterization of Novel Quaternary Thioaluminogermanates

    KAUST Repository

    Al-Bloushi, Mohammed

    2013-05-01

    Metal chalcogenides form an important class of inorganic materials, which include several technologically important applications. The design of metal chlcogenides is of technological interest and has encouraged recent research into moderate temperature solid-state synthetic methods for the single crystal growth of new materials. The aim of this project is the investigation and development of synthetic methodology for the synthesis of novel metal chlcogenides. The new inorganic compounds of the type “M(AlS2)(GeS2)” (M = Na and K) are new metal-chalcogenides, synthesized by the classical solid state approach. The characterization of these compounds was carried out by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Single crystal and powder X-ray diffraction, solid state Nuclear Magnetic Resonance (NMR), Ultraviolet-visible (UV-VIS), Infrared (IR) and Raman spectroscopy. These theses study the synthesis of metal chalcogenides through the use of standard chemical techniques. The systematic studies demonstrate the effect of the reactants ratio and reaction temperature on the synthesis and growth of the single crystals. Metal chalcogenides have several potential applications in gas separation, ion exchange, environmental remediation, and energy storage. Especially, the ion exchange materials have found\\tpossible applications in waste-water treatment, water softening, metal separation, and production of high purity water.

  3. Synthesis, characterization and application of iron (II, III) oxide (Fe3O4) magnetic nanoparticles in mimic of wound healing model

    Science.gov (United States)

    Konyala, Divya

    The research study focused on synthesis, characterization and applications of Fe3O4 core-shelled magnetic nanomaterials. This Fe3O4 magnetic nanomaterials will be prepared by using cost effective and convenient wet-chemistry method and will encapsulated using aqueous extracts of medicinal natural products. Three natural products namely Symplocos racemosa, Picrorhiza kurroa and Butea monosperma used to encapsulate Fe3O 4 MNMs due to their scope to reduce the risk of cancer, improves health, increase energy and enhance the immunity. These three medicinal natural products are synthesize by using water as a solvents to derive its active constituents, which will further used to functionalize the magnetic nanomaterials. The magnetic nanoparticles characterization studies performed using X-ray powder diffraction, Scanning electron microscope, Transmission electron microscope, Ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR) and Magnetic property. Fe3O4 magnetic nanomaterials biological activity was tested on Gram-negative bacteria (Escherichia coli). The results pointed out that, due to the adequate coating of Fe 3O4 (Iron Oxide) core by the medicinal chemical constituents from the natural products, the absorption of Fe3O4 magnetic nanomaterials was not detected in the UV-VIS Spectroscopy. TEM images showed that Fe3O4 coated with natural product extract in core-shelled structure, and the size of the particle ranges from 6 nm to 10 nm. Fourier Transform Infrared spectroscopy (FT-IR) was performed to determine the nature of chemicals present in natural extracts and functionalized Fe3O 4 magnetic nanomaterials. The model of wound healing mimic and antibacterial activity performed on gram-negative (Escherichia coli), indicating steady increasing cell growth after adding Fe3O4 MNMs. It was also found that MNMs synthesized at high temperatures shows less wound healing activity, when compared to MNMs prepared at room temperature due to formation

  4. Novel Low Spin Mixed Ligand Thiohydrazide Complexes of Iron(III: Synthesis, Spectral Characterization, Molecular Modeling, and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Dolan Sengupta

    2014-01-01

    Full Text Available Mixed ligand complexes of Fe(III with aromatic thiohydrazides of general composition [Fe(acac(L2] have been synthesized and characterized (acac-acetylacetonate, L = bidentate uninegative aromatic thiohydrazide ligand, for example, thiobenzhydrazide, 2-hydroxythiobenzhydrazide, furan-2-thiohydrazide, and thiophen-2-thiohydrazide. The magnetic susceptibility data and the EPR spectra of these complexes suggested the formation of rhombically distorted low spin iron center (d5 in octahedral environment, which was also supported by the UV-vis spectral data of the complexes. Biological studies of these complexes also indicated that the iron-thiohydrazido complexes have superior antibacterial properties compared to the corresponding ligands.

  5. Synthesis, spectral characterization, molecular modeling, thermal study and biological evaluation of transition metal complexes of a bidentate Schiff base ligand.

    Science.gov (United States)

    Chandra, Sulekh; Bargujar, Savita; Nirwal, Rita; Qanungo, Kushal; Sharma, Saroj K

    2013-09-01

    Complexes of copper(II) and nickel(II) of general composition M(L)2X2, have been synthesized [where L=3-Bromoacetophenone thiosemicarbazone and X=CH3COO(-), Cl(-) and NO3(-)]. All the complexes were characterized by elemental analysis, magnetic moments, IR, electronic and EPR spectral studies. The ligand behaved as bidentate and coordinated through sulfur of -C=S group and nitrogen atoms of -C=N group. The copper(II) and nickel(II) complexes were found to have magnetic moments 1.94-2.02 BM, 2.96-3.02 BM respectively which was corresponding to one and two unpaired electrons respectively. The molar conductance of the complexes in solution of DMSO lies in the range of 10-20 Ω(-1) cm(2) mol(-1) indicating their non-electrolytic behavior. On the basis of EPR, electronic and infrared spectral studies, tetragonal geometry has been assigned for copper(II) complexes and an octahedral geometry for nickel(II) complexes. The values of Nephelauxetic parameter β lie in the range 0.19-0.37 which indicated the covalent character in metal ligand 'σ' bond. Synthesized ligand and its copper(II) and nickel(II) complexes have also been screened against different bacterial and fungal species which suggested that complexes are more active than the ligands in antimicrobial activities.

  6. Coordination diversity of new mononuclear ONS hydrazone with transition metals: Synthesis, characterization, molecular modeling and antimicrobial studies

    Science.gov (United States)

    Adly, Omima M. I.; Taha, A.

    2013-04-01

    The mononuclear hydrazone ligand, H2L, a condensation product of 4-amino-6-methyl-3-thioxo-3,4-dihydro-1,2,4-triazin-5(2H)-one with 2-hydroxy-1-naphthaldehyde and its metal chelates of Cu(II), Ni(II), Co(II), Zn(II), Cd(II), VO(IV) and UO2(VI) ions were synthesized and characterized using elemental analyses, spectral, magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The physico-chemical studies support that the ligand acts as mono- or dibasic tridentate ONS donor toward metal ions forming a mononuclear square planar, tetrahedral, square pyramidal and octahedral geometrical arrangements except UO2(VI) complex in which the metal ion is octa-coordinated. The ligand field parameters, Dq, B and β values, in the case of the cobalt and nickel complexes are calculated. The kinetics of the thermal decomposition for some metal complexes studied and their thermodynamic parameters were reported. Structural parameters of the ligand and its metal chelates have been calculated and correlated with the experimental data. The ligand and its metal chelates were screened for their antimicrobial activity against Staphylococcus aureus and Bacillus subtilis as Gram-positive bacteria, Escherichia coli and Salmonella typhimurium as Gram-negative bacteria and Candida albicans as fungus strain.

  7. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films

    Science.gov (United States)

    2014-01-09

    Synthesis 1. Diborane- ammonia (B2H6-NH3- gases): Early results with these precursors were published in 2012. 5 Briefly, LPCVD growth of h-BN in a hot-wall...Approved for public release; distribution is unlimited. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films. The views, opinions and...1 ABSTRACT Number of Papers published in peer-reviewed journals: Synthesis and Characterization of Hexagonal Boron Nitride (h-BN) Films. Report Title

  8. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  9. Studies on some metal complexes of quinoxaline based unsymmetric ligand: Synthesis, spectral characterization, in vitro biological and molecular modeling studies.

    Science.gov (United States)

    Dhanaraj, Chellaian Justin; Johnson, Jijo

    2016-08-01

    Mononuclear Co(II), Ni(II), Cu(II) and Zn(II) complexes of an unsymmetric Schiff base ligand, 3-(-(3-(-3,5-dichloro-2-hydroxybenzylideneamino)propylimino)methyl)quinoxalin-2(1H) -one (L) were synthesized and characterized by various analytical and spectral techniques. The molar conductance values of metal complexes indicate non-electrolytic behavior of the metal complexes. The Schiff base act as tetra dentate ONNO donor ligand in Co(II), Ni(II), Zn(II) complexes and tridentate NNO donor in Cu(II) complex. Thermal stabilities of the newly synthesized compounds were determined by thermal analysis. Crystallinity, average grain size and unit cell parameters were determined from powder X-ray diffraction study. Electrochemical behaviors of the compounds were examined by cyclic voltammetry technique. The Schiff base and its complexes have been screened for their in vitro antimicrobial activities against some bacterial and fungal strains by disc diffusion method. The interaction of the compounds with calf thymus DNA (CT DNA) has been investigated by electronic absorption spectral titration and viscosity measurement (hydrodynamic) methods. Furthermore, the pUC18 DNA cleavage activities of the complexes have been explored. The compounds were also subjected to in vitro antioxidant, anticancer activity screening, druglikeness and bioactivity predictions using Molinspiration software. Molecular docking studies of the present compounds were carried out against B-DNA dodecamer d(CGCGAATTCGCG)2 and vascular endothelial growth factor receptor (VEGFR-2) kinase. Quantum chemical calculations were done with DFT method to determine the optimum geometry of the ligand and its metal complexes. From the quantum chemical parameters, the reactivity parameters of the compounds were established.

  10. Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially N2O2 Schiff base complexes

    Science.gov (United States)

    Adly, Omima M. I.; Taha, Ali; Fahmy, Shery A.

    2013-12-01

    Metal complexes of a new potentially tetradentate symmetrical Schiff base ligand (H2L) with Cu(II), Ni(II), Co(II), VO(IV), Zn(II), Cd(II), Ce(III), Fe(III) and UO2(VI) metal ions have been synthesized and characterized based on their elemental analyses, spectral (IR, UV-Vis, 1H NMR and mass spectra), magnetic and molar conductance studies as well as thermal gravimetric analysis (TGA). The synthesized complexes have the general formula [MHxL(H2O)yXn]: x = 0-1, y = 0-4 and n = 0-1; where: L = dianion of 6-hydroxy-5-[N-(2-{[(1E)-1-(6-hydroxy-2,4-dioxo-3,4-dihydro-2H-1,3-thiazin-5-yl)ethylidene]amino}ethyl) ethanimidoyl]-2H-1,3-thiazine-2,4(3H)-dione and X = nitrate or sulphate anion. The ligand behaves as diabasic tetradentate N2O2 sites, except in cases of Co(II), VO(IV) and UO2(VI) metal ions, it behaves as monobasic tetradentate Schiff base ligand. The metal complexes exhibited square planar, square-pyramidal and octahedral geometrical arrangements except for Ce(III) and UO2(VI) complexes, they are octa-coordinated. The Coats-Redfern equation was used to calculate the kinetic and thermodynamic parameters for the different thermal decomposition stages of some complexes. Structural parameters of the ligand and its metal complexes have been theoretically computed on the basis of semiemperical PM3 level, and the results were correlated with their experimental data. The antimicrobial activities of the ligand and its metal complexes were tested against some Gram-positive and Gram-negative bacteria; and fungus strain and the results were discussed.

  11. Green synthesis and characterization of graphene nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Tavakoli, Farnosh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Badiei, Alireza [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P. O. Box. 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2015-03-15

    Highlights: • For the first time, we have synthesized graphene nanosheets in the presence of pomegranate juice. • Here pomegranate juice was used not only as reductant but also as capping agent. • FT-IR, XRD, SEM, EDS and TEM were used to characterize the samples. • According to TEM image, graphene nanosheet is individually exfoliated after stirring for 24 h. • As shown in the TEM image, graphene monolayer is obtained. - Abstract: For the first time, we have successfully synthesized graphene nanosheets in the presence of pomegranate juice. In this approach, pomegranate juice was used not only as reductant but also as capping agent to form graphene nanosheets. At first, the improved Hummer method to oxidize graphite for the synthesis of graphene oxide (GO) was applied, and then the as-produced graphene oxide was reduced by pomegranate juice to form graphene nanosheets. Fourier transformed infrared (FT-IR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and raman were used to characterize the samples. The results obtained from the characterization techniques proved high purity of the final products.

  12. Synthesis and characterization of zinc oxide nanostructures for piezoelectric applications

    Science.gov (United States)

    Hughes, William L.

    Union between top-down and bottom-up assembly is inevitable when scaling down physical, chemical, and biological sensors and probes. Current sensor/probe-based technologies are firmly founded on top-down manufacturing, with limitations in cost of production, manufacturing methods, and material constraints. As an alternative to such limitations, contemporary synthesis techniques for one-dimensional nanostructures have been combined with established methods of micro-fabrication for the development of novel tools and techniques for nanotechnology. More specifically, this dissertation is a systematic study of the synthesis and characterization of ZnO nanostructures for piezoelectric applications. Within this study the following goals have been achieved: (1) rational design and control of a diversity of novel ZnO nanostructures, (2) improved understanding of polar-surface-dominated (PSD) phenomena among Wurtzite crystal structures, (3) confirmation of Tasker's Rule via the synthesis, characterization, and modeling of polar-surface-dominated nanostructures, (4) measurement of the surface-charge density for real polar surfaces of ZnO, (5) confirmation of the electrostatic polar-charge model used to describe polar-surface-dominated phenomena, (6) dispersion of ZnO nanobelts onto the selective layers of surface acoustic wave (SAW) devices for gas sensing applications, (7) manipulation of ZnO nanostructures using an atomic force microscope (AFM) for the development of piezoelectric devices, (8) fabrication of bulk acoustic resonator (BAR) and film bulk acoustic resonator (FBAR) devices based on the integrity of individual ZnO belts, (9) electrical characterization of a ZnO belt BAR device, (10) prediction and confirmation of the electrical response from a BAR device using a one-dimensional Krimholt-Leedom-Matthaei (KLM) model, and (11) development of a finite element model (FEM) to accurately predict the electrical response from ZnO belt BAR and FBAR devices in 3D.

  13. Zeolite from fly ash: synthesis and characterization

    Indian Academy of Sciences (India)

    Keka Ojha; Narayan C Pradhan; Amar Nath Samanta

    2004-12-01

    Coal fly ash was used to synthesize X-type zeolite by alkali fusion followed by hydrothermal treatment. The synthesized zeolite was characterized using various techniques such as X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, BET method for surface area measurement etc. The synthesis conditions were optimized to obtain highly crystalline zeolite with maximum BET surface area. The maximum surface area of the product was found to be 383 m2/g with high purity. The crystallinity of the prepared zeolite was found to change with fusion temperature and a maximum value was obtained at 823 K. The cost of synthesized zeolite was estimated to be almost one-fifth of that of commercial 13X zeolite available in the market.

  14. Synthesis and characterization of anisotropic magnetic hydrogels

    Science.gov (United States)

    Hinrichs, Stephan; Nun, Nils; Fischer, Birgit

    2017-06-01

    Multiresponsive hydrogels are an interesting new class of materials. They offer the advantage, that they respond to different stimuli like temperature, pH and magnetic fields. By this they can change their properties which makes the hydrogels ideal candidates for many applications in the technical as well as medical field. Here we present the synthesis and characterization of hydrogels - micro- as well as macrogels - which consist of an iron oxide core, varying in phase and morphology, embedded in a thermoresponsive polymer, consisting of poly N-isopropylacrylamide. By using dynamic light scattering we investigated the thermoresponsive properties. In addition we were able to follow the formation of the macrogel by monitoring the shear viscosity.

  15. Synthesis and characterization of model silica-gold core-shell nanohybrid systems to demonstrate plasmonic enhancement of fluorescence

    Science.gov (United States)

    Roy, Shibsekhar; Dixit, Chandra K.; Woolley, Robert; O'Kennedy, Richard; McDonagh, Colette

    2012-08-01

    In this work, gold-silica plasmonic nanohybrids have been synthesized as model systems which enable tuning of dye fluorescence enhancement/quenching interactions. For each system, a dye-doped silica core is surrounded by a 15 nm spacer region, which in turn is surrounded by gold nanoparticles (GNPs). The GNPs are either covalently conjugated via mercapto silanization to the spacer or encapsulated in a separate external silica shell. The intermediate spacer region can be either dye doped or left undoped to enable quenching and plasmonic enhancement effects respectively. The study indicates that there is a larger enhancement effect when GNPs are encapsulated in the outer shell compared to the system of external conjugation. This is due to the environmental shielding provided by shell encapsulation compared to the exposure of the GNPs to the solvent environment for the externally conjugated system. The fluorescence signal enhancement of the nanohybrid systems was evaluated using a standard HRP-anti-HRP fluorescence based assay platform.

  16. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  17. synthesis, characterization, thermal behavior and antimicrobial ...

    African Journals Online (AJOL)

    The design and synthesis of ... The double distilled water was used for the preparation and chemical analyses. ... Synthesis of 3-methyl benzoate complexes of transition metal with hydrazine. Bull. Chem. Soc. ..... hinder the respiration process of the cell and thus block the synthesis of the proteins, restricting further growth of ...

  18. Proficient magnesium nanoferrites: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Anis-ur-Rehman, M; Malik, Muhammad Ali; Akram, M [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Khan, Kishwar; Maqsood, Asghari, E-mail: marehman@cosmsats.edu.pk [Thermal Transport Laboratory, School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, Islamabad (Pakistan)

    2011-01-15

    Ferrite materials are potential candidates for modern technological applications because of their tunable electrical and magnetic properties. The excellent combination of magnetic and dielectric properties of magnesium ferrites can be used to fulfill the future demand for high-frequency applications such as antennas. The electrical transport properties of these materials depend on the synthesis conditions such as sintering and composition. The aim of this work has been to correlate the synthesis conditions and induced electrical transport properties, so that these materials prepared in optimized conditions can be used for the miniaturization of high-frequency application devices. X-ray diffraction (XRD) patterns of samples prepared by the co-precipitation method confirmed the formation of a single spinel phase. The crystallite size, lattice parameters and porosity of the samples were calculated from XRD data. The scanning electron microscopy results showed the formation of rods in the case of the samples sintered at 950 {sup 0}C. All the electrical and dielectric properties showed strong dependence on structural properties. The dielectric constant, dielectric loss tangent and ac electrical conductivity of nanocrystalline Mg ferrites were investigated as a function of frequency and sintering temperature. Dielectric, ac electrical properties and the effect of sintering temperature are explained in accordance with the Maxwell-Wagner and the Koops models.

  19. Organic Ion Exchangers. Synthesis, Characterization and Applications

    Institute of Scientific and Technical Information of China (English)

    E. S. Dragan

    2005-01-01

    @@ 1Introduction Organic ion exchangers in beads form are the most widely utilized materials in the purification, concentration and separation processes of inorganic and organic ions in many fields of science and industry[1,2]. Some original contributions in the preparation and characterization of porous organic ion exchangers will be summarized first. The main types of synthetic ion exchangers were obtained by polymer-analogous reactions performed on porous styrene-divinylbenzene copolymers (S-DVB)[3,4] and porous acrylonitrile-DVB copolymers (AN-DVB) [5,6]. Porous S-DVB copolymers were used as substrate for the synthesis of weak and strong base anion exchangers by chloromethylation reaction followed by the reaction with secondary or tertiary amines.Different chloromethylation agents were employed. Weak base anion exchangers with tertiary or primary amine groups were prepared starting from AN-DVB copolymers by aminolyse-hydrolyse reaction with asymmetrical diamines or ethylenediamine (EDA), respectively. Strong base anion exchangers were obtained by quaternization reaction with alkyl halides of the tertiary amine groups. Chelating ion exchangers with iminodiacetic groups were prepared by the carboxymethylation reaction of the primary amine groups above mentioned and of those contained in a vinylamine-ethylacrylate-DVB copolymer, vinylamine units being generated by a Hofmann degradation reaction of the primary amide groups contained in the acrylamide-ethylacrylate-DVB copolymerp[7]. An amphoteric ion exchanger was prepared by the hydrolysis of the ester groups after the Hofmann degradation.

  20. Synthesis and characterization of novel nanothermometers

    Energy Technology Data Exchange (ETDEWEB)

    Baumert, Delphine [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Larsen, George [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coopersmith, Kaitlin [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Schyck, Sarah [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-23

    A straightforward approach was developed for the synthesis of Pd, Pd-Fe2O3, Au-Fe2O3, and Au-Pd-Fe2O3 nanothermometers, using a single SL DNA. These NP-DNA conjugates were characterized using techniques including EDX measurements, ζ-potential of NPs before and after DNA functionalization, electron microscopy studies and fluorescence spectroscopy. The fluorescence studies of the NP-DNA demonstrate the interaction between the NP and the fluorophore, which is quenched in the case of Au-Pd-Fe2O3 NPs and is perhaps enhanced (when compared to AuNPs) in the case of Pd and Pd-Fe2O3 NPs. In order to achieve more accurate and reproducible measurements, designing a system that is able to hold the NP-DNA conjugates at a temperature for a longer period of time to allow them to 12 equilibrate is currently underway. Our studies show that Au-Pd-Fe2O3 NPs are the best candidate material to serve as nanothermometers when compared to Pd, Pd-Fe2O3, and Au-Fe2O3 materials.

  1. Synthesis Technique and Characterizations of Silver Nanostructures

    Science.gov (United States)

    Rajawat, Shweta; Qureshi, M. S.

    2015-06-01

    In this work, we report synthesis of nanostructures of silver nanoparticles using X-ray films. Exposed X-ray films, which consist of silver nanoparticles, are cut into small pieces of size 1 cm × 1 cm. These pieces were heated in distilled water at temperature 70°C. These nanoparticles, separated from heated films, are simultaneously collected through electrolytic deposition using copper and carbon rods. The carbon rod is wrapped over by Low density polyethylene (LDPE) sheet for easy extraction. This process was carried in two different environments (1) in broad daylight and (2) on a cloudy day. Characterization of the two samples was done using X-Ray Diffractometer (XRD), Transmission Electron Microscopy (TEM) and UV-Vis spectroscopy. XRD of the particles gave peaks well in accordance with JCPDS file 04-. This result confirms formation of highly pure silver nanoparticles. TEM revealed that the interaction of silver nanoparticles with sunlight gave chain like structures whereas in the absence of interaction with sunlight, cloudy day, nanoflowers were formed. Nanostructures were more prominent for bigger particles.

  2. Functionalized TUD-1: synthesis, characterization and (photo-)catalytic performance

    NARCIS (Netherlands)

    Hamdy M. Saad, M.S.

    2005-01-01

    The new mesoporous material; TUD-1 is chosen of which the synthesis, characterization, and functionalization for (photo)-catalytic performance are extensively investigated in this study. The synthesis of the new catalytic materials M TUD-1 (M = Ti, V, Cr, Mo, Fe, Co and Cu) is carried out through an

  3. Functionalized TUD-1: synthesis, characterization and (photo-)catalytic performance

    NARCIS (Netherlands)

    Hamdy M. Saad, M.S.

    2005-01-01

    The new mesoporous material; TUD-1 is chosen of which the synthesis, characterization, and functionalization for (photo)-catalytic performance are extensively investigated in this study. The synthesis of the new catalytic materials M TUD-1 (M = Ti, V, Cr, Mo, Fe, Co and Cu) is carried out through an

  4. Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN)

    Science.gov (United States)

    2015-04-01

    ARL-TR-7250 ● APR 2015 US Army Research Laboratory Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) by William M Sherrill Weapons and Materials Research Directorate...Characterization, and Sensitivity Analysis of Urea Nitrate (UN) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  5. Synthesis, Characterization and Application of 2-Line and 6-Line ...

    African Journals Online (AJOL)

    Michael Horsfall

    Synthesis, Characterization and Application of 2-Line and 6-Line Ferrihydrite to Pb(II). Removal from Aqueous ... found applications in medicine, catalysis, electronic device and ..... thermodynamics of dyes onto acid activated low cost carbon.

  6. Synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins

    Indian Academy of Sciences (India)

    Babasaheeb P Bandgar; Pradip B Gujarathi

    2008-03-01

    The synthesis and characterization of new meso-substituted unsymmetrical metalloporphyrins has been described. A new modified Adler method was used for the synthesis of two unsymmetrical porphyrins. Reactions of these unsymmetrical porphyrins with metal acetates afforded the corresponding metalloporphyrins in high yields with excellent purity. These porphyrins and their metal derivatives were characterized by spectroscopic methods. However, the copper complexes were further studied by ESR spectra and zinc complex by fluorescence spectrum.

  7. The Synthesis and Characterization of Several Corroles

    African Journals Online (AJOL)

    NICO

    Preliminary results towards the synthesis of a corrole-based vitamin B12 analogue are reported. The synthesis of ..... petroleum ether (1:4 v/v) containing 1 % triethylamine; ethyl acetate ... by column chromatography on flash silica gel with ethyl.

  8. Two-dimensional carbon fundamental properties, synthesis, characterization, and applications

    CERN Document Server

    Yihong, Wu; Ting, Yu

    2013-01-01

    After a brief introduction to the fundamental properties of graphene, this book focuses on synthesis, characterization and application of various types of two-dimensional (2D) nanocarbons ranging from single/few layer graphene to carbon nanowalls and graphene oxides. Three major synthesis techniques are covered: epitaxial growth of graphene on SiC, chemical synthesis of graphene on metal, and chemical vapor deposition of vertically aligned carbon nanosheets or nanowalls. One chapter is dedicated to characterization of 2D nanocarbon using Raman spectroscopy. It provides extensive coverage for a

  9. Novel metallomesogenic polyurethanes: Synthesis, characterization and properties

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, Natarajan, E-mail: nskumar77@yahoo.com [Production Technology Research Center, Samsung Cheil Industries, 62 Pyeongyeo-dong, Yeosu-si, JeonNam 555-210 (Korea, Republic of); Narasimhaswamy, Tanneru [Polymer Laboratory, Central Leather Research Institute, Chennai 600 020 (India); Kim, Il-Jin [Production Technology Research Center, Samsung Cheil Industries, 62 Pyeongyeo-dong, Yeosu-si, JeonNam 555-210 (Korea, Republic of)

    2012-12-01

    A series of tetradentate Schiff base metallomesogenic diols were synthesized from two simple dihydroxy benzenes. The metallomesogenic diol was constructed from three ring containing mesogen linked through ester and azomethine with terminal hydroxy group. This upon complexation with copper(II) formed metallomesogenic diol with varying terminal chain length. A series of metallomesogenic polyurethanes were synthesized using these metallomesogenic diols as chain extenders for the prepolymers based on polytetramethylene glycol (PTMG) of varying molecular weight (M{sub n} = 650, 2000) and 2,4-toluene diisocyanate (TDI), or 4,4 Prime -methylene bis(phenyl isocyanate) (MDI). The molar ratio of metallomesogenic diol and PTMG were varied in the polyurethane to find their role in liquid crystalline and mechanical properties. Extensive characterization of all metallomesogenic compounds and intermediates were carried out by FT-IR, {sup 1}H and {sup 13}C NMR, EPR, VSM, Mass (EI and FAB) and UV-visible spectroscopy. Hot stage polarizing microscope and differential scanning calorimetry were used to ensure the phase characteristics such as nature of phase, melting and clearing temperatures and phase range. The appearance of enantiotropic smectic A phases indicated high molecular polarizability of the core due to the metal ion. - Highlights: Black-Right-Pointing-Pointer Design and synthesis of metallomesogenic diols. Black-Right-Pointing-Pointer Metallomesogenic polyurethanes were prepared using these diols as chain extenders. Black-Right-Pointing-Pointer Liquid crystalline and mechanical properties were studied. Black-Right-Pointing-Pointer A square pyramidal structure for the copper(II) complexes have been proposed. Black-Right-Pointing-Pointer Polyurethanes exhibited enantiotropic smectic A phases.

  10. Hydrothermal synthesis of pyrochlores and their characterization

    Science.gov (United States)

    Redkin, Alexander F.; Ionov, Andrey M.; Kotova, Nataliya P.

    2013-10-01

    Pyrochlores, microlites, and U-betafites of pyrochlore group minerals were obtained from mixing experiments of the corresponding oxides and fluorides by hydrothermal synthesis at T = 800 °C and P = 200 MPa in the solution of 1.0 M NaF. The presence of U4+ in pyrochlore does not affect the cell parameter, which for the phases of pyrochlore-microlite series is 10.42 ± 0.01 Å. In a system with an excess of UO2, pyrochlores and microlites, containing uranium up to 0.2-0.3 atoms per formula unit (apfu), are formed. In the uranium-free system of betafites composition, perovskites and Ti-bearing pyrochlores are formed. U-pyrochlores of betafite series, containing 2Ti = Nb + Ta in moles, have cubic cell parameters of 10.26 ± 0.02 Å and U4+ isomorphic capacity of 0.4-0.5 apfu. In the pyrochlore structure, U4+ may substitute for Ca2+ and Na+ cations in the eightfold site. In pyrochlores of pyrochlore-microlite series, Ca2+ is replaced by U4+, while in pyrochlores of betafite series, U4+ replaces Na+. Phases with pyrochlore structure, containing U5+ and U6+ in the sixfold site, usually occupied by Nb5+, Ta5+, and Ti4+, are formed under oxidizing conditions (Cu-Cu2O buffer). They are characterized by low content of Nb5+, Ta5+ (<0.1 apfu), and anomalous behavior of the crystal lattice (compression, instead of expansion). Under natural conditions, the formation of pyrochlores containing a significant amount of U5+ and U6+ is unlikely.

  11. Novel Green Synthesis and Characterization of Nanopolymer ...

    African Journals Online (AJOL)

    1King Abdullah Institute for Nanotechnology, 2Department of Chemical Engineering, ... Methods: Green synthesis of nano-polymer porous gold oxide nanoparticles ... UV (ultraviolet (UV) visible spectroscopy and dynamic light scattering (DLS) ...

  12. Synthesis and characterization of mesoporous hydrocracking catalysts

    Science.gov (United States)

    Munir, D.; Usman, M. R.

    2016-08-01

    Mesoporous catalysts have shown great prospective for catalytic reactions due to their high surface area that aids better distribution of impregnated metal. They have been found to contain more adsorption sites and controlled pore diameter. Hydrocracking, in the presence of mesoporous catalyst is considered more efficient and higher conversion of larger molecules is observed as compared to the cracking reactions in smaller microporous cavities of traditional zeolites. In the present study, a number of silica-alumina based mesoporous catalysts are synthesized in the laboratory. The concentration and type of surfactants and quantities of silica and alumina sources are the variables studied in the preparation of catalyst supports. The supports prepared are well characterized using SEM, EDX, and N2-BET techniques. Finally, the catalysts are tested in a high pressure autoclave reactor to study the activity and selectivity of the catalysts for the hydrocracking of a model mixture of plastics comprising of LDPE, HDPE, PP, and PS.

  13. Synthesis and characterization of Schiff's bases of sulfamethoxazole

    OpenAIRE

    Hussain, Zainab; Yousif, Emad; Ahmed, Ahmed; Altaie, Ali

    2014-01-01

    Background Schiff's bases are excellent ligands which are synthesized from the condensation of primary amines with carbonyl groups. Findings The classical reaction for the synthesis of Schiff's bases in an ethanolic solution and glacial acetic acid as a catalyst was followed in the synthesis of substituted sulfamethoxazole compounds. Conclusions Some Schiff's bases containing sulfamethoxazole nucleus have been synthesized and characterized. The present compounds are hoped to be applied in the...

  14. Synthesis, Characterization and In-vitro Evaluation

    African Journals Online (AJOL)

    Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran ... Results: 1H-NMR and elemental analyses data for calculating mole composition of CMS polymers were relatively in good agreement. ... different processes as photo-sensitizers [15], ..... Babazadeh M. Design, synthesis and in vitro evaluation.

  15. HYDROTHERMAL SYNTHESIS AND CHARACTERIZATION OF A ...

    African Journals Online (AJOL)

    Preferred Customer

    tool for the construction of materials containing unique structures and special ... Recently, we reported hydrothermal synthesis of binuclear Co(II) complex [19] and a new .... to two neighboring ones, through four µ2-oxo bridges, to form infinite ...

  16. Synthesis, characterization and DFT studies of 1, 1′-Bis(diphenylphosphino)ferrocene substituted diiron complexes: Bioinspired [FeFe] hydrogenase model complexes

    Indian Academy of Sciences (India)

    Sandeep Kaur-Ghumaan; A Sreenithya; Raghavan B Sunoj

    2015-03-01

    The reaction of [Fe2(CO)6(-toluene-3, 4-benzenedithiolate)] 1 and bidentate diphosphine, 1, 1′-bis(diphenylphosphino)ferrocene (dppf) has been studied. New complexes obtained have been characterized by various spectroscopic techniques as bioinspired models of the iron hydrogenase active site. The crystal structure of [Fe2(CO)5(1-dppfO)(-toluene-3, 4-benzenedithiolate)] 4 is reported.

  17. Synthesis and Characterization of Novel Perylene Diimide

    Science.gov (United States)

    Yu, Zhen; Wang, Ying; Wang, Wen-Guang; Pu, Jia-Ling

    2016-05-01

    This paper designed and synthesized a new organic semiconductor material perylene diimide (PDI) derivative which taped into perylene tetracarboxylic anhydride as the starting material. The molecule belongs to the first synthesis which can enrich the varieties of PDI derivatives. And it can expectedly be used as one candidate of organic semiconductor materials. The structure of the target molecule was confirmed by 1HNMR, 13CNMR and HRMS.

  18. Synthesis and characterization of magnetite nanoparticles coated with lauric acid

    Energy Technology Data Exchange (ETDEWEB)

    Mamani, J.B., E-mail: javierbm@einstein.br [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil); Costa-Filho, A.J. [Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto (Brazil); Cornejo, D.R. [Instituto de Física Universidade de São Paulo, USP, São Paulo (Brazil); Vieira, E.D. [Instituto de Física, Universidade Federal de Goiás, Goiânia (Brazil); Gamarra, L.F. [Instituto do Cérebro-InCe, Hospital Israelita Albert Einstein-HIAE, 05651-901 São Paulo (Brazil)

    2013-07-15

    Understanding the process of synthesis of magnetic nanoparticles is important for its implementation in in vitro and in vivo studies. In this work we report the synthesis of magnetic nanoparticles made from ferrous oxide through coprecipitation chemical process. The nanostructured material was coated with lauric acid and dispersed in aqueous medium containing surfactant that yielded a stable colloidal suspension. The characterization of magnetic nanoparticles with distinct physico-chemical configurations is fundamental for biomedical applications. Therefore magnetic nanoparticles were characterized in terms of their morphology by means of TEM and DLS, which showed a polydispersed set of spherical nanoparticles (average diameter of ca. 9 nm) as a result of the protocol. The structural properties were characterized by using X-ray diffraction (XRD). XRD pattern showed the presence of peaks corresponding to the spinel phase of magnetite (Fe{sub 3}O{sub 4}). The relaxivities r{sub 2} and r{sub 2}* values were determined from the transverse relaxation times T{sub 2} and T{sub 2}* at 3 T. Magnetic characterization was performed using SQUID and FMR, which evidenced the superparamagnetic properties of the nanoparticles. Thermal characterization using DSC showed exothermic events associated with the oxidation of magnetite to maghemite. - Highlights: • Synthesis of magnetic nanoparticles coated with lauric acid • Characterization of magnetic nanoparticles • Morphological, structural, magnetic, calorimetric and relaxometric characterization.

  19. Design, synthesis, and characterization of nucleosomes containing site-specific DNA damage.

    Science.gov (United States)

    Taylor, John-Stephen

    2015-12-01

    How DNA damaged is formed, recognized, and repaired in chromatin is an area of intense study. To better understand the structure activity relationships of damaged chromatin, mono and dinucleosomes containing site-specific damage have been prepared and studied. This review will focus on the design, synthesis, and characterization of model systems of damaged chromatin for structural, physical, and enzymatic studies.

  20. The synthesis and characterization of iron nanoparticles

    Science.gov (United States)

    Bennett, Tyler

    Nanoparticle synthesis has garnered attention for technological applications for catalysts, industrial processing, and medical applications. The size ranges for these is in the particles nanostructural domain. Pure iron nanoparticles have been of particular interest for their reactivity and relative biological inertness. Applications include cancer treatment and carrying medicine to a relevant site. Unfortunately, because of their reactivity, pure iron nanoparticles have been difficult to study. This is because of their accelerated tendency to form oxides in air, due to the increased surface area to volume ratio. Using synthesis processes with polyphenols or long chain amines, air stable iron nanoparticles have been produced with a diameter size range of ~ 2 to about ~10 nm, but apparently have transformed due to internal pressure and crystallographic defects to the FCC phase. The FCC crystals have been seen to form icosahedral and decahedral shapes. This size is within the range for use as a catalyst for the growth of both carbon nanotubes and boron nitride nanotubes as well for biomedical applications. The advantages of these kinds of catalysts are that nanotube growth can be for the first time separated from the catalyst formation. Additionally, the catalyst size can be preselected for a certain size nanotube to grow. In summary: (1) we found the size distributions of nanoparticles for various synthesis processes, (2) we discovered the right size range for growth of nanotubes from the iron nanoparticles, (3) the nanoparticles are under a very high internal pressure, (4) the nanoparticles are in the FCC phase, (5) they appear to be in icosahedral and decahedral structures, (6) they undergo room temperature twinning, (7) the FCC crystals are distorted due to carbon in octahedral sites, (8) the iron nanoparticles are stable in air, (9) adding small amounts of copper make the iron nanoparticles smaller.

  1. Synthesis and characterization of N-doped zinc oxide nanotetrapods

    Science.gov (United States)

    Al Rifai, S. A.; Kulnitskiy, B. A.

    2016-05-01

    Nitrogen-doped (N-doped) self-assembled nanotetrapods ZnO were synthesized via chemical vapor deposition process using N2O as a dopant source via vapor-solid (VS) growth. The decomposition of N2O gas giving NO and NO2 during the synthesis provided successful N-doping of the sample. All samples (N-doped and undoped) were characterized by XRD, SEM, TEM, EDX, photoluminescence (PL), Fourier transform infrared (FT-IR), and diffuse reflection spectra. After nitrogen-doping process, N-doped ZnO samples show the change in structural and optical properties. The detailed structure and the growth mechanism of individual ZnO tetrapod is characterized by TEM and SEM investigations. The TEM study gives the direct assumption about the formation of zincblende (sphalerite) structure on the initial stage of growth of N-doped tetrapods. Besides, SEM observation indicated that tetrapods have perfect tetrahedral symmetry. N-Doped ZnO samples exhibit a broad orange-red PL emission band, peaking near 2.1 eV, in good agreement with the deep-acceptor model for the nitrogen impurity. An IR absorption peak at 3146 cm-1 at room temperature was observed for N-doped sample. This peak has been unambiguously assigned to N-H complex.

  2. Synthesis, Characterization of Heterodinuclear Co-Cu Complex and Its Electrocatalytic Activity towards 02 Reduction: Implications for Cytochrome c Oxidase Active Site Modeling

    Institute of Scientific and Technical Information of China (English)

    卢卫兵; 汪存信; 周晓海; 任建国

    2003-01-01

    A new dinudeating ligand consisting of a tetraphanylporphyrin derivative covalently linked with tris(2-benzimidazylmethyl)-amine and its homodinudear Co-Co and heterodinnelear Co-Cu complexes were synthesized and spectroscopically character-ized. The heterobimetallie cobalt-copper complex bearing three benzimidazole ligands for copper, as cytochrome c oxidase ac-tive site model, was applied to the surface of glassy carbon elec-trode to show electrocatalytie activity for O2 reduction in aque-ous solution at an addity level dose to physiological pH value.The kinetic parameters of this electrocatalytic process were ob-tained.

  3. Molybdenum oxide nanocubes: Synthesis and characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Narayanan, V., E-mail: vnnara@yahoo.co.in [Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai -600025 (India); Stephen, A. [Department of Nuclear Physics, University of Madras, Guindy Campus, Chennai-600025 (India)

    2015-06-24

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO{sub 3} nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO{sub 3} has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO{sub 3} nanoparticles. DRS-UV analysis shows that MoO{sub 3} has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  4. Molybdenum oxide nanocubes: Synthesis and characterizations

    Science.gov (United States)

    Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. Praveen; Munusamy, S.; Stephen, A.; Narayanan, V.

    2015-06-01

    Molybdenum oxide nanoparticles were prepared by Solid state synthesis. The MoO3 nanoparticles were synthesized by using commercially available ammonium heptamolybdate. The XRD pattern reveals that the synthesized MoO3 has orthorhombic structure. In addition, lattice parameter values were also calculated using XRD data. The Raman analysis confirm the presence of Mo-O in MoO3 nanoparticles. DRS-UV analysis shows that MoO3 has a band gap of 2.89 eV. FE-SEM analysis confirms the material morphology in cubes with nano scale.

  5. Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides

    NARCIS (Netherlands)

    Schwartz, Erik; Lim, Eunhee; Gowda, Chandrakala M.; Liscio, Andrea; Fenwick, Oliver; Tu, Guoli; Palermo, Vincenzo; Gelder, de Rene; Cornelissen, Jeroen J.L.M.; Eck, van Ernst R.H.; Kentgens, Arno P.M.; Cacialli, Franco; Nolte, Roeland J.M.; Samori, Paolo; Huck, Wilhelm T.S.; Rowan, Alan E.

    2010-01-01

    We describe the design and synthesis of carbazole functionalized isocyanides and the detailed investigation of their properties. Characterization by solid state NMR, CD, and IR spectroscopic techniques reveals that the polymer has a well-defined helical architecture. Surface-initiated polymerization

  6. Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2014-01-01

    Full Text Available Journal of Biomedical Materials Research Part A Vol. 102(A) Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines B. A. Aderibigbe,1 E. W. Neuse,2 E. R. Sadiku,1 S. Shina Ray,3 P. J. Smith4 1Department...

  7. Synthesis, characterization and properties of some organozinc hydride complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of the monopyridine complexes of ethylzinc hydride and phenylzinc hydride are described. On treatment with TMED these complexes are converted into R2Zn3H4. TMED species through a combination of ligand-exchange and disproportionation. The formation of organozinc hyd

  8. Polymer protected gold nanoparticles: synthesis, characterization and application in catalysis

    OpenAIRE

    Baygazieva, E. K.; Yesmurzayeva, N. N.; Tatykhanova, G. S.; Mun, G. A.; Khutoryanskiy, V. V.; Kudaibergenov, S. E.

    2014-01-01

    This review discusses the stabilization of gold nanoparticles (AuNPs) by nonionic, anionic, cationic and amphoteric polymers. The protocols used for synthesis of AuNPs in aqueous and organic solvents are described. Size, shape and morphology of AuNPs are characterized by various physicochemical methods. Application aspects of polymer-protected AuNPs in catalysis are outlined.

  9. Monolayer transition metal disulfide:Synthesis, characterization and applications

    Institute of Scientific and Technical Information of China (English)

    Qi Fu; Bin Xiang

    2016-01-01

    Two-dimensional transition metal dichalcogenides (2D TMDCs) has aroused tremendous attention in recent years, because of their remarkable properties originated from their unique structure. In this re-view we report the synthesis, characterization and applications of monolayer MoS2 and WS2.

  10. Poly/diphenylsiloxy/arylazines. I - Synthesis and characterization

    Science.gov (United States)

    Goldsberry, R. E.; Adamson, M. J.; Reinisch, R. F.

    1973-01-01

    A detailed description is presented for the synthesis of poly(diphenylsiloxy)arylazines by the melt polymerization of hydroxyarylazines and bis(anilino)diphenylsilane. The resulting polymers have been characterized by elemental analysis, gel-permeation chromatography, vapor-phase osmometry, and UV-VIS-IR optical spectroscopy.

  11. Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    White, Ralph E.; Popov, Branko N.

    2002-10-31

    During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

  12. Synthesis and structure characterization of diethyldiallylammonium chloride

    Institute of Scientific and Technical Information of China (English)

    刘立华; 龚竹青; 郑雅杰

    2003-01-01

    The unsaturated quaternary ammonium salt diethyldiallylammonium chloride(DEDAAC) was synthesized in a two-step synthetic method. The influences of the adding method of raw materials and temperature on the yields of diethylallylamine (DEAA), and drying and temperature on the synthesis of DEDAAC were investigated. The content of in-process product DEAA was determined by non-aqueous titration. The structure of product DEDAAC was identified with IR, 1 H NMR and elemental analysis. The results show that adding allyl chloride and sodium hydroxide alternately can increase the yield of DEAA and decrease by-products. In further synthesizing of DEDAAC from DEAA, the step of drying DEAA is very necessary. When DEAA is dried by solid sodium hydroxide, good columnar crystals with a high purity(mp 199.5-201.0 ℃) are obtained; when DEAA is undried or the content of water in DEAA is above 20%, only platelets with bad quality are obtained even without crystals. The suitable synthesis conditions for DEAA and DEDAAC are 35 ℃, 6 h and 40 ℃, 36 h, respectively, and their yields are 69.7% and 67.3%, respectively.

  13. Synthesis, Characterization and Antibacterial Evaluations of the ...

    African Journals Online (AJOL)

    MBI

    2014-06-05

    Jun 5, 2014 ... ... Ni(II) and Zn(II) were synthesized and characterized by molar conductance, FTIR, NMR, UV-Visible and elemental analysis. ... 10mmol) at room temperature and then refluxed for ..... Cytochrome P450 dependent metabolism.

  14. Synthesis and characterization of tantalum silsesquioxane complexes.

    Science.gov (United States)

    Guillo, Pascal; Fasulo, Meg E; Lipschutz, Michael I; Tilley, T Don

    2013-02-14

    Tantalum polyhedral oligosilsesquioxane (POSS) complexes have been synthesised and characterized. X-ray structures of these complexes revealed that the coordination number of the tantalum center greatly affects the cube-like silsesquioxane framework.

  15. Nanoparticle additives for multiphase systems: Synthesis, formulation and characterization

    Science.gov (United States)

    Kanniah, Vinod

    Study on nanoparticle additives in multiphase systems (liquid, polymer) are of immense interest in developing new product applications. Critical challenges for nanoparticle additives include their synthesis, formulation and characterization. These challenges are addressed in three application areas: nanofluids for engine lubrication, ultrathin nanocomposites for optical devices, and nanoparticle size distribution characterization. Nanoparticle additives in oligomer mixtures can be used to develop extended temperature range motor oils. A model system includes poly(alpha-olefin) based oligomers with a modest fraction of poly(dimethylsiloxane) oligomers along with graphite as nanoparticle additive. Partition coefficients of each oligomer are determined since the oligomer mixture phase separated at temperatures less than -15 °C. Also, the surface of graphite additive is quantitatively analyzed and modified via silanization for each oligomer. Thus, upon separation of the oligomer mixture, each functionalized graphite additive migrates to its preferred oligomers and forms a uniform dispersion. Similarly, nanoparticle additives in polymer matrices can be used to develop new low haze ultrathin film optical coatings. A model system included an acrylate monomer as the continuous phase with monodisperse or bidisperse mixtures of silica nanoparticles deposited on glass and polycarbonate substrates. Surface (root mean squared roughness, Wenzel's contact angle) and optical properties (haze) of these self assembled experimental surfaces were compared to simulated surface structures. Manipulating the size ratios of silica nanoparticle mixtures varied the average surface roughness and the height distributions, producing multimodal structures with different packing fractions. In both nanofluid and nanocomposite applications, nanoparticle additives tend to aggregate/agglomerate depending on various factors including the state of nanoparticles (powder, dispersion). A set of well-characterized

  16. NEW ROOM TEMPERATURE LIQUIDS: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Macaev Fliur

    2007-06-01

    Full Text Available Room temperature ionic liquids (ILs have been recognized as a new generation of solvents for “green chemistry” and represent remarkably promising classes of technologically useful and fundamentally interesting materials [1-6]. Most of them are quaternary imidazolium cations with inorganic counterions. Cation in these salts is appended to the organic group (usually saturated hydrocarbon fragments. However, some problems regarding the functionalization [2,7], coordination properties [4] of ILs still remain to be solved. It seems to us that functionalization of imidazoles by ethylcarbonitrile, allyl, 2,3-epoxypropyl fragments will lead to new properties of synthesized ILs. There are no literature data on use of 2-(1H-1-imidazolylethylcarbonitrile 4 for synthesis of imidazolium salts with ILs properties.

  17. Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

    2010-10-01

    Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

  18. Synthesis and Characterization of Two Danazol Derivatives

    Directory of Open Access Journals (Sweden)

    Lauro Figueroa-Valverde

    2010-01-01

    Full Text Available Two danazol derivatives were synthesized and characterized by spectral analyses. In order to characterize the structural and chemical requirements of danazol derivatives, several parameters such as logP, π, Rm and Vm were evaluated. The results showed an increase in the values of logP for the compound 6 in comparison with 3. The compound 3 showed an increase in the values of π, R Vm and V Vm with respect to 6. These data indicate a high degree of lipophilicity and a low steric impediment for compound 6 in comparison with 3.

  19. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  20. Synthesis, Properties Characterization and Applications of Various Organobismuth Compounds

    Directory of Open Access Journals (Sweden)

    Jingfei Luan

    2011-05-01

    Full Text Available Organobismuth chemistry was emphasized in this review article due to the low price, low toxicity and low radioactivity characteristics of bismuth. As an environmentally-friendly class of organometallic compounds, different types of organobismuth compounds have been used in organic synthesis, catalysis, materials, etc. The synthesis and property characterization of many organobismuth compounds had been summarized. This review article also presented a survey of various applications of organobismuth compounds in organic transformations, as reagents or catalysts. The reactivity, reaction pathways and mechanisms of reactions with organobismuths were discussed. Less common and limiting aspects of organobismuth compounds were also briefly mentioned.

  1. Gaseous detonation synthesis and characterization of nano-oxide

    Science.gov (United States)

    Yan, Honghao; Wu, Linsong; Li, Xiaojie; Wang, Xiaohong

    2015-07-01

    Gaseous detonation is a new method of heating the precursor of nanomaterials into gas, and integrating it with combustible gas as mixture to be detonated for the synthesis of nanomaterials. In this paper, the mixed gas of oxygen and hydrogen is used as the source for detonation, to synthesize nano TiO2, nano SiO2 and nano SnO2 through gaseous detonation method, characterization and analysis of the products, it was found that the products from gaseous detonation method were of high purity, good dispersion, smaller particle size and even distribution. It also shows that for the synthesis of nano-oxides, gaseous detonation is universal.

  2. Synthesis, structure determination, and spectroscopic/computational characterization of a series of Fe(II)-thiolate model complexes: implications for Fe-S bonding in superoxide reductases.

    Science.gov (United States)

    Fiedler, Adam T; Halfen, Heather L; Halfen, Jason A; Brunold, Thomas C

    2005-02-16

    A combined synthetic/spectroscopic/computational approach has been employed to prepare and characterize a series of Fe(II)-thiolate complexes that model the square-pyramidal [Fe(II)(N(His))(4)(S(Cys))] structure of the reduced active site of superoxide reductases (SORs), a class of enzymes that detoxify superoxide in air-sensitive organisms. The high-spin (S = 2) Fe(II) complexes [(Me(4)cyclam)Fe(SC(6)H(4)-p-OMe)]OTf (2) and [FeL]PF(6) (3) (where Me(4)cyclam = 1,4,8,11-tetramethylcyclam and L is the pentadentate monoanion of 1-thioethyl-4,8,11-trimethylcyclam) were synthesized and subjected to structural, magnetic, and electrochemical characterization. X-ray crystallographic studies confirm that 2 and 3 possess an N(4)S donor set similar to that found for the SOR active site and reveal molecular geometries intermediate between square pyramidal and trigonal bipyramidal for both complexes. Electronic absorption, magnetic circular dichroism (MCD), and variable-temperature variable-field MCD (VTVH-MCD) spectroscopies were utilized, in conjunction with density functional theory (DFT) and semiemperical INDO/S-CI calculations, to probe the ground and excited states of complexes 2 and 3, as well as the previously reported Fe(II) SOR model [(L(8)py(2))Fe(SC(6)H(4)-p-Me)]BF(4) (1) (where L(8)py(2) is a tetradentate pyridyl-appended diazacyclooctane macrocycle). These studies allow for a detailed interpretation of the S-->Fe(II) charge transfer transitions observed in the absorption and MCD spectra of complexes 1-3 and provide significant insights into the nature of Fe(II)-S bonding in complexes with axial thiolate ligation. Of the three models investigated, complex 3 exhibits an absorption spectrum that is particularly similar to the one reported for the reduced SOR enzyme (SOR(red)), suggesting that this model accurately mimics key elements of the electronic structure of the enzyme active site; namely, highly covalent Fe-S pi- and sigma-interactions. These spectral

  3. Synthesis Array Topology Metrics in Location Characterization

    Science.gov (United States)

    Shanmugha Sundaram, GA

    2015-08-01

    Towards addressing some of the fundamental mysteries in physics at the micro- and macro-cosm level, that form the Key Science Projects (KSPs) for the Square Kilometer Array (SKA; such as Probing the Dark Ages and the Epoch of Reionization in the course of an Evolving Universe; Galaxy Evolution, Cosmology, and Dark Energy; and the Origin and evolution of Cosmic Magnetism) a suitable interfacing of these goals has to be achieved with its optimally designed array configuration, by means of a critical evaluation of the radio imagingcapabilities and metrics. Of the two forerunner sites, viz. Australia and South Africa, where pioneering advancements to state-of-the-art in synthesis array radio astronomy instrumentation are being attempted in the form of pathfinders to the SKA, for its eventual deployment, a diversity of site-dependent topology and design metrics exists. Here, the particular discussion involves those KSPs that relate to galactic morphology and evolution, and explores their suitability as a scientific research goal from the prespective of the location-driven instrument design specification. Relative merits and adaptability with regard to either site shall be presented from invoking well-founded and established array-design and optimization principles designed into a customized software tool.

  4. Synthesis and Characterization of Boehmite Nanofibers

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2008-01-01

    Full Text Available Boehmite nanofibers of high quality were synthesized through a wet-gel conversion process without the use of a surfactant. The long nanofibers of boehmite with clear-cut edges were obtained by steaming the wet-gel precipitate at 170∘C for 2 days. Analytical techniques such as X-ray diffraction (XRD, scanning electron microscopy (SEM, infrared emission spectroscopy (IES, as well as Raman spectroscopy were used to characterize the products.

  5. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.

    Science.gov (United States)

    Megiatto, Jackson D; Cazeils, Emmanuel; Ham-Pichavant, Frédérique; Grelier, Stéphane; Gardrat, Christian; Castellan, Alain

    2012-05-14

    A series of random copoly(styrene)s has been synthesized via radical polymerization of functionalized anthraquinone (AQ) and β-O-4 lignin model monomers. The copolymers were designed to have a different number of styrene spacer groups between the AQ and β-O-4 lignin side chains aiming at investigating the distance effects on AQ/β-O-4 electron transfer mechanisms. A detailed molecular characterization, including techniques such as size exclusion chromatography, MALDI-TOF mass spectrometry, and (1)H, (13)C, (31)P NMR and UV-vis spectroscopies, afforded quantitative information about the composition of the copolymers as well as the average distribution of the AQ and β-O-4 groups in the macromolecular structures. TGA and DSC thermal analysis have indicated that the copolymers were thermally stable under regular pulping conditions, revealing the inertness of the styrene polymer backbone in the investigation of electron transfer mechanisms. Alkaline pulping experiments showed that close contact between the redox active side chains in the copolymers was fundamental for an efficient degradation of the β-O-4 lignin model units, highlighting the importance of electron transfer reactions in the lignin degradation mechanisms catalyzed by AQ. In the absence of glucose, AQ units oxidized phenolic β-O-4 lignin model parts, mainly by electron transfer leading to vanillin as major product. By contrast, in presence of glucose, anthrahydroquinone units (formed by reduction of AQ) reduced the quinone-methide units (issued by dehydration of phenolic β-O-4 lignin model part) mainly by electron transfer leading to guaiacol as major product. Both processes were distance dependent.

  6. Synthesis, characterization, acetylcholinesterase inhibition, molecular modeling and antioxidant activities of some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines.

    Science.gov (United States)

    Salga, Saleh M; Ali, Hapipah M; Abdullah, Mahmood A; Abdelwahab, Siddig I; Wai, Lam Kok; Buckle, Michael J C; Sukumaran, Sri Devi; Hadi, A Hamid A

    2011-11-07

    Some novel Schiff bases derived from 1-(2-ketoiminoethyl)piperazines were synthesized and characterized by mass spectroscopy, FTIR, UV-Visible, 1H and 13C-NMR. The compounds were tested for inhibitory activities on human acetylcholinesterase (hAChE), antioxidant activities, acute oral toxicity and further studied by molecular modeling techniques. The study identified the compound (DHP) to have the highest activity among the series in hAChE inhibition and DPPH assay while the compound LP revealed the highest activity in the FRAP assay. The hAChE inhibitory activity of DHP is comparable with that of propidium, a known AChE inhibitor. This high activity of DHP was checked by molecular modeling which showed that DHP could not be considered as a bivalent ligand due to its incapability to occupy the esteratic site (ES) region of the 3D crystal structure of hAChE. The antioxidant study unveiled varying results in 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. This indicates mechanistic variations of the compounds in the two assays. The potential therapeutic applications and safety of these compounds were suggested for use as human acetylcholinesterase inhibitors and antioxidants.

  7. Synthesis and characterization of novel adsorbent fibers

    Science.gov (United States)

    Benak, Kelly Rene

    This thesis is devoted to the design and development of three novel fibrous systems where the unique properties of commercially available activated carbon fibers (ACFs) were used as a foundation. In the first system, sulfonated pyropolymeric fibers derived from phenol-formaldehyde resins serve as cationic exchangers. This system was characterized through elemental analysis (EA), diffuse reflectance infrared fourier transform spectroscopy, thermal gravimetric analysis, and nitrogen/carbon dioxide adsorption. Their performance as efficient ion exchange systems was evaluated through pressure drop, capacity and dynamic mode kinetic measurements. Total ion exchange capacities up to 19.5 meq/g were measured for the fibers with pressure drops less than half that of beads over a wide range of flow rates. The second system utilizes the activated carbon fiber as a template to prepare a high surface area zirconia fiber. Simultaneous differential thermal analysis/thermal gravimetric analysis, optical and scanning electron microscopy, X-ray diffraction, EA, and nitrogen adsorption were used to characterize the inorganic cloths. The information obtained provided fundamental materials properties used in the optimization of the inorganic fibers. The fibers possess surface areas of up to 101 m 2/g at 800°C. The final system took advantage of the ability to chemically modify an ACF surface to enhance the gas separation capability. The equilibrium adsorption of carbon dioxide and methane at standard temperature and pressure was used to calculate selectivity coefficients and thus measure the fiber's capacity to effectively separate the two gases. They were further characterized through EA and surface area. The separation coefficients obtained were compared against values reported in the literature for pillared clays, zeolites, and carbon molecular sieves. The chemically modified fibers exhibit selectivity factors as high as 4.03, which is better than values reported for pillared

  8. PLLA-HA composites: Synthesis and characterization

    Science.gov (United States)

    Gonzalez, Gema; Albano, Carmen; Palacios, Jordana

    2012-07-01

    A composite based on PLLA -HA was prepared by the solvent casting technique and characterized. An interaction between the polymer matrix and HA through the carbonyl and phosphate groups was obtained by FTIR . The several thermal transitions of PLLA were evaluated by DSC: the glass transition, crystallization, cold crystallization, melt-recrystallization and melting. The addition of HA to PLLA matrix increases its glass transition temperature and no major changes on the melting temperature and crystallinity were observed. The PLLA-HA composite showed better thermal stability than the neat polymer. The introduction of the nano-HA particles increased the decomposition temperature and the activation energy retarding the decomposition process.

  9. SYNTHESIS AND CHARACTERIZATION OF FULLY SOLUBLE POLYPHENYLENEVINYLENE

    Institute of Scientific and Technical Information of China (English)

    Jiang-qing Pan; Zi-kuan Chen; Yang Xiao; Wei Huang

    2000-01-01

    Fully soluble poly[2-methoxy-5-(2'-ethylhexyl)-oxy)-p-phenylenevinylene] (MEH-PPV) was synthesized by the addition of molecular weight modifiers (chain stopper, free radical scavengers) to a polymerization system containing monomer, catalyst and a solvent. These PPV products synthesized in this work were characterized by IR, NMR, UV-visible spectroscopy and GPC. Results show that the Mw of polyphenylvinylene (PPV) can be controlled by the addition of chain stopper (benzyl bromide) and radical inhibitor (2,6-di-tert-butyl-4-methyl phenol). The polymerization mechanism in the presence of these additives was also discussed. A dual mechanism involving carbene for PPV polymerization was proposed.

  10. Synthesis and Characterization of Glassy Carbon Nanowires

    Directory of Open Access Journals (Sweden)

    C. M. Lentz

    2011-01-01

    Full Text Available The advent of carbon-based micro- and nanoelectromechanical systems has revived the interest in glassy carbon, whose properties are relatively unknown at lower dimensions. In this paper, electrical conductivity of individual glassy carbon nanowires was measured as a function of microstructure (controlled by heat treatment temperature and ambient temperature. The semiconducting nanowires with average diameter of 150 nm were synthesized from polyfurfuryl alcohol precursors and characterized using transmission electron and Raman microscopy. DC electrical measurements made at 90 K to 450 K show very strong dependence of temperature, following mixed modes of activation energy and hopping-based conduction.

  11. Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel

    Institute of Scientific and Technical Information of China (English)

    DAI Pin-qiang; YU Hui, LI Qiang

    2004-01-01

    Nanocrystalline nickel was synthesize d by direct current electrodeposition from a modified Watts-type bath. X-ray diffraction and transmission electron microscope were used to characterize the microstructure of nickel deposits. The results show that nanocrytalline nickel with grain sizes in the range 20~50nm can be synthesized from saccharin-containing Watts-type baths with current density range 5~30A/dm2. There existed preferred orientation in the deposits and it changed progressively from a (200) fibre texture to a (111) (200) double fibre texture as saccharin concentration increased. The hardness of the deposits increased prominently as grain size decreased to nanometer range.

  12. Synthesis and Characterization of Electrodeposited Nanocrystalline Nickel

    Institute of Scientific and Technical Information of China (English)

    DAIPin-qiang; YUHui; LIQiang

    2004-01-01

    Nanocrystalline nickel was synthesized by direct current electrodeposition from a modified Watts-type bath. X-ray diffraction and transmission electron microscope were used to characterize the microstructure of nickel deposits. The results show that nanocrytalline nickel with grain sizes in the range 20-50nm can be synthesized from saccharin-containing Watts-type baths with current density range 5-30A/dm2. There existed preferred orientation in the deposits and it changed progressively from a (200) fibre texture to a (111) (200) double fibre texture as saccharin concentration increased. The hardness of the deposits increased prominently as grain size decreased to nanometer range.

  13. Synthesis and characterization of Co nanoparticles

    Science.gov (United States)

    Singh, J.; Tripathi1, J.; Kaurav, N.

    2017-05-01

    Nanoparticles of Cobalt (Co) have attracted great interest in recent years because of their unique physical and optical properties that are of industrial importance. To understand their basic properties, Co nanoparticles were synthesized by Polyol method using Cobalt acetate and ethylene glycol in the presence of some pellets of sodium hydroxide. The synthesized powder was characterized X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The average particle size and lattice parameter estimated by XRD were found to be ˜37.3 nm and 3.1653 Å respectively. The results suggest suitability of these nanoparticles as dopants in other materials such as polymer materials and oxides.

  14. Synthesis, characterization and optical properties of nanoparticles

    Science.gov (United States)

    Li, Shoutian

    ZnO, Si, silica, Ge, Ga oxide, W oxide and Mo oxide nanoparticles have been synthesized and characterized, and their optical properties have been investigated. These particles were synthesized by a Laser Vaporization and Controlled Condensation (LVCC) technique in a modified diffusion cloud chamber. The particles deposited on smooth substrates reveal highly organized web-like structures with uniform micrometer size pores. The effect of solvents on the web-like structures was also investigated. ZnO nanoparticles were also prepared by wet chemical methods such as the reversed micelle and sol solutions technique. The photoluminescence quantum yield is enhanced 10 times once the surfaces of the ZnO nanoparticles are coated with a layer of stearate molecules. Many techniques have been used to characterize the nanoparticles. SEM gives information about particle size and morphology; X-ray diffraction and Raman spectroscopy determine the crystallinity and crystal structure; XPS and FTIR reveal the surface chemical composition; UV-vis spectroscopy and photoluminescence measurements characterize the optical properties of nanoparticles. Silica nanoparticles, prepared in an amorphous phase, show bright blue photoluminescence upon irradiation with UV light, but the luminescence has a very short lifetime (less than 20 ns). Si nanoparticles, with a diamond-like crystal phase, acquire oxidized-surfaces on exposure to air. The surface-oxidized Si nanocrystals show a short- lived blue emission characteristic of the SiO2 coating and a longer-lived red emission at room temperature. The lifetime of the red emission depends on the emission wavelength. Some substituted benzene molecules and tungsten oxide nanoparticles can quench the red photoluminescence of the Si nanocrystals. Tungsten oxide and molybdenum oxide nanoparticles show photochromic properties: they change color to blue when irradiated. The photons drive a transition from one chemical state to another. The color change of

  15. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    Science.gov (United States)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  16. Synthesis and characterization of tetraethylammonium tetrachlorocobaltate crystals

    Indian Academy of Sciences (India)

    M A Kandhaswamy; V Srinivasan

    2002-02-01

    Single crystals of tetraethylammonium tetrachlorocobaltate were grown by solution method and characterized through single crystal X-ray diffraction, thermogravimetric analysis (TGA), differential scanning calorimetric studies (DSC) and infrared spectroscopic technique (IR). The crystals were bright, transparent and blue coloured. The unit cell parameters were found to be = = 9.0363 Å and = 14.9879 Å and = = = 90°, showing tetragonal lattice from the XRD data. Thermogravimetric analysis showed a loss of weight at 683 K from which the decomposition reaction was formulated. Thermal anomalies were found for this crystal at temperatures 200 K, 220 K in the cooling cycle and at temperatures 200 K, 240 K in the heating cycle, respectively which showed that this crystal was associated with first order phase transition. All the vibrational frequencies corresponding to (TEA)+ ions and CoCl$^{2-}_4$ ions were assigned from the IR spectral data of this crystal.

  17. Synthesis and Electroluminescence Characterization of Cadmium Complex

    Directory of Open Access Journals (Sweden)

    Rahulkumar

    2011-01-01

    Full Text Available We have synthesized and characterized a new electroluminescence material,Cadmium [(2-(2-hydroxyphenylbenzoxazole(8-hydoxyquinoline] Cd(HPBq. The absorption spectra of this material show maxima at 378 nm. It may be attributed due to π° – π* transition. The photoluminescence showed peak at 520 nm. TGA data of the material shows stability up to 370 °C .Organic light emitting diode have been fabricated with this material and the fundamental structures of the device is ITO/α-NPD/ Cd(HPBq/BCP/Alq3/LiF/Al exhibited a luminescence peak at 550 nm. The maximum luminescence of the device was 295 cd/m2 with current density of 6687 A/m2 at 20 V. The maximum current efficiency of OLED was 1.01 cd/A at 17 V and power efficiency was 1.01 lm/w at 17 V.

  18. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  19. Synthesis and characterization of carbonate hydroxyapatite.

    Science.gov (United States)

    Merry, J C; Gibson, I R; Best, S M; Bonfield, W

    1998-12-01

    Substituted apatite ceramics are of clinical interest as they offer the potential to improve the bioactive properties of implants. Carbonate hydroxyapatite (CHA) has been synthesized by an aqueous precipitation method and precipitates with two different levels of carbonate, processed as powders. Sintering experiments were performed to establish the influence of carbonate in significantly reducing the temperature required to prepare high-density ceramics when compared with stoichiometric hydroxyapatite (HA). High-temperature X-ray diffraction was used to characterize the phase stability of the apatites on sintering. Increasing carbonate content was shown to reduce the temperature at which decomposition occurred, to phases of CaO and beta-TCP. Mechanical testing, performed using biaxial flexure, showed that the CHA specimens had strengths similar to stoichiometric HA. Copyright 1998 Kluwer Academic Publishers

  20. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL ACTIVITY OF POLYKETONES

    Institute of Scientific and Technical Information of China (English)

    Ismail A.Alkskas; Altaher M.Alhubge; Faizul Azam

    2013-01-01

    Polyketone resins have been prepared by the Friedel-Crafts polymerization of dithiophenylidenecyclopentanone (Ⅰ),dithiophenylidenecyclohexanone (Ⅱ) and dithiophenylideneacetone (Ⅲ) with adipoyl,sebacoyl and terephthaloyl dichlorides using boron trifluoride as catalyst and carbon disulphide as solvent.Polymers were characterized with IR,1H-NMR,and the results showed the presence of carbonyl of ketonic groups in the main chain.The polyketones have inherent viscosities of 0.40-0.70 dL/g.All the polymers are semicrystalline and most of them are partially soluble in most common organic solvents but freely soluble in aprotic solvents.The temperatures of 50% weight loss are as high as 185℃ to 280℃ in air,indicating that these aromatic polyketones have excellent thermal stability.All the polyketones were tested for their antimicrobial activity against bacteria and fungi.

  1. Synthesis and characterization of sodium alkoxides

    Indian Academy of Sciences (India)

    K Chandran; R Nithya; K Sankaran; A Gopalan; V Ganesan

    2006-04-01

    Alcohol route is being adopted for cleaning sodium from sodium-wetted small components of coolant circuits of fast reactors. For better understanding of sodium–alcohol reactions and their energetics, the data on thermo-chemical properties such as heats of sodium–alcohol reactions, heats of dissolution, heat capacities, thermal decomposition behaviour, etc of their end products are essential. In order to generate such data, high purity sodium alkoxides, viz. sodium methoxide, sodium ethoxide and sodium -propoxide, were prepared by reacting sodium metal with respective alcohol. These compounds were characterized using X-ray diffraction technique and IR spectroscopy. The elemental analysis was carried out by CHNS analyser and atomic emission spectroscopy. Normal chain sodium alkoxides were found to exhibit tetragonal crystal structure. Crystal structures of sodium ethoxide and sodium -propoxide are reported for the first time. The IR spectrum of sodium -propoxide is also reported for the first time.

  2. Synthesis and Characterization of Bimodal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaofang; GUO Cuili; WANG Xiaoli; WU Yuanyuan

    2012-01-01

    Mesoporous silica with controllable bimodal pore size distribution was synthesized with cetyltrimethylammonium bromide (CTAB) as chemical template for small mesopores and silica gel as physical template for large mesopores.The structure of synthesized samples were characterized by Fourier transform infrared (FT-IR) spectroscopy,X-ray diffraction (XRD),scanning electron microscopy (SEM),transmission electron microscopy (TEM) and N2 adsorption-desorption measurements.The experimental results show that bimodal mesoporous silica consists of small mesopores of about 3 nm and large mesopores of about 45 nm.The small mesopores which were formed on the external surface and pore walls of the silica gel had similar characters with those of MCM-41,while large mesopores were inherited from parent silica gel material.The pore size distribution of the synthesized silica can be adjusted by changing the relative content of TEOS and silica gel or the feeding sequence of silica gel and NH4OH.

  3. Synthesis and electrochemical characterization of substituted indolizine carboxylates

    Directory of Open Access Journals (Sweden)

    Soare Maria-Laura

    2013-01-01

    Full Text Available This work is devoted to the synthesis and characterization of new indolizine derivatives. Particular attention was paid to the electrochemical investigations by cyclic voltammetry and differential pulse voltammetry. The redox processes for each compound were established, analyzed and assessed to the particular functional groups at which they take place. This assessment was based on detailed comparison between the electrochemical behaviour of the compounds, similarities in their structure, as well as substituent effects.

  4. Green Synthesis and Characterization of Monodispersed Gold Nanoparticles: Toxicity Study, Delivery of Doxorubicin and Its Bio-Distribution in Mouse Model.

    Science.gov (United States)

    Mukherjee, Sudip; Sau, Samaresh; Madhuri, Durga; Bollu, Vishnu Sravan; Madhusudana, Kuncha; Sreedhar, Bojja; Banerjee, Rajkumar; Patra, Chitta Ranjan

    2016-01-01

    In the present article, we report the in vitro and in vivo delivery of doxorubicin using biosynthesized gold nanoparticles (b-Au-PP). Gold nanoparticles were synthesized by a simple, fast, efficient, environmentally friendly and economical green chemistry approach using an extract of Peltophorum pterocarpum (PP) leaves. Because the biosynthesized b-Au-PP was highly stable in various physiological buffers for several weeks and biocompatible in both in vitro and in vivo systems, we designed and developed a biosynthesized gold nanoparticle (b-Au-PP)-based drug-delivery system (DDS) using doxorubicin (Dox) (b-Au-PP-Dox). Both b-Au-PP and b-Au-PP-Dox were thoroughly characterized using several analytical tools. Administration of doxorubicin-loaded DDS (b-Au-PP-Dox) resulted in a significant inhibition of the proliferation of cancer cells (A549, B16F10) in vitro and of tumor growth in an in vivo model compared to doxorubicin alone. Furthermore, we found that the cellular uptake and release of Dox in the nanoconjugated form (b-Au-PP-Dox) were faster than the uptake and release of unconjugated Dox. The in vivo toxicity study did not show any significant changes in the hematology, serum clinical biochemistry or histopathology in the C57BL6/J female mice after consecutive intraperitoneal (IP) injections over a period of seven days. To the best of our knowledge, our study is the first to report the application of a biosynthesized gold nanoparticle-based DDS for cancer therapy in an animal model, in addition to a detailed in vivo toxicity study. Together, the results demonstrate that a biosynthesized gold nanoparticle-based drug-delivery system (b-Au-PP-Dox) could be used in the near future as an alternative cost-effective treatment strategy for cancer therapy.

  5. Sun light mediated synthesis of gold nanoparticles as carrier for 6-mercaptopurine: Preparation, characterization and toxicity studies in zebrafish embryo model

    Energy Technology Data Exchange (ETDEWEB)

    Ganeshkumar, Moorthy [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India); Sastry, Thotapalli Parvathaleswara [Bioproducts Laboratory, Central Leather Research Institute, Chennai 600020 (India); Sathish Kumar, Muniram [Department of Pharmaceutics, Anna University, Trichy, Tamilnadu (India); Dinesh, Murugan Girija [Thanthai Hansroever College, Perambalur, Tamilnadu (India); Kannappan, Sudalyandi [Central Institute of Brackish Water Aquaculture, Chennai 600028 (India); Suguna, Lonchin, E-mail: slonchin@yahoo.co.uk [Department of Biochemistry, Central Leather Research Institute, Council of Scientific and Industrial Research, Chennai 600020 (India)

    2012-09-15

    Highlights: ► Gold nanoparticles prepared using eco-friendly method with good in vitro stability. ► Can be used as drug delivery system. ► Did not show any toxicity in zebrafish embryo. ► More toxic to cancer cells when compared to N-Au-Mp and Mp. -- Abstract: The objective of this study is to synthesize green chemistry based gold nanoparticles by sun light irradiation method. The prepared gold nanoparticles (AuNPs) were modified using folic acid and then coupled with 6-mercaptopurine. These modified nanoparticles were used as a tool for targeted drug delivery to treat laryngeal cancer. In the present study, novel bionanocomposites containing nutrient agar coated gold nano particles (N-AuNPs) coupled with 6-mercaptopurine (drug) (N-AuNPs-Mp), folic acid (ligand) (N-AuNPs-Mp-Fa) and rhodamine (dye) (N-AuNPs-Rd), a fluorescent agent, were prepared and characterized by IR, UV, TEM, Particle size analysis and in vitro stability. The toxicity and fluorescence of N-Au was studied using zebrafish embryo model. The in vitro cytotoxicity of free Mp, N-Au-Mp and N-Au-Mp-Fa against HEp-2 cells was compared and found that the amount of Mp required to achieve 50% of growth of inhibition (IC{sub 50}) was much lower in N-Au-Mp-Fa than in free Mp and N-Au-Mp.

  6. Synthesis and characterization of thermoplastic polyphenoxyquinoxalines

    Science.gov (United States)

    Erdem, Haci Bayram

    This research was divided into two main parts. In the first part, a new facile route to relatively inexpensive thermoplastic polyphenoxyquinoxalines was developed. The synthetic route involves the aromatic nucleophilic substitution reaction of bisphenols with 2,3-dichloroquinoxaline. The dichloro monomer was prepared in two steps. In the first step, oxalic acid was condensed with o-phenylenediamine to give 2,3-dihydroxyquinoxaline. In the second step, 2,3-dihydroxyquinoxaline was treated with thionyl chloride to give 2,3-dichloroquinoxaline. This monomer was successfully polymerized with bisphenol-A, bisphenol-S, hexafluorobisphenol-A and 9,9-bis(4-hydroxyphenyl)fluorenone. Hydroquinone and biphenol, however, can not be polymerized to high molecular weight polymers because of the premature precipitation of crystalline oligomers. The glass transition temperatures of the high molecular weight polymers prepared from a series of bisphenols range from 191 °C to 279 °C, and their thermal decomposition temperatures are around 500 °C. The polymers are soluble in a wide range of solvents and can be solution-cast into thin films that are colorless and transparent. The polymers have tensile strengths ranging from 61 to 107 MPa, and tensile moduli ranging from 3.5 to 2.3 GPa. The synthesis of polymer obtained from 2,3-dichloroquinoxaline and bisphenol-A was scaled up to afford 500 g of material. This polymer is a thermoplastic with a melt-viscosity less than 1000 Pa.s. at 300 °C. The notched Izod impact strength of injection-molded samples of this polymer is 40.7 J/m. In the second part of this research, the synthetic method has been modified to allow the preparation of quinoxaline containing polyimides. Thus, 2,3-dichloroquinoxaline was treated either with p-nitrophenol followed by reduction of nitro groups, or with p-aminophenols to directly obtain the desired 2,3-(4-aminophenoxy)quinoxaline. This diamine was polymerized with 3,3',4,4'-biphenyldianhydride, 4

  7. Polypeptide Grafted Hyaluronan: Synthesis and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaojun [ORNL; Messman, Jamie M [ORNL; Mays, Jimmy [ORNL; Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael addition at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).

  8. Synthesis and characterization of organosoluble aromatic copolyimids

    Institute of Scientific and Technical Information of China (English)

    YANG Jintian; HUANG Wei; ZHOU Yongfeng; YAN Deyue

    2007-01-01

    A series of aromatic copolyimides was success fully synthesized from the commercial pyromellitic dianhy dride (PMDA) with a commercial diamine p-phenyldiamine (PDA) and a diamine 4,4'-methylenebis-(2-tert-butylaniline)(MBTBA) specially designed by the authors.The copoly imides were characterized by Infra-red (IR),Nuclear Magnetic Resonance (NMR),Gel Permeation Chromato graphy (GPC),Ultraviolet Visual (UV-Vis),Thermogra vimetic Analysis (TGA) and Dynamic Mechanical Analysis (DMA).The copolyimide was precipitated in m-cresol in the polymerization process when the molar ratio of MBTBA and PDA was lower than 6/4.The number-average molecular weight of the soluble copolyimides measured by GPC was larger than 4.0 x 104,and the polydispersity index was higher than 1.5.Only one glass transition temperature of these copolyimdies was detected around 360℃ by DMA.The copolyimides did not show appreciable decomposition up to 500℃ under N2,and the thermal stability of the copolyimide increased a little with the introduction of PDA into the polyimide main chain.

  9. Synthesis and characterization of hematite nanopowders

    Science.gov (United States)

    Sharmila Justus, J.; Dharma Roy, S. Dawn; Ezhil Raj, A. Moses

    2016-10-01

    A facile solution approach was employed to synthesize hematite (α-Fe2O3) nanoparticles by using starting precursor iron (III) chloride (FeCl3) and sodium hydroxide (NaOH) as reducing agent without templates at low temperature. The growth and solubility of iron oxide particle was controlled by adjusting the pH of the solution using ammonium hydroxide. As-prepared powders were subsequently calcined in air for 3 h at three different temperatures ranging from 400 to 800 °C. The precursor and the synthesized particles were characterized using TGA-DTA thermal analysis to study the decomposition pattern. X-ray diffraction (XRD) technique confirmed the nanocrystal formation of α-Fe2O3 and Fourier transform infra-red (FTIR) spectral information identified the metal-oxide phase formation. Scanning electron microscope (SEM) was engaged to study the morphology and the purity of the sample was evaluated from the energy dispersive spectrum (EDS). The optical band gap of the particles and its variations with calcination temperature (2.32-2.49 eV) was obtained from the constructed Tauc plot using the optical absorption data. The electrical parameters of the samples were obtained from two probe measuring technique and the effect of temperature on the electrical properties of α-Fe2O3 was discussed.

  10. SYNTHESIS AND CHARACTERIZATION OF A DERIVATIVE CYCLOHEXANONE CHALCONE-TYPE, AS AN INTEGRAL LABORATORY EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Perla E. Hernández-González

    2015-03-01

    Full Text Available At present, chemistry teachers are searching new models that allow integrative laboratory experiences, converging interdisciplinary knowledge of the Chemistry field. With this framework of ideas, this work describes the synthesis and characterization of the (2E,6E-2,6-bis(4-methoxybenzylidenecyclohexanone compound as axis of knowledge in order to encourage the students to develop their cognitive skills, such as critical thinking and problem solving, and also interpretation and analysis of results. The compound was synthesized by a Claisen-Schmidt condensation reaction, involving an aromatic aldehyde and cyclohexanone. The compound was characterized spectroscopically by NMR, IR and UV-Vis. Melting point and solubility tests were also performed. The chemical structure was confirmed by single crystal X-Ray diffraction. In conclusion, this laboratory experience allows students to get involved with the techniques and procedures commonly used in the organic chemistry laboratory to the synthesis and characterization of organic compounds.

  11. Synthesis and characterization of luminescence magnetic nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Kiplagat, Ayabei [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Onani, Martin O., E-mail: monani@uwc.ac.za [DST/Mintek Nanotechnology Innovation Centre, Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville (South Africa); Meyer, Mervin [DST/Mintek Nanotechnology Innovation Centre, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville (South Africa); Akenga, Teresa A. [Department of Chemistry, University of Eldoret, P.O. Box 1125, Eldoret (Kenya); Dejene, Francis B. [Department of Physics, University of the Free State, QwaQwa Campus, Private Bag X13, Phuthadithaba 9866 (South Africa)

    2016-01-01

    We report a new type of indium based quantum dots which were conjugated to the magnetic Fe{sub 2}O{sub 3} nanoparticles. They were characterized by photoluminescence (PL), high resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) and fourier transform infra-red (FTIR). The photoluminescence characteristics of the coupled and uncoupled indium based quantum dots were investigated to determine whether the fluorescing property could be retained in the bifunctional system. Generally, the PL intensity of the quantum dots was observed to reduce significantly and with huge red shift most probably due to quenching effects for the MNPs. The average size of the coupled nanoparticles were found to range between 4 and 5 nm for the quantum dots and range of 6–13 nm for the Fe{sub 2}O{sub 3} magnetic nanoparticles as revealed by both HRTEM and XRD. The highest magnetic saturation reached for both bare and functionalized magnetic nanoparticles was 68.58 emu/g. The FTIR data revealed that the postulated functional groups were actually present in both the bare and functionalized nanoparticles. For instance, Fe–O was observed at around 580 cm{sup −1}, O–H at 3432 cm{sup −1} and thiol group at 2929 cm{sup −1} for meso-2,3-dimercaptosuccinic acid capped Fe{sub 2}O{sub 3} magnetic nanoparticles. The energy dispersive spectroscopy (EDS) also confirmed that all the elements of the nanocomposite were actually present in the designed material.

  12. Synthesis, characterization, and applications of nanocomposite membranes

    Science.gov (United States)

    Kizilel, Riza

    In the present work polymer nanocomposites (PCN) derived from synthetic lithium hectorite clay (SLH) and polyethylene oxide (PEO) have been prepared and characterized for use as polymer electrolytes in lithium ion secondary batteries and as catalytic membranes for fuel cell applications. PCNs are prepared by intercalating polyethylene oxide in the clay layers of SLH. The resulting films are physically and electrochemically evaluated. In situ small-angle X-ray scattering (SAXS) studies have been conducted to monitor the structural changes of polymer nanocomposites upon heating. These nanocomposites are made of different mass ratios of PEO and SLH. On the basis of the in situ SAXS results, it was found that the polymer matrix losses its crystallinity at about 60°C and the composite is stable up to 150°C. Conductivity values, activation energies, and lithium transference numbers indicate that the PCNs are single ion conductors with transference numbers close to unity. The activation energies are in the range of 0.02 eV, two orders of magnitude higher than the conventional polymer electrolytes. A synthetic hectorite was also ion-exchanged with Pt(II) and suspended in a solution containing PEO for the fuel cell applications. The resulting membrane was subsequently reduced under H2 at 200°C for 2--3 hr. The final membrane contains Pt(0) at 2.4 wt% loading levels. XRD shows development of Pt(0) by the appearance of crystalline peaks upon reduction. A lineshape analysis using the Scherrer equation of the (220) peak shows Pt(0) particles of 3.8 nm or 7.5 nm depending upon processing conditions. These values are confirmed by TEM, and a high dispersion of the metal is evident. XRD and TGA confirm that PEO is stable to the processing conditions. In situ SAXS measurements of the reduction process were also performed. Under a reducing atmosphere, the shape of the scattering curves visually changes between 100--120°C. Analysis of the scattering curves using the general

  13. Flame synthesis and characterization of nanocrystalline titania powders

    Directory of Open Access Journals (Sweden)

    Bhaskaran Manjith Kumar

    2012-09-01

    Full Text Available Flame reactors are considered to be one of the most promising and versatile synthesis routes for the largescale production of submicron and nanosized particles. An annular co-flow type oxy-gas diffusion burner was designed for its application in a modular flame reactor for the synthesis of nanocrystalline oxide ceramics. The burner consisted of multiple ports for the individually regulated flow of a precursor vapour, inert gas, fuel gas and oxidizer. The nanopowders formed during flame synthesis in the reaction chamber were collected by a suitable set of filters. In the present study, TTIP was used as the precursor for the synthesis of nanocrystalline TiO2 and helium was used to carry the precursor vapour to the burner head. Methane and oxygen were used as fuel and oxidizer respectively. The operating conditions were varied by systematically changing the flow rates of the gases involved. The synthesized powders were characterized using standard techniques such as XRD, SEM, TEM, BET etc., in order to determine the crystallite size, phase content, morphology, particle size and degree of agglomeration. The influences of gas flow rates on the powder characteristics are discussed.

  14. Green synthesis of multi metal- citrate complexes and their characterization

    Science.gov (United States)

    Raju, Usha; Warkar, Sudhir G.; Kumar, Anil

    2017-04-01

    Four new multi metal-citrate complexes have been synthesized through green synthetic pathways. Their synthesis by hydrothermal route in the present research is decorated with features such as, a simple one pot synthesis, cost effectiveness, easy to scale up for commercial production, efficient synthesis conditions like mild temperature and shorter duration which further rules out the possibility of forming byproducts which may cause damage to the environment and being environmental benign as it eliminates the use and recovery of harmful organic solvents such as N, N- dimethyl formamide and N, N- diethyl formamide, used by the researchers in the past during the synthesis of similar metal- organic framework complexes. All four complexes are well defined crystalline materials with polynuclear multi metal-citrate framework having cubic crystal structure as indicated by their Powder X-ray Diffraction patterns. These complexes have been characterized by Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, Thermogravimetric analysis and Powder XRD techniques.

  15. Bio-mediated synthesis, characterization and cytotoxicity of gold nanoparticles.

    Science.gov (United States)

    Klekotko, Magdalena; Matczyszyn, Katarzyna; Siednienko, Jakub; Olesiak-Banska, Joanna; Pawlik, Krzysztof; Samoc, Marek

    2015-11-21

    We report here a "green" approach for the synthesis of gold nanoparticles (GNPs) in which the Mentha piperita extract was applied for the bioreduction of chloroauric acid and the stabilization of the formed nanostructures. The obtained GNPs were characterized by UV-Vis absorption spectroscopy and transmission electron microscopy (TEM). The reduction of gold ions with the plant extract leads to the production of nanoparticles with various shapes (spherical, triangular and hexagonal) and sizes (from 10 to 300 nm). The kinetics of the reaction was monitored and various conditions of the synthesis were investigated. As a result, we established protocols optimized towards the synthesis of nanospheres and nanoprisms of gold. The cytotoxic effect of the obtained gold nanoparticles was studied by performing MTT assay, which showed lower cytotoxicity of the biosynthesized GNPs compared to gold nanorods synthesized using the usual seed-mediated growth. The results suggest that the synthesis using plant extracts may be a useful method to produce gold nanostructures for various biological and medical applications.

  16. A Model gamma-Alumina-Supported Rhenium-Platinum Catalyst Prepared from [Re2Pt(CO)12]: 1. Synthesis and Spectroscopic Characterization.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Fung, A.S.; McDeVitt, M.R.; Tooley, P.A.; Kelley, M.J.; Gates, B.C.

    1993-01-01

    Catalysts supported on -Al2O3 were prepared from [Re2Pt(CO)12], and from Pt (NH3)4(NO3)2 and NH4ReO4. The former samples were characterized by infrared and X-ray photoelectron spectroscopies (XPS) and by temperature-programmed reduction (TPR); the latter were characterized by TPR. [Re2Pt(CO)12] was

  17. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  18. Lanthanide phosphonates: Synthesis, thermal stability and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Amghouz, Z., E-mail: amghouz.uo@uniovi.es [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Garcia, J.R.; Garcia-Granda, S. [Departamentos de Quimica Fisica y Analitica y Quimica Organica e Inorganica, Universidad de Oviedo - CINN, 33006 Oviedo (Spain); Clearfield, A. [Department of Chemistry, Texas A and M University, College Station, TX 77842-3012 (United States); Rodriguez Fernandez, J.; Pedro, I. de [CITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander (Spain); Blanco, J.A. [Departamento de Fisica, Universidad de Oviedo, 33007 Oviedo (Spain)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Report of the complete series of lanthanide 1,4-phenylbis(phosphonate). Black-Right-Pointing-Pointer Synthesis under conventional hydrothermal synthesis or microwave-assisted hydrothermal synthesis. Black-Right-Pointing-Pointer Cation size is the key factor for the structural and particles size variations. Black-Right-Pointing-Pointer Thermal behaviour is characterized by unusual very high thermal stability. - Abstract: Series of novel organic-inorganic hybrids materials based on trivalent lanthanides (Ln = Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and 1,4-phenylbis(phosphonate) obtained under hydrothermal conditions either by oven heat or microwave irradiation. The anhydrous compounds containing La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Ho, are isostructural. However, the compounds based on Y, Er, Tm, Yb, and Lu are hydrated and their structures have not yet been solved. The series of compounds are characterized by PXRD, TEM, SEM-EDX and thermal analyses (TG-MS and DSC). TEM study show a variable particles size with a minimum mean-particle size of ca. 30 nm. These compounds exhibit unusual very high thermal stability. The size of particles and the thermal stability are depending on lanthanide(III) cation features. All the investigated materials show paramagnetic behaviour. The magnetic susceptibility data follow a Curie-Weiss laws with paramagnetic effective moments in good agreement with those expected for Ln{sup 3+} free ions.

  19. Synthesis and Characterization of Functionalized Metal-organic Frameworks

    Science.gov (United States)

    Karagiaridi, Olga; Bury, Wojciech; Sarjeant, Amy A.; Hupp, Joseph T.; Farha, Omar K.

    2014-01-01

    Metal-organic frameworks have attracted extraordinary amounts of research attention, as they are attractive candidates for numerous industrial and technological applications. Their signature property is their ultrahigh porosity, which however imparts a series of challenges when it comes to both constructing them and working with them. Securing desired MOF chemical and physical functionality by linker/node assembly into a highly porous framework of choice can pose difficulties, as less porous and more thermodynamically stable congeners (e.g., other crystalline polymorphs, catenated analogues) are often preferentially obtained by conventional synthesis methods. Once the desired product is obtained, its characterization often requires specialized techniques that address complications potentially arising from, for example, guest-molecule loss or preferential orientation of microcrystallites. Finally, accessing the large voids inside the MOFs for use in applications that involve gases can be problematic, as frameworks may be subject to collapse during removal of solvent molecules (remnants of solvothermal synthesis). In this paper, we describe synthesis and characterization methods routinely utilized in our lab either to solve or circumvent these issues. The methods include solvent-assisted linker exchange, powder X-ray diffraction in capillaries, and materials activation (cavity evacuation) by supercritical CO2 drying. Finally, we provide a protocol for determining a suitable pressure region for applying the Brunauer-Emmett-Teller analysis to nitrogen isotherms, so as to estimate surface area of MOFs with good accuracy. PMID:25225784

  20. Synthesis and characterization of MWCNT/CdS nanocomposite

    Directory of Open Access Journals (Sweden)

    M R Khanlary

    2014-12-01

    Full Text Available In this work we report the synthesis and characterization of hybrid nanostructures of multiwall carbon nanotubes (MWCNT and cadmium sulphide (CdS nanoparticles. In a solution of thioacetamide and cadmium sulphide, purified MWCNT are added to prepare the CNT/CdS hetrostructure. XRD diagrams, SEM images, and also photoluminescence spectra of the prepared samples are analyzed. SEM images show the CdS nanoparticles of 17nm size coated on the CNTs. Visible photoluminescence with peaks at 435 nm and 535 nm, obtained from the prepared CNT/CdS, is discussed. The synthesis technique can be simply extended to other luminescent dopants, and the possibility of making optoelectronic devises based on the CNTs is confirmed by this method

  1. New Synthesis of TATB. Scaleup and Product Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.D.; Mitchell, A.R.; Lee, G.S.; Pagoria, P.F.; Coburn, M.D.; Quinlan, W.T.; Thorpe, R.; Cates, M.

    2000-03-15

    At the 29th International Annual Conference of ICT (1998), the authors described the results of laboratory-scale process development studies for a new synthesis of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). This new synthesis approach--which uses vicarious nucleophilic substitution (VNS) methodology--converts picramide to TATB in high yield, and potentially at lower cost and with few environmental effects than existing synthetic approaches. In this report they describe results of their work on producing TATB by the VNS method at the pilot plant scale. They will discuss structure and control of impurities, changes in yield/quality with reaction conditions, choice of solvents, workup and product isolation, safety, and environmental considerations. Product characterization (particle size, DSC, HPLC, etc.) as well as small-scale safety and performance testing is also discussed.

  2. Synthesis, characterizations, and applications of carbon nanotubes and silicon nanowires

    Science.gov (United States)

    Xiong, Guangyong

    Carbon nanotubes (CNTs) have received great attention because of their unique structure and promising applications in microelectronic devices such as field electron emitters. Silicon nanowires (SiNWs) are also very popular because Si is a well established electronic material. This thesis will present my effort on synthesis, characterizations, and applications of CNTs and SiNWs by thermal chemical vapor deposition (CVD) method. For CNTs growth, block copolymer micelles were used as a template to create large area arrays of metal nanoclusters as catalysts for patterned arrays, and Fe/Al/Fe sandwich film on single crystal magnesium oxide (MgO) substrate was used as the catalyst for growth of long length aligned CNTs by CVD. The factors that affect the structure and length of CNTs have been investigated. CNTs were also grown on etched Si substrate by PECVD method. Continuous dropwise condensation was achieved on a biomimetic two-tier texture with short CNTs deposited on micromachined pillars. Superhydrophobic condensation model was studied. For SiNWs growth, hydrogen gold tetrachloride was uniformly mixed into the salt and decomposed into gold nanoparticles at the growth temperature and acted as the catalyst particles to start the growth of Si nanowires. The as-grown Si nanowires are about 70--90 nm in diameter and up to 200 micrometers long. The salt was completely removed by water rinse after growth. Field emission of aligned CNTs grown on Si substrates and SiNWs on Si substrates and carbon clothes has been studied. A post growth annealing procedure has been found to drastically improve the field emission performance of these CNTs and SiNWs.

  3. Synthesis and characterization of Ti–Ta–Nb–Mn foams

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, C., E-mail: claudio.aguilar@usm.cl [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guerra, C. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Lascano, S. [Departamento de Ingeniería Mecánica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Guzman, D. [Departamento de Metalurgia, Universidad de Atacama, Av. Copayapu 485, Copiapó (Chile); Rojas, P.A. [Escuela de Ingeniería Mecánica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Av. Los Carrera, 01567 Quilpué (Chile); Thirumurugan, M. [Departamento de Ingeniería Metalúrgica y Materiales, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bejar, L.; Medina, A. [Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán (Mexico)

    2016-01-01

    The unprecedented increase in human life expectancy have produced profound changes in the prevailing patterns of disease, like the observed increased in degenerative disc diseases, which cause degradation of the bones. Ti–Nb–Ta alloys are promising materials to replace the damaged bone due to their excellent mechanical and corrosion resistance properties. In general metallic foams are widely used for medical application due to their lower elastic moduli compare to bulk materials. In this work we studied the synthesis of 34Nb–29Ta–xMn (x: 2, 4 and 6 wt.% Mn) alloy foams (50% v/v) using ammonium hydrogen carbonate as a space holder. Alloys were produced through mechanical alloying in a planetary mill for 50 h. Green compacts were obtained by applying 430 MPa pressure. To remove the space holder from the matrix the green compacts were heated to 180 °C for 1.5 h and after sintered at 1300 °C for 3 h. Foams were characterized by x-ray diffraction, scanning, transmission electron microscopy and optical microscopy. The elastic modulus of the foam was measured as ~ 30 GPa, and the values are almost equal to the values predicted using various theoretical models. - Highlights: • Metallic foams of Ti–34Nb–29Ta–xMn (x: 2, 4 and 6 wt.% Mn) alloys were synthetized. • The macro and micro pore produced have sizes smaller than 600 and 20 μm, respectively. • The macro and micro pores shows good characteristics to cell adhesion and bone ingrowth. • Elastic properties were comparable to that exhibited by cortical bone.

  4. Functional Metal Oxide Nanostructures: Their Synthesis, Characterization, and Energy Applications

    Science.gov (United States)

    Iyer, Aparna

    This research focuses on studying metal oxides (MnO 2, Co3O4, MgO, Y2O3) for various applications including water oxidation and photocatalytic oxidation, developing different synthesis methodologies, and presenting detailed characterization studies of these metal oxides. This research consists of three major parts. The first part is studying novel applications and developing a synthesis method for manganese oxide nanomaterials. Manganese oxide materials were studied for renewable energy applications by using them as catalysts for water oxidation reactions. In this study, various crystallographic forms of manganese oxides (amorphous, 2D layered, 1D 2 x 2 tunnel structures) were evaluated for water oxidation catalysis. Amorphous manganese oxides (AMO) were found to be catalytically active for chemical and photochemical water oxidation compared to cryptomelane type tunnel manganese oxides (2 x 2 tunnels; OMS2) or layered birnessite (OL-1) materials. Detailed characterization was done to establish a correlation between the properties of the manganese oxide materials and their catalytic activities in water oxidation. The gas phase photocatalytic oxidation of 2-propanol under visible light was studied using manganese oxide 2 x 2 tunnel structures (OMS-2) as catalysts (Chapter 3). The reaction is 100% selective to acetone. As suggested by the photocatalytic and characterization data, important factors for the design of active OMS-2 photocatalysts are synthesis methodology, morphology, mixed valency and the release of oxygen from the OMS-2 structure. Manganese oxide octahedral molecular sieves (2 x 2 tunnels; OMS-2) with self-assembled dense or hollow sphere morphologies were fabricated via a room temperature ultrasonic atomization assisted synthesis (Chapter 4). The properties and catalytic activities of these newly developed materials were compared with that of OMS-2 synthesized by conventional reflux route. These materials exhibit exceptionally high catalytic activities

  5. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto

    2009-01-01

    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  6. Schiff base functionalized Organopropylsilatranes: Synthesis and structural characterization

    Indian Academy of Sciences (India)

    Gurjaspreet Singh; Promila; Amandeep Saroa; Jandeep Singh; Raj Pal Sharm; V Ferretti

    2016-02-01

    Synthesis of Schiff bases linked to organopropylsilatranes were performed by condensation reaction of post-functionalized silatranes such as aminopropylsilatrane (4), aminopropyl-3,7,10-trimethylsilatrane (5) and N-substituted aminopropylsilatrane (10) with two different aldehydes viz. pyrrole-2-carboxaldehyde and 2-hydroxy-1-napthaldehyde. The resulting Schiff base substituted silatranes were well characterized by elemental analysis, spectroscopic studies [IR, (1H, 13C) NMR, and MS]. The structures of two silatranes were confirmed by single crystal X-ray diffraction analysis.

  7. Synthesis and characterization of the polyaniline dopant Schiff base

    Directory of Open Access Journals (Sweden)

    Mirian Y. Matsumoto

    2012-06-01

    Full Text Available The Schiff base, N-salicilidenoanilina was used as dopant to induce polymerization of aniline and thus preparing polyaniline (PAni. The different conditions of preparation, including Schiff base structure, and the dosage of acidity reaction medium, were investigated to discuss the influence of these conditions relative conductivity of the resulting samples. The products were also characterized by Fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, electrochemical impedance spectroscopy (EIE. The results showed the synthesis conditions play an important in the formation and the final properties of the polyaniline

  8. Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline

    Directory of Open Access Journals (Sweden)

    K. Basavaiah

    2012-01-01

    Full Text Available We report simple synthesis of boron trifluoride (BF3 doped defect free high performance polyaniline (HPPANI in two step method. Firstly, HPPANI was prepared via self-stabilization dispersion polymerization method in a heterogeneous reaction medium. Second step involves doping of emeraldine base form of HPPANI with boron trifluoride under reduced vacuum. The resultants BF3 doped HPPANI have been well characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and thermogravimetry. The spectroscopic data indicated that the interaction between HPPANI and BF3.Thermogravimetry studies revealed that the BF3 doping improved the thermal stability of defects free PANI.

  9. Synthesis and biophysical characterization of chlorambucil anticancer ether lipid prodrugs.

    Science.gov (United States)

    Pedersen, Palle J; Christensen, Mikkel S; Ruysschaert, Tristan; Linderoth, Lars; Andresen, Thomas L; Melander, Fredrik; Mouritsen, Ole G; Madsen, Robert; Clausen, Mads H

    2009-05-28

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A(2), resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A(2), with IC(50) values in the 8-36 microM range.

  10. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...... to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A2, resulting in chlorambucil release. Liposomal formulations of prodrug lipids displayed cytotoxicity toward HT-29, MT-3, and ES-2 cancer cell lines in the presence of phospholipase A2, with IC50 values in the 8-36 μM range....

  11. Controllable synthesis and characterization of alumina/MWNT nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nemeth, Zoltan; Hernadi, Klara [Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Bela ter 1, 6720 Szeged (Hungary); Marko, Kata; Erdohelyi, Andras [Department of Physical Chemistry and Material Science, University of Szeged, Aradi ter 2, 6720 Szeged (Hungary); Forro, Laszlo [Laboratory of Physics of Complex Matter, IPMC, EPFL, 1026 Ecublens (Switzerland)

    2011-11-15

    The aim of this work is to develop a controllable synthesis pathway which produces a stable alumina layer on the surface of carbon nanotubes by impregnation method. Precursor compounds such as aluminium isopropoxide and aluminium-acetyl-acetonate were used to cover the surface of multiwalled carbon nanotubes (MWNTs) under different solvent conditions. As-prepared alumina coverages were characterized by TEM, SEM, SEM-EDX, TG and X-ray diffraction techniques. Results revealed that homogeneous coverage can be achieved in a controllable way. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Texas Barrier Islands Region ecological characterization: environmental synthesis papers

    Energy Technology Data Exchange (ETDEWEB)

    Shew, D.M.; Baumann, R.H.; Fritts, T.H.; Dunn, L.S.

    1981-09-01

    This report is a synthesis of selected environmental literature for the Texas Barrier Islands Region and is a part of the Texas Barrier Islands Region Ecological Characterization Study. The Texas Barrier Islands Region is defined to include the coastal counties and extends 64 km inland and offshore to the State-Federal demarcation. These papers deal with six drainage basins along the Texas coast: Galveston, Matagorda-Brazos, San Antonio, Copano-Aransas, Corpus Christi and Laguna Madre; as well as the marine system offshore. The papers address the geology, climate, hydrology and hydrography, and the biology of each basin.

  13. SYNTHESIS AND CHARACTERIZATION OF HETEROAROMATIC POLYMERS CONTAINING PYRIDINE MOIETIES

    Institute of Scientific and Technical Information of China (English)

    LI Yanfeng; WANG Xiaolong; ZHANG Shujiang

    2006-01-01

    The progress on the molecular design, synthesis and characterizations of some kinds of pyridine-containing heteroaromatic polymers in main chain were reviewed in this paper, they would include polyimides (PIs), polypyrrolones (PPYs), poly(pyrrolone-imide)s (PPIs), and poly(pyrrolone-benzimidazone)s (PPBs) containing pyrldine moieties. The pyridine-containing polymers reported all exhibit good processability, excellent thermal properties and mechanical properties. However, the contribution of pyridine ring to polymers properties is still need to research further, the heteroarornatic polymers containing pyridine moieties have focused by more and more researchers.

  14. Synthesis and characterization of nanoscale magnetic drug-inorganic composites

    Institute of Scientific and Technical Information of China (English)

    SUN Hui; ZHANG Hui; David G. Evans; DUAN Xue

    2005-01-01

    The synthesis by direct coprecipitation and characterization of captopril (Cpl) and 5-aminosalicylic acid (5-ASA) intercalated ZnAl layered double hydroxides coated on MgFe2O4 magnetic core particles are reported. Powder XRD analysis shows the well-defined crystallite structure of the composites. TEM and XPS results reveal that a core-shell structure involving a drug-LDHs layer coated on MgFe2O4 particles is formed through Zn-O-Mg and/or Al-O-Mg linkages. VSM measurements demonstrate that the novel magnetic drug-inorganic composites possess considerable magnetization.

  15. Synthesis and characterization of metal oxide nanorod brushes

    Indian Academy of Sciences (India)

    Kalyan Raidongia; M Eswaramoorthy

    2008-02-01

    Nanorod brushes of -Al2O3, MoO3 and ZnO have been synthesized using amorphous carbon nanotube (-CNT) brushes as the starting material. The brushes of -Al2O3 and MoO3 are made up of single crystalline nanorods. In the case of ZnO brushes, the nanorod bristles are made by the fusion of 15–25 nm size nanoparticles and are porous in nature. Metal oxide nanorod brushes thus obtained have been characterized by XRD, FESEM, TEM and Raman spectroscopy. Single crystalline ruby nanorods were obtained by introducing chromium ions during the synthesis of alumina rods.

  16. Synthesis, Characterization, and Atomistic Modeling of Stabilized Highly Pyrophoric Al(BH_4)_3 via the Formation of the Hypersalt K[Al(BH_4)_4

    OpenAIRE

    Knight, Douglas A.; Zidan, Ragaiy; Lascola, Robert; Mohtadi, Rana; Ling, Chen; Sivasubramanian, PremKumar; James A. Kaduk; Hwang, Son-Jong; Samanta, Devleena; Jena, Puru

    2013-01-01

    The recent discovery of a new class of negative ions called hyperhalogens allows us to characterize this complex as belonging to a unique class of materials called hypersalts. Hyperhalogen materials are important while serving as the building blocks for the development of new materials having enhanced magnetic or oxidative properties. One prime example of a hydperhalogen is the Al(BH_4)_4^– anion. Aluminum borohydride (17 wt % H) in itself is a volatile, pyrophoric compound that has a tendenc...

  17. Oxovanadium(IV complexes of bioinorganic and medicinal relevance: Synthesis, characterization and 3D molecular modeling of some oxovanadium(IV complexes involving O, N-donor environment of salicylaldehyde-based sulfa drug Schiff bases

    Directory of Open Access Journals (Sweden)

    R.C. Maurya

    2016-11-01

    Full Text Available The present paper reports the synthesis and characterization of some new sulfa drug based Schiff base oxovanadium(IV complexes of composition, [VO(sal-sdz2(H2O]·H2O, [VO(sal-sgn2(H2O]·H2O, [VO(sal-snm(H2O]·H2O, [VO(sal-smr2(H2O]·H2O and [VO(dadps(H2O]2·2H2O, where sal-sdzH = N-(salicylidenesulfadizine, sal-sgnH = N-(salicylidenesulfaguanidine, sal-snmH = N-(salicylidenesulfanilamide, sal-smrH = N-(salicylidenesulfamerizine, sal-dadpsH2 = N,N′-bis(salicylidene-4,4′-diaminodiphenylsulfone, respectively. Complexes, (1–(4 were prepared by the reaction of VOSO4·5H2O with the Schiff bases in 1:2 metal-ligand ratio while complex (5 in 2:2 metal-ligand ratio in DMF-ethanol medium. The compounds so obtained were characterized by different physico-chemical studies, such as, elemental analysis, molar conductance and magnetic measurements, infrared, ESR, thermogravimetric studies, mass and electronic spectral studies. The overall IR studies conclude that the ligand in complex (1–(4 behave as monobasic bidentate ON donor, while the ligand in the complex (5 behaves as dibasic tetradentate O2N2 donor. The 3D-molecular modeling and analysis for bond lengths and bond angles have also been carried out for two representative compounds, [VO(sal-snm2(H2O]·H2O (3 and [VO(dadps(H2O]2·2H2O (5 to substantiate the proposed structures. Based on these studies suitable octahedral structures have been proposed for these complexes.

  18. Sol - Gel synthesis and characterization of magnesium peroxide nanoparticles

    Science.gov (United States)

    Jaison, J.; Ashok raja, C.; Balakumar, S.; Chan, Y. S.

    2015-04-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO2) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles.

  19. Methylated and thiolated arsenic species for environmental and health research - A review on synthesis and characterization.

    Science.gov (United States)

    Cullen, William R; Liu, Qingqing; Lu, Xiufen; McKnight-Whitford, Anthony; Peng, Hanyong; Popowich, Aleksandra; Yan, Xiaowen; Zhang, Qi; Fricke, Michael; Sun, Hongsui; Le, X Chris

    2016-11-01

    Hundreds of millions of people around the world are exposed to elevated concentrations of inorganic and organic arsenic compounds, increasing the risk of a wide range of health effects. Studies of the environmental fate and human health effects of arsenic require authentic arsenic compounds. We summarize here the synthesis and characterization of more than a dozen methylated and thiolated arsenic compounds that are not commercially available. We discuss the methods of synthesis for the following 14 trivalent (III) and pentavalent (V) arsenic compounds: monomethylarsonous acid (MMA(III)), dicysteinylmethyldithioarsenite (MMA(III)(Cys)2), monomethylarsonic acid (MMA(V)), monomethylmonothioarsonic acid (MMMTA(V)) or monothio-MMA(V), monomethyldithioarsonic acid (MMDTA(V)) or dithio-MMA(V), monomethyltrithioarsonate (MMTTA(V)) or trithio-MMA(V), dimethylarsinous acid (DMA(III)), dimethylarsino-glutathione (DMA(III)(SG)), dimethylarsinic acid (DMA(V)), dimethylmonothioarsinic acid (DMMTA(V)) or monothio-DMA(V), dimethyldithioarsinic acid (DMDTA(V)) or dithio-DMA(V), trimethylarsine oxide (TMAO(V)), arsenobetaine (AsB), and an arsenicin-A model compound. We have reviewed and compared the available methods, synthesized the arsenic compounds in our laboratories, and provided characterization information. On the basis of reaction yield, ease of synthesis and purification of product, safety considerations, and our experience, we recommend a method for the synthesis of each of these arsenic compounds.

  20. Synthesis and characterization of novel cellulose ether sulfates.

    Science.gov (United States)

    Rohowsky, Juta; Heise, Katja; Fischer, Steffen; Hettrich, Kay

    2016-05-20

    The synthesis and characterization of novel cellulose sulfate derivatives was reported. Various cellulose ethers were prepared in a homogeneous reaction with common sulfating agents. The received product possess different properties in dependence on the reaction conditions like sulfating agent, solvent, reaction time and reaction temperature. The cellulose ether sulfates are all soluble in water, they rheological behavior could be determined by viscosity measurements and the determination of the sulfur content by elemental analysis lead to a resulting degree of substitution ascribed to sulfate groups (DSSul) of the product. A wide range of products from DSSul 0.1 to DSSul 2.7 will be obtained. Furthermore the cellulose sulfate ethers could be characterized by Raman spectroscopy.

  1. Synthesis and characterization of polymer matrix nanocomposites and their components

    Science.gov (United States)

    Burnside, Shelly Dawn

    Herein we present synthesis schemes and characterization results for polymer matrix nanocomposite reinforced with organically modified layered silicates. These host materials with ultrafine dimensions are promising candidates for polymer and have been previously shown to yield substantial property enhancements at low silicate loadings due to their extreme geometry. Siloxane nanocomposites with a variety of nanostructures were formed. Thermal stability, solvent uptake and moduli of the nanocomposites were explores. Exfoliated nanocomposites displayed enhanced properties when compared to unreinforced siloxanes, and at lower volume fraction filler than in conventional composites. Large amounts of bound polymer, polymer affected by the silicate, were found in exfoliated nanocomposites as a result of the extreme geometry of the layered silicate. This bound polymer was related to the dramatic property enhancements in the nanocomposites. The behavior of these nanocomposites is compared to behavior expected from traditional models developed for conventional composites and model elastomeric networks. A lightly brominated polymer has been intercalated into a single crystal of organically exchanged vermiculite. The intercalation was followed using x-ray diffraction by monitoring the gallery height of the vermiculite host. Rutherford Backscattering Spectroscopy, used to confirm polymer intercalation, showed a constant bromine content in the direction normal to the layers. Atomic Force Microscopy images of a cleaved polymer-intercalated crystal showed raised hemispheres on an otherwise flat background. The hemispheres consist of single chains or aggregates of 3-40 polymer chains resulting from relaxations following cleaving. Three component or Hansen solubility parameters (delta) of organically modified layered silicates, the reinforcing agent in polymer matrix nanocomposites presented herein, have been determined. Two experimental techniques, temporal turbidimetry and

  2. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  3. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of); Rahimi-Nasrabadi, Mehdi, E-mail: rahiminasrabadi@gmail.com [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Khalilian-Shalamzari, Morteza [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of); Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh [Islamic Azad University, Varamin Pishva Branch, Varamin (Iran, Islamic Republic of); Omrani, Ismail [Department of Chemistry, Imam Hossein University, Tehran (Iran, Islamic Republic of)

    2012-12-15

    Graphical abstract: NiWO{sub 4} nanoparticles were prepared via precipitation technique. Experimental parameters of procedure were optimized statistically. Highlights: Black-Right-Pointing-Pointer NiWO{sub 4} spherical nanoparticles were synthesized via direct precipitation method. Black-Right-Pointing-Pointer Taguchi robust design was used for optimization of synthesis reaction parameters. Black-Right-Pointing-Pointer Composition and structural properties of NiWO{sub 4} nanoparticles were characterized. Black-Right-Pointing-Pointer EDAX, XRD, SEM, FT-IR, UV-vis and photoluminescence techniques were employed. Black-Right-Pointing-Pointer Catalytic activity of the product in a cyclo-addition reaction was investigated. - Abstract: Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO{sub 4} nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO{sub 4} particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO{sub 4} were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV

  4. Synthesis and characterization of five-coordinated indium amidinates

    Energy Technology Data Exchange (ETDEWEB)

    Riahi, Yasaman

    2016-07-29

    The focus of this work is synthesis, characterization and exploring the reactivity of new indium amidinate compounds of the type R{sub 2}InX (R = R''NCR'NR''; R' = Ph, R'' = SiMe{sub 3}, iPr, dipp; X = Br, Cl) with the coordination number of five and R{sub 3}In (R = Me{sub 3}SiNCPhNSiMe{sub 3}) with the coordination number of six. By using amidinates as chelating ligands the electron deficiency of indium atom will be resolved. Additionally, by using different substituents the study of the different synthesized indium amidinates has become possible. The selected method for the synthesis allows the carbodiimides to react with organolithium compounds to get the corresponding lithium amidinates. Afterwards the resulting lithium amidinates take part in transmetalation reactions with InBr{sub 3} and InCl{sub 3}. The study of the reactivity of indium amidinate complexes including nucleophilic reactions as well as their reduction were also examined. Beside crystal structure analysis, nuclear magnetic resonance spectroscopy as well as elemental analysis has been applied to characterize the compounds.

  5. Functional model of oxomolybdoenzymes: Synthesis and characterization of a molybdenum complex with sulphur and pterin ligands exhibiting saturation kinetics with pyridine N-oxide

    Indian Academy of Sciences (India)

    M D Afsar Ali; Parag S Roy

    2001-04-01

    Redox reaction between 6-acetonylisoxanthopterin (H2pte) and [MoVIO2(ssp)] [ssp = anion of 2-(salicylideneamino) benzenethiol] in CH3OH-C2H5OH medium produces a new mixed ligand compound [MoIV (ssp) (Hpte) (OCH3)] (1). It has been characterized by elemental analysis, ESMS data, UV-Vis, IR, 1H NMR (1D and 2D) spectroscopy and cyclic voltammetry. Kinetics of formation of this compound as well as that of its reaction with pyridine N-oxide have been followed spectrophotometrically. Both the reactions follow substrate saturation kinetics and involve metal-centred oxygen atom transfer process. Large negative values of entropy of activation indicate the operation of associative mechanism.

  6. Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMn(III) complex modeling the active site in catalase.

    Science.gov (United States)

    Palopoli, Claudia; Duhayon, Carine; Tuchagues, Jean-Pierre; Signorella, Sandra

    2014-12-07

    A new diMn(III) complex, Na[Mn2(5-SO3-salpentO)(μ-OAc)(μ-OMe)(H2O)]·4H2O, where 5-SO3-salpentOH = 1,5-bis(5-sulphonatosalicylidenamino)pentan-3-ol, has been prepared and characterized. ESI-mass spectrometry, paramagnetic (1)H NMR, EPR and UV-visible spectroscopic studies on freshly prepared solutions of the complex in methanol and 9 : 1 methanol-water mixtures showed that the compound retains the triply bridged bis(μ-alkoxo)(μ-acetato)Mn2(3+) core in solution. In the 9 : 1 methanol-water mixture, slow substitution of acetate by water molecules took place, and after one month, the doubly bridged diMn(III) complex, [Mn2(5-SO3-salpentO)(μ-OMe)(H2O)3]·5H2O, formed and could be characterized by X-ray diffraction analysis. In methanolic or aqueous basic media, acetate shifts from a bridging to a terminal coordination mode, affording the highly stable [Mn2(5-SO3-salpentO)(μ-OMe)(OAc)](-) anion. The efficiency of the complex in disproportionating H2O2 depends on the solvent and correlates with the stability of the complex (towards metal dissociation) in each medium: basic buffer > aqueous base > water. The buffer preserves the integrity of the catalyst and the rate of O2 evolution remains essentially constant after successive additions of excess of H2O2. Turnovers as high as 3000 mol H2O2 per mol of catalyst, without significant decomposition and with an efficiency of k(cat)/K(M) = 1028 M(-1) s(-1), were measured for the complex in aqueous buffers of pH 11. Kinetic and spectroscopic results suggest a catalytic cycle that runs between Mn(III)2 and Mn(IV)2 oxidation states, which is consistent with the low redox potential observed for the Mn(III)2/Mn(III)Mn(IV) couple of the catalyst in basic medium.

  7. Statistical and Energetic Constraints in Population Synthesis Models

    CERN Document Server

    Buzzoni, A

    1998-01-01

    Physical and numerical constraints in building up self-consistent population synthesis models are briefly analysed discussing their application to most of the current synthesis codes widely adopted in Galactic and extragalactic studies.

  8. Synthesis, spectral characterization, molecular modeling, biological activity and potentiometric studies of 4-amino-5-mercapto-3-methyl-S-triazole Schiff's base complexes

    Science.gov (United States)

    Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Alharbi, Suliman A.

    2015-03-01

    The Schiff's base derived from condensation of s-triazole (4-amino-5-mercapto-3-methyl-S-triazole) with pyridine-2-aldehyde and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR, mass), magnetic moment and thermal measurements. The IR spectral data suggest that the ligand coordinate in a tridentate manner (SNN) via the one thiol (SH), one pyridine ring and the azomethine (Cdbnd N) groups. The data show that the complexes have composition of ML2 type. The activation of thermodynamic parameters are calculated using Coats-Redfern, Horowitz-Metzger (HM), and Piloyan-Novikova (PN). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations and ligand field parameters. Protonation constants of Schiff base and stability constants of their binary metal complexes have been determined potentiometrically in 50% DMSO-water media at 25 °C and ionic strength 0.10 M potassium nitrate. The biological activity of these compounds against various fungi has been investigated.

  9. Synthesis, Characterization and Thermal Decomposition Mechanism of Cetyltrimethyl Ammonium Tetrathiotungstate

    Institute of Scientific and Technical Information of China (English)

    Gaojun An; Yunqi Liu; Yongming Chai; Hongyan Shang; Chenguang Liu

    2006-01-01

    The synthesis, characterization and thermal decomposition mechanism of cetyltrimethyl ammonium tetrathiotungstate (CTriMATT) were studied herein. The as-synthesized CTriMATT was characterized by Elemental analysis, X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Ultraviolet visible (UV-Vis) spectra. The results showed that the as-synthesized CTriMATT had high purity and good crystallinity. The introduction of alkyl groups induced a shift of the stretching vibration band of W-S bond to lower wavenumber, while it had no influence on the position of WS2-4. Thermogravimetric analysis (TG), differential thermal analysis (DTA) and in situ XRD characterizations revealed that CTriMATT began to decompose at 423 K in nitrogen and was converted to WS2 eventually. In addition,the decomposition product of CTriMATT at 673 K in nitrogen was characterized by N2 adsorption (BET)and scanning electron microscopy (SEM). The results demonstrated that WS2 with higher specific surface area, and pore volume could be obtained from the thermal decomposition of CTriMATT in nitrogen.

  10. On the synthesis of the pilot optimal control model

    Directory of Open Access Journals (Sweden)

    Adrian TOADER

    2011-09-01

    Full Text Available The study continues some work of the authors, this time performing a synthesis of optimal control model of the human pilot in systems with input delay, by removing the Padé or Hess approximations characterizing the pilot structural central nervous block and their introduction as a pure delay block. On the one hand, the method ensures a better accuracy of synthesis and on the other hand is advantageous with respect to general results to date for time delay systems since: a the optimal control law is given explicitly and b the Riccati equations for the gain matrices do not contain any time advanced or delayed arguments. The approach is stimulated by recent works of M. Basin and his collaborators.

  11. Modeling protein synthesis from a physicist's perspective: a toy model

    CERN Document Server

    Basu, A; Basu, Aakash; Chowdhury, Debashish

    2007-01-01

    Proteins are polymers of amino acids. These macromolecules are synthesized by intracellular machines called {\\it ribosome}. Although, traditionally, the experimental investigation of protein synthesis has been an active area of research in molecular cell biology, important quantitative models of this phenomenon have been reported mostly in the research journals devoted to statistical physics and related interdisciplinary topics. From the perspective of a physicist, protein synthesis is a phenomenon of {\\it classical transport of interacting ribosomes on a messenger RNA (mRNA) template} that dictates the sequence of the amino acids on the protein. Here we bring this frontier area of contemporary research into the classroom by appropriate simplification of the models and methods. In particular, we develope a simple toy model and analyze it by some elementary techniques of non-equilibrium statistical mechanics to predict the average rate of protein synthesis and their spatial organization in the steady-state.

  12. Synthesis, characterization, molecular modeling and biological activity of metal complexes derived from (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide

    Science.gov (United States)

    El-Samanody, El-Sayed A.; Emam, Sanaa M.; Emara, Esam M.

    2017-10-01

    A new series of some biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes was synthesized from the novel thiosemicarbazone ligand; (E)-N'-(furan-2-ylmethylene)morpholine-4-carbothiohydrazide (HL). Elemental, spectral, thermal analyses, magnetic susceptibility and molar conductivity measurements were used to elucidate the structure of separated compounds. The data prove that the ligand reacts with all metal ions in a neutral thione form. The electrolytic tetra-coordinate Cu(II); Zn(II) complexes (5, 6; 10) bind through the thione sulfur, furfural oxygen and azomethine nitrogen atoms of the ligand (NSO type) to construct fused five membered rings. However, the rest non-electrolyte octahedral complexes chelate via the furfural oxygen and azomethine nitrogen atoms of the ligand (NO type). Molecular modeling was conducted for the ligand and two representative complexes (1, 5) in order to substantiate their chemical structures. Thermal analyses are compatible with molecular modeling studies to support the proposed thermal decomposition pathways of metal complexes which start with the rupture of the long and weak N-NH bond. The thermal stability of metal complexes varies according to the number of solvents of crystallization, ionic radii and steric effect of anions. The ESR spectra of Cu(II) complexes are compatible with a primarily (dx2-y2)1 ground state with axial symmetry. The ligand and its Co(II); Cu(II); Cd(II) complexes (1; 5, 8; 11) along with their mixtures with metaldehyde were screened in vitro for their molluscicidal activity against Eobania vermiculata. Combination with metaldehyde enhances the toxicity effect of the tested compounds through reducing the period required for mortality and increasing the percentage of mortality after 24 h of treatments. The tested compounds gathered with metaldehyde are strongly affecting on the activity of ACP and ALP enzymes and TP content which are very important factors in the mucous secretion of Eobania

  13. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    Science.gov (United States)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  14. Characterization and sonochemical synthesis of black phosphorus from red phosphorus

    Science.gov (United States)

    Aldave, Sandra H.; Yogeesh, Maruthi N.; Zhu, Weinan; Kim, Joonseok; Sonde, Sushant S.; Nayak, Avinash P.; Akinwande, Deji

    2016-03-01

    Phosphorene is a new two-dimensional material which is commonly prepared by exfoliation from black phosphorus bulk crystals that historically have been synthesized from white phosphorus under high-pressure conditions. The few layers of phosphorene have a direct band gap in the range of 0.3-2 eV and high mobility at room temperature comparable to epitaxial graphene. These characteristics can be used for the design of high speed digital circuits, radio frequency circuits, flexible and printed systems, and optoelectronic devices. In this work, we synthesized black phosphorus from red phosphorus, which is a safer solid precursor, using sonochemistry. Furthermore, via a variety of microscopy and spectroscopy techniques, we report characterization results of the sonochemically synthesized black phosphorus in addition to the commercial black phosphorus. Finally, we describe the air stability of black phosphors and the crystalline structure of the synthesized material. This is the first result of sonochemical or solution-based synthesis of black phosphorus based on readily available low-cost red phosphorus. This solution-based synthesis of black phosphorus is suitable for printable applications of nanomaterial.

  15. Synthesis, structure characterization and catalytic activity of nickel tungstate nanoparticles

    Science.gov (United States)

    Pourmortazavi, Seied Mahdi; Rahimi-Nasrabadi, Mehdi; Khalilian-Shalamzari, Morteza; Zahedi, Mir Mahdi; Hajimirsadeghi, Seiedeh Somayyeh; Omrani, Ismail

    2012-12-01

    Taguchi robust design was applied to optimize experimental parameters for controllable, simple and fast synthesis of nickel tungstate nanoparticles. NiWO4 nanoparticles were synthesized by precipitation reaction involving addition of nickel ion solution to the tungstate aqueous reagent and then formation of nickel tungstate nucleolus which are insoluble in aqueous media. Effects of various parameters such as nickel and tungstate concentrations, flow rate of reagent addition and reactor temperature on diameter of synthesized nickel tungstate nanoparticles were investigated experimentally by the aid of orthogonal array design. The results for analysis of variance (ANOVA) showed that particle size of nickel tungstate can be effectively tuned by controlling significant variables involving nickel and tungstate concentrations and flow rate; while, temperature of the reactor has a no considerable effect on the size of NiWO4 particles. The ANOVA results proposed the optimum conditions for synthesis of nickel tungstate nanoparticles via this technique. Also, under optimum condition nanoparticles of NiWO4 were prepared and their structure and chemical composition were characterized by means of EDAX, XRD, SEM, FT-IR spectroscopy, UV-vis spectroscopy, and photoluminescence. Finally, catalytic activity of the nanoparticles in a cycloaddition reaction was examined.

  16. Synthesis and characterization of related substances of Azilsartan Kamedoxomil

    Directory of Open Access Journals (Sweden)

    Maddi N. V. D. Harikiran

    2017-03-01

    Full Text Available Azilsartan Kamedoxomil is an AT1-subtype angiotensin II receptor blocker (ARB. During the laboratory synthesis of Azilsartan Kamedoxomil, four related substances of Azilsartan Kamedoxomil were observed and identified. These were 2-Ethoxy-3-[[4-[2- [4-[(5-methyl-2-oxo-1,3-dioxol-4-ylmethyl]-5-oxo-1,2,4-oxadiazol-3-yl]phenyl]phenyl] methyl] benzimidazole-4-carboxylic acid (azilsartan N-medoxomil, 9, (5-methyl-2-oxo- 1,3-dioxol-4-ylmethyl 2-ethoxy-3-[[4-[2-[4-[(5-methyl-2-oxo-1,3-dioxol-4-ylmethyl]-5- oxo-1,2,4-oxadiazol-3-yl]phenyl]phenyl] methyl] benzimidazole-4-carboxylate (azilsartan dimedoxomil, 10, (5-methyl-2-oxo-1,3-dioxo-4-ylmethyl 1-[2’-(4,5-dihydro-5-oxo-4H- 1,2,4-oxadiazol-3-ylbiphenyl-4-yl]methyl]-2-methoxy-1H-benzimidazole-7-carboxylate (methoxy analogue of azilsartan medoxomil, 11, Methyl 1-((2’-amidobiphenyl-4-yl methyl-2-ethoxy-1H-benzo[d]imidazole-7-carboxylate (amide methyl ester, 12. The present work describes the origin, synthesis and characterization of these related substances.

  17. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    Directory of Open Access Journals (Sweden)

    Usman MS

    2013-11-01

    Full Text Available Muhammad Sani Usman,1 Mohamed Ezzat El Zowalaty,2,5 Kamyar Shameli,1,3 Norhazlin Zainuddin,1 Mohamed Salama,4 Nor Azowa Ibrahim1 1Department of Chemistry, Faculty of Science, 2Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia; 3Materials and Energy, Research Center, Karaj, Iran; 4Faculty of Pharmacy, UiTM, Puncak Alam, Selangor, Malaysia; 5Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia Abstract: Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. Keywords: chitosan, copper nanoparticles, antimicrobial activity, chemical synthesis, aqueous medium

  18. Aqueous combustion synthesis and characterization of zirconia-alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Kishan, J.; Mangam, Venu; Reddy, B.S.B.; Das, Siddhartha [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Das, Karabi, E-mail: karabi@metal.iitkgp.ernet.i [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2010-02-04

    The zirconia-alumina nanocomposite powders with 3-48 mol% of alumina are prepared by aqueous combustion synthesis technique using stoichiometric amounts of aluminium nitrate, zirconyl nitrate and glycine. The nanopowders are compacted uniaxially and sintered at 1000 {sup o}C temperature in a muffle furnace. Thermodynamic modeling of the combustion reaction shows that, as the alumina content increases, the amount of gases produced increases with a decrease in the adiabatic flame temperature. The green and sintered densities of cold press composite powders decrease with an increase in the mol% of alumina.

  19. Synthesis and characterization of oxovanadium (IV) dithiocarbamates with pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Doadrio, Antonio L.; Sotelo, Jose; Fernandez-Ruano, Ana [Universidad Complutense, Madrid (Spain). Facultad de Farmacia. Dept. de Quimica Inorganica y Bioinorganica]. E-mail: antoniov@farm.ucm.es

    2002-07-01

    We report the synthesis and study of a new series of oxovanadium (IV) dithiocarbamate adducts and derivatives with pyridine and cyclohexyl, di-iso-butyl, di-n-propyl, aniline, morpholine, piperidine and di-iso-propyl amines. The complexes have been characterized by analytical, magneto chemical, IR, visible-UV spectral and thermal studies, and are assigned the formulas [VO(L){sub 2}].py, where L=cyclohexyl, di-iso-butyl, di-n-propyl, aniline dithiocarbamate and [VO(OH)(L)(py){sub 2}] OH.H{sub 2}O (L=morpholine, piperidine and di-iso-propyl dithiocarbamate). The effect of the adduct formation on the p{sub V=0} bound is discussed in terms of the IR (V=O, V-S and V-N stretching frequencies) and electronic spectra (d-d transitions). (author)

  20. SYNTHESIS AND CHARACTERIZATION OF N-(1-NAPHTHYL) SUCCINIMIDE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper a modified two-step procedure for synthesis of N-(1-naphthyl) succinimide (NaS) was developed, and the molecular structure of NaS was properly characterized by XRD, FT-IR, 1H NMR, DSC, etc. The results show that the melting point of our product is 159℃~160.5 ℃, and the characteristic infrared absorption band of carbonyl group splits into two peaks (1705cm-1/1779cm-1), which are found to be quite different from the documented data (mp 147℃~149℃;IR C=O,~1700cm-1). Besides, photophysical spectroscopy was found to be powerful to study the molecular structure and crystal morphology of NaS compound.

  1. Synthesis and characterization of carbon cryogel/zeolite composites

    Directory of Open Access Journals (Sweden)

    Biljana Babić

    2011-06-01

    Full Text Available A novel method for synthesis of carbon cryogel/zeolite composites was obtained. Method considers forming of carbon cryogel from the sol-gel polycondenzation of resorcinol and formaldehyde, followed by freeze drying, and subsequent pyrolysis in presence of different amount of zeolite. Characterization of composite materials by nitrogen adsorption shows that samples are micro- and mesoporous and that specific surface area decrease with increasing the amount of zeolite in samples. XRD method confirms amorphous structure of carbon cryogel and crystalline structure of zeolite, i.e. structure of zeolite has not been destroyed by carbonization process. SEM and EDX analyses reveal homogenous distribution of zeolite through out carbon cryogel and corresponding composition.

  2. Synthesis and Spectroscopic Characterization of Two Tetrasubstituted Cationic Porphyrin Derivatives

    Directory of Open Access Journals (Sweden)

    Newton M. Barbosa Neto

    2011-07-01

    Full Text Available An imidazolium tetrasubstituted cationic porphyrin derivative (the free base and its Zn(II complex with five-membered heterocyclic groups in the meso-positions were synthesized using microwave irradiation, and the compounds obtained characterized by 1H-NMR and mass spectrometry. We observed that under microwave irradiation the yield is similar to when the synthesis is performed under conventional heating, however, the time required to prepare the porphyrins decreases enormously. In order to investigate the electronic state of these compounds, we employed UV-Vis and fluorescence spectroscopy combined with quantum chemical calculations. The results reveal the presence, in both compounds, of a large number of electronic states involving the association between the Soret and a blue-shifted band. The Soret band in both compounds also shows a considerable solvent dependence. As for emission, these compounds present low quantum yield at room temperature and no solvent influence on the fluorescence spectra was observed.

  3. Synthesis, characterization, and antimicrobial properties of copper nanoparticles

    Science.gov (United States)

    Usman, Muhammad Sani; Zowalaty, Mohamed Ezzat El; Shameli, Kamyar; Zainuddin, Norhazlin; Salama, Mohamed; Ibrahim, Nor Azowa

    2013-01-01

    Copper nanoparticle synthesis has been gaining attention due to its availability. However, factors such as agglomeration and rapid oxidation have made it a difficult research area. In the present work, pure copper nanoparticles were prepared in the presence of a chitosan stabilizer through chemical means. The purity of the nanoparticles was authenticated using different characterization techniques, including ultraviolet visible spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The antibacterial as well as antifungal activity of the nanoparticles were investigated using several microorganisms of interest, including methicillin-resistant Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella choleraesuis, and Candida albicans. The effect of a chitosan medium on growth of the microorganism was studied, and this was found to influence growth rate. The size of the copper nanoparticles obtained was in the range of 2–350 nm, depending on the concentration of the chitosan stabilizer. PMID:24293998

  4. Synthesis, characterization and application of soluble fullerenat ed polymer materials

    Institute of Scientific and Technical Information of China (English)

    CHEN, Yu; CAI, Rui-Fang; HUANG, Zu-En; WANG, Jing-Xia

    2000-01-01

    This article only deals with the topic of intense interest to us and to a considerable extent of our own experimental results on the synthesis, characterization and application of C60-con taining functional polymers such as poly (N-vinylcarbazole), polyrene and polyacrylonitrne-based fullerene polymers. The results demonstrate that [60] fullerene can be directly in corporated into a variety of functional polymers by copolymer ization or grafting, but also can be used to modify or improve the electronic, optiical and physicochemical properties of poly mers. Both the stereo-electroniceffect and the steric hindrance of C60 have an important influence on the structu-e and physicochemical properties of the parent polymer.

  5. Synthesis, Characterization, and Thermokinetic Analysis of New Epoxy Sugar Derivative

    Directory of Open Access Journals (Sweden)

    Selinay Y. Erişkin

    2014-01-01

    Full Text Available The synthesis of 5,6-O-isopropylidene-1,2-O-(R-trichloroethylidene-α-D-glucofuranose (compound 1 and 5,6-O-isopropylidene-1,2-O-(R-trichloroethylidene-3-O-(2′,3′-epoxypropan-1′-yl-α-D-glucofuranose (compound 2 was carried out. The synthesized compounds 1 and 2 were characterized by nuclear magnetic resonance (1H-NMR, Fourier transform infrared spectroscopy (FTIR, and thermogravimetric analysis (TG. The FTIR and 1H NMR spectra showed that the epoxy group in compound 2 was attached by means of a nucleophilic substitution reaction. The activation energies for thermal degradation of compounds 1 and 2 were calculated from their TG data by using the Kissinger-Akahira-Sunose (KAS and Tang methods.

  6. Synthesis and characterization of yttrium aluminium garnet (YAG powders

    Directory of Open Access Journals (Sweden)

    Magdalena Zarzecka-Napierala

    2007-12-01

    Full Text Available In this paper synthesis and characterization of YAG powders, prepared by a process based on complexing properties of citric acid, was reported. Influence of citric acid estrification induced by 2-propanol or ethylene glycol on the system homogeneity was investigated. These reagents were introduced to aqueous solution of yttrium and aluminium nitrates. A variety of powders from Al2O3-Y2O3 system with different phase composition were obtained by altering the citrate to nitrate ratio. Evolution of the powders phase composition vs. temperature was investigated using DTA/TG, XRD, and FT-IR methods. The most interesting results were observed in case of the citric acid–propanol–relative nitrates system. The mole ratio of these reagents equal to 1:2.5:2.5 (nitrates (Al,Y:citric acid:2-propanol allowed to synthesize pure YAG phase powders at temperature as low as 950°C.

  7. Synthesis and characterization of oxovanadium (IV dithiocarbamates with pyridine

    Directory of Open Access Journals (Sweden)

    Antonio L. Doadrio

    2002-07-01

    Full Text Available We report the synthesis and study of a new series of oxovanadium (IV dithiocarbamate adducts and derivatives with pyridine and cyclohexyl, di-iso-butyl, di-n-propyl, anilin, morpholin, piperidin and di-iso-propyl amines. The complexes have been characterized by analytical, magnetochemical, IR, visible-UV spectral and thermal studies, and are assigned the formulas [VO(L2].py, where L=cyclohexyl, di-iso-butyl, di-n-propyl, anilin dithiocarbamate and [VO(OH(L(py2]OH.H2O (L=morpholin, piperidin and di-iso-propyl dithiocarbamate. The effect of the adduct formation on the pV=0 bound is discussed in terms of the IR (V=O, V-S and V-N stretching frequencies and electronic spectra (d-d transitions.

  8. Synthesis and Characterization of Compatibilizer TLCP-b-PC

    Institute of Scientific and Technical Information of China (English)

    XIAO Ru; JIN Shu-wen; ZHANG Yue-ting; WU Cheng-xun

    2002-01-01

    The compatibilizer (TLCP-b-PC) of 60PHB/PET thermotropic liquid crystal polymer (TLCP) and polycarbonate (PC) blend system was prepared. The synthesis and characterization of the compatibilizer as well as its effects on the microscopic morphology and the mechanical properties of the TLCP/PC blend system were studied with a series of analysis ways, such as Soxhlet extraction, infrared absorption spectroscopy,electron microscopy, etc. It is shown that the ideal reaction condition for preparing the compatibilizer is:the reaction temperature of 275℃, the reaction time of 20minutes and without catalyst. And the compatibilizer can improve the compatibility of the blending system of 60PHB/PET and PC.

  9. SYNTHESIS AND CHARACTERIZATION OF N-(1-NAPHTHYL) SUCCINIMIDE

    Institute of Scientific and Technical Information of China (English)

    LI Hexian; YANG Hailong; LIU Kun; WANG Ying; YUAN Jialong; WANG Guochang

    2007-01-01

    In this paper a modified two-step procedure for synthesis of N-(1-naphthyl) succinimide (NaS) was developed, and the molecular structure of NaS was properly characterized by XRD, FT-IR,1H NMR, DSC, etc. The results show that the melting point of our product is 159 ℃~160.5 ℃, and the characteristic infrared absorption band of carbonyl group splits into two peaks (1705cm-1/1779cm-1),which are found to be quite different from the documented data (mp 147 ℃~149 ℃; IR C=O,~1700cm-1 ). Besides, photophysical spectroscopy was found to be powerful to study the molecular structure and crystal morphology of NaS compound.

  10. Antibacterial gold nanoparticles-biomass assisted synthesis and characterization.

    Science.gov (United States)

    Badwaik, Vivek D; Willis, Chad B; Pender, Dillon S; Paripelly, Rammohan; Shah, Monic; Kherde, Yogesh A; Vangala, Lakshmisri M; Gonzalez, Matthew S; Dakshinamurthy, Rajalingam

    2013-10-01

    Xylose is a natural monosaccharide found in biomass such as straw, pecan shells, cottonseed hulls, and corncobs. Using this monosaccharide, we report the facile, green synthesis and characterization of stable xylose encapsulated gold nanoparticles (Xyl-GNPs) with potent antibacterial activity. Xyl-GNPs were synthesized using the reduction property of xylose in an aqueous solution containing choloraurate anions carried out at room temperature and atmospheric pressure. These nanoparticles were stable and near spherical in shape with an average diameter of 15 +/- 5 nm. Microbiological assay results showed the concentration dependent antibacterial activity of these particles against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus epidermidis) bacteria. Thus the facile, environmentally friendly Xyl-GNPs have many potential applications in chemical and biomedical industries, particularly in the development of antibacterial agents in the field of biomedicine.

  11. Optimization of amine-terminated polyacrylonitrile synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2014-04-01

    Full Text Available Amine-terminated PANs were prepared in two steps. The first step includes free radical polymerization of acrylonitrile (AN using initiator pair of ammonium persulfate and sodium thiosulfate as redox system. In the second step, the amino groups were introduced through the reaction of polyacrylonitrile with excess of different diamines (10-fold including ethylenediamine (EDA, hexamethylenediamine (HMDA and octamethylenediamine (OMDA, to yield PAN–EDA, PAN–HMDA and PAN–OMDA, respectively. Optimization of the amine-terminated PANs synthesis was carried out at different temperatures (30–90 °C and different time intervals (4–24 h. In addition, the introduction of the amino group was followed by the piperidine test and recording of the FT-IR spectra. All polymers were characterized by, 1H NMR spectra, thermogravimetric analysis (TGA, and FT-IR spectra.

  12. Single step synthesis and characterization of thermoresponsive hyaluronan hydrogels.

    Science.gov (United States)

    D'Este, Matteo; Alini, Mauro; Eglin, David

    2012-10-15

    An efficient and scale-up ready single-step synthesis for the conjugation of thermoresponsive polymers to hyaluronic acid (HA) was established. Jeffamines(®) (JFM) and poly(N-isopropylacrylamide) (PNIPAM) were grafted to HA via direct amidation mediated by 1,1'-carbonyldiimidazole activation. The temperature-induced gelation of the semi-synthetic co-polymers was characterized by rheology as a function of the temperature and by differential scanning calorimetry (DSC). A HA-JFM conjugate with sol-gel transition in a physiologically relevant temperature range was identified. The grafting of PNIPAM resulted in the drastic change of the main rheological properties of native HA, revealing the hydrophobic non-covalent nature of the interactions between the thermoresponsive brushes in the gel state. Owing to the reversibility of these interactions and the sharpness of the transition, the HA-PNIPAM conjugates are suitable candidates for the incorporation of drugs, cells or ceramic materials for different biomedical applications.

  13. Hexamethylenetetramine carboxyborane: synthesis, structural characterization and CO releasing properties.

    Science.gov (United States)

    Ayudhya, T I; Raymond, C C; Dingra, N N

    2017-01-17

    Carbon monoxide, although widely known as a toxic gas, has received great attention in the past few decades due to its promising role as a medical gas. Several classes of carbon monoxide releasing molecules (CORMs) have been synthesised with many of them having pharmacological activities under physiological conditions. Herein, we report the synthesis and structural characterization of the first example of amine carboxyborane that releases CO under physiological conditions without the aid of inducers. A representative compound hexamethylenetetramine carboxyborane (HMTA-CB) described here has a half-life of 2.7 days and gradually releases CO with the rate constant of 3.0 × 10(-6) s(-1). Its ability to promote cell growth shows the beneficial effect of slow CO release to supplement CO in small amounts over time.

  14. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Hamza, A V; Lesuer, D R

    2006-01-03

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  15. Synthesis and characterization of new ionic liquids; Sintese e caracterizacao de novos liquidos ionicos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S., E-mail: luanaufrn@hotmail.co [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Iglesias, M. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Programa de Pos-Graduacao em Engenharia Quimica; Universidad de Santiago de Compostela (Spain). Escuela Tecnica Superior de Ingenieria. Dept. de Ingenieria Quimica

    2010-07-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  16. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization

    Science.gov (United States)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  17. Modeling and characterization of multiple coupled lines

    Science.gov (United States)

    Tripathi, Alok

    1999-10-01

    A configuration-oriented circuit model for multiple coupled lines in an inhomogeneous medium is developed and presented in this thesis. This circuit model consists of a network of uncoupled transmission lines and is readily modeled with simulation tools like LIBRA© and SPICE ©. It provides an equivalent circuit representation which is simple and topologically meaningful as compared to the model based on modal decomposition. The configuration-oriented model is derived by decomposing the immittance matrices associated with an n coupled line 2n-port system. Time- and frequency- domain simulations of typical coupled line multiports are included to exemplify the utility of the model. The model is useful for the simulation and design of general single and multilayer coupled line components, such as filters and couplers, and for the investigation of signal integrity issues including crosstalk in interconnects associated with high speed digital and mixed signal electronic modules and packages. It is shown that multiconductor lossless structures in an inhomogeneous medium can be characterized by multiport time-domain reflection (MR) measurements. A synthesis technique of an equivalent lossless (non-dispersive) uniform multiconductor n coupled lines (UMCL) 2n-port system from the measured discrete time-domain reflection response is presented. This procedure is based on the decomposition of the characteristic immittance matrices of the UMCL in terms of partial mode immittance matrices. The decomposition scheme leads to the discrete transition matrix function of a UMCL 2n-port system. This in turn establishes a relationship between the normal-mode parameters of the UMCL and the measured impulse reflection and transmission response. Equivalence between the synthesis procedure presented in this thesis and the solution of a special form of an algebraic Riccati matrix equation whose solution can lead to the normal-mode parameters and a real termination network is illustrated. In

  18. Modeling and synthesis of strong ground motion

    Indian Academy of Sciences (India)

    S T G Raghu Kanth

    2008-11-01

    Success of earthquake resistant design practices critically depends on how accurately the future ground motion can be determined at a desired site. But very limited recorded data are available about ground motion in India for engineers to rely upon. To identify the needs of engineers, under such circumstances, in estimating ground motion time histories, this article presents a detailed review of literature on modeling and synthesis of strong ground motion data. In particular, modeling of seismic sources and earth medium, analytical and empirical Green’s functions approaches for ground motion simulation, stochastic models for strong motion and ground motion relations are covered. These models can be used to generate realistic near-field and far-field ground motion in regions lacking strong motion data. Numerical examples are shown for illustration by taking Kutch earthquake-2001 as a case study.

  19. Gold complexes with benzimidazole derivatives: synthesis, characterization and biological studies.

    Science.gov (United States)

    Mota, Vinicius Zamprogno; de Carvalho, Gustavo Senra Gonçalves; da Silva, Adilson David; Costa, Luiz Antônio Sodré; de Almeida Machado, Patrícia; Coimbra, Elaine Soares; Ferreira, Carmen Veríssima; Shishido, Silvia Mika; Cuin, Alexandre

    2014-02-01

    Synthesis, characterization, DFT studies and biological assays of new gold(I) and gold(III) complexes of benzimidazole are reported. Molecular and structural characterizations of the compounds were based on elemental (C, H and N) and thermal (TG-DTA) analyses, and FT-IR and UV-Visible spectroscopic measurements. The structures of complexes were proposed based DFT calculations. The benzimidazole compounds (Lig1 and Lig2) and the gold complexes were tested against three Leishmania species related to cutaneous manifestations of leishmaniasis. The free benzimidazole compounds showed no leishmanicidal activity. On the other hand, the gold(I and III) complexes have shown to possess significant activity against Leishmania in both stages of parasite, and the gold(III) complex with Lig2 exhibited expressive leishmanicidal activity with IC50 values below 5.7 μM. Also, the gold complexes showed high leishmania selectivity. The gold(I) complex with Lig1, for example, is almost 50 times more toxic for the parasite than for macrophages. Besides the leishmanicidal activity, all complexes exhibited toxic effect against SK-Mel 103 and Balb/c 3T3, cancer cells.

  20. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Michael Z. [ORNL; Lai, Peng [University of Cincinnati; Bhuiyan, Md S [ORNL; Tsouris, Costas [ORNL; Gu, Baohua [ORNL; Paranthaman, Mariappan Parans [ORNL; Gabitto, Jorge [Prairie View A& M University; Harrison, L. D. [Prairie View A& M University

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  1. Gamma radiation-induced synthesis and characterization of Polyvinylpyrrolidone nanogels

    Science.gov (United States)

    Ges, A. A.; Viltres, H.; Borja, R.; Rapado, M.; Aguilera, Y.

    2017-01-01

    Due to the importance of bioactive peptides, proteins and drug for pharmaceutical purpose, there is a growing interest for suitable delivery systems, able to increase their bioavailability and to target them to the desired location. Some of the most studied delivery systems involve encapsulation or entrapment of drugs into biocompatible polymeric devices. A multitude of techniques have been described for the synthesis of nanomaterials from polymers, however, the use of ionizing radiation (γ, e-), to obtain nano- and microgels polymer is characterized by the possibility of obtaining products with a high degree of purity. Although, in the world, electronic radiation is used for this purpose, gamma radiation has not been utilized for these purposes. In this paper is developed the formulation the formulation of Polyvinylpyrrolidone (PVP) nanogels synthesized by gamma radiation techniques, for their evaluation as potential system of drug delivery. Experiments were performed in absence of oxygen using aqueous solutions of PVP (0.05% -1%). Crosslinking reactions were carried out at 25° C in a gamma irradiation chamber with a 60Co source (MPX-γ 30). The Viscosimetry, Light Scattering, X-Ray Diffraction and Transmission Electron Microscopy (TEM), were used as characterization techniques.

  2. Synthesis and characterization of thermoplastic polyurethane/nanoclay composites

    Energy Technology Data Exchange (ETDEWEB)

    Pizzatto, Leandro [Autotravi Borrachas e Plasticos Ltda, Caxias do Sul (Brazil); Lizot, Analice; Fiorio, Rudinei [Departamento de Engenharia Quimica, Universidade de Caxias do Sul, Caxias do Sul (Brazil); Amorim, Cintia L.; Machado, Giovanna [Programa de Pos-Graduacao em Materiais, Universidade de Caxias do Sul, Caxias do Sul (Brazil); Giovanela, Marcelo [Departamento de Fisica e Quimica, Universidade de Caxias do Sul, Caxias do Sul (Brazil); Zattera, Ademir J. [Departamento de Engenharia Quimica, Universidade de Caxias do Sul, Caxias do Sul (Brazil); Crespo, Janaina S. [Grupo de Materiais Elastomericos, Universidade de Caxias do Sul, Caxias do Sul (Brazil)], E-mail: jscrespo@ucs.br

    2009-03-01

    In this study thermoplastic polyurethane (TPU) composites were obtained with different nanoclay contents (0, 1, 3 for all cases and 10 wt.% in some cases). The nanoclay Cloisite (registered) 30B (C30B) was dispersed in the TPU matrix by melt processing (twin-screw extruder; TPU-E composites) and during bulk polymerization (TPU-S composites). The synthesis method involved the two-step bulk polymerization of polyesterpolyol (molecular weight 2000 g mol{sup -1}) and diphenylmethanediisocyanate (MDI) with 1,4-butanediol as the chain extender. The dispersion state of the nanoclay particles and its effect on the mechanical properties of the composites, before and after ageing, was investigated. The characterization of TPU/nanoclay composites was carried out by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical characterization was performed through determination of the tensile and tear strengths. The TPU-E 3 wt.% composite showed the best improvement with increases in stress and strain at break (28% and 35%, respectively) and energy (88%), compared to the TPU-E (sample without nanoclay)

  3. Synthesis and characterization of porous hydroxyapatite and hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Nieh, T G; Choi, B W; Jankowski, A F

    2000-10-25

    A technique is developed to construct bulk hydroxyapatite (HAp) with different cellular structures. The technique involves the initial synthesis of nanocrystalline hydroxyapatite powder from an aqueous solution using water-soluble compounds and then followed by spray drying into agglomerated granules. The granules were further cold pressed and sintered into bulks at elevated temperatures. The sintering behavior of the HAp granules was characterized and compared with those previously reported. Resulting from the fact that the starting HAp powders were extremely fine, a relatively low activation energy for sintering was obtained. In the present study, both porous and dense structures were produced by varying powder morphology and sintering parameters. Porous structures consisting of open cells were constructed. Sintered structures were characterized using scanning electron microscopy and x-ray tomography. In the present paper, hydroxyapatite coatings produced by magnetron sputtering on silicon and titanium substrates will also be presented. The mechanical properties of the coatings were measured using nanoindentation techniques and microstructures examined using transmission electron microscopy.

  4. Pyrazine-based organometallic complex: synthesis, characterization, and supramolecular chemistry.

    Science.gov (United States)

    Bhowmick, Sourav; Chakraborty, Sourav; Das, Atanu; Rajamohanan, P R; Das, Neeladri

    2015-03-16

    The design, synthesis, and characterization of a new pyrazine-based ditopic platinum(II) organometallic complex are reported. The molecular structure of the organoplatinum pyrazine dipod was determined by single-crystal X-ray crystallography. The potential utility of this organometallic ditopic acceptor as a building block in the construction of neutral metallasupramolecular macrocycles containing the pyrazine motif was explored. Pyrazine motifs containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry, and elemental analysis. The geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size. The ability of the pyrazine-based organoplatinum complex to act as a host for nitroaromatic guest (2,4-dinitrotoluene and PA) molecules was explored by isothermal titration calorimetry (ITC). The binding stoichiometry and thermodynamic parameters of these host-guest complexation reactions were evaluated using ITC. Theoretical calculations were performed to obtain insight into the binding pattern between the organometallic host and nitroaromatic guests. The preferable binding propensity of the binding sites of complex 1 for both nitroaromatics (PA and 2,4-dinitrotoluene) determined by molecular simulation studies corroborates well with the experimental results as obtained by ITC experiments.

  5. Characterizing and modeling citation dynamics

    CERN Document Server

    Eom, Young-Ho; 10.1371/journal.pone.0024926

    2011-01-01

    Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts...

  6. Advances in acrylic-alkyd hybrid synthesis and characterization

    Science.gov (United States)

    Dziczkowski, Jamie

    2008-10-01

    performance. Reversible-addition fragmentation polymerization techniques were employed to create a new class of acrylic-alkyd hybrid materials. Medium and long oil alkyds made from the monoglyceride process using soybean oil, glycerol, and phthalic anhydride were modified with a RAFT chain transfer agent. The alkyd macro-RAFT agents were reached by end-capping a medium oil soya-based alkyd with a carboxy-functional trithiocarbonate. The alkyd macro-RAFT agents were then used to create acrylic-alkyd block structures by polymerizing different acrylic monomers, including both acrylates and methacrylates in the presence of the macro-RAFT agent and 2, 2'-azobisisobutyronitrile (AIBN). Co-acrylic segments were reached by complete polymerization of one monomer followed by the addition of a second monomer and additional free radical initiator. The alkyds, macro-RAFT agents and, acrylic-alkyd blocks were characterized by size-exclusion chromatography (SEC), FTIR, and 1H-NMR. Pseudo-first-order kinetics behavior and conversion vs. molecular weight plots show that the RAFT-mediated reaction afforded a more controlled process for the synthesis of acrylated-alkyd materials. Preliminary coatings tests showed that material properties of acrylated-alkyds achieved by RAFT polymerization exhibit good overall coatings properties including adhesion, gloss, hardness, and impact resistance.

  7. Mechanochemical synthesis and characterization of pure Co$_2$B nanocrystals

    Indian Academy of Sciences (India)

    MUSTAFA BARIS; TUNCAY SIMSEK; ADNAN AKKURT

    2016-08-01

    Cobalt boride (Co$_2$B) is a significant transition metal boride having a wide range of usage area due to its high oxidation, abrasion and corrosion resistance as well as its superior electrochemical, magnetic and anisotropicproperties. In this study, pure Co2B nanocrystals were synthesized with Co, B$_2$O$_3$ and Mg as starting materials via the mechanochemical synthesis (MCS) method by high-energy planetary ball mill in a hardened steel vial withhardened steel balls. All the experiments were conducted under Ar atmosphere at different rotational speeds and at 20:1–30:1–40:1 ball-to-powder ratios. Leaching of Co$_2$B $+$ MgO powder mixtures occurred after milling andpurified with acetic acid and pure Co$_2$B nanocrystals were obtained in solid form. The Co2Bs were characterized through X-ray diffraction, scanning electronmicroscopy, vibrating samplemagnetometer, Brunauer–Emmett–Tellerand specific density analyses, and effects of synthesis parameters on product properties were revealed. Surface areas of the powders synthesized at 40:1 ball-to-powder ratio at different rotational speeds were measured as 21.14,40.36 and 52.33 m$^2$ g$^{−1}$, respectively. Crystallite sizes of Co$_2$B nanocrystals were between 7.27 and 9.84 nm and their specific density varied between 7.61 and 7.78 g cm$^{−3}$. It was determined that all samples were saturated and exhibited hysteresis and ferromagnetic behaviours, and saturation magnetization was between 35 and 50 emu g$^{−1}$.

  8. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Samar J. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: samar@mail.ucf.edu; Bhatt, Himesh A. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)

    2007-05-16

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 {sup o}C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 {sup o}C and 1300 {sup o}C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm{sup 3} was achieved in structures sintered at 1300 {sup o}C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state.

  9. Hydrothermal synthesis and characterization of zirconia based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Caillot, T., E-mail: Thierry.caillot@ircelyon.univ-lyon1.fr; Salama, Z.; Chanut, N.; Cadete Santos Aires, F.J.; Bennici, S.; Auroux, A.

    2013-07-15

    In this work, three equimolar mixed oxides ZrO{sub 2}/CeO{sub 2}, ZrO{sub 2}/TiO{sub 2}, ZrO{sub 2}/La{sub 2}O{sub 3} and a reference ZrO{sub 2} have been synthesized by hydrothermal method. The structural and surface properties of these materials have been fully characterized by X-ray diffraction, transmission electron microscopy, surface area measurement, chemical analysis, XPS, infrared spectroscopy after adsorption of pyridine and adsorption microcalorimetry of NH{sub 3} and SO{sub 2} probe molecules. All investigated mixed oxides are amphoteric and possess redox centers on their surface. Moreover, hydrothermal synthesis leads to catalysts with higher surface area and with better acid–base properties than classical coprecipitation method. Both Lewis and Brønsted acid sites are present on the surface of the mixed oxides. Compared to the other samples, the ZrO{sub 2}/TiO{sub 2} material appears to be the best candidate for further application in acid–base catalysis. - Graphical abstract: Mesoporous amorphous phase with a high surface area of titania zirconia mixed oxide obtained by hydrothermal preparation. - Highlights: • Three zirconia based catalysts and a reference were prepared by hydrothermal synthesis. • Mixed oxides present larger surface areas than the reference ZrO{sub 2}. • ZrO{sub 2}/TiO{sub 2} catalyst presents a mesoporous structure with high surface area. • ZrO{sub 2}/TiO{sub 2} catalyst presents simultaneously strong acidic and basic properties.

  10. Inhibiting Glycogen Synthesis Prevents Lafora Disease in a Mouse Model

    Science.gov (United States)

    Pederson, Bartholomew A.; Turnbull, Julie; Epp, Jonathan R.; Weaver, Staci A.; Zhao, Xiaochu; Pencea, Nela; Roach, Peter J.; Frankland, Paul; Ackerley, Cameron A.; Minassian, Berge A.

    2013-01-01

    Lafora disease (LD) is a fatal progressive myoclonus epilepsy characterized neuropathologically by aggregates of abnormally structured glycogen and proteins (Lafora bodies, LB), and neurodegeneration. Whether LB could be prevented by inhibiting glycogen synthesis and whether they are pathogenic remain uncertain. We genetically eliminated brain glycogen synthesis in LD mice. This resulted in long-term prevention of LB formation, neurodegeneration, and seizure susceptibility. This study establishes that glycogen synthesis is requisite for LB formation and that LB are pathogenic. It opens a therapeutic window for potential treatments in LD with known and future small molecule inhibitors of glycogen synthesis. PMID:23913475

  11. Synthesis and characterization of zeolites prepared from industrial fly ash.

    Science.gov (United States)

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-09-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm(3) of 3 mol · dm(-3) NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm(3) of 5 mol · dm(-3) NaOH + 0.4 dm(3) of 3 mol · dm(-3) NaCl, 95 °C). As synthesized materials were characterized to obtain mineral composition (X-ray diffractometry, Scanning electron microscopy-energy dispersive spectrometry), adsorption properties (Brunauer-Emmett-Teller surface area, N2 isotherm adsorption/desorption), and ion exchange capacity. The most effective reaction for zeolite preparation was when sodalite was formed and the quantitative content of zeolite from X-ray diffractometry was 90 wt%, compared with 70 wt% for the Na-X and 75 wt% for the Na-P1. Residues from each synthesis reaction were the following: mullite, quartz, and the remains of amorphous aluminosilicate glass. The best zeolitic material as characterized by highest specific surface area was Na-X at almost 166 m(2) · g(-1), while for the Na-P1 and sodalite it was 71 and 33 m(2) · g(-1), respectively. The ion exchange capacity decreased in the following order: Na-X at 1.8 meq · g(-1), Na-P1 at 0.72 meq · g(-1), and sodalite at 0.56 meq · g(-1). The resulting zeolites are competitive for commercially available materials and are used as ion exchangers in industrial wastewater and soil decontamination.

  12. Characterization and Modeling of Inductors.

    Science.gov (United States)

    Yeh, Long-Ching

    This dissertation presents the modeling and characterization of inductors wound on a ferrite core, an amorphous alloy (Metglas('(REGTM))) core, a permalloy 4 mil tape wound core and three permalloy 1 mil tape wound cores with different kinds of heat treatment, and an MPP core. Many kinds of measurements have been made including normal inductance measurements, incremental inductance measurements, inductance quality factor measurements, effective series resistance measurements, hysteresis loop observations and measurements of waveform distortion. All the materials studied were found to have certain common features: the normal inductance increases as signal amplitude increases but eventually passes through a maximum value. Incremental inductance, on the other hand, is independent of direct current below a critical value and then decreases for larger values of current. The critical d-c field for incremental inductance was found to have the same value as the peak a-c field at which there is a change of the rate of increase of normal inductance. Both critical fields may be attributed to the same physical process, the onset of irreversible motion of domain walls. This new finding, for the first time, relates normal inductance and incremental inductance measurements. A new mathematical model for inductors is worked out using a computer curve-fitting program to describe the inductance and equivalent series resistance measured with a-c signal levels ranging from low to high amplitude. The model, which may be used to calculate the quality factor and the power loss of inductors, also explains Legg's equation in an extended form. The voltage waveform of an inductor was found to be somewhat distorted even when the applied current is a pure sinusoid. The measured distortion was less than is predicted by a new "instantaneous" model of permeability but was in reasonable agreement with a domain-state interpretation of the Rayleigh model. Other findings include a critique and

  13. Synthesis and characterization of covalently bound benzocaine graphite oxide derivative

    Science.gov (United States)

    Kabbani, Ahmad; Kabbani, Mohamad; Safadi, Khadija

    2015-09-01

    Graphite oxide (GO) derived materials include chemically functionalize or reduced graphene oxide (exfoliated from GO) sheets, assembled paper-like forms , and graphene-based composites GO consists of intact graphitic regions interspersed with sp3-hybridized carbons containing hydroxyl and epoxide functional groups on the top and bottom surfaces of each sheet and sp2-hybridized carbons containing carboxyl and carbonyl groups mostly at the sheet edges. Hence, GO is hydrophilic and readily disperses in water to form stable colloidal suspensions Due to the attached oxygen functional groups, GO was used to prepare different derivatives which result in some physical and chemical properties that are dramatically different from their bulk counterparts .The present work discusses the covalent cross linking of graphite oxide to benzocaine or ethyl ester of para-aminobenzoic acid,structure I,used in many over-the-counter ointment drug.Synthesis is done via diazotization of the amino group.The product is characterized via IR,Raman, X-ray photoelectron spectroscopy as well as electron microscopy.

  14. Synthesis and characterization of Ni-Zn ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shahane, G.S., E-mail: shahanegs@yahoo.co [Department of Electronics, DBF Dayanand College of Arts and Science, Solapur 413002, Maharashtra (India); Kumar, Ashok; Arora, Manju; Pant, R.P.; Lal, Krishan [National Physical Laboratory, New Delhi (India)

    2010-04-15

    Nickel zinc ferrite nanoparticles Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} (x=0.1, 0.3, 0.5) have been synthesized by a chemical co-precipitation method. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, electron paramagnetic resonance, dc magnetization and ac susceptibility measurements. The X-ray diffraction patterns confirm the synthesis of single crystalline Ni{sub x}Zn{sub 1-x}Fe{sub 2}O{sub 4} nanoparticles. The lattice parameter decreases with increase in Ni content resulting in a reduction in lattice strain. Similarly crystallite size increases with the concentration of Ni. The magnetic measurements show the superparamagnetic nature of the samples for x=0.1 and 0.3 whereas for x=0.5 the material is ferromagnetic. The saturation magnetization is 23.95 emu/g and increases with increase in Ni content. The superparamagnetic nature of the samples is supported by the EPR and ac susceptibility measurement studies. The blocking temperature increases with Ni concentration. The increase in blocking temperature is explained by the redistribution of the cations on tetrahedral (A) and octahedral (B) sites.

  15. Synthesis and characterization of phosphorescent platinum complexes containing phenylpyridazine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kang, Seok; Lee, Seung Hee; Hwang, Kwang Jin; Park, Noh Kil; Kim, Young Sik

    2004-01-05

    Synthesis and characterization of a series of square planar Pt(II)-phenylpyridazine complexes are reported. The complexes have the general structure of (C-N)Pt(O-O), where HC-N is 3-phenyl-pyridazine (ppdz), 3-(3'-trifluoromethylphenyl)pyridazine (3'tfmppdz), 3-(3'-methoxyphenyl)-pyridazine (3'meoppdz), 3-(4'-methoxyphenyl)pyridazine (4'meoppdz), or 3-phenyl-6-chloro-pyridazine (6Clppdz) and HO-O is acetylacetone (Hacac). Reaction of K{sub 2}PtCl{sub 4} with a HC-N ligand forms the dimer, (C-N)Pt({mu}-Cl){sub 2}Pt(C-N), which is cleaved with Hacac to give the corresponding monomer, (C-N)Pt(O-O). The emission characteristics of these complexes are governed by the substituents of the cyclometalating ligands, showing emission {lambda}{sub max} values from 508 to 610 nm. Strong spin-orbit coupling of the platinum atom allows for the formally forbidden mixing of the {sup 1}MLCT with the {sup 3}MCLT and {sup 3}({pi}-{pi}*) states.

  16. Synthesis and Characterization of Metal Phosphates for Photocatalytic Applications

    KAUST Repository

    Al-Sabban, Bedour

    2012-07-01

    Solar energy is the most abundant efficient and important source of renewable energy. The objective of this study is to develop highly efficient visible light responsive photocatalysts for overall water splitting. This is done by using silver or copper containing materials. Phosphate compounds have caught much attention due to their rigid structure, thermal stability and resistance to chemical attacks. Solid phosphates can be prepared by direct solid-state reaction between metal cations and phosphate anions at high temperatures. Double metal phosphates of the Nasion-type structure had shown further technological importance. It has been reported that well-crystallized double metal phosphate particles have excellent ordering and cationic conduction channels in the Nasicon framework. In this study, several Nasion-type structured materials have been synthesized by solid-state method (e.g. CuTi2(PO4)3 and AgTi2(PO4)3) heated up under different temperatures (400–1100C) in N2 or air atmosphere. These materials were characterized by XRD, SEM, DR-UV-Vis spectroscopy and tested for photocatalytic applications. A new method for direct synthesis of photoelectrode on Ti Plate had been demonstrated. Further investigations on controlling the size and morphology for better performance of single and double metal phosphates will be done.

  17. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    Science.gov (United States)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  18. Synthesis, characterization and gas sensing performance of aluminosilicate azide cancrinite

    Indian Academy of Sciences (India)

    A V BORHADE; T A KSHIRSAGAR; S G WAKCHAURE; A G DHOLI

    2016-10-01

    The present investigation deals with synthesis and gas sensing performance of Na$_8$[AlSiO$_4$]$_6$(N$_3$)$_{2.4}$(H$_2$O)$_{4.6}$ cancrinite-based thick film. The product obtained was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, thermogravimetric analysis and magic-angle spin nuclear magneticresonance (MAS NMR). The crystal structure of the product was determined from X-ray powder diffraction data by applying Rietveld refinement. Refinement showed that azide cancrinite crystallize in the space group P6$_3$. Alternate arrangement of Si and Al atoms was confirmed by single intense peak of MAS NMR analysis. For the first time, this study reports the gas sensing performance of aluminosilicate azide cancrinite. The effect of annealing andoperating temperature on gas sensing characteristic of azide cancrinite thick film is investigated systematically for various gases at different operating temperatures. This sensor was observed to be highly sensitive and selective toammonia gas.

  19. Synthesis and characterization of novel Schiff bases containing pyrimidine unit

    Directory of Open Access Journals (Sweden)

    Jumbad H. Tomma

    2014-01-01

    Full Text Available The work involves synthesis of novel Schiff base derivatives containing a pyrimidine unit starting with chalcones. 4-Aminoacetophenone was reacted with 4-nitrobenzaldehyde or 4-chlorobenzaldehyde in basic medium giving chalcones, [I]a and [I]b, respectively, by Claisen-Schemidt reaction. The chalcones [I]a and [I]b were reacted with urea in HCl medium giving oxopyrimidines, [II]a and [II]b. They were also reacted with thiourea in basic medium to give thioxopyrimidines, [III]a and [III]b. The novel mono and bis Schiff bases, [VIII]na, [VIII]nb, [IX]na, [IX]nb, [X]na, [X]nb, [XI]na, and [XI]nb were synthesized by the reaction of pyrimidine derivatives; oxopyrimdines, [II]a and [II]b and thioxopyrimidines, [III]a and [III]b with 4-(4′-n-alkoxybenzoloxybenzaldehyde [VI] and polymethylene-α,ω-bis-4-oxybenzaldehydes [VII]m, respectively, in dry benzene using drops of glacial acetic acid as a catalyst. The synthesized compounds were characterized by melting points, elemental analysis, FTIR, and 1H NMR spectroscopy.

  20. Synthesis and characterization of furazan energetics ADAAF and DOATF

    Energy Technology Data Exchange (ETDEWEB)

    Veauthier, Jaqueline M [Los Alamos National Laboratory; Chavez, David E [Los Alamos National Laboratory; Tappan, Bryce C [Los Alamos National Laboratory; Parrish, Damon [Los Alamos National Laboratory

    2009-01-01

    The synthesis and structural characterization of bis[4-aminofurazanyl-3-azoxy]azofurazan (ADAAF) and 3,4:7,8:11,12:15,16-tetrafurazano-1,2,5,6,9,10,13,14-octaazacyclohexadeca-1,3,5,7,9,11,13,15-octaene-1,10-dioxide (DOATF) are described. Explosive sensitivity properties of both materials were determined. The heat of formation of ADAAF was measured to be 300 kcal/mol while the detonation velocity and pressure of ADAAF were measured to be 7.88 km/s and 299 kbar, respectively at 94% theoretical maximum density. We also investigated the burning rate characteristics of ADAAF. We have reported two new synthetic procedures and the first X-ray crystal structures for the azoxyfurazan compounds ADAAF (4) and DOATF (5). These new energetic materials were found to be significantly more sensitive to mechanical initiation than DAAF (3) and the heat of formation of 4 was found to be nearly three times that of 3. The detonation velocity and pressure for 4 are comparable to 2 while its burning rate characteristics are similar to HMX. Further studies to elucidate sensitivity behavior are ongoing.

  1. Synthesis, characterization and physiological activity of some novel isoxazoles.

    Directory of Open Access Journals (Sweden)

    NITIN G. GHODILE

    2012-07-01

    Full Text Available Hushare VJ, Rajput PR, Malpani MO, Ghodile NG. 2012. Synthesis, characterization and physiological activity of some novel isoxazoles. Nusantara Bioscience 4: 81-85. A series of chlorosubstituted 4-aroylisoxazoles have been synthesized by refluxing chlorosubstituted-3-aroylflavones and 3-alkoylchromone with hydroxylamine hydrochloride in dioxane medium containing 0.5 mL piperidine. Chlorosubstituted-3-aroylflavones and chlorosubstituted-3-alkoylchromone were prepared by refluxing them separately with iodine crystal in ethanol. Initially chlorosubstituted-3-aroylflavanones and 3-alkoylchromanone were prepared by the interaction of different aromatic and aliphatic aldehydes with 1-(2’-hydroxy-3’,5’-dichlorophenyl-3-phenyl-1,3-propanedione. Constitutions of synthesized compounds were confirmed on the basis of elemental analysis, molecular weight determination, UV-Visible, I.R. and 1H-NMR spectral data. The titled compounds were evaluated for their growth promoting activity on some flowering plants viz. Papaver rhoeas, Calendula officinalise, Gladiola tristis, Gaillardia aristata, Dianthus chinensis, and Iberis sp. (candytuft. The results indicate that applicated plants had higher shoots and more number of leaves.

  2. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gash, A; Pantoya, M; Jr., J S; Zhao, L; Shea, K; Simpson, R; Clapsaddle, B

    2003-11-18

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.

  3. Synthesis and Characterization of Molybdenum Disulfide Nanoflowers and Nanosheets: Nanotribology

    Directory of Open Access Journals (Sweden)

    S. V. Prabhakar Vattikuti

    2015-01-01

    Full Text Available This paper reports the solvothermal synthesis of MoS2 nanoflowers and nanosheets. The nanoflowers have a mean diameter of about 100 nm and were obtained using thioacetamide (C2H5NS as a sulfur source. The few layered nanosheets were obtained using thiourea (CH4N2S as a sulfur source. The obtained powders were characterized using powder X-ray diffraction (XRD, scanning electron microscopy (SEM with energy dispersive spectroscopy (EDS, and transmission electron microscopy (TEM. The lubricating effect of MoS2 nanoflowers and nanosheets were analyzed using four-ball test, the topography of the wear scar was analyzed using SEM, EDS, and 3D surface profilometry. The relationship between the tribological properties and morphology of the materials was determined. It is observed that the engine oil containing the MoS2 nanomaterials penetrated more easily into the interface space, and it formed a continuous film on the interface surface. The tribological performance showed that the synthesized nanosheets had superior antiwear and friction-reducing properties as a lubrication additive compared with nanoflowers. Also, the wear scar of balls lubricated with nanoflowers revealed a larger diameter compared to nanosheets. In conclusion, nanosheets dispensed in oil have better tribological performance compared to nanoflowers oil in terms of capability to reduce friction.

  4. Synthesis and characterization of MoS2 nanosheets.

    Science.gov (United States)

    Deokar, G; Vignaud, D; Arenal, R; Louette, P; Colomer, J-F

    2016-02-19

    Here, we report on the synthesis of MoS2 nanosheets using a simple two-step additive-free growth technique. The as-synthesized nanosheets were characterized to determine their structure and composition, as well as their optical properties. The MoS2 nanosheets were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), including high-resolution scanning TEM imaging and energy-dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence (PL). The as-produced MoS2 nanosheets are vertically aligned with curved edges and are densely populated. The TEM measurements confirmed that the nanosheets have the 2H-MoS2 crystal structure in agreement with the Raman results. The XPS results revealed the presence of high purity MoS2. Moreover, a prominent PL similar to mechanically exfoliated few and mono-layer MoS2 was observed for the as-grown nanosheets. For the thin (≤50 nm) nanosheets, the PL feature was observed at the same energy as that for a direct band-gap monolayer MoS2 (1.83 eV). Thus, the as-produced high-quality, large-area, MoS2 nanosheets could be potentially useful for various optoelectronic and catalysis applications.

  5. Synthesis, physicochemical, structural and rheological characterizations of carboxymethyl xanthan derivatives.

    Science.gov (United States)

    Yahoum, Madiha M; Moulai-Mostefa, Nadji; Le Cerf, Didier

    2016-12-10

    The aim of this work was to synthesize a carboxymethylated xanthan (CMXG) via an etherification reaction between different ratios (2, 4, and 6) of xanthan gum (XG) and monochloroacetic acid (MCAA) using the Williamson synthesis method. The synthetized products were characterized in terms of their physico-chemical and rheological properties. Both FTIR and proton nuclear magnetic resonance (H(1) NMR) analyses confirmed the grafting of carboxymethyl groups on xanthan hydroxyl groups. The obtained results demonstrated that the degree of substitution was proportional to the chloroacetic acid and xanthan gum ratios. The obtained carboxymethyl derivatives presented greater hydrophilicity and lower molecular weights with increasing degrees of substitution than native xanthan gum. The rheological study revealed that the viscosity of the CMXG derivatives decreased with the degree of substitution and with the conservation of the shear-thinning and weak gel behaviours. The flow curves suggested the existence of two different populations of particles consisting of CMXG particles with a smaller average size and a second population formed by the residual fractions of native XG particles. It was also found that the elastic modulus of XG was largely higher than that of the CMXG derivatives and decreased with increasing DS. For the CMXG derivatives, two regions of viscoelastic behaviour were observed, which were separated by a crossover point corresponding to the critical frequency and relaxation time, i.e., the time required for stress relaxation.

  6. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia

    Directory of Open Access Journals (Sweden)

    A. K. Singh

    2014-01-01

    Full Text Available We report synthesis of ZrO2 nanoparticles (NPs using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission and a relatively weak peak at 475 and 562 nm.

  7. Microwave Synthesis, Characterization, and Photoluminescence Properties of Nanocrystalline Zirconia

    Science.gov (United States)

    Singh, A. K.; Nakate, Umesh T.

    2014-01-01

    We report synthesis of ZrO2 nanoparticles (NPs) using microwave assisted chemical method at 80°C temperature. Synthesized ZrO2 NPs were calcinated at 400°C under air atmosphere and characterized using FTIR, XRD, SEM, TEM, BET, and EDS for their formation, structure, morphology, size, and elemental composition. XRD results revealed the formation of mixed phase monoclinic and tetragonal ZrO2 phases having crystallite size of the order 8.8 nm from most intense XRD peak as obtained using Scherrer formula. Electron microscope analysis shows that the NPs were less than 10 nm and highly uniform in size having spherical morphology. BET surface area of ZrO2 NPs was found to be 65.85 m2/g with corresponding particle size of 16 nm. The band gap of synthesized NPs was found to be 2.49 eV and PL spectra of ZrO2 synthesized NPs showed strong peak at 414 nm, which corresponds to near band edge emission (UV emission) and a relatively weak peak at 475 and 562 nm. PMID:24578628

  8. Synthesis and characterization of molybdenum incorporated mesoporous aluminophosphate

    Science.gov (United States)

    Ho, Li-Ngee; Ikegawa, Tasuku; Nishiguchi, Hiroyasu; Nagaoka, Katsutoshi; Takita, Yusaku

    2006-07-01

    A synthesis of molybdenum incorporated mesoporous aluminophosphate with long-chain n-alkylamine as template material had been prepared under non-aqueous condition. These materials were extensively characterized by using X-ray diffraction (XRD), nitrogen sorption isotherms, nuclear magnetic resonance of 27Al and 31P (NMR), inductive coupled plasma (ICP), electron spin resonance (ESR), Fourier transform infrared (FTIR) and thermogravimetric-differential thermal analysis (TG-DTA). Morphology of the materials had been observed by using transmission electron microscope (TEM) that revealed the mesoporous materials possessed wormhole-like structures. Alkaline solvent extraction using n-butylamine/ethanol had been efficiently removed the n-alkylamine from the mesoporous samples which yielded BET surface areas around 550-730 m 2/g. BJH analysis showed a narrow pore size distribution which increased with increasing of the carbon chain length of alkylamine (template). Valence state and coordination of the molybdenum in the obtained samples were investigated by using ESR and FTIR where it was found that Mo 4+ and Mo 6+ molybdenum species existed in the molybdenum incorporated mesoporous aluminophosphate in tetrahedral coordination.

  9. Synthesis, characterization and in vivo evaluation of biocompatible ferrogels

    Science.gov (United States)

    Lopez-Lopez, M. T.; Rodriguez, I. A.; Rodriguez-Arco, L.; Carriel, V.; Bonhome-Espinosa, A. B.; Campos, F.; Zubarev, A.; Duran, J. D. G.

    2017-06-01

    A hydrogel is a 3-D network of polymer chains in which water is the dispersion medium. Hydrogels have found extensive applications in the biomedical field due to their resemblance to living tissues. Furthermore, hydrogels can be endowed with exceptional properties by addition of synthetic materials. For example, magnetic field-sensitive gels, called ferrogels, are obtained by embedding magnetic particles in the polymer network. Novel living tissues with unique magnetic field-sensitive properties were recently prepared by 3-D cell culture in biocompatible ferrogels. This paper critically reviews the most recent progress and perspectives in their synthesis, characterization and biocompatibility evaluation. Optimization of ferrogels for this novel application requires low-density, strongly magnetic, multi-domain particles. Interestingly, the rheological properties of the resulting ferrogels in the absence of field were largely enhanced with respect to nonmagnetic hydrogels, which can only be explained by the additional cross-linking imparted by the embedded magnetic particles. Remarkably, rheological measurements under an applied magnetic field demonstrated that ferrogels presented reversibly tunable mechanical properties, which constitutes a unique advantage with respect to nonmagnetic hydrogels. In vivo evaluation of ferrogels showed good biocompatibility, with only some local inflammatory response, and no particle migration or damage to distant organs.

  10. Synthesis and Characterization of Binuclear Schiff Base Complexes of Nickel, Copper, and Manganese.

    Science.gov (United States)

    1983-11-04

    D-Ri35 493 SYNTHESIS AND CHRACTERILATION OF BINUCLEAR SCHIFF BASE i/i COMPLEXES OF NICK-.U) ROCHESTER UNIV NV DEPT OF CHEMISTRY B C WHITMIORE ET AL...RESEARCH Contract NOO014-83-K-0154 fl Task No. NR 634-742 TECHNICAL REPORT NO. 1 ,Z Synthesis and Characterization of Binuclear Schiff Base Complexes

  11. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    Science.gov (United States)

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  12. Characterizing and modeling citation dynamics.

    Directory of Open Access Journals (Sweden)

    Young-Ho Eom

    Full Text Available Citation distributions are crucial for the analysis and modeling of the activity of scientists. We investigated bibliometric data of papers published in journals of the American Physical Society, searching for the type of function which best describes the observed citation distributions. We used the goodness of fit with Kolmogorov-Smirnov statistics for three classes of functions: log-normal, simple power law and shifted power law. The shifted power law turns out to be the most reliable hypothesis for all citation networks we derived, which correspond to different time spans. We find that citation dynamics is characterized by bursts, usually occurring within a few years since publication of a paper, and the burst size spans several orders of magnitude. We also investigated the microscopic mechanisms for the evolution of citation networks, by proposing a linear preferential attachment with time dependent initial attractiveness. The model successfully reproduces the empirical citation distributions and accounts for the presence of citation bursts as well.

  13. Synthesis and Characterization of Chemically Etched Nanostructured Silicon

    KAUST Repository

    Mughal, Asad Jahangir

    2012-05-01

    Silicon is an essential element in today’s modern world. Nanostructured Si is a more recently studied variant, which has currently garnered much attention. When its spatial dimensions are confined below a certain limit, its optical properties change dramatically. It transforms from an indirect bandgap material that does not absorb or emit light efficiently into one which can emit visible light at room temperatures. Although much work has been conducted in understanding the properties of nanostructured Si, in particular porous Si surfaces, a clear understanding of the origin of photoluminescence has not yet been produced. Typical synthesis approaches used to produce nanostructured Si, in particular porous Si and nanocrystalline Si have involved complex preparations used at high temperatures, pressures, or currents. The purpose of this thesis is to develop an easier synthesis approach to produce nanostructured Si as well as arrive at a clearer understanding of the origin of photoluminescence in these systems. We used a simple chemical etching technique followed by sonication to produce nanostructured Si suspensions. The etching process involved producing pores on the surface of a Si substrate in a solution containing hydrofluoric acid and an oxidant. Nanocrystalline Si as well as nanoscale amorphous porous Si suspensions were successfully synthesized using this process. We probed into the phase, composition, and origin of photoluminescence in these materials, through the use of several characterization techniques. TEM and SEM were used to determine morphology and phase. FT-IR and XPS were employed to study chemical compositions, and steady state and time resolved optical spectroscopy techniques were applied to resolve their photoluminescent properties. Our work has revealed that the type of oxidant utilized during etching had a significant impact on the final product. When using nitric acid as the oxidant, we formed nanocrystalline Si suspensions composed of

  14. Synthesis and Characterization of Polymer-Templated Magnetic Nanoparticles

    Science.gov (United States)

    Tamakloe, Beatrice

    This research reports on the investigation into the synthesis and stabilization of iron oxide nanoparticles for theranostic applications using amine-epoxide polymers. Although theranostic agents such as magnetic nanoparticles have been designed and developed for a few decades, there is still more work that needs to be done with the type of materials that can be used to stabilize or functionalize these particles if they are to be used for applications such as drug delivery, imaging and hyperthermia. For in-vivo applications, it is crucial that organic coatings enclose the nanoparticles in order to prevent aggregation and facilitate efficient removal from the body as well as protect the body from toxic material. The objective of this thesis is to design polymer coated magnetite nanoparticles with polymers that are biocompatible and can stabilize the iron oxide nanoparticle to help create mono-dispersed particles in solution. It is desirable to also have these nanoparticles possess high magnetic susceptibility in response to an applied magnetic field. The co-precipitation method was selected because it is probably the simplest and most efficient chemical pathway to obtain magnetic nanoparticles. In literature, cationic polymers such as Polyethylenimine (PEI), which is the industry standard, have been used to stabilize IONPs because they can be used in magnetofections to deliver DNA or RNA. PEI however is known to interact very strongly with proteins and is cytotoxic, so as mentioned previously the Iron Oxide nanoparticles (IONPs) synthesized in this study were stabilized with amine-epoxide polymers because of the limitations of PEI. Four different amine-epoxide polymers which have good water solubility, biodegradability and less toxic than PEI were synthesized and used in the synthesis and stabilization of the magnetic nanoparticles and compared to PEI templated IONPs. These polymer-templated magnetic nanoparticles were also characterized by size, surface charge, Iron

  15. Synthesis and characterization of environmentally friendly fluorescent particle tracers

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Rapiti, Emiliano; Grimaldi, Salvatore

    2013-04-01

    Tracers are widely used in experimental fluid mechanics and hydrology to investigate complex flows and water cycle processes. Commonly used tracers include dyes, artificial tracers, naturally occurring isotopes and chemicals, microorganisms, and DNA-based systems. Tracers should be characterized by low detection limits and high accuracy in following water paths and flow structures. For natural studies, tracers are also expected to be nontoxic and with low sorption affinity to natural substrates to minimize losses in the environment. In this context, while isotopes are completely natural, their use in field studies is limited by their ubiquity and, therefore, by the high uncertainty in data processing methodologies. Further, the use of dyes and artificial tracers can be hampered by extremely low detection limits due to dilution in natural streams and microorganisms, while DNA-based system may require physical sampling and time-consuming functionalization and detection procedures. In this work, we present the synthesis and characterization of fluorescent beads incorporating an eco-compatible fluorophore for environmental and laboratory applications. The particles are synthesized from natural beeswax through an inexpensive thermal procedure and can be engineered to present variable densities and diameters. A thorough characterization of their surface morphology at the nanoscale, crystal structure and size, chemical composition, and dye incorporation into the beeswax matrix is described by using a wide array of microscopy techniques. In addition, the particle fluorescence response is studied by performing excitation and emission scans on melted beeswax bead samples. The feasibility of using the synthesized particles in environmental settings is assessed through the design of ad-hoc weathering agent experiments where the beads are exposed to high energy radiation and hot water. Further, a proof of concept test is described to understand the particles' potential as a

  16. Nobel metal-TiO2 nanocomposites : synthesis, characterization and catalytic activity

    OpenAIRE

    Nascimento, Ana Cláudia Lobão do

    2016-01-01

    The work presented in this thesis is focused on the synthesis, characterization and catalytic activity of gold-TiO2 composites. We wanted to take advantage of the experience of the Colloid Chemistry Group, whose activity is strongly focused on the synthesis, characterization and evaluation of the formation mechanism of metal nanocrystals (mainly gold and silver) with size and shape control, which allows a fine-tuning of the optical response of these colloids in the UV-vis-NIR spectral range. ...

  17. Synthesis and Characterization of Organic Impurities in Bortezomib Anhydride Produced by a Convergent Technology

    Science.gov (United States)

    Ivanov, Andrey S.; Shishkov, Sergey V.; Zhalnina, Anna A.

    2012-01-01

    A profile of impurities in bortezomib anhydride, produced by a recently developed convergent technology, has been characterized. HPLC-MS analysis of the drug essence revealed three impurities: an epimer of bortezomib, resulting from partial racemization of l-phenylalanine’s stereogenic center during the chemical synthesis, and two epimeric products of oxidative degradation of bortezomib, in which boron is replaced by the OH group. The impurities were obtained by chemical synthesis and characterized by physical methods. PMID:22396904

  18. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael Edward [Univ. of California, Berkeley, CA (United States)

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C5-symmetrical cyclopentadienyl rings.

  19. Synthesis, characterization, and reactivity of pentamethylcyclopentadienyl complexes of divalent cobalt and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.E.

    1993-10-01

    The thesis is divided into the following 4 chapters: synthesis, characterization, and reactivity of trinuclear pentamethylcyclopentadienyl cobalt and nickel clusters with triply-bridging methylidyne groups; chemical and physical properties of pentamethylcyclopentadienyl acetylacetonate complexes of Co(II) and Ni(II); synthesis, characterization, and reactivity of pentamethylcyclopentadienyl halide complexes of Co and Ni; and crystallographic studies of distortions in metallocenes with C{sub 5}-symmetrical cyclopentadienyl rings.

  20. Design, Synthesis, and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy Storage

    Science.gov (United States)

    2016-03-31

    linked in a second annealing step, thereby providing greatly enhanced toughness. The ABA triblock was a poly(styrene-b- ethylene oxide -b-styrene...AFRL-AFOSR-VA-TR-2016-0168 Design, Synthesis , and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy...Sep 2015 4. TITLE AND SUBTITLE Design, Synthesis , and Characterization of High Performance Polymer Electrolytes for Printed Electronics and Energy

  1. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    Science.gov (United States)

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  2. Synthesis and Characterization of Silver Nanoparticles for an Undergraduate Laboratory

    Science.gov (United States)

    Orbaek, Alvin W.; McHale, Mary M.; Barron, Andrew R.

    2015-01-01

    The aim of this simple, quick, and safe laboratory exercise is to provide undergraduate students an introduction to nanotechnology using nanoparticle (NP) synthesis. Students are provided two procedures that allow for the synthesis of different yet controlled sizes of silver NPs. After preparing the NPs, the students perform UV-visible…

  3. Synthesis and Characterization of DNase 1-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2014-10-01

    biomolecule , and toxic synthesis protocols. For example, organic dyes such as fluorescein isothiocyanate (FITC) green and diamidino-2-phenylindole (DAPI...we present a new approach for biomolecule mediated synthesis of AuNCs. We have for the first time used DNase 1 to synthesize AuNCs of multiple

  4. Learning strategies: a synthesis and conceptual model

    Science.gov (United States)

    Hattie, John A. C.; Donoghue, Gregory M.

    2016-08-01

    The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.

  5. Synthesis and spectroscopic characterization of copper zinc aluminum nanoferrite particles

    Science.gov (United States)

    Lakshmi Reddy, S.; Ravindra Reddy, T.; Roy, Nivya; Philip, Reji; Montero, Ovidio Almanza; Endo, Tamio; Frost, Ray L.

    2014-06-01

    Copper doped zinc aluminum ferrites CuxZn1-x.(AlxFe2-x)O4 are synthesized by the solid-state reaction route and characterized by XRD, TEM, EPR and non linear optical spectroscopy techniques. The average particle size is found to be from 35 to 90 nm and the unit cell parameter “a” is calculated as from 8.39 to 8.89 Å. The cation distributions are estimated from X-ray diffraction intensities of various planes. The XRD studies have verified the quality of the synthesis of compounds and have shown the differences in the positions of the diffraction peaks due to the change in concentration of copper ions. TEM pictures clearly indicating that fundamental unit is composed of octahedral and tetrahedral blocks and joined strongly. The selected area electron diffraction (SAED) of the ferrite system shows best crystallinity is obtained when Cu content is very. Some of the d-plane spacings are exactly coinciding with XRD values. EPR spectra is compositional dependent at lower Al/Cu concentration EPR spectra is due to Fe3+ and at a higher content of Al/Cu the EPR spectra is due to Cu2+. Absence of EPR spectra at room temperature indicates that the sample is perfectly ferromagnetic. EPR results at low temperature indicate that the sample is paramagnetic, and that copper is placed in the tetragonal elongation (B) site with magnetically non-equivalent ions in the unit cell having strong exchange coupling between them. This property is useful in industrial applications. Nonlinear optical properties of the samples studied using 5 ns laser pulses at 532 nm employing the open aperture z-scan technique indicate that these ferrites are potential candidates for optical limiting applications.

  6. Synthesis and characterization of nanoparticles capped with medicinal plant extracts

    Science.gov (United States)

    Rekulapally, Sujith R.

    In this study, synthesis, characterization and biological application of series nanometal (silver, Ag) and nanometal oxide (titania, TiO2) were carried out. These nanomaterials were prepared using wet-chemistry method and then coated using natural plant extract. Three medicinal plants, namely Zingiber officinale (Ginger), Allium sativum (Garlic) and Capsicum annuum (Chili) were chosen as grafting agent to decrease the side-effects and increase the efficiency of NPs towards living organism. Extraction conditions were controlled under 60-100 °C for 8 hrs. Ag and TiO2 NPs were fabricated using colloidal chemistry and variables were controlled at ambient condition. The band gap of TiO2 NPs used as disinfectant was also modified through coating the medicinal plant extracts. The medicinal plant extracts and coated NPs were measured using spectroscopic methods. Ultraviolet-visible spectra indicated the Ag NPs were formed. The peak at 410 nm resulted from the electrons transferred from their ground to the excited state. The broadened full width at half maximum (FWHM) suggested the ultrafine particles were obtained. The lipid soluble compounds, phenols, tri-terpenoids, flavanoids, capsaicinoids, flavonoids, carotenoids, steroids steroidal glycosides, and vitamins were determined from the high performance liquid chromatographical analyses. X-ray powder diffraction indicated that the face-centered cubic Ag (PDF: 00-004-0783, a = 4.0862A, a = 90°) and anatase TiO2 (PDF: 01-08-1285, a = 3.7845, c = 9.5143A, a = 90°) were obtained using colloidal chemistry. Bactericidal activity indicated that these core-shelled TiO 2 were effective (MBC=0.6 ppm, within 30 mins) at inactivating Gram-positive and Gram-negative bacteria. It is proposed that the medicinal extracts enhanced the potency of NPs against bacteria. From our previous study, the Ag NPs were highly effective at inactivating both bacteria.

  7. Synthesis and characterization of polymers for light waveguide applications

    Science.gov (United States)

    Li, Bo

    The overall goal of this research was to prepare organo- soluble polymers that display low birefringence, low optical loss, and high thermal stability for use in light waveguide devices. Thus, two series of thermally stable polymers, i.e., aromatic polyimides and perfluorocyclobutane-containing poly(aryl ethers), were synthesized and characterized. The approach to the aromatic polyimides involved the synthesis of a new series of 4,4'-(9- fluorenylidene)dianilines containing large polarizable substituents. The diamines were polymerized with 2,2'-bis[4-(3,4- dicarboxyphenoxy)phenyl]propane dianhydride (BisA-DA) and 2,2'-bis(3,4- dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) in refluxing m-cresol containing a catalytic amount of isoquinoline. The polyimides were soluble in common organic solvents such as N-methyl-2- pyrrolidinone (NMP), tetrahydrofuran (THF), chloroform (CHCl3), and cyclopentanone and could be solution cast into tough films. Thin films of the new cardo polyimides displayed birefringences that ranged from -0.0042 to 0.0074. In the second part of this work, a series of new difunctional and trifunctional trifluorovinylether-containing monomers was synthesized and polymerized via the thermal cyclodimerization of the vinyl groups. The number of carbon-hydrogen bonds was minimized in these systems in order to minimize the optical loss. A tough, transparent film was made from a polymer prepared from a trifunctional monomer, 1,1,1- trifluoro-2,2,2-tris(4-trifluorovinyloxyphenyl)ethane, which had a birefringence of 0.0008. The film showed negligible absorption at 1550 nm in the near-IR region. The polymer was also very thermally stable. Most of the linear polymers were soluble in common organic solvents such as NMP, THF, chloroform and cyclopentanone and could be solution cast into thin films, which displayed birefringences that ranged from -0.0005 to 0.0048.

  8. Synthesis and Characterization of Mixed Metal Oxide Nanocomposite Energetic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Clapsaddle, B; Gash, A; Plantier, K; Pantoya, M; Jr., J S; Simpson, R

    2004-04-27

    In the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. By introducing a fuel metal, such as aluminum, into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. In addition, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. These organic additives can cause the generation of gas upon ignition of the materials, therefore resulting in a composite material that can perform pressure/volume work. Furthermore, the desired organic functionality is well dispersed throughout the composite material on the nanoscale with the other components, and is therefore subject to the same increased reaction kinetics. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of iron(III) oxide/organosilicon oxide nanocomposites and their performance as energetic materials will be discussed.

  9. Two BN isosteres of anthracene: synthesis and characterization.

    Science.gov (United States)

    Ishibashi, Jacob S A; Marshall, Jonathan L; Mazière, Audrey; Lovinger, Gabriel J; Li, Bo; Zakharov, Lev N; Dargelos, Alain; Graciaa, Alain; Chrostowska, Anna; Liu, Shih-Yuan

    2014-10-29

    The synthesis of two parental BN anthracenes, 1 and 2, was developed, and their electronic structure and reactivity behavior were characterized in direct comparison with all-carbon anthracene. Gas-phase UV-photoelecton spectroscopy studies revealed the following HOMO energy trend: anthracene, -7.4 eV; BN anthracene 1, -7.7 eV; bis-BN anthracene 2, -8.0 eV. The λmax of the lower energy band in the UV-vis absorption spectrum is as follows: anthracene, 356 nm; BN anthracene 1, 359 nm; bis-BN anthracene 2, 357 nm. Thus, although the HOMO is stabilized with increasing BN incorporation, the HOMO-LUMO band gap remains unchanged across the anthracene series. The emission λmax values for the three investigated anthracene compounds are at 403 nm. The pKa values of the N-H proton for BN anthracene 1 and bis-BN anthracene 2 were determined to be approximately 26. BN anthracenes 1 and 2 do not undergo heat- or light-induced cycloaddition reactions or Friedel-Crafts acylations. Electrophilic bromination of BN anthracene 1 with Br2, however, occurs regioselectively at the 9-position. The reactivity behavior and regioselectivity of bromination of BN anthracenes are consistent with the electronic structure of these compounds; i.e., (1) the lower HOMO energy levels for BN anthracenes stabilize the molecules against cycloaddition and Friedel-Crafts reactions, and (2) the HOMO orbital coefficients are consistent with the observed bromination regioselectivity. Overall, this work demonstrates that BN/CC isosterism can be used as a molecular design strategy to stabilize the HOMO of acene-type structures while the optical band gap is maintained.

  10. Synthesis and Characterization of Elastomeric Heptablock Terpolymers Structured by Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Alfonzo, C.Guillermo; Fleury, Guillaume; Chaffin, Kimberly A.; Bates, Frank S. (UMM); (Medtronic)

    2010-12-07

    We report the synthesis and characterization of fully saturated hydrocarbon block copolymer thermoplastic elastomers with competitive mechanical properties and attractive processing features. Block copolymers containing glassy poly(cyclohexylethylene) (C), elastomeric poly(ethylene-alt-propylene) (P), and semicrystalline poly(ethylene) (E) were produced in a CEC-P-CEC heptablock architecture, denoted XPX, by anionic polymerization and catalytic hydrogenation. The X blocks contain equal volume fractions of C and E, totaling 40%-60% of the material overall. All the XPX polymers are disordered above the melt temperature for E (T{sub m,E} {approx_equal} 95 C) as evidenced by SAXS and dynamic mechanical spectroscopy measurements. Cooling below T{sub m,E} results in crystallization of the E blocks, which induces microphase segregation of E, C, and P into a complex morphology with a continuous rubbery domain and randomly arranged hard domains as shown by TEM. This mechanism of segregation decouples the processing temperature from the XPX molecular weight up to a limiting value. Tensile mechanical testing (simple extension and cyclic loading) demonstrates that the tensile strength (ca. 30 MPa) and strain at break (>500%) are comparable to the behavior of CPC triblock thermoplastic elastomers of similar molecular weight and glass content. However, in the CPC materials, processability is constrained by the order-disorder transition temperature, limiting the applications of these materials. Elastic recovery of the XPX materials following seven cycles of tensile deformation is correlated with the fraction of X in the heptablock copolymer, and the residual strain approaches that of CPC when the fraction of hard blocks f{sub X} {le} 0.39.

  11. Synthesis and characterization of oleophobic fluorinated polyester films

    Science.gov (United States)

    Demir, Tugba

    The study presented in this dissertation is dedicated to the synthesis and characterization of oleophobic fluorinated polyester films. Specifically, the blending of oleophilic polyethylene terephthalate (PET) with low surface energy materials such as fluorinated polyesters has been used in order to fabricate oleophobic PET films. First, fluorinated polyesters (P(PF-oate-R)) possessing different end-groups (-COOH, -OH and -CF3) are synthesized via polycondensation reaction of isophthaloyl chloride with perfluoro ether alcohols. Then, they are solvent-blended with PET at various concentrations to obtain oleophobic polyester films of different compositions. In addition, the films are annealed to investigate the effect of annealing on surface properties of the films. The results show that the obtained PET/P(PF-oate-R) polyester films demonstrate low wettability that depended on the polyester end-groups, film compositions, and annealing. It is found that PET blended with fluorinated polyesters terminated with CF3 groups exhibit higher contact angle (CA) with water and oils than other polyesters. In addition, CA increases with increasing P(PF-oate-R) polyester content in blends. To facilitate the oleophobicity of PET films, the fluorinated polyesters terminated with -CF3 groups with two different Mw were synthesized and blended with PET. The results reveal that at low concentrations, low molecular weight polyesters migrate to the surface easily, resulting in higher surface coverage. Thus, it leads to higher water and oil repellency. On the other hand, when they are used at high concentrations, higher molecular weight polyesters in blends reduce the wettability of the surface to the higher level. It is found that the wettability of the PET film surface depends on not only the Mw of polyesters, but also on annealing protocol. To this end, the effects of the annealing temperature on surface wettability are also examined.

  12. Synthesis, characterization and application of functional carbon nano materials

    Science.gov (United States)

    Chu, Jin

    The synthesis, characterizations and applications of carbon nanomaterials, including carbon nanorods, carbon nanosheets, carbon nanohoneycombs and carbon nanotubes were demonstrated. Different growth techniques such as pulsed laser deposition, DC/RF sputtering, hot filament physical vapour deposition, evaporative casting and vacuum filtration methods were introduced or applied for synthesizing carbon nanomaterials. The morphology, chemical compositions, bond structures, electronic, mechanical and sensing properties of the obtained samples were investigated. Tilted well-aligned carbon micro- and nano- hybrid rods were fabricated on Si at different substrate temperatures and incident angles of carbon source beam using the hot filament physical vapour deposition technique. The morphologic surfaces and bond structures of the oblique carbon rod-like structures were investigated by scanning electron microscopy, field emission scanning electron microscopy, transmission electron diffraction and Raman scattering spectroscopy. The field emission behaviour of the fabricated samples was also tested. Carbon nanosheets and nanohoneycombs were also synthesized on Si substrates using a hot filament physical vapor deposition technique under methane ambient and vacuum, respectively. The four-point Au electrodes are then sputtered on the surface of the nanostructured carbon films to form prototypical humidity sensors. The sensing properties of prototypical sensors at different temperature, humidity, direct current, and alternative current voltage were characterized. Linear sensing response of sensors to relative humidity ranging from 11% to 95% is observed at room temperature. Experimental data indicate that the carbon nanosheets based sensors exhibit an excellent reversible behavior and long-term stability. It also has higher response than that of the humidity sensor with carbon nanohoneycombs materials. Conducting composite films containing carbon nanotubes (CNTs) were prepared in

  13. Synthesis and characterization of nanostructured palladium-based alloy electrocatalysts

    Science.gov (United States)

    Sarkar, Arindam

    Low temperature fuel cells like proton exchange membrane fuel cells (PEMFC) are expected to play a crucial role in the future hydrogen economy, especially for transportation applications. These electrochemical devices offer significantly higher efficiency compared to conventional heat engines. However, use of exotic and expensive platinum as the electrocatalyst poses serious problems for commercial viability. In this regard, there is an urgent need to develop low-platinum or non-platinum electrocatalysts with electrocatalytic activity for the oxygen reduction reaction (ORR) superior or comparable to that of platinum. This dissertation first investigates non-platinum, palladium-based alloy electrocatalysts for ORR. Particularly, Pd-M (M = Mo and W) alloys are synthesized by a novel thermal decomposition of organo-metallic precursors. The carbon-supported Pd-M (M = Mo, W) electrocatalyts are then heat treated up to 900°C in H2 atmosphere and investigated for their phase behavior. Cyclic voltammetry (CV) and rotating disk electrode (RDE) measurements reveal that the alloying of Pd with Mo or W significantly enhances the catalytic activity for ORR as well as the stability (durability) of the electrocatalysts. Additionally, both the alloy systems exhibit high tolerance to methanol, which is particularly advantageous for direct methanol fuel cells (DMFC). The dissertation then focuses on one-pot synthesis of carbon-supported multi-metallic Pt-Pd-Co nanoalloys by a rapid microwave-assisted solvothermal (MW-ST) method. The multi-metallic alloy compositions synthesized by the MW-ST method show much higher catalytic activity for ORR compared to their counterparts synthesized by the conventional borohydride reduction method. Additionally, a series of Pt encapsulated Pd-Co nanoparticle electrocatalysts are synthesized by the MW-ST method and characterized to understand their phase behavior, surface composition, and electrocatalytic activity for ORR. Finally, the dissertation

  14. Synthesis, Characterization, and Electrochemical Properties of Polyaniline Thin Films

    Science.gov (United States)

    Rami, Soukaina

    Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of this thesis is to synthesize and characterize polyaniline thin films with and without dyes. Also, the purpose of this thesis is to find the fastest electroactive switching PANI electrode in different electrolytic medium by studying their electrochemical properties. These films were fabricated using two deposition techniques: in-situ self-assembly and electrochemical deposition. The characterization of these films was done using techniques such as Fourier Transform Infrared Spectroscopy (FTIR), UV-spectroscopy, Scanning Electron Microscope (SEM), and X-Ray Diffraction (XRD). FTIR and UV-spectroscopy showed similar results in the structure of the polyaniline films. However, for the dye incorporated films, since there was an addition in the synthesis of the material, peak locations shifted, and new peaks corresponding to these materials appeared. The 1 layer PANI showed compact film morphology, comparing to other PANI films, which displayed a fiber-like structure. Finally, the electrochemical properties of these thin films were studied using cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) in

  15. Synthesis and characterization of [M(III)(PS)2(L)] mixed-ligand compounds (M = Re, 99Tc; PS = phosphinothiolate; L = dithiocarbamate) as potential models for the development of new agents for SPECT imaging and radiotherapy.

    Science.gov (United States)

    Salvarese, N; Morellato, N; Venzo, A; Refosco, F; Dolmella, A; Bolzati, C

    2013-06-03

    The synthesis and characterization of a new series of neutral, six-coordinated mixed-ligand compounds [M(III)(PS)2(L)] (M = Re; (99)Tc), where PS is bis(arylalkyl)- or trialkylphosphinothiolate and L is dithiocarbamate, are reported. Stable [M(III)(PS)2(L)] complexes were easily synthesized, in good yield, starting from precursors where the metal was in different oxidation states (III, V, and VII), involving ligand-exchange and/or redox-substitution reactions. The compounds were characterized by elemental analysis, positive-ion electrospray ionization mass spectrometry, multinuclear NMR spectroscopy, cyclic voltammetry, and X-ray diffraction analysis. All complexes are constituted by the presence of the [M(III)(PS)2](+) moiety, where two phosphinothiolate ligands are tightly bound to the metal and the remaining two positions are saturated by a dithiocarbamate chelate, also carrying bulky bioactive molecules [e.g., (2-methoxyphenyl)piperazine]. X-ray analyses were performed on crystalline specimens of four different Re/(99)Tc compounds sharing a distorted trigonal-prismatic geometry, with a P2S4 coordination donor set. The possibility of easily preparing these [M(III)(PS)2(L)] complexes, starting from the corresponding permetalate anions, in mild reaction conditions and in high yield, lays the first stone to the preparation of a new series of M(III)-based (M = (99m)Tc/(188)Re) compounds potentially useful in theragnostic applications.

  16. Synthesis and characterization of GAP/BAMO copolymers applied at high energetic composite propellants

    Directory of Open Access Journals (Sweden)

    Paul Bernt Kempa

    2010-09-01

    Full Text Available The main objective of these studies was the synthesis and characterization of new energetic binders and their use in some propellant formulations. Following the working plan elaborated, the synthesis and characterization of the following compounds has been done successfully:• GAP;• energetic Monomer BAMO;• energetic Binders;• copolymer GAP/PolyBAMO.The scale up for the synthesis of copolymer GAP/PolyBAMO and PolyBAMO using GAP as initiator has been done and they were fully characterized by IR, (¹H, ¹³C NMR-spectroscopy, GPC, elemental analysis, OH-functionality, differential scanning calorimetry (DSC and sensitivity tests (friction, impact. For this two scale up synthesis some propellant formulations were carried out and the results of mechanical and burning properties have been compared with GAP propellants.

  17. Synthesis, characterization, and metabolism studies of fluspidine enantiomers.

    Science.gov (United States)

    Holl, Katharina; Falck, Evamaria; Köhler, Jens; Schepmann, Dirk; Humpf, Hans-Ulrich; Brust, Peter; Wünsch, Bernhard

    2013-12-01

    The enantiomers of the potent σ1 ligand fluspidine (1) were prepared by using chiral preparative HPLC. Synthesis of racemic tosylate 2 and subsequent separation of enantiomers yielded (R)-2 and (S)-2 in excellent enantiomeric purities. The fluspidine enantiomers (R)-1 and (S)-1 were synthesized from (R)-2 and (S)-2 by nucleophilic substitution with tetra-n-butylammonium fluoride, affording (R)-1 with 99.6 % ee and (S)-1 with 96.4 % ee. Tosylates (R)-2 and (S)-2 can also serve as precursors for the radiosynthesis of enantiomerically pure radiotracers [(18) F](R)-1 and [(18) F](S)-1. The absolute configuration of the pure enantiomers was elucidated by comparison of their CD spectra with a calculated CD spectrum of a simplified model compound. In receptor binding studies, both enantiomers displayed very high σ1 receptor affinity and selectivity against the σ2 receptor. (R)-Fluspidine ((R)-1) is the eutomer, with a Ki value of 0.57 nM and a eudysmic ratio of 4. Incubation of (R)-1 and (S)-1 with rat liver microsomes led to the identification of seven and eight metabolites, respectively. Although the S-configured enantiomer formed additional metabolite (S)-1-3, it is metabolically more stable than (R)-1. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of a naphthalene-hydroxynaphthalene polymer model compound

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-02

    The objective of this project was the synthesis of one pound of a new naphthalene-hydroxynaphthalene polymer model compound for use in coal combustion studies. Since this compound was an unreported compound, this effort also required the development of a synthetic route to this compound (including routes to the unique and unreported intermediates leading to its synthesis).

  19. Microwave Assisted Synthesis and Characterization of Perovskite Oxides

    OpenAIRE

    Prado-Gonjal, Jesus; Schmidt, Rainer; Moran, Emilio

    2014-01-01

    The use of microwave irradiation is a promising alternative heat source for the synthesis of inorganic materials such as perovskite oxides. The method offers massive energy and time savings as compared to the traditional ceramic method. In this work we review the basic principles of the microwave heating mechanism based on interactions between dipoles in the material and the electromagnetic microwave. Furthermore, we comment on and classify all different sub-types of microwave synthesis such ...

  20. Synthesis and Characterization of 5- and 6- Coordinated Alkali Pertechnetates

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jamie; Soderquist, Chuck; Gassman, Paul; Walter, Eric; Lukens, Wayne; McCloy, John S.

    2017-01-01

    The local chemistry of technetium-99 (99Tc) in oxide glasses is important for understanding the incorporation and long-term release of Tc from nuclear waste glasses, both those for legacy defense wastes and fuel reprocessing wastes. Tc preferably forms Tc(VII), Tc(IV), or Tc(0) in glass, depending on the level of reduction of the melt. Tc(VII) in oxide glasses is normally assumed to be isolated pertechnetate TcO4-anions surrounded by alkali, but can occasionally precipitate as alkali pertechnetate salts such as KTcO4and NaTcO4when Tc concentration is high. In these cases, Tc(VII) is 4-coordinated by oxygen. A reinvestigation of the chemistry of alkali-technetium-oxides formed under oxidizing conditions and at temperatures used to prepare nuclear waste glasses showed that higher coordinated alkali Tc(VII) oxide species had been reported, including those with the TcO5-and TcO6-anions. The chemistry of alkali Tc(VII) and other alkali-Tc-oxides is reviewed, along with relevant synthesis conditions.

    Additionally, we report attempts to make 5- and 6-coordinate pertechnetate compounds of K, Na, and Li, i.e. TcO5-and TcO6-. It was found that higher coordinated species are very sensitive to water, and easily decompose into their respective pertechnetates. It was difficult to obtain pure compounds, but mixtures of the pertechnetate and other phase(s) were frequently found, as evidenced by x-ray absorption spectroscopy (XAS), neutron diffraction (ND), and Raman spectroscopy. Low temperature electron paramagnetic resonance (EPR) measurements showed the possibility of Tc(IV) and Tc(VI) in Na3TcO5and Na5TcO6compounds.

    It was hypothesized that the smaller counter cation would result in more stable pertechnetates. To confirm the synthesis method, LiReO4and Li5

  1. The Synthesis and Characterization of Some Fluoride Perovskites: An Undergraduate Experiment in Solid State Chemistry.

    Science.gov (United States)

    Langley, Richard H.; And Others

    1984-01-01

    Describes a senior-level experiment dealing with the synthesis and characterization of a perovskite. Since most perovskites are cubic, their characterization by x-ray diffraction is simplified. In addition, magnetic ordering may be observed and the effects of a Jahn-Teller distortion seen. (JN)

  2. Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea

    Energy Technology Data Exchange (ETDEWEB)

    Sapari, Suhaila; Yamin, Bohari M.; Hasbullah, Aishah; Ibrahim, Nazlina [School of Chemical Science and Food Technology, Faculty of Science and Technology, The National University of Malaysia, 43600, Bangi, Selangor (Malaysia)

    2014-09-03

    Synthesis, characterization and antibacterial studies of 2-chloro-5-fluoro-N-[dibenzyl carbamothioyl] benzamide thiourea has been reported. The compound characterized by using elementary analysis CHNS, IR, {sup 1}H NMR and {sup 13}C NMR spectroscopies. The compounds have been screened for their antibacterial studies.

  3. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  4. Synthesis, characterization, and biosensing application of novel hybrid nanomaterials

    Science.gov (United States)

    Mao, Shun

    Hybrid nanomaterials consisting of nanoparticles (NPs) distributed on the surface of the carbon nanotube (CNT)/graphene represent a new class of materials. These materials could potentially display not only the unique properties of NPs and those of the CNT/graphene, but also additional novel properties due to the interaction between the NP and the CNT/graphene. This thesis entails the synthesis and characterization of NP-CNT/graphene hybrid nanomaterials and the demonstration of their use for biosensors. A simple method that combines an electrospray technique with electrostatic force directed assembly (ESFDA) was developed for successful functionalization of the CNT/thermally-reduced graphene oxide (TRGO) with NPs. Colloidal CdSe NPs, Au NPs, and Au NP-antibody conjugates were electrosprayed and assembled onto random CNTs, vertically-aligned CNT arrays, and TRGO sheets in a controlled manner. CNT and TRGO field-effect transistors (FETs) were fabricated; and novel electronic protein biosensors based on the CNTFET/TRGO FET and Au NP-antibody conjugates were demonstrated. The electrical detection of the protein binding was accomplished by the introduction of Au NP-antibody conjugates in the CNTFET/TRGO FET, in which the Au-coated CNT/TRGO serves as the electrical conducting channel. Antibody (anti-horseradish peroxidase/anti-Immunoglobulin G) and antigen (horseradish peroxidase/Immunoglobulin G) binding events led to the change in the CNT/TRGO conductivity, which was sensitively detected by FET and direct current (dc) measurements. The CNTFET biosensor had a detection limit of 0.2 mg/ml (˜4.5 microM, horseradish peroxidase) while the TRGO FET biosensor exhibited a detection limit of 2 ng/ml (˜13 pM, Immunoglobulin G), which is among the best of carbon nanomaterial (e.g., CNT, graphene, GO)-based protein sensors. The dependence of the sensor response on the TRGO resistance and the antibody areal density on the TRGO sheet was systematically studied, and the sensor

  5. Synthesis and characterization of TEP-EDTA-regulated bioactive hydroxyapatite

    Science.gov (United States)

    Haders, Daniel Joseph, II

    Hydroxyapatite (HA), Ca10(PO4)6(OH) 2, the stoichiometric equivalent of the ceramic phase of bone, is the preferred material for hard tissue replacement due to its bioactivity. However, bioinert metals are utilized in load-bearing orthopedic applications due to the poor mechanical properties of HA. Consequently, attention has been given to HA coatings for metallic orthopedic implants to take advantage of the bioactivity of HA and the mechanical properties of metals. Commercially, the plasma spray process (PS-HA) is the method most often used to deposit HA films on metallic implants. Since its introduction in the 1980's, however, concerns have been raised about the consequences of PS-HA's low crystallinity, lack of phase purity, lack of film-substrate chemical adhesion, passivation properties, and difficulty in coating complex geometries. Thus, there is a need to develop inexpensive reproducible next-generation HA film deposition techniques, which deposit high crystallinity, phase pure, adhesive, passivating, conformal HA films on clinical metallic substrates. The aim of this dissertation was to intelligently synthesize and characterize the material and biological properties of HA films on metallic substrates synthesized by hydrothermal crystallization, using thermodynamic phase diagrams as the starting point. In three overlapping interdisciplinary studies the potential of using ethylenediamine-tetraacetic acid/triethyl phosphate (EDTA/TEP) doubly regulated hydrothermal crystallization to deposit HA films, the TEP-regulated, time-and-temperature-dependent process by which films were deposited, and the bioactivity of crystallographically engineered films were investigated. Films were crystallized in a 0.232 molal Ca(NO3)2-0.232 molal EDTA-0.187 molal TEP-1.852 molal KOH-H2O chemical system at 200°C. Thermodynamic phase diagrams demonstrated that the chosen conditions were expected to produce Ca-P phase pure HA, which was experimentally confirmed. EDTA regulation of

  6. Material Synthesis and Characterization on Low-Dimensional Cobaltates

    Science.gov (United States)

    Sha, Hao

    In this thesis, results of the investigation of a new low-dimensional cobaltates Ba2-xSrxCoO 4 are presented. The synthesis of both polycrystalline and single crystalline compounds using the methods of conventional solid state chemical reaction and floating-zone optical furnace is first introduced. Besides making polycrystalline powders, we successfully, for the first time, synthesized large single crystals of Ba2CoO4. Single crystals were also obtained for Sr doped Ba2-xSrxCoO 4. Powder and single crystal x-ray diffraction results indicate that pure Ba2CoO4 has a monoclinic structure at room temperature. With Sr doping, the lattice structure changes to orthorhombic when x ≥ 0.5 and to tetragonal when x = 2.0. In addition, Ba2CoO4 and Sr2CoO4, have completely different basic building blocks in the structure. One is CoO4 tetrahedron and the later is CoO6 octahedron, respectively. Electronic and magnetic properties were characterized and discussed. The magnetic susceptibility, specific heat and thermal conductivity show that Ba2CoO4 has an antiferromagnetic (AF) ground state with an AF ordering temperature TN = 25 K. However, the magnitude of the Neel temperature TN is significantly lower than the Curie-Weiss temperature (|theta| ˜ 110 K), suggesting either reduced-dimensional magnetic interactions and/or the existence of magnetic frustration. The AF interaction persists in all the samples with different doping concentrations. The Neel temperature doesn't vary much in the monoclinic structure regime but decreases when the system enters orthorhombic. Magnetically, Ba2CoO4 has an AF insulating ground state while Sr2CoO4 has a ferromagnetic (FM) metallic ground state. Neutron powder refinement results indicate a magnetic structure with the spin mostly aligned along the a-axis. The result from a mu-spin rotation/relaxation (mu+SR) experiment agrees with our refinement. It confirms the AF order in the ab -plane. We also studied the spin dynamics and its anisotropy in

  7. Synthesis and characterization of novel fullerenes and carbon nanotubes

    Science.gov (United States)

    Piskoti, Charles Richard

    Since the discovery of Buckminsterfullerene, the soccerball shaped carbon-caged molecule consisting of 60 carbon atoms, there has been much speculation about the stability of other "fullerenes" with less than 60 carbon atoms. Although several fullerenes with greater than 60 carbon atoms have since been isolated in bulk, the only evidence of lower fullerenes has come from minute-quantity gas phase experiments. This thesis presents work on the first ever bulk synthesis, extraction and characterization of a lower fullerene: C36. By exploring the parameter space of the Kratschmer-Huffman graphite arc-discharge method, C36 was produced in milligram quantities. This new material which was extracted with pyridine was found by electron diffraction to form a covalently bonded solid with a d-spacing of 6.68 A. This material is electrically insulating in its pure form but it becomes conducting upon intercalation with alkali metals. The resistance vs temperature behavior of the alkali intercalated samples is consistent with variable range hopping. From microwave-loss measurements and current vs. voltage data, there are preliminary results that may indicate the presence of a very small superconducting fraction in these alkali doped samples. This result would be consistent with predictions by Grossman, Cote, Cohen and Louie that a certain isomer of C 36 with D6h symmetry has an exceptionally strong electron-phonon coupling constant. Other developments described in this thesis include a method of synthesizing multi-walled carbon nanotubes in high yield at an accelerated rate using a low pressure mixture of nitrogen and helium as the buffer gas. Also, a simple technique has been developed for synthesizing magnetic nickel-iron clusters that are coated with both electrical insulators and electrical conductors. These clusters may have a variety of applications in the fields of magnetic recording and biochemistry where magnetic manipulation of cells is important. Finally, a

  8. Solvothermal synthesis and characterization of monodisperse superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shichuan; Zhang, Tonglai; Tang, Runze; Qiu, Hao [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Wang, Caiqin [Shandong Special Industry Group Co., Ltd, Shandong 255201 (China); Zhou, Zunning [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China)

    2015-04-01

    A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (M{sub s}) of 97.979 emu/g and retentivity (M{sub r}) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material. - Highlights: • A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work. • The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes. • The superparamagnetic NaCit–Fe{sub 3}O{sub 4} samples have high saturation magnetization (M{sub s}) of 69.641 emu/g and low retentivity (M{sub r}) of 0.8 emu/g. • The relevant formation mechanisms of the two types of samples are proposed.

  9. Atomistic Modelling of Si Nanoparticles Synthesis

    Directory of Open Access Journals (Sweden)

    Giovanni Barcaro

    2017-02-01

    Full Text Available Silicon remains the most important material for electronic technology. Presently, some efforts are focused on the use of Si nanoparticles—not only for saving material, but also for improving the efficiency of optical and electronic devices, for instance, in the case of solar cells coated with a film of Si nanoparticles. The synthesis by a bottom-up approach based on condensation from low temperature plasma is a promising technique for the massive production of such nanoparticles, but the knowledge of the basic processes occurring at the atomistic level is still very limited. In this perspective, numerical simulations can provide fundamental information of the nucleation and growth mechanisms ruling the bottom-up formation of Si nanoclusters. We propose to model the low temperature plasma by classical molecular dynamics by using the reactive force field (ReaxFF proposed by van Duin, which can properly describe bond forming and breaking. In our approach, first-principles quantum calculations are used on a set of small Si clusters in order to collect all the necessary energetic and structural information to optimize the parameters of the reactive force-field for the present application. We describe in detail the procedure used for the determination of the force field and the following molecular dynamics simulations of model systems of Si gas at temperatures in the range 2000–3000 K. The results of the dynamics provide valuable information on nucleation rate, nanoparticle size distribution, and growth rate that are the basic quantities for developing a following mesoscale model.

  10. Synthesis, characterization and mechanistic insights of mycogenic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bhargava, Arpit; Jain, Navin; Manju Barathi L [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India); Akhtar, Mohd Sayeed [Jimma University, Department of Applied Microbiology, College of Natural Sciences (Ethiopia); Yun, Yeoung-Sang [Chonbuk National University, Division of Environmental and Chemical Engineering (Korea, Republic of); Panwar, Jitendra, E-mail: drjitendrapanwar@yahoo.co.in [Birla Institute of Technology and Science, Centre for Biotechnology, Department of Biological Sciences (India)

    2013-11-15

    In the present study, extracellular synthesis of iron oxide nanoparticles (IONPs) was achieved using Aspergillus japonicus isolate AJP01. The isolate demonstrated its ability to hydrolyze the precursor salt solution, a mixture of iron cyanide complexes, under ambient conditions. Hydrolysis of these complexes released ferric and ferrous ions, which underwent protein-mediated coprecipitation and controlled nucleation resulting in the formation of IONPs. Transmission electron microscopy, selected area electron diffraction pattern, energy dispersive spectroscopy and grazing incidence X-ray diffraction analysis confirmed the mycosynthesis of IONPs. The synthesized particles were cubic in shape with a size range of 60–70 nm with crystal structure corresponding to magnetite. Scanning electron microscopy analysis revealed the absence of IONPs on fungal biomass surface, indicating the extracellular nature of synthesis. Fourier transform infrared spectroscopy confirmed the presence of proteins on as-synthesised IONPs, which may confer their stability. Preliminary investigation indicated the role of proteins in the synthesis and stabilization of IONPs. On the basis of present findings, a probable mechanism for synthesis of IONPs is suggested. The simplicity and versatility of the present approach can be utilized for the synthesis of other nanomaterials.

  11. Template-Assisted Synthesis and Characterization of Passivated Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Al-Omari IA

    2010-01-01

    Full Text Available Abstract Potential applications of nickel nanoparticles demand the synthesis of self-protected nickel nanoparticles by different synthesis techniques. A novel and simple technique for the synthesis of self-protected nickel nanoparticles is realized by the inter-matrix synthesis of nickel nanoparticles by cation exchange reduction in two types of resins. Two different polymer templates namely strongly acidic cation exchange resins and weakly acidic cation exchange resins provided with cation exchange sites which can anchor metal cations by the ion exchange process are used. The nickel ions which are held at the cation exchange sites by ion fixation can be subsequently reduced to metal nanoparticles by using sodium borohydride as the reducing agent. The composites are cycled repeating the loading reduction cycle involved in the synthesis procedure. X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron microscopy, Energy Dispersive Spectrum, and Inductively Coupled Plasma Analysis are effectively utilized to investigate the different structural characteristics of the nanocomposites. The hysteresis loop parameters namely saturation magnetization and coercivity are measured using Vibrating Sample Magnetometer. The thermomagnetization study is also conducted to evaluate the Curie temperature values of the composites. The effect of cycling on the structural and magnetic characteristics of the two composites are dealt in detail. A comparison between the different characteristics of the two nanocomposites is also provided.

  12. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    Energy Technology Data Exchange (ETDEWEB)

    Goveas, J. J., E-mail: jenicegoveas@gmail.com; Gonsalves, R. A.; Rao, P.; Pinto, R. [Department of Chemistry, St Aloysius College (Autonomous), Mangalore-575003 (India)

    2016-05-23

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimide (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.

  13. Synthesis and characterization of vanadium nanoparticles on activated carbon and their catalytic activity in thiophene hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Susana [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela); Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); D' Ornelas, Lindora [Centro de Quimica Organometalica y Macromolecular, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 47778 (Venezuela); Betancourt, Paulino [Centro de Catalisis, Petroleo y Petroquimica, Escuela de Quimica, Facultad de Ciencias, Universidad Central de Venezuela, AP, Caracas 40679 (Venezuela)], E-mail: pbetanco@strix.ciens.ucv.ve

    2008-06-30

    Vanadium nanoparticles ({approx}7 nm) stabilized on activated carbon were synthesized by the reduction of VCl{sub 3}.3THF with K[BEt{sub 3}H]. This material was characterized by inductive coupled plasma-atomic emission spectroscopy (ICP-AES), high-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) analyses. The catalytic performance of the carbon-supported vanadium was studied using thiophene hydrodesulfurization (HDS) as model reaction at 300 deg. C and P = 1 atm. The catalytic activity of the vanadium carbide phase on the activated carbon carrier was more significant than that of the reference catalysts, alumina supported NiMoS. The method proposed for the synthesis of such a catalyst led to an excellent performance of the HDS process.

  14. Chiral hybrid inorganic-organic materials: synthesis, characterization, and application in stereoselective organocatalytic cycloadditions.

    Science.gov (United States)

    Puglisi, Alessandra; Benaglia, Maurizio; Annunziata, Rita; Chiroli, Valerio; Porta, Riccardo; Gervasini, Antonella

    2013-11-15

    The synthesis of chiral imidazolidinones on mesoporous silica nanoparticles, exploiting two different anchoring sites and two different linkers, is reported. Catalysts 1-4 were prepared starting from l-phenylalanine or l-tyrosine methyl esters and supporting the imidazolidinone onto silica by grafting protocols or azide-alkyne copper(I)-catalyzed cycloaddition. The four catalysts were fully characterized by solid-state NMR, N2 physisorption, SEM, and TGA in order to provide structural assessments, including an evaluation of surface areas, pore dimensions, and catalyst loading. They were used in organocatalyzed Diels-Alder cycloadditions between cyclopentadiene and different aldehydes, affording results comparable to those obtained with the nonsupported catalyst (up to 91% yield and 92% ee in the model reaction between cyclopentadiene and cinnamic aldehyde). The catalysts were recovered from the reaction mixture by simple filtration or centrifugation. The most active catalyst was recycled two times with some loss of catalytic efficiency and a small erosion of ee.

  15. Pyrazine motif containing hexagonal macrocycles: synthesis, characterization, and host-guest chemistry with nitro aromatics.

    Science.gov (United States)

    Bhowmick, Sourav; Chakraborty, Sourav; Das, Atanu; Nallapeta, Sivaramaiah; Das, Neeladri

    2015-09-21

    The synthesis and characterization of cationic two-dimensional metallamacrocycles having a hexagonal shape and cavity are described. Both macrocycles utilize a pyrazine motif containing an organometallic acceptor tecton with platinum(II) centers along with different donor ligands. While one macrocycle is a relatively larger [6 + 6], the other is a relatively smaller [2 + 2] polygon. A unique feature of the smaller ensemble is that it is an irregular polygon in which all six edges are not of equal length. Molecular modeling of these macrocycles confirmed the presence of hexagonal cavities. The ability of these π-electron rich macrocycles to act as potential hosts for relatively electron deficient nitroaromatics (DNT = 2,4-dinitrotoluene and PA = picric acid) has been studied using isothermal titration calorimetry (ITC) as a tool. Molecular dynamics simulation studies were subsequently performed to gain critical insight into the binding interactions between the nitroaromatic guest molecules (PA/DNT) and the ionic macrocycles reported herein.

  16. Synthesis and characterization of zinc-molybdenum oxide photocatalysts using an electrochemical-thermal process

    Science.gov (United States)

    Goveas, J. J.; Gonsalves, R. A.; Rao, P.; Pinto, R.

    2016-05-01

    Dyes act as major pollutants in water and can be degraded by photocatalysis. This paper establishes the role of electrochemically generated nanostructures of Zinc-Molybdenum oxides (ZMO) as photocatalysts by degrading EBT (Eriochrome Black- T) taken as a model pollutant under UV light. A facile, rapid and low cost process to synthesize these nanostructures (ZMO) is presented. Various factors that affect the synthesis and photocatalytic activity of these nanostructures are discussed. The role of calcination temperature and pulverization on the photocatalytic action has also been established. Particles have been synthesized in pure form as well as using surfactants such as cetrimide (cetyl trimethyl ammonium bromide), polyethylene glycol (PEG) and SDS (sodium dodecyl sulphate) to enhance their photocatalytic action. This paper also discusses the characterization of these nanoparticles by powder XRD, SEM, FT-IR and UV-Visible spectroscopy. Decolourisation was achieved to completion under optimum experimental conditions at room temperature ascertaining the application of these nanostructures as effective photocatalysts.

  17. Simulation of DME synthesis from coal syngas by kinetics model

    Energy Technology Data Exchange (ETDEWEB)

    Shim, H.M.; Lee, S.J.; Yoo, Y.D.; Yun, Y.S.; Kim, H.T. [Ajou University, Suwon (Republic of Korea)

    2009-05-15

    DME (Dimethyl Ether) has emerged as a clean alternative fuel for diesel. In this study it is developed a simulation model through a kinetics model of the ASPEN plus simulator, performed to detect operating characteristics of DME direct synthesis. An overall DME synthesis process is referenced by experimental data of 3 ton/day (TPD) coal gasification pilot plant located at IAE in Korea. Supplying condition of DME synthesis model is equivalently set to 80 N/m{sup 3} of syngas which is derived from a coal gasification plant. In the simulation it is assumed that the overall DME synthesis process proceeds with steady state, vapor-solid reaction with DME catalyst. The physical properties of reactants are governed by Soave-Redlich-Kwong (SRK) EOS in this model. A reaction model of DME synthesis is considered that is applied with the LHHW (Langmuir-Hinshelwood Hougen Watson) equation as an adsorption-desorption model on the surface of the DME catalyst. After adjusting the kinetics of the DME synthesis reaction among reactants with experimental data, the kinetics of the governing reactions inner DME reactor are modified and coupled with the entire DME synthesis reaction. For validating simulation results of the DME synthesis model, the obtained simulation results are compared with experimental results: conversion ratio, DME yield and DME production rate. Then, a sensitivity analysis is performed by effects of operating variables such as pressure, temperature of the reactor, void fraction of catalyst and H{sub 2}/CO ratio of supplied syngas with modified model. According to simulation results, optimum operating conditions of DME reactor are obtained in the range of 265-275{sup o}C and 60 kg/cm{sup 2}. And DME production rate has a maximum value in the range of 1-1.5 of H{sub 2}/CO ratio in the syngas composition.

  18. Microwave-assisted rapid synthesis, characterization and application of poly (D,L-lactide)-graft-pullulan.

    Science.gov (United States)

    Tang, Xiao-Jiao; Huang, Jun; Xu, Liang-Yu; Li, Yang; Song, Juan; Ma, Yue; Yang, Li; Yuan, Dan; Wu, Hai-Yang

    2014-07-17

    A novel microwave-assisted method was developed to synthetize amphiphilic copolymer poly (d,l-lactide)-graft-pullulan (PL) in a monomode microwave reactor. The effects of microwave power, ratio of catalyst/lactide, ratio of lactide/hydroxyl group of pullulan (lactide/OH-P) and solvent on the synthesis were further investigated. Three samples (designated as PL 8, 9, and 6), characterized by FT-IR and NMR, were applied to form nanoparticles and microparticles investigated by dynamic light scattering, fluorescence spectroscopy and transmission electron microscopy. PL9 and PL6 were used for loading model drug curcumin. The results indicated that microwave-assisted synthesis shortened the copolymerization of PL, with higher yield and lactide conversion, from 24h to 5 min and showed some specific microwave effects compared with conventional oil heating. PL with a relative higher substitution degree gave nanoparticles with smaller sizes and critical aggregation concentrations. The solubility of curcumin was increased to 1.97 mg mL(-1) as the forms of nanoparticles.

  19. Synthesis and characterization of a linker for primary amines used in the solid phase organic synthesis of spermidine

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Emerson T. da; San Gil, Rosane A.S.; Lima, Edson L.S. [Universidade Federal do Rio de Janeiro (IQ/UFRJ), RJ (Brazil). Inst. de Quimica; Caldarelli, Stefano [Aix-Marseille Univ., Marseille (France). Campus de Saint Jerome; Ziarelli, Fabio [Aix-Marseille Universite Spectropole - Federation de Sciences Chimiques de Marseille, Campus de Saint Jerome (France)

    2011-07-01

    A linker resin for the synthesis of functionalized spermidine in good yield is described, along with its characterization by infrared (IR), {sup 13}C solid-state nuclear magnetic resonance with cross polarization and magic angle spinning ({sup 13}C CPMAS NMR) and {sup 1}H high resolution magic angle spinning nuclear magnetic resonance ({sup 1}H HRMAS NMR). This linker has been regenerated after cleavage of spermidine and re-used without loss of efficiency. (author)

  20. Characterizing the mechanism(s) of heavy element synthesis reactions

    Science.gov (United States)

    Loveland, Walter

    2016-12-01

    A review of the current state of our understanding of complete fusion reaction mechanisms is presented, from the perspective of an experimentalist. For complete fusion reactions, the overall uncertainties in predicting heavy element synthesis cross sections are examined in terms of the uncertainties associated with the calculations of capture cross sections, fusion probabilities and survival probabilities.

  1. SYNTHESIS, CHARACTERIZATION AND BIOACTIVITY Zn2+, Cu2+ ...

    African Journals Online (AJOL)

    ray powder diffraction analysis of complexes (2) and (3) indicate that the ... wastewater and catalytic processes [15]. furthermore, azo compounds have an increased ...... Dong Koo, K.; Lee, C.S.; Sung Koh, J.; Kim, G.T. Design and synthesis of ...

  2. Synthesis and characterization of zwitterionic carbon dioxide fixing reagents

    DEFF Research Database (Denmark)

    Mikkelsen, Mette; Jørgensen, Mikkel; Krebs, Frederik C

    2010-01-01

    The synthesis of three amine-based carbon dioxide fixing reagents is presented. The reagents were designed so that they would be able to bind CO2 reversibly through the formation of the well known carbamates that was stabilized through forming a zwitterion. CO2 fixing experiments were performed...

  3. Synthesis of an Albendazole Metabolite: Characterization and HPLC Determination

    Science.gov (United States)

    Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Nunez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo

    2008-01-01

    In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H[subscript 2]O[subscript 2] in acetic acid. The reaction is environmental friendly,…

  4. Synthesis and photonic bandgap characterization of polymer inverse opals

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, H.; Meseguer, F.; Lopez, C. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Inst. de Ciencia de Materiales; Universidad Politecnica de Valencia (Spain). Centro Tecnologico de Ondas; Lopez-Tejeira, F.; Sanchez-Dehesa, J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica de la Materia Condensada

    2001-03-16

    Polymer inverse opals with long-range order have been fabricated and their photonic crystal behavior examined. Good agreement between band structure calculations and experiment is found. It is envisaged that these inverse opals could be used for the modification of the electronic properties of incorporated luminescent materials and as matrices for the synthesis of spherical colloidal particles. (orig.)

  5. The synthesis and characterization of 2-mercaptoethyl methacrylate

    Directory of Open Access Journals (Sweden)

    Knežević Marija

    2005-01-01

    Full Text Available The synthesis of 2-mercaptoethyl methacrylate from methacrylic acid and 2-mercaptoethanol by etherification using acetyl chloride as catalyst was optimized. The purity of the obtained product was controlled by gas chromatography and its identity confirmed by H-NMR and FTIR spectroscopy. 2-Mercapto-ethyl methacrylate could find application as a chain transfer agent in radical polymerizations.

  6. Synthesis of an Albendazole Metabolite: Characterization and HPLC Determination

    Science.gov (United States)

    Mahler, Graciela; Davyt, Danilo; Gordon, Sandra; Incerti, Marcelo; Nunez, Ivana; Pezaroglo, Horacio; Scarone, Laura; Serra, Gloria; Silvera, Mauricio; Manta, Eduardo

    2008-01-01

    In this laboratory activity, students are introduced to the synthesis of an albendazole metabolite obtained by a sulfide oxidation reaction. Albendazole as well as its metabolite, albendazole sulfoxide, are used as anthelmintic drugs. The oxidation reagent is H[subscript 2]O[subscript 2] in acetic acid. The reaction is environmental friendly,…

  7. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    Science.gov (United States)

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3

  8. Nanomanufacturing of silica nanowires: Synthesis, characterization and applications

    Science.gov (United States)

    Sekhar, Praveen Kumar

    In this research, selective and bottom-up manufacturing of silica nanowires on silicon (Si) and its applications has been investigated. Localized synthesis of these nanowires on Si was achieved by metal thin film catalysis and metal ion implantation based seeding approach. The growth mechanism of the nanowires followed a vapor-liquid-solid (VLS) mechanism. Mass manufacturing aspects such as growth rate, re-usability of the substrate and experimental growth model were also investigated. Further, silica nanowires were explored as surface enhanced Raman (SER) substrate and immunoassay templates towards optical and electrochemical detection of cancer biomarkers respectively. Investigating their use in photonic applications, optically active silica nanowires were synthesized by erbium implantation after nanowire growth and implantation of erbium as a metal catalyst in Si to seed the nanowires. Ion implantation of Pd in Si and subsequent annealing in Ar at 1100 0 C for 60 mins in an open tube furnace resulted in silica nanowires of diameters ranging from 15 to 90 nm. Similarly, Pt was sputtered on to Si and further annealed to obtain silica nanowires of diameters ranging from 50 to 500 nm. Transmission electron microscopy studies revealed the amorphous nature of the wires. In addition, nano-sized Pd catalyst was found along the body of the nanowires seeded by Pd implantation into Si. After functionalization of the wires with 3 - AminoPropylTriMethoxySilane (APTMS), the Pd decorated silica nanowires served as an SER substrate exhibiting a sensitivity of 10 7 towards the detection of interleukin-10 (IL-10, a cancer biomarker) with higher spatial resolution. Voltammetric detection of IL-10 involved silica nanowires synthesized by Pd thin film catalysis on Si as an immunoassay template. Using the electrochemical scheme, the presence of IL-10 was detected down to 1fg/mL in ideal pure solution and 1 pg/mL in clinically relevant samples. Time resolved photoluminescence (PL

  9. Synthesis and characterization of aminated perfluoro polymer electrolytes

    Science.gov (United States)

    Page-Belknap, Zachary Stephan Glenn

    Polymer electrolytes have been developed for use in anion exchange membrane fuel cells for years. However, due to the highly corrosive environment within these fuel cells, poor chemical stability of the polymers and low ion conductivity have led to high development costs and thus prevention from widespread commercialization. The work in this study aims to provide a solution to these problems through the synthesis and characterization of a novel polymer electrolyte. The 800 EW 3M PFSA sulfonyl fluoride precursor was aminated with 3-(dimethylamino)-1-propylamine to yield a functional polymer electrolyte following quaternization, referred to in this work as PFSa-PTMa. 1 M solutions of LiPF6, HCL, KOH, NaOH, CsOH, NaHCO3 and Na2CO3 were used to exchange the polymer to alternate counterion forms. Chemical structure analysis was performed using both FT and ATR infrared spectroscopy to confirm sulfonyl fluoride replacement and the absence of sulfonic acid sites. Mechanical testing of the polymer, following counterion exchange with KOH, at saturated conditions and 60 ºC exhibited a tensile strength of 13 +/- 2.0 MPa, a Young's modulus of 87 +/- 16 MPa and a degree of elongation reaching 75% +/- 9.1%, which indicated no mechanical degradation following exposure to a highly basic environment. Conductivities of the polymer in the Cl- and OH- counterion forms at saturated conditions and 90 ºC were observed at 26 +/- 8.0 mS cm-1 and 1.1 +/- 0.1 mS cm-1, respectively. OH- conductivities were slightly above those observed for CO32- and HCO 3- counterions at the same conditions, 0.63 +/- 0.18 and 0.66 +/- 0.21 mS cm-1 respectively. The ion exchange capacity (IEC) of the polymer in the Cl- counterion form was measured via titration at 0.57 meq g-1 which correlated to 11.2 +/- 0.10 water molecules per ion site when at 60ºC and 95% relative humidity. The IEC of the polymer in the OH- counterion form following titration expressed nearly negligible charge density, less than 0.01 meq

  10. Synthesis, Characterization and Applications in Catalysis of Polyoxometalate/Zeolite Composites

    Directory of Open Access Journals (Sweden)

    Frédéric Lefebvre

    2016-05-01

    Full Text Available An overview of the synthesis, characterization and catalytic applications of polyoxometalates/zeolites composites is given. The solids obtained by direct synthesis of the polyoxometalate in the presence of the zeolite are first described with their applications in catalysis. Those obtained by a direct mixing of the two components are then reviewed. In all cases, special care is taken in the localization of the polyoxometalate, inside the zeolite crystal, in mesopores or at the external surface of the crystals, as deduced from the characterization methods.

  11. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases

    OpenAIRE

    Saeed Taghvaee Ganjali; Karim Akbari Dilmaghani; Behrouz Shaabani; Abdol Ali Alemi

    2001-01-01

    Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2) is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these lig...

  12. Synthesis and Characterization of Two New p-tert-Butylcalix[4]-arene Schiff Bases

    Directory of Open Access Journals (Sweden)

    Saeed Taghvaee Ganjali

    2001-03-01

    Full Text Available Synthesis and characterization of two new Schiff bases of p-tertbuthylcalix[4]arene (H2L1 and HL2 is described. The synthesis of H2L1 and HL2 has been achieved by the condensation of salicylaldehyde with the amine group of upper rim monoamine p-tert-butylcalix[4]arene in ethanol. These compounds have been characterized on the basis of elemental analysis and spectral data. Solvatochromicity and fluorescence properties were observed and measured for H2L1 and HL2. Solvatochromicity of these ligands indicates their potential for NLO applications.

  13. [Synthesis and Characterization of a Sugar Based Electrolyte for Thin-film Polymer Batteries

    Science.gov (United States)

    1998-01-01

    The work performed during the current renewal period, March 1,1998 focused primarily on the synthesis and characterization of a sugar based electrolyte for thin-film polymer batteries. The initial phase of the project involved developing a suitable sugar to use as the monomer in the polymeric electrolyte synthesis. The monomer has been synthesized and characterized completely. Overall the yield of this material is high and it can be produced in relatively large quantity easily and in high purity. The scheme used for the preparation of the monomer is outlined along with pertinent yields.

  14. Controlling Magnetic and Ferroelectric Order Through Geometry: Synthesis, Ab Initio Theory, Characterization of New Multi-Ferric Fluoride Materials

    Energy Technology Data Exchange (ETDEWEB)

    Halasyamani, Shiv [Univ. of Houston, TX (United States); Fennie, Craig [Cornell Univ., Ithaca, NY (United States)

    2016-11-03

    We have focused on the synthesis, characterization, and ab initio theory on multi-functional mixed-metal fluorides. With funding from the DOE, we have successfully synthesized and characterized a variety of mixed metal fluoride materials.

  15. Preliminary Synthesis and Characterization of Mesoporous Nanocrystalline Zirconia

    Institute of Scientific and Technical Information of China (English)

    Xinmei Liu; Gaoqing Lu; Zifeng Yan

    2003-01-01

    A novel method to prepare mesoporous nano-zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via a solid-state reaction. The materials exhibit a strong diffraction peak at low 2θ angle and their nitrogen adsorption/desorption isotherms are typical of type Ⅳ with H1 hysteresis loops. The pore structure imaged by TEM can be described as wormhole domains.The tetragonal zirconia nanocrystals are uniform in size (around 1.5 nm) and their mesopores focus on around 4.6 nm. The zirconia nanocrystal growth is tentatively postulated to be the result of an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOC12, crystallization and calcination temperature play an important role in the synthesis of mesoporous nano-zirconia.

  16. Unprecedented copper(I) bifluoride complexes: synthesis, characterization and reactivity.

    Science.gov (United States)

    Vergote, Thomas; Nahra, Fady; Welle, Alexandre; Luhmer, Michel; Wouters, Johan; Mager, Nathalie; Riant, Olivier; Leyssens, Tom

    2012-01-16

    To be or not to bifluoride: Two synthetic pathways to unprecedented N-heterocyclic carbene copper(I) bifluoride complexes have been developed. Catalytic tests demonstrated that copper(I) bifluorides are very efficient catalysts, which do not require any additional activating agent. The first Cu-catalyzed diastereoselective allylation of (R)-N-tert-butanesulfinyl aldimines was also established. The method enables efficient, simple and general synthesis of enantiomerically enriched homoallylic amines at room temperature in high yields.

  17. Synthesis, characterization and functionalization of vertically aligned carbon nanotube arrays

    OpenAIRE

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Sciences of Bilkent University, 2012. Thesis (Ph. D.) -- Bilkent University, 2012. Includes bibliographical refences. In the last decade, there has been an increased interest on carbon nanotubes (CNTs) for various applications due to their unique structural, electronic, mechanical and chemical properties. Synthesis of CNTs is no more a challenge with the enhancements and diver...

  18. Synthesis of Telechelic Polyisobutylenes and Polyethers and Their Characterization

    Institute of Scientific and Technical Information of China (English)

    Sándor Kéki; Miklós Nagy; Gy(o)rgy Deák; László Orosz; Miklós Zsuga

    2005-01-01

    @@ 1Introduction Telechelic polymers have attained great consideration as building blocks in the synthesis of block copolymers and networks. Telechelic polymers with various endgroups are also widely used materials for the preparation of polymeric prodrugs. Several methods have been reported to obtain functionalized polymers from the corresponding polyisobutylene (PIB) and polyether derivatives. In this presentation, we will demonstrate very versatile and powerful synthetic methods to obtain telechelic polymers.

  19. Characterization and synthesis of carbon aggregates in high temperature environment

    OpenAIRE

    2013-01-01

    Carbon materials in all its forms, from the natural carbon solid materials, as coal and graphite, to the synthesized carbon materials, as carbon black, pitch fibers, fullerenes, carbon nanotubes, etc,. have been object of many studies regarding their characteristics and behaviour due to their importance in the energy and industrial sectors. Recently, most of the research efforts have been focused on the synthesis of new carbon materials and in particular on their physico-chemical propertie...

  20. Chaos and Hyperchaos in a Model of Ribosome Autocatalytic Synthesis

    OpenAIRE

    Likhoshvai, Vitaly A.; Vladislav V. Kogai; Fadeev, Stanislav I.; Khlebodarova, Tamara M.

    2016-01-01

    Any vital activities of the cell are based on the ribosomes, which not only provide the basic machinery for the synthesis of all proteins necessary for cell functioning during growth and division, but for biogenesis itself. From this point of view, ribosomes are self-replicating and autocatalytic structures. In current work we present an elementary model in which the autocatalytic synthesis of ribosomal RNA and proteins, as well as enzymes ensuring their degradation are described with two mon...

  1. Synthesis and characterization of nanoparticles of CZTSe by microwave-assited chemical synthesis

    Science.gov (United States)

    Reyes Vallejo, O.; Sánchez, Mónica; Pal, Mou; Espinal, R.; Llorca, Jordi; Sebastian, P. J.

    2016-12-01

    In this study we present the synthesis of Cu2ZnSnSe4 (CZTSe) nanoparticles by microwave-assisted chemical synthesis employing organic solvents. The effect of reaction time, reactant concentration, solvent and additives (inorganic material) was studied on the structural and optical properties of the nanomaterials. The powder samples were analyzed by x-ray diffraction, Raman spectroscopy, x-ray energy dispersive spectroscopy and x-ray photoelectron spectroscopy. The results show that the synthesis performed with triethanolamine and deionized water is better than others solvents, producing nanocrystals of quaternary phase (CZTSe) with stoichiometric relations similar to the reported research in the literature, which falls in the range of Cu/(Zn+Sn): 0.8-1.0, Zn/Sn: 1.0-1.20. The nanoparticles of CZTSe synthesized in this study present desirable properties in order to use them in solar cell and photoelectrochemical cell applications.

  2. Coordination mode of pentadentate ligand derivative of 5-amino-1,3,4-thiadiazole-2-thiol with nickel(II) and copper(II) metal ions: synthesis, spectroscopic characterization, molecular modeling and fungicidal study.

    Science.gov (United States)

    Chandra, Sulekh; Gautam, Seema; Kumar, Amit; Madan, Molly

    2015-02-01

    Complexes of nickel(II), and copper(II) were synthesized with pantadentate ligand i.e. 3,3'-thiodipropionicacid-bis(5-amino-1,3,4-thiadiazole-2-thiol) (L). The ligand was synthesized by the condensation of thiodipropionic acid and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio, respectively. Synthesized ligand was characterized by elemental analysis, mass, (1)H NMR, IR, and molecular modeling. All the complexes were characterized by elemental analysis, molar conductance, magnetic moment, IR, electronic spectra, ESR, and molecular modeling. The newly synthesized complexes possessed general composition [M(L)X2] where M = Ni(II), Cu(II), L = pantadentate ligand and X = Cl(-), CH3COO(-). The IR spectral data indicated that the ligand behaved as a pantadentate ligand and coordinated to the metal ion through N2S3 donor atoms. The molar conductance value of Ni(II), and Cu(II) complexes in DMSO corresponded to their electrolytic behavior. On the basis of spectral study, octahedral and tetragonal geometry was assigned for Ni(II) and Cu(II) complexes, respectively. In vitro fungicidal study of ligand and its complexes was investigated against fungi Candida albicans, Candida parapsilosis, Candidia krusei, and Candida tropicalis by means of well diffusion method.

  3. The evolution of the protein synthesis system. I - A model of a primitive protein synthesis system

    Science.gov (United States)

    Mizutani, H.; Ponnamperuma, C.

    1977-01-01

    A model is developed to describe the evolution of the protein synthesis system. The model is comprised of two independent autocatalytic systems, one including one gene (A-gene) and two activated amino acid polymerases (O and A-polymerases), and the other including the addition of another gene (N-gene) and a nucleotide polymerase. Simulation results have suggested that even a small enzymic activity and polymerase specificity could lead the system to the most accurate protein synthesis, as far as permitted by transitions to systems with higher accuracy.

  4. Synthesis and electrochemical characterization of stabilized nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Torres Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Montiel-Palma, V. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Colonia Chamilpa, C.P.62201 Cuernavaca, Morelos (Mexico); Dorantes Rosales, H. [Departamento de Metalurgia, Escuela Superior de Ingenieria Quimica e Industrias Extractivas - IPN, C.P. 07300, D.F. (Mexico)

    2009-02-15

    Nickel stabilized nanoparticles produced by an organometallic approach (Chaudret's method) starting from the complex Ni(1,5-COD){sub 2} were used as electrode materials for hydrogen evolution in NaOH at two temperatures (298 and 323 K). The synthesis of the nickel nanoparticles was performed in the presence of two different stabilizers, 1,3-diaminopropane (DAP) and anthranilic acid (AA), by varying the molar ratios (1:1, 1:2 and 1:5 metal:ligand) in order to evaluate their influence on the shape, dispersion, size and electrocatalytic activity of the metallic particles. The presence of an appropriate amount of stabilizer is an effective alternative to the synthesis of small monodispersed metal nanoparticles with diameters around 5 and 8 nm for DAP and AA, respectively. The results are discussed in terms of morphology and the surface state of the nanoparticles. The importance of developing a well-controlled synthetic method which results in higher performances of the resulting nanoparticles is highlighted. Herein we found that the performance with respect to the HER of the Ni electrodes dispersed on a carbon black Vulcan substrate is active and comparable to that reported in the literature for the state-of-the-art electrocatalysts. Appreciable cathodic current densities of {proportional_to}240 mA cm{sup -2} were measured with highly dispersed nickel particles (Ni-5{sub DAP}). This work demonstrates that the aforementioned method can be extended to the preparation of highly active stabilized metal particles without inhibiting the electron transfer for the HER reaction, and it could also be applied to the synthesis of bimetallic nanoparticles. (author)

  5. Solution combustion synthesis and characterization of nanosized bismuth ferrite

    Science.gov (United States)

    Sai Kumar, V. Sesha; Rao, K. Venkateswara; Krishnaveni, T.; Kishore Goud, A. Shiva; Reddy, P. Ranjith

    2012-06-01

    The present paper describes a simple method of nanosized BiFeO3 by the solution combustion synthesis using bismuth and iron nitrates as oxidizers and the combination fuel of citric acid and ammonium hydroxide, with fuel to oxidizer ratio (Ψ = 1) one. The X-ray Diffraction results indicated rhombohedral phase (R3m) with JCPDS data card no: 72-2035. The ferroelectric transition of the sample at 8310C was detected by differential thermal analysis. Thermal analysis was done by Thermal gravimetric-Differential thermal analyzer and obtained results were presented in this paper.

  6. Plasma synthesis and characterization of ultrafine SiC

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, G.J.; Phillips, D.S.; Taylor, T.N.

    1986-01-01

    Ultrafine SiC powders have been prepared by gas phase synthesis from silane and methane in an argon thermal rf-plasma. Bulk properties of the powders were determined by elemental analysis, x-ray diffractin, helium pycnometry, and BET surface area measurements. The near-surface composition and structure of the particles were examined by x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). In addition to free silicon and carbon particles in the powders, free carbon and various silicon/carbon/oxygen species were found on the surface of the SiC particles.

  7. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Jaskiran, E-mail: kaur.jaskiran@gmail.com; Kaur, Harmanmeet, E-mail: kaur.jaskiran@gmail.com; Singh, Surinder, E-mail: kaur.jaskiran@gmail.com [Department of Physics, Guru Nanak Dev University, Amritsar-143005 (India); Kanjilal, Dinakar [Inter-University Accelerator Centre, New Delhi-110067 (India); Chakarvarti, Shiv Kumar [Manav Rachna International University, Faridabad-121003 (India)

    2014-04-24

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot.

  8. Synthesis and characterization of near IR fluorescent albumin nanoparticles for optical detection of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Sarit; Pellach, Michal [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Kam, Yossi [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Grinberg, Igor; Corem-Salkmon, Enav [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel); Rubinstein, Abraham [Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120 (Israel); Margel, Shlomo, E-mail: shlomo.margel@mail.biu.ac.il [Department of Chemistry, Bar-Ilan Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900 (Israel)

    2013-03-01

    Near IR (NIR) fluorescent human serum albumin (HSA) nanoparticles hold great promise as contrast agents for tumor diagnosis. HSA nanoparticles are considered to be biocompatible, non-toxic and non-immunogenic. In addition, NIR fluorescence properties of these nanoparticles are important for in vivo tumor diagnostics, with low autofluorescence and relatively deep penetration of NIR irradiation due to low absorption of biomatrices. The present study describes the synthesis of new NIR fluorescent HSA nanoparticles, by entrapment of a NIR fluorescent dye within the HSA nanoparticles, which also significantly increases the photostability of the dye. Tumor-targeting ligands such as peanut agglutinin (PNA) and anti-carcinoembryonic antigen antibodies (anti-CEA) were covalently conjugated to the NIR fluorescent albumin nanoparticles, increasing the potential fluorescent signal in tumors with upregulated corresponding receptors. Specific colon tumor detection by the NIR fluorescent HSA nanoparticles was demonstrated in a chicken embryo model and a rat model. In future work we also plan to encapsulate cancer drugs such as doxorubicin within the NIR fluorescent HSA nanoparticles for both colon cancer imaging and therapy. - Highlights: Black-Right-Pointing-Pointer Near IR human serum albumin nanoparticles were synthesized and characterized. Black-Right-Pointing-Pointer Nanoparticles were shown to be physically and chemically stable and photostable. Black-Right-Pointing-Pointer Tumor-targeting ligands were covalently conjugated to the nanoparticles. Black-Right-Pointing-Pointer Specific colon cancer tumor detection was demonstrated in chicken-embryo and rat models.

  9. Synthesis and Characterization of Impurities in the Production Process of Lopinavir.

    Science.gov (United States)

    Raghava Reddy, Ambati V; Garaga, Srinivas; Takshinamoorthy, Chandiran; Naidu, Andra

    2015-01-01

    Lopinavir is an antiretroviral drug used for the inhibition of HIV protease. Four related substances of lopinavir were observed during the manufacturing process of lopinavir in the laboratory and they were identified. The present work describes the origin, synthesis, characterization, and control of these related substances.

  10. Synthesis and Characterization of Star-like Liquid Crystals Centered by Silicon

    Institute of Scientific and Technical Information of China (English)

    Jian Qiang LIU; Qi Zhen ZHANG; Jing Zhi ZHANG

    2004-01-01

    The synthesis and characterization of two new star-like liquid crystals are reported.They are made of a silicon core and four alkoxyazobenzene monomers in the periphery. Their phase behaviors and the structures are determined by infrared absorption spectroscopy (IR),nuclear magnetic resonance spectroscopy (NMR), elemental analysis (EA), polarizing optical microscope (POM) and differential scanning calorimetry (DSC).

  11. Synthesis and Characterization of Process-Related Impurities of Antihypertensive Drug Olmesartan Medoxomil

    OpenAIRE

    Venkanna, G.; Madhusudhan, G.; K. Mukkanti; A. Sankar; Sampath Kumar, Y.; G. Venakata Narayana

    2013-01-01

    Olmesartan medoxomil (1) is the latest angiotensin receptor antagonist approved by the FDA for the treatment of hypertension. During the process development of olmesartan medoxomil, three process-related impurities were observed along with the final API. These impurities were identified as isopropyl olmesartan (12), dimedoxomil olmesartan (19), dibiphenyl olmesartan (17). The present work describes the synthesis and characterization of all these three impurities.

  12. Synthesis and characterization of long perylenediimide polymer fibers: from bulk to the single-molecule level

    NARCIS (Netherlands)

    de Witte, Pieter A.J.; Hernando Campos, J.; Neuteboom, Edda E.; van Dijk, E.M.H.P.; Meskers, Stefan C.J.; Janssen, Rene A.J.; van Hulst, N.F.; Nolte, Roeland J.M.; Garcia Parajo, M.F.; Rowan, Alan E.

    2006-01-01

    The synthesis and characterization of perylenediimide polyisocyanides is reported. In addition to short oligomers, our synthetic approach results in the formation of extremely long, well-defined, and rigid perylenediimide polymers. Ordering and close-packing of the chromophores in these long

  13. Synthesis and characterization of covalent diphenylalanine nanotube-folic acid conjugates

    DEFF Research Database (Denmark)

    León, John Jairo Castillo; Rindzevicius, Tomas; Wu, Kaiyu

    2014-01-01

    Herein, we describe the synthesis and characterization of a covalent nanoscale assembly formed between diphenylalanine micro/nanotubes (PNT) and folic acid (FA). The conjugate was obtained via chemical functionalization through coupling of amine groups of PNTs and carboxylic groups of FA. The sur...

  14. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic

  15. Synthesis and Characterization of Long Perylenediimide Polymer Fibers: From Bulk to the Single-Molecule Level

    NARCIS (Netherlands)

    Witte, de Pieter A.J.; Hernando, Jordi; Neuteboom, Edda E.; Dijk, van Erik M.H.P.; Meskers, Stefan C.J.; Janssen, Rene A.J.; Hulst, van Niek F.; Nolte, Roeland J.M.; Garcia-Parajo, Maria F.; Rowan, Alan E.

    2006-01-01

    The synthesis and characterization of perylenediimide polyisocyanides is reported. In addition to short oligomers, our synthetic approach results in the formation of extremely long, well-defined, and rigid perylenediimide polymers. Ordering and close-packing of the chromophores in these long polymer

  16. Tunable Hydrophobicity in DNA Micelles : Design, Synthesis, and Characterization of a New Family of DNA Amphiphiles

    NARCIS (Netherlands)

    Anaya, Milena; Kwak, Minseok; Musser, Andrew J.; Muellen, Klaus; Herrmann, Andreas; Müllen, Klaus

    2010-01-01

    This work describes the synthesis and characterization of a new family of DNA amphiphiles containing modified nucleobases. The hydrophobicity was imparted by the introduction of a dodec-1-yne chain at the 5-position of the uracil base, which allowed precise and simple tuning of the hydrophobic prope

  17. Synthesis and characterization of conjugated polymer containing azobenzene and oxadiazole units

    Institute of Scientific and Technical Information of China (English)

    Yue Zhang; Shi Jun Yu; Lu Wang; Cong Li

    2009-01-01

    A novel conjugated polymer containing azobenzene and oxadiazole units was synthesized through multi-step synthesis.The structures and properties of monomer and polymer were characterized and evaluated with IR,1H NMR,UV,TGA and GPC,respectively.Polymer with long side chain of alkoxy shows good solubility,thermal stability and photoisomerization property.

  18. Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods

    NARCIS (Netherlands)

    Koutsopoulos, S.

    2002-01-01

    For the synthesis of hydroxyapatite crystals from aqueous solutions three preparation methods were employed. From the experimental processes and the characterization of the crystals it was concluded that aging and precipitation kinetics are critical for the purity of the product and its crystallogra

  19. Synthesis and characterization of some N-substituted amides of salicylic acid

    OpenAIRE

    Lupea Xenia Alfa; Padure Mirabela

    2003-01-01

    The synthesis of some N-substituted aromatic amides in the salicylic acid series was achieved, by direct reaction between primary amines and salicylic acid in inert organic solvent, in the presence of PCl3. The compounds that were obtained, partially not described in literature, were characterized by chemical-physical methods.

  20. Synthesis and characterization of some N-substituted amides of salicylic acid

    Directory of Open Access Journals (Sweden)

    Lupea Xenia Alfa

    2003-01-01

    Full Text Available The synthesis of some N-substituted aromatic amides in the salicylic acid series was achieved, by direct reaction between primary amines and salicylic acid in inert organic solvent, in the presence of PCl3. The compounds that were obtained, partially not described in literature, were characterized by chemical-physical methods.

  1. Synthesis and Characterization of the First Organically Templated Layered Cerium Phosphate Fluoride

    National Research Council Canada - National Science Library

    Ranbo Yu; Dan Wang; Shintaro Ishiwata; Takashi Saito; Masaki Azuma; Mikio Takano; Yunfa Chen; Jinghai Li

    2004-01-01

      A novel organically templated layered cerium phosphate fluoride [(CH2)2(NH3)2]0.5[CeIVF3(HPO4)] has been synthesized by hydrothermal synthesis technology, and characterized by means of single-crystal X-ray diffraction...

  2. Synthesis and characterization of novel double-cation borohydrides

    Energy Technology Data Exchange (ETDEWEB)

    Frommen, Christoph; Aliouane, Nadir; Deledda, Stefano; Fonneloep, Jon Erling; Grove, Hilde; Llamas-Jansa, Isabel; Lieutenant, Klaus; Sartori, Sabrina; Oestby, Heidi; Soerby, Magnus H.; HaubacK, Bjoern C. [Institute for Energy Technology, Kjeller (Norway). Physics Dept.

    2010-07-01

    A systematic screening for the reaction of transition metal chlorides with alkali borohydrides was performed by mechano-chemical synthesis (ball-milling and cryo-milling). The reaction between LiBH{sub 4} and YCl{sub 3} produced yttrium borohydride Y(BH{sub 4}){sub 3} instead of the targeted LiY(BH{sub 4}){sub 4}. When using NaBH{sub 4}, no indication for the formation of crystalline mixed-metal borohydrides was observed for the chlorides of Ni, Ti, Cu, Rh and Cu. Anion substitution was observed instead which lead to a series of novel Na(BH{sub 4}){sub x}Cl{sub 1-X} type compounds, presumably accompanied by the formation of amorphous transition metal borides. Anion substitution in borohydrides may open up the path to synthesize new compounds with improved thermodynamic properties compared to the pure borohydrides. These findings demonstrate that the successful synthesis of mixed-metal borohydrides remains a challenging task. (orig.)

  3. Synthesis and characterization of hydroxyapatite from fish bone waste

    Energy Technology Data Exchange (ETDEWEB)

    Marliana, Ana, E-mail: na-cwith22@yahoo.co.id; Fitriani, Eka; Ramadhan, Fauzan; Suhandono, Steven; Yuliani, Keti; Windarti, Tri [Chemistry Department, Faculty of Science and Mathematics, Diponegoro University, Indonesia, 50 275 (Indonesia)

    2015-12-29

    Waste fish bones is a problem stemming from activities in the field of fisheries and it has not been used optimally. Fish bones contain calcium as natural source that used to synthesize hydroxyapatite (HA). In this research, HA synthesized from waste fish bones as local wisdom in Semarang. The goal are to produce HA with cheaper production costs and to reduce the environmental problems caused by waste bones. The novelty of this study was using of local fish bone as a source of calcium and simple method of synthesis. Synthesis process of HA can be done through a maceration process with firing temperatures of 1000°C or followed by a sol-gel method with firing at 550°C. The results are analyzed using FTIR (Fourier Transform Infrared), XRD (X-Ray Diffraction) and SEM-EDX (Scanning Electron Microscopy-Energy Dispersive X-Ray). FTIR spectra showed absorption of phosphate and OH group belonging to HA as evidenced by the results of XRD. The average grain size by maceration and synthesized results are not significant different, which is about 69 nm. The ratio of Ca/P of HA by maceration result is 0.89, then increase after continued in the sol-gel process to 1.41. Morphology of HA by maceration results are regular and uniform particle growth, while the morphology of HA after the sol-gel process are irregular and agglomerated.

  4. Synthesis and characterization of polyvinylpyrrolidine assisted tantalum pentoxide films

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Vaidyanathan; Ndiege, Nicholas; Seebauer, E.G. [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States); Shannon, Mark A. [Department of Mechanical Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States); Masel, Richard I. [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaignm, 600 S. Mathews, Urbana, IL-61801 (United States)], E-mail: r-masel@uiuc.edu

    2008-06-02

    Micron thick tantalum pentoxide (Ta{sub 2}O{sub 5}) films have been proposed as thermal insulating layers in microchemical systems, but so far it has been difficult to deposit thick enough films over complex substrates. So far sol-gel films cracked upon heating whenever the film thicknesses were above 350 nm. A 350 nm thick film is too thin for effective insulation. Other techniques are not suitable for coating the complex structures associated with microchemical systems. In this paper we report sol-gel synthesis of 1.6 {mu}m thick tantalum pentoxide (Ta{sub 2}O{sub 5}) films. The films are almost crack free, and adhere to silicon surfaces even upon flashing to 900 deg. C. The key to the synthesis is the addition of Polyvinylpyrrolidine (PVP) to the sol. Films grown in the absence of PVP all show cracks upon calcination to 900 deg. C while few cracks are seen with PVP. X-ray diffraction and Fourier transform infra red analysis show that orthorhombic Ta{sub 2}O{sub 5} is formed in all cases. X-ray photoelectron spectroscopy shows the O:Ta ratio to be 2.8:1. This shows that sol-gel is a viable process for making the micron thick films of Ta{sub 2}O{sub 5} needed as insulators for microchemical systems.

  5. MCM-41 ordered mesoporous molecular sieves synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Rogério A.A. Melo

    1999-07-01

    Full Text Available The aim of this work was to study the hydrothermal synthesis of Si and SiAlMCM-41 performed under both autogenic pressure and refluxing conditions. XRD data showed that the MCM-41 phase may be formed by both processes and that the synthesized material in the presence of Al and/or under reflux presents the hexagonally arrangement of less ordered mesopores. However, as verified by XRD and physisorption data, the order was improved with higher synthesis times. 29Si and 1H - 29Si C/P MAS NMR spectra showed that a great part of the Si atoms exists as silanol groups which originate resonance peaks at -110, -100 and -91 ppm. The presence of Al atoms may generate Si(3Si, Al and Si(2Si, 2Al environments which might be contributing to resonance peaks at -100 and -91 ppm. The 27Al MAS NMR spectrum of the as synthesized AlSiMCM-41 showed a resonance peak of tetrahedral framework aluminum close to 53 ppm and two others, one close to 14 ppm attributed to Al(H2O6+3 species and the other a weak signal close to 32 ppm attributed to pentacoordinated Al. 27Al MAS NMR spectra of the calcined sample showed a peak at 0 ppm corresponding to an hexacoordinated extra-framework aluminum formed during calcination.

  6. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity.

    Science.gov (United States)

    Panacek, Ales; Kvítek, Libor; Prucek, Robert; Kolar, Milan; Vecerova, Renata; Pizúrova, Nadezda; Sharma, Virender K; Nevecna, Tat'jana; Zboril, Radek

    2006-08-24

    A one-step simple synthesis of silver colloid nanoparticles with controllable sizes is presented. In this synthesis, reduction of [Ag(NH(3))(2)](+) complex cation by four saccharides was performed. Four saccharides were used: two monosaccharides (glucose and galactose) and two disaccharides (maltose and lactose). The syntheses performed at various ammonia concentrations (0.005-0.20 mol L(-1)) and pH conditions (11.5-13.0) produced a wide range of particle sizes (25-450 nm) with narrow size distributions, especially at the lowest ammonia concentrations. The average size, size distribution, morphology, and structure of particles were determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and UV/Visible absorption spectrophotometry. The influence of the saccharide structure (monosacharides versus disaccharides) on the size of silver particles is briefly discussed. The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus. Antibacterial activity of silver nanoparticles was found to be dependent on the size of silver particles. A very low concentration of silver (as low as 1.69 mug/mL Ag) gave antibacterial performance.

  7. Synthesis and characterization of monoclinic TiO2 nanosheets

    Institute of Scientific and Technical Information of China (English)

    WU Yu; XU Boqing

    2005-01-01

    A novel two-step method for the synthesis of monoclinic titanium oxide (i.e. TiO2(B)) nanosheets is presented in this report. The method is featured by two steps: 1) synthesis of hydrogen titanate nanosheets, followed by 2) calcination of the titanate nanosheets at elevated temperatures. The hydrogen titanate nanosheets were prepared first by autoclaving anatase TiO2 powders, obtained by air calcining an ethanol-gel of Ti(OH)4 at 500℃, in aqueous NaOH (10 mol/L) at 150―200℃, and then by washing with hydrochloric acid under supersonic irradiation. While sizes of the nanosheets were found to increase with increasing the temperature of the hydrothermal treatment, the calcination at 400―500℃ of the hydrogen titanate nanosheets that were synthesized at higher autoclaving temperatures (180―200℃) produced monoclinic TiO2 nanosheets with a uniform morphology. By contrast, the same calcination of the titanate nanosheets synthesized at the autoclaving temperature 180℃ led to anatase TiO2 nanoparticles.

  8. Solid State Synthesis, Characterization and Antimicrobial Study of 4 ...

    African Journals Online (AJOL)

    MBI

    2014-11-10

    Nov 10, 2014 ... Department of Pure and Industrial Chemistry, Bayero University, P. M. B. ... The complexes obtained were characterized by elemental analysis, ... The processes are believed to be ... This paper is concerned with the design.

  9. Synthesis and characterization of polyamidoamine conjugates of neridronic acid

    CSIR Research Space (South Africa)

    Aderibigbe, BA

    2015-10-01

    Full Text Available of water and it was performed at room temperature thereby making the reaction environmentally friendly and economically viable. These conjugates are potential prodrugs and they were characterized by nuclear magnetic resonance spectroscopy (NMR), Fourier...

  10. synthesis, characterization, electrical and catalytic studies of some ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Printed in Ethiopia. © 2015 Chemical Society of ... characterized by elemental analysis, IR and electronic spectra, magnetic susceptibility measurements and thermal analyses. ... Schiff bases offer a versatile and flexible series of ligands due to.

  11. Group Contribution Based Process Flowsheet Synthesis, Design and Modelling

    DEFF Research Database (Denmark)

    Gani, Rafiqul; d'Anterroches, Loïc

    2004-01-01

    This paper presents a process-group-contribution Method to model. simulate and synthesize a flowsheet. The process-group based representation of a flowsheet together with a process "property" model are presented. The process-group based synthesis method is developed on the basis of the computer...

  12. Synthesis and characterizations of novel magnetic and plasmonic nanoparticles

    Science.gov (United States)

    Dahal, Naween

    This dissertation reports the colloidal synthesis of iron silicide, hafnium oxide core-gold shell and water soluble iron-gold alloy for the first time. As the first part of the experimentation, plasmonic and superparamagnetic nanoparticles of gold and iron are synthesized in the form of core-shell and alloy. The purpose of making these nanoparticles is that the core-shell and alloy nanoparticles exhibit enhanced properties and new functionality due to close proximity of two functionally different components. The synthesis of core-shell and alloy nanoparticles is of special interest for possible application towards magnetic hyperthermia, catalysis and drug delivery. The iron-gold core-shell nanoparticles prepared in the reverse micelles reflux in high boiling point solvent (diphenyl ether) in presence of oleic acid and oleyl amine results in the formation of monodisperse core-shell nanoparticles. The second part of the experimentation includes the preparation of water soluble iron-gold alloy nanoparticles. The alloy nanoparticles are prepared for the first time at relatively low temperature (110 °C). The use of hydrophilic ligand 3-mercapto-1-propane sulphonic acid ensures the aqueous solubility of the alloy nanoparticles. Next, hafnium oxide core-gold shell nanoparticles are prepared for the first time using high temperature reduction method. These nanoparticles are potentially important as a high kappa material in semiconductor industry. Fourth, a new type of material called iron silicide is prepared in solution phase. The material has been prepared before but not in a colloidal solution. The Fe3Si obtained is superparamagnetic. Another phase beta-FeSi 2 is a low band gap (0.85 eV) semiconductor and is sustainable and environmentally friendly. At last, the iron monosilicide (FeSi) and beta-FeSi2 are also prepared by heating iron-gold core-shell and alloy nanoparticles on silicon (111) substrate. The nucleation of gaseous silicon precursor on the melted

  13. A new bioactive Schiff base ligands derived from propylazo-N-pyrimidin-2-yl-benzenesulfonamides Mn(II) and Cu(II) complexes: synthesis, thermal and spectroscopic characterization biological studies and 3D modeling structures.

    Science.gov (United States)

    Tawfik, Abdelrazak M; El-Ghamry, Mosad A; Abu-El-Wafa, Samy M; Ahmed, Naglaa M

    2012-11-01

    New series of Schiff base ligand H(2)L and their Cu(II) and Mn(II) complexes derived from azosulfapyrimidine were synthesized and characterized by elemental and thermal studies conductance measurements IR, electronic and EPR spectra. 3D modeling of the ligand indicate that azo group does not participate in complex formation and surface potential on one of the ligand under study indicate that electron density around azomethine groups are much higher than the azo group therefore coordination takes place around azomethine groups. The variety in the geometrical structures depends on the nature of both the metal ions and the Schiff base ligands. The thermo kinetic parameters are calculated and discussed. The biological activities of the ligands and complexes have been screened in vitro against some bacteria and fungi to study their capacity to inhibit their growth and to study the toxicity of the compounds.

  14. Synthesis and characterization of a nanocrystalline diamond aerogel.

    Science.gov (United States)

    Pauzauskie, Peter J; Crowhurst, Jonathan C; Worsley, Marcus A; Laurence, Ted A; Kilcoyne, A L David; Wang, Yinmin; Willey, Trevor M; Visbeck, Kenneth S; Fakra, Sirine C; Evans, William J; Zaug, Joseph M; Satcher, Joe H

    2011-05-24

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  15. Synthesis and characterization of vanadiumoxidecatalysts supported on copper orthophosphates

    Science.gov (United States)

    Ouchabi, M.; Baalala, M.; Elaissi, A.; Loulidi, I.; Bensitel, M.

    2017-03-01

    Synthesis of a pure copper orthophosphate (CuP) prepared by Coprecipitation, and CuP modified by impregnation of vanadium (2-12 wt % of V2O5) have been carried out. The solids obtained were investigated as synthesized or after calcination by various physico-chemical techniques such as X-Ray Diffraction (XRD), Infrared Spectroscopy (IR), Thermogravimetric analysis (TGA), and differential thermal analysis (DTA). The results revealed that the solids V/CuP consisted of copper orthophosphate Cu3(PO4)2 as major phases, together with V2O5 as minor phase. The diffraction lines of V2O5 increase by increasing the vanadium content.

  16. Cobalt-based Magnetic Nanoparticles: Design, Synthesis and Characterization

    Science.gov (United States)

    Zamanpour, Mehdi

    The ever-increasing desire for more energy attainable from a smaller volume of matter has driven researchers to explore advanced materials at the molecular or even atomic size scale. Magnetic materials at the nanometer size scale have been the subject of enormous research effort worldwide for more than half a century. Different magnetic nanoparticles have shown different behavior in the absence and presence of an external magnetic field, which has led them to be categorized as soft (easy to demagnetize) or hard (resistive against demagnetization) magnets. Applications range from medical and biomedical devices to magnetic recording media and magnetic sensing have emphasized the importance of this class of materials. Soft magnetic phases have found application in power generation and magnetic targeted drug delivery, while hard magnets have been subject of extensive research for application as energy storage media. Discovery of the exchange-coupling phenomenon between the spins of two adjacent hard and soft magnetic phases which means taking advantage of both high magnetic moment of the soft phase as well as high coercivity of the hard phase has attracted scientists to develop advanced materials for energy storage with no usage of fossil fuels: clean energy. In this Dissertation, synthesis of pure phase, soft FeCo nanoparticles with high magnetic moment and hard phase CoxC nanoparticles possessing high coercivity is reported. The polyol method (chemical co-precipitating at polyhydric alcohol as reducing agent) is used to make FeCo and Co xC nanoparticles and the effects of important reaction kinetics parameters on the structure and magnetic properties of the products are studied. Careful analysis of correlations between these parameters and the properties of the magnetic particles has made synthesis of FeCo and CoxC nanoparticles with desired properties possible. Fabrication of MnAlC-FeCo heterostructures as a rare earth-free alternative for high-performance permanent

  17. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  18. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-11-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  19. Synthesis and characterization of nano silver ferrite composite

    Science.gov (United States)

    Murthy, Y. L. N.; Kondala Rao, T.; Kasi viswanath, I. V.; Singh, Rajendra

    2010-07-01

    We report the synthesis of nano sized silver ferrite composite having the empirical formula AgFeO 2 by a co-precipitation method. The resulting powders are thin platelets, transparent and a rich ruby red in color in transmission. The X-ray diffraction (XRD) powder data consisted of only nine reflections, and the analysis showed the unit cell to be rhombohedral. The powders showed extensive XRD line broadening and the sizes of the crystals are calculated to be in the range 4-36.5 nm. The morphology of the silver ferrite composite studied using scanning electron microscope showed nano sized particles. The particle size is found to increase with increase in annealing temperature. The magnetic behavior, measured using a vibrating sample magnetometer, indicated a change from paramagnetic to ferromagnetic with increase in particle size.

  20. Synthesis and characterization of silver molybdate nanowires, nanorods and multipods

    Indian Academy of Sciences (India)

    G Nagaraju; G T Chandrappa; Jacques Livage

    2008-06-01

    Silver molybdate nanowires, nanorods and multipods like structures have been prepared by an organic free hydrothermal process using ammonium molybdate and silver nitrate solutions. The powder X-ray diffraction (PXRD) patterns reveal that the silver molybdate belongs to anorthic structure. The thickness, 200–500 nm, for silver molybdate nanorods/wires and 2–5 m for microrods are identified from SEM images. UV-visible spectrum of silver molybdate nanorods/nanowires shows maximum absorbance at 408 nm. Photoluminescence (PL) spectrum exhibits UV emission at 335 nm, violet emission at 408 nm and a weak green emission at 540 nm. The influence of hydrothermal synthesis conditions on silver molybdate nanowires, nanorods and multipods compositions were established.

  1. Synthesis and characterization of mixed melilite-type oxides

    Science.gov (United States)

    Granata, V.; Ubaldini, A.; Fittipaldi, R.; Rocco, L.; Pace, S.; Vecchione, A.

    2017-01-01

    The melilite-type oxides are potential targets for exploring interesting magnetic and electronic properties as well as multiferroicity and magnetoelectric effects. Polycrystalline samples of Ba2Cu1-xMnxGe2O7 have been synthesized by solid state reaction method. The morphology and chemical composition of the samples have been investigated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). By using powder X-ray diffraction, the phase composition of the synthesized compounds and the evolution of their crystallographic axes as a function of the doping have been systematically studied. The synthesis of the polycrystalline compounds reported in this work is a prerequisite for the growth of high quality single crystals of mixed melilite-type oxides essential for the investigations of the complex magnetic phase diagram of these non-centrosymmetric systems.

  2. Chemical Synthesis and Electrochemical Characterization of Nanoporous Gold films

    DEFF Research Database (Denmark)

    Christiansen, Mikkel U-B; Seselj, Nedjeljko; Engelbrekt, Christian

    Nanoporous gold (NPG) is conventionally made via dealloying methods1. We present an alternative method for bottom-up chemical synthesis of nanoporous gold film (cNPGF), with properties resembling those of dealloyed NPG. The developed procedure is simple and only benign chemicals are used....... Chloroauric acid is reduced to nanoparticles (NPs) by 2-(N-morpholino)ethanesulfonate, acting also as a protecting agent for the NPs and as a pH buffer, while potassium chloride is used to control ionic strength. The film formation is controlled by parameters such as temperature, ionic strength...... and protonation of the buffer. Therefore, it is possible to influence the trapping of nanoparticles at the air-liquid interface, yielding porous thin film structures, Figure 1A. The produced cNPGFs have been investigated by atomic force microscopy (AFM), transmission electron microscopy (TEM) and cyclic...

  3. Synthesis, Characterization and properties studies of new magnetic materials

    Science.gov (United States)

    Messai, Amel; Luneau, Dominique

    2015-10-01

    We are interested in molecular polymetallic species having high spin and nuclearities in relation to the field of so call single-molecule magnets (SMMs). The goal is to find a way to synthesis metal clusters which may have application in magnetism and nanosciences. With this purpose, we decided to investigate the coordination chemistry of the Schiff base.Along this way we were able to create cubane-like complexes and elaborate new Single Molecule-Magnets. The idea was to use Schiff base ligands and different metals to generate high nuclear complexes. Complexation of Shiff base with copper has been investigated. Tetranuclear complex with a cubane like core have been synthesised with (Sciff base), with the same base and cobalt we obtains an other single magnetic complex completely different.

  4. Synthesis and Characterization of New Heterocyclic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    D. Srividhya

    2009-01-01

    Full Text Available This investigation enumerates the synthesis and mesomorphic properties of 1,2,3-triazole containing azobenzene liquid crystals. In these liquid crystals the methylene chain length at non polar end was varied from six to ten carbons to investigate the association properties of non polar chain on the melt. The compound was designed to have a polar ether chain at the other side of the molecule adjacent to the triazole ring and synthesized to enhance the dipolar interactions. These alterations in chemical structure produce two series of new liquid crystalline compounds with each series containing five variations in the methylene chain. The structure of the target compounds and the intermediates were confirmed by the 1H NMR, 13C NMR and IR spectral techniques. Polarized microscopic studies revealed that all the compounds in the series exhibited enantiotropic liquid crystalline properties. This was further confirmed using differential scanning calorimetric experiments. The energy minimized structure supports the mesogenic behavior of the structure.

  5. Synthesis and characterization of zeolites prepared from industrial fly ash

    OpenAIRE

    Franus, Wojciech; Wdowin, Magdalena; Franus, Małgorzata

    2014-01-01

    In this paper, we present the possibility of using fly ash to produce synthetic zeolites. The synthesis class F fly ash from the Stalowa Wola SA heat and power plant was subjected to 24 h hydrothermal reaction with sodium hydroxide. Depending on the reaction conditions, three types of synthetic zeolites were formed: Na-X (20 g fly ash, 0.5 dm3 of 3 mol · dm−3 NaOH, 75 °C), Na-P1 (20 g fly ash, 0.5 dm3 of 3 mol · dm−3 NaOH, 95 °C), and sodalite (20 g fly ash, 0.8 dm3 of 5 mol · dm−3 NaOH + 0.4...

  6. Synthesis and characterization of a new high entropy composite matrix

    Science.gov (United States)

    Popescu, G.; Matara, M. A.; Csaki, I.; Popescu, C. A.; Truşcă, R.

    2016-06-01

    Even if high entropy alloys were not reported in a scientific journal till 2003, these new alloys have been investigated since 1995 due to their high temperature properties. In the last years the synthesis of these alloys has been widely investigated. Thus, the present work has been carried out to produce a high entropy composite using an equiatomic AlCrFeMnNi high entropy alloy (HEA) matrix and graphite particles (Gr) as reinforcing material. The high entropy composite was obtained by powder metallurgy route using a planetary ball mill. The mechanically alloyed mixture was investigated by scanning electron microscopy (SEM). Microstructural investigation realized by SEM revealed the homogenous structure of the composite, with multiple phases and decreasing particles size, mostly reaching nanometric scale.

  7. Synthesis and characterization of Gd-doped magnetite nanoparticles

    Science.gov (United States)

    Zhang, Honghu; Malik, Vikash; Mallapragada, Surya; Akinc, Mufit

    2017-02-01

    Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the conditions tested (0-10 at% Gd3+). Typically, undoped and 5 at% Gd-doped magnetite nanoparticles were found to have crystal sizes of about 18 and 44 nm, respectively, supported by X-ray diffraction and transmission electron microscopy. Our results showed that Gd-doped nanoparticles retained the magnetite crystal structure, with Gd3+ randomly incorporated in the crystal lattice, probably in the octahedral sites. The composition of 5 at% Gd-doped magnetite was Fe(3-x)GdxO4 (x=0.085±0.002), as determined by inductively coupled plasma mass spectrometry. 5 at% Gd-doped nanoparticles exhibited ferrimagnetic properties with small coercivity ( 65 Oe) and slightly decreased magnetization at 260 K in contrast to the undoped, superparamagnetic magnetite nanoparticles. Templation by the bacterial biomineralization protein Mms6 did not appear to affect the growth of the Gd-doped magnetite particles synthesized by this method.

  8. Synthesis and Characterization of Photosensitive Polyimides for Optical Applications

    Science.gov (United States)

    Kim, Kye-Hyun

    1995-11-01

    The objective of this research was to prepare photosensitive polyimides for optical applications. The work was begun with the synthesis of a series of poly(amic esters) containing cinnamyl groups. However, these systems required high imidization temperatures where they darkened considerably. Two new photosensitive end-capping agents, i.e., 6-(4-aminophenoxy)hexyl methacrylate, and di(2-(methacryloyloxy)ethyl) 5-aminoisophthalate, for polyimides were also prepared. These agents were used along with 2,2^' -bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and 2,2^'-bis(trifluoromethyl) -4,4^' -diaminobiphenyl (PFMB) to prepare a series of methacrylate end-capped imide oligomers. However, the oligomers required long exposures to UV-radiation to affect cure. To improve their photosensitivity, multifunctional additives and photoinitiators were used. A difunctional end-capped oligomer that contained trimethylolpropane triacrylate (TMPTA) and trimethylbenzoyldiphenyl phosphine oxide (TMDPO) was highly photosensitive and displayed good photo-patterning properties. The third approach involved the synthesis of a diamine monomer in which methacrylate moieties were attached to the 2- and 2^ '-positions of biphenyl structures. The monomer, i.e., 2,2^'-dimethacryloyloxy -4,4^'-diaminobiphenyl (DMB), was polymerized with commercially available dianhydrides such as 6FDA and 4,4^' -oxydiphthalic anhydride (ODPA). The polyimides obtained were optically transparent and soluble in common organic solvents such as acetone and chloroform. The polymers were highly photosensitive and displayed good photo-patterning properties. The polymers, which afforded high-resolution patterns, did not develop color or shrink during UV-exposure and thermal curing.

  9. Stop Flow Lithography Synthesis and Characterization of Structured Microparticles

    Directory of Open Access Journals (Sweden)

    David Baah

    2014-01-01

    Full Text Available In this study, the synthesis of nonspherical composite particles of poly(ethylene glycol diacrylate (PEG-DA/SiO2 and PEG-DA/Al2O3 with single or multiple vias and the corresponding inorganic particles of SiO2 and Al2O3 synthesized using the Stop Flow Lithography (SFL method is reported. Precursor suspensions of PEG-DA, 2-hydroxy-2-methylpropiophenone, and SiO2 or Al2O3 nanoparticles were prepared. The precursor suspension flows through a microfluidic device mounted on an upright microscope and is polymerized in an automated process. A patterned photomask with transparent geometric features masks UV light to synthesize the particles. Composite particles with vias were synthesized and corresponding inorganic SiO2 and Al2O3 particles were obtained through polymer burn-off and sintering of the composites. The synthesis of porous inorganic particles of SiO2 and Al2O3 with vias and overall dimensions in the range of ~35–90 µm was achieved. BET specific surface area measurements for single via inorganic particles were 56–69 m2/g for SiO2 particles and 73–81 m2/g for Al2O3 particles. Surface areas as high as 114 m2/g were measured for multivia cubic SiO2 particles. The findings suggest that, with optimization, the particles should have applications in areas where high surface area is important such as catalysis and sieving.

  10. Synthesis and structural characterization of manganese olivine lithium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Robles, Joel O. [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Fuentes Cobas, Luis E. [Centro de Investigación en Materiales Avanzados CIMAV, Complejo Industrial, M. Cervantes 120, Chihuahua C.P. 31109 (Mexico); Díaz de la Torre, Sebastián [Instituto Politécnico Nacional, Centro de Investigación e Innovación Tecnológica CIITEC, Azcapotzalco, México, D.F. C.P. 02250 (Mexico); Camacho Montes, Héctor, E-mail: hcamacho@uacj.mx [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Elizalde Galindo, José T.; García Casillas, Perla E.; Rodríguez González, Claudia A. [Basic Science Department, IIT, Universidad Autónoma de Ciudad Juárez, Av. del Charro 460 norte Cd. Juárez, Chih. C.P. 32310 (Mexico); Álvarez Contreras, Lorena [Centro de Investigación en Materiales Avanzados CIMAV, Complejo Industrial, M. Cervantes 120, Chihuahua C.P. 31109 (Mexico)

    2015-09-15

    Highlights: • LiMnPO{sub 4} was obtained by sol gel method and crystallization in reducing atmosphere. • Magnetic and electric properties are reported for LiMnPO{sub 4}. • Electrochemical properties are also found and enhanced by adding carbon. • SEM and HRTEM show the submicron powder nature. • The multifunctional behavior of LiMnPO{sub 4} is experimentally demonstrated. - Abstract: The manganese olivine lithium phosphate is a multifunctional material. If carbon is added to form a composite LiMnPO{sub 4}–C, electrochemical properties can be enhanced, making this material a good candidate for battery cathode. High magnetic susceptibility is reported for this compound at room temperature. In this work, the magnetic response was measured through a Field Cooling/Zero Field Cooling technique at temperature below 100 K. Weak ferroelectric properties at room temperature were measured. Even though, the promising applications and the interesting properties of this system, the attention received in the literature is relatively low. The synthesis of this material is difficult because of the rapid manganese oxidation and the need of a reducing atmosphere. In fact, only few authors report the synthesis of the pure phase. In the present work, nanostructured LiMnPO{sub 4} is obtained by sol gel chemical method and according to X-ray diffraction patterns, pure LiMnPO{sub 4} is obtained after calcination in a reducing atmosphere (10% H{sub 2} – 90% Ar). Nanostructured LiMnPO{sub 4} is a material with very interesting properties that deserves attentions.

  11. Novel Inhibitors of Rad6 Ubiquitin Conjugating Enzyme: Design, Synthesis, Identification, and Functional Characterization

    Science.gov (United States)

    Nangia-Makker, Pratima; Balan, Vitaly; Morelli, Matteo; Kothayer, Hend; Westwell, Andrew D.; Shekhar, Malathy P.V.

    2013-01-01

    Protein ubiquitination is important for cell signaling, DNA repair, and proteasomal degradation, and it is not surprising that alterations in ubiquitination occur frequently in cancer. Ubiquitin-conjugating enzymes (E2) mediate ubiquitination by selective interactions with ubiquitin-activating (E1) and ubiquitin ligase (E3) enzymes, and thus selective E2 small molecule inhibitor (SMI) will provide specificity unattainable with proteasome inhibitors. Here we describe synthesis and functional characterization of the first SMIs of human E2 Rad6B, a fundamental component of translesion synthesis DNA repair. A pharmacophore model for consensus E2 ubiquitin-binding sites was generated for virtual screening to identify E2 inhibitor candidates. Twelve triazine (TZ) analogs screened in silico by molecular docking to the Rad6B X-ray structure were verified by their effect on Rad6B ubiquitination of histone H2A. TZs #8 and 9 docked to the Rad6B catalytic site with highest complementarity. TZs #1, 2, 8, and 9 inhibited Rad6B-ubiquitin thioester formation and subsequent ubiquitin transfer to histone H2A. SMI #9 inhibition of Rad6 was selective as BCA2 ubiquitination by E2 UbcH5 was unaffected by SMI #9. SMI #9 more potently inhibited proliferation, colony formation, and migration than SMI #8, and induced MDA-MB-231 breast cancer cell G2–M arrest and apoptosis. Ubiquitination assays using Rad6 immunoprecipitated from SMI #8- or 9-treated cells confirmed inhibition of endogenous Rad6 activity. Consistent with our previous data showing Rad6B-mediated polyubiquitination stabilizes β-catenin, MDAMB-231 treatment with SMIs #8 or 9 decreased β-catenin protein levels. Together these results describe identification of the first Rad6 SMIs. PMID:23339190

  12. Synthesis, characterization and photophysical properties of ESIPT reactive triazine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Kuplich, Marcelo D.; Grasel, Fabio S.; Campo, Leandra F.; Rodembusch, Fabiano S.; Stefani, Valter, E-mail: vstefani@iq.ufrgs.br [Laboratorio de Novos Materiais Organicos. Instituto de Quimica. Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2012-07-01

    Four new reactive fluorescent triazine derivatives were obtained from nucleophilic aromatic substitution of cyanuric chloride. The compounds were characterized by infrared spectroscopy (IR), nuclear magnetic resonance ({sup 13}C and {sup 1}H NMR) and high resolution mass spectrometry (HRMS MALDI). UV-Vis and steady-state fluorescence (in solution and in solid state) spectroscopies were also applied to characterize the photophysical behavior. The dyes are fluorescent by an intramolecular proton transfer mechanism (ESIPT) in the blue-orange region, with a large Stokes shift between 6365-10290 cm-1. The fluorescent cyanuric derivatives could successfully react with cellulose fibers to give new fluorescent cellulosic materials. (author)

  13. Synthesis and characterization of transition-metal-doped zinc oxide nanocrystals for spintronics

    Science.gov (United States)

    Wang, Xuefeng

    Spintronics (spin transport electr onics), in which both spin and charge of carriers are utilized for information processing, is believed to challenge the current microelectronics and to become the next-generation electronics. Nanostructured spintronic materials and their synthetic methodologies are of paramount importance for manufacturing future nanoscale spintronic devices. This thesis aims at studying synthesis, characterization, and magnetism of transition-metal-doped zinc oxide (ZnO) nanocrystals---a diluted magnetic semiconductor (DMS)---for potential applications in future nano-spintronics. A simple bottom-up-based synthetic strategy named a solvothermal technique is introduced as the primary synthetic approach and its crystal growth mechanism is scrutinized. N-type cobalt-doped ZnO-based DMS nanocrystals are employed as a model system, and characterized by a broad spectrum of advanced microscopic and spectroscopic techniques. It is found that the self-orientation growth mechanism, imperfect oriented attachment, is intimately correlated with the high-temperature ferromagnetism via defects. The influence of processing on the magnetic properties, such as compositional variations, reaction conditions, and post-growth treatment, is also studied. In this way, an in-depth understanding of processing-structure-property interrelationships and origins of magnetism in DMS nanocrystals are obtained in light of the theoretical framework of a spin-split impurity band model. In addition, a nanoscale spinodal decomposition phase model is also briefly discussed. Following the similar synthetic route, copper- and manganese-doped ZnO nanocrystals have been synthesized and characterized. They both show high-temperature ferromagnetism in line with the aforementioned theoretical model(s). Moreover, they display interesting exchange biasing phenomena at low temperatures, revealing the complexity of magnetic phases therein. The crystal growth strategy demonstrated in this work

  14. Using multimedia modeling to expedite site characterization.

    Science.gov (United States)

    Travis, Curtis; Obenshain, Karen R; Gunter, James T; Regens, James L; Whipple, Christopher

    2004-01-01

    This paper uses two case studies of U.S. Department of Energy nuclear weapons complex installations to illustrate the integration of expedited site characterization (ESC) and multimedia modeling in the remedial action decision making process. CONCEPTUAL SITE MODELS, MULTIMEDIA MODELS, AND EXPEDITED SITE CHARACTERIZATION: Conceptual site models outline assumptions about contaminates and the spatial/temporal distribution of potential receptors. Multimedia models simulate contaminant transport and fate through multiple environmental media, estimate potential human exposure via specific exposure pathways, and estimate the risk of cancer and non-cancer health outcomes. ESC relies on using monitoring data to quantify the key components of an initial conceptual site model that is modified iteratively using the multimedia model. Two case studies are presented that used the ESC approach: Los Alamos National Laboratory (LANL) and Pantex. LANL released radionuclides, metals, and organic compounds, into canyons surrounding the facility. The Pantex Plant has past waste management operations which included burning chemical wastes in unlined pits, burying wastes in unlined landfills, and discharging plant wastewaters into on-site surface waters. The case studies indicate that using multimedia models with the ESC approach can inform assessors about what, where, and how much site characterization data needs to be collected to reduce the uncertainty associated with risk assessment. Lowering the degree of uncertainty reduces the time and cost associated with assessing potential risk and increases the confidence that decision makers have in the assessments performed.

  15. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  16. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  17. Synthesis and characterization of manganese-glycine and copper-glycine adducts

    Directory of Open Access Journals (Sweden)

    Robson Fernandes de Farias

    2002-09-01

    Full Text Available This work reports the synthesis and characterization of adducts of general formula MCl2.ngly, where M= Mn and Cu; n= 2 and 4, and gly= glycine. The manganese adducts were synthesized by dissolution of both, manganese chloride and glycine in water, whereas the copper adducts were obtained by using an alternative solid state synthesis approach. For all adducts, the obtained infrared data shows that the coordination involves the amine nitrogen atom, as well as an oxygen atom of the COO- group. The TG curves for the synthesized adducts exhibit only one mass loss step associated with the release of glycine molecules.

  18. Synthesis and characterization of boehmites obtained from gibbsite in presence of different environments

    Energy Technology Data Exchange (ETDEWEB)

    Denigres Filho, Ricardo Wilson Nastari; Rocha, Gisele de Araujo; Vieira-Coelho, Antonio Carlos, E-mail: acvcoelh@usp.br [Universidade de Sao Paulo (LPSS/EP/USP), SP (Brazil). Departamento de Engenharia Metalurgica e de Materiais. Laboratorio de Materias-Primas Particuladas; Montes, Celia Regina [Centro de Energia Nuclear na Agricultura (NUPEGEL/CENA/USP), Piracicaba, SP (Brazil). Nucleo de Pesquisas Geoquimicas e Geofisicas da Listosfera

    2016-05-15

    In this study, results related to boehmite synthesis by hydrothermal processes starting from a Bayer commercial gibbsite are reported. The processes have been conducted from aqueous suspensions with initial acidic or alkaline pH, without or with acetate ion, at 160 deg C for 72h to 168h. The final materials were characterized by X-ray diffraction (XRD), thermal methods (DTA and TGA) and scanning electron microscopy (SEM). The influence of the synthesis conditions on the morphology of the boehmite crystals obtained from the gibbsite at different hydrothermal processes are discussed. (author)

  19. Synthesis and Characterization of Metal Complexes with Schiff Base Ligands

    Science.gov (United States)

    Wilkinson, Shane M.; Sheedy, Timothy M.; New, Elizabeth J.

    2016-01-01

    In order for undergraduate laboratory experiments to reflect modern research practice, it is essential that they include a range of elements, and that synthetic tasks are accompanied by characterization and analysis. This intermediate general chemistry laboratory exercise runs over 2 weeks, and involves the preparation of a Schiff base ligand and…

  20. Synthesis and characterization of fluorophore attached silver nanoparticles

    Indian Academy of Sciences (India)

    S C G Kiruba Daniel; T Anitha Sironmani; V Tharmaraj; K Pitchumani

    2011-07-01

    Silver nanoparticles stabilized by soluble starch were synthesized and characterized. in vivo studies in rats showed no toxicity and revealed their distribution in various tissues and permeability across BBB. This starch stabilized silver nanoparticles have good biological characteristics to act as a potential promising vector for gene/drug delivery.

  1. Synthesis,Characterization,and Electrochemical Property of Nanometer Porphyrin Dimer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A nanometer porphyrin dimer was synthesized with fumaryl chloride as a bridge-linked reagent. The characterization was carried out with elemental analyses, 1H NMR, UV-Vis, and IR spectrometries, and then the electrochemical properties of the porphyrins were studied. The authors found that there was moderate electronic communication between the two porphyrin rings in the nanometer porphyrin dimer.

  2. Barium titanate inverted opals-synthesis, characterization, and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Soten, I.; Miguez, H.; Yang, S.M.; Petrov, S.; Coombs, N.; Tetreault, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry; Matsuura, N.; Ruda, H.E. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2002-01-01

    The engineering of cubic or tetragonal polymorphs of nanocrystalline barium titanate inverted opals has been achieved by thermally induced transformations. Optical characterization demonstrated photonic crystal behavior of the opals. The tuning of the ferroelectric-paraelectric transition around the Curie temperature is shown in this paper. (orig.)

  3. Synthesis and electrical characterization of Graphene Oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Yasin, Muhammad, E-mail: m.yasin@seecs.edu.pk [National University of Sciences and Technology, Islamabad (Pakistan); Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Tauqeer, T.; Zaidi, Syed M.H. [National University of Sciences and Technology, Islamabad (Pakistan); San, Sait E. [Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Department of Physics, Gebze Technical University, 41400 Kocaeli (Turkey); TUBITAK Marmara Research Center, Photonic Technologies Group, TUBITAK Gebze (Turkey); Mahmood, Asad [National Center of Excellence in Physical Chemistry, University of Peshawar, Peshawar (Pakistan); Köse, Muhammet E. [TUBITAK Marmara Research Center, Photonic Technologies Group, TUBITAK Gebze (Turkey); Canimkurbey, Betul [Polymer Electronics Research Laboratory, Gebze Technical University, Gebze (Turkey); Department of Physics, Gebze Technical University, 41400 Kocaeli (Turkey); Department of Physics, Amasya University, 05100 Amasya (Turkey); Okutan, Mustafa [Department of Physics, Yildiz Technical University, Davutpasa, 34210 Istanbul (Turkey)

    2015-09-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ{sub ac} of the films was observed to be varied with angular frequency, ω as ω{sup S}, with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively.

  4. Modeling of alkynes: synthesis and theoretical properties

    Directory of Open Access Journals (Sweden)

    Renato Rosseto

    2003-06-01

    Full Text Available In this paper we present the synthesis and simulation of alkynes derivatives. Semiempirical calculations were carried out for the ground and first excited states, including the spectroscopic properties of the absorption and emission (fluorescence and phosphorescence spectra by INDO/S-CI and DNdM-INDO/S-CI methods with geometries fully optimized by PM3/CI. The fact that the theoretical spectra are in accord with the experimental absorption spectra gives us a new possible approach on how structure modifications could affect the non-linear optical properties of alkynes.

  5. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  6. Preform Characterization in VARTM Process Model Development

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  7. Improving randomness characterization through Bayesian model selection

    CERN Document Server

    R., Rafael Díaz-H; Martínez, Alí M Angulo; U'Ren, Alfred B; Hirsch, Jorge G; Marsili, Matteo; Castillo, Isaac Pérez

    2016-01-01

    Nowadays random number generation plays an essential role in technology with important applications in areas ranging from cryptography, which lies at the core of current communication protocols, to Monte Carlo methods, and other probabilistic algorithms. In this context, a crucial scientific endeavour is to develop effective methods that allow the characterization of random number generators. However, commonly employed methods either lack formality (e.g. the NIST test suite), or are inapplicable in principle (e.g. the characterization derived from the Algorithmic Theory of Information (ATI)). In this letter we present a novel method based on Bayesian model selection, which is both rigorous and effective, for characterizing randomness in a bit sequence. We derive analytic expressions for a model's likelihood which is then used to compute its posterior probability distribution. Our method proves to be more rigorous than NIST's suite and the Borel-Normality criterion and its implementation is straightforward. We...

  8. Synthesis, Characterization, and Crystal Structure of a Novel Copper(II) Complex with an Asymmetric Coordinated 2,2'-Bipyridine Derivative: A Model for the Associative Complex in the Ligand-Substitution Reactions of [Cu(tren)L](2+)?

    Science.gov (United States)

    Lu Zl, Zhong-lin; Duan Cy, Chun-ying; Tian Yp, Yu-peng; You Xz, Xiao-zeng; Huang Xy, Xiao-ying

    1996-04-10

    The titled compound, (tris(2-aminoethyl)amine)(4,5-diazafluoren-9-one) copper(II) perchlorate, [Cu(C(6)H(18)N(4))(C(11)H(6)N(2)O)(ClO(4))(2)], 1, has been designed, synthesized, and characterized. The electronic and ESR spectra are very different from those of [Cu(tren)L](2+) complexes where L is monodentate ligand. The X-ray analysis revealed that the complex crystallizes in the monoclinic space group P2(1)/c, with a = 10.726(6) Å, b = 14.921(7) Å, c = 14.649(4) Å, beta = 95.13(3) degrees, and Z = 4. The copper(II) ion is coordinated by four nitrogen atoms from tris(2-aminoethyl)amine (tren) and two nitrogen atoms from 4,5-diazafluoren-9-one (dzf) to form an unusual six-coordinate (4 + 1 + 1') geometry. The structure is very rare, and to our knowledge, it is the first example of an asymmetric bidentate phenanthroline derivative metal complex. The structure could be used as a model of the associative complex in the ligand-exchange and ligand-substitution reactions of [Cu(tren)L](2+) and the catalytic mechanisms of enzymes involving copper sites. From the electronic and variable-temperature ESR spectra in solution, the possible mechanism of these reactions has also been proposed. As a comparison, the complex [Cu(tren)(ImH)(ClO(4))(2)], 2, was also synthesized and characterized, where ImH is imidazole.

  9. Synthesis, Characterization and Properties of Nanoparticles of Intermetallic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States)

    2015-03-12

    The research program from 2010 to the end of the grant focused on understanding the factors important to the synthesis of single phase intermetallic nano-particles (NPs), their size, crystalline order, surface properties and electrochemical activity. The synthetic method developed is a co-reduction of mixtures of single metal precursors by strong, soluble reducing agents in a non-protic solvent, tetrahydrofuran (THF). With some exceptions, the particles obtained by room temperature reduction are random alloys that need to be annealed at modest temperatures (200 to 600 °C) in order to develop an ordered structure. To avoid significant particle size growth and agglomeration, the particles must be protected by surface coatings. We developed a novel method of coating the metal nanoparticles with KCl, a by-product of the reduction reaction if the proper reducing agents are employed. In that case, a composite product containing individual metal nanoparticles in a KCl matrix is obtained. The composite can be heated to at least 600 °C without significant agglomeration or growth in particle size. Washing the annealed product in the presence of catalyst supports in ethylene glycol removes the KCl and deposits the particles on the support. Six publications present the method and its application to producing and studying new catalyst/support combinations for fuel cell applications. Three publications concern the use of related methods to explore new lithium-sulfur battery concepts.

  10. Radiation chemical synthesis and characterization of UO 2 nanoparticles

    Science.gov (United States)

    Roth, Olivia; Hasselberg, Hanna; Jonsson, Mats

    2009-01-01

    In a deep repository for spent nuclear fuel, U(VI)(aq) released upon dissolution of the fuel matrix could, in reducing parts of the system, be converted to U(IV) species which might coalesce and form nanometer-sized UO 2 particles. This type of particles is expected to have different properties compared to bulk UO 2(s). Hence, their properties, in particular the capacity for oxidant consumption, must be investigated in order to assess the effects of formation of such particles in a deep repository. In this work, methods for radiation chemical synthesis of nanometer-sized UO 2 particles, by electron- and γ-irradiation of U(VI) solutions, are presented. Electron-irradiation proved to be the most efficient method, showing high conversions of U(VI) and yielding small particles with a narrow size distribution (22-35 nm). Stable colloidal suspensions were obtained at low pH and ionic strength (pH 3, I = 0.03). Furthermore, the reactivity of the produced UO 2 particles towards H 2O 2 is investigated. The U(IV) fraction in the produced particles was found to be ˜20% of the total uranium content, and the results show that the UO 2 nanoparticles are significantly more reactive than micrometer-sized UO 2 when it comes to H 2O 2 consumption, the major part of the H 2O 2 being catalytically decomposed on the particle surface.

  11. Synthesis and characterization of new polyaniline/nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Maser, W.K.; Benito, A.M.; Callejas, M.A.; Seeger, T.; Martinez, M.T.; Schreiber, J.; Muszynski, J.; Chauvet, O.; Osvath, Z.; Koos, A.A.; Biro, L.P

    2003-01-15

    New polyaniline/nanotube (PANI/NT) composites have been synthesized by 'in situ' polymerization processes using both multi-wall carbon nanotubes (MWNTs) and single-wall carbon nanotubes (SWNTs) in concentrations ranging from 2 to 50 wt.%. Although no structural changes are observed using MWNTs above a concentration of 20 wt.%, the in situ synthesis results in electronic interactions between nanotubes and the quinoid ring of PANI leading to enhanced electronic properties and thus to the formation of a genuine PANI/MWNT composite material. On the other hand, using SWNTs favors the formation of inhomogeneous mixtures rather than of a homogeneous composite materials, independent of the SWNT concentration. X-ray diffraction, Raman and transport measurements show the different behavior of both classes of nanotubes in PANI/NT materials. The difficulties in the formation of a true PANI/SWNT composite are related to the far more complex structure of the SWNT material itself, i.e. to the presence of entangled bundles of SWNTs, amorphous carbon and even catalytic metal particles.

  12. PHA-rubber blends: synthesis, characterization and biodegradation.

    Science.gov (United States)

    Bhatt, Rachana; Shah, Dishma; Patel, K C; Trivedi, Ujjval

    2008-07-01

    Medium chain length polyhydroxyalkanoates (mcl-PHA) and different rubbers; namely natural rubber, nitrile rubber and butadiene rubber were blended at room temperature using solution blending technique. Blends constituted 5%, 10% and 15% of mcl-PHA in different rubbers. Thermogravimetric analysis of mcl-PHA showed the melting temperature of the polymer around 50 degrees C. Thermal properties of the synthesized blend were studied by Differential Scanning Calorimetry which confirmed effective blending between the polymers. Blending of mcl-PHA with natural rubber led to the synthesis of a different polymer having the melting point of 90 degrees C. Degradation studies of the blends were carried out using a soil isolate, Pseudomonas sp. 202 for 30 days. Extracellular protein concentration as well as OD660 due to the growth of Pseudomonas sp. 202 was studied. The degradation of blended plastic material, as evidenced by % weight loss after degradation and increase in the growth of organism correlated with the amount of mcl-PHA present in the sample. Growth of Pseudomonas sp. 202 resulted in 14.63%, 16.12% and 3.84% weight loss of PHA:rubber blends (natural, nitrile and butadiene rubber). Scanning electron microscopic studies after 30 days of incubation further confirmed biodegradation of the films.

  13. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Science.gov (United States)

    Torres-Huerta, A. M.; Domínguez-Crespo, M. A.; Ramírez-Meneses, E.; Vargas-García, J. R.

    2009-02-01

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO 2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  14. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  15. Green synthesis of silver nanoparticles and their characterization by XRD

    Science.gov (United States)

    Mehta, B. K.; Chhajlani, Meenal; Shrivastava, B. D.

    2017-05-01

    A cost effective and environment friendly technique for green synthesis of silver nanoparticles has been reported. Silver nanoparticles have been synthesized using ethanol extract of fruits of Santalum album (Family Santalaceae), commonly known as East Indian sandalwood. Fruits of S.album were collected and crushed. Ethanol was added to the crushed fruits and mixture was exposed to microwave for few minutes. Extract was concentrated by Buchi rotavaporator. To this extract, 1mM aqueous solution of silver nitrate (AgNO3) was added. After about 24 hr incubation Ag+ ions in AgNO3 solution were reduced to Ag atoms by the extract. Silver nanoparticles were obtained in powder form. X-ray diffraction (XRD) pattern of the prepared sample of silver nanoparticles was recorded The diffractogram has been compared with the standard powder diffraction card of JCPDS silver file. Four peaks have been identified corresponding to (hkl) values of silver. The XRD study confirms that the resultant particles are silver nanoparticles having FCC structure. The average crystalline size D, the value of the interplanar spacing between the atoms, d, lattice constant and cell volume have been estimated. Thus, silver nanoparticles with well-defined dimensions could be synthesized by reduction of metal ions due to fruit extract of S.album.

  16. Synthesis and characterization of magnetite nanoparticles from mineral magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile); Martínez, Francisco, E-mail: polimart@ing.uchile.cl [Laboratorio de Síntesis y Polímeros, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago (Chile); Mosquera, Edgar [Laboratorio de Materiales a Nanoescala, Departamento de ciencias de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenue Tupper 2069, Santiago (Chile)

    2013-10-15

    We have synthesized magnetite nanoparticles with sizes that range from 20 to 30 nm from mineral magnetite roughly 45 μm in size. The procedure consists in the dissolution of the mineral in an acidic medium and subsequent precipitation in a basic medium in the presence of oleic acid. Two experiments were conducted in different gaseous environments. The first was carried out in an environment exposed to air (M1) and the second in an N{sub 2} (M2) environment. The x-ray diffraction results showed a slight difference, which corresponds to the surface oxidation of magnetite. The sizes of the modified nanoparticles were determined through the Scherrer equation and transmission electron microscopy. An organic material mass loss corresponding to 18% was observed through a thermogravimetric analysis. The Fourier transform infrared spectroscopic analysis provides information about the type of bond that is formed on the surface of the nanoparticle, which corresponds to a bidentate chelate. The vibrating sample magnetometer results show a superparamagnetic behavior for sample M1. - Highlights: • A new method for synthesis of nanoparticles from mineral microparticles. • Search agreggate value to the mineral by mean nanoscience. • The stoichiometric ratio of the ions Fe{sup 2+} and Fe{sup 3+} from the mineral magnetite is synergistic.

  17. Synthesis of Mesoporous Titania with Surfactant and its Characterization

    Directory of Open Access Journals (Sweden)

    T. Benkacem

    2008-01-01

    Full Text Available A mesoporous titania was obtained by gelation from Ti-alkoxide in acidic solutions with addition of surfactant cetyltrimetylammonium bromide (CH3(CH215N(CH33Br using a sol-gel process. The effects of surfactant concentration on synthesis of mesoporous titania were studied. The structural characterisation was studied by differential thermal analysis, infrared spectroscopy, X-ray diffraction. Studies by X-ray diffraction showed that crystallisation of TiO2 powder occurs at 200°C, above 200°C we obtained a mixture of two forms-Anatase and rutile. The textural characterisation by nitrogen adsorption-desorption allowed us to observe the variation of the surface area, porous volume and pore diameters according to temperature and [CTAB]/[Ti-alkoxide] molar ratio. The analysis of the results shows that addition of surfactant residue increases considerably its pore diameters. The deposit thin layers has been realized with a sol prepared with the destabilization of colloidal solutions process. Scanning electron-spectroscopy observation for thermally treated (at 400 and 600°C samples, showed homogeneous layers without cracking.

  18. Synthesis, Characterization and Thermal Diffusivity of Holmium and Praseodymium Zirconates

    Directory of Open Access Journals (Sweden)

    Stopyra M.

    2016-06-01

    Full Text Available A2B2O7 oxides with pyrochlore or defected fluorite structure are among the most promising candidates for insulation layer material in thermal barrier coatings. The present paper presents the procedure of synthesis of holmium zirconate Ho2Zr2O7 and praseodymium zirconate Pr2Zr2O7 via Polymerized-Complex Method (PCM. Thermal analysis of precursor revealed that after calcination at relatively low temperature (700°C fine-crystalline, single-phase material is obtained. Thermal diffusivity was measured in temperature range 25-200°C, Ho2Zr2O7 exhibits lower thermal diffusivity than Pr2Zr2O7. Additionally, PrHoZr2O7 was synthesized. The powder in as-calcined condition is single-phase, but during the sintering decomposition of solid solution took place and Ho-rich phase precipitated. This material exhibited the best insulating properties among the tested ones.

  19. Metallic iron nanoparticles: Flame synthesis, characterization and magnetic properties

    Institute of Scientific and Technical Information of China (English)

    Yunfeng Li; Yanjie Hu; Guangjian Huang; Chunzhong Li

    2013-01-01

    Metallic iron (Fe) nanoparticles (NPs) with a typical core-shell structure have been prepared by a simple and continuous flame spray pyrolysis (FSP) method,which are stabilized by the corresponding Fe3O4 shell with a thickness of 4-6 nm.The size of metallic Fe cores is about 30-80 nm.The core-shell structured iron NPs show an air stability as long as one month as a result of the protection of oxide shell.Through the control of the residence time of materials in flame and flame atmosphere,metallic Fe and iron oxides are obtained,showing a better external magnetic field responsibility.It is concluded that the evolution of morphology and composition of flame-made magnetic NPs could be attributed to the competition mechanism between reduction and oxidation reactions of in situ flame combustion,which offers more choices and better effective design strategy for the synthesis of advanced functional materials via FSP techniques.

  20. Synthesis and Characterization of Gold Nanoparticles by Tryptophane

    Directory of Open Access Journals (Sweden)

    Azim Akbarzadeh

    2009-01-01

    Full Text Available Problem statement: Preparation and synthesis of gold nanoparticles with small size and suitable stability is very important and applicable particularly in medicine. In this study, we have prepared gold nanoparticles by chemical reduction method employing L-Tryptophane as a reducing agent for ionic gold. Approach: The gold nanoparticles are the most employed amongst the different metallic nanoparticles in the fields of nanomedicine and nanobiotechnology. Therefore, the employed method should provide suitable particle size, shape and particle distribution in order to obtain nanoparticles of high activity and efficiency indicating the importance of the technique. In this study, HAuCl4 .3H2O, L-Tryptophane and polyethyleneglycol (PEG were used to produce AuCl-4 ions. They were acted as pre-material, reducing and stabilizing agents respectively. Results: The size, distribution and formation of gold nanoparticles were confirmed by Transmission Electron Microscopy (TEM indicating the diameter of gold nanoparticles at the range of 10-25 nm and UV spectroscopy. The formed nanoparticles showed the highest absorption at 518 nm. Conclusion: The gold nanoparticles were stable in PEG1000. Since these nanoparticles have suitable size distribution they can be considered as a suitable candidate to be employed in nanomedicine and nanobiotechnology.

  1. Synthesis, characterization and optical properties of nanocrystalline lead molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Anandakumar, V.M. [Department of Physics University of Kerala, Thiruvananthapuram (India); Department of Physics, Mahatma Gandhi College, Thiruvananthapuram (India); Khadar, M.A. [Department of Physics University of Kerala, Thiruvananthapuram (India); Centre for Nanosciences and Nanotechnology, University of Kerala, Thiruvananthapuram (India)

    2008-11-15

    Lead molybdate (PbMoO{sub 4}) finds wide practical application due to its acousto-optic and luminescent properties. In the present study, nanoparticles of PbMoO{sub 4} of different grain sizes were synthesized through chemical precipitation technique. Precipitation reactions carried out in non-aqueous media below room temperature were used for the synthesis of samples of two lower grain sizes. The crystal structure and grain size of the samples were determined using X-ray diffraction and transmission electron microscopy. UV-Visible absorption spectra showed a broad absorption peak for the sample with average grain size of 52 nm which is blue shifted considerably as the average grain size was reduced to 14 nm. The fundamental absorption follows an exponential edge indicating Urbach-like behaviour. The temperature dependence of Urbach parameter is also determined. The micro-Raman spectra and FT Raman spectra of the samples were recorded and the features in the Raman spectra are discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Synthesis and characterization of robust magnetic carriers for bioprocess applications

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Willian, E-mail: willkopp@gmail.com [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Silva, Felipe A., E-mail: eq.felipe.silva@gmail.com [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Lima, Lionete N., E-mail: lionetenunes@yahoo.com.br [Federal University of São Carlos-UFSCar, Graduate Program in Chemical Engineering, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Masunaga, Sueli H., E-mail: sueli.masunaga@gmail.com [Department of Physics, Montana State University-MSU, 173840, Bozeman, MT 59717-3840 (United States); Tardioli, Paulo W., E-mail: pwtardioli@ufscar.br [Department of Chemical Engineering, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Giordano, Roberto C., E-mail: roberto@ufscar.br [Department of Chemical Engineering, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); Araújo-Moreira, Fernando M., E-mail: faraujo@df.ufscar.br [Department of Physics, Federal University of São Carlos-UFSCar, Rodovia Washington Luiz, km 235, São Carlos, São Paulo 13565-905 (Brazil); and others

    2015-03-15

    Highlights: • Silica magnetic microparticles were synthesized for applications in bioprocesses. • The process to produce magnetic microparticles is inexpensive and easily scalable. • Microparticles with very high saturation magnetization were obtained. • The structure of the silica magnetic microparticles could be controlled. - Abstract: Magnetic carriers are an effective option to withdraw selected target molecules from complex mixtures or to immobilize enzymes. This paper describes the synthesis of robust silica magnetic microparticles (SMMps), particularly designed for applications in bioprocesses. SMMps were synthesized in a micro-emulsion, using sodium silicate as the silica source and superparamagnetic iron oxide nanoparticles as the magnetic core. Thermally resistant particles, with high and accessible surface area, narrow particle size distribution, high saturation magnetization, and with superparamagnetic properties were obtained. Several reaction conditions were tested, yielding materials with saturation magnetization between 45 and 63 emu g{sup −1}, particle size between 2 and 200 μm and average diameter between 11.2 and 15.9 μm, surface area between 49 and 103 m{sup 2} g{sup −1} and pore diameter between 2 and 60 nm. The performance of SMMps in a bioprocess was evaluated by the immobilization of Pseudomonas fluorescens lipase on to octyl modified SMMp, the biocatalyst obtained was used in the production of butyl butyrate with good results.

  3. Synthesis and characterization of several molybdenum chloride cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Beers, W.W.

    1983-06-01

    Investigation into the direct synthesis of Mo/sub 4/Cl/sub 8/(P(C/sub 2/H/sub 5/)/sub 3/)/sub 4/ from Mo/sub 2/(OAc)/sub 4/ led to a synthetic procedure that produces yields greater than 80%. The single-crystal structure disclosed a planar rectangular cluster of molybdenum atoms. Metal-metal bond distances suggest that the long edges of the rectangular cluster should be considered to be single bonds and the short metal-metal bonds to be triple bonds. This view is reinforced by an extended Hueckel calculation. Attempts to add a metal atom to Mo/sub 4/Cl/sub 8/(PR/sub 3/)/sub 4/ to form Mo/sub 5/Cl/sub 10/(PR/sub 3/)/sub 3/ led instead to a compound with the composition Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/. Solution and reflectance uv-visible spectra and x-ray photoelectron spectra suggest that tetranuclear molybdenum units are present. The facile reaction between Mo/sub 8/Cl/sub 16/(PR/sub 3/)/sub 4/ and PR/sub 3/ imply that the linkage between tetrameric units is weak.

  4. Synthesis and characterization of NiMnIn nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda, E-mail: eaksoy@itu.edu.tr

    2015-01-01

    The off-stoichiometric Ni{sub 50}Mn{sub 34}In{sub 16} intermetalic Heusler nanoparticles have been prepared by laser ablation in distilled water from the target alloy using femtosecond laser system. The properties of the particles were characterized by electron microscopy and magnetometer techniques. The particle mean size of 28 nm was estimated by using the scanning electron microscopy images. However, the transmission electron microscopy results revealed that spherical cluster-like particles have been also produced. The magnetic field-induced structural transition was found in the particles with a starting temperature of around 250 K. - Highlights: • Ni–Mn–In Heusler nanoparticles are prepared by laser ablation method. • Structural properties are characterized by SEM and TEM. • Magnetic properties are discussed by the temperature-dependent magnetization and the magnetic field-dependent magnetization measurements.

  5. Synthesis and characterization of polyaniline as emeraldine salt

    Energy Technology Data Exchange (ETDEWEB)

    Gawri, Isha; Khatta, Swati; Singh, K. P.; Tripathi, S. K., E-mail: surya@pu.ac.in, E-mail: surya-tr@yahoo.com [Department of Physics, Center of Advanced Study in Physics, Panjab University, Chandigarh-160 014 (India)

    2016-05-06

    Polyaniline in emeraldine salt (PANI-ES) form was successfully synthesized by oxidative polymerization of aniline using ammonium peroxidisulphate as oxidant in the presence of hydrochloric acid as catalyst under ice bath condition. The as prepared powdered sample was characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Using XRD, the average crystalline size was found to be 5.63 nm and d-spacing corresponding to crystalline peak 2θ = 25.08° had come out to be 4.2 Å. Also FTIR absorption spectra showed all the characteristics bands of PANI –ES. The ohmic contact between the PANI-ES film and the substrate was confirmed by Current-Voltage (I-V) characterization.

  6. Synthesis and characterization of optically transparent epoxy matrix nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Esposito Corcione, C., E-mail: carola.corcione@unile.it [Dipartimento di Ingegneria dell' Innovazione Via Monteroni 73100, Lecce (Italy); Manera, M.G. [IMM-CNR Istituto per la microelettronica e microsistemi - sezione di Lecce, c/o campus universitario, via per Monteroni, 73100 Lecce (Italy); Maffezzoli, A. [Dipartimento di Ingegneria dell' Innovazione Via Monteroni 73100, Lecce (Italy); Rella, R. [IMM-CNR Istituto per la microelettronica e microsistemi - sezione di Lecce, c/o campus universitario, via per Monteroni, 73100 Lecce (Italy)

    2009-08-01

    In this work optically transparent nanocomposites were prepared and characterized from an optical and morphological point of view. An organically modified boehmite was added at different concentrations in a diglycidyl ether of bisphenol A (DGEBA) epoxy matrix, hardened with a polyether diamine. Nanocomposites were characterized structurally by X-ray diffraction (XRD), optically by UV-Vis-NIR spectrophotometry and their morphology was investigated by Atomic Force Microscopy (AFM). Morphological investigation reveals the presence of boehmite particles dispersed in the epoxy matrix in different dimensions ranging from ten to hundreds of nanometers; some aggregation in the particles is the tendency noticed in the AFM images. The acquisition of multiple AFM images in different areas of the sample was used for a statistical analysis of the volumetric distribution of boehmite aggregates. The obtained result, (3.6 {+-} 0.3)%vol, is well comparable to thermogravimetric analysis.

  7. Synthesis and characterization of europium doped LiF phosphor

    Energy Technology Data Exchange (ETDEWEB)

    Villalobos, M. L.; Vallejo, M. A.; Sosa A, M. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque No. 103, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Diaz T, L. A., E-mail: villaloboscm2010@licifug.ugto.mx [Centro de Investigaciones en Optica, A. C., Loma del Bosque No. 115, Lomas del Campestre, 37150 Leon, Guanajuato (Mexico)

    2015-10-15

    LiF with different dopants has been one of the most investigated materials to use as thermoluminescent dosimeter. In this paper, we present the preparation method, the characterization and the thermoluminescent response of Eu doped LiF irradiated with X-rays. Pure and Eu doped LiF samples with different dopant concentration (0, 0.25, 0.5, 0.75 and 1 % mol) were synthesized using the precipitation method. The samples were structurally characterized by X-ray diffraction (XRD), the diffraction patterns showed a main cubic crystalline structure and a secondary hexagonal structure. The photoluminescence spectrum exhibited four well defined peaks characteristic of the Eu{sup 3+} ion. Thermoluminescent (Tl) glow curves of x-ray irradiated samples showed a well-defined single peak around 200 degrees C, except for the pure and 0.25% Eu doped samples. (Author)

  8. Synthesis and characterization of hydrogel bonded with rare earth

    Institute of Scientific and Technical Information of China (English)

    YAN Changhao; JIAO Lianlian; GUO Chunfang; ZHANG Ming; QIU Guanming

    2008-01-01

    Chitosan-poly(acrylic acid) hydrogel bonded with Eu3+ was prepared by radical solution polymerization. Biodegradable chitosan,N,N'-methylen-diacrylamide, and potassium persulphate were used as the basic material, cross-linking agent, and initiator, respectively. The structure and thermal property of hydrogel were characterized by infrared spectrometry, X-ray diffraction, scanning electron microscopy, and differential scanning calorimetry. The swollen property and fluorescent performance were also characterized. The results showed that the rare earth presented unique distribution in the hydrogel due to the formation of chemical bonds after polymerization. The glass transition tem-perature of the hydrogel decreased remarkably, which might broaden the range of its elastic application considerably. Moreover, the charac-teristic fluorescent emission of Eu3+ was observed in the hydrogel, which was indicative of the excellent luminescent performance.

  9. Synthesis and Characterization of Novel Epoxy Geopolymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Oreste Tarallo

    2013-09-01

    Full Text Available The preparation and the characterization of novel geopolymer-based hybrid composites are reported. These materials have been prepared through an innovative synthetic approach, based on a co-reticulation in mild conditions of commercial epoxy based organic resins and a metakaolin-based geopolymer inorganic matrix. This synthetic strategy allows the obtainment of a homogeneous dispersion of the organic particles in the inorganic matrix, up to 25% in weight of the resin. The materials obtained present significantly enhanced compressive strengths and toughness with respect to the neat geopolymer, suggesting their wide utilization for structural applications. A preliminary characterization of the porous materials obtained by removing the organic phase from the hybrid composites by means of heat treatments is also reported. Possible applications of these materials in the field of water purification, filtration, or as lightweight insulating materials are envisaged.

  10. Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines.

    Science.gov (United States)

    Aderibigbe, B A; Neuse, E W; Sadiku, E R; Ray, S Shina; Smith, P J

    2014-06-01

    In this research, aminoquinoline compounds were synthesized, characterized, and incorporated into water-soluble polymers to form conjugates. The conjugates were characterized by X-ray diffraction, thermal gravimetric analysis, scanning electron microscope, Fourier transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy to confirm the successful incorporation of the aminoquinoline compound on to the polymer. The synthesized conjugates were screened for in vitro antiplasmodial activity in triplet test against chloroquine-sensitive strain of Plasmodium falciparum and chloroquine drug was used as a reference drug in all the experiments. A full dose-response was performed to determine the concentration inhibiting 50% of parasite growth (IC50 value). Polymeric conjugates containing 3-diethylamino-1-propylamine solubilizing units were found to be most active against the chloroquine-sensitive strain of P. falciparum.

  11. Template synthesis, characterization and transformations of iron nanowires while aging

    Energy Technology Data Exchange (ETDEWEB)

    Jagminas, Arunas [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania)], E-mail: jagmin@ktl.mii.lt; Mazeika, Kestutis; Reklaitis, Jonas [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania); Kurtinaitiene, Marija [Institute of Chemistry, A. Gostauto 9, LT-01108 Vilnius (Lithuania); Baltrunas, Dalis [Institute of Physics, Savanoriu 231, LT-02300 Vilnius (Lithuania)

    2008-05-15

    Densely packed arrays of various materials demonstrating enhanced magnetic properties remain of great interest nowadays. In this study, transmission electron microscopy (TEM), Moessbauer spectroscopy (MS) and powder X-ray diffraction (XRD) were used to characterize the morphology, composition and phase of iron nanowires (nws) deposited from the developed solution within alumina template pores of the average diameter of ca.15 nm by the alternating current (ac) electrolysis protocol. The same investigations were performed after Fe nws storage in the air for several months. Characterization of the as-grown product shows the formation of the crystalline {alpha}-Fe nws array with a preferred [1 1 0] nw growth direction. The aging of samples leads to the corrosion of Fe nws mainly from the template top side while aging of Fe nws liberated from the template and kept for several months under ambient conditions results in the corrosion of nws along their full length producing catkin-twig shapes.

  12. Electrochemical synthesis and characterization of Cu2Se nanowires

    Science.gov (United States)

    Kaur, Harmanmeet; Kaur, Jaskiran; Singh, Lakhwant; Singh, Surinder

    2013-12-01

    Copper Selenide (Cu2Se) nanowires were successfully fabricated via potentiostatic electrodeposition using polycarbonate membranes (Whatmann, USA) with nominal pore diameter of 100 nm. The morphology of the so fabricated nanowires was examined by field emission scanning electron microscopy (FE-SEM). Later the samples were characterized for their structural, optical and electrical properties by XRD, UV-visible spectroscopy and I-V respectively.

  13. Synthesis and characterization of novel dipeptide ester prodrugs of acyclovir

    Science.gov (United States)

    Nashed, Yasser E.; Mitra, Ashim K.

    2003-07-01

    Four dipeptide (Gly-Gly, Gly-Val, Val-Val, Val-Gly) ester prodrugs of 9-[(2-hydroxyethoxy)methyl]guanine (acyclovir, ACV) were synthesized. LC/MS was used to characterize the new prodrugs. Both 1H NMR and 13C NMR spectra of the four prodrugs of ACV were measured and assigned based on spectral comparison with compounds of similar structures.

  14. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  15. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    Energy Technology Data Exchange (ETDEWEB)

    Asha, E-mail: arana5752@gmail.com [Department of Basic and Applied Sciences, Bhagat Phool Singh Mahilla Vishwavidyalaya, Khanpur Kalan, Sonipat-131305 (India); Goyal, Sneh Lata; Kishore, Nawal [Department of Applied Physics, Guru Jambheshwar University of Science and Technology, Hisar-125001 (India)

    2016-05-23

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl{sub 2}.6H{sub 2}O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  16. Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging

    OpenAIRE

    2000-01-01

    A series of reactive phenylethynyl endcapped imide oligomers has been prepared in either fully cyclized or amic acid precursor form. Soluble oligomers have been synthesized with controlled molecular weights ranging from 2- to 12 Kg/mol. Molecular weight characterization was performed using SEC (size exclusion chromatography) and 13C-NMR, revealing good agreement between the theoretical and experimental (Mn) values. Crosslinked polyimides were obtained by solution or melt processing the oli...

  17. Synthesis and Characterization of Nitrogen-Doped Graphene

    OpenAIRE

    Palaniuk, D. Ryan

    2012-01-01

    Approved for public release; distribution is unlimited Self standing nitrogen doped graphene sheets were produced by reduction-expansion method, which utilizes graphite oxide (GO) and urea as precursor materials. For comparison, an Atmospheric Microwave Plasma Torch system (ATP) was used to produce graphene samples under argon and nitrogen atmospheres from GO. Graphene samples were characterized by XRD, TEM, SEM, BET and Raman Spectroscopy. The GO and urea mixtures decomposition-reduction ...

  18. Synthesis and characterization of gelatin based polyester urethane scaffold

    Indian Academy of Sciences (India)

    S Sarkar; A Chourasia; S Maji; S Sadhukhan; S Kumar; B Adhikari

    2006-10-01

    For tissue engineering purpose two gelatin based polyester urethane scaffolds of different compositions were prepared from lactic acid, polyethylene glycol 400 (PEG 400) and characterized by FTIR, XRD for their mechanical and morphological properties using SEM and optical microscopic analyses. Degradation and swelling studies of gelatin based polyester urethane scaffolds in phosphate buffer saline (PBS) were performed. Human keratinocyte cells were cultured within these scaffolds, which showed good cell adherence and proliferation.

  19. Synthesis and characterization of new azo containing Schiff base macrocycle

    Institute of Scientific and Technical Information of China (English)

    Saeed Malek-Ahmadi; Amir Abdolmaleki

    2011-01-01

    Fully conjugated Schiff base macrocycle has been prepared through a simple and mild condition, a one-pot cyclization procedure of four-component without using a template. The condensation reaction of related bis (hydroxybenzaldehyde) with phenylenediamines to prepare a conjugated [2 + 2] Schiff base macrocycle has been investigated and fluorescent [2 + 2] Schiff base macrocycles with N2O2 binding pockets has been prepared and characterized by elemental analysis,' H NMR, IR, fluorescent, UV-visible and MALDI mass spectroscopies.

  20. Synthesis and spectral characterization of a decavanadate/chitosan complex

    OpenAIRE

    ZHETCHEVA, Violeta Dimitrova KASSABOVA; PAVLOVA, Lilyana Parvanova

    2014-01-01

    A decavanadate/chitosan complex was synthesized by crosslinking chitosan with decavanadate anions at a pH of 3. The materials were characterized by Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy (UV-Vis), and transmission electron microscopy (TEM). The spectroscopic results indicated that the decavanadate/chitosan complex was successfully obtained as result of an ionic crosslinking of the chi...

  1. Synthesis,Characterization and Biological Activities of Novel Acrylamide Compounds

    Institute of Scientific and Technical Information of China (English)

    XU Liang-zhong; XU Zhong-jie; ZHANG Gong-sheng; ZHOU Kai; ZHAI Zhi-wei

    2008-01-01

    With dimethomorph and flumorph as the leading compounds,four novel acrylamide compounds with two types of structure were designed and synthesized by means of the method of"me too chemistry".The target compounds were characterized by 1H NMR,IR,MS,and elemental analysis.The influences of solvent and raw material on the yield were investigated and optimum processing conditions were determined.The results of preliminary biological tests show that all those compounds exhibit certain antifungal activities.

  2. Synthesis and characterization of novel multifunctional epoxy resin

    Institute of Scientific and Technical Information of China (English)

    Jue Cheng; Jing Chen; Wan Tai Yang

    2007-01-01

    A novel multifunctional epoxy resin was synthesized by polyphenol and epichlorohydrin. The structure and molecular weight of the multifunctional epoxy were characterized by FTIR and ESI-MS. DSC and DMTA were used to investigate the thermal property of multifunctional epoxy cured by DDS. The thermal resistance of the synthesized multifunctional epoxy was much better than a standard diglycidyl ether of bisphenol-A epoxy.

  3. Synthesis and characterization of heterocyclic substituted fluoran compounds

    Directory of Open Access Journals (Sweden)

    SACHIN V. PATEL

    2007-11-01

    Full Text Available New quinazolinone-substituted fluoran compounds were synthesized by reaction of keto acid, 2’-carboxy-2-hydroxy-4-N-pyrrolidinylbenzophenone with different quinazolinone derivatives in the presence of conc. sulphuric acid. All the synthesized fluoran compounds were characterized by spectroscopic methods (IR, 1H-NMR and UV–visible spectroscopy and elemental analysis. The fluoran compounds are colourless or nearly colourless and develop colour on contact with electron-accepting compounds.

  4. SYNTHESIS AND CHARACTERIZATION OF AN ORDERED LADDER POLYESTER

    Institute of Scientific and Technical Information of China (English)

    Ping-ping Zhang; Tao-yi Zhang; Chuan-feng Zhu; Yu-xia Diao; You-zhi Wan; Ping Xie; Rong-ben Zhang

    2006-01-01

    An ordered ladder polyester (LPE) was first synthesized through the ladder superstructure (LS) constructed by concerted interactions of hydroxyl- and aramide-based H-bonding and p-terphenyl (TP)-based π-stacking by dehydrochlorination condensation using phosgene (COCl2) as coupling agent. LPE was characterized by GPC, FTIR, NMR,XRD, DSC and AFM. Among them, a distinct image of regularly linear alignment corresponding to the ladder main chain of LPE was first revealed by high-resolution AFM.

  5. Synthesis and structural characterization of polyaniline/cobalt chloride composites

    Science.gov (United States)

    Asha, Goyal, Sneh Lata; Kishore, Nawal

    2016-05-01

    Polyaniline (PANI) and PANI /cobalt chloride composites were synthesized by in situ chemical oxidative polymerization of aniline with CoCl2.6H2O using ammonium peroxidisulphate as an oxidant. These composites were characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). The XRD study reveals that both PANI and composites are amorphous. The XRD and SEM results confirm the presence of cobalt chloride in the composites.

  6. Synthesis and structural characterization of CsNiP crystal

    Indian Academy of Sciences (India)

    G S Gopalakrishna; B H Doreswamy; M J Mahesh; M Mahendra; M A Sridhar; J Shashidhara Prasad; K G Ashamanjari

    2004-02-01

    CsNiP crystals were synthesized by hydrothermal technique and characterized by the X-ray diffraction method. This alkaline transition metal phosphide crystallizes in the hexagonal system with space group P6$_3/mmc$ and cell parameters, = 7.173(2) Å, = 5.944(9) Å, = 264.87(7) Å3 and = 2. The final residual factor is 1 = 0.0362 for 206 reflections with > 2().

  7. Synthesis and characterization of HPMA copolymer-5-FU conjugates

    Institute of Scientific and Technical Information of China (English)

    Fang Yuan; Fu Chen; Qing Yu Xiang; Xuan Qin; Zhi Rong Zhang; Yuan Huang

    2008-01-01

    N-(2-Hydroxypropyl)methacrylamide copolymer-5-fluorouracil (PHPMA-FU)conjugates were synthesized by a novel and simplified synthetic mute,and characterized by UV,FTIR and HPLC analyses.The conjugated content of 5-fluorouracil (5-FU)was 3.41 ± 0.07 wt%.The stabilities of PHPMA-FU conjugates under different conditions were studied.The results showed that HPMA copolymer was a potential carrier for tumor-targeting delivery of 5-FU.

  8. Characterization and Modeling of Network Traffic

    DEFF Research Database (Denmark)

    Shawky, Ahmed; Bergheim, Hans; Ragnarsson, Olafur

    2011-01-01

    This paper attempts to characterize and model backbone network traffic, using a small number of statistics. In order to reduce cost and processing power associated with traffic analysis. The parameters affecting the behaviour of network traffic are investigated and the choice is that inter...

  9. Individual Hearing Loss: Characterization, Modelling, Compensation Strategies

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten; Christensen-Dalsgaard, Jakob;

    2016-01-01

    account for such individual differences, which make it challenging to find adequate compensation strategies in hearing devices. How to characterize, model, and compensate for individual hearing loss were the main topics of the fifth International Symposium on Auditory and Audiological Research (ISAAR...

  10. Modeling and simulation of tube-shell reactor for dimethyl-ether synthesis from coal-based synthesis gas

    Institute of Scientific and Technical Information of China (English)

    CHEN Da-sheng; ZHANG Hai-tao; YING Wei-yong; FANG Ding-ye

    2011-01-01

    Mathematical simulation was performed on tube-shell reactor for dimethyl ether (DME) synthesis from coal-based syngas. The model was established based on kinetics of dimethyl-ether synthesis from syngas over a bifunctional catalyst,which is mixed by methanol synthesis catalyst and dehydration catalyst as 1:1 mass ratio. Methanol synthesis from CO and CO2 and methanol dehydration were selected as three-independent reactions, CO, CO2, and DME as key components to establish the one-dimensional mathematical model of the reactor. The gas concentration and temperature profiles inside the reactor tubes were obtained. The operating conditions affecting DME synthesis were also discussed based on the model. The simulations indicate that higher pressure and lower temperature at the inlet and rich hydrogen in the reactant are favorable in direct DME synthesis in fixed-bed process, and the temperature of boiling water affect the reactor performance seriously.

  11. Synthesis and characterization of Al-TON zeolite using a dialkylimizadolium as structure-directing agent

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Christian Wittee; Pergher, Sibele Berenice Castella, E-mail: chriswittee@gmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Villarroel-Rocha, Jhonny [Laboratorio de Solidos Porosos, Instituto de Fisica Aplicada, Universidad Nacional de San Luis, Chacabuco, San Luis (Argentina); Silva, Bernardo Araldi Da; Mignoni, Marcelo Luis [Universidade Regional Integrada, Erechim, RS (Brazil)

    2016-11-15

    In this work, the synthesis of zeolites using 1-butyl-3-methylimidazolium chloride [C{sub 4}MI]Cl as a structure-directing agent was investigated. The organic cation shows effectiveness and selectivity for the syntheses of TON zeolites under different reaction conditions compared to the traditional structure directing agent, 1,8-diaminooctane. The 1-butyl-3-methylimidazolium cation lead to highly crystalline materials and its role as OSDA in our synthesis conditions has been confirmed by characterization techniques. ICP-OES confirms the presence of Al in the samples and {sup 27}Al MAS NMR analysis indicated that aluminum atoms were incorporated in tetrahedral coordination. Scanning electron microscopy indicated that changing the crystallization condition (static or stirring), zeolites with different crystal size were obtained, which consequently affects the textural properties of the zeolites. Moreover, varying some synthesis parameters MFI zeolite can also be obtained. (author)

  12. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2013-02-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  13. New Dilated LMI Characterization for the Multiobjective Full-Order Dynamic Output Feedback Synthesis Problem

    Directory of Open Access Journals (Sweden)

    Zrida Jalel

    2010-01-01

    Full Text Available This paper introduces new dilated LMI conditions for continuous-time linear systems which not only characterize stability and performance specifications, but also, performance specifications. These new conditions offer, in addition to new analysis tools, synthesis procedures that have the advantages of keeping the controller parameters independent of the Lyapunov matrix and offering supplementary degrees of freedom. The impact of such advantages is great on the multiobjective full-order dynamic output feedback control problem as the obtained dilated LMI conditions always encompass the standard ones. It follows that much less conservatism is possible in comparison to the currently used standard LMI based synthesis procedures. A numerical simulation, based on an empirically abridged search procedure, is presented and shows the advantage of the proposed synthesis methods.

  14. Refined Synthesis and Characterization of Controlled Diameter, Narrow Size Distribution Microparticles for Aerospace Research Applications

    Science.gov (United States)

    Tiemsin, Pacita I.; Wohl, Christopher J.

    2012-01-01

    Flow visualization using polystyrene microspheres (PSL)s has enabled researchers to learn a tremendous amount of information via particle based diagnostic techniques. To better accommodate wind tunnel researchers needs, PSL synthesis via dispersion polymerization has been carried out at NASA Langley Research Center since the late 1980s. When utilizing seed material for flow visualization, size and size distribution are of paramount importance. Therefore, the work described here focused on further refinement of PSL synthesis and characterization. Through controlled variation of synthetic conditions (chemical concentrations, solution stirring speed, temperature, etc.) a robust, controllable procedure was developed. The relationship between particle size and salt concentration, MgSO4, was identified enabling the determination of PSL diameters a priori. Suggestions of future topics related to PSL synthesis, stability, and size variation are also described.

  15. A novel vanadium n-propylamino phosphate catalyst: synthesis, characterization and applications

    Directory of Open Access Journals (Sweden)

    Rajini Anumula

    2012-01-01

    Full Text Available A novel, lamellar type Vanadium n-propylamino phosphate catalyst is synthesized and characterized by using various physicochemical techniques such as Powder X-ray diffraction, Scanning electron microscopy/Energy dispersive X-ray analysis, Thermogravimetry/Differential thermal analysis, Fourier transform Infrared analysis, Electron spin resonance spectroscopy, Ultraviolet - Visible Diffuse reflectance spectroscopy, X-ray Photoelectron spectroscopy, 31P Magic angle spinning Nuclear Magnetic Resonance spectroscopy and Catalytic applications toward Octahydroquinazolinone synthesis. It is found that the n-propylamine is present as sandwich between Vanadyl phosphate layers. Most of the Vanadium is present as V4+ ions in tetrahedral co-ordination. Vanadium n-propylamino phosphate catalyses Octahydroquinazolinone synthesis more effeciently and the optimum conditions required for Octahydroquinazolinone synthesis are, Benzaldehyde (2 mmol, Dimedone (2 mmol, Urea (4 mmol, Methanol + Water (1:1, 5 mL and Catalyst (0.05 g. A plausible mechanism is also proposed.

  16. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    Science.gov (United States)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2015-11-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square (χ 2) and normalized standard deviation (Δq). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity (Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression (R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆H° (+50.27848 kJ mol-1), standard entropy change ∆S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  17. A novel zerovalent manganese for removal of copper ions: synthesis, characterization and adsorption studies

    Science.gov (United States)

    Dada, A. O.; Adekola, F. A.; Odebunmi, E. O.

    2017-06-01

    Synthesis of nanoscale zerovalent manganese (nZVMn) by chemical reduction was carried out in a single pot system under inert environment. nZVMn was characterized using a combination of analytical techniques: Ultraviolet-Visible Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Energy Dispersive X-ray, BET surface area and Point of Zero Charge. The adsorption physicochemical factors: pH, contact time, adsorbent dose, agitation speed, initial copper ion concentration and temperature were optimized. The kinetic data fitted better to Pseudo second-order, Elovich, fractional power and intraparticle diffusion models and their validity was tested by three statistical models: sum of square error, Chi-square ( χ 2) and normalized standard deviation (Δ q). Seven of the two-parameter isotherm models [Freundlich, Langmuir, Temkin, Dubinin-Kaganer-Raduskevich (DKR), Halsey, Harkin-Jura and Flory-Huggins] were used to analyse the equilibrium adsorption data. The Langmuir monolayer adsorption capacity ( Q max = 181.818 mg/g) obtained is greater than other those of nano-adsorbents utilized in adsorption of copper ions. The equilibrium adsorption data were better described by Langmuir, Freundlich, Temkin, DKR and Halsey isotherm models considering their coefficient of regression ( R 2 > 0.90). The values of the thermodynamic parameters: standard enthalpy change ∆ H° (+50.27848 kJ mol-1), standard entropy change ∆ S° (203.5724 J mol-1 K-1) and the Gibbs free energy change ∆ G° revealed that the adsorption process was feasible, spontaneous, and endothermic in nature. The performance of this novel nanoscale zerovalent manganese (nZVMn) suggested that it has a great potential for effective removal of copper ions from aqueous solution.

  18. Evolutionary Population Synthesis Models of Primeval Galaxies a Critical Appraisal

    CERN Document Server

    Buzzoni, A

    1997-01-01

    A theoretical approach relying on evolutionary population synthesis models could help refining the search criteria in deep galaxy surveys on the basis of a better knowledge of the expected apparent photometric properties of high-redshift objects. The following is a brief discussion reviewing some relevant aspects of the question in order to allow a more critical appraisal to primeval galaxy recognition.

  19. Antimicrobial salicylaldehyde Schiff bases: synthesis, characterization and evaluation.

    Science.gov (United States)

    Adeel-Sharif, Hafiz Muhammad; Ahmed, Dildar; Mir, Hira

    2015-03-01

    As the pathogens soon develop resistance to the existing antibiotics, the demand for new and more effective anti-microbial agents is a continuous phenomenon. In this paper we are reporting synthesis and spectral data of eight Schiff bases of salicylaldehyde with different amines, and evaluation of their anti-microbial activities against different bacterial strains. The bases were synthesized by reflux method, and their structures were determined based FT-IR, (1)H-NMR, (13)C-NMR and Mass spectrometric data. The Schiff bases synthesized included 2-{[(Z)-(2-hydroxyphenyl) methylidene] amino}benzoicacid (SB1), 4-{[(Z)-(2-hydroxyphenyl) methylidene] amino} benzoic acid (SB2),2-[(naphthalene-2-ylimino)methyl] phenol(SB3),2-2'-[benzene-1,4-diylbis(nitrilomethylylidene)]diphenol (SB4), 2-2'-[benzene-1,2-diylbis (nitrile-(E)-methylylidene)]diphenol (SB5), 2-[(2-phenylhydrazineylidene)methyl]phenol (SB6), 2-2'-[ethene-1,2-diylbis(iminomethanediyl)]diphenol (SB7) and 2-[(Z)-(phenylimino)methyl]phenol (SB8). The anti-microbial activities of synthesized Schiff bases were determined in terms of zones of inhibition and minimum inhibitory concentrations (MICs). All the bases showed moderate to good activities against all the tested microorganisms. The MICs of most compounds were 100-200βg/mL against different microorganisms. However, it was 50βg/mL for SB1 against P. aeruginosa (1), SB3 against P. aurantiaca, P. aeruginosa (1), E. coli (2), S. typhi (2) and C. freundii, SB4against E. coli (2), S. typhi (1) and S. maltophilia, SB5 against K. pneumoniae and S. typhi (2), SB6 against P. aeruginosa (3) and C. freundii, SB7 against E. cloacae and A. lipoferum, and SB8 against E. coli (2). Considerably active bases may prove to be potential candidates for future antibiotic drugs.

  20. Synthesis and Characterization of Antifriction Magnetorheological Fluids for Brake

    Directory of Open Access Journals (Sweden)

    Chiranjit Sarkar

    2013-07-01

    Full Text Available Magnetorheological (MR fluids are smart materials with shear strength ranging between zero to 100 kPa under the influence of magnetic field. The present paper discusses the synthesis of MR fluid and its application in brake. In MR brake, gap between stator and rotor is filled with low (off-state viscosity MR fluid. On the application of magnetic field, MR fluid changes its state from liquid to semi-solid by aligning magnetic particles in chains. Due to such chaining action, yield strength of fluid increases, friction between stator and rotor increases and fulfils the braking function. The strength of magnetic particle is a function of relative speed between stator and rotor, applied magnetic field, and volume percentage of magnetic particle. In this study antifriction (off-state and strong chain (on-state CI based MR fluid has been prepared by mixing oleic acid as antifriction additives and tetramethylammonium hydroxide as surfactant to reduce the agglomeration of the MR fluid. Yield strengths of the synthesized MR fluid in on-state and off-state have been compared with commercially available MRF 241ES fluid. A flywheel based MR brake experimental setup has been developed to analyze the performance of designed and developed MR brake.Results show that synthesized MR fluid is stronger and faster in response compared to MRF 241ES fluid.Defence Science Journal, 2013, 63(4, pp.408-412, DOI:http://dx.doi.org/10.14429/dsj.63.2633

  1. Covalently functionalized noble metal nanoparticles for molecular imprinted polymer biosensors: Synthesis, characterization, and SERS detection

    Science.gov (United States)

    Volkert, Anna Allyse

    This dissertation evaluates how gold nanoparticle structure and local environment influence resulting sensor function when using these nanomaterials for complex sample analysis. Molecular imprinted polymers (MIPs), a class of plastic antibodies, are engineered and incorporated into these nanosensors thereby facilitating the quantitative detection of a variety of small molecules when Raman spectroscopy and surface enhanced Raman scattering (SERS) are used for detection. First, homogeneous seeded growth gold nanosphere synthesis is evaluated as a function of ionic double layer composition and thickness. Systematically increasing the citrate concentration during synthesis improves nanomaterial shape homogeneity; however, further elevations of citrate concentration increase the number of internal and/or external atomic defects in the nanomaterials which leads to decreasing solution-phase stability. Next, spherical gold nanoparticles are modified with self-assembled monolayer (SAM), modeled using interfacial energy calculations, and experimental characterized using transmission electron microscopy, NMR, extinction spectroscopy, zeta potential, X-ray photoelectron spectroscopy, and flocculation studies to assess the morphology, surface chemistry, optical properties, surface charge, SAM packing density, and nanoparticle stability, respectively. The number of molecules on the nanostructures increases with increasing ionic strength (by decreasing the electrostatic interfacial energy between assembled molecules) which subsequently promotes nanoparticle stability. Third, plastic antibodies that recognize three drugs commonly used to treat migraines are engineered. These methacrylate-based MIPs are synthesized, extracted, characterized, and used to quantitatively and directly detect over-the-counter drugs in complex samples using Raman microscopy. These results along with numerical approximation methods to estimate drug binding site densities and dissociation constants with

  2. SYNTHESIS AND CHARACTERIZATION OF SILICA NANOCOMPOSITES FOR BONE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Pakkath Abdul Rub Sajid

    2012-05-01

    Full Text Available Osteoporosis is a malady leading to bone fracture and results from imbalance in the rate of osteoblastic bone formation with respect to osteoclastic bone degradation.6 Nanotechnology raises exciting possibilities for developing novel therapeutic agents for treating osteoporosis.6 We use silica-based fluorescent nanoparticles endowed with natural bone-targeting capabilities and express potent pro-osteoblastogenic and anti-osteoclastogenic activation in vitro and show the ability to increase bone mineral density invivo. Here, we initially synthesize mesoporous silica nanoparticles by coating with octadecyl trimethoxy silane. The silica nanoparticles thus prepared is chosen as control. Two different samples of silica nanocomposites are prepared ; first binding silica nanoparticles with fluorescent dye i.e tetracycline (SiO2-Tet, the second sample prepared by combining (SiO2-Tet with magnetic nanoparticles (cobalt-ferrite solution to form (SiO2-Tet-MNP. All these synthesized nanoparticles are characterized using XRD, SEM, FTIR, E-DAX analysis. Post—characterization work plan involves incorporation of silica-based fluorescent nanoparticles into human bones (or in rat bones in case human bones is not at all available. This includes Micro CT-Scanning , Injecting (SiO2-Tet-MNP into bone tissues, Quantitating Bone Mineral Density. Finally results are obtained through test outcome which includes estimations of cell mineralization assays, detection of osteoclast formation, nanoparticle association with Bone surface (Incubation with (SiO2-Tet /(SiO2-Tet-MNP for 2 hours in well-plates, statistical analyses and figures obtained from characterization methods and thereby expressing the property of silica-based fluorescent nanoparticles to increase bone mineral density and combating osteoporosis.

  3. Synthesis, characterization and biological evaluation of thiazolopyrimidine derivatives

    Indian Academy of Sciences (India)

    H Nagarajaiah; I M Khazi; Noor Shahina Begum

    2012-07-01

    Different substituted diesters of thiazolopyrimidine were prepared by the treatment of 3,4 dihydropyrimidine2-thione with -haloesters using ethanol under reflux condition affording 71-85% yield. IR, 1HNMR, 13CNMR and elemental analyses were used for the characterization of these compounds. The crystal and molecular structure of one of the product, 5-phenyl-3,7-dimethyl-5H-thiazolo[3,2-a]pyrimidine-2,6-dicarboxylic acid diethyl ester (3e) was verified by single crystal X-ray diffraction method. The antimicrobial activity was evaluated against four bacterial strains and one fungal species. Few of the derivatives exhibited antibacterial and antifungal activities.

  4. Synthesis and Characterization of Aliphatic-Aromatic Hyperbranched Polyesters

    Institute of Scientific and Technical Information of China (English)

    唐黎明; 张晓龙; 邱藤; 刘德山

    2002-01-01

    Hyperbranched polymers possess special architectures and have potential applications in various areas. In this study, two AB2 monomers, dipropyl 5-(hydroxyethoxy) isophthalate (I) and 5-hydroxyethoxyisophthaic acid (II), were prepared. By bulk polycondensation of each monomer, two aliphatic-aromatic hyperbranched polyesters were prepared and characterized by 1H-nuclear magnetic resonance (1H-NMR), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and scanning electron microscopy (SEM). Compared with all-aromatic hyperbranched polyesters, the prepared polymers showed lower glass transition temperatures in connection with the moderate decrease in their decomposition temperatures.

  5. Synthesis and characterization of the cyanobenzene-ethylenedithio-TTF donor

    Directory of Open Access Journals (Sweden)

    Sandrina Oliveira

    2015-06-01

    Full Text Available A dissymmetric TTF-type electron donor, cyanobenzene-ethylenedithio-tetrathiafulvalene (CNB-EDT-TTF, was obtained in high yield, by a cross-coupling reaction with triethyl phosphite between 2-thioxobenzo[d][1,3]dithiole-5-carbonitrile and 5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiin-2-one. This new donor was characterized namely by single crystal X-ray diffraction, cyclic voltammetry, NMR, UV-visible and IR spectroscopy.

  6. Synthesis and Characterization of Rare Earth Complexes of Ferrocenylcarbonylhydrazine

    Institute of Scientific and Technical Information of China (English)

    边占喜; 董彬; 李保国

    2002-01-01

    Rare earth complexes of ferrocenylcarbonylhydrazine Ln(FH)x(ClO4)3*nH2O (where Ln = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, x=3; Ln = Er, Tm, Yb, Lu, x=4; n=2~6, FH=ferrocenylcarbonylhydrazin) were synthesized and characterized by elemental analyses, MS, IR and 1H NMR spectra. The ligand FH is bidentate, coordinating through the carbonyl oxygen and the amino nitrogen atom. The redox properties of the ligand and its complexes were investigated using cyclic voltammetric method. The solid state fluorescence spectra of Sm, Tb and Dy complexes were also studied.

  7. Synthesis and characterization of MCM-41-supported nano zirconia catalysts

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdel Salam

    2015-03-01

    Full Text Available Series of MCM-41 supported sulfated Zirconia (SZ catalysts with different loadings (2.5–7.5% wt. were prepared using direct impregnation method. The acquired solid catalysts were characterized structurally and chemically using X-RD, HRTEM, BET, FT-IR, Raman spectroscopy and TPD analysis. The acidity of the solid catalysts was investigated through cumene cracking and isopropanol dehydration at different temperatures. As the SZ loading increases, the surface acidity of the mesoporous catalysts was enhanced, this was reflected by the higher catalytic activity toward cumene cracking and isopropanol dehydration.

  8. Synthesis and characterization of nanohybrid of montmorillonite and zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Chagas, Beatriz S.; Mendes, Luis C.; Brito, Alice S., E-mail: biachagas@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction of a colloidal suspension of exfoliated montmorillonite nanosheets and zinc oxide in acid solution, performed in three different routes, were synthesized. The products were characterized by wide angle X-ray diffraction (WAXD). In all routes, it was found that the intercalation of zinc oxide into the host montmorillonite gallery was successfully performed so that the crystalline peaks of the montmorillonite and zinc oxide were suppressed from the X-ray patterns. The use of ultrasound decreased the reaction time.(author)

  9. The synthesis and characterization of some new diazoamino derivatives

    Directory of Open Access Journals (Sweden)

    ANCA MIHAELA MOCANU

    2010-03-01

    Full Text Available The sulfonamidic moiety is much encountered in structures of bioactive compounds. In the present paper the studies on the sulfonamidated aryloxyalkylcarboxylic acids are extended by their attaching on certain substrata able to confer some special biological properties to the final products, such as anti-tumor and antioxidant actions useful in treating inflammatory processes, ulcer, convulsions and diabetes, as well as a herbicidal action. The stepwise syntheses of the sulfonamidated aryloxyalkylcarboxylic acid derivatives and their characterization by elemental analysis data and IR, 1H-NMR and UV-Vis spectral measurements are described. The newly obtained compounds could show potential pharmaceutical and herbicide properties.

  10. Synthesis and Characterization of Poly (L-lactide-co-glycolide)

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Poly (l-lactide- co-glycolide ) ( PLGA ) with different compositions was prepared using stannous octaoate as catalyst by bulk ring-opening copolymerization of l-lactide and glycolide. The structure and properties of the PLGA copolymers were characterized by means of attenuated total reflectance-Fourier transform infrared(ATR-FTIR), 1 H NMR, differential scanning calorimeter (DSC) and X-ray diffraction (XRD) methods. The experimental resets indicate that the synthetic conditions and the composition of copolymers have an obvious influence on the structure of PLGA copolymers. The degradation rate of copolymers increased with the increasing of the glycolide component in the copolymers.

  11. Synthesis and characterization of lanthanum doped zinc oxide nanoparticles

    Science.gov (United States)

    Kumar, Vinod; Sonia, Suman, Kumar, Sacheen; Kumar, Dinesh

    2016-05-01

    La doped ZnO (Zn1-xLaxO, x = 0, 3, 6 and 9) were prepared via chemical co-precipitation method using Zinc Acetate, Lanthanum Acetate and Sodium Hydroxide at 50°C. Hydrate nanoparticles were annealed in air at 300°C for 3 hours. The synthesized samples have been characterized by powder X-ray diffraction and UV-Visiblespectrophotometer. The XRD measurement revealsthat the prepared nanoparticles have different microstructure without changing a hexagonal wurtzite structure. The result shows the change in nanoparticles size with the increment of lanthanum concentration for lower concentration for x = 0 to 6 and decreases at x = 9.

  12. Synthesis, Characterization, and Flocculation Properties of Branched Cationic Polyacrylamide

    Directory of Open Access Journals (Sweden)

    Weimin Sun

    2013-01-01

    Full Text Available A water soluble branched cationic polyacrylamide (BCPAM was synthesized using solution polymerization. The polymerization was initiated using potassium diperiodatocuprate, K5[Cu(HIO62](Cu(III, initiating the self-condensing vinyl copolymerization of acrylamide and acryloxyethyltrimethyl ammonium chloride (DAC monomer. The resulting copolymer was characterized by the use of Fourier-transform infrared (FTIR spectroscopy and nuclear magnetic resonance (NMR spectroscopy. Its flocculation properties were evaluated with standard jar tests of sewage. The effects of initiator concentration, monomer concentration, reaction temperature, and the mass ratio of monomers on intrinsic viscosity and flocculation properties of the product were determined using single-factor experiments and orthogonal experiment.

  13. Synthesis and Characterization of Organotin Containing Copolymers: Reactivity Ratio Studies

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Newehy

    2010-03-01

    Full Text Available Organotin monomers containing dibutyltin groups – dibutyltin citraconate (DBTC as a new monomer and dibutyltin maleate (DBTM – were synthesized. Free radical copolymerizations of the organotin monomers with styrene (ST and butyl acrylate (BA were performed. The overall conversion was kept low (≤15% wt/wt for all studied samples and the copolymers composition was determined from tin analysis using the Gillman and Rosenberg method. The reactivity ratios were calculated from the copolymer composition using the Fineman-Ross (FR method. The synthesized monomers were characterized by elemental analysis, 1H-, 13C-NMR and FTIR spectroscopy.

  14. Synthesis and Characterization of π-Conjugated Dithiol

    Institute of Scientific and Technical Information of China (English)

    Hardy; S.O.Chan

    2007-01-01

    1 Results Organic compounds are able to act as active components for the preparation of electronics and optoelectronics.Fig.1 A new π-conjugated anthracene-based dithiol compoundA new π-conjugated anthracene-based dithiol compound has been synthesized and its optical properties were determined by UV-vis and PL spectroscopy.Its self-assembled monolayers on a gold surface have been prepared and characterized by spectroscopic ellipsometry and atomic force microscopy.The structures and properties of its SAM...

  15. Synthesis and Characterization of a Novel Cellulose Nonionic Ether

    Institute of Scientific and Technical Information of China (English)

    SHAO Zi-qiang; XU Kun; TIAN Yong-sheng; WANG Fei-jun; WANG Ji-xun

    2005-01-01

    A kind of novel cellulose ether-trihydroxybutyl cellulose (THBC) was synthesized. The process includes the steam explosion treatment of cotton cellulose, alkalization, etherification and purification. Sweep electron microscope (SEM), Fourier transform infrared (FTIR) and X-ray diffraction were used to characterize the cellulose pretreated and the product. The effects of reaction conditions (temperature, time) on the molecular substitution (Sm) were discussed. To obtain a higher degree of molecular substitution, the reaction temperature is 80 ℃, and the reaction time is 4 h.

  16. Synthesis and Characterization of Nanostructured Fe-Ni Alloy Whisker

    Institute of Scientific and Technical Information of China (English)

    DONG Guo-jun; WANG Gui-xiang; ZHANG Mi-lin; LI Ru-Min; WANG Jun

    2002-01-01

    The nanocrystalline γ-(Fe,Ni) alloy whiskers have been prepared by chemical reduction of Fe2+ and Ni2+ ions with potassium borohydride under the function of a dispersant agent PE followed by heat treatment at 600℃ under the protection of nitrogen.Conditions, such as quantity of NaOH, concentration of salts, and species of surfactants, of preparation of Fe-Ni alloy have been discussed. X-ray diffraction(XRD), transmission electron microscopy(TEM) and vibrating sample magnetometer(VSM) characterized the synthesized Fe-Ni alloy. Character, capability and use of the materials have been summarized.

  17. Curdlan microspheres. Synthesis, characterization and interaction with proteins (enzymes, vaccines).

    Science.gov (United States)

    Mocanu, Georgeta; Mihai, Doina; Moscovici, Misu; Picton, Luc; LeCerf, Didier

    2009-04-01

    Microparticles of curdlan, synthesized through crosslinking with epichlorohydrin in organic suspension media, were chemically modified with the aim of introducing strongly and/or weakly acidic anionic and palmitoyl hydrophobic groups. Microparticles of both curdlan and curdlan derivatives were physico-chemically characterized. Study of the interaction with enzymes, such as lysozyme, and vaccines, such as tetanus anatoxin, showed a co-operative protein retention effect, induced by electrostatic and hydrophobic forces. The results of the in vitro release studies on support-protein complexes recommend them as potential controlled release systems.

  18. Synthesis and Characterization of the TAPO-5 Molecular Sieve

    Directory of Open Access Journals (Sweden)

    Sarah P.O. Rios

    2002-09-01

    Full Text Available Aluminophosphate sieves with AFI structure substituted by Ti (denominated TAPO-5 have been synthesized hydrothermally. These materials were characterized by X-ray diffraction (XRD, chemical analysis (ICP, scanning electronic microscopy (SEM, ultraviolet diffuse reflectance spectroscopy (DRS-UV and thermogravimetric analysis (TGA. XRD results showed the materials have good TAPO-5 crystallinity, although DRS-UV spectra indicated anatase phase as contamination. TGA analysis showed mass loss in the range of high temperatures, which can be attributed to protonated template decomposition. This indicates the existence of structural charge as a consequence of Ti incorporation into AFI structure

  19. Synthesis and characterization of mesostructured ceria-zirconia solid solution

    Institute of Scientific and Technical Information of China (English)

    LI Changlin; GU Xin; WANG Yanqin; WANG Yaojun; WANG Yangang; LIU Xiaohui; LU Guanzhong

    2009-01-01

    Mesostructured Ce0.6Zr0.4O2 solid solutions were synthesized by coprecipitation combined with evaporation-induced self-assembly process. The obtained materials were characterized by X-ray diffractometer (XRD), Raman, transmission electron microscopy (TEM), N2 sorption, and hydrogen temperature programmed reduction (H2-TPR). The results showed that the solid solutions consisted of uniform nanocrystals, which piled homogeneous mesopores of about 4 nm. Furthermore, different surfactants had little influence on the mesoporous structures. All these samples exhibited high thermal stability.

  20. Synthesis and characterization of lamellar aragonite with hydrophobic property

    Energy Technology Data Exchange (ETDEWEB)

    Wang Chengyu, E-mail: wangcy@nefu.edu.cn [College of Materials Science and Engineering, Northeast Forestry University, 150040 (China); Xu Yang [China Nation Center for Quality Supervision and Test of Woodworking Machinery, Northeast Forestry University, 150040 (China); Liu Yalan; Li Jian [College of Materials Science and Engineering, Northeast Forestry University, 150040 (China)

    2009-04-30

    A novel and simple synthetic method for the preparation of hydrophobic lamellar aragonite has been developed. The crystallization of aragonite was conducted by the reaction of sodium carbonate with calcium chloride in the presence of sodium stearate. The resulting products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the contact angle. The results revealed that sodium stearate plays an important role in determining the structure and morphology of the sample. Besides, we have succeeded in surface modification of particles in situ at the same time. The contact angle of the modified aragonite reached 108.59 deg.

  1. Synthesis and Characterization of ZnTe Hierarchical Nanostructures

    Directory of Open Access Journals (Sweden)

    Baohua Zhang

    2012-01-01

    Full Text Available Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD, scanning electron microcopy (SEM, transmission electron microscope (TEM, and photoluminescence spectrum (PL. These results showed that the ZnTe hierarchical nanostructures consisted of nanowires and nanolumps. The room temperature PL spectrum exhibited a pure green luminescence centered at 545nm. The growth mechanism of hierarchical nanostructure was also discussed.

  2. Synthesis and characterization of novel ternary and quaternary reduced molybdenum oxides

    Energy Technology Data Exchange (ETDEWEB)

    Schimek, G.L.

    1993-07-01

    This thesis is divided into 8 sections: synthesis and characterization (char.) of Ba{sub 3}Mo{sub 18}O{sub 28} (an oligomer with four traps edge-sharing Mo octahedra); synthesis and char. of K{sub x}M{sub y}Mo{sub 14}O{sub 22} (M=Sn, Pb, Sr) (oligomers with three traps edge-sharing Mo octahedra); synthesis and char. of K{sub 0.19}Ba{sub 3.81}Mo{sub 22}O{sub 34} (an oligomer with five traps edge-sharing Mo octahedra); synthesis and char. of Ti{sub 0.31}Fe{sub 1.69}Mo{sub 4}O{sub 7} (a material containing closest-packing of infinite chains of octahedral Mo clusters); synthesis and char. of K{sub x}M{sub 2-x}Mo{sub 10}O{sub 16} (M=Ca, Sr, Gd) (oligomers with two traps edge-sharing Mo octahedra); synthesis and char. of the RE{sub 4}Mo{sub 4}O{sub 11} series; synthesis and char. of Pb{sub 0. 31}WO{sub 3} (a tetragonal tungsten bronze containing lead); and examination of superstructure in Fe{sub 1.89}Mo{sub 4.11}O{sub 7}, Sn{sub 0.9}Mo{sub 4}O{sub 6}, InMo{sub 4}O{sub 6}, and Mn{sub 1. 5}Mo{sub 8}O{sub 11} by electron microscopy.

  3. Synthesis, characterization and molecular modelling of a novel dipyridamole supramolecule - X-ray structure, quantum mechanics and molecular dynamics study to comprehend the hydrogen bond structure-activity relationship

    Science.gov (United States)

    Vepuri, Suresh B.; Devarajegowda, H. C.; Soliman, Mahmoud E.

    2016-02-01

    Hydrochloride salt formation for Active Pharmaceutical Ingredients (APIs) is the primary choice to impart aqueous solubility and to promote dissolution. Dipyridamole (DIP) is a cardiovascular drug which is practically insoluble in water. We discovered a new form of DIP called as dipyridamole hydrochloride trihydrate (DIPHT), which was prepared by an unusual method of reacting the DIP with hydrated hydrochloric acid (HCl) that was liberated in situ by the reaction of ferric chloride with water. The liberated HCl was consumed as reagent in situ by the scavenger (API) and was converted to a hydrochloride trihydrate. The product was characterized by FTIR, mass spectroscopy, PXRD and DSC. Supramolecular structure of this novel DIPHT was revealed by single crystal XRD. A sustained intramolecular hydrogen bond alliance was found in DIP and the DIPHT. Stability of this hydrogen bond was further evaluated by means of molecular modelling studies. We performed electron calculations using quantum mechanics (QM) on both the base and salt structures to compare their geometry and molecular orbital energy levels. Molecular Dynamics (MD) simulations were also conducted in explicit solvent models to provide more insights into the hydrogen bond strength and conformational preferences of the base and salt structure. Together with QM and MD, we were able to explain the influence of hydrogen bonds on proton uptake activity of DIP and stability of DIP and DIPHT. DIPHT which can dissolve faster than DIP in water may enhance the dissolution and bioavailability of the drug. As the current drug development research is shifting to repurpose the existing drugs in order to subside the untoward risks in new drug development, we believe that DIPHT with its intrinsic aqueous solubility could bring more application for DIP and generate interest within the pharmaceutical industry.

  4. Modelling binary rotating stars by new population synthesis code BONNFIRES

    CERN Document Server

    Lau, Herbert H B; Schneider, Fabian R N

    2013-01-01

    BONNFIRES, a new generation of population synthesis code, can calculate nuclear reaction, various mixing processes and binary interaction in a timely fashion. We use this new population synthesis code to study the interplay between binary mass transfer and rotation. We aim to compare theoretical models with observations, in particular the surface nitrogen abundance and rotational velocity. Preliminary results show binary interactions may explain the formation of nitrogen-rich slow rotators and nitrogen-poor fast rotators, but more work needs to be done to estimate whether the observed frequencies of those stars can be matched.

  5. Synthesis, characterization and biological evaluation of Rutin-zinc(II) flavonoid -metal complex.

    Science.gov (United States)

    Ikeda, Norma Estefania Andrades; Novak, Estela Maria; Maria, Durvanei Augusto; Velosa, Adélia Segin; Pereira, Regina Mara Silva

    2015-09-01

    Synthesis of compounds analogous to natural products from secondary metabolites, such as flavonoids, is a promising source of novel drugs. Rutin (quercetin-3-O-rutinoside) is a natural flavone, which has, in its chemical structure, different sites for coordination with transition metals and the complexation with these metals enhances its biological properties. Rutin-zinc(II), a flavonoid-metal complex, was synthesized and characterized by UV-VIS, FT-IR, elemental analysis and (1)H NMR. The antioxidant and antitumor activities, as well as the cytotoxicity and in vivo toxicity of this complex were evaluated and compared with the free rutin. Rutin-zinc(II) has not shown any cytotoxicity against normal cells (fibroblasts and HUVECs) or toxicity in BALB/c mice, but has shown antioxidant activity in vitro and cytotoxicity against leukemia (KG1, K562 and Jurkat), multiple myeloma (RPMI8226) and melanoma (B16F10 and SK-Mel-28) cell lines in vitro. In Ehrlich ascites carcinoma model, Rutin-zinc(II) modulated the mitochondrial membrane potential and the expression of genes related to cell cycle progression, angiogenesis and apoptosis.

  6. Biocompatible Colloidal Suspensions Based on Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Toxicological Profile

    Science.gov (United States)

    Coricovac, Dorina-Elena; Moacă, Elena-Alina; Pinzaru, Iulia; Cîtu, Cosmin; Soica, Codruta; Mihali, Ciprian-Valentin; Păcurariu, Cornelia; Tutelyan, Victor A.; Tsatsakis, Aristidis; Dehelean, Cristina-Adriana

    2017-01-01

    The use of magnetic iron oxide nanoparticles in biomedicine has evolved intensely in the recent years due to the multiple applications of these nanomaterials, mainly in domains like cancer. The aim of the present study was: (i) to develop biocompatible colloidal suspensions based on magnetic iron oxide nanoparticles as future theranostic tools for skin pathology and (ii) to test their effects in vitro on human keratinocytes (HaCat cells) and in vivo by employing an animal model of acute dermal toxicity. Biocompatible colloidal suspensions were obtained by coating the magnetic iron oxide nanoparticles resulted during the solution combustion synthesis with a double layer of oleic acid, as innovative procedure in increasing bioavailability. The colloidal suspensions were characterized in terms of dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro effects of these suspensions were tested by means of Alamar blue assay and the noxious effects at skin level were measured using non-invasive methods. The in vitro results indicated a lack of toxicity on normal human cells induced by the iron oxide nanoparticles colloidal suspensions after an exposure of 24 h to different concentrations (5, 10, and 25 μg·mL−1). The dermal acute toxicity test showed that the topical applications of the colloidal suspensions on female and male SKH-1 hairless mice were not associated with significant changes in the quality of barrier skin function.

  7. Synthesis and Characterization of Dinuclear Metal Complexes Stabilized by Tetradentate Schiff Base Ligands

    Directory of Open Access Journals (Sweden)

    Eid A. Abdalrazaq

    2010-01-01

    Full Text Available Problem statement: The synthesis, spectroscopic properties and theoretical calculations of acetylacetonimine and acetylacetanilidimine Schiff-base ligands, L1H and L2H, respectively and their dinuclear complexes of the type [M2LnCl2(H2O2], where n = 1 or 2, M = Co(II, Ni(II, Cu(II, Zn(II and Cd(II are described. Approach: The new tetradentate dianion Schiff base ligand which was used as stabilizers for the complexes were prepared by condensation of hydrazine with acetylacetone or acetylacetanilide. The dinuclear complexes of theses ligands were synthesized by treating an ethanolic solution of the prepared ligand with hydrated metal salts in molar ratio of 1:2 (L:M. Results: The ligand and their dinuclear metal complexes were characterized by CHN elemental analysis, FT-IR, UV-Vis, 1HNMR (for the ligands, conductivity, magnetic susceptibility and theoretical calculation by using MM2 modeling program. Conclusion: The reaction of these ligands in a 1:2 (L:M afford dinuclear M(II metal complexes with tetrahedral arrangement around Co(II, Zn(II and Cd(II and square planar around Ni(II and Cu(II.

  8. Hydrothermal synthesis of siderite nano-particles and characterizations

    Science.gov (United States)

    Oza, Mahatta; Joshi, M. J.

    2017-05-01

    Siderite is an iron ore in the form of ferrous carbonate (FeCO3). It finds applications in ceramics, in pig iron production, pigments in paints and in petroleum drilling fluids as a scavenger for H2S. An attempt was made to synthesize FeCO3 nano-particles by hydrothermal treatment of aqueous solution of iron sulphate, ascorbic acid, and ammonium carbonate with a molar ratio of 1:1:3, respectively, at 140˚C for 1.5 h. The synthesized powder was further characterized by different characterization techniques like powder XRD, FT-IR and TGA. The powder XRD analysis suggested the nano-crystalline nature of the sample with Hexagonal crystal system having unit cell parameters as: a = 4.691Ǻ, b = 4.691 Ǻ and c = 15.37Ǻ. The average crystallite size was found to be ̴ 10.70 nm from Scherrer's formula. FT-IR spectrum confirmed the presence of O-H, and C-O functional groups. The TGA results suggested that the material started decomposing from the beginning and showed weight loss of 32.4% at 358°C temperature. Thereafter, the sample very slowly decomposed and at the end of process sample showed weight loss of 39.5% at 900°C after giving up carbon dioxide.

  9. Synthesis, characterization and thermal properties of inorganic-organic hybrid

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Poly (St-MAn-APTES/silica hybrid materials were successfully prepared from styrene (St, maleic anhydride (MAn and tetraethoxysilane (TEOS in the presence of a coupling agent 3-aminopropyltriethoxysilane (APTES, by freeradical solution polymerization and in situ sol-gel process. The TEOS content varied from 0 to 25 wt%. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, with 3-aminopropyltriethoxysilane having mono-, di-, tri, tetra-substituted siloxane bonds designated as T1, T2 and T3. The results revealed that Q3, Q4 and T3 were the major microstructure elements in forming a network structure. The hybrid materials were also characterized by the methods of solvent extraction, Transmission Electron Microscopy (TEM, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA for determining the gel contents, particle size and thermal performance. The results showed that gel contents in the hybrid materials were much higher, the SiO2 phase were well dispersed in the polymer matrix, silicon dioxide existed at nanoscale in the composites, which had excellent thermal stability.

  10. Synthesis and characterization of plasmonic resonant guided wave networks.

    Science.gov (United States)

    Burgos, Stanley P; Lee, Ho W; Feigenbaum, Eyal; Briggs, Ryan M; Atwater, Harry A

    2014-06-11

    Composed of optical waveguides and power-splitting waveguide junctions in a network layout, resonant guided wave networks (RGWNs) split an incident wave into partial waves that resonantly interact within the network. Resonant guided wave networks have been proposed as nanoscale distributed optical networks (Feigenbaum and Atwater, Phys. Rev. Lett. 2010, 104, 147402) that can function as resonators and color routers (Feigenbaum et al. Opt. Express 2010, 18, 25584-25595). Here we experimentally characterize a plasmonic resonant guided wave network by demonstrating that a 90° waveguide junction of two v-groove channel plasmon polariton (CPP) waveguides operates as a compact power-splitting element. Combining these plasmonic power splitters with CPP waveguides in a network layout, we characterize a prototype plasmonic nanocircuit composed of four v-groove waveguides in an evenly spaced 2 × 2 configuration, which functions as a simple, compact optical logic device at telecommunication wavelengths, routing different wavelengths to separate transmission ports due to the resulting network resonances. The resonant guided wave network exhibits the full permutation of Boolean on/off values at two output ports and can be extended to an eight-port configuration, unlike other photonic crystal and plasmonic add/drop filters, in which only two on/off states are accessible.

  11. SYNTHESIS AND CHARACTERIZATION OF POLYIMIDE-ZEOLITE MIXED MATRIX MEMBRANE

    Directory of Open Access Journals (Sweden)

    Budiyono Budiyono

    2012-02-01

    Full Text Available Biogas has become an attractive alternative energy source due to the limitation of energy from fossil. In this study, a new type of mixed matrix membrane (MMM consisting of polyimide-zeolite was synthesized and characterized for biogas purification. The MMM consists of medium concentration of polymer (20% wt polyimide, 80% N-Methyl-2-pyrrolidone (NMP and 25% zeolite 4A in total solid were prepared by a dry/wet phase inversion technique.  The fabricated MMM was characterized using SEM, DSC, TGA and gas permeation. Post treatment coating procedure was also conducted. The research showed that surface coating by 3% silicone rubber toward MMM PI 20% gave the significant effect to improve membrane selectivity. The ideal selectivity for CO2/CH4 separation increased from 0.99 for before coating to 7.9 after coating for PI-Zeolite MMM, respectively. The results suggest that PI-Zeolite MMM with good post treatment procedure will increase the membrane selectivity and permeability with more saver polymer requirement as well as energy saving due to low energy for mixing.

  12. Synthesis and characterization of flexible thermographic phosphor temperature sensors

    Science.gov (United States)

    Mitchell, Katherine E.; Gardner, Victor; Allison, Stephen W.; Sabri, Firouzeh

    2016-10-01

    The temperature dependence of the emission characteristics of thermographic phosphors has been used extensively for surface temperature measurements of systems where thermal management is critical for the safe operation of the system. The instantaneous, remote, and highly accurate nature of this form of temperature measurement makes it a very attractive measurement technique. However, the destructive nature of depositing phosphors directly onto the surface of interest and the complications of working with fine powders has limited the use of this technique in all areas. This work focuses on the design and characterization of polymer-encapsulated thermographic phosphor flexible sensors for surface temperature assessment. La2O2S:Eu powder was embedded in an elastomeric sleeve at concentrations of 10%, 25%, and 50% wt. and fully characterized. The effect of spin-coating on emission characteristics of La2O2S:Eu was tested and the decay times were compared to results obtained from bulk-doped samples previously created by the authors.

  13. Synthesis, characterization and cytotoxic activity of palladium (II) carbohydrate complexes

    Indian Academy of Sciences (India)

    S Bhavya Deepthi; Rajiv Trivedi; P Sujitha; C Ganesh Kumar; B Sridhar; Suresh K Bhargava

    2012-11-01

    Carbohydrate containing pyridyl triazole ligands, 5-deoxy-1,2--isopropylidene-5-(4-(2-pyridyl)-1H-1,2,3-triazole-1-yl)--D-xylofuranose (2a), 3--Benzyl-5-deoxy-1,2--isopropylidene-5-(4-(2-pyridyl)-1H-1,2,3-triazol-1-yl)--D-xylofuranose (2b), methyl-5-deoxy-2,3--isopropylidene-5-(4-(2-pyridyl)-1H-1,2,3-triazol-1-yl)--D-ribofuranoside, (2c) and 6-deoxy-1,2:3,4-di--isopropylidene-6-(4-(2-pyridyl)-1H-1,2,3-triazol-1-yl)--D-galactopyranose (2d) were prepared by the `click’ reaction of 2-ethynyl pyridine with the corresponding azides. The palladium complexes were synthesised by the reaction of pyridyl triazole ligands with [Pd(COD)Cl2] in dichloromethane. All the compounds were characterized by NMR, IR, mass and elemental analysis. Structural characterization of the ligand 2a was done by X-ray crystallography. The ligands and complexes were tested for their cytotoxic activity on different cell lines like A549 (human alveolar adenocarcinoma cells), Neuro2a (mouse neuroblastoma cells), HeLa (cervical carcinoma cancer cells), MDA-MB-231 (human breast adenocarcinoma cells) and MCF7 (human breast adenocarcinoma cells). The complexes showed considerable cytotoxicity while the ligands were non-toxic on the tested cell lines.

  14. Synthesis and characterization of fatty hydroxamic acids from triacylglycerides.

    Science.gov (United States)

    Hoidy, Wisam H; Ahmad, Mansor B; Al-Mulla, Emad A Jaffar; Yunus, Wan Md Zin Wan; Ibrahim, Nor azowa Bt

    2010-01-01

    In this study, fatty haydroxamic acids (FHAs), which have biological activities as antibiotics and antifungal, have been synthesized via refluxing of triacylglycrides, palm olein, palm stearin or corn oil with hydroxylamine hydrochloride. The products were characterized using the complex formation test of hydroxamic acid group with zinc(I), copper(II) and iron(III), various technique methods including nuclear magnetic resonance ((1)H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and elemental analysis. Parameters that may affect the conversion of oils to FHAs including the effect of reaction time, effect of organic solvent and effect of hydro/oil molar issue were also investigated in this study. Results of characterization indicate that FHAs were successfully produced from triacylglycrides. The conversion percentages of palm stearin, palm olein and corn oil into their fatty hydroxamic acids are 82, 81 and 78, respectively. Results also showed that hexane is the best organic solvent to produce the FHAs from the three oils used in this study. The optimum reaction time to achieve the maximum conversion percentage of the oils to FHAs was found to be 10 hours for all the three oils, while the optimum molar ration of hydro/to oil was found to be 7:1 for all the different three oils.

  15. SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL SCREENING OF IMIDAZO THIADIAZOLE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    LAVANYA D

    2014-08-01

    Full Text Available Objective:In the present study, we have reported the synthesis, structural confirmation and anti microbial activity of condensed bridgehead nitrogen heterocyclic compounds. (Imidazothiadiazoles. Methods: Use of microwave reactions afforded high yields and decreased reaction time as compared to conventional method. Around 15 new complexes were synthesized, with standard chemicals and procedures.The synthesized complexes were tested for their preliminary tests, physical constants and TLC. The structures of all complexes were confirmed by using IR, 1H NMR techniques. The newly synthesized compounds were screened for their antimicrobial activity and antifungal activity with the standard drug. Results and discussion: Five 4-substituted Phenacyl bromides were prepared by reacting 4-substituted acetophenones with bromine according to literature and confirmed by physical constants (Table 2. The compound 2-(4-substituted benzyl-6-(4-substituted phenylimidazo[2,1-b][1,3,4]-thiadiazoles was confirmed by IR, 1H NMR and other physical parameters. The compounds ( showed absorption bands ranging from 3149-3034 cm-1 for C-H aromatic stretching, 2960-2845 cm-1 for aliphatic stretching, 1521- 1342 cm-1 for NO2 group. (Table 5; Fig.3-12. In 1H NMR spectra the presence of methylene proton and methyl protons between δ 4.27-4.26 ppm and 3.80-2.30 ppm was observed respectively. For aromatic protons multiplets were observed between δ 7.94-7.25 ppm. So all these confirmation authenticate for all synthesized compounds. The synthesized compounds were evaluated for antimicrobial and antifungal activity by disc diffusion method. The antimicrobial activity as calculated by the zones of inhibition against S.aureus (Gram positive and Klebsiella (Gram negative as compared to that of standard drug ciprofloxacin. The results of the antibacterial screening studies clearly show moderate to mild antimicrobial activity. The compound SKN-06 showed better antifungal activity. The

  16. Synthesis, deposition and characterization of ferroelectric films for electrooptic devices

    Science.gov (United States)

    Tunaboylu, Bahadir

    compared to films with smaller grain size. Furthermore, a method of sol-gel synthesis of KTN with reproducible characteristics was developed for fabrication of both thin films and homogeneous sputtering targets. Also for the first time, a stoichiometric KTN target was consolidated to high density by hot-isostatic pressing developed during this study.

  17. Chemical synthesis and characterization of highly soluble conducting polyaniline in the mixtures of common solvents

    Directory of Open Access Journals (Sweden)

    Zeghioud Hichem

    2015-01-01

    Full Text Available This work presents the synthesis and characterization of soluble and conducting polyaniline PANI-PIA according to chemical polymerization route. This polymerization pathway leads to the formation of poly(itaconic acid doped polyaniline salts, which are highly soluble in a number of mixtures between organic common polar solvents and water, the solubility reaches 4 mg mL-1. The effect of synthesis parameters such as doping level on the conductivity and the study of solubility and other properties of the resulting PANI salts were also undertaken. The maximum of conductivity was found equal to 2.48×10-4 S cm-1 for fully protonated PANI-EB. In addition, various characterizations of the synthesized materials were also done with the help of viscosity measurements, UV-vis spectroscopy, XRD, FTIR and finally TGA for the thermal properties behaviour.

  18. Synthesis and characterization of low work function alkali oxide thin films for unconventional thermionic energy converters

    Science.gov (United States)

    Giorgis, V.; Morini, F.; Zhu, T.; Robillard, J.-F.; Wallart, X.; Codron, J.-L.; Dubois, E.

    2016-11-01

    In this work, we present the synthesis and the characterization of low work function thin films for Micro Thermionic Converters (MTC). The objective is producing a device operating at relatively low temperature (caesium oxides. Our choice to exploit those materials relies on their low work function and their abundance. For both materials, we present the results on the synthesis of the oxides under high vacuum and controlled temperature. The oxide thin films were characterized by X-ray photoelectron spectroscopy, photoemission, and thermionic emission measurements. By exploiting the latter technique, a quantitative evaluation of the current density, emitted by the heated oxides, is obtained as a function of temperature. Our results demonstrate that it is possible to decrease the silicon work function by almost 3 eV, enabling significant thermionic currents despite relatively low temperatures (below 850 K).

  19. SYNTHESIS AND CHARACTERIZATION OF A NOVEL FLUORINE-CONTAINING HYDROPHOBICALLY ASSOCIATING POLYMER

    Institute of Scientific and Technical Information of China (English)

    Jin Yang; Wei-yuan Huang

    1999-01-01

    In this article, the synthesis and characterization of a novel fluoromonomer and its copolymer with acrylamide is reported. 2-perfluoroamyl-4-hydroxylquinoline 2 was synthesized from ethyl 2, 2-dihydroperfluoroheptanoate in high yields. The monomer 4 was then synthesized from 2 in two steps readily in high yields. Synthesis and characterization of copolymers of acrylamide (AM) and the fluoromonomer were investigated. The composition and intrinsic viscosity of these copolymers were studied. It was found that the rheological properties of aqueous solutions of polyacrylamide were modified significantly when a small proportion of the fluoromonomer 4 was incorporated on investigating the viscosity-concentration profiles,pseudoplasticity of these solutions and the effect of the presence of surfactant. These results could be explained by the hydrophobic association of the fluorocarbon segments in the aqueous solutions of these copolymers.

  20. Synthesis, characterization, and properties of reduced europium molybdates and tungstates

    Energy Technology Data Exchange (ETDEWEB)

    Abeysinghe, Dileka [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Gerke, Birgit [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Morrison, Gregory; Hsieh, Chun H.; Smith, Mark D. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Pöttgen, Rainer [Institut für Anorganische und Analytische Chemie, Universität Münster , Corrensstrasse 30, Münster D-48149 (Germany); Makris, Thomas M. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States); Loye, Hans-Conrad zur, E-mail: zurloye@mailbox.sc.edu [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208 (United States)

    2015-09-15

    Single crystals of K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} were grown from molten chloride fluxes contained in vacuum-sealed fused silica and structurally characterized via single crystal X-ray diffraction. The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. All four compounds crystallize in the tetragonal space group of I4{sub 1}/a and adopt the scheelite (CaWO{sub 4}) structure type. The magnetic susceptibility of the reported compounds shows paramagnetic behavior down to 2 K. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. All the compounds were further characterized by EPR, and UV-vis spectroscopy. - Graphical abstract: TOC Caption Two new reduced europium containing quaternary oxides, K{sub 0.094}Eu{sub 0.906}MoO{sub 4} and K{sub 0.097}Eu{sub 0.903}WO{sub 4}, and two previously reported ternary reduced oxides, EuWO{sub 4} and EuMoO{sub 4}, were synthesized via an in situ reduction of Eu{sup 3+} to Eu{sup 2+} under flux method using Mo, W, and Zn as metal reducing agents. {sup 151}Eu Mössbauer spectroscopy was used to analyze the relative Eu{sup 2+} and Eu{sup 3+} content of the samples. - Highlights: • K{sub 0.094}Eu{sub 0.906}MoO{sub 4}, K{sub 0.097}Eu{sub 0.903}WO{sub 4}, EuWO{sub 4}, and EuMoO{sub 4} have been synthesized and characterized. • The in situ reduction of Eu{sup 3+} to Eu{sup 2+} was carried out using Mo, W, and Zn as metal reducing agents. • Magnetic susceptibility data were collected. • {sup 151}Eu Mössbauer spectroscopy was used to analyze Eu{sup 2+} and Eu{sup 3+} content.

  1. Synthesis and Characterization of Tin (IV Tungstate Nanoparticles – A Solid Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Manoj Sadanandan

    2012-12-01

    Full Text Available Tin (IV tungstate, a tetravalent metal acid salt was synthesized in the nanoform by chemical coprecipitation method using EDTA as capping agent. The material was found to be stable in mineral acids, bases and organic solvents except  in HF and aquaregia. The material was characterized using EDS, TG/DTA, FTIR, XRD, SEM, HRTEM and BET surface area measurement. The molecular formula of the compound is 2SnO2 3WO3.5H2O determined from elemental analysis using TG/DTA. Surface morphology and particle size were obtained using SEM and HRTEM. The surface area was found to be 205-225m2/g. The Na+ exchange capacity found to be 3.8 meq/g, indicates the presence of surface hydroxyl group and hence the presence of Bronsted acid sites. The catalytic activity of the material was tested by using esterification and oxidation as model reactions. For the esterification of different alcohols, the percentage yield was found to be high for n-alcohol compared to isomeric alcohols. Oxidation of benzyl alcohol gives benzaldehyde and benzoic acid as the only products. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 12nd June 2012, Revised: 23rd July 2012, Accepted: 29th July 2012[How to Cite: S. Manoj, R. Beena, (2012. Synthesis and Characterization of tin(IV Tungstate Nanoparticles – A Solid Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (2: 105-111. doi:10.9767/bcrec.7.2.3622.105-111] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3622.105-111 ] | View in 

  2. Modeling of a Reverse Flow Reactor for Methanol Synthesis

    Institute of Scientific and Technical Information of China (English)

    陈晓春; P.L.Silveston; 等

    2003-01-01

    An accurate one-dimensional,heterogeneous model taking account of axial dispersion and heat transfer to the reactor wall,and heat conduction through the reactor wall for methanol synthesis in a bench scale reactor under periodic reversal of flow direction is presented.Adjustable parameters in this model are the effectiveness factors for each of the three reactions occurring in the synthesis and a factor for the bed to wall heat transfer coefficient correlation.Experimental data were used to evaluate these parameters and reasonable values of these parameters were obtained.The model was found to closely predict the reactor performance under a wide range of parameters were obtained.The model was found to closely predict the reactor preformance under a wide range of operating conditions,such as carbon oxide concentrations,volumetric flow rate,and cyclic period.

  3. Block-Krylov component synthesis method for structural model reduction

    Science.gov (United States)

    Craig, Roy R., Jr.; Hale, Arthur L.

    1988-01-01

    A new analytical method is presented for generating component shape vectors, or Ritz vectors, for use in component synthesis. Based on the concept of a block-Krylov subspace, easily derived recurrence relations generate blocks of Ritz vectors for each component. The subspace spanned by the Ritz vectors is called a block-Krylov subspace. The synthesis uses the new Ritz vectors rather than component normal modes to reduce the order of large, finite-element component models. An advantage of the Ritz vectors is that they involve significantly less computation than component normal modes. Both 'free-interface' and 'fixed-interface' component models are derived. They yield block-Krylov formulations paralleling the concepts of free-interface and fixed-interface component modal synthesis. Additionally, block-Krylov reduced-order component models are shown to have special disturbability/observability properties. Consequently, the method is attractive in active structural control applications, such as large space structures. The new fixed-interface methodology is demonstrated by a numerical example. The accuracy is found to be comparable to that of fixed-interface component modal synthesis.

  4. Synthesis and characterization of gold nanoparticles using Ficus religiosa extract

    Directory of Open Access Journals (Sweden)

    Kirtee Wani

    2013-03-01

    Full Text Available We report a cost effective and eco-friendly biosynthesis of gold nanoparticles (F-AuNPs using aqueous extract of Ficus religiosa as the reducing and stabilizing agent. These nanoparticles were characterized by various techniques such as UV-Vis, XRD, TEM and FTIR. The characteristic surface plasmon peak was observed at 540 nm while XRD analysis suggested it to be a face-centered cubic (fcc structure with peaks at 38.06, 44.46, 64.75 and 77.56. FTIR studies indicated the capping of the nanoparticles with polyphenols, amines and carboxylates present in the extract of Ficus religiosa whereas TEM analysis showed spherical morphology with other shapes such as triangles and hexagons. The F-AuNPs were found to be non-toxic to HEK 293 cells, thereby suggesting their potential application in the field of nanobiotechnology.

  5. Synthesis and characterization of powders calcium phosphate for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, D.M.P. de; Prants, W.T.; Camargo, N.H.A.; Gemelli, E., E-mail: daniellapinheiro@gmail.com, E-mail: w_prants@hotmail.com, E-mail: dem2nhac@joinville.udesc.br, E-mail: dma2ec@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2009-07-01

    Scientists of different areas research the bioceramics as new materials to substitute parts of the human body. The bioceramics of the calcium phosphate have the advantage present similar chemical composition to the structure of the bony apatite of the human skeleton. In this study, calcium phosphate powder was synthesized chemically using the solution of phosphorus pentoxide (P{sub 2}O{sub 5}) and calcium oxide (CaO) necessary for molar Ca/P =1.67. These works aim the study of different thermal treatments, physics and of the microstructure properties. For characterization the bony matrix were used the techniques of: X-ray diffraction (DRX); Scanning Electronic Microscopy (SEM) and Differential Scanning Calorimetry (DSC). (author)

  6. Synthesis and characterization of α-cobalt hydroxide nanobelts

    Science.gov (United States)

    Tian, L.; Zhu, J. L.; Chen, L.; An, B.; Liu, Q. Q.; Huang, K. L.

    2011-08-01

    α-Cobalt hydroxide was synthesized by a facile hydrothermal process from Co(Ac)2 and NH3·H2O in the presence of 1,3-propanediol. The large-scale-prepared cobalt hydroxide has a uniform nanobelt morphology with a considerably high aspect-ratio more than 20 which may be advantageous for exploration of their physicochemical properties. This synthetic method is convenient, economical, and controllable. The samples were characterized by powder X-ray diffraction, energy dispersive spectrum, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, CHN element analysis, thermogravimetric and differential-thermogravimetric analysis, which revealed the compound is lamellar structural cobalt organic-inorganic hybrid with the chemical formula of Co(OH)1.49(NH3)0.01(CO3 2-)0.22(Ac-)0.07(H2O)0.11 and single-crystalline.

  7. Synthesis, Characterization, Thermochromism, and Photochromism of Aromatic Aldehyde Hydrazone Derivatives

    Directory of Open Access Journals (Sweden)

    ShaoPing Zhu

    2016-01-01

    Full Text Available The Schiff bases N-(5-phenylthiazole-2-yl-2-hydroxylnaphthaldehydehydrazone (1, N-(4′-chloro-5-phenylthiazole-2-yl-2-hydroxylnaphthaldehydehydrazone (2, and N-(4′-nitro-5-phenylthiazole-2-yl-2-hydroxylnaphthaldehydehydrazone (3 were synthesized. These compounds were characterized by using IR, 1H NMR, 13C NMR, and MS. The photochromism of the compounds was investigated by IR and UV-visible spectrometry which is time variable under irradiation of 254 nm UV light. The thermochromism of the compounds was studied using temperature-variable IR, UV-visible spectrometry, TG, and differential scanning calorimetry (DSC. The results suggested that compound 2 showed thermochromism properties and compounds 2 and 3 displayed photochromism properties. The relationship between the substituents species and photochromic or thermochromic properties of these compounds was revealed as well.

  8. Synthesis, characterization and bioactivity evaluation of diallyl disulfide

    Institute of Scientific and Technical Information of China (English)

    YUAN Xin-ke; CHEN Xiao-qing; JIANG Xin-yu; NIE Ya-li

    2006-01-01

    Diallyl disulfide was synthesized by phase transfer catalyst (PTC) during microwave irradiation. The effects of different factors, such as the power of microwave irradiation, the time of microwave irradiation, PTC reagents amount and the mole ratio of reactants, on the yield of product were investigated. The structure of diallyl disulfide was characterized by infrared spectra, mass spectra and 1 H nuclear magnetic resonance. The bioactivity of diallyl disulfide was evaluated by cell viability assay on HepG2 hepatoma cells. The results show that the optimal reaction conditions are as follows: tetrabutylammonium bromide(TBAB) selected as a PTC, the mass ratio of TBAB to appears to be cytotoxic to HepG2 hepatoma cells in a dose-dependent manner.

  9. Synthesis and Characterization of Glomerate GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Xue Chengshan

    2009-01-01

    Full Text Available Abstract Glomerate GaN nanowires were synthesized on Si(111 substrates by annealing sputtered Ga2O3/Co films under flowing ammonia at temperature of 950 °C. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and Fourier transformed infrared spectra were used to characterize the morphology, crystallinity and microstructure of the as-synthesized samples. Our results show that the samples are of hexagonal wurtzite structure. For the majority of GaN nanowires, the length is up to tens of microns and the diameter is in the range of 50–200 nm. The growth process of the GaN nanowires is dominated by Co–Ga–N alloy mechanism.

  10. Synthesis and characterization of single-crystalline alumina nanowires

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qing; XU Xiang-yu; ZHANG Hong-zhou; CHEN Yao-feng; XU Jun; YU Da-peng

    2005-01-01

    Alumina nanowires were synthesized on large-area silicon substrate via simple thermal evaporation method of heating a mixture of aluminum and alumina powders without using any catalyst or template. The phase structure and the surface morphology of the as-grown sample were analyzed by X-ray diffractometry(XRD) and scanning electron microscopy (SEM), respectively. The chemical composition and the microstructure of the as-grown alumina nanowires were characterized using transmission electron microscope(TEM). The nanowires are usually straight and the single crystalline has average diameter of 40 nm and length of 3 - 5 μm. The growth direction is along the [002] direction. Well aligned alumina nanowire arrays were observed on the surface of many large particles. The catalyst-free growth of the alumina nanowires was explained under the framework of a vapor-solid(VS)growth mechanism. This as-synthesized alumina nanowires could find potential applications in the fabrication of nanodevices.

  11. Synthesis, characterization and vibrational properties of p-fluorosulfinylaniline.

    Science.gov (United States)

    Páez Jerez, Ana L; Flores Antognini, Andrea; Cutin, Edgardo H; Robles, Norma L

    2015-02-25

    The reaction of p-fluoroaniline and SOCl2 rendered p-fluorosulfinylaniline in good yield. The obtained dark yellowish liquid compound was characterized by NMR, UV-visible, FT-IR and Raman spectroscopies. The observed features were consistent with the existence of only one conformer, belonging to the CS symmetry group. A tentative assignment of the vibrational modes was performed on the basis of experimental spectra and quantum chemical calculations at different levels of theory (B3LYP and MP2 with 6-31+G(d), 6-311+G(d) and 6-311+G(df) basis sets). The conformational and vibrational properties of p-fluorosulfinylaniline were in good agreement with experimental data reported for other substituted sulfinylanilines and p-halogenanilines.

  12. Synthesis, characterization and applications of nanostructural/nanodimensional metal oxides

    Indian Academy of Sciences (India)

    B Nagappa; G T Chandrappa; Jacques Livage

    2005-11-01

    Molybdenum oxide nanorods (MO-NR) and vanadium oxide nanotubes (VO-NT) have been prepared using MoO3 and V2O5 powders as precursors and hexa-decylamine as surfactant via hydrothermal route. Porous nanocrystalline MgO powder has been prepared by a simple and instantaneous solution combustion process using corresponding magnesium nitrate as oxidizer and glycine as fuel. The compounds are characterized by XRD, TG-DTA, SEM, TEM, surface area and porosity measurements. Because of the porous nature having large surface area (107 m2/g) with nanodimension (12-23 nm), MgO powder has been successfully employed as defluoridizing agent for the removal of fluoride (75%) in ground water.

  13. Low temperature synthesis and characterization of carbonated hydroxyapatite nanocrystals

    Science.gov (United States)

    Anwar, Aneela; Asghar, Muhammad Nadeem; Kanwal, Qudsia; Kazmi, Mohsin; Sadiqa, Ayesha

    2016-08-01

    Carbonate substituted hydroxyapatite (CHA) nanorods were synthesized via coprecipitation method from aqueous solution of calcium nitrate tetrahydrate and diammonium hydrogen phosphate (with urea as carbonate ion source) in the presence of ammonium hydroxide solution at 70 °C at the conditions of pH 11. The obtained powders were physically characterized using transmission electron microscopy (TEM), X-ray powder diffraction analysis (XRD), and FTIR and Raman spectroscopy. The particle size was evaluated by Dynamic light scattering (DLS). The chemical structural analysis of as prepared sample was performed using X-ray photoelectron spectroscopy (XPS). After ageing for 12 h, and heat treatment at 1000 °C for 1 h, the product was obtained as highly crystalline nanorods of CHA.

  14. Al-doped ZnO nanofilms: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Huczko, A.; Dabrowska, A. [Department of Chemistry, Warsaw University, Warsaw (Poland); Madhup, D.K. [Department of Physics, Kathmandu University, Dhulikhel (Nepal); College of Biomedical Engineering and Applied Sciences, Hadigaun, Kathmandu (Nepal); Subedi, D.P.; Chimouriya, S.P. [Department of Physics, Kathmandu University, Dhulikhel (Nepal)

    2010-12-15

    Al-doped and un-doped ZnO nanofilms on quartz substrate were obtained by ultrasonic spray pyrolysis of salt solutions (mole concentration of Al within 0-10%). The films were characterized by Scanning electron microscopy (SEM), X-ray diffraction (XRD), Atomic force microscopy (AFM) and UV spectroscopy to study the morphology and optical properties. The optical studies showed that the increase in Al within ZnO thin layer increases its band gap energy. The obtained value of band gap energy is very close to the determined oscillation energy. However, the dispersion energy is nearly half of band gap energy value. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis and characterization of stable aqueous dispersions of graphene

    Indian Academy of Sciences (India)

    Ujjal Kumar Sur; Abhijit Saha; Aparna Datta; Balaprasad Ankamwar; Farah Surti; Sannak Dutta Roy; Debasish Roy

    2016-02-01

    A stable aqueous dispersion (5 mg ml$^{−1}$) of graphene was synthesized by a simple protocol based on three-step reduction of graphene oxide (GO) dispersion synthesized using the modified version of Hummers and Offeman method. Reduction of GO was carried out using sodium borohydride, hydrazine hydrate and dimethyl hydrazine as reducing agents. The chemically synthesized graphene was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–visible absorption spectroscopy, Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis (TGA), optical microscopy. The stability of aqueous dispersions of graphene was confirmed through zeta potential measurements and the negative zeta potentials of 55–60 mV were obtained indicating the high stability of aqueous graphene dispersions.

  16. Synthesis, characterization and photoinduced curing of polysulfones with (methacrylate functionalities

    Directory of Open Access Journals (Sweden)

    Cemil Dizman

    2010-06-01

    Full Text Available The UV-curable telechelic polysulfones with (methacrylate functionalities were synthesized by condensation polymerization and subsequent esterification. The final polymers and intermediates at various stages were characterized by 1H NMR, FT-ATR, and GPC. The oligomeric films prepared from the appropriate solutions containing these telechelics and 2,2-dimethoxy-2-phenylacetophenone (DMPA as the photoinitiator undergo rapid polymerization upon irradiation forming insoluble networks. The photo-curing behavior was investigated by photo-DSC and the effects of the molecular weight of the polysulfone precursor and type of functionality on the rate of polymerization and conversion were evaluated. Thermal properties of the photochemically cured films were studied by differential scanning calorimeter (DSC and thermal gravimetric analysis (TGA.

  17. Synthesis and characterization of HDA/NaMMT organoclay

    Indian Academy of Sciences (India)

    C Yürüdü; S İşçi; C Ünlü; O Atici; Ö I Ece; N Güngör

    2005-10-01

    In this study, the rheologic and colloidal characterizations of sodium montmorillonite (NaMMT) were examined. Hexadecylamine (CH3(CH2)15NH2, HDA) was added to the bentonite water dispersion (2%, w/w) in different concentrations in the range 5.6 × 10-4–9.4 × 10-3 m mol/l. The rheological and electrokinetic behaviour of aqueous montmorillonite dispersions was investigated as a function of solid content and HDA concentration. The basal spacings of the HDA/NaMMT composites were studied by X-ray diffraction. The FTIR spectra were obtained from the modified bentonite products, which revealed the characteristic absorbances after treatment with HDA.

  18. Single crystalline boron carbide nanobelts:synthesis and characterization

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    This paper reports that the large-scale single crystalline boron carbide nanobelts have been fabricated through a simple carbothermal reduction method with B/B203/C/Fe powder as precursors at ll00~C.Transmission electron microscopy and selected area electron diffraction characterizations show that the boron carbide nanobelt has a B4C rhomb-centred hexagonal structure with good crystallization.Electron energy loss spectroscopy analysis indicates that the nanobelt contains only B and C,and the atomic ratio of B to C is close to 4:1.High resolution transmission electron microscopy results show that the preferential growth direction of the nanobelt is [101].A possible growth mechanism is also discussed.

  19. Carbon nanotube catalysts: recent advances in synthesis, characterization and applications.

    Science.gov (United States)

    Yan, Yibo; Miao, Jianwei; Yang, Zhihong; Xiao, Fang-Xing; Yang, Hong Bin; Liu, Bin; Yang, Yanhui

    2015-05-21

    Carbon nanotubes are promising materials for various applications. In recent years, progress in manufacturing and functionalizing carbon nanotubes has been made to achieve the control of bulk and surface properties including the wettability, acid-base properties, adsorption, electric conductivity and capacitance. In order to gain the optimal benefit of carbon nanotubes, comprehensive understanding on manufacturing and functionalizing carbon nanotubes ought to be systematically developed. This review summarizes methodologies of manufacturing carbon nanotubes via arc discharge, laser ablation and chemical vapor deposition and functionalizing carbon nanotubes through surface oxidation and activation, doping of heteroatoms, halogenation, sulfonation, grafting, polymer coating, noncovalent functionalization and nanoparticle attachment. The characterization techniques detecting the bulk nature and surface properties as well as the effects of various functionalization approaches on modifying the surface properties for specific applications in catalysis including heterogeneous catalysis, photocatalysis, photoelectrocatalysis and electrocatalysis are highlighted.

  20. Synthesis, characterization and biological activity of Rhein-cyclodextrin conjugate

    Science.gov (United States)

    Liu, Manshuo; Lv, Pin; Liao, Rongqiang; Zhao, Yulin; Yang, Bo

    2017-01-01

    Cyclodextrin conjugate complexation is a useful method to enhance the solubility and absorption of poorly soluble drugs. A series of new Rhein-β-cyclodextrin conjugates (Rh-CD conjugates) have been synthesized and examined. Rhein is covalently linked with the β-CD by amido linkage in a 1:1 molar ratio. The conjugates were characterized by 1H NMR, 13C NMR, HRMS, powder X-ray diffraction (powder XRD) as well as thermogravimetric analysis (TGA). The results reveal that incorporation of β-CD could improve the aqueous solubility of Rhein and the cytotoxicity against hepatocellular carcinoma (HepG2) cell line as well as antibacterial activity against three organisms. The improved biological activity and the satisfactory water solubility of the conjugates will be potentially useful for developing novel drug-cyclodextrin conjugates, such as herbal medicine.

  1. SYNTHESIS, CHARACTERIZATION AND BIOLOGICAL EVALUATION OF SOME NOVEL THIAZOLIDINONES DERIVATIVES

    Directory of Open Access Journals (Sweden)

    S. Chandramohan et al.

    2012-05-01

    Full Text Available The main objective of the medicinal chemistry is to synthesize the compounds that show promising activity and therapeutic agents with lower toxicity. Thiazolidinone are very useful compound with well known biological activities. Notable among these are antibacterial, antiviral, analgesic, anti-inflammatory, antitubercular and anticonvulsant. In the current research work, three novel substituted thiazolidin-4-one derivatives were prepared from the corresponding Schiff bases and 2-mercapto acetic acid in benzene using Stark and Dean Apparatus. The identification and characterization of synthesized compounds were carried out by Elemental analysis, FT-IR and NMR data to ascertain that all synthesized compounds were of different chemical nature than the respective parent compound. The synthesized compounds showed good antibacterial activity against Escherichia Coli, Staphylococcus, Pseudomonas aeruginosa and Salmonella typhi.

  2. Green Synthesis and Characterization of Carbon Nanotubes/Polyaniline Nanocomposites

    Directory of Open Access Journals (Sweden)

    Van Hoa Nguyen

    2015-01-01

    Full Text Available Carbon nanotubes/polyaniline (CNT/PANI nanocomposites were synthesized by the interfacial polymerization of aniline in the presence of CNTs using two green solvents, water and an ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4], as the two phases. The formation and incorporation of PANI on the surface of the CNTs were confirmed by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy ultraviolet-visible spectroscopy, and X-ray photoelectron spectroscopy. The analyses showed that the surface of the CNTs was coated with different morphologies of thin PANI layers depending on whether a HCl or HNO3 solution was used. The thermal stability of the composites was much better than that of the bare CNTs and pure PANI. The as-prepared composites were also used to modify the nickel foam electrodes for characterization of the electrochemical properties.

  3. Synthesis and characterization of nano-hydroxyapatite in maltodextrin matrix

    Science.gov (United States)

    Phan, Bich T. N.; Nguyen, Hanh T.; Đao, Huong Q.; Pham, Lam V.; Quan, Trang T. T.; Nguyen, Duong B.; Nguyen, Huong T. L.; Vu, Thuan T.

    2016-11-01

    In this study, we report the direct precipitation of nano-HA in the present of maltodextrins with the different dextrose equivalent (DE) values in the range of 10-30. Characterization of the obtained samples, using X-ray diffraction and Fourier transform infrared spectrophotometry, indicated that the presence of maltodextrins, with the different DE values, does not affect the phase composition and structure of the obtained composites. Morphology studies of the samples, using field emission scanning electron microscope and transmission electron microscope, revealed that maltodextrin has obvious effect on the size, shape, and morphology of hydroxyapatite nanoparticles. In particular, in studied DE range, maltodextrin DE 28-30 with dominant structure of debranched chain is the most preferable choice to obtain the composite with highly dispersed nanoparticles. In vitro assay on pre-osteoblast MC3T3-E1 cells demonstrated the ability of the composites to stimulate alkaline phosphatase activity and mineralization during differentiation of the cells.

  4. Superparamagnetic bimetallic iron-palladium nanoalloy: synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Rabia; Mazhar, Muhammad [Department of Chemistry, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Akhtar, M Javed; Nadeem, M; Siddique, Muhammad [Physics Division, PINSTECH, PO Nilore, Islamabad 44000 (Pakistan); Shah, M Raza [HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270 (Pakistan); Khan, Nawazish A [Material Science Laboratory, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Mehmood, Mazhar [National Centre for Nanotechnology, PIEAS, Islamabad 45650 (Pakistan); Butt, N M [Pakistan Science Foundation, Islamabad 44000 (Pakistan)], E-mail: mazhar42pk@yahoo.com

    2008-05-07

    Iron-palladium nanoalloy in the particle size range of 15-30 nm is synthesized by the relatively low temperature thermal decomposition of coprecipitated [Fe(Bipy){sub 3}]Cl{sub 2} and [Pd(Bipy){sub 3}]Cl{sub 2} in an inert ambient of dry argon gas. The silvery black Fe-Pd alloy nanoparticles are air-stable and have been characterized by EDX-RF, XRD, AFM, TEM, magnetometry, {sup 57}Fe Moessbauer and impedance spectroscopy. This Fe-Pd nanoalloy is in single phase and contains iron sites having up to 11 nearest-neighboring atoms. It is superparamagnetic in nature with high magnetic susceptibility, low coercivity and hyperfine field.

  5. Synthesis, characterization and properties of hollow nickel phosphide nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ni Yonghong; Tao Ali; Hu Guangzhi; Cao Xiaofeng; Wei Xianwen; Yang Zhousheng [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China)

    2006-10-14

    Nickel phosphide (Ni{sub 12}P{sub 5}) hollow nanospheres with a mean diameter of 100 nm and a shell thickness of 15-20 nm have been successfully prepared by a hydrothermal-microemulsion route, using NaH{sub 2}PO{sub 2} as a phosphorus source. XRD, EDS (HR)TEM, SEM and the SAED pattern were used to characterize the final product. Experiments showed that the as-prepared nickel phosphide hollow nanospheres could selectively catalytically degrade some organic dyes such as methyl red and Safranine T under 254 nm UV light irradiation. At the same time, the nickel phosphide hollow nanospheres showed a stronger ability to promote electron transfer between the glass-carbon electrode and adrenalin than nickel phosphide honeycomb-like particles prepared by a simple hydrothermal route. A possible formation process for nickel phosphide hollow nanospheres was suggested based on the experimental results.

  6. SYNTHESIS AND CHARACTERIZATION OF SOME NOVEL SUBSTITUTED CHALCONE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Ramesh Dhani

    2012-12-01

    Full Text Available Chalcone is an aromatic ketone that forms the central core for the variety of important biological compounds, which are collectively known as chalcones. The name chalcones was given by Kostanecki and Tambor. The chalcones, two aromatic rings are linked by an aliphatic three carbon chain which bears a very good synthon so that variety of novel heterocyclics with good pharmaceutical profile can be designed. Chalcones have been considered as a magic moiety possessing myriad spectrum of medicinal activities. Diversity of biological response profile has attracted considerable interest of several researchers across the globe to explore this skeleton for its assorted therapeutic significance. By using different synthetic methods new chalcone derivatives were synthesized and characterized by physicochemical analysis. Chalcone is a lead nucleus for future developments to get effective compounds.

  7. Synthesis And Characterization of Biodiesel From Nigerian Palm Kernel oil.

    Directory of Open Access Journals (Sweden)

    IGBOKWE, J. O.

    2016-07-01

    Full Text Available Biodiesel was produced from Nigerian Palm kernel oil through direct base- catalyzed transesterification process using methanol and sodium hydroxide as alcohol and catalyst respectively. The transesterification process involved 1 liter of Palm kernel oil, 200ml of methanol, 1.0% NaOH, reaction temperature of 65 degree Celsius and reaction time of 90mins and an average biodiesel yield of 87.67% was obtained. The produced biodiesel was blended with diesel fuel at a ratio of 20% biodiesel to 80% diesel fuel (by volume. The neat biodiesel and its blend were characterized using the ASTM methods. The results showed that the properties of the neat palm kernel oil biodiesel and its blend fall within the American Society for Testing and Materials (ASTM specifications for Biodiesel fuels hence confirming their suitability as alternative fuels for modern diesel engines.

  8. Synthesis and characterization of silver nanoparticles by sonoelectrodeposition

    Institute of Scientific and Technical Information of China (English)

    CHENG Jingquan; YAO Suwei

    2005-01-01

    Shaped silver nanoparticles with sphere, wire and dendrite were prepared by sonoelectrochemical deposition from an aqueous solution of AgNO3 in the presence of ethylenediaminetetraacetic acid disodium salt (EDTA) and polyvinylpyrrolidone (PVP). The diameter of spherical silver particles was about 30 nm. The diameter of the silver nanowires was also about 30 nm and the length was 200-900 nm. The dendrites were synthesized with the concentration of silver solution increasing. Silver nanoparticles were characterized by transmission electron microscope (TEM), X-ray powder diffraction (XRD), scanning probe microscope (SPM) and UV-vis absorption spectrum. XRD patterns revealed that silver particles were of face-centered cubic structure. UV-vis absorption spectra indicated that different morphology and size of silver particles could influence the optical properties.

  9. Synthesis and Characterization of a Novel Cyclomatrix Phosphazene Polymer

    Institute of Scientific and Technical Information of China (English)

    Zhang Teng; Cai Qing; Wu Zhanpeng; Jin Riguang

    2006-01-01

    Novel phosphazene cyclomatrix network polymers were synthesized via the nucleophilic displacement of activated nitro groups of tri(4-nitrophenoxy)tri(phenoxy)cyclotriphosphazene and hexa(p-nitrophenoxy)cyclotriphosphazene with hydroxyls of bisphenol A.Both monomers and polymers were characterized by Fourier transform infrared spectroscopy,1H nuclear magnetic resonance,and elemental analysis measurements,and their structures were identified.Thermal properties of polymers were investigated using dynamic thermogravimetric analysis in air.The results demonstrated that both cyclomatrix phosphazene polymers 4 and 6 were of excellent thermal stability,and their char yields in air at 800℃ were 45.1 and 43.2%,respectively.According to combustion phenomenon,polymer 4 was supposed to be processed with a good flameretardant property because of its excellent crosslinked structure during pyrolysis or combustion.However,polymer 6 yielded the opposite result.

  10. Cobalt Borate Phosphate, Co 3[BPO 7], Synthesis and Characterization

    Science.gov (United States)

    Yilmaz, Aysen; Bu, Xianhui; Kizilyalli, Meral; Kniep, Rudiger; Stucky, Galen D.

    2001-02-01

    Single crystals of Co3[BPO7] were obtained by boron flux method and characterized by single-crystal diffraction data. The compound crystallizes in the monoclinic space group Cm with a=9.774(2), b=12.688(2), c=4.9057(8) Å, β=119.749(2)°; V=528.20(15) Å3; Z=4. The structure consists of Co in trigonal bipyramids, square pyramids, and distorted octahedra. Polyhedral Co centers, triangular B centers, and tetrahedral P centers are joined together to form a three-dimensional network. The temperature dependence of the magnetic susceptibility of the compound follows the Curie-Weiss law to 30 K. Below this temperature, the magnetic behavior displayed first antiferromagnetic ordering followed by ferrimagnetic coupling at 25 K.

  11. Synthesis, characterization and electrical properties of dihalogenated polyanilines

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, F.R.; Sanchez, C.O.; del Valle, M.A.; Tagle, L.H. [Universidad Catolica de Chile, Santiago (Chile). Fac. of Chem.; Bernede, J.C.; Tregouet, Y. [Laboratoire de Physique des Materiaux pour l`Electronique, Faculte des Sciences et des Techniques de Nantes, 2 rue de la Houssiniere, F-44072, Nantes, Cedex 02 (France)

    1998-01-30

    Poly(2,5-dichloroaniline), poly(2,3-dichloroaniline), poly(3,5-dichloroaniline), poly(2,5-dibromoaniline) and poly(2,6-dibromoaniline) have been synthesized from dihaloanilines in protic and aprotic media with different oxidizing agents, such as copper perchlorate, potassium dichromate and potassium permanganate. Each polymer is characterized by elemental analysis, IR and UV-Vis spectroscopy, scanning electron microscopy (SEM) and conductivity measurements. To obtain the doped polymers, they are treated with inorganic acids and then their electric properties determined. The use of different oxidants allows the obtention of polymers with different redox states which, in some cases, present semiconducting properties and are soluble in methanol and acetone. For the sake of comparison of the electrical and structural properties of the new polymers, polyaniline (PANI) has also been synthesized in a manner analogous to the poly(dihaloanilines). (orig.) 40 refs.

  12. Synthesis and thermal characterization of Al2O3 nanoparticles

    Science.gov (United States)

    Ismardi, A.; Rosadi, O. M.; Kirom, M. R.; Syarif, D. G.

    2016-11-01

    Al2O3 nanoparticle has been successfully synthesized using sol gel method from AlCl3. The obtained nanoparticles was then characterized for grain size measurement, the size of nanoparticles was 6 nm by using surface area meter (SAM) and Transmission Electron Microscopy (TEM). The crystallinity property of the product was then checked with XRD spectroscopy, the result shows that the diffraction peaks were match with the 10-0425 JCPDS database. Thermal property of the Al2O3 nanoparticles was then studied by mixing it with engine base fluid as nanofluid. The usage of nanofluid was expected to be heat absorber and woulo increase cooling process in cooling machine. The results showed that cooling time increases when the concentration of nanofluid was increased. Finally, it is concluded that thermal property of Al2O3 was studied and applicable to be mixed with engine coolant of cooler machine to reduce cooling time process.

  13. Synthesis and Characterization of Tetramethylethylenediamine-Based Hypergolic Ionic Liquids

    Science.gov (United States)

    Fei, Teng; Cai, Huiwu; Zhang, Yanqiang; Liu, Long; Zhang, Suojiang

    2016-04-01

    Four energetic salts (including two ionic liquids) based on 2-(dimethylamino)-N,N,N-trimethylethanaminium and N,N‧-dialkyl-N,N,N‧,N‧-tetramethylethane-1,2-diaminium was prepared and characterized by 1H- and 13C-NMR, infrared and Raman spectroscopies, and elemental analysis. Their physicochemical properties such as melting and decomposition temperatures, density, viscosity, heat of formation, detonation performance, and specific impulse were measured or calculated. With thermal stability up to 200°C, the resulting ionic liquids show densities from 1.02 to 1.19 g cm-3 and heats of formation from 85.1 to 154.4 kJ mol-1. Moreover, 2-(dimethylamino)-N,N,N-trimethylethanaminium dicyanamide is hypergolic with the oxidizer (100% HNO3) and exhibits potential as a green fuel for bipropellants.

  14. SYNTHESIS, CHARACTERIZATION AND CRYSTAL STRUCTURE OF BIS-(2-HYDROXYBENZALDEHYDEDIAMINOGUANIZONE

    Directory of Open Access Journals (Sweden)

    Diana Dragancea, Vladimir B. Arion, Sergiu Shova

    2008-12-01

    Full Text Available The new ligand, bis(2-hydroxybenzaldehydediaminoguanizone (1 has been synthesized and characterized by elemental analysis, IR and 1H NMR spectroscopies. The crystal structure of the compound was determined by X-ray diffraction. The ligand C15H15N5O2·C2H5OH crystallizes in the monoclinic space group P21/c with unit cell parameters a = 8.9102(3, b = 10.0357(3, c = 19.7618(6 Å, β = 98.385(2°, Z = 4, V = 1748.21(9 Å3, R1 = 0.040. The amino form of the ligand adopts a planar conformation stabilized by two intramolecular hydrogen bonds of the type O–H···N, in which the H atoms of the central amino group are directed to the lone-pair regions of the azomethine nitrogen atoms.

  15. Synthesis, Characterization and antimicrobial activity of Cyanopyridine derivatives with Vanillin.

    Directory of Open Access Journals (Sweden)

    K. N. Borkhataria

    2014-02-01

    Full Text Available Cyanopyridines play a vital role owing to their range of biological and physiological activities. In the light of these biological activities and variety of industrial applications, some new of 6-Aryl-4-[4’-(p-chlorobenzyloxy-3’-methoxyphenyl]-2-methoxy-3-cyanopyridines (1a-l & 6-Aryl-4-[4’-(p-chlorobenzyloxy-3’-methoxyphenyl]-2-ethoxy-3-cyanopyridine (2a-l have been prepared, by the cyclocondensation of 1-Aryl-3-[4’-(p-chlorobenzyloxy-3’-methoxyphenyl]-propenones type (I with malononitrile in presence of Sodiummethoxide & Sodiumethoxide. All the prepared compounds were characterized by their spectral (I.R., N.M.R. ,Mass data and screened for their antimicrobial activities.

  16. Synthesis and characterization of thermotropic liquid crystalline polyimides

    Indian Academy of Sciences (India)

    Sachin Mane; C R Rajan; Surendra Ponrathnam; Nayaku Chavan

    2015-10-01

    Non-symmetrical and linear dyad-based mesogens were synthesised containing imine or ester bridging group. In the present work, due to the absence of branching in diamine-based mesogen, the structure has—rigidity inversely imine/ester bridging groups between two benzene rings imparts—flexible property to the mesogen and consequently rigid–flexible property has been balanced. The synthesised mesogens were characterized by different techniques including nuclear magnetic resonance and Fourier transform infrared spectroscopy. Liquid crystalline polymers (LCPs) were synthesised using pyromellitic dianhydride and 4-[(4-aminobenzylidene)amino]aniline or 4-aminophenyl-4-aminobenzoate. Subsequently, thermotropic liquid crystalline polymers (TLCPs) have also been evaluated to obtain optical microscopy textures at different temperatures which demonstrated interesting and notable changes. It is worth noting that marble-like textures were observed upto 200 ° C.

  17. Nanostructured Biomaterials with Controlled Properties Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Petcu C

    2009-01-01

    Full Text Available Abstract Magnetic nanoparticles were obtained using an adjusted Massart method and were covered in a layer-by-layer technique with hydrogel-type biocompatible shells, from chitosan and hyaluronic acid. The synthesized nanocomposites were characterized using dynamic light scattering, transmission electron microscopy, and Fourier transformed infrared spectroscopy. Biocompatibility of magnetic nanostructures was determined by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide cell proliferation assay, swelling tests, and degradation tests. In addition, interaction of hydrogel-magnetic nanoparticles with microorganisms was studied. The possibility of precise nanoparticles size control, as long as the availability of bio-compatible covering, makes them suitable for biomedical applications.

  18. Synthesis and Characterization of EO/PO Random Copolyethers

    Institute of Scientific and Technical Information of China (English)

    GUO Jian-guo; YUAN Ren-xu; HE Su-qin; ZHU Cheng-shen; JIAO Yu; JIANG Jian-ming

    2004-01-01

    Ethylene oxide(EO) and propylene oxide(PO) random copolyethers were synthesized by the sequential addition of the mixture of ethylene oxide and propylene oxide to propylene glycol (initiator) in the presence of potassium hydroxide(KOH), and characterized with infrared spectrum(FTIR) and nuclear magnetism resonance(NMR). The effects of catalyst concentration, reaction temperature, charging rate and EO/PO mixture ratio on the polymerization reaction were investigated. It was revealed that the optimal reaction condition is the ratio of 2.5:1000(KOH mass vs. product mass), at 114.6℃ and pressure below 0.4MPa. The residual KOH was neutralized by phosphoric acid(H3PO4). Then the crude copolyether was refined with adsorbents, and the refined copolyether, which contains less than 0.7μg/ml K+, was obtained as colorless, viscous liquid.

  19. Rheological Phase Synthesis and Characterization of Copper Monosalicylate

    Institute of Scientific and Technical Information of China (English)

    YangYi-yong; LiLiang-chao; YuanLiang-jie; SunJu-tang; ZhangKe-li

    2003-01-01

    A new structural copper (Ⅱ) monosalicylate,Cu(OC6H4CO2 )·H2O, was synthesized by the rheological phase reaction method from salicylic acid and copper oxide in 1 : 1 mole ratio. The structure was characterized by powder X-ray diffraction, IR and thermogravimetry. The Cu (OC6H4CO2 )·H2O belongs to monoclinic system, with cell dimension:a=2. 136 28(67), b=0. 657 84(22), c=1. 594 09(50)nm,β=108. 434(25) , V=2. 125 28(83) nm3, Z=12, Dcalc=2.041 kg·L-1 Dobs=2.003 kg·L-1. The crystal water was lost at 96-250℃. The determined magnetic moment and magnetic susceptibility were 1. 947 B. M. and 6. 546×10-6(287.20 K), respectively.

  20. Rheological Phase Synthesis and Characterization of Copper Monosalicylate

    Institute of Scientific and Technical Information of China (English)

    Yang Yi-yong; Li Liang-chao; Yuan Liang-jie; Sun Ju-tang; Zhang Ke-li

    2003-01-01

    A new structural copper (Ⅱ) monosalicylate,Cu(OC6 H4 CO2 ) @ H2 O, was synthesized by the rheological phase reaction method from salicylic acid and copper oxide in 1 : 1 mole ratio. The structure was characterized by powder X-ray diffraction, IR and thermogravimetry. The Cu (OC6 H4 CO2 )@ H2O belongs to monoclinic system, with cell dimen-sion: a=2. 136 28(67), b=0. 657 84(22), c=1. 594 09(50)nm, β=108. 434(25) , V=2. 125 28(83) nm3, Z=12, Dcalc=2. 041 kg@L-1 , Dobs = 2. 003 kg@L-1. The crystal water was lost at 96-250°C. The determined magnetic moment and magnetic susceptibility were 1. 947 B. M. and 6. 546 × 10-6 (287.20 K), respectively.