WorldWideScience

Sample records for modeling summer school

  1. School Construction Summer Slam

    Science.gov (United States)

    Jensen, Richard F.

    2012-01-01

    Every school has a list of renovations, upgrades and repairs that need attention, but many are too distracting and disruptive to carry out during the school year. Often, the best time to address these nagging construction projects is during the summer when students are on break and the campus is quieter. Although these "summer slammers" often are…

  2. Chemical Physics Summer School

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-06-28

    The Gordon Research Conference (GRC) on Chemical Physics Summer School was held at Roger Williams University, Bristol, RI. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  3. Modeling of Arctic Climate: Fairbanks-Barrow Top of the World Summer School

    Science.gov (United States)

    Alexeev, V. A.; Walsh, J. E.; Sparrow, E. B.

    2009-04-01

    Arctic climate is the result of a complex interplay between the atmosphere, the ocean, sea ice and a terrestrial component in which freezing and thawing are critical to variations over a range of timescales. In view of the delicate balances between these components and their poorly documented sensitivities, it is not surprising that global climate models show the largest disagreement among themselves, and also the strongest greenhouse-induced changes, in the polar regions. Since changes in the Arctic may well have global implications, it is essential that Arctic climate simulations be enhanced in order to reduce the uncertainties in projections of climate change. Given the challenges and opportunities in Arctic modeling, the International Arctic Research Center's (IARC) 2008 summer school at the University of Alaska Fairbanks (UAF), was designed to bring the next generation of climate modelers to the Arctic. The two-week summer school brought together a group of 16 graduate students and young scientists, as well as specialists in Arctic climate and climate modeling, for two weeks, the first week in Fairbanks (May 27-31) and the second in Barrow (June 1-6). The young scientists gained a perspective on the key issues in Arctic climate from observational, diagnostic and modeling perspectives and received hands-on experience in the analysis of climate model output or in climate model experimentation at a level consistent with the students' expertise. The summer school consisted of background pedagogical lectures in the mornings, and mini-projects and informal discussions in the afternoons. The mini-projects have been performed in collaboration with lecturers, and utilized existing databases and available models. The second week was spent observing and experiencing Arctic research first-hand in Barrow, Alaska in coordination with the Barrow Arctic Sciences Consortium (BASC). The summer school and IARC are supported by the NSF, NOAA and JAMSTEC.

  4. The Summer School Alpbach

    Directory of Open Access Journals (Sweden)

    Gitsch Michaela

    2015-01-01

    Full Text Available Sixty young, highly qualified European science and engineering students converge annually for stimulating 10 days of work in the Austrian Alps. Four teams are formed, each of which designs a space mission, which are then judged by a jury of experts. Students learn how to approach the design of a satellite mission and explore new and startling ideas supported by experts. The Summer School Alpbach enjoys more than 30 years of tradition in providing in-depth teaching on different topics of space science and space technology, featuring lectures and concentrated working sessions on mission studies in self-organised working groups. The Summer School is organised by the Austrian Research Promotion Agency (FFG and co-sponsored by the European Space Agency (ESA, the International Space Science Institute (ISSI, and the national space authorities of its member and cooperating states.

  5. A High School Intensive Summer Mandarin Course: Program Model and Learner Outcomes

    Science.gov (United States)

    Xu, Xiaoqiu; Padilla, Amado M.; Silva, Duarte; Masuda, Norman

    2012-01-01

    This article describes a STARTALK intensive summer high school Mandarin language and culture program that was conducted for three summers. Participants across the three years included 40 Mandarin Level II and 53 Mandarin Level III high school students. Quantitative and qualitative data are presented to show the effectiveness of the program.…

  6. Next Generation Summer School

    Science.gov (United States)

    Eugenia, Marcu

    2013-04-01

    On 21.06.2010 the "Next Generation" Summer School has opened the doors for its first students. They were introduced in the astronomy world by astronomical observations, astronomy and radio-astronomy lectures, laboratory projects meant to initiate them into modern radio astronomy and radio communications. The didactic programme was structure as fallowing: 1) Astronomical elements from the visible spectrum (lectures + practical projects) 2) Radio astronomy elements (lectures + practical projects) 3) Radio communication base (didactic- recreative games) The students and professors accommodation was at the Agroturistic Pension "Popasul Iancului" situated at 800m from the Marisel Observatory. First day (summer solstice day) began with a practical activity: determination of the meridian by measurements of the shadow (the direction of one vertical alignment, when it has the smallest length). The experiment is very instructive and interesting because combines notions of physics, spatial geometry and basic astronomy elements. Next day the activities took place in four stages: the students processed the experimental data obtained on first day (on sheets of millimetre paper they represented the length of the shadow alignments according the time), each team realised its own sun quadrant, point were given considering the design and functionality of these quadrant, the four teams had to mimic important constellations on carton boards with phosphorescent sticky stars and the students, accompanied by the professors took a hiking trip to the surroundings, marking the interest point coordinates, using a GPS to establish the geographical coronations and at the end of the day the students realised a small map of central Marisel area based on the GPS data. On the third day, the students were introduced to basic notions of radio astronomy, the principal categories of artificial Earth satellites: low orbit satellites (LEO), Medium orbit satellites (MEO) and geostationary satellites (GEO

  7. Summer School on Spintronics

    CERN Document Server

    Wolf, Stuart; Idzerda, Yves

    2003-01-01

    Stuart Wolf This book originated as a series of lectures that were given as part of a Summer School on Spintronics in the end of August, 1998 at Lake Tahoe, Nevada. It has taken some time to get these lectures in a form suitable for this book and so the process has been an iterative one to provide current information on the topics that are covered. There are some topics that have developed in the intervening years and we have tried to at least alert the readers to them in the Introduction where a rather complete set of references is provided to the current state of the art. The field of magnetism, once thought to be dead or dying, has seen a remarkable rebirth in the last decade and promises to get even more important as we enter the new millennium. This rebirth is due to some very new insight into how the spin degree of freedom of both electrons and nucleons can play a role in a new type of electronics that utilizes the spin in addition to or in place of the charge. For this new field to mature and prosper, ...

  8. 1998 Complex Systems Summer School

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-15

    For the past eleven years a group of institutes, centers, and universities throughout the country have sponsored a summer school in Santa Fe, New Mexico as part of an interdisciplinary effort to promote the understanding of complex systems. The goal of these summer schools is to provide graduate students, postdoctoral fellows and active research scientists with an introduction to the study of complex behavior in mathematical, physical, and living systems. The Center for Nonlinear Studies supported the eleventh in this series of highly successful schools in Santa Fe in June, 1998.

  9. Huijia School Summer Camp Program

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    As an open and international educational institution, Beijing Huijia Private School is located in Changping, a scenic district in Beijing's northern suburb. In order to strengthen international cultural exchanges, promote the study of Chinese language and the spread of Chinese culture, and make the world know more about China, Huijia School regularly organizes various summer camps for students of different ages every year. Until now, we have already successfully received more than 1,000 students from hom...

  10. Summer Schools for European teachers

    Science.gov (United States)

    Ros, Rosa M.

    The Summer Schools have been organised by the European Association for Astronomy Education (EAAE) for European teachers. The first was organised in La Seu d'Urgell, Spain, the second was organised in 1998 in Fregene, Italy and the third in 1999, during the week of the eclipse in Briey, France, on the line of total darkness. We had a cloudy eclipse, but fortunately we could observe it. We are preparing the 4th one next July in Tavira, Portugal. A group of 50 participants are involved in each Summer School. In the last one the participants were from 14 countries. The activities are organised in General Lectures, Working Groups and Workshops to reduced groups and day and night Observations. To increase communication, each Summer School has three official languages: the language of the host country, English and another well-known by the participants. The proceedings are published beforehand with all the contents to facilitate participation. Each paper appears in English and another language. The activities are organised in General Lectures, Working Groups and Workshops to reduced groups and day and night Observations. To increase communication, each Summer School has three official languages: the language of the host country, English and another well-known by the participants. The proceedings are published beforehand with all the contents to facilitate participation. Each paper appears in English and another language.

  11. OECD - HRP Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  12. International Summer School on Nuclear Fuel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on nuclear fuel in the period August 28 September 1, 2000. The summer school was primarily intended for people who wanted to become acquainted with fuel-related subjects and issues without being experts. It was especially hoped that the summer school would serve to transfer knowledge to the ''young generation'' in the field of nuclear fuel. Experts from Halden Project member organisations gave the following presentations: (1) Overview of the nuclear community, (2) Criteria for safe operation and design of nuclear fuel, (3) Fuel design and fabrication, (4) Cladding Manufacturing, (5) Overview of the Halden Reactor Project, (6) Fuel performance evaluation and modelling, (7) Fission gas release, and (8) Cladding issues. Except for the Overview, which is a written paper, the other contributions are overhead figures from spoken lectures.

  13. National Nuclear Physics Summer School

    CERN Document Server

    2016-01-01

    The 2016 National Nuclear Physics Summer School (NNPSS) will be held from Monday July 18 through Friday July 29, 2016, at the Massachusetts Institute of Technology (MIT). The summer school is open to graduate students and postdocs within a few years of their PhD (on either side) with a strong interest in experimental and theoretical nuclear physics. The program will include the following speakers: Accelerators and Detectors - Elke-Caroline Aschenauer, Brookhaven National Laboratory Data Analysis - Michael Williams, MIT Double Beta Decay - Lindley Winslow, MIT Electron-Ion Collider - Abhay Deshpande, Stony Brook University Fundamental Symmetries - Vincenzo Cirigliano, Los Alamos National Laboratory Hadronic Spectroscopy - Matthew Shepherd, Indiana University Hadronic Structure - Jianwei Qiu, Brookhaven National Laboratory Hot Dense Nuclear Matter 1 - Jamie Nagle, Colorado University Hot Dense Nuclear Matter 2 - Wilke van der Schee, MIT Lattice QCD - Sinead Ryan, Trinity College Dublin Neutrino Theory - Cecil...

  14. 2015 CERN-Fermilab HCP Summer School

    CERN Multimedia

    2015-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the tenth edition, from 24 June to 3 July 2015. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Lecture Topics include: Statistics in HEP, Heavy Flavour, Heavy Ion, Standard Model, Higgs searches and measurements, BSM theory, BSM searches, Top physics, QCD and Monte Carlos, Accelerators, Detectors for the future, Trigger and DAQ, Dark Matter Astroparticle, and two special lectures on Future Colliders, and 20 years after the top discovery. Calendar and Details: Mark your calendar for  24 June - 3 July 2015, when CERN will welcome students to t...

  15. Summer School on Particle Physics

    CERN Document Server

    2017-01-01

    The goal of the school is to give a detailed overview of particle physics from the basics of Standard Model phenomenology to the most important areas where significant progress has been achieved recently. This year the school will cover both the energy and the intensity frontiers, including lectures on experimental techniques for small scale experiments and on formal developments in quantum field theory.

  16. Fourteenth Exotic Beam Summer School EBSS 2015

    Energy Technology Data Exchange (ETDEWEB)

    Wiedenhoever, Ingo [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2016-07-11

    The Fourteenth Annual Exotic Beam Summer School EBSS 2015 was held August 2nd - August 7th, 2015, and belongs to the series of summer programs aimed at educating future workforce in nuclear physics-related areas, mostly about the challenges of radioactive ion beam physics. Through these schools the research community will be able to exploit fully the opportunities created by the exotic beam facilities. These facilities in the US include CARIBU at ANL, the NSCL and the future FRIB laboratory as well as smaller-scale university laboratories. The skill set needed by the future workforce is very diverse and a fundamental understanding of theoretical, technical, computational and applied fields are all important. Therefore, the Exotic Beam Summer Schools follow a unique approach, in which the students not only receive lectures but also participate in hands-on activities. The lectures covered broad topics in both the experimental and theoretical physics of nuclei far from stability as well as radioactive ions production and applications. The afternoons provided opportunities for "hands-on" projects with experimental equipment and techniques useful in FRIB research. Five activities were performed in groups of eight students, rotating through the activities over the five afternoons of the school. The center of the activities was an experiment at the FSU tandem accelerator, measuring the angular distribution and cross section of the 12C(d,p)13C transfer reaction, measured with a silicon telescope in a scattering chamber. The experimental data were analyzed by performing a DWBA calculation with the program DWUCK, and the resulting spectroscopic factors were compared to a shell model calculation. The other activities included target preparation, digital gamma-spectroscopy and modern neutron detection methods.

  17. Formulating Policy for Summer Schools.

    Science.gov (United States)

    Marriot, Helen

    1991-01-01

    Explores issues relating to the formulation of policy for summer programs for language learning, describing one university's experience with student demand, student motivation and progress, course timing and structure, academic staffing, administrative organization, student and staff evaluation, and funding. (three references) (CB)

  18. CIM Academy Summer School: A Report of the Evaluation of the 2000 Summer School.

    Science.gov (United States)

    King, Fredrick; Kobak, Jared

    The Certificate of Initial Mastery (CIM) Academy summer school in Portland, Oregon, is a public school program that provides additional support to students in grades 5 through 8 who are not meeting state and district standards in reading and mathematics. Summer 2000 was the second year of this program, and this session benefited from the…

  19. Career and Workforce Impacts of the NASA Planetary Science Summer School: TEAM X model 1999-2015

    Science.gov (United States)

    Lowes, Leslie L.; Budney, Charles; Mitchell, Karl; Wessen, Alice; JPL Education Office, JPL Team X

    2016-10-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory (JPL), the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. PSSS utilizes JPL's emerging concurrent mission design "Team X" as mentors. With this model, participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. Applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, doctoral or graduate students, and faculty teaching such students. An overview of the program will be presented, along with results of a diversity study conducted in fall 2015 to assess the gender and ethnic diversity of participants since 1999. PSSS seeks to have a positive influence on participants' career choice and career progress, and to help feed the employment pipeline for NASA, aerospace, and related academia. Results will also be presented of an online search that located alumni in fall 2015 related to their current occupations (primarily through LinkedIn and university and corporate websites), as well as a 2015 survey of alumni.

  20. C.I.M.E. Summer School

    CERN Document Server

    2007-01-01

    Stochastic Geometry is the mathematical discipline which studies mathematical models for random geometric structures, as they appear frequently in almost all natural sciences or technical fields. Although its roots can be traced back to the 18th century (the Buffon needle problem), the modern theory of random sets was founded by D. Kendall and G. Matheron in the early 1970's. Its rapid development was influenced by applications in Spatial Statistics and by its close connections to Integral Geometry. The volume "Stochastic Geometry" contains the lectures given at the CIME summer school in Martina Franca in September 1974. The four main lecturers covered the areas of Spatial Statistics, Random Points, Integral Geometry and Random Sets, they are complemented by two additional contributions on Random Mosaics and Crystallization Processes. The book presents an up-to-date description of important parts of Stochastic Geometry.

  1. Summer Schools in Nuclear and Radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Silber, Herbert B. [San Jose State University

    2013-06-20

    The ACS Summer Schools in Nuclear and Radiochemistry (herein called “Summer Schools”) were funded by the U.S. Department of Energy and held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program. The Department of Energy’s Office of Basic Energy Sciences (BES) renewed the five-year proposal for the Summer Schools starting March 1, 2007, with contributions from Biological and Environmental Remediation (BER) and Nuclear Physics (NP). This Final Technical Report covers the Summer Schools held in the years 2007-2011.

  2. CERN SUMMER SCHOOL 2015 PROJECT REPORT

    CERN Document Server

    Jin, Zizhuo Tony

    2015-01-01

    The context of this internship is the CERN summer student program for the year 2015. As a member of the CERN summer school, I have been assigned, in addition to the classes I attended in the morning, a scientific project within the BE-ABP-HSC section. This work was done under the directions of Benoit Salvant and Nicolo Biancacci whom I thank greatly for their help, patience and teaching. The project consisted in observing the effects generated by the beam passing through various devices. We focused mainly on the electromagnetic waves generated by beams of particles travelling along two of the accelerator's devices: A wire scanner and the TDI (LHC injection beam stopper). These Simulations are of importance to estimate the effect of the beam onto the surrounding apparatus and ensuring both that the latter doesn't get damaged and that the beam doesn't lose too much energy. All the models and simulations were done using c CST STUDIO SUITE software developed by the c CST company.

  3. Connectionist Models: Proceedings of the Summer School Held in San Diego, California on 1990

    Science.gov (United States)

    1990-01-01

    David, Brown University Burani, Cristina, Istituto Di Psicologia Carlin, Michael J., Naval Ocean Systems Center Camporese, Daniel S., University of... Psicologia Del C. N. R. Ossen, Arnfried, Technical University of Berlin Parisi, Domenico, Istituto Di Psicologia Del C. N. R. Pearlmutter, B...changes in thironmenadts pheng and maintenance of an ongoing cognitive model of one’san org nism’s life. In his case, learni g a apts eno- kin and social

  4. Developing High School Geoscientists through Summer Internships

    Science.gov (United States)

    Saltzman, J.

    2012-12-01

    High school students in the San Francisco Bay Area have the opportunity to contribute to Earth sciences research during the summer at Stanford University. The School of Earth Sciences hosts about 25 high school students each summer to support ongoing research, through more than just washing glassware. To increase diversity in the geosciences, we select students from diverse backgrounds through an application process which lessens the burden on busy faculty. The students work for 15-20 hours per week under the supervision of graduate students or postdoctoral fellows. The supervisors come to value the interns for a few reasons: not only are they getting some extra help with their research, but they are getting teaching experience in an informal but powerful way and supervising the interns' work over the summer. Another key part of the internship is bringing all of the interns together regularly. Whether it is for career talks, lab tours or field trip, high school students find kindred spirits in the group. Another important reason for weekly gatherings is to introduce the students to the wide field of Earth sciences and the different approaches and paths that scientists take. The summer ends with a culminating event where interns make short informal presentations about their research which give them an opportunity to articulate the big questions they have been helping to answer. Some interns are also invited to present a poster in a session for high school students at the Fall AGU meeting. These experiences of working in the laboratory and communicating about the research are part of the world of Earth sciences that are absent for most youth. The high school internships foster good will between Stanford and the local communities, help develop a more Earth and environmentally knowledgeable public and may have a long-term affect on diversifying the geosciences by exposing more young people to these fields.

  5. Alpbach Summer School - a unique learning experience

    Science.gov (United States)

    Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.

    2011-12-01

    The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to

  6. Spin Glasses : Statics and Dynamics : Summer School

    CERN Document Server

    Bovier, Anton

    2009-01-01

    Over the last decade, spin glass theory has turned from a fascinating part of t- oretical physics to a ?ourishing and rapidly growing subject of probability theory as well. These developments have been triggered to a large part by the mathem- ical understanding gained on the fascinating and previously mysterious “Parisi solution” of the Sherrington–Kirkpatrick mean ?eld model of spin glasses, due to the work of Guerra, Talagrand, and others. At the same time, new aspects and applications of the methods developed there have come up. The presentvolumecollects a number of reviewsaswellas shorterarticlesby lecturers at a summer school on spin glasses that was held in July 2007 in Paris. These articles range from pedagogical introductions to state of the art papers, covering the latest developments. In their whole, they give a nice overview on the current state of the ?eld from the mathematical side. The review by Bovier and Kurkova gives a concise introduction to mean ?eld models, starting with the Curie–...

  7. C.I.M.E. Summer School

    CERN Document Server

    Behrend, Kai; Tarasov, Vitaly; Tian, Gang; Quantum Cohomology

    2002-01-01

    The book gathers the lectures given at the C.I.M.E. summer school "Quantum Cohomology" held in Cetraro (Italy) from June 30th to July 8th, 1997. The lectures and the subsequent updating cover a large spectrum of the subject on the field, from the algebro-geometric point of view, to the symplectic approach, including recent developments of string-branes theories and q-hypergeometric functions.

  8. Eleventh Modave Summer School in Mathematical Physics

    Science.gov (United States)

    The Modave Summer School in Mathematical Physics is organized by Belgian PhD students. The aim is to study tools useful for research in theoretical physics of fundamental interactions, generally supposed to be known but too seldom explained in details. The school consists of a series of courses (in English) delivered in an informal and relaxed atmosphere, encouraging the participants to interact with the speakers. The courses are aimed at young graduate students and therefore begin with the basics, are synthetic and overall self-contained.

  9. Algebraic Geometry and Number Theory Summer School

    CERN Document Server

    Sarıoğlu, Celal; Soulé, Christophe; Zeytin, Ayberk

    2017-01-01

    This lecture notes volume presents significant contributions from the “Algebraic Geometry and Number Theory” Summer School, held at Galatasaray University, Istanbul, June 2-13, 2014. It addresses subjects ranging from Arakelov geometry and Iwasawa theory to classical projective geometry, birational geometry and equivariant cohomology. Its main aim is to introduce these contemporary research topics to graduate students who plan to specialize in the area of algebraic geometry and/or number theory. All contributions combine main concepts and techniques with motivating examples and illustrative problems for the covered subjects. Naturally, the book will also be of interest to researchers working in algebraic geometry, number theory and related fields.

  10. Participation in Summer School and High School Graduation in the Sun Valley High School District

    Science.gov (United States)

    Trujillo, Gabriel

    2012-01-01

    This study examines the effectiveness of a summer school credit recovery program in the Sun Valley High School District. Using logistic regression I assess the relationship between race, gender, course failure, school of origin and summer school participation for a sample of students that failed one or more classes in their first year of high…

  11. Los Alamos Space Weather Summer School: Institutional Computing 2016

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-02

    During the summer school, students carry out independent research projects on a range of topics related to space weather. In 2016, one students used the LANL Institutional Computing resources. Results of this project were the first to demonstrate the magnitude of the diffusion is found to agree well with the early observations of radiation belts, indicating this effect should be included in community models of the Earth’s radiation belts.

  12. Summer Session Organizational Models at Canadian Universities

    Science.gov (United States)

    Kops, Bill

    2010-01-01

    The issue of summer session organizational models continues to be of interest to summer session deans/directors and university administrators. The University of Victoria surveyed Canadian universities on this issue in 1994. Based on a similar survey done in 2009, this paper updates the status of Canadian university summer session organizational…

  13. The Adaptive Optics Summer School Laboratory Activities

    CERN Document Server

    Ammons, S Mark; Armstrong, J D; Crossfield, Ian; Do, Tuan; Fitzgerald, Mike; Harrington, David; Hickenbotham, Adam; Hunter, Jennifer; Johnson, Jess; Johnson, Luke; Li, Kaccie; Lu, Jessica; Maness, Holly; Morzinski, Katie; Norton, Andrew; Putnam, Nicole; Roorda, Austin; Rossi, Ethan; Yelda, Sylvana

    2011-01-01

    Adaptive Optics (AO) is a new and rapidly expanding field of instrumentation, yet astronomers, vision scientists, and general AO practitioners are largely unfamiliar with the root technologies crucial to AO systems. The AO Summer School (AOSS), sponsored by the Center for Adaptive Optics, is a week-long course for training graduate students and postdoctoral researchers in the underlying theory, design, and use of AO systems. AOSS participants include astronomers who expect to utilize AO data, vision scientists who will use AO instruments to conduct research, opticians and engineers who design AO systems, and users of high-bandwidth laser communication systems. In this article we describe new AOSS laboratory sessions implemented in 2006-2009 for nearly 250 students. The activity goals include boosting familiarity with AO technologies, reinforcing knowledge of optical alignment techniques and the design of optical systems, and encouraging inquiry into critical scientific questions in vision science using AO sys...

  14. C.I.M.E. Summer School

    CERN Document Server

    Manetti, Marco

    2008-01-01

    Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.

  15. Lancaster Summer School in Corpus Linguistics

    Directory of Open Access Journals (Sweden)

    Jaka Čibej

    2016-11-01

    Full Text Available Med 12. in 15. julijem je na Univerzi v Lancastru potekala poletna šola korpusnega jezikoslovja Lancaster Summer Schools in Corpus Linguistics and Other Digital Methods. Poletno šolo so organizirali UCREL (University Centre for Computer Corpus Research on Language, ERC (Evropski svet za raziskave – European Research Council, CASS (ESRC Centre for Corpus Approaches to Social Science in ESRC (Economic and Social Research Council, razdeljena pa je bila na šest programov, prilagojenih različnim področjem: Korpusno jezikoslovje za proučevanje jezikov (Corpus Linguistics for Language Studies, Korpusno jezikoslovje za družbene vede (Corpus Linguistics for Social Science, Korpusno jezikoslovje za humanistiko (Corpus Linguistics for Humanities, Statistika za korpusno jezikoslovje (Statistics for Corpus Linguistics, Geografski informacijski sistemi za digitalno humanistiko (Geographical Information Systems for the Digital Humanities in Korpusno podprta obdelava naravnih jezikov (Corpus-based Natural Language Processing.

  16. Second Multiflow Summer School on Turbulence

    Science.gov (United States)

    Jiménez, Javier

    2016-04-01

    Multiflow is a research program, funded by the European Research Council, whose goal is to improve our understanding of the multiscale dynamics of turbulence in fluids. Its second Summer School on Turbulence took place at the School of Aeronautics of the Technical University of Madrid from May 25 to June 26, 2015, with the goal of providing a meeting place for theoreticians, experimentalists and simulators, in which to develop and test new ideas on turbulence physics and structure. Around forty, mostly young, participants from twenty international groups met for five weeks of collaborative work, primarily using the computational data archived in the receiving institution but, in many cases, also contributing their own. Although the format included a few invited formal seminars and periodic plenary meetings, most of the work took place in small groups that, in many cases, changed their composition during the workshop. The papers in these proceedings reflect the results of the work of these groups which, in many cases, later continued in the form of new collaborations.

  17. A Innovative Engineering Summer School V2.0

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Larsen, Peter Gorm

    2010-01-01

    This article describes a summer school which focuses on a conceive-design project. The summer school has been run three times; each of the implementations is described. The last implementation (v2.0) is discussed and four challenges are identified and discussed in detail: assignments, the role...

  18. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  19. SaferNanoDesign Summer School | 13-18 June

    CERN Multimedia

    2016-01-01

    A bioHC Summer School - 13-18 June 2016 - European Scientific Institute, Archamps, Haute-Savoie.   How can industrial innovation in nanotechnologies be reconciled with the legitimate concerns of citizens regarding environmental protection and public health? Tomorrow’s researchers and engineers will require skills in risk evaluation using computational methods of modelling and simulation relevant to nanomaterials. An intensive one-week specialist school, SaferNanoDesign will examine the analytical tools and methodologies required to rise to the challenge of the ecodesign of nanomaterial-enabled technology. The School combines an intensive programme of lecture presentations, followed up by practical sessions (experiments, computer simulation and modelling) and interdisciplinary group work. Courses will be given by international experts from France, Scotland, the US, the Netherlands and Switzerland and representatives from industry and regulatory bodies. For more information: www....

  20. 2nd International Summer School in High Energy Physics

    CERN Document Server

    Pak, N K; Serin, M; The Standard Model and Beyond

    2008-01-01

    This volume collects the edited tutorial lectures given at The Second International Summer School in High Energy Physics in Mgla, Turkey, in September 2006 - an annual event with international participation and a special focus on work done in the regions of central Asia. With emphasis on the standard model and beyond, lectures were devoted to presenting an introduction and update to many of the relevant topics, such as chiral perturbation theory, the Higgs mechanism, heavy flavour and b physics, CP violation, the AdS/CFT correspondence, ideas on grand unification and neutrino physics and astrophysics

  1. 2015 Los Alamos Space Weather Summer School Research Reports

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yuxi [Univ. of Michigan, Ann Arbor, MI (United States); Desai, Ravindra [Univ. College London, Bloomsbury (United Kingdom); Hassan, Ehab [Univ. of Texas, Austin, TX (United States); Kalmoni, Nadine [Univ. College London, Bloomsbury (United Kingdom); Lin, Dong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Depascuale, Sebastian [Univ. of Iowa, Iowa City, IA (United States); Hughes, Randall Scott [Univ. of Southern California, Los Angeles, CA (United States); Zhou, Hong [Univ. of Colorado, Boulder, CO (United States)

    2015-11-24

    The fifth Los Alamos Space Weather Summer School was held June 1st - July 24th, 2015, at Los Alamos National Laboratory (LANL). With renewed support from the Institute of Geophysics, Planetary Physics, and Signatures (IGPPS) and additional support from the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) Office of Science, we hosted a new class of five students from various U.S. and foreign research institutions. The summer school curriculum includes a series of structured lectures as well as mentored research and practicum opportunities. Lecture topics including general and specialized topics in the field of space weather were given by a number of researchers affiliated with LANL. Students were given the opportunity to engage in research projects through a mentored practicum experience. Each student works with one or more LANL-affiliated mentors to execute a collaborative research project, typically linked with a larger ongoing research effort at LANL and/or the student’s PhD thesis research. This model provides a valuable learning experience for the student while developing the opportunity for future collaboration. This report includes a summary of the research efforts fostered and facilitated by the Space Weather Summer School. These reports should be viewed as work-in-progress as the short session typically only offers sufficient time for preliminary results. At the close of the summer school session, students present a summary of their research efforts. Titles of the papers included in this report are as follows: Full particle-in-cell (PIC) simulation of whistler wave generation, Hybrid simulations of the right-hand ion cyclotron anisotropy instability in a sub-Alfvénic plasma flow, A statistical ensemble for solar wind measurements, Observations and models of substorm injection dispersion patterns, Heavy ion effects on Kelvin-Helmholtz instability: hybrid study, Simulating plasmaspheric electron densities with a two

  2. An Interactive Analytical Chemistry Summer Camp for Middle School Girls

    Science.gov (United States)

    Robbins, Mary E.; Schoenfisch, Mark H.

    2005-01-01

    A summer outreach program, which was implemented for the first time in the summer of 2004, that provided middle school girls with an opportunity to conduct college-level analytical chemistry experiments under the guidance of female graduate students is explained. The program proved beneficial to participants at each level.

  3. An Astrobiology Summer Program for High School Teachers and Students

    Science.gov (United States)

    Cola, J.; Williams, L. D.; Gaucher, E.; Snell, T.

    2010-12-01

    The Georgia Tech Center for Ribosomal Origins and Evolution, a center funded by the NASA Astrobiology Institute, developed an educational summer program titled, “Life on the Edge: Astrobiology.” The purpose of the program was to expose high school educators to the field of astrobiology and provide them with skills and classroom activities necessary to foster student interest in scientific discovery on Earth and throughout the universe. Astrobiology activities for a week-long summer enrichment program for high school students was developed by three high school educators, two undergraduate students and faculty in the Schools of Biology, and Chemistry and Biochemistry at Georgia Tech. Twenty-four high school students were introduced to hands-on activities and techniques such as gel electrophoresis, thin layer chromatography, and manual polymerase chain reaction. The impact of the astrobiology summer program on teachers and high school students will be discussed.

  4. Chinese Summer Schools Sell Quick Credits

    Science.gov (United States)

    McMurtrie, Beth; Farrar, Lara

    2013-01-01

    American-style summer programs in China, catering to Chinese-born students, have taken American universities by surprise. They are yet one more player in the complex and often opaque Chinese education industry, an industry in which American colleges are finding themselves increasingly entwined. These programs have become a booming enterprise,…

  5. A quantitative study of the summer slide in science of elementary school students

    Science.gov (United States)

    Donovan, Giovanna Guadagno

    Concerned parents and educators agree children learn best when the rhythm of instruction is continuous with practice and application of skills. Long summer breaks may interrupt the flow of formal school learning leading some students to forget previous instruction. A review of the previous school work is generally required in the fall upon return from the summer vacation. Investigating summer vacation and equity issues, Jamar (1994) noted that more affluent students may "return to school in the fall with a considerable educational advantage over their less advantaged peers as a result of either additional school-related learning, or lower levels of forgetting, over the summer months (p. 1)". The population of 402 fifth grade students from a suburban New England school district participated in this study. The district administered the science subtest of the TerraNova 2 (TN2) assessment in late May 2007 (pre-test data) and in September 2007 (post-test data). These archived data, including gender and student socioeconomic status (SES) levels (as referenced by free or reduced lunch status), were analyzed for an ex-post facto causal comparison study to identify the phenomenon of summer slide in science of fifth graders enrolled in six elementary schools. The ANOVA statistical model was used calculating the repeated measures factor of time (pre/post summer vacation) on the science content area. Subsequent two-way ANOVAS, with one repeated-measures factor (time of testing) explored the existence of similar/different patterns by gender and by SES levels. Two questions guided this study. First, does the summer slide phenomenon exist in science education? Second, if the summer slide in science phenomenon exists in science education, then does SES impact it? Does the summer slide in science phenomenon differ between genders? Findings suggest that the summer slide phenomenon exists in science; SES and gender does not affect the overall science test scores. However, SES impacts

  6. West African International Summer School for Young Astronomers

    Science.gov (United States)

    Strubbe, Linda E.; Okere, Bonaventure

    2016-10-01

    The West African International Summer School for Young Astronomers (WAISSYA) is a week-long program for university science students and teachers from West Africa to develop their interest in astronomy. The first summer school was held in Abuja, Nigeria, in 2013; the second Summer School was held in Nsukka, Nigeria, in July 2015. West Africa has a large number of students interested in science, but a paucity of facilities or interest from funding bodies in developing West African astronomy. Our broad goals for the WAISSYA program are: (1) to introduce West African students to astronomy; (2) to exchange ideas about teaching and learning in West Africa and abroad; and (3) to continue building a sustained astronomy partnership between West Africa and Canada. We now briefly describe three defining aspects of WAISSYA 2015.

  7. Summer School and Conference : Computations with Modular Forms

    CERN Document Server

    Wiese, Gabor

    2014-01-01

    This volume contains original research articles, survey articles and lecture notes related to the Computations with Modular Forms 2011 Summer School and Conference, held at the University of Heidelberg. A key theme of the Conference and Summer School was the interplay between theory, algorithms and experiment. The 14 papers offer readers both, instructional courses on the latest algorithms for computing modular and automorphic forms, as well as original research articles reporting on the latest developments in the field. The three Summer School lectures provide an introduction to modern algorithms together with some theoretical background for computations of and with modular forms, including computing cohomology of arithmetic groups, algebraic automorphic forms, and overconvergent modular symbols. The 11 Conference papers cover a wide range of themes related to computations with modular forms, including lattice methods for algebraic modular forms on classical groups, a generalization of the Maeda conjecture, ...

  8. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  9. Peak into the Past - An Archaeo-Astronomy Summer School

    CERN Document Server

    Brown, D; Francis, R

    2010-01-01

    Our Landscape has been shaped by man throughout the millennia. It still contains many clues to how it was used in the past, giving us insights into ancient cultures and their everyday life. Our summer school uses Archaeology and Astronomy as a focus for effective out-of-classroom learning experiences. It demonstrates how a field trip can be used to its full potential and utilise ancient monuments as outdoor classrooms. We show how such a summer school can be embedded into the secondary curriculum, give advice and examples of activities and locations to visit, and outline the impact our work has had.

  10. Peak into the Past - An Archaeo-Astronomy Summer School

    OpenAIRE

    Brown, Daniel Stephen; Neale, N; Francis, R.

    2010-01-01

    Description:\\ud The delivery and impact of an archaeo-astronomy summer school for year 5-8 pupils,utilising local Peak District National Park monuments as an outdoor classroom.\\ud \\ud Abstract:\\ud Our landscape has been shaped by man throughout the millennia. It still contains many clues to how it was used in the past giving us insights into ancient cultures and their everyday life. Our summer school uses archaeology and astronomy as a focus for effective out-of-classroom learning experiences...

  11. An Electrical Engineering Summer Academy for Middle School and High School Students

    Science.gov (United States)

    LoPresti, Peter G.; Manikas, Theodore W.; Kohlbeck, Jeff G.

    2010-01-01

    An Electrical Engineering Summer Academy for Pre-College Students was held at the University of Tulsa, Tulsa, OK, during the summers of 2007 and 2008. The Academy participants included students having just completed 7th to 11th grade and teachers from middle school through high school. The students and teachers participated in team-building,…

  12. An Anglo-French Summer School for Elders.

    Science.gov (United States)

    Shea, Peter; Tidmarsh, Mannes

    1981-01-01

    Reports on an international program involving a bilingual summer school program for the elderly. Curriculum topics included aspects of British and French cultural and social life, the role of grandparents, self-help, and health maintenance. Topics were taught via lecture/discussion, tourist visits, and physical/recreative activities. (CT)

  13. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    DEFF Research Database (Denmark)

    Verseux, Cyprien; G Acevedo-Rocha, Carlos; Chizzolini, Fabio

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in...

  14. The Biotechnology Summer School: A Novel Teaching Initiative.

    Science.gov (United States)

    Thomas, Malcolm; Keirle, Kath; Griffith, Gareth; Hughes, Steve; Hart, Paul; Schollar, John

    2002-01-01

    Describes an interactive summer school teaching initiative in the United Kingdom that engages newly qualified secondary science teachers as mentors in the teaching of biotechnology. Highlights include course structure and format; opportunities for practical work; group work; peer assessment; course evaluation; and student attitudes. (Contains 52…

  15. 14. Euro summer school on exotic beams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This school is intended for thesis students and young post-docs working in areas related to radioactive beams. It consists of several lecture courses given by specialists in their field, starting from a basic level. This document gathers only the slides of the following presentations: 1) clusters in nuclei, 2) the production of radioactive ion beams - in-flight methods, 3) ab-initio calculations for light nuclei, 4) the production of radioactive ion beams - ISOL methods, 5) neutrons for science, and 6) the production of radioactive ion beams - charge breeding.

  16. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  17. A SWOT Analysis for Organizing a Summer School: Case Study for Advanced Summer School in Analyzing Market Data 2013

    Directory of Open Access Journals (Sweden)

    Radu Herman

    2013-05-01

    Full Text Available The economics scholars agree that investment in education is a competitive advantage. After participating and graduating the “Advanced Summer School in Analyzing Market Data 2013”, the students will gain some formal competences is applied knowledge in Statistics with the IBM SPSS Statistics software. Studies show that the employers seek also practical competences in the undergraduate students, along with the theoretical knowledge. The article focuses on a SWOT analysis for organizing a Summer School in order to compose lists of strengths, weaknesses, opportunities and threats. The purpose of the “Advanced Summer School in Analyzing Market Data 2013“ is to train undergraduate students from social-human sciences to gain competences which are valued in the market and a certificate for attendance, to develop an appropriate training program which combines applied knowledge, statistics and IBM SPSS software and to create a „Summer School quality brand” with high-quality training programs for the Faculty of Administration and Business.

  18. The VALDOC Summer School 2002 - New Ideas for transparency and public participation

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Kjell [Karinta-Konsult, Taeby (Sweden); Drottz Sjoeberg, Britt-Marie [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway). Dept. of Psychology

    2003-10-01

    The VALDOC summer school had its first meeting in Borgholm, Sweden, in June 2002. The central theme for the weeklong meeting was 'Transparency and public participation for decision making'. The summer school represented an international and successful merging of academics (seniors and students) from various fields, decision-makers from authorities, business and politics, journalists and consultants. The summer school aimed at reviewing and discussing transparency in the decision process from a multitude of perspectives. Work on biotechnology, the precautionary principle, decision making in parliament, mass media and journalism, values in a complex society, emotions and risk perception are but a few examples. The RISCOM model was used as a basic guiding theoretical tool in the discussions of the presentations and the work shop cases. The paper focus on a) a description and evaluation of the summer school in 2002 and b) what ideas and developments could be covered in the next summer school, planned for 2004. The need, and program, for a continuous discussion on transparency and public participation issues will be outlined. It is suggested that such a discussion can be substantially advanced and refined in the future by the involvement of active decision makers in industrial areas, political and administrative bodies, scientific fields and public interest groups.

  19. C.I.M.E. Summer School

    CERN Document Server

    2003-01-01

    The C.I.M.E. session on Mathematical Problems in Semiconductor Physics, was addressed to researchers with a strong interest in the mathematical aspects of the theory of carrier transport in semiconductor devices. The subjects covered include hydrodynamical models for semiconductors based on the maximum entropy principle of extended thermodynamics, mathematical theory of drift-diffusion equations with applications, and the methods of asymptotic analysis.

  20. C.I.M.E. Summer School

    CERN Document Server

    2011-01-01

    This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods. 

  1. C.I.M.E. Summer School

    CERN Document Server

    Bertoluzza, Silvia; Quarteroni, Alfio; Siebert, Kunibert G; Veeser, Andreas

    2012-01-01

    This book is a collection of lecture notes for the CIME course on "Multiscale and Adaptivity: Modeling, Numerics and Applications," held in Cetraro (Italy), in July 2009. Complex systems arise in several physical, chemical, and biological processes, in which length and time scales may span several orders of magnitude. Traditionally, scientists have focused on methods that are particularly applicable in only one regime, and knowledge of the system on one scale has been transferred to another scale only indirectly.  Even with modern computer power, the complexity of such systems precludes their being treated directly with traditional tools, and new mathematical and computational instruments have had to be developed to tackle such problems.  The outstanding and internationally renowned lecturers, coming from different areas of Applied Mathematics, have themselves contributed in an essential way to the development of the theory and techniques that constituted the subjects of the courses.

  2. A Multidisciplinary Engineering Summer School in an Industrial Setting

    DEFF Research Database (Denmark)

    Larsen, Peter Gorm; Fernandes, Joao M.; Habel, Jacek

    2009-01-01

    Most university-level engineering studies produce technically skilled engineers. However, typically students face several difficulties when working in multidisciplinary teams when they initiate their industrial careers. In a globalised world, it becomes increasingly important that engineers...... are capable of collaborating across disciplinary boundaries and exhibit soft competencies, like communication, interpersonal and social skills, time planning, creativity, initiative, and reflection. To prepare a group of engineering and industrial design students to acquire those capabilities......, an international summer school that combined industrial design with different kinds of engineering disciplines was organised on the site of Bang & Olufsen (B&O) in Denmark. This multidisciplinary engineering summer school was attended by students from six European university-level teaching institutions...

  3. 2016 TSRC Summer School on Fundamental Science for Alternative Energy

    Energy Technology Data Exchange (ETDEWEB)

    Batista, Victor S. [Yale Univ., New Haven, CT (United States)

    2017-08-25

    The 2016 TSRC Summer School on Fundamental Science for Alternative Energy introduced principles, methods, and approaches relevant to the design of molecular transformations, energy transduction, and current applications for alternative energy. Energy and environment are likely to be key themes that will dominate the way science and engineering develop over the next few decades. Only an interdisciplinary approach with a team-taught structure as presented at the 2016 TSRC Summer School can be expected to succeed in the face of problems of such difficulty. The course inspired a new generation of 24 graduate students and 2 post-docs to continue work in the field, or at least to have something of an insider's point of view as the field develops in the next few decades.

  4. The 2010 Polar Aeronomy and Radio Science (PARS) Summer School

    Science.gov (United States)

    2011-12-30

    Auroral Research Program ( HAARP ) Research Station at Gakona, Alaska. The 2010 PARS Summer School, conducted over the period July 12 – 22, 2010...included a total of 21 students and 14 advisors or visiting scientists representing 12 universities. During the research period at the HAARP facility... HAARP , Stimulated Electromagnetic Emissions (SEE) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a

  5. A Pilot Study of a Kindergarten Summer School Reading Program in High-Poverty Urban Schools

    Science.gov (United States)

    Denton, Carolyn A.; Solari, Emily J.; Ciancio, Dennis J.; Hecht, Steven A.; Swank, Paul R.

    2010-01-01

    This pilot study examined an implementation of a kindergarten summer school reading program in 4 high-poverty urban schools. The program targeted both basic reading skills and oral language development. Students were randomly assigned to a treatment group (n = 25) or a typical practice comparison group (n = 28) within each school; however,…

  6. PREFACE: Second International Workshop & Summer School on Plasma Physics 2006

    Science.gov (United States)

    Benova, Evgeniya; Atanassov, Vladimir

    2007-04-01

    The Second International Workshop & Summer School on Plasma Physics (IWSSPP'06) organized by St. Kliment Ohridsky University of Sofia, The Union of the Physicists in Bulgaria, the Bulgarian Academy of Sciences and the Bulgarian Nuclear Society, was held in Kiten, Bulgaria, on the Black Sea Coast, from 3-9 July 2006. As with the first of these scientific meetings (IWSSPP'05 Journal of Physics: Conference Series 44 (2006)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 33 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma research, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of these papers were presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing procedure and our referees for their patience and considerable effort to improve the manuscripts. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at the University of Sofia and Natsionalna Elektricheska Kompania EAD. We would like to express our gratitude to the invited

  7. PREFACE: First International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    Benova, Evgenia; Zhelyazkov, Ivan; Atanassov, Vladimir

    2006-07-01

    The First International Workshop and Summer School on Plasma Physics (IWSSPP'05) organized by The Faculty of Physics, University of Sofia and the Foundation `Theoretical and Computational Physics and Astrophysics' was dedicated to the World Year of Physics 2005 and held in Kiten, Bulgaria, on the Black Sea Coast, from 8--12 June 2005. The aim of the workshop was to bring together scientists from various branches of plasma physics in order to ensure an interdisciplinary exchange of views and initiate possible collaborations. Another important task was to stimulate the creation and support of a new generation of young scientists for the further development of plasma physics fundamentals and applications. This volume of Journal of Physics: Conference Series includes 31 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion research, kinetics and transport phenomena in gas discharge plasmas, MHD waves and instabilities in the solar atmosphere, dc and microwave discharge modelling, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are Masters or PhD students' first steps in science. In both cases, we believe they will stimulate readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee. We greatly appreciate the financial support from the sponsors: the Department for Language Teaching and International Students at Sofia University, Dr Ivan Bogorov Publishing house, and Artgraph2 Publishing house. We would like to express our gratitude to the invited lecturers who were willing to pay the participation fee. In this way, in addition to the intellectual support they provided by means of their excellent lectures, they also supported the school

  8. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  9. CIM Academy Summer School: A Report of the Evaluation of the 1999 Summer School.

    Science.gov (United States)

    Mitchell, Stephanie; King, Fredrick; Anderson, Gena

    Students in the Portland, Oregon, public schools who achieve the state standards for grade 10 receive a Certificate of Initial Mastery (CIM) to document their achievement. Students who do not meet the standards may continue to be tested throughout their high school years, but they may receive a diploma without achieving a CIM. To offer additional…

  10. SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Alkesh

    2010-02-09

    Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty

  11. SUPPORT FOR HU CFRT SUMMER HIGH SCHOOL FUSION WORKSHOP

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Alkesh

    2010-02-09

    Nine summer fusion science research workshops for minority and female high school students were conducted at the Hampton University Center for Fusion Research and Training from 1996 to 2005. Each workshop was of the duration of eight weeks. In all 35 high school students were mentored. The students presented 28 contributed papers at the annual meetings of the American Physical Society Division of Plasma Physics. These contributed papers were very well received by the plasma physics and fusion science research community. The students won a number of prestigious local, state, and national honors, awards, prizes, and scholarships. The notable among these are the two regional finalist positions in the 1999 Siemens-Westinghouse Science and Technology Competitions; 1st Place U.S. Army Award, 2006; 1st Place U.S. Naval Science Award, 2006; Yale Science and Engineering Association Best 11th Grade Project, 2006; Society of Physics Students Book Award, 2006; APS Corporate Minority Scholarship and others. This workshop program conducted by the HU CFRT has been an exemplary success, and served the minority and female students exceptionally fruitfully. The Summer High School Fusion Science Workshop is an immensely successful outreach activity conducted by the HU CFRT. In this workshop, we train, motivate, and provide high quality research experiences to young and talented high school scholars with emphasis on under-represented minorities and female students in fusion science and related areas. The purpose of this workshop is to expose minority and female students to the excitement of research in science at an early stage in their academic lives. It is our hope that this may lead the high school students to pursue higher education and careers in physical sciences, mathematics, and perhaps in fusion science. To our knowledge, this workshop is the first and only one to date, of fusion science for under-represented minorities and female high school students at an HBCU. The faculty

  12. Lectures given at the C.I.M.E. Summer School

    CERN Document Server

    Frosali, Giovanni; Quantum Transport : Modelling, Analysis and Asymptotics

    2008-01-01

    The CIME Summer School held in Cetraro, Italy, in 2006 addressed researchers interested in the mathematical study of quantum transport models. In this volume, a result of the above mentioned Summer School, four leading specialists present different aspects of quantum transport modelling. Allaire introduces the periodic homogenization theory, with a particular emphasis on applications to the Schrödinger equation. Arnold focuses on several quantum evolution equations that are used for quantum semiconductor device simulations. Degond presents quantum hydrodynamic and diffusion models starting from the entropy minimization principle. Hou provides the state-of-the-art survey of the multiscale analysis, modelling and simulation of transport phenomena. The volume contains accurate expositions of the main aspects of quantum transport modelling and provides an excellent basis for researchers in this field.

  13. International School of Physics "Enrico Fermi" : Summer Courses 2014

    CERN Document Server

    Betev, L; Grigoras, A; Course 192 : Grid and Cloud Computing : Concepts and Practical Applications

    2016-01-01

    The distributed computing infrastructure known as ‘the Grid’ has undoubtedly been one of the most successful science-oriented large- scale IT projects of the past 20 years. It is now a fully operational international entity, encompassing several hundred computing sites on all continents and giving access to hundreds of thousands of CPU (central processing unit) cores and hundreds of petabytes of storage, all connected by robust national and international scientific networks. It has evolved to become the main computational platform many scientific communities. This book presents lectures from the Enrico Fermi International School of Physics summer school Grid and Cloud computing: Concepts and Practical Applications, held in Varenna, Italy, in July 2014. The school aimed to cover the conceptual and practical aspects of both the Grid and Cloud computing. The proceedings included here are divided into eight chapters, with chapters 1, 2, 3 and 8 covering general applications of Grid and Cloud computing in var...

  14. CERN-Fermilab summer school is smash hit

    CERN Multimedia

    2006-01-01

    A new joint CERN-Fermilab summer school is proving more popular than the organizers ever imagined. Interest in the first CERN-Fermilab Hadron Collider Physics Summer School, to be held at Fermilab on 9-18 August, has proved far greater than anyone anticipated, with 300 applications for the planned 100 places. In response, the Organizing Committee, led by Fermilab's Jeffrey Appel and Bogdan Dobrescu, has had to increase the class size to nearly 150 participants. 'The success of this initiative, with an unexpectedly large number of applications, shows both the great anticipation that exists in the world for the start up of the LHC, and the need for greater educational support to enable the hundreds of young researchers to get ready for a full and prompt exploitation of the LHC data,' explains CERN's Michelangelo Mangano, who is a member of the International Advisory Committee (IAC) for the school. 'Fulfilling the expectations of the students will be a great challenge, which we are all eager to tackle.' Fabiol...

  15. International Summer School on Mathematical Systems Theory and Economics

    CERN Document Server

    Szegö, G

    1969-01-01

    The International Summer School on Mathematical Systems Theory and Economics was held at the Villa Monastero in Varenna, Italy, from June 1 through June 12, 1967. The objective of this Summer School was to review the state of the art and the prospects for the application of the mathematical theory of systems to the study and the solution of economic problems. Particular emphasis was given to the use of the mathematical theory of control for the solution of problems in economics. It was felt that the publication of a volume collecting most of the lectures given at the school would show the current status of the application of these methods. The papers are organized into four sections arranged into two volumes: basic theories and optimal control of economic systems which appear in the first volume, and special mathematical problems and special applications which are contained in the second volume. Within each section the papers follow in alphabetical order by author. The seven papers on basic theories are a rat...

  16. Building expertise in glaciology through intense international summer schools

    Science.gov (United States)

    Hock, R.

    2016-12-01

    As the field of glaciology grows in response to recent rapid glacier changes and their potential socio-environmental consequences, the need for well-trained scientists possessing a high level expertise in physical glaciology has increased. Opportunities necessary to cultivate these efforts have not kept pace with the need for increased proficiency in this field. To our knowledge there is no academic degree in glaciology anywhere, but glaciology education, if offered at all, is generally restricted to one or a few individual classes. Glaciology graduate students tend to come from a wide range of background education and often pursue their degree at institutes without any glaciology classes. To cater to this demand we have organized four intense 11-day International Summer Schools in Glaciology which have provided an opportunity for a total of 119 students from around the world to obtain a comprehensive insight into a wide range of topics in glaciology and a more holistic view beyond the scope of their graduate thesis topic. The summer schools were held bi-annually (2010 - 2016) in the tiny village of McCarthy in central Alaska in the immediate vicinity of easily accessible glaciers. The unique setting facilitated close interaction among all participants. The courses included daily lectures, computational exercises, a poster-session and two glacier excursions. In addition, students worked in small teams on a glaciology computer project mentored by one of the 7-9 instructors from several US and foreign institutions, and presented their results in a `mini' student conference at the end of the course. All instructors were required to stay for the entire period. Thus the courses provided a valuable platform for international networking between students and instructors and among the students themselves, thereby fostering future collaborations. This was generally perceived as a major asset of our summer schools.

  17. CIMPA Summer School on Arithmetic and Geometry Around Hypergeometric Functions

    CERN Document Server

    Uludağ, A; Yoshida, Masaaki; Arithmetic and Geometry Around Hypergeometric Functions

    2007-01-01

    This volume comprises the Lecture Notes of the CIMPA Summer School "Arithmetic and Geometry around Hypergeometric Functions" held at Galatasaray University, Istanbul in 2005. It contains lecture notes, a survey article, research articles, and the results of a problem session. Key topics are moduli spaces of points on P1 and Picard-Terada-Deligne-Mostow theory, moduli spaces of K3 surfaces, complex hyperbolic geometry, ball quotients, GKZ hypergeometric structures, Hilbert and Picard modular surfaces, uniformizations of complex orbifolds, algebraicity of values of Schwartz triangle functions, and Thakur's hypergeometric function. The book provides a background, gives detailed expositions and indicates new research directions. It is directed to postgraduate students and researchers.

  18. 7th International Summer School on Aggregation Operators

    CERN Document Server

    Fernandez, Javier; Mesiar, Radko; Calvo, Tomasa

    2013-01-01

    This volume collects the extended abstracts of 45 contributions of participants to the Seventh International Summer School on Aggregation Operators (AGOP 2013), held at Pamplona in July, 16-20, 2013. These contributions cover a very broad range, from the purely theoretical ones to those with a more applied focus. Moreover, the summaries of the plenary talks and tutorials given at the same workshop are included. Together they provide a good overview of recent trends in research in aggregation functions which can be of interest to both researchers in Physics or Mathematics working on the theoretical basis of aggregation functions, and to engineers who require them for applications.

  19. PREFACE: Third International Workshop & Summer School on Plasma Physics 2008

    Science.gov (United States)

    Benova, E.; Dias, F. M.; Lebedev, Yu

    2010-01-01

    The Third International Workshop & Summer School on Plasma Physics (IWSSPP'08) organized by St Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences was held in Kiten, Bulgaria, at the Black Sea Coast, from 30 June to 5 July 2008. A Special Session on Plasmas for Environmental Issues was co-organised by the Institute of Plasmas and Nuclear Fusion, Lisbon, Portugal and the Laboratory of Plasmas and Energy Conversion, University of Toulouse, France. That puts the beginning of a series in Workshops on Plasmas for Environmental Issues, now as a satellite meeting of the European Physical Society Conference on Plasma Physics. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007)), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 38 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the

  20. Evaluation to Improve a High School Summer Science Outreach Program

    Directory of Open Access Journals (Sweden)

    Katherine Bakshian Chiappinelli

    2016-05-01

    Full Text Available The goal of the Young Scientist Program (YSP at Washington University School of Medicine in St. Louis (WUSM is to broaden science literacy and recruit talent for the scientific future. In particular, YSP seeks to expose underrepresented minority high school students from St. Louis public schools (SLPS to a wide variety of careers in the sciences. The centerpiece of YSP, the Summer Focus Program (SFP, is a nine-week, intensive research experience for competitively chosen rising high school seniors (Scholars. Scholars are paired with volunteer graduate student, medical student, or postdoctoral fellow mentors who are active members of the practicing scientific community and serve as guides and exemplars of scientific careers. The SFP seeks to increase the number of underrepresented minority students pursuing STEM undergraduate degrees by making the Scholars more comfortable with science and science literacy. The data presented here provide results of the objective, quick, and simple methods developed by YSP to assess the efficacy of the SFP from 2006 to 2013. We demonstrate that the SFP successfully used formative evaluation to continuously improve the various activities within the SFP over the course of several years and in turn enhance student experiences within the SFP. Additionally we show that the SFP effectively broadened confidence in science literacy among participating high school students and successfully graduated a high percentage of students who went on to pursue science, technology, engineering, and mathematics (STEM majors at the undergraduate level.

  1. VI European Summer School on Experimental Nuclear Astrophysics

    Science.gov (United States)

    The European Summer School on Experimental Nuclear Astrophysics has reached the sixth edition, marking the tenth year's anniversary. The spirit of the school is to provide a very important occasion for a deep education of young researchers about the main topics of experimental nuclear astrophysics. Moreover, it should be regarded as a forum for the discussion of the last-decade research activity. Lectures are focused on various aspects of primordial and stellar nucleosynthesis, including novel experimental approaches and detectors, indirect methods and radioactive ion beams. Moreover, in order to give a wide educational offer, some lectures cover complementary subjects of nuclear astrophysics such as gamma ray astronomy, neutron-induced reactions, short-lived radionuclides, weak interaction and cutting-edge facilities used to investigate nuclear reactions of interest for astrophysics. Large room is also given to young researcher oral contributions. Traditionally, particular attention is devoted to the participation of students from less-favoured countries, especially from the southern coast of the Mediterranean Sea. The school is organised by the Catania Nuclear Astrophysics research group with the collaboration of Dipartimento di Fisica e Astromomia - Università di Catania and Laboratori Nazionali del Sud - Istituto Nazionale di Fisica Nucleare.

  2. 100th Les Houches Summer School : Post-Planck Cosmology

    CERN Document Server

    Peter, Patrick; Wandelt, Benjamin; Zaldarriaga, Matías; Cugliandolo, Leticia F

    2015-01-01

    This book is based on lectures given at the 100th Les Houches Summer School and presents a comprehensive pedagogical survey of the frontiers of theoretical and observational cosmology just after the release of the first cosmological results from the Planck mission. The cosmic microwave background is discussed as a possible window on the still-unknown laws of physics at very high energy and as a backlight for studying the late-time universe. Other chapters highlight connections of fundamental physics with other areas of cosmology and astrophysics, the successes and fundamental puzzles of the inflationary paradigm of the beginning of the universe, the cosmological constant problem, the themes of dark energy and dark matter, and the theoretical developments and observational probes that will shed light on these cosmic conundrums in the years to come.

  3. Proceedings of the summer school on physics with neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Locher, M.P. [ed.

    1996-11-01

    The Summer School on physics with neutrinos concentrated on a particularly rewarding topic on the intersection between particle and astrophysics. Although the neutrino has been postulated as early as 1930 in the famous letter by Pauli the intriguing particle poses challenging problems to the present day. The speakers did not spare any effort in creating an atmosphere of stimulating scientific exchange. The participating young and old enjoyed the presence of Jack Steinberger who presented a talk on the history of the neutrino and contributed in many other ways to the meeting. Apart from the lectures and seminars that are mostly reflected in these proceedings there were also a number of extra seminars on topics ranging from special nuclear reactions to the extinction of life in the universe, adding to the breadth of the presentations. (author) figs., tabs., refs.

  4. Oxford Summer School "Intelligent Front-End Signal Processing for Frontier Exploitation in Research and Industry"

    CERN Document Server

    2013-01-01

    Interdisciplinary Summer School on Intelligent Front-End Signal Processing for Frontier Exploitation in Research and Industry. For details about the school programme and registration, please visit: http://www.physics.ox.ac.uk/INFIERI2013/

  5. Summer Reading Remediation for Incoming Pupils 1975; High School Umbrella Number 2, School Year 1975.

    Science.gov (United States)

    Toledo, Victor

    The Elementary Secondary Education Act Title I program, Summer Reading Remediation for Incoming Pupils 1975, had two goals: to improve reading skills by supplying an intensive program of remediation in reading and to orient incoming students to their new school environment and its staff. Participating in the program were 2807 ninth and tenth grade…

  6. LEARNING GEOMATICS FOR RESTORATION: ICOMOS SUMMER SCHOOL IN OSSOLA VALLEY

    Directory of Open Access Journals (Sweden)

    C. Achille

    2017-05-01

    Full Text Available Documentation and preservation of widespread rural heritage are today possible only if you can activate processes of conservation headed by local communities, thereby recognizing the link between the communities and their culture. The cultural heritage places (villages, sites and landscapes can take different values; action is needed respecting the right of communities to identify the values contained in them. ‘Collaborative networks should be set up at different levels among multiple stakeholders in order to address issues related to heritage and create new value chains through innovative synergies. Dynamic, flexible, inclusive and integrated processes of engagement need to be employed for assessing long-term social impacts of heritage conservation programmes’ (Icomos, 2014. In 2011 the 3DSurvey Group of the Politecnico di Milano in collaboration with the Canova Association initiated an annual summer school program entitled ‘Laboratory of Places 2017, Ghesc and surroundings, History, survey, evolution Laboratory of Places'. The definition of “Laboratory of Places 2017, Ghesc and surroundings” links the idea of an inhabited space to an open space suitable for study, research, and an interactive absorption and confrontation of differing ideas. Founding elements of the project involve educational collaborations with university, but equally important will be the development of programs with local schools, associations, and public administration (Quaderni di Ghesc, 2010.

  7. Learning Geomatics for Restoration: Icomos Summer School in Ossola Valley

    Science.gov (United States)

    Achille, C.; Fassi, F.; Marquardt, K.; Cesprini, M.

    2017-05-01

    Documentation and preservation of widespread rural heritage are today possible only if you can activate processes of conservation headed by local communities, thereby recognizing the link between the communities and their culture. The cultural heritage places (villages, sites and landscapes) can take different values; action is needed respecting the right of communities to identify the values contained in them. `Collaborative networks should be set up at different levels among multiple stakeholders in order to address issues related to heritage and create new value chains through innovative synergies. Dynamic, flexible, inclusive and integrated processes of engagement need to be employed for assessing long-term social impacts of heritage conservation programmes' (Icomos, 2014). In 2011 the 3DSurvey Group of the Politecnico di Milano in collaboration with the Canova Association initiated an annual summer school program entitled `Laboratory of Places 2017, Ghesc and surroundings, History, survey, evolution Laboratory of Places'. The definition of "Laboratory of Places 2017, Ghesc and surroundings" links the idea of an inhabited space to an open space suitable for study, research, and an interactive absorption and confrontation of differing ideas. Founding elements of the project involve educational collaborations with university, but equally important will be the development of programs with local schools, associations, and public administration (Quaderni di Ghesc, 2010).

  8. Report of the Summer School of Pitch, Music & Associated Pathologies (Lyon, July 9-11, 2014)

    NARCIS (Netherlands)

    J. Pfeifer; R. Asano; V. Attina; M. d’Errico; N. El Boghdady; G. Estivalet; L. Grön; D. Guillemard; H.J. Kang; A. Luckmann; F. Mina; S. Tabibi; J. Viswanathan

    2014-01-01

    The summer school on Pitch, Music and Associated Pathologies was held for 2½ days, July 9-11, 2014, at the Valpré conference center in Lyon. Fifty-five researchers and students from universities and research institutions from 11 countries participated in it. The summer school was organized in 2 larg

  9. Community-Based Summer Learning Programs for School- Age Children: Research-to-Policy Resources

    Science.gov (United States)

    Stephens, Samuel A.

    2016-01-01

    Summer learning experiences for school-age children can be provided in a variety of ways and settings, including summer school programs (often remedial), community-based programs (often a continuation of afterschool programs), and home-based programs (in which families are provided with information and resources to encourage reading, often run by…

  10. Report of the Summer School of Pitch, Music & Associated Pathologies (Lyon, July 9-11, 2014)

    NARCIS (Netherlands)

    Pfeifer, J.; Asano, R.; Attina, V.; d’Errico, M.; El Boghdady, N.; Estivalet, G.; Grön, L.; Guillemard, D.; Kang, H.J.; Luckmann, A.; Mina, F.; Tabibi, S.; Viswanathan, J.

    2014-01-01

    The summer school on Pitch, Music and Associated Pathologies was held for 2½ days, July 9-11, 2014, at the Valpré conference center in Lyon. Fifty-five researchers and students from universities and research institutions from 11 countries participated in it. The summer school was organized in 2 larg

  11. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  12. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  13. Speech and language therapist-teacher collaboration in a literacy summer school.

    Science.gov (United States)

    Drew, M F

    1998-01-01

    This paper describes the collaboration between a speech and language therapist and a special needs teacher to provide an intensive phonics-based programme of reading and spelling instruction in the context of a literacy summer school for students about to enter secondary school. The students' reading and spelling abilities were tested before and after the summer school. All the students benefited from the summer school in many ways. Various factors, such as innate language ability, attendance, completion of homework and age, appeared to contribute to the degree of improvement of individual students.

  14. REPORT OF THE 1961 SUMMER SCHOOL PROGRAM FOR CHILDREN OF MIGRANT PARENTS.

    Science.gov (United States)

    LEBARON, WALTER A.; RUEF, WERNER H.

    ALTHOUGH THERE WAS A DECREASE IN MIGRANT LABOR, THE NUMBER OF MIGRANT CHILDREN ATTENDING 6-WEEK SCHOOL PROGRAMS IN 1962 INCREASED OVER THE PREVIOUS YEAR. THE SUMMER SCHOOL CENTERS WERE SPONSORED BY THE PUBLIC SCHOOLS AND WERE REIMBURSED BY THE STATE. THE 1961 MIGRANT SCHOOLS WERE GUIDED BY A BASIC PHILOSOPHY WHICH STRESSED THE NEED FOR AN INTENSE…

  15. Alpbach Summer School 2010 - proposed missions to understand climate change

    Science.gov (United States)

    Krejci, D.; Aulinas, J.; Clifford, D.; Kern, K.; Romano, P.; Topham, R.; Weitnauer, C.

    2011-12-01

    The theme of the Alpbach Summer School 2010 was "New Space Missions to Understand Climate Change". At present, climate change studies face many uncertainties that need to be solved and quantified. The unprecedented effects and consequences of climate change on our planet are causing serious concerns amongst the scientific community, that witnesses the transformations our environment is suffering. In order to reduce them, Earth Observation from space is a really interesting and affordable alternative. A group of sixty young science and engineering students both undergraduate and graduate, dealt with the task of designing space missions aiming to better understand climate change. The participants were split into four teams which were encouraged to design innovative new missions, that could potentially help to increase our understanding on climate change by introducing new observation parameters, methods and technology. They were also encouraged to focus on different approaches so no scientific case was duplicated. The resulting proposals comprised a wide range of climate change topics: AVALON (Atmospheric water Vapour from an Active Limb-sounding Observing Network) a mission using a novel active limb-sounding instrument to measure water vapour in the upper troposphere and lower stratosphere; ERICC (Evolution and Radiative Impact of Contrail Cirrus) the first space mission dedicated to the study of contrails and their impact on climate change; VESTA a mission designed to derive data on CO2 emissions from biomass burning in the tropics and DROP (Dual Retrieval of Precipitation) a mission to improve the understanding of regional and global water cycles. This presentation will provide an introduction towards the four missions designed with the goal of contributing towards better understanding climate change and its causes. The scientific cases will be presented, as well as the engineering designs needed to meet these scientific requirements on a preliminary level

  16. Downscaling GISS ModelE boreal summer climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2016-12-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June-September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2° latitude by 2.5° longitude and the RM3 grid spacing is 0.44°. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  17. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  18. Downscaling GISS ModelE Boreal Summer Climate over Africa

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2015-01-01

    The study examines the perceived added value of downscaling atmosphere-ocean global climate model simulations over Africa and adjacent oceans by a nested regional climate model. NASA/Goddard Institute for Space Studies (GISS) coupled ModelE simulations for June- September 1998-2002 are used to form lateral boundary conditions for synchronous simulations by the GISS RM3 regional climate model. The ModelE computational grid spacing is 2deg latitude by 2.5deg longitude and the RM3 grid spacing is 0.44deg. ModelE precipitation climatology for June-September 1998-2002 is shown to be a good proxy for 30-year means so results based on the 5-year sample are presumed to be generally representative. Comparison with observational evidence shows several discrepancies in ModelE configuration of the boreal summer inter-tropical convergence zone (ITCZ). One glaring shortcoming is that ModelE simulations do not advance the West African rain band northward during the summer to represent monsoon precipitation onset over the Sahel. Results for 1998-2002 show that onset simulation is an important added value produced by downscaling with RM3. ModelE Eastern South Atlantic Ocean computed sea-surface temperatures (SST) are some 4 K warmer than reanalysis, contributing to large positive biases in overlying surface air temperatures (Tsfc). ModelE Tsfc are also too warm over most of Africa. RM3 downscaling somewhat mitigates the magnitude of Tsfc biases over the African continent, it eliminates the ModelE double ITCZ over the Atlantic and it produces more realistic orographic precipitation maxima. Parallel ModelE and RM3 simulations with observed SST forcing (in place of the predicted ocean) lower Tsfc errors but have mixed impacts on circulation and precipitation biases. Downscaling improvements of the meridional movement of the rain band over West Africa and the configuration of orographic precipitation maxima are realized irrespective of the SST biases.

  19. Nordic Summer School on Parallel Computing in Optimization

    CERN Document Server

    Pardalos, Panos; Storøy, Sverre

    1997-01-01

    During the last three decades, breakthroughs in computer technology have made a tremendous impact on optimization. In particular, parallel computing has made it possible to solve larger and computationally more difficult prob­ lems. This volume contains mainly lecture notes from a Nordic Summer School held at the Linkoping Institute of Technology, Sweden in August 1995. In order to make the book more complete, a few authors were invited to contribute chapters that were not part of the course on this first occasion. The purpose of this Nordic course in advanced studies was three-fold. One goal was to introduce the students to the new achievements in a new and very active field, bring them close to world leading researchers, and strengthen their competence in an area with internationally explosive rate of growth. A second goal was to strengthen the bonds between students from different Nordic countries, and to encourage collaboration and joint research ventures over the borders. In this respect, the course bui...

  20. Diophantine Analysis : Course Notes from a Summer School

    CERN Document Server

    2016-01-01

    This collection of course notes from a number theory summer school focus on aspects of Diophantine Analysis, addressed to Master and doctoral students as well as everyone who wants to learn the subject. The topics range from Baker’s method of bounding linear forms in logarithms (authored by Sanda Bujačić and Alan Filipin), metric diophantine approximation discussing in particular the yet unsolved Littlewood conjecture (by Simon Kristensen), Minkowski’s geometry of numbers and modern variations by Bombieri and Schmidt (Tapani Matala-aho), and a historical account of related number theory(ists) at the turn of the 19th Century (Nicola M.R. Oswald). Each of these notes serves as an essentially self-contained introduction to the topic. The reader gets a thorough impression of Diophantine Analysis by its central results, relevant applications and open problems. The notes are complemented with many references and an extensive register which makes it easy to navigate through the book.

  1. The University of Oklahoma College of Medicine summer medical program for high school students.

    Science.gov (United States)

    Larson, Jerome; Atkins, R Matthew; Tucker, Phebe; Monson, Angela; Corpening, Brian; Baker, Sherri

    2011-06-01

    To enhance diversity of applicants to University of Oklahoma College of Medicine, a Summer Medical Program for High School Students was started in 2009. This comprehensive pipeline program included sessions on applying to medical school, interaction with a panel of minority physicians and health care professionals role models, clinically oriented didactics taught by physician faculty, shadowing experiences in clinics and hospitals, and presentation of student research reports. Students' assessments in 2009 showed increased understanding of the medical school application process, the medical curriculum and the medical field, and an increase in students'likeliness to choose a medical career. Importance of long-term mentoring and follow-up with students to sustain their medical interests is discussed.

  2. Report from the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast

    Directory of Open Access Journals (Sweden)

    Frank Emmert-Streib

    2014-12-01

    Full Text Available In this paper, we present a meeting report for the 2nd Summer School in Computational Biology organized by the Queen's University of Belfast. We describe the organization of the summer school, its underlying concept and student feedback we received after the completion of the summer school.

  3. GEOGRAPHY UNIVERSITY STUDENTS’ AWARENESS OF THEIR OWN LEARNING PROCESS DURING THE 2013 NEUBRANDENBURGURG INTERNATIONAL SUMMER SCHOOL

    Directory of Open Access Journals (Sweden)

    OANA-RAMONA ILOVAN

    2016-01-01

    Full Text Available We presented research on Romanian students’ educational process during an international interdisciplinary summer school that took place in 2013, in northern Germany, focusing on regions in transition. We questioned our 12 Romanian students about their expectations and needs of formation related to the summer school activities and we received their answers in the form of learning journals as part of their portfolios. We presented the results of our research as an answer to the question on the efficiency and benefit that summer school activities could bring to Geography university students’ education and we concluded that learning journals were efficient educational tools.

  4. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    Science.gov (United States)

    Verseux, Cyprien; Acevedo-Rocha, Carlos G.; Chizzolini, Fabio; Rothschild, Lynn J.

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those

  5. 76 FR 27305 - Proposed Information Collection; Comment Request; the NIST Summer Institute for Middle School...

    Science.gov (United States)

    2011-05-11

    ... Summer Institute for Middle School Science Teachers (NIST Summer Institute) and the NIST Research Experience for Teachers (NIST RET) Application Requirements AGENCY: National Institute of Standards and Technology (NIST), Commerce. ACTION: Notice. SUMMARY: The Department of Commerce, as part of its...

  6. A Professional Development School--Sponsored Summer Program for At-Risk Secondary Students

    Science.gov (United States)

    Cuddapah, Jennifer L.; Masci, Frank J.; Smallwood, Jo Ellen; Holland, Jennifer

    2008-01-01

    The development and implementation of a Professional Development School (PDS)--sponsored summer program for at-risk secondary students is described. Literature related to PDSs and summer programs is followed by a presentation of data findings and analysis. Attendance and grade point average data gathered on the 17 participating rising ninth…

  7. Summary Report for the Radiation Detection for Nuclear Security Summer School 2012

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C.; Baciak, James E.; Stave, Jean A.

    2012-08-22

    The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the inaugural Radiation Detection for Nuclear Security Summer School from June 11 – 22, 2012. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. The first week of the summer school focused on the foundational knowledge required by technology practitioners; the second week focused on contemporary applications. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security.

  8. Quantum Optics and Nanophotonics : Lecture Notes of the Les Houches Summer School : Session CI

    CERN Document Server

    Sandoghdar, Vahid; Treps, Nicolas; Cugliandolo, Leticia F

    2017-01-01

    Quantum Optics and Nanophotonics consists of the lecture notes of the Les Houches Summer School 101 held in August 2013. Some of the most eminent experts in this flourishing area of research have contributed chapters lying at the intersection of basic quantum science and advanced nanotechnology. The book is part of the renowned series of tutorial books that contain the lecture notes of all the Les Houches Summer Schools since the 1950's and cover the latest developments in physics and related fields.

  9. Lectures given at the Banach Center and C.I.M.E. Joint Summer School

    CERN Document Server

    Lachowicz, Mirosław

    2008-01-01

    The aim of this volume that presents Lectures given at a joint CIME and Banach Center Summer School, is to offer a broad presentation of a class of updated methods providing a mathematical framework for the development of a hierarchy of models of complex systems in the natural sciences, with a special attention to Biology and Medicine. Mastering complexity implies sharing different tools requiring much higher level of communication between different mathematical and scientific schools, for solving classes of problems of the same nature. Today more than ever, one of the most important challenges derives from the need to bridge parts of a system evolving at different time and space scales, especially with respect to computational affordability. As a result the content has a rather general character; the main role is played by stochastic processes, positive semigroups, asymptotic analysis, kinetic theory, continuum theory and game theory.

  10. Les Houches Summer School : Strongly Interacting Quantum Systems out of Equilibrium

    CERN Document Server

    Millis, Andrew J; Parcollet, Olivier; Saleur, Hubert; Cugliandolo, Leticia F

    2016-01-01

    Over the last decade new experimental tools and theoretical concepts are providing new insights into collective nonequilibrium behavior of quantum systems. The exquisite control provided by laser trapping and cooling techniques allows us to observe the behavior of condensed bose and degenerate Fermi gases under nonequilibrium drive or after quenches' in which a Hamiltonian parameter is suddenly or slowly changed. On the solid state front, high intensity short-time pulses and fast (femtosecond) probes allow solids to be put into highly excited states and probed before relaxation and dissipation occur. Experimental developments are matched by progress in theoretical techniques ranging from exact solutions of strongly interacting nonequilibrium models to new approaches to nonequilibrium numerics. The summer school Strongly interacting quantum systems out of equilibrium' held at the Les Houches School of Physics as its XCIX session was designed to summarize this progress, lay out the open questions and define dir...

  11. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    Science.gov (United States)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  12. Numerical modeling of vertical stratification of Lake Shira in summer

    NARCIS (Netherlands)

    Belolipetsky, P.; Belolipetsky, V.M.; Genova, S.N.; Mooij, W.M.

    2010-01-01

    A one-dimensional numerical model and a two-dimensional numerical model of the hydrodynamic and thermal structure of Lake Shira during summer have been developed, with several original physical and numerical features. These models are well suited to simulate the formation and dynamics of vertical st

  13. Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics

    Science.gov (United States)

    Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.

    2014-12-01

    edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "ice-breaker" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.

  14. Everyday Electrical Engineering: A One-Week Summer Academy Course for High School Students

    Science.gov (United States)

    Mehrizi-Sani, A.

    2012-01-01

    A summer academy is held for grade 9-12 high school students at the University of Toronto, Toronto, ON, Canada, every year. The academy, dubbed the Da Vinci Engineering Enrichment Program (DEEP), is a diverse program that aims to attract domestic and international high school students to engineering and sciences (and possibly recruit them). DEEP…

  15. P24 Plasma Physics Summer School 2012 Los Alamos National Laboratory Summer lecture series for students

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, Thomas P. [Los Alamos National Laboratory; Bauer, Bruno [Univ Nevada, Reno; Fernandez, Juan C. [Los Alamos National Laboratory; Daughton, William S. [Los Alamos National Laboratory; Flippo, Kirk A. [Los Alamos National Laboratory; Weber, Thomas [Los Alamos National Laboratory; Awe, Thomas J. [Los Alamos National Laboratory; Kim, Yong Ho [Los Alamos National Laboratory

    2012-09-07

    This report covers the 2012 LANL summer lecture series for students. The lectures were: (1) Tom Intrator, P24 LANL: Kick off, Introduction - What is a plasma; (2) Bruno Bauer, Univ. Nevada-Reno: Derivation of plasma fluid equations; (3) Juan Fernandez, P24 LANL Overview of research being done in p-24; (4) Tom Intrator, P24 LANL: Intro to dynamo, reconnection, shocks; (5) Bill Daughton X-CP6 LANL: Intro to computational particle in cell methods; (6) Kirk Flippo, P24 LANL: High energy density plasmas; (7) Thom Weber, P24 LANL: Energy crisis, fission, fusion, non carbon fuel cycles; (8) Tom Awe, Sandia National Laboratory: Magneto Inertial Fusion; and (9) Yongho Kim, P24 LANL: Industrial technologies.

  16. FOREWORD: International Summer School for Advanced Studies 'Dynamics of open nuclear systems' (PREDEAL12)

    Science.gov (United States)

    Delion, D. S.; Zamfir, N. V.; Raduta, A. R.; Gulminelli, F.

    2013-02-01

    This proceedings volume contains the invited lectures and contributions presented at the International Summer School on Nuclear Physics held at Trei Brazi, a summer resort of the Bioterra University, near the city of Predeal, Romania, on 9-20 July 2012. The long tradition of International Summer Schools on Nuclear Physics in Romania dates as far back as 1964, with the event being scheduled every two years. During this period of almost 50 years, many outstanding nuclear scientists have lectured on various topics related to nuclear physics and particle physics. This year we celebrate the 80th birthday of Aureliu Sandulescu, one of the founders of the Romanian school of theoretical nuclear physics. He was Serban Titeica's PhD student, one of Werner Heisenberg's PhD students, and he organized the first edition of this event. Aureliu Sandulescu's major contributions to the field of theoretical nuclear physics are related in particular to the prediction of cluster radioactivity, the physics of open quantum systems and the innovative technique of detecting superheavy nuclei using the double magic projectile 48Ca (Calcium), nowadays a widely used method at the JINR—Dubna and GSI—Darmstadt laboratories. The title of the event, 'Dynamics of Open Nuclear Systems', is in recognition of Aureliu Sandulescu's great personality. The lectures were attended by Romanian and foreign Master and PhD students and young researchers in nuclear physics. About 25 reputable professors and researchers in nuclear physics delivered lectures during this period. According to a well-established tradition, an interval of two hours was allotted for each lecture (including discussions). Therefore we kept a balance between the school and conference format. Two lectures were held during the morning and afternoon sessions. After lecture sessions, three or four oral contributions were given by young scientists. This was a good opportunity for them to present the results of their research in front of

  17. The Development and Assessment of Particle Physics Summer Program for High School Students

    Science.gov (United States)

    Prefontaine, Brean; Kurahashi Neilson, Naoko, , Dr.; Love, Christina, , Dr.

    2017-01-01

    A four week immersive summer program for high school students was developed and implemented to promote awareness of university level research. The program was completely directed by an undergraduate physics major and included a hands-on and student-led capstone project for the high school students. The goal was to create an adaptive and shareable curriculum in order to influence high school students' views of university level research and what it means to be a scientist. The program was assessed through various methods including a survey developed for this program, a scientific attitudes survey, weekly blog posts, and an oral exit interview. The curriculum included visits to local laboratories, an introduction to particle physics and the IceCube collaboration, an introduction to electronics and computer programming, and their capstone project: planning and building a scale model of the IceCube detector. At the conclusion of the program, the students participated an informal outreach event for the general public and gave an oral presentation to the Department of Physics at Drexel University. Assessment results and details concerning the curriculum and its development will be discussed.

  18. Summer Migrant Education Administrative Manual.

    Science.gov (United States)

    North Carolina State Dept. of Public Instruction, Raleigh.

    This manual helps local education agencies (LEAs) create and develop summer school programs for children of migrant workers in North Carolina. It includes models for summer programs in music, art, vocational education, reading, language arts and math. The manual includes sections on financing, planning, student transportation, summer lunch…

  19. CERN Summer School fosters more than good science

    CERN Multimedia

    Or Cohen

    An Israeli-Palestinian Party might sound a bit strange, as people are used to hear of Israel versus Palestine most of the time. That is one of the reasons we, a few Summer Students, decided to throw a joint party on Wednesday, August 22. We wanted to show that despite the disputes between our governments, when it comes down to the people, we can easily get along. In some sense, just like with food for example, our cultures are quite similar. This year, as before, Summer Students from all nationalities organized parties. The decision to organize our own party was taken during the Italian party. Besides showing that the reality is not what you see in the news, we wanted people in Europe to experience a different kind of party. With local music and food such as hummus, labane, pita bread and mahalabie for dessert that we made ourselves, the party was indeed different from all others. The party had more gimmicks such as writing all the signs in English from right to left, or a place where people could practice w...

  20. [The Summer School of the German Society for Orthopaedics and Traumatology - A Success Story].

    Science.gov (United States)

    Merschin, D; Mutschler, M; Stange, R; Kopschina, C; Schüttrumpf, J P; Doepfer, A K; Achatz, G; Niethard, M; Hoffmann, R; Kladny, B; Perl, M; Münzberg, M

    2016-10-01

    Background: It has been known for several years that orthopaedic and trauma clinics suffer from a shortage of young people, due to the substantial loss in attractiveness. The Youth Forum OU has been addressing this problem for many years, by initiating many projects such as the Summer School to counteract this trend. The purpose of this research is to evaluate the success of Summer Schools since 2009. Methods: The Youth Forum OU performed a survey in December 2014 to answer the research question on the basis of an internet-based poll of the student participants in all Summer Schools between 2009 and 2014. Following data cleansing, 121 students and former students were included in the survey. Results: Seventy-two completed questionnaires were collected and included in the evaluation. The survey included 40 % of Summer School participants, with a mean age of 27.3 years (SD ± 2.95); 50 % were female. Participation in the Summer School helped 50 % of the respondents to decide to start advanced study in orthopaedics and/or traumatology (OU). One third of these Summer School participants had already finished a university degree; 100 % are now residents in orthopaedics and/or traumatology. Regardless of prior plans, 87.2 % of participants are now residents in OU. Thirty-three are still students: 78.8 % have already decided to work in OU. The survey also served to identify the factors positively and negatively associated with OU. Unfavourable factors included the reputation of OU, and the difficulty of reconciling family and work. Favourable factors included surgical work and personal experience during university studies. Discussion: The aim of this study was to evaluate whether the efforts of the Youth Forum OU, the German Society for Orthopaedics and Traumatology (DGOU) and the local hospitals lead to increased interest in OU. The answer to this question is positive. This is particularly true for those students who did not plan to become an orthopaedic or

  1. 1999 Summer Research Program for High School Juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-10-09

    oak-B202--During the summer of 1999, 12 students from Rochester-area high schools participated in the Laboratory for Laser Energetics' Summer High School Research Program. The goal of this program is to excite a group of high school students about careers in the areas of science and technology by exposing them to research in a state-of-the-art environment. Too often, students are exposed to ''research'' only through classroom laboratories that have prescribed procedures and predictable results. In LLE's summer program, the students experience all of the trials, tribulations, and rewards of scientific research. By participating in research in a real environment, the students often become more enthusiastic about careers in science and technology. In addition, LLE gains from the contributions of the many highly talented students who are attracted to the program. The students spent most of their time working on their individual research projects with members of LLE's technical staff. The projects were related to current research activities at LLE and covered a broad range of areas of interest including laser modeling, diagnostic development, chemistry, liquid crystal devices, and opacity data visualization. The students, their high schools, their LLE supervisors and their project titles are listed in the table. Their written reports are collected in this volume. The students attended weekly seminars on technical topics associated with LLE's research. Topics this year included lasers, fusion, holography, optical materials, global warming, measurement errors, and scientific ethics. The students also received safety training, learned how to give scientific presentations, and were introduced to LLE's resources, especially the computational facilities. The program culminated with the High School Student Summer Research Symposium on 25 August at which the students presented the results of their research to an audience that

  2. School year versus summer differences in child weight gain: a narrative review.

    Science.gov (United States)

    Baranowski, Tom; O'Connor, Teresia; Johnston, Craig; Hughes, Sheryl; Moreno, Jennette; Chen, Tzu-An; Meltzer, Lisa; Baranowski, Janice

    2014-02-01

    The causes of the current high prevalence of overweight and obesity among children are not clearly known. Schools have been implicated in the causal chain to high child obesity prevalence. Recent studies have compared school year versus summertime changes (herein called seasonal differences) in child adiposity or related phenomena. The most common seasonal pattern in six longitudinal descriptive studies was that overweight and obese children experienced accelerated gain in weight or some BMI indicator during the summer, whereas healthy weight children gained less or not at all. Four physical activity (PA) intervention studies demonstrated that school year fitness improvements were lost during the summer. One study showed that PA declined across the summer. Another study provided conflicting results of lower total energy expenditure in the summer, but no seasonal difference in total energy expenditure after adjusting for fat-free mass. This pattern of fairly rapid seasonal differences suggests that PA is the primary factor contributing to seasonal differences in weight or BMI, but the documented seasonal pattern in PA (i.e., higher in summer) does not support this relationship. Sleep duration has also been inversely related to child adiposity. Seasonal patterns in adiposity, PA, and sleep need to be clearly established separately for overweight and healthy weight children in further longitudinal research to provide a clear focus for national policy.

  3. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 12, Armstrong Laboratory

    Science.gov (United States)

    1993-12-01

    Page No: 16- 1 Tullahoma High School Tullahoma, TN 37388-0000 Bowlby , Andrea Laboratory: PL/GP Mudge Way Vol-Page No: 13- 1 Bedford High School Bedford...Ingram Rd. San Antonio, TX 78238 Dr. John Taboada Mentor Final Report for: AFOSR Summer Research Program Armstrong Laboratory Sponsored by: Air Force...Photoelectric Aerosol Sensor (PAS) as well as with other methods for studies involving aerosols and polycyclic aromatic hydrocarbons (PAH) (4-8). Dr. John

  4. Making Sense of Space: Distributed Spatial Sensemaking in a Middle School Summer Engineering Camp

    Science.gov (United States)

    Ramey, Kay E.; Uttal, David H.

    2017-01-01

    Spatial thinking is important for success in engineering. However, little is known about "how" students learn and apply spatial skills, particularly in kindergarten to Grade 12 engineering learning. The present study investigated the role of spatial thinking in engineering learning at a middle school summer camp. Participants were 26…

  5. Adolescent Summer Care Arrangements and Risk for Obesity the Following School Year

    Science.gov (United States)

    Mahoney, Joseph L.

    2011-01-01

    This longitudinal study identified common summer care arrangements for adolescents and examined whether those arrangements predicted risk for obesity (Body Mass Index (BMI) [greater than or equal to] 85th percentile for age and gender) the following school year. Participants were a nationally representative sample of 1766 adolescents ages 10-18…

  6. Connecting Out-of-School Learning to Home: Digital Postcards from Summer Camp

    Science.gov (United States)

    Zimmerman, Heather Toomey; Gamrat, Christopher; Hooper, Simon

    2014-01-01

    Parents and children are rapidly adopting mobile technologies, yet designs for mobile devices that serve a communication function to connect parents to children's out-of-school time activities are limited. As a result, our team designed the Digital Postcard Maker so that children attending summer camps can create digital photographs to send…

  7. Using Precision Teaching with Direct Instruction in a Summer School Program

    Science.gov (United States)

    Kubina, Richard M., Jr.; Commons, Michael Lamport; Heckard, Barbara

    2009-01-01

    This study examined the effects of a Direct Instruction (DI) reading program combined with Precision Teaching during a public school's summer program. Students received instruction from "Reading Mastery" programs for a six-week period. Students also practiced specific reading skills including letter-sound identification, sounding out…

  8. Adolescent Summer Care Arrangements and Risk for Obesity the Following School Year

    Science.gov (United States)

    Mahoney, Joseph L.

    2011-01-01

    This longitudinal study identified common summer care arrangements for adolescents and examined whether those arrangements predicted risk for obesity (Body Mass Index (BMI) [greater than or equal to] 85th percentile for age and gender) the following school year. Participants were a nationally representative sample of 1766 adolescents ages 10-18…

  9. The Development, Implementation, and Evaluation of a Summer School for English Language Learners

    Science.gov (United States)

    Hur, Jung Won; Suh, Suhyun

    2010-01-01

    The purposes of this paper are to explain the development processes of an intensive summer program for English language learners and to discuss course improvement strategies based on the evaluation outcomes. This 60-hr partnership program between local schools and a university was developed to improve the language proficiency of increasing numbers…

  10. Teaching the Romanian Neighbors Hungarian: Language Ideologies and the Debrecen Summer School

    Science.gov (United States)

    Kiss, Attila Gyula

    2016-01-01

    This article is a contribution to the hitherto scant literature on learning a historical minority language and on language ideologies in the context of a study abroad program in Hungary, Debrecen. I analyse the language ideologies of the decision makers in Hungary and in the Debrecen Summer School in relation to the teaching of Hungarian to the…

  11. Mothers' Perception and Practice in Their Childs' Out of School [Summer] Time: A Socioeconomic Perspective

    Science.gov (United States)

    Milhomme, Marcy B.

    2014-01-01

    I set out to explore the question: How do middle-class, working-class and low-income mothers experience their children's out of school summer time? Using qualitative basic interpretive approach, study findings draw from interview data, journal entries and participant observations from a study completed with 22 mothers of varying socioeconomic…

  12. Summer School for the Handicapped: A Review of the Literature. Supplementary Report to "Special Education Mandates: A Preliminary Report."

    Science.gov (United States)

    Helmich, Edith

    This report analyzes the literature on the issues involved in providing summer school services to handicapped students (3-21 years old) in Illinois. Introductory sections examine the state legislative history regarding summer school and judicial decisions from across the country on the topic. A review of the literature is presented followed by…

  13. PREFACE: 4th International Workshop & Summer School on Plasma Physics 2010

    Science.gov (United States)

    2014-06-01

    Fourth International Workshop & Summer School on Plasma Physics 2010 The Fourth International Workshop & Summer School on Plasma Physics (IWSSPP'10) is organized by St. Kliment Ohridsky University of Sofia, with co-organizers TCPA Foundation, Association EURATOM/IRNRE, The Union of the Physicists in Bulgaria, and the Bulgarian Academy of Sciences. It was held in Kiten, Bulgaria, at the Black Sea Coast, from July 5 to July 10, 2010. The scientific programme covers the topics Fusion Plasma and Materials; Plasma Modeling and Fundamentals; Plasma Sources, Diagnostics and Technology. As the previous issues of this scientific meeting (IWSSPP'05, J. Phys.: Conf. Series 44 (2006) and IWSSPP'06, J. Phys.: Conf. Series 63 (2007), IWSSPP'08, J. Phys.: Conf. Series 207 (2010), its aim was to stimulate the creation and support of a new generation of young scientists for further development of plasma physics fundamentals and applications, as well as to ensure an interdisciplinary exchange of views and initiate possible collaborations by bringing together scientists from various branches of plasma physics. This volume of Journal of Physics: Conference Series includes 34 papers (invited lectures, contributed talks and posters) devoted to various branches of plasma physics, among them fusion plasma and materials, dc and microwave discharge modelling, transport phenomena in gas discharge plasmas, plasma diagnostics, cross sections and rate constants of elementary processes, material processing, plasma-chemistry and technology. Some of them have been presented by internationally known and recognized specialists in their fields; others are MSc or PhD students' first steps in science. In both cases, we believe they will raise readers' interest. We would like to thank the members of both the International Advisory Committee and the Local Organizing Committee, the participants who sent their manuscripts and passed through the (sometimes heavy and troublesome) refereeing and editing

  14. Registrations for EVE and School and Summer Camp

    CERN Multimedia

    Staff Association

    2017-01-01

    In the wake of the Open Day, held on Saturday, 4 March 2017 (see Echo No. 264), EVE and School launched into an enrolment campaign on 6, 7 and 8 March. Once again, this year, we registered a great number of applications, and most of the groups are now full. The Nursery is already full, including the groups for babies (4 months to 1 year old), walkers (1 to 2 years old), and 2- to 3-year-olds. Regarding the Kindergarten, which welcomes 2- to 3 year-old children enrolled for mornings, as well as 3- to 4-year-olds enrolled either for mornings or for full days, there are still places available in the morning groups. Finally, the School for children aged 4 to 6 (Primary 1 and 2) enrolled for mornings or for full days, will be composed of three classes of around twenty children in 2017–2018 (one class of P1 and two classes of P2). All of these classes are currently full. If you are interested in a place in the morning groups of the Kindergarten (2- to 4-year-olds), please contact us to enroll your c...

  15. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  16. A multipurpose action for learning-teaching process: The Pigelleto's Summer School of Physics

    CERN Document Server

    Montalbano, Vera

    2014-01-01

    Since 2006, forty students from high school are selected to attend a full immersion summer school of physics in the Pigelleto Natural Reserve, on the south east side of Mount Amiata in the province of Siena. Topics are chosen so that students are involved in activities rarely pursued in high school, aspects and relationship with society are underlined and discussed. Our purpose is offering to really motivated students an opportunity of testing the scientific method, the laboratory experience in a stimulating context, by deepening an interesting and relevant topic in order to orienting them towards physics. Students are encouraged in cooperating in small groups in order to present and share the achieved results. Starting from the third edition of the school, the school became a training opportunity for younger teachers which are involved in programming and realization of selected activities. The laboratory activities with students are usually supervised by a young and an expert teacher in order to fix the corr...

  17. Summer School Mathematical Foundations of Complex Networked Information Systems

    CERN Document Server

    Fosson, Sophie; Ravazzi, Chiara

    2015-01-01

    Introducing the reader to the mathematics beyond complex networked systems, these lecture notes investigate graph theory, graphical models, and methods from statistical physics. Complex networked systems play a fundamental role in our society, both in everyday life and in scientific research, with applications ranging from physics and biology to economics and finance. The book is self-contained, and requires only an undergraduate mathematical background.

  18. CISM Summer School on Fluid-Structure Interactions in Acoustics

    CERN Document Server

    1999-01-01

    The subject of the book is directly related to environmental noise and vibration phenomena (sound emission by vibrating structures, prediction and reduction, ...). Transportation noise is one of the main applications. The book presents an overview of the most recent knowledge on interaction phenomena between a structure and a fluid, including nonlinear aspects. It covers all aspects of the phenomena, from the mathematical modeling up to the applications to automotive industrial problems. The aim is to provide readers with a good understanding of the physical phenomena as well as the most recent knowledge of predictive methods.

  19. Support for the American Chemical Society's Summer Schools in Nuclear and Radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Mantica, Paul F. [Michigan State University

    2013-06-20

    The ACS Summer Schools in Nuclear and Radiochemistry were held at San Jose State University (SJSU) and Brookhaven National Laboratory (BNL). The Summer Schools offer undergraduate students with U.S. citizenship an opportunity to complete coursework through ACS accredited chemistry degree programs at SJSU or the State University of New York at Stony Brook (SBU). The courses include lecture and laboratory work on the fundamentals and applications of nuclear and radiochemistry. The number of students participating at each site is limited to 12, and the low student-to-instructor ratio is needed due to the intense nature of the six-week program. To broaden the students’ perspectives on nuclear science, prominent research scientists active in nuclear and/or radiochemical research participate in a Guest Lecture Series. Symposia emphasizing environmental chemistry, nuclear medicine, and career opportunities are conducted as a part of the program.

  20. Summary Report for the Radiation Detection for Nuclear Security Summer School 2014

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C.; Baciak, James E.; Woodring, Mitchell L.; Jenno, Diana M.

    2014-09-30

    Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.

  1. Enhancing postgraduate learning and teaching: postgraduate summer school in dairy science.

    Science.gov (United States)

    Celi, Pietro; Gabai, Gianfranco; Morgante, Massimo; Gallo, Luigi

    2014-01-01

    Dairy science is a multidisciplinary area of scientific investigation and Ph.D. students aiming to do research in the field of animal and/or veterinary sciences must be aware of this. Ph.D. students often have vast spectra of research interests, and it is quite challenging to satisfy the expectation of all of them. The aim of this study was to establish an international Ph.D. training program based on research collaboration between the University of Sydney and the University of Padova. The core component of this program was a two-week Postgraduate Summer School in Dairy Science, which was held at the University of Padova, for Ph.D. students of both universities. Therefore, we designed a program that encompassed seminars, workshops, laboratory practical sessions, and farm visits. Participants were surveyed using a written questionnaire. Overall, participants have uniformly praised the Summer School calling it a rewarding and valuable learning experience. The Ph.D. Summer School in Dairy Science provided its participants a positive learning experience, provided them the opportunity to establish an international network, and facilitated the development of transferable skills.

  2. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels.

  3. Summary Report for the Radiation Detection for Nuclear Security Summer School 2014

    Energy Technology Data Exchange (ETDEWEB)

    Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baciak, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Woodring, Mitchell L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jenno, Diana M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-01

    Executive Summary The Pacific Northwest National Laboratory (PNNL) hosted students from across the United States at the 3rd Radiation Detection for Nuclear Security Summer School from 16 – 27 June 2014. The summer school provided students with a unique understanding of nuclear security challenges faced in the field and exposed them to the technical foundations, analyses, and insight that will be required by future leaders in technology development and implementation. The course heavily emphasized laboratory and field demonstrations including direct measurements of special nuclear material. Student evaluations and feedback from student advisors indicates that the summer school achieved its objectives of 1) exposing students to the range of nuclear security applications for which radiation detection is necessary, 2) articulating the relevance of student research into the broader context, and 3) exciting students about the possibility of future careers in nuclear security. In fact, we are beginning to see previous students both enroll in graduate programs (former undergraduates) and complete internships at agencies like the National Nuclear Security Administration.

  4. Active and Cooperative Learning Paths in the Pigelleto's Summer School of Physics

    CERN Document Server

    Benedetti, Roberto; Montalbano, Vera; Porri, Antonella

    2012-01-01

    Since 2006, the Pigelleto's Summer School of Physics is an important appointment for orienting students toward physics. It is organized as a full immersion school on actual topics in physics or in fields rarely pursued in high school, i.e. quantum mechanics, new materials, energy resources. The students, usually forty, are engaged in many activities in laboratory and forced to become active participants. Furthermore, they are encouraged in cooperating in small groups in order to present and share the achieved results. In the last years, the school became a training opportunity for younger teachers which are involved in programming and realization of selected activities. The laboratory activities with students are usually supervised by a young and an expert teacher in order to fix the correct methodology.

  5. PREFACE: 10th Summer School on Theoretical Physics 'Symmetry and Structural Properties of Condensed Matter'

    Science.gov (United States)

    Lulek, Tadeusz; Wal, Andrzej; Lulek, Barbara

    2010-03-01

    This volume contains the Proceedings of the Tenth Summer School on Theoretical Physics under the banner title 'Symmetry and Structural Properties of Condensed Matter' (SSPCM 2009). The School was organized by Rzeszow University of Technology, Poland, in cooperation with AGH University of Science and Technology, Cracow, Poland, and took place on 2-9 September 2009 in Myczkowce, Poland. With this meeting we have reached the round number ten of the series of biannual SSPCM schools, which started in 1990 and were focused on some advanced mathematical methods of condensed matter physics. The first five meetings were held in Zajaczkowo near Poznan, under the auspices of The Institute of Physics of Adam Mickiewicz University, and the last five in Myczkowce near Rzeszów, in the south-eastern part of Poland. Within these two decades several young workers who started at kindergarten lectures at SSPCM, have now reached their PhD degrees, professorships and authority. Proceedings of the first seven SSPCM meetings were published as separate volumes by World Scientific, and the last two as volumes 30 and 104 of Journal of Physics: Conference Series. The present meeting is also the third of the last schools which put the emphasis on quantum informatics. The main topics of our jubilee SSPCM'09 are the following: Information processing, entanglement, and tensor calculus, Integrable models and unitary symmetry, Finite systems and nanophysics. The Proceedings are divided into three parts accordingly. The school gathered together 55 participants from seven countries and several scientific centers in Poland, accommodating again advanced research with young collaborators and students. Acknowledgements The Organizing Committee would like to express its gratitude to all participants for their many activities during the School and for creating a friendly and inspiring atmosphere within our SSPCM society. Special thanks are due to all lecturers for preparing and presenting their talks and

  6. Model Simulations of Ozone in the Summer Lower Stratosphere

    Science.gov (United States)

    Douglass, Anne R.; Kawa, S. R.

    1998-01-01

    The Goddard 3D chemistry and transport model (CTM) uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System (GEOS DAS); thus CTM simulations can be compared directly with observations from satellite, balloon and aircraft. In general, aspects of these comparisons show remarkable agreement between observation and model. One significant difference is that the model ozone is high biased below the ozone peak. The bias is apparently largest at high latitudes during the summer months. At the same time, comparisons with HALOE observations show that at mid to high latitudes, the ozone mixing ratio peak appears persistently at a lower altitude than observed by HALOE; the peak mixing ratio is also overestimated by the model. Both transport and photochemistry are possible contributors to the biased ozone in the lower stratosphere - excessive downward motion would increase lower stratospheric ozone, as would a too large vertical gradient in ozone. On the other hand, comparisons of model N2O and NOy with observations suggest transport deficiencies in the opposite sense, i.e., model N2O can be high relative to observations (particularly during winter), suggesting the need for stronger downward transport. Sensitivity studies have been carried out using parameterizations for ozone production and loss, NOy production and loss, and N2O loss. The goal of these studies is to clarify how problems in the photochemical scheme at and above the ozone peak influence the lower stratospheric ozone.

  7. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  8. A Summer at the University: A twenty five years experience with High School Students

    Science.gov (United States)

    Zamorano, Nelson

    2014-03-01

    After running a summer school for enthusiastic high school students for 25 years, we reached the point where three of my colleagues at the physics department, are exstudents from two physics courses offered (more than ten years ago) within our program. There are also graduates in some others Faculties in different universities. Here we would like to describe the evolution of this project since its beginning, with 60 students in an introductory physics class to the 3000 now attending (January 2014) the around 60 courses offered in almost all areas of knowledge, from theater to Biotechnology. Lately, as we became aware of the relevance of teaching sciences to young kids in elementary school, we started a winter section addressing this group of students. The courses are mainly a hands on experience. In this talk we will comment about our learning experience working on this kind of projects and our projections for the future. Partial travel support from Escuela de Verano.

  9. EDITORIAL: The Fifth International Workshop and Summer School on Plasma Physics

    Science.gov (United States)

    2006-04-01

    , Russia, the US, China, South Korea and India (as of March 2006). It will take several years to accomplish this important task. There is no doubt that the success depends not only on funding but also on enthusiastic people willing to contribute with their skills and knowledge. Young scientists and engineers must be enrolled to the programme and trained in various disciplines of fusion science and technology. There are various education schemes and work programmes. Organization of summer schools on fusion-related plasma physics is an important part of the training process. Several schools are organized annually or every second year in Europe. Fusion-related science is so vast that it is impossible to cover all topics during an event lasting for one or two weeks. Therefore, each school has its distinctive features and focuses on a selected group of issues to be addressed in depth. This also applies to the Workshop and Summer School on Plasma Physics in Kudowa Zdrój (Poland) that, has been organised annually since 2001. It was initiated by Dr Marek Scholz with the help of his colleagues from the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The idea was to create a forum for students mainly from Eastern Europe to learn and discuss subjects in general plasma physics and dense magnetized media, predominantly in plasma focus devices. Over the years the school has matured and created a clear profile. A unique feature has always been to accommodate in the programme not only tutorials delivered by invited senior scientists but also presentations prepared by the students. In June 2005 the 5th Workshop and Summer School on Plasma Physics was held under the heading 'Towards Fusion Energy: Plasma Physics, Diagnostics, Applications'. There were 59 participants, including 44 students, coming from plasma physics and material research laboratories in 17 countries: Belgium, Czech Republic, France, Germany, Georgia, Iran, Italy, Lithuania, Poland, Romania, Russia

  10. School's out: what are urban children doing? The Summer Activity Study of Somerville Youth (SASSY

    Directory of Open Access Journals (Sweden)

    Goldberg Jeanne

    2010-03-01

    Full Text Available Abstract Background Research indicates that in the United States, children experience healthier BMI and fitness levels during school vs. summer, but research is limited. The primary goal of this pilot study was to assess where children spend their time during the months that school is not in session and to learn about the different types of activities they engage in within different care settings. A secondary goal of this pilot study was to learn what children eat during the summer months. Methods A nine-week summer study of 57 parents of second and third grade students was conducted in an economically, racial/ethnically and linguistically diverse US urban city. Weekly telephone interviews queried time and activities spent on/in 1 the main caregiver's care 2 someone else's care 3 vacation 4 and camp. Activities were categorised as sedentary, light, moderate, or vigorous (0-3 scale. For each child, a mean activity level was calculated and weighted for proportion of time spent in each care situation, yielding a weighted activity index. On the last phone call, parents answered questions about their child's diet over the summer. Two post-study focus groups were conducted to help interpret findings from the weekly activity interviews. Results The mean activity index was 1.05 ± 0.32 and differed between gender (p = 0.07, education (p = 0.08 and primary language spoken in the household (p = 0.01. Children who spent a greater percentage of time in parent care had on average a lower activity index (β = -0.004, p = 0.01 while children who spent a greater percentage of time in camp had a higher activity index (β = 0.004, p = 0.03. When stratified into type of camp, percentage of time spent in active camp was also positively associated with mean activity index (β = 0.005, p = Conclusions Summer activities and some dietary behaviours are influenced by situation of care and socio-demographic characteristics. In particular, children who spend a greater

  11. A statistical downscaling model for summer rainfall over Pakistan

    Science.gov (United States)

    Kazmi, Dildar Hussain; Li, Jianping; Ruan, Chengqing; Zhao, Sen; Li, Yanjie

    2016-10-01

    A statistical approach is utilized to construct an interannual model for summer (July-August) rainfall over the western parts of South Asian Monsoon. Observed monthly rainfall data for selected stations of Pakistan for the last 55 years (1960-2014) is taken as predictand. Recommended climate indices along with the oceanic and atmospheric data on global scales, for the period April-June are employed as predictors. First 40 years data has been taken as training period and the rest as validation period. Cross-validation stepwise regression approach adopted to select the robust predictors. Upper tropospheric zonal wind at 200 hPa over the northeastern Atlantic is finally selected as the best predictor for interannual model. Besides, the next possible candidate `geopotential height at upper troposphere' is taken as the indirect predictor for being a source of energy transportation from core region (northeast Atlantic/western Europe) to the study area. The model performed well for both the training as well as validation period with correlation coefficient of 0.71 and tolerable root mean square errors. Cross-validation of the model has been processed by incorporating JRA-55 data for potential predictors in addition to NCEP and fragmentation of study period to five non-overlapping test samples. Subsequently, to verify the outcome of the model on physical grounds, observational analyses as well as the model simulations are incorporated. It is revealed that originating from the jet exit region through large vorticity gradients, zonally dominating waves may transport energy and momentum to the downstream areas of west-central Asia, that ultimately affect interannual variability of the specific rainfall. It has been detected that both the circumglobal teleconnection and Rossby wave propagation play vital roles in modulating the proposed mechanism.

  12. Summer school in the field of Space Technologies: A novel approach for teenage education

    Science.gov (United States)

    Dolea, Paul; Vladut Dascal, Paul

    2014-05-01

    This paper presents the main practical aspects regarding the organization of a summer school in the field of Space Technologies and Radio Science. This one-week summer school is aimed for education of teenagers between 12 and 16 years. Currently, the summer school reached its third edition. During this educational activities some especially designed prototype equipments were used with the main purpose of educating adolescents towards a scientific career in the field of Space Technologies and Radio Science. The main equipments and associated experiments are presented as follows: 1. A teaching purpose radio telescope emphasizing the working principle of professional radio telescopes. The experiments were focused on scanning the sky for identifying the positions of geostationary satellites and the Sun. 2. A weather satellite reception equipment used for downloading real-time APT (Automatic Picture Transmission) weather data from NOAA (National Oceanic and Atmospheric Administration) weather satellite fleet. The visual images were used for emphasizing the clouds and cloud systems over Europe. 3. A prototype equipment for receiving electromagnetic waves in the field of VLF (Very Low Frequency) with the purpose of analyzing the electromagnetic radio frequency spectrum. The main emphasized phenomenons in the VLF band (3 kHz - 30 kHz) are related to radio transmitters, electrical discharges in the atmosphere (lightning) and the electromagnetic pollution. 4. An equipment designed for initiating teenagers in the field of radio communication. This equipment was used for transmission and reception of images and sound over a distance of few kilometers, by using high-gain directional antennas. 5. Other sets of experiments were undertaken with the main purpose of mapping the countryside area in which the experiments had taken place. For this activity GPS devices were used. This paper may be considered a practical guideline for those who want to attract young students towards a

  13. Theoretical Physics to Face the Challenge of LHC : Lecture Notes of the Les Houches Summer School : 97th Session

    CERN Document Server

    Benakli, Karim; Douglas, Michael R; Mansoulie, Bruno; Rabinovici, Eliezer; Cugliandolo, Leticia F

    2015-01-01

    This book is based on lectures at the Les Houches Summer School held in August 2011 for an audience of advanced graduate students and postdoctoral fellows in particle physics, theoretical physics, and cosmology—areas where new experimental results were on the verge of being discovered at CERN. The school was held during a summer of great anticipation that at any moment contact might be made with the most recent theories of the nature of the fundamental forces and the structure of spacetime. In fact, during the session, the long anticipated discovery of the Higgs particle was announced. The book vividly describes the creative diversity and tension within the community of theoreticians who have split into several components—those doing phenomenology and those dealing with highly theoretical problems—with a few trying to bridge both domains. The theoreticians covered many directions in the theory of elementary particles, from classics such as the supersymmetric Standard Model to very recent ideas such as t...

  14. Impact of a Summer Mathematics and Technology Program for Middle School Girls

    Science.gov (United States)

    Wiest, Lynda R.

    This article discusses the impact of a 5-day residential summer mathematics and technology camp on middle school girls' attitudes and perceived abilities in mathematics and technology. The study sample included 121 Northern Nevada girls who participated in the program during its first 3 years of operation and 25 parents of these girls. Data-gathering measures - the Modified Fennema-Sherman Mathematics Attitude Scale, personal interviews, and participant and parent questionnaires - show that the camp had a strong positive impact on program participants. Key benefits of the program, as well as elements critical to the program s success, are categorized and discussed.

  15. Les Houches 2000 Summer School: Session 74: New Trends in Turbulence

    CERN Document Server

    Yaglom, A; David, F; New Trends in Turbulence

    2001-01-01

    This book is written for researchers as well as engineers in an industrial environment. Following a longstanding tradition of the Les Houches Summer Schools, all chapters are pedagogically presented and accessible for graduate students. The book treats 2D and 3D turbulence from the experimental, theoretical and computational points of view. The reader will find, for example, comprehensive accounts of fully developed turbulence experiments, simulating deterministically coherent vortices formation, and statistical prediction of industrial flows, and a very complete review of 2D turbulence. Fundamental concepts like topological fluid dynamics in MHD flows or finite-time singularities of the Burgers, Euler and Navier--Stokes equations complete the volume.

  16. Evaluating the Impact of a Summer Dropout Prevention Program for Incoming Freshmen Attending an Under-Resourced High School

    Science.gov (United States)

    Vera, Elizabeth; Shriberg, David; Alves, Alison; de Oca, Jessie Montes; Reker, Kassandra; Roche, Meghan; Salgado, Manuel; Stegmaier, Jessica; Viellieu, Lindsay; Karahalios, Vicky; Knoll, Michael; Adams, Kristen; Diaz, Yahaira; Rau, Ellen

    2016-01-01

    Low high school completion rates are an ongoing challenge for educators. This study provides the results of an evaluation of a ninth-grade summer transition program offered at a large public school with a high freshman dropout rate. The evaluation consisted of preprogram and postprogram surveys and interviews with 64 incoming freshman…

  17. School's out: what are urban children doing? The Summer Activity Study of Somerville Youth (SASSY).

    Science.gov (United States)

    Tovar, Alison; Lividini, Keith; Economos, Christina D; Folta, Sara; Goldberg, Jeanne; Must, Aviva

    2010-03-24

    Research indicates that in the United States, children experience healthier BMI and fitness levels during school vs. summer, but research is limited. The primary goal of this pilot study was to assess where children spend their time during the months that school is not in session and to learn about the different types of activities they engage in within different care settings. A secondary goal of this pilot study was to learn what children eat during the summer months. A nine-week summer study of 57 parents of second and third grade students was conducted in an economically, racial/ethnically and linguistically diverse US urban city. Weekly telephone interviews queried time and activities spent on/in 1) the main caregiver's care 2) someone else's care 3) vacation 4) and camp. Activities were categorised as sedentary, light, moderate, or vigorous (0-3 scale). For each child, a mean activity level was calculated and weighted for proportion of time spent in each care situation, yielding a weighted activity index. On the last phone call, parents answered questions about their child's diet over the summer. Two post-study focus groups were conducted to help interpret findings from the weekly activity interviews. The mean activity index was 1.05 +/- 0.32 and differed between gender (p = 0.07), education (p = 0.08) and primary language spoken in the household (p = 0.01). Children who spent a greater percentage of time in parent care had on average a lower activity index (beta = -0.004, p = 0.01) while children who spent a greater percentage of time in camp had a higher activity index (beta = 0.004, p = 0.03). When stratified into type of camp, percentage of time spent in active camp was also positively associated with mean activity index (beta = 0.005, p =times more likely to eat their meals in front of the TV often/almost all of the time (OR = 4.0, 95%CI 1.0-16.2, p time in structured environments appear to be more active. We believe that this pilot study is an important

  18. Topological Aspects of Condensed Matter Physics : Lecture Notes of the Les Houches Summer School : Session CIII

    CERN Document Server

    Chamon, Claudio; Goerbig, Mark O; Moessner, Roderich; Cugliandolo, Leticia F

    2017-01-01

    Topological condensed matter physics is a recent arrival among the disciplines of modern physics of a distinctive and substantive nature. Its roots reach far back, but much of its current importance derives from exciting developments in the last half-century. The field is advancing rapidly, growing explosively, and diversifying greatly. There is now a zoo of topological phenomena–the quantum spin Hall effect, topological insulators, Coulomb spin liquids, non-Abelian anyonic statistics and their potential application in topological quantum computing, to name but a few–as well as an increasingly sophisticated set of concepts and methods underpinning their understanding. The aim of this Les Houches Summer School was to present an overview of this field, along with a sense of its origins and its place on the map of advances in fundamental physics. The school comprised a set of basic lectures (Part I) aimed at a pedagogical introduction to the fundamental concepts, which was accompanied by more advanced lectur...

  19. "Innovation on big data for healthy living" | Summer School | 27 June - 6 July 2016

    CERN Multimedia

    2016-01-01

    IBD4Health explores advanced topics related to big data computing and analytics for health and wellbeing, with a focus on innovation and entrepreneurial awareness.     Innovation on big data for healthy living A bioHC Summer School 27 June - 6 July 2016  European Scientific Institute, Archamps, Haute-Savoie Through an interactive case study on obesity, participants will be invited to discover diverse data sources and on-going efforts to develop new tools for large-scale data processing, thus providing a path for in-depth analysis of different causal and contributory factors as a means to supporting the development of optimized interventions and public health approaches to tackle obesity. Participants will also be introduced to Creative Thinking and applied Design Thinking with the opportunity to present (pitch) their ideas in front of a panel of business experts. School faculty include academic and industrial experts from France, the Netherlands, Slovenia, Spain, Sweden and Swit...

  20. NASA Planetary Science Summer School: Preparing the Next Generation of Planetary Mission Leaders

    Science.gov (United States)

    Lowes, L. L.; Budney, C. J.; Sohus, A.; Wheeler, T.; Urban, A.; NASA Planetary Science Summer School Team

    2011-12-01

    Sponsored by NASA's Planetary Science Division, and managed by the Jet Propulsion Laboratory, the Planetary Science Summer School prepares the next generation of engineers and scientists to participate in future solar system exploration missions. Participants learn the mission life cycle, roles of scientists and engineers in a mission environment, mission design interconnectedness and trade-offs, and the importance of teamwork. For this professional development opportunity, applicants are sought who have a strong interest and experience in careers in planetary exploration, and who are science and engineering post-docs, recent PhDs, and doctoral students, and faculty teaching such students. Disciplines include planetary science, geoscience, geophysics, environmental science, aerospace engineering, mechanical engineering, and materials science. Participants are selected through a competitive review process, with selections based on the strength of the application and advisor's recommendation letter. Under the mentorship of a lead engineer (Dr. Charles Budney), students select, design, and develop a mission concept in response to the NASA New Frontiers Announcement of Opportunity. They develop their mission in the JPL Advanced Projects Design Team (Team X) environment, which is a cross-functional multidisciplinary team of professional engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. About 36 students participate each year, divided into two summer sessions. In advance of an intensive week-long session in the Project Design Center at JPL, students select the mission and science goals during a series of six weekly WebEx/telecons, and develop a preliminary suite of instrumentation and a science traceability matrix. Students assume both a science team and a mission development role with JPL Team X mentors. Once at JPL, students participate in a series of Team X project design sessions

  1. The Gatsby Plant Science Summer School: Inspiring the Next Generation of Plant Science Researchers[OA

    Science.gov (United States)

    Levesley, Aurora; Jopson, Juliet; Knight, Celia

    2012-01-01

    We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students’ career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines. PMID:22534129

  2. The Gatsby Plant Science Summer School: inspiring the next generation of plant science researchers.

    Science.gov (United States)

    Levesley, Aurora; Jopson, Juliet; Knight, Celia

    2012-04-01

    We provide evidence from a 5-year study to show that a single concerted effort at the start of undergraduate study can have a clear and lasting effect on the attitudes of students toward plant science. Attendance at a week-long residential plant science summer school in the first year of an undergraduate degree resulted in many students changing courses to include more plant science and increased numbers of graduates selecting plant-based PhDs. The evidence shows that the Gatsby Plant Science Summer School has increased the pool of high-quality plant science related PhD applicants in the UK and has had a positive impact on students' career aspirations. The results are discussed within the context of enhancing the pipeline of future plant scientists and reversing the decline of this vulnerable and strategically important subject relevant to addressing food security and other major global challenges. We have shown that a single well-designed and timely intervention can influence future student behavior and as such offers a framework of potential use to other vulnerable disciplines.

  3. Model Projections of East Asian Summer Climate under the'Free Arctic'Scenario

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-Jun; ZHANG Ying

    2010-01-01

    This paper addresses the'ice-free Arctic'issue under the future global warming scenario.Four coupled climate models used in the third phase of the Coupled Model Intercomparison Project(CMIP3)were selected to project summer climate conditions over East Asia once the Arctic becomes ice-free.The models project that an ice-free Arctic summer will begin in the 2060s under the SRESA I B(according to IPCC Special Reports on Emissions Scenarios)simulations.Our results show that the East Asian summer monsoons will tend to be stronger and that the water vapor transport to central northern China will be strengthened,leading to increased summer precipitation in central northern China.The models also project an intensified Antarctic Oscillation,a condition which favors increased precipitation in South China's Yangtze River Valley.The overall precipitation in Northwest China is projected to increase under ice-free Arctic summer conditions.

  4. Development of friendship network among young scientists in an international Summer School

    Science.gov (United States)

    Yin, Haiping; Rong, Zhihai; Yan, Gang

    2009-09-01

    A total of 49 students, about half of them male, from various countries and 4 student helpers attended the 2008 China Complex Systems Summer School organized by the Santa Fe Institute and the Chinese Academy of Sciences held in Beijing. We studied the development of the social network among these participants during the school, which lasted for 4 weeks, by carrying out surveys at different times of the school. The students got to know each other through various activities, including being roommates, eating together everyday, attending lectures, doing group projects, sight-seeing visits, etc. The topological structures and various properties of the network are discussed. The results indicate how the participants became friends as time went by. By considering the correlations between reciprocal evaluations via the Pearson’s correlation coefficient, it is found that the ethnicity and gender are important factors in establishing personal relationships and in getting mutually consistent perceptions on the relationships. We also study the clique components and community structures in the networks.

  5. Summer camp and self-esteem of school-age inner-city children.

    Science.gov (United States)

    Readdick, Christine A; Schaller, G Robert

    2005-08-01

    The present study was designed to test the hypothesis that a session of summer camp would increase the self-esteem of economically disadvantaged, school-age children from New York's inner-city neighborhoods. This study was conducted at a small, coeducational residential summer camp in the Pocono Mountains designed for children ages 6-12 years from low-income areas of New York City. During each of four 12-day sessions, the Piers-Harris Children's Self-concept Scale was administered as a pretest and posttest to a sample of 68 children (36 boys and 32 girls; 33 African American, 34 Hispanic, and 1 Asian) of 742 attending camp for the sumnmer. Children scored significantly higher on the measure of self-esteem at the end of camp than at the beginning. Positive descriptions and ratings of self on popularity increased significantly. Observations and interviews with children suggested physical and social environmental features, such as contact with nature and having the same counselor as a previous year, may support self-esteem. Findings are discussed within a framework for biophilia, an innate urge to affiliate with nature which unfolds from earliest childhood on.

  6. Lectures given at the C.I.M.E. Summer School

    CERN Document Server

    2008-01-01

    Nowadays we are facing numerous and important imaging problems: nondestructive testing of materials, monitoring of industrial processes, enhancement of oil production by efficient reservoir characterization, emerging developments in noninvasive imaging techniques for medical purposes - computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), X-ray and ultrasound tomography, etc. In the CIME Summer School on Imaging (Martina Franca, Italy 2002), leading experts in mathematical techniques and applications presented broad and useful introductions for non-experts and practitioners alike to many aspects of this exciting field. The volume contains part of the above lectures completed and updated by additional contributions on other related topics: a general presentation and introduction (Moscoso), X-ray tomography (Natterer), Electromagnetic imaging (Dorn, Bertete-Aguirre, Papanicolaou), coherent imaging in telecommunications in a multiple input-multiple output setup (Dorn...

  7. 2nd FP7 Conference and International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Pr...

  8. Selected proceedings of the FP7 International Summer School Nanotechnology: From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid; Brodin, Mikhaylo; Nanomaterials imaging techniques, surface studies, and applications

    2013-01-01

    This book presents cutting-edge research on a wide range of nanotechnology techniques and applications.  It features contributions from scientists who participated in the International Summer School “Nanotechnology: From Fundamental Research to Innovations” in Bukovel, Ukraine on August 26 – September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Université Pierre et Marie Curie (France).  Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy.  Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance ...

  9. 3rd International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book highlights the most recent advances in nanoscience from leading researchers in Ukraine, Europe, and beyond.  It features contributions from participants of the 3rd International Summer School “Nanotechnology: From Fundamental Research to Innovations,” held in Yaremche, Ukraine on August 23-26, 2014 and of the 2nd International NANO-2014 Conference, held in Lviv, Ukraine on August 27-30, 2014.  These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France).  Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results in the areas of nanocomposites and nanomaterials, nanostructured surfaces, microscopy of nano-objects, nano-optics and nanophotonics, nanoplasmonics, nanochemistry, na...

  10. Estimating Turbulence Statistics and Parameters from Lidar Measurements. Remote Sensing Summer School

    DEFF Research Database (Denmark)

    Sathe, Ameya

    , as well as experimental evidence from different measurement campaigns at a test center in Denmark. Several measurement configurations from the commercial and research lidars are described along with mathematical formulations of estimated turbulence statistics and parameters for the respective......This report is prepared as a written contribution to the Remote Sensing Summer School, that is organized by the Department of Wind Energy, Technical University of Denmark. It provides an overview of the state-of-the-art with regards to estimating turbulence statistics from lidar measurements...... systematic errors in the estimated turbulence statistics. New techniques of post-processing the lidar measurements are also discussed, amongst others the so-called six-beam technique, which reduces the systematic errors in the estimated turbulence statistics significantly. The report ends...

  11. Lectures given at the C.I.M.E. Summer School

    CERN Document Server

    Tian, Gang

    2008-01-01

    Modern approaches to the study of symplectic 4-manifolds and algebraic surfaces combine a wide range of techniques and sources of inspiration. Gauge theory, symplectic geometry, pseudoholomorphic curves, singularity theory, moduli spaces, braid groups, monodromy, in addition to classical topology and algebraic geometry, combine to make this one of the most vibrant and active areas of research in mathematics. It is our hope that the five lectures of the present volume given at the C.I.M.E. Summer School held in Cetraro, Italy, September 2-10, 2003 will be useful to people working in related areas of mathematics and will become standard references on these topics. The volume is a coherent exposition of an active field of current research focusing on the introduction of new methods for the study of moduli spaces of complex structures on algebraic surfaces, and for the investigation of symplectic topology in dimension 4 and higher.

  12. International Summer School on Astronomy and Space Science in Chile, first experience.

    Science.gov (United States)

    Stepanova, M.; Arellano-Baeza, A. A.

    I International Summer School on Astronomy and Space Science took place in the Elqui Valley Chile January 15-29 2005 Eighty 12-17 year old students from Chile Russia Venezuela and Bulgaria obtained a valuable experience to work together with outstanding scientists from Chile and Russia and with Russian cosmonaut Alexander Balandine They also had opportunity to visit the main astronomical observatories and to participate in workshops dedicated to the telescope and satellite design and remote sensing This activity was supported by numerous institutions in Chile including the Ministry of Education the European Southern Observatory Chilean Space Agency Chilean Air Force Latin American Association of Space Geophysics the principal Chilean universities and the First Lady Mrs Luisa Duran

  13. The International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin

    Science.gov (United States)

    Berbery, Ernesto Hugo; Herdies, Dirceu L.; Alcaraz-Segura, Domingo; de Goncalves, Luis G. G.; Lettenmaier, Dennis P.; Toll, David

    2011-01-01

    The La Plata Basin (LPB) in southern South America has been subject to land cover and land use changes (LCLUCs) since colonial times and with an accelerated rate in the last decades and over extensive areas. The work of Ameghino even suggested that there were relations between those land use changes and the frequency of droughts and floods in the region. Despite this early knowledge, not much is known of the potential impacts of LCLUC on the hydroclimate of the La Plata basin. Besides, over the last century much of the La Plata Basin has had a reported increase in precipitation and heavy rains, and these changes along with an increase in population growth - have resulted in more adverse effects from flooding. To draw attention to these issues, during two weeks in November 2009 the International Summer School on Land Cover Change and Hydroclimate of the La Plata Basin was organized at the grounds of the Itaip Hydropower Plant in Brazil. The school was the result of the combination of interests between the La Plata Basin Regional Hydroclimate Project, the Inter-American Institute for Global Change Research (IAI), and the International Hydroinformatics Center (IHC) in Itaip . LPB is an umbrella project endorsed by the Global Energy and Water Cycle Experiment (GEWEX) and the Climate Prediction and Variability (CLIVAR), both of the World Climate Research Programme (WCRP). LPB has made a priority to train young scientists and promote interdisciplinary collaborations in areas related to Climate, Hydrology, Ecology and Agriculture. The IAI, with a similar agenda, was a natural partner to develop this Summer School, which in turn benefited from Itaipu s interest in relating with the scientific community of neighboring countries. The choice of location (Itaip Technological Park) was made so that participants could relate research usually done at academic institutions to applications and operations at one of the largest hydropower plants in the world. The school was attended

  14. Model Middle Schools

    Science.gov (United States)

    Shapiro, Arthur; And Others

    1973-01-01

    Provides three models as approaches to organizing the middle school in a variety of exciting ways: (1) an oscillating system, where students in communities move between basic studies and related arts and physical education, (2) an immersion system, where students in communities spend full time moving between interdisciplinary areas, and (3) a…

  15. Art Animates: Ideas Inspired by a University-Sponsored Summer Arts Academy for Middle and High School Students

    Science.gov (United States)

    Danker, Stephanie; French, Kelley

    2016-01-01

    Art can provide a vehicle for animating learning. Teachers bring ideas to life through curriculum, while artists realize their ideas through images, often translating between forms, media and spaces. This paper describes the context, content and format of a residential Summer Arts Academy for gifted and talented middle and high school students,…

  16. Vienna International Summer School on Experimental and Clinical Oncology for Medical Students : An Austrian Cancer Education Project

    NARCIS (Netherlands)

    Fromm-Haidenberger, Sabine; Pohl, Gudrun; Widder, Joachim; Kren, Gerhard; Fitzal, Florian; Bartsch, Rupert; de Vries, Jakob; Zielinski, Christoph; Poetter, Richard

    The "International Summer School on Experimental and Clinical Oncology for Medical Students" is organised at the Medical University of Vienna to teach a multidisciplinary approach to oncology to medical students in the final phase of their studies. The program includes biology, diagnosis, clinical

  17. Are Self-Perception Measures Used in School Library Research Transferable to the Context of Public Library Summer Reading Programs?

    Science.gov (United States)

    Arnone, Marilyn P.; Small, Ruth V.; Weng, Shicheng

    2016-01-01

    Several instruments previously validated for use in school library research were tested for their appropriateness in the context of public libraries' summer reading programs for youth. The researchers were also interested in whether the connection between perceived competence in one's own information skills and perceived competence in one's own…

  18. American Association of School Administrators 1980 Summer Instructional Leadership Conference: A Cooperative R&D Dissemination Project. Final Report.

    Science.gov (United States)

    Spady, William C.

    This final report on the American Association of School Administrators' 1980 Summer Instructional Leadership Conference includes information on the background and scope of the project, a list of presenters and their topics, and plans for future programs. In addition, abstracts of 20 papers presented at the conference are appended. (WD)

  19. New instruments and science around SINQ. Lecture notes of the 4. summer school on neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Furrer, A. [ed.

    1996-11-01

    The spallation neutron source at PSI will be commissioned towards the end of this year together with a set of first generation instruments. This facility should then be available for the initial scientific work after spring next year. One of the main goals of this year`s summer school for neutron scattering was therefore the preparation of the potential customers at this facility for its scientific exploitation. In order to give them the - so to speak - last finish, we have dedicated the school to the discussion of the instruments at SINQ and their scientific potential. These proceedings are divided into two parts: Part A gives a complete description of the first-generation instruments and sample environment at SINQ. For all the instruments the relevant parameters for planning experiments are listed. Part A is completed by G. Bauer`s summary on experimental facilities and future developments at SINQ. Part B presents the lecture notes dealing with relevant applications of neutron based techniques in science and technology. The summary lecture by S.W. Lovesey is also included. (author) figs., tabs., refs.

  20. Investigating the Geophysics of Venus: Result of the post-Alpbach Summer School 2014

    Science.gov (United States)

    Koopmans, Robert-Jan; Łosiak, Anna; Białek, Agata; Donohoe, Anthony; Fernández Jiménez, María; Frasl, Barbara; Gurciullo, Antonio; Kleinschneider, Andreas; Mannel, Thurid; Muñoz Elorza, Iñigo; Nilsson, Daniel; Oliveira, Marta; Sørensen-Clark, Paul; Timoney, Ryan; van Zelst, Iris

    2015-04-01

    Venus has been investigated by only five dedicated mission programs since the beginning of space flight. This relatively low level of interest is remarkable when considering that mass and radius of Venus are very similar to Earth's, while at the same time characteristics such as spin rate, atmospheric composition, pressure and temperature, make Venus a very different, inhabitable world. The underlying causes of these differences are not well understood. Apprehending Venus' tectonics and internal structure would not only shed light on the question why those two planets evolved so differently, but also help refining current models of planetary systems formation. In order to answer the question about reasons for differences in evolution of those two planets a group of 15 young scientists and engineers designed a mission to Venus during a follow-up of the Alpbach Summer School 2014. The primary objective of this mission is to learn whether Venus is tectonically active and on what time scale. In order to accomplish this goal the mission will determine the crustal structure of Venus, the current activity and distribution of active volcanoes and the movement of continental plates. The secondary objective is to further constrain the models of Venus' internal structure and composition. To achieve this, the mission will investigate the size, state and composition of the core as well as the state and composition of the mantle. The proposed mission consists of an orbiter in a near-polar circular orbit around Venus and a balloon for in-situ measurements operating during the initial phase of the mission. The balloon carries a nephelometer, a magnetometer, a mass spectrometer and stereo microphones and meteorological package. The orbiter carries a gradiometer for determining the gravity field, a synthetic aperture radar for investigating small changes in surface topography and mapping microwave signals from the surface and an IR and UV spectrometer and IR camera for monitoring

  1. PREFACE: 16th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2009)

    Science.gov (United States)

    Möller, Wolfhard; Guerassimov, Nikolay; Ghelev, Chavdar

    2010-04-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977 when the series of VEIT Schools was launched by the Institute of Electronics, Bulgarian Academy of Sciences with the aim to act as a forum for interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. Beginning from 2001, the school has been jointly organized with the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Germany. Whereas, the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance grew issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions or exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers, Journal of Physics: Conference Series. The Sixteenth VEIT school was held in the Black Sea resort Sunny Beach, Bulgaria on 28 September to 2 October 2009. It was attended by close to 110 participants from 13 countries: Belgium, Bulgaria, Czech Republic, France, Germany, The Netherlands, Romania, Slovak Republic, Spain, Sweden, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, under the originality and quality criteria of acceptance by the journal, including

  2. NATO Advanced Study Institute on International Summer School on Chaotic Dynamics and Transport in Classical and Quantum Systems

    CERN Document Server

    Collet, P; Métens, S; Neishtadt, A; Zaslavsky, G; Chaotic Dynamics and Transport in Classical and Quantum Systems

    2005-01-01

    This book offers a modern updated review on the most important activities in today dynamical systems and statistical mechanics by some of the best experts in the domain. It gives a contemporary and pedagogical view on theories of classical and quantum chaos and complexity in hamiltonian and ergodic systems and their applications to anomalous transport in fluids, plasmas, oceans and atom-optic devices and to control of chaotic transport. The book is issued from lecture notes of the International Summer School on "Chaotic Dynamics and Transport in Classical and Quantum Systems" held in Cargèse (Corsica) 18th to the 30th August 2003. It reflects the spirit of the School to provide lectures at the post-doctoral level on basic concepts and tools. The first part concerns ergodicity and mixing, complexity and entropy functions, SRB measures, fractal dimensions and bifurcations in hamiltonian systems. Then, models of dynamical evolutions of transport processes in classical and quantum systems have been largely expla...

  3. Global and local fluctuations of winter and summer simulations with the GLAS climate model

    Science.gov (United States)

    Straus, D. M.; Shukla, J.

    1981-01-01

    Winter and summer simulations were carried out with an improved version of the GLAS general circulation model. An improved method of computing the boundary layer fluxes, and a more realistic specification of the albedo of snow and ice covered surfaces were used. Each particular diagnostic quantity was computed from the model data and each of the 15 years of observations in precisely the same way, wherever possible. The reported observational results are averaged over the 15 winters or summers, as appropriate.

  4. If We Build It, We Will Come: Impacts of a Summer Robotics Program on Regular Year Attendance in Middle School. Policy Brief

    Science.gov (United States)

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2014-01-01

    Recognizing the importance of both keeping middle school students engaged and improving their math skills, Baltimore City Public Schools (City Schools) developed a summer school STEM program involving not only math and science instruction but also the experience of building a robot and competing with those robots in a city-wide tournament.…

  5. Denali Rocks - An Innovative Geology Module for High School Students at the Alaska Summer Research Academy

    Science.gov (United States)

    Shipman, J. S.; Henton, S.; Chebul, E.; White, E.; Johnson, P.; Briggs, D.; Webley, P. W.; Drake, J.

    2011-12-01

    Scientific summer camps give high school students the unique opportunity to interact within the university environment. During July 2011, the Alaska Summer Research Academy (ASRA) provided such an opportunity for over 100 high school students. University of Alaska Fairbanks (UAF) instructors led a two-week long ASRA module, called 'Denali Rocks', where six student participants from across the USA learned the fundamentals of geology and went on a field expedition to Denali National Park and Preserve, with assistance from the National Park Service. The students documented their field experiences through photography and video recordings. For the videos, they were both news reporters and experts in the field. The module educated students in three important aspects of geosciences: natural hazards, natural resources, and the formation of geological landscapes. Students learned about natural hazards in Alaska by visiting two world leading monitoring facilities at UAF. Day excursions as part of the module included the Fort Knox Gold Mine and the Trans-Alaska Pipeline. The students learned how to identify major rock types, their emplacement, and their deposition in the field. They learned how to read topographic and geologic maps as well as how to use a geologic compass to take strike and dip measurements. Students also used technological equipment such as GPS to track the hikes, a Gigapan camera to create panoramic photos, and a handheld Niton X-ray fluorescence spectrometer for compositional analyses. All observations were documented in their field notebooks. By the end of the field camp, the six students were seasoned naturalists. The video and photographic documentation was used in a final presentation to 150 of their peers and instructors in the other ASRA modules. This was in the format of an evening news program complete with anchors, meteorologists, and lighting and camera crews. The students performed all duties during the presentation, and prepared all the footage

  6. Sedentary lifestyle in active children admitted to a summer sport school.

    Science.gov (United States)

    Fainardi, Valentina; Scarabello, Chiara; Brunella, Iovane; Errico, Maria Katrin; Mele, Alessandra; Gelmetti, Chiara; Sponzilli, Ivonne; Chiari, Giovanni; Volta, Elio; Vitale, Marco; Vanelli, Maurizio

    2009-08-01

    Aim of this study was to investigate the sedentary patterns of school-aged active children admitted to a summer sport school. One hundred-twelve children aged 9-11 years were interviewed through a questionnaire about sedentary behaviours and nutrition habits. Seventy-one per cent of children reported they watch TV seven days a week, girls less than boys (84 +/- 45 minutes vs. 110 +/- 75 minutes) (t = 2.056; p = 0.042). The habit of TV viewing during meals was widespread (38% breakfast, 31% lunch, 62% dinner, 18% every meal). The prevalence of overweight or obesity (58.5%) was significantly higher among boys watching TV at dinner compared to the boys viewing TV only in the afternoon (35%) (chi2 = 4.976; p = 0.026). Fifty-seven per cent of children (65% boys) were accustomed to nibble snacks during TV viewing, and this habit was widespread in overweight or obese boys (chi2 = 4.546; p = 0.033). The dietary patterns of children watching TV include more snack foods and fewer fruits than the dietary patterns of the same children exercising (chi2 = 4.199 p = 0.040). Also in active children the habit to watch television is widespread and, in spite of the tendency to physical activity, 46% of them were overweight or obese; in fact the time spent looking at a TV may be associated to overweight/obesity and this relationship could be explained by the amount of high-density foods consumption during inactivity. Playing video games, read a book and listening to music are sedentary lifestyle patterns but these seem not to represent a risk factor for an increased BMI.

  7. The American Indian Summer Institute in Earth System Science (AISESS) at UC Irvine: A Two-Week Residential Summer Program for High School Students

    Science.gov (United States)

    Johnson, K. R.; Polequaptewa, N.; Leon, Y.

    2012-12-01

    Native Americans remain severely underrepresented in the geosciences, despite a clear need for qualified geoscience professionals within Tribal communities to address critical issues such as natural resource and land management, water and air pollution, and climate change. In addition to the need for geoscience professionals within Tribal communities, increased participation of Native Americans in the geosciences would enhance the overall diversity of perspectives represented within the Earth science community and lead to improved Earth science literacy within Native communities. To address this need, the Department of Earth System Science and the American Indian Resource Program at the University California have organized a two-week residential American Indian Summer Institute in Earth System Science (AISESS) for high-school students (grades 9-12) from throughout the nation. The format of the AISESS program is based on the highly-successful framework of a previous NSF Funded American Indian Summer Institute in Computer Science (AISICS) at UC Irvine and involves key senior personnel from the AISICS program. The AISESS program, however, incorporates a week of camping on the La Jolla Band of Luiseño Indians reservation in Northern San Diego County, California. Following the week of camping and field projects, the students spend a week on the campus of UC Irvine participating in Earth System Science lectures, laboratory activities, and tours. The science curriculum is closely woven together with cultural activities, native studies, and communication skills programs The program culminates with a closing ceremony during which students present poster projects on environmental issues relevant to their tribal communities. The inaugural AISESS program took place from July 15th-28th, 2012. We received over 100 applications from Native American high school students from across the nation. We accepted 40 students for the first year, of which 34 attended the program. The

  8. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  9. EDITORIAL: 17th International Summer School on Vacuum, Electron, and Ion Technologies (VEIT 2011)

    Science.gov (United States)

    van de Sanden, M. C. M.; Dimitrova, Miglena; Ghelev, Chavdar

    2012-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biennially since 1977, when the VEIT Summer School series was launched by the Institute of Electronics, Bulgarian Academy of Sciences. The aim was to act as a forum for the exchange and dissemination of knowledge and ideas on the latest developments in electron-, ion- and plasma-assisted technologies. The organizers of the 2011 edition of the event were the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria and the Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands. Whilst the school initially provided a meeting place for researchers mainly from Eastern and Central European countries, its importance has grown issue by issue. The school is now a major scientific event and a meeting place for young scientists from Eastern and Western Europe involved in research and development associated with high-tech industries. Many former school participants have gone on to become leading scientists in research establishments and companies throughout the world. Leading international companies, such as High Voltage Engineering, Balzers, Varian, and Hauzer have used the VEIT forum to present their products through oral presentations, poster contributions and exhibits. The School Proceedings have been published in special issues of the international journals Vacuum, Plasma Processes and Polymers and Journal of Physics: Conference Series. The Seventeenth edition of VEIT was held in the Black Sea resort of Sunny Beach, Bulgaria on 19-23 September 2011. It was attended by 96 participants from 18 countries: Belgium, Brazil, Bulgaria, Czech Republic, Denmark, France, Germany, Greece, The Netherlands, Romania, Russia, Serbia, Sweden, Switzerland, Turkey, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this special issue of Journal of

  10. Modeling Offshore Freshwater Dispersal from the Changjiang River and Controlling Factors During Summer

    Directory of Open Access Journals (Sweden)

    Jae-Hong Moon

    2012-01-01

    Full Text Available In this study we examine offshore transport and dispersal pathways of the freshwater discharge from the Changjiang River in the East China Sea (ECS, using a regional ECS model. Comparison between the results for 1996 and 1998 clearly shows that the summer monsoon winds play a significant role in spreading the freshwater discharge offshore and determining the dispersal of freshwater in the ECS. Analysis of 10-year simulation demonstrates that a northeastward freshwater transport to Jeju Island across the northwestern shelf of the ECS dominates during the summer period due to the surface Ekman flow by the southeasterly along-shore wind. Meanwhile, there is virtually no relationship between the amount of the summer discharge and the freshwater pathway toward Jeju Island. Our analysis also suggests that when the summer wind is relatively weak, another freshwater pathway toward the central ECS appears with the ambient along-shelf current between the Taiwan Strait and the Korea Strait.

  11. An analysis of the uncertainty in temperature and density estimates from fitting model spectra to data. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    Energy Technology Data Exchange (ETDEWEB)

    Schubmehl, M. [Harley School, Rochester, NY (United States)

    1999-03-01

    Temperature and density histories of direct-drive laser fusion implosions are important to an understanding of the reaction`s progress. Such measurements also document phenomena such as preheating of the core and improper compression that can interfere with the thermonuclear reaction. Model x-ray spectra from the non-LTE (local thermodynamic equilibrium) radiation transport post-processor for LILAC have recently been fitted to OMEGA data. The spectrum fitting code reads in a grid of model spectra and uses an iterative weighted least-squares algorithm to perform a fit to experimental data, based on user-input parameter estimates. The purpose of this research was to upgrade the fitting code to compute formal uncertainties on fitted quantities, and to provide temperature and density estimates with error bars. A standard error-analysis process was modified to compute these formal uncertainties from information about the random measurement error in the data. Preliminary tests of the code indicate that the variances it returns are both reasonable and useful.

  12. An analysis of the uncertainty in temperature and density estimates from fitting model spectra to data. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics: Student research reports

    Energy Technology Data Exchange (ETDEWEB)

    Schubmehl, M. [Harley School, Rochester, NY (United States)

    1999-03-01

    Temperature and density histories of direct-drive laser fusion implosions are important to an understanding of the reaction`s progress. Such measurements also document phenomena such as preheating of the core and improper compression that can interfere with the thermonuclear reaction. Model x-ray spectra from the non-LTE (local thermodynamic equilibrium) radiation transport post-processor for LILAC have recently been fitted to OMEGA data. The spectrum fitting code reads in a grid of model spectra and uses an iterative weighted least-squares algorithm to perform a fit to experimental data, based on user-input parameter estimates. The purpose of this research was to upgrade the fitting code to compute formal uncertainties on fitted quantities, and to provide temperature and density estimates with error bars. A standard error-analysis process was modified to compute these formal uncertainties from information about the random measurement error in the data. Preliminary tests of the code indicate that the variances it returns are both reasonable and useful.

  13. Summer Kuroshio Intrusion through the Luzon Strait confirmed from observations and a diagnostic model in summer 2009

    Science.gov (United States)

    Yuan, Yaochu; Liao, Guanghong; Yang, Chenghao; Liu, Zenghong; Chen, Hong; Wang, Zhang-Gui

    2014-02-01

    Based on current measurements recorded at Mooring Station N2 (20°40.441‧N, 120°38.324‧E), hydrographic data and Argo observations in the period starting from July 2009, a diagnostic model with a modified inverse method is used to study the circulation in the Luzon Strait (LS). A number of new circulation features in the LS are found as follows. (1) Both observed and modeled currents show that the intruded Kuroshio flow northwestward through the LS into the South China Sea (SCS) in the upper 400 m during July 2009. (2) The diagnostic model confirms that the Kuroshio is located in the area east of 121°20‧E and west of 122°20‧E at 20°00‧N. There is a meso-scale cyclonic eddy at both the surface and 1000 m depth in the area west of the Kuroshio near 20°00‧N. The meso-scale cyclonic eddy forced the Argo float 1 to make the cyclonic trajectory. Then, the Argo float 1 went into the area of the western Kuroshio. The Argo float 1 was tracked as the flow moved northwestward into the SCS across the LS in July and August, 2009, reflecting the northwestward flow at both the surface and 1000 m depth, which coincided with modeled currents. These results confirm the northwestward Kuroshio intrusion into the SCS across the LS in summer 2009 for the first time. (3) From the dimensional analysis for the equation of stream function, it is seen that the joint effect of the baroclinity and relief (JEBAR) and the β-effect are two important mechanisms on the Kuroshio intrusion into the SCS in this period. This summer Kuroshio intrusion results from the weaker upstream Kuroshio transport in summer 2009 (El Niño initiating period) due to inertia effects and is associated with a weak volume transport across the LS (2.15 × 106 m3 s-1 westward). (4) After comparison of the dynamics of the Kuroshio intrusion during October 2008 and summer 2009, it is clear that these were influenced by the seasonal variability due to the monsoon winds and the interannual variation resulting

  14. RU SciTech: Weaving Astronomy and Physics into a University-sponsored Summer Camp for Middle School Students

    Science.gov (United States)

    Hart, Quyen N.

    2015-01-01

    We present a successful model for organizing a small University-sponsored summer camp that integrates astronomy and physics content with other science disciplines and computer programming content. The aim of our science and technology camp is to engage middle school students in a wide array of critical thinking tasks and hands-on activities centered on science and technology. Additionally, our program seeks to increase and maintain STEM interest among children, particularly in under-represented populations (e.g., Hispanic, African-American, women, and lower socioeconomic individuals) with hopes of decreasing disparities in diversity across many STEM fields.During this four-day camp, organized and facilitated by faculty volunteers, activities rotated through many STEM modules, including optics, telescopes, circuit building, computer hardware, and programming. Specifically, we scaffold camp activities to build upon similar ideas and content if possible. Using knowledge and skills gained through the AAS Astronomy Ambassadors program, we were able to integrate several astronomy activities into the camp, leading students through engaging activities, and conduct educational research. We present best practices on piloting a similar program in a university environment, our efforts to connect the learning outcomes common across all the modules, specifically in astronomy and physics, outline future camp activities, and the survey results on the impact of camp activities on attitudes toward science, technology, and science careers.

  15. Adequacy Model for School Funding

    Science.gov (United States)

    Banicki, Guy; Murphy, Gregg

    2014-01-01

    This study considers the effectiveness of the Evidence-Based Adequacy model of school funding. In looking at the Evidence-Based Adequacy model for school funding, one researcher has been centrally associated with the development and study of this model. Allen Odden is currently a professor in the Department of Educational Leadership and Policy…

  16. PREFACE: 26th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2012)

    Science.gov (United States)

    Kuraica, Milorad; Mijatovic, Zoran

    2012-11-01

    This volume of Journal of Physics: Conference Series contains the general invited lectures, topical invited lectures and progress reports presented at the 26th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2012. The conference was held in Zrenjanin, Serbia, from 27-31 August. The SPIG conference has a 52 year long tradition. The structure of the papers in this volume cover the following sections: atomic collision processes, particle and laser beam interactions with solids, low temperature plasmas and general plasmas. As these four topics often overlap and merge in numerous fundamental studies and, more importantly applications, SPIG in general serves as a venue for exchanging ideas in the related fields. We hope that this volume will be an important source of information about progress in plasma physics and will be useful, first of all, for students, but also for plasma physics scientists. The Editors would like to thank the invited speakers for their participation at SPIG 2012 and for their efforts writing contributions for this volume. We also express our gratitude to the members of Scientific and Organizing committees for their efforts in organizing this SPIG. Especially we would like to thank the Ministry of Education, Science and Technological Development of Republic of Serbia, Provincial Secretariat for Science and Techonological Development, Province of Vojvodina, Institute Français de Serbie and Biser Zrenjanin for financial support as well as the European Physical Society (EPS) for supporting the award for the best poster of a young scientist and American Elements, USA. Milorad Kuraica Zoran Mijatovic October 2012 Editors

  17. The summer school students' viewpoints about important factors in learning, Shiraz University of Medical Sciences.

    Science.gov (United States)

    Bazrafcan, Leila; Haghani, Fariba; Shokrpour, Nasrin

    2014-04-01

    The main goal of education is learning and change in behavior which has been revolutionized in the 21st century due to the rapid and widespread changes in science. The traditional approach to education does no longer meet the learners' needs, necessitating new changes in educational curricula. This study was designed to determine the factors influencing learning in the 21st century and find out the students' viewpoints on this issue. This is a descriptive study aiming at determining the students' views on new approaches to learning in the 21st century. To do so, a researcher-made questionnaire was designed. It contained 30 questions in 3 sections including demographic data, background questions and two open questions about their suggestions and criticisms. The reliability and validity of the questionnaire was pilot-tested and measured, which proved to be describable. 150 students participating in university summer schools in Shiraz University of Medical Sciences were enrolled. The questionnaires were sent to the students in person and through electronic mails. The students were asked to return the completed questionnaires to the given email address. The data were analyzed in SPSS, version 14, using descriptive statistics of frequency, mean, percentage and standard deviation and t-test. Prisk taking, increase in the social relationship among the learners, focus on practical skills, and management were considered as the least influential factors in learning in the 21(st) century. It seems that the students philosophically tend to approve constructivism and cooperative learning which is learner-centered as compared to conventional education which is teacher-contended. According to experts, this type of viewpoint is in the same line with new approaches to teaching and education in the present era. Moreover, it impacts the reforms, complementation and expansion of methodology greatly.

  18. Engaging Middle School Students in Authentic Research based on a summer research cruise

    Science.gov (United States)

    Manley, J.; Ellins, K. K.; Conte, M. H.

    2011-12-01

    In summer 2010, as a participant in the TXESS Revolution, a National Science Foundation (NSF)-sponsored professional development program for teachers in support of Earth and Space Science, I participated in a scientific research cruise led by Dr. Maureen Conte of the Bermuda Institute of Ocean Sciences (BIOS). The primary purpose of the cruise was to collect water samples from different ocean depths, make temperature and conductivity measurements, and retrieve biologic particle debris collection equipment deployed as part of the NSF-sponsored Oceanic Flux Program to measure particle fluxes in the deep Sargasso Sea. A secondary objective involved the collection of plastic debris floating within the sargassum grass trapped in the North Atlantic gyre in order to investigate plastic pollution. As a member of the science team I worked alongside of Dr. Conte, scientists and graduate students, giving me a personal experience to inspire my students' interest in the marine ecosystem. In the classroom, I used a Project Based Learning (PBL) approach to translate my experience and knowledge gained into productive learning for my students. With Project Based Learning, teams of students solve a real world, open-ended challenge problem through research and experimentation. In this Problem, the challenge was to design a virtual product to motivate ordinary people to change their habits regarding their use and improper disposal of plastics. Team products included websites, social network pages, and in-school announcements to create awareness about plastic pollution in the ocean. Fulfilling one of the basic principles of the PBL approach to provide student access to experts, cruise participant and University of North Carolina graduate student Bonnie Monteleone dedicated an entire day to speak with each of my classes about her experiences studying ocean plastics and answer their questions via SKYPE. In addition, Ms. Monteleone used her extensive contacts to post the best of my

  19. School Processes Mediate School Compositional Effects: Model Specification and Estimation

    Science.gov (United States)

    Liu, Hongqiang; Van Damme, Jan; Gielen, Sarah; Van Den Noortgate, Wim

    2015-01-01

    School composition effects have been consistently verified, but few studies ever attempted to study how school composition affects school achievement. Based on prior research findings, we employed multilevel mediation modeling to examine whether school processes mediate the effect of school composition upon school outcomes based on the data of 28…

  20. The 1st European Summer School on 'proteomic basics'--the students view. 12-18 August, 2007 Kloster Neustift, Brixen/Bressanone, South Tyrol, Italy.

    Science.gov (United States)

    Collins, Emily S; Little, Samantha J

    2008-01-01

    Fifty postgraduate and postdoctoral delegates from all over Europe attended the week-long '1st European Summer School on Proteomic Basics' in Kloster Neustift in the Italian South Tyrol in August 2007. Invited proteomics experts gave tutorial lectures on Proteomics techniques with an emphasis on sample preparation, protein separation and purification in the first of an annual series of Proteomics Summer Schools funded by the EU and the Volkswagen Stiftung.

  1. PREFACE: Fifteenth International Summer School on Vacuum, Electron and Ion Technologies (VEIT 2007)

    Science.gov (United States)

    Guerassimov, Nikolay; Möller, Wolfhard; Ghelev, Chavdar

    2008-03-01

    The International Summer School on Vacuum, Electron and Ion Technologies (VEIT) has been organized biannually since 1977. It is a forum for the interchange and dissemination of knowledge and ideas on the latest developments in electron-, ion-, and plasma-assisted technologies. The organizers of the event (since 2001) have been the Institute of Electronics, Bulgarian Academy of Sciences, Sofia, Bulgaria, the Institute of Ion Beam Physics and Materials Research, Forschungszentrum Dresden-Rossendorf, Dresden, Germany, and the Evrika Foundation, Sofia, Bulgaria. The fifteenth meeting of VEIT was held in the Black Sea resort of Sozopol, Bulgaria from 17-21 September 2007 and was attended by around 120 participants from 17 countries: Australia, Belgium, Bulgaria, Canada, Czech Republic, Germany, Hungary, Italy, The Netherlands, Poland, Pakistan, Romania, Sweden, Switzerland, Ukraine, UK and USA. Following the tradition of publishing the VEIT Proceedings, a selection of papers presented at the event is published in this volume of Journal of Physics: Conference Series, all peer reviewed to meet the originality and quality criteria of the journal. The school consisted of 11 oral and 3 poster sessions. There were 17 invited talks of general interest and 12 progress reports were presented orally. In total 86 contributed papers were presented during the three poster sessions. There were several scientific highlights covering the fundamentals of gas discharges and interaction of fast particles with solids, a wide range of conventional and novel applications such as for hard coatings and optical/protective layers, nanosized structures produced by evaporation, sputtering or external irradiation. Recent achievements in the modification of materials using charged particles or laser beams, thin layers deposition, properties, and characterization and novel materials, techniques, devices were highlighted. Despite the busy scientific program, the atmosphere was relaxed and informal

  2. Evaluation of Coupled Model Forecasts of Ethiopian Highlands Summer Climate

    Directory of Open Access Journals (Sweden)

    Mark R. Jury

    2014-01-01

    Full Text Available This study evaluates seasonal forecasts of rainfall and maximum temperature across the Ethiopian highlands from coupled ensemble models in the period 1981–2006, by comparison with gridded observational products (NMA + GPCC/CRU3. Early season forecasts from the coupled forecast system (CFS are steadier than European community medium range forecast (ECMWF. CFS and ECMWF April forecasts of June–August (JJA rainfall achieve significant fit (r2=0.27, 0.25, resp., but ECMWF forecasts tend to have a narrow range with drought underpredicted. Early season forecasts of JJA maximum temperature are weak in both models; hence ability to predict water resource gains may be better than losses. One aim of seasonal climate forecasting is to ensure that crop yields keep pace with Ethiopia’s growing population. Farmers using prediction technology are better informed to avoid risk in dry years and generate surplus in wet years.

  3. NASA's Planetary Science Summer School: Training Future Mission Leaders in a Concurrent Engineering Environment

    Science.gov (United States)

    Mitchell, K. L.; Lowes, L. L.; Budney, C. J.; Sohus, A.

    2014-12-01

    NASA's Planetary Science Summer School (PSSS) is an intensive program for postdocs and advanced graduate students in science and engineering fields with a keen interest in planetary exploration. The goal is to train the next generation of planetary science mission leaders in a hands-on environment involving a wide range of engineers and scientists. It was established in 1989, and has undergone several incarnations. Initially a series of seminars, it became a more formal mission design experience in 1999. Admission is competitive, with participants given financial support. The competitively selected trainees develop an early mission concept study in teams of 15-17, responsive to a typical NASA Science Mission Directorate Announcement of Opportunity. They select the mission concept from options presented by the course sponsors, based on high-priority missions as defined by the Decadal Survey, prepare a presentation for a proposal authorization review, present it to a senior review board and receive critical feedback. Each participant assumes multiple roles, on science, instrument and project teams. They develop an understanding of top-level science requirements and instrument priorities in advance through a series of reading assignments and webinars help trainees. Then, during the five day session at Jet Propulsion Laboratory, they work closely with concurrent engineers including JPL's Advanced Projects Design Team ("Team X"), a cross-functional multidisciplinary team of engineers that utilizes concurrent engineering methodologies to complete rapid design, analysis and evaluation of mission concept designs. All are mentored and assisted directly by Team X members and course tutors in their assigned project roles. There is a strong emphasis on making difficult trades, simulating a real mission design process as accurately as possible. The process is intense and at times dramatic, with fast-paced design sessions and late evening study sessions. A survey of PSSS alumni

  4. The summer school students’ viewpoints about important factors in learning, Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    LEILA BAZRAFCAN

    2014-04-01

    Full Text Available Introduction: The main goal of education is learning and change in behavior which has been revolutionized in the 21st century due to the rapid and widespread changes in science. The traditional approach to education does no longer meet the learners’ needs, necessitating new changes in educational curricula. This study was designed to determine the factors influencing learning in the 21st century and find out the students’ viewpoints on this issue. Methods: This is a descriptive study aiming at determining the students’ views on new approaches to learning in the 21st century. To do so, a researcher-made questionnaire was designed. It contained 30 questions in 3 sections including demographic data, background questions and two open questions about their suggestions and criticisms. The reliability and validity of the questionnaire was pilot-tested and measured, which proved to be describable. 150 students participating in university summer schools in Shiraz University of Medical Sciences were enrolled. The questionnaires were sent to the students in person and through electronic mails. The students were asked to return the completed questionnaires to the given email address. The data were analyzed in SPSS, version 14, using descriptive statistics of frequency, mean, percentage and standard deviation and t-test. P<0. 05 was considered as statistically significant. Results: 150 questionnaires were appropriately filled out and given to the researchers. The results indicated that, according to the students, 6 factors including the use of computer in teaching, enhancement of virtual learning, the use of mobile in relations, enjoyment of electronic learning contexts, the learning focus on attitudes and the facilitating role of the lectures were the most influential factors in learning. On the other hand, the government’s responsibility and responsiveness, creativity and risk taking, increase in the social relationship among the learners, focus on

  5. PREFACE: 24th Summer School and International Symposium on the Physics of Ionized Gases

    Science.gov (United States)

    Malović, Gordana; Popović, Luka Č.; Dimitrijević, Milan S.

    2008-02-01

    This volume of the Journal of Physics: Conference Series contains the Invited lectures, Topical invited lectures and Progress reports presented at the 24th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2008. The conference was held in Novi Sad, Serbia, 25-29 August 2008. Throughout the history of scientific discovery, one can see repeatedly how fundamental sciences have solved basic questions and opened new frontiers. In the field of physics, there are many key discoveries, resulting in their useful applications for the benefit of the mankind. It is very important to have meetings to discuss actual problems in particular fields of physics. This Conference provided a forum for 160 active researchers from 25 countries to discuss current advances in the physics of ionized gases and related fields. The Conference has a long tradition. Let us remember that the first SPIG was organized in 1968. The decay of former Yugoslavia in 1991, caused a disturbance in SPIG meetings, but fortunately, in 1993, SPIG meetings were successfully revitalized. During recent years we have met successively in Belgrade, Kotor, Zlatibor, Soko Banja, Tara, Kopaonik and finally this time in Novi Sad. The structure of the papers in this Proceedings is as follows: Atomic Collision Processes, Particle and Laser Beam Interactions with Solids, Low Temperature Plasmas and General Plasmas. We hope that this Proceedings will be an important source of information, first of all to students, and also to plasma physics scientists. First of all, we would like to thank to the invited speakers for participating at the SPIG 2008 and for their efforts writing contributions for this Proceedings. We also express our gratitude to the members of the Scientific and Organizing committees for their efforts in organizing the Conference. Especially we would like to thank the Ministry of Science and Technological Development of the Republic of Serbia for financial support. Also, this

  6. "STEMming" the Swell of Absenteeism in Urban Middle Grade Schools: Impacts of a Summer Robotics Program

    Science.gov (United States)

    Mac Iver, Martha Abele; Mac Iver, Douglas J.

    2014-01-01

    Attendance is probably the most fundamental behavioral indicator of student engagement with school. Though many students fall off-track to success for the first time in ninth grade, poor attendance patterns often begin increasing in middle school and become worse in high school. Missing school during the secondary grades can often be traced to low…

  7. Lectures given at the C.I.M.E.-E.M.S. Summer School

    CERN Document Server

    Back, Kerry; Hipp, Christian; Peng, Shige; Schachermayer, Walter

    2004-01-01

    This volume includes the five lecture courses given at the CIME-EMS School on "Stochastic Methods in Finance" held in Bressanone/Brixen, Italy 2003. It deals with innovative methods, mainly from stochastic analysis, that play a fundamental role in the mathematical modelling of finance and insurance: the theory of stochastic processes, optimal and stochastic control, stochastic differential equations, convex analysis and duality theory. Five topics are treated in detail: Utility maximization in incomplete markets; the theory of nonlinear expectations and its relationship with the theory of risk measures in a dynamic setting; credit risk modelling; the interplay between finance and insurance; incomplete information in the context of economic equilibrium and insider trading.

  8. Seasonal forecasting of Bangladesh summer monsoon rainfall using simple multiple regression model

    Indian Academy of Sciences (India)

    Md Mizanur Rahman; M Rafiuddin; Md Mahbub Alam

    2013-04-01

    In this paper, the development of a statistical forecasting method for summer monsoon rainfall over Bangladesh is described. Predictors for Bangladesh summer monsoon (June–September) rainfall were identified from the large scale ocean–atmospheric circulation variables (i.e., sea-surface temperature, surface air temperature and sea level pressure). The predictors exhibited a significant relationship with Bangladesh summer monsoon rainfall during the period 1961–2007. After carrying out a detailed analysis of various global climate datasets; three predictors were selected. The model performance was evaluated during the period 1977–2007. The model showed better performance in their hindcast seasonal monsoon rainfall over Bangladesh. The RMSE and Heidke skill score for 31 years was 8.13 and 0.37, respectively, and the correlation between the predicted and observed rainfall was 0.74. The BIAS of the forecasts (% of long period average, LPA) was −0.85 and Hit score was 58%. The experimental forecasts for the year 2008 summer monsoon rainfall based on the model were also found to be in good agreement with the observation.

  9. CSR Model Implementation from School Stakeholder Perspectives

    Science.gov (United States)

    Herrmann, Suzannah

    2006-01-01

    Despite comprehensive school reform (CSR) model developers' best intentions to make school stakeholders adhere strictly to the implementation of model components, school stakeholders implementing CSR models inevitably make adaptations to the CSR model. Adaptations are made to CSR models because school stakeholders internalize CSR model practices…

  10. The Impact of E-Education on At Risk High School Students' Science Achievement and Experiences during Summer School Credit Recovery Courses

    Science.gov (United States)

    Phillips, Pamela Prevette

    Nationally, at risk students make up to 30% of U.S. students in public schools. Many at risk students have poor attendance, are disengaged from the learning environment and have low academic achievement. Educational failure occurs when students do not complete the required courses and as a result do not receive a high school diploma or a certificate of attendance. Many at risk students will not graduate; nearly one-third of all United States high school students have left the public school system before graduating, which has been referred to as a national crisis. Many at risk students fail science courses that are required for graduation, such as biology. Clearly, many students are not responding positively to the conditions in many public school classrooms, suggesting the need for different methods of educating at risk students, such as e-education. Three research questions guided the study: 1) Who are the students in an e-education, online summer school credit recovery course? 2) Do students' beliefs about their learning environment or other personal factors influence their academic achievement?, and 3) How do students describe their experiences of an e-education science course? This mixed methods study investigates thirty-two at risk students who were enrolled in one of three e-education science education courses (biology, earth science, and physical science) during a summer session in a rural county in a southeastern US state. These students failed their most recent science course taken in a traditional classroom setting. Artino's (2010) social-cognitive model of academic motivation and emotion was used as a theoretical framework to highlight the salient motivational factors toward learning science (e.g., task characteristics, task value beliefs, positive emotions). Student data included pre and post tests for all e-education lessons, a final exam, survey data (Students Motivation towards Science Learning (SMTSL), time (on task and idle), field notes, and

  11. Transforming a School of Education via the Accelerated Schools Model.

    Science.gov (United States)

    Mims, J. Sabrina; Slovacek, Simeon; Wong, Gay Yuen

    This paper describes how the Accelerated Schools Model has served as a catalyst for transforming the Charter School of Education at California State University, Los Angeles. The Accelerated Schools Project has been one of the largest and most comprehensive school restructuring movements of the last decade. The focus of Accelerated Schools is…

  12. PREFACE: 27th Summer School and International Symposium on the Physics of Ionized Gases (SPIG 2014)

    Science.gov (United States)

    Marić, Dragana; Milosavljević, Aleksandar R.; Mijatović, Zoran

    2014-12-01

    This volume of Journal of Physics: Conference Series contains a selection of papers presented at the 27th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2014, as General Invited Lectures, Topical Invited Lectures, Progress Reports and associated Workshop Lectures. The conference was held in Belgrade, Serbia, from 26-29 August 2014 at the Serbian Academy of Sciences and Arts. It was organized by the Institute of Physics Belgrade, University of Belgrade and Serbian Academy of Sciences and Arts, under the auspices of the Ministry of Education, Science and Technological Development, Republic of Serbia. A rare virtue of a SPIG conference is that it covers a wide range of topics, bringing together leading scientists worldwide to present and discuss state-of-the art research and the most recent applications, thus stimulating a modern approach of interdisciplinary science. The Invited lectures and Contributed papers are related to the following research fields: 1. Atomic Collision Processes (Electron and Photon Interactions with Atomic Particles, Heavy Particle Collisions, Swarms and Transport Phenomena) 2. Particle and Laser Beam Interactions with Solids (Atomic Collisions in Solids, Sputtering and Deposition, Laser and Plasma Interaction with Surfaces) 3. Low Temperature Plasmas (Plasma Spectroscopy and other Diagnostic Methods, Gas Discharges, Plasma Applications and Devices) 4. General Plasmas (Fusion Plasmas, Astrophysical Plasmas and Collective Phenomena) Additionally, the 27th SPIG encompassed three workshops that are closely related to the scope of the conference: • The Workshop on Dissociative Electron Attachment (DEA) - Chaired by Prof. Nigel J Mason, OBE, The Open University, United Kingdom • The Workshop on X-ray Interaction with Biomolecules in Gas Phase (XiBiGP), Chaired by Dr. Christophe Nicolas, Synchrotron SOLEIL, France • The 3rd International Workshop on Non-Equilibrium Processes (NonEqProc) - Chaired by Prof

  13. Collaboration and Community Building in Summer Undergraduate Research Programs in the School of Earth Sciences at Stanford University

    Science.gov (United States)

    Nevle, R. J.; Watson Nelson, T.; Harris, J. M.; Klemperer, S. L.

    2012-12-01

    In 2012, the School of Earth Sciences (SES) at Stanford University sponsored two summer undergraduate research programs. Here we describe these programs and efforts to build a cohesive research cohort among the programs' diverse participants. The two programs, the Stanford School of Earth Sciences Undergraduate Research (SESUR) Program and Stanford School of Earth Sciences Summer Undergraduate Research in Geoscience and Engineering (SURGE) Program, serve different undergraduate populations and have somewhat different objectives, but both provide students with opportunities to work on strongly mentored yet individualized research projects. In addition to research, enrichment activities co-sponsored by both programs support the development of community within the combined SES summer undergraduate research cohort. Over the course of 6 to 9 months, the SESUR Program engages Stanford undergraduates, primarily rising sophomores and juniors, with opportunities to deeply explore Earth sciences research while learning about diverse areas of inquiry within SES. Now in its eleventh year, the SESUR experience incorporates the breadth of the scientific endeavor: finding an advisor, proposal writing, obtaining funding, conducting research, and presenting results. Goals of the SESUR program include (1) providing a challenging and rewarding research experience for undergraduates who wish to explore the Earth sciences; (2) fostering interdisciplinary study in the Earth sciences among the undergraduate population; and (3) encouraging students to major or minor in the Earth sciences and/or to complete advanced undergraduate research in one of the departments or programs within SES. The SURGE Program, now in its second year, draws high performing students, primarily rising juniors and seniors, from 14 colleges and universities nationwide, including Stanford. Seventy percent of SURGE students are from racial/ethnic backgrounds underrepresented in STEM fields, and approximately one

  14. Understanding of Statistical Terms Routinely Used in Presentations: A Survey among Residents who participate at a Summer School

    Directory of Open Access Journals (Sweden)

    Cosmina-Ioana BONDOR

    2014-12-01

    Full Text Available Aim: The aim of our study was to investigate the understanding of statistical terms commonly used in lectures presented at summer schools for residents and young specialists. Material and Method: A survey was distributed to all the participants at the “Diabetic neuropathy from theory to practice” Summer School, 2014. The program was addressed to residents or young specialists in diabetes, neurology, surgery, and orthopedic from Romania. The survey consists of 6 multiple-choice questions and the first four questions evaluate the understanding of statistical terms. Results: There were 51 (42.5% participants who completed the questionnaires. From 204 total questions 81 (39.7% had correct answers. At the question 1, where relative risk was evaluated, only 3 (5.9% respondents answered correctly while at the question 2 (number need to treat about 78.4% (40 of answers were correct. At the question 3 (sensitivity, 22 (43.1% respondents answer correct while at the question 4 (Receiver Operating Characteristic curves only 16 (31.4% respondents provided a correct answer. The overall mean score of correct answers was 1.56±0.91. Conclusion: Our study showed that young specialists who participated to the survey were not familiarized with simple statistical terms commonly used in presentations.

  15. THE ROLE OF PROFESSIONAL LANGUAGE SUMMER SCHOOLS IN THE CONTEXT OF INFORMAL EDUCATION OF RUSSIAN UNIVERSITY STUDENTS

    Directory of Open Access Journals (Sweden)

    Irina Igorevna Kruze

    2015-01-01

    Full Text Available The article highlights the role of Russian-Austrian Summer Language Schools as an informal component in the system of professional language training for future specialists in the field of law. The possibility to join the double diploma program in the frame of academic mobility which is successfully realized in the Peoples’ Friendship University of Russia (PFUR since the Russian Federation joined the Bologna process implies that each student should develop an individual educational trajectory. It enables students to set concrete objectives of the training, to control the training stages, to introduce the necessary corrections, to assess objectively the achieved results and to support the concept of the modern educational paradigm “from learning for life to lifelong learning”. The examples given in the article prove the potential of Summer Language Schools for future lawyers enhancing their responsibility for the results of the educational activity, their selfassessment based on individual significant criteria, motivating the learners to build up their competencies of team activities on the principles of mutual respect and understanding.

  16. Regional integrated environmental model system and its simulation of East Asia summer monsoon

    Institute of Scientific and Technical Information of China (English)

    XIONG Zhe; FU CongBin; YAN XiaoDong

    2009-01-01

    A continuous 22-year simulation in Asia for the period of 1 January 1979 to 31 December 2000 was conducted using the Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis Ⅱ data as the driving fields.The model processes include surface physics state package (BATS le),a Grell cumulus parameterization,and a modified radiation package (CCM3) with the focus on the ability of the model to simulate the summer monsoon over East Asia.The analysis results show that (1)RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature.When regionally averaged,the summer mean temperature biases are within 1-2℃.(2) For precipitation,the model reproduces well the spatial pattern,and temporal evolution of the East Asia summer monsoon rain belt,with steady phases separated by more rapid transitions,is reproduced.The rain belt simulated by RIEMS 2.0 is closer to observation than by RIEMS 1.0.(3) RIEMS 2.0 can reasonably reproduce the large-scale circulation.

  17. The Coupled Model Predictability of the Western North Pacific Summer Monsoon with Different Leading Times

    Institute of Scientific and Technical Information of China (English)

    LU Ri-Yu; LI Chao-Fan; Se-Hwan YANG; Buwen DONG

    2012-01-01

    Leading time length is an important issue for modeling seasonal forecasts. In this study, a comparison of the interannual predictability of the Western North Pacific (WNP) summer monsoon between different leading months was performed by using one-, four-, and sevenmonth lead retrospective forecasts (hindcasts) of four coupled models from Ensembles-Based Predictions of Climate Changes and Their Impacts (ENSEMBLES) for the period of 1960 2005. It is found that the WNP summer anomalies, including lower-tropospheric circulation and precipitation anomalies, can be well predicted for all these leading months. The accuracy of the four-month lead prediction is only slightly weaker than that of the one-month lead prediction, although the skill decreases with the increase of leading months.

  18. A European Collaborative EO Summer School for the Education of Undergraduate and Masters Level Students- FORMAT-EO

    Science.gov (United States)

    Graves, Rosemarie; Remedios, John; Tramutoli, Valerio; Gil, Artur; Cuca, Branka

    2014-05-01

    An Erasmus intensive programme has been successfully funded to run a Europe-lead summer school in Earth Observation for the years 2013 and 2014. The summer school, FORMAT-EO (FORmation of Multi-disciplinary Approaches to Training in Earth Observation) has been proposed and implemented by a consortium of eight partner institutions from five European countries. The consortium was facilitated through the NEREUS network. In the summer of 2013, 21 students from seven European institutions took part in the two week intensive course which involved a total of 28 teachers from six institutions. Students were from a variety of backgrounds including aeronautical engineering MSc students and PhD students in the areas of marine biology, earthquake engineering and measurement of trace gases in the atmosphere. The aims of FORMAT-EO were: To give students exposure to the wider applications of Earth Observation To highlight the interdisciplinary, collaborative and international nature of Earth Observation To offer an intensive course to better equip students with specialist skills required for a career in this field To provide expert advice on the development of careers in the EO market Partners were invited not only to recruit students for the course but to also teach at the school based on their specific area of expertise. This approach to the teaching provided a timetable which was wide-ranging and covered topics from EU policies for Earth Observation to fire detection from space and an introduction to interaction between radiation and matter. An important aspect of the course was the interactive nature of much of the teaching. A topic was introduced to the students through a lecture followed by an interactive tutorial providing students with hands-on experience of working with EO data and specialist software. The final days of the summer school were spent on group project work which required students to use all of the skills that they acquired during the course to challenge a

  19. School year versus summer differences in child weight gain: A narrative review

    Science.gov (United States)

    The causes of the current high prevalence of overweight and obesity among children are not clearly known. Schools have been implicated in the causal chain to high child obesity prevalence. Recent studies have compared school year versus summertime changes (herein called seasonal differences) in chil...

  20. An Experiment of a Statistical Downscaling Forecast Model for Summer Precipitation over China

    Institute of Scientific and Technical Information of China (English)

    KE Zong-Jian; ZHANG Pei-Qun; CHEN Li-Juan; DU Liang-Min

    2011-01-01

    A combination of the optimal subset regression (OSR) approach, the coupled general circulation model of the National Climate Center (NCC-CGCM) and precipitation observations from 160 stations over China is used to construct a statistical downscaling forecast model for precipitation in summer. Retroactive forecasts are performed to assess the skill of statistical downscaling during the period from 2003 to 2009. The results show a poor simulation for summer precipitation by the NCCCGCM for China, and the average spatial anomaly correlation coefficient (ACC) is 0.01 in the forecast period. The forecast skill can be improved by OSR statistical downscaling, and the OSR forecast performs better than the NCC-CGCM in most years except 2003. The spatial ACC is more than 0.2 in the years 2008 and 2009, which proves to be relatively skillful. Moreover, the statistical downscaling forecast performs relatively well for the main rain belt of the summer precipitation in some years, including 2005, 2006, 2008, and 2009. However, the forecast skill of statistical downscaling is restricted to some extent by the relatively low skill of the NCCCGCM.

  1. Professional Development Schools: A Model for Preparing School Counselor Trainees

    Science.gov (United States)

    Brooks, Michael; Steen, Sam; Williams, Franklyn

    2009-01-01

    This article discusses a training model, based on The Education Trust, The American School Counselor Association, and The Holmes Partnership, consisting of school counselor trainees completing their clinical experiences in a Professional Development School. A case study demonstrating the role of the school counselor is presented along with…

  2. 20{sup th} Frederic Joliot/Otto Hahn Summer School on nuclear reactors 'physics, fuels and systems'

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, V.H. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Neutron Physics and Reactor Technology (INR)

    2014-12-15

    This year, the 20{sup th} anniversary of the Frederic Joliot/Otto Hahn Summer School was celebrated in Aix-en-Provence, France from August 20{sup th} to 29{sup th} 2014. The topic was 'Nuclear reactors - bridging the gap between science and industry'. This summer school is organized by the Karlsruhe Institute of Technology (KIT) and the Commissariat a l'Energie Atomique (CEA) since twenty years. Experts from internationally recognized organizations (Universities, research centres, regulators, industry) from USA, Japan, Asia and Europe presented during the 10 days of sessions the newest trends and challenges on the related fields.

  3. CMS Analysis School Model

    Energy Technology Data Exchange (ETDEWEB)

    Malik, S. [Nebraska U.; Shipsey, I. [Purdue U.; Cavanaugh, R. [Illinois U., Chicago; Bloom, K. [Nebraska U.; Chan, Kai-Feng [Taiwan, Natl. Taiwan U.; D' Hondt, J. [Vrije U., Brussels; Klima, B. [Fermilab; Narain, M. [Brown U.; Palla, F. [INFN, Pisa; Rolandi, G. [CERN; Schörner-Sadenius, T. [DESY

    2014-01-01

    To impart hands-on training in physics analysis, CMS experiment initiated the concept of CMS Data Analysis School (CMSDAS). It was born over three years ago at the LPC (LHC Physics Centre), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe, CMS is trying to engage the collaboration in its discovery potential and maximize physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents, in the development of physics, service, upgrade, education of those new to CMS and the career development of younger members. An extension of the concept to the dedicated software and hardware schools is also planned, keeping in mind the ensuing upgrade phase.

  4. Upper-air model of summer balance on Mount Rainier, USA

    Science.gov (United States)

    Rasmussen, L. A.; Wenger, J. M.

    In 2003-07 summer balance was measured at altitudes between 1700 and 3382 m a.s.l. on two glaciers on Mount Rainier, Washington State, USA (46.85° N, 121.72° W; 4400 m a.s.l.): south-facing Nisqually Glacier and east-northeast-facing Emmons Glacier. Upper-air temperatures at the nearest gridpoint in the NCEP/NCAR reanalysis database are used in a distributed (over altitude) positive-degree-day (PDD) model. For each glacier the model used the same coefficients at all altitudes, for all years. The rms model error was 0.65 (r2 = 0.87) and 0.78 m a-1 w.e. (r2 = 0.93) for Nisqually and Emmons Glaciers, respectively. Although PDD work generally uses different coefficients for snow and ice surfaces, and the duration of exposure of those surfaces varies with altitude, error in this single-coefficient model is nearly uncorrelated with altitude. Values of coefficients obtained are within the range of those found in other PDD work. The degree-day coefficient, however, differs markedly between the two glaciers, and is shown to be controlled by the difference between them in vertical gradient of measured summer balance. It is smaller for Nisqually Glacier, where solar radiation is a stronger contributor to melt; and larger for Emmons Glacier, where it is a weaker contributor. Over 1948-2007, when the model calibrated over 2003-07 was applied to the upper-air temperatures, estimated summer balance was ˜0.4 m a-1 less negative over 1962-83 than before and ˜0.6 m a-1 less negative than after, corresponding roughly with changes of the northeast Pacific sea-surface temperatures.

  5. Notes of Numerical Simulation of Summer Rainfall in China with a Regional Climate Model REMO

    Institute of Scientific and Technical Information of China (English)

    CUI Xuefeng; HUANG Gang; CHEN Wen

    2008-01-01

    Regional climate models are major tools for regional climate simulation and their output are mostly used for climate impact studies. Notes are reported from a series of numerical simulations of summer rainfall in China with a regional climate model. Domain sizes and running modes are major foci. The results reveal that the model in forecast mode driven by "perfect" boundaries could reasonably represent the inter-annual differences: heavy rainfall along the Yangtze River in 1998 and dry conditions in 1997. Model simulation in climate mode differs to a greater extent from observation than that in forecast mode. This may be due to the fact that in climate mode it departs further from the driving fields and relies more on internal model dynamical processes. A smaller domain in climate mode outperforms a larger one. Further development of model parameterizations including dynamic vegetation are encouraged in future studies.

  6. A Summer Math and Physics Program for High School Students: Student Performance and Lessons Learned in the Second Year

    Science.gov (United States)

    Timme, Nicholas; Baird, Michael; Bennett, Jake; Fry, Jason; Garrison, Lance; Maltese, Adam

    2013-05-01

    For the past two years, the Foundations in Physics and Mathematics (FPM) summer program has been held at Indiana University in order to fulfill two goals: provide additional physics and mathematics instruction at the high school level, and provide physics graduate students with experience and autonomy in designing curricula and teaching courses. In this paper we will detail changes made to the program for its second year and the motivation for these changes, as well as implications for future iterations of the program. We gauge the impact of the changes on student performance using pre-/post-test scores, student evaluations, and anecdotal evidence. These data show that the program has a positive impact on student knowledge and this impact was greater in magnitude in the second year of the program. We attribute this improvement primarily to the inclusion of more inquiry-driven activities. All activities, worksheets, and lesson plans used in the program are available online.

  7. Summer cooling potential of urban vegetation—a modeling study for Melbourne, Australia

    Directory of Open Access Journals (Sweden)

    Dong Chen

    2015-06-01

    Full Text Available The summer cooling potential of urban vegetation is investigated using an urban climate model for the current and future climates in the Melbourne central business district (CBD area with various urban forms and vegetation schemes. Simulation results suggest that the average seasonal summer temperatures can be reduced in the range of around 0.5 and 2°C if the Melbourne CBD were replaced by vegetated suburbs and planted parklands, respectively, benefiting a reduction in the number of hot days. It was also found that despite the projected warming in the future and variations in the climate projections among different climate models, the average seasonal cooling potential due to various urban vegetation schemes may not change significantly in comparison with those predicted for the current climate, indicating little dependency on climate change. This finding suggests that the average seasonal cooling potential as a result of urban vegetation in future climates may be empirically quantified in similar amounts to those under the current climate. When urban climate models are used, the cooling potential of urban vegetation in future climates may be quantified by modeling several selected years with one or a few climate models.

  8. Summer precipitation projections over northwestern South America from CMIP5 models

    Science.gov (United States)

    Palomino-Lemus, Reiner; Córdoba-Machado, Samir; Gámiz-Fortis, Sonia Raquel; Castro-Díez, Yolanda; Esteban-Parra, María Jesús

    2015-08-01

    In this study, statistical downscaling (SD) models have been built using principal component regression (PCR) for simulating summer precipitation in Colombia during the period 1950-2010, and climate projections have been made for the period 2071-2100 by applying the previous SD models to the SLP outputs of five GCMs. For this, the principal components (PCs) of the SLP reanalysis data from NCEP were used as predictor variables and the observed gridded summer precipitation as predictands. The period 1950-1993 was used for calibration and 1994-2010 for validation. Bootstrap with replacement was applied to provide estimations of the statistical errors. All SD models performed reasonably well at regional scales, and the spatial distribution of the correlation coefficients between the predicted and observed gridded precipitation values shows high significant values (between 0.5 and 0.93) along the Andes range, north and north Pacific of Colombia. The ability of the GCMs to simulate the summer precipitation in Colombia, for the present climate (1971-2000), has been analyzed by calculating the differences between the simulated and observed precipitation values, with the result that the precipitation simulations made for the GCMs show strong biases. However, SD models applied to the SLP output from GCMs demonstrate their ability to faithfully reproduce the rainfall field. Finally, for summer precipitation projections in Colombia for the period 2071-2100, the SD models, recalibrated for the total period 1950-2010, have been applied to the SLP output from GCMs under the RCP2.6, RCP4.5, and RCP8.5 scenarios. The SD estimations show considerable differences with respect to SD present values, generally towards precipitation increases. The SD MIROC5, HAdGEM2-AO, and CESM1(CAM5) present significant changes in all the regions for both the RCP4.5 and RCP8.5 scenarios. So, for the RCP8.5 these models project changes between 12.85% and 18.32% for the NWC region, 6.73% and 10.02% for

  9. Lectures given at the C.I.M.E. Summer School

    CERN Document Server

    Gastaldi, Lucia

    2008-01-01

    Since the early 70's, mixed finite elements have been the object of a wide and deep study by the mathematical and engineering communities. The fundamental role of this method for many application fields has been worldwide recognized and its use has been introduced in several commercial codes. An important feature of mixed finite elements is the interplay between theory and application. Discretization spaces for mixed schemes require suitable compatibilities, so that simple minded approximations generally do not work and the design of appropriate stabilizations gives rise to challenging mathematical problems. This volume collects the lecture notes of a C.I.M.E. course held in Summer 2006, when some of the most world recognized experts in the field reviewed the rigorous setting of mixed finite elements and revisited it after more than 30 years of practice. Applications, in this volume, range from traditional ones, like fluid-dynamics or elasticity, to more recent and active fields, like electromagnetism.

  10. Interpretive video analyses of children's inquiry: Fantasy and other emergent contexts at a summer science camp for elementary school children

    Science.gov (United States)

    Beck, Diana Pyse

    This study looks at learning contexts and the kinds of learning events that evolve out of a particular context. A former teacher and teacher educator spent several weeks each summer for three years at a Summer Science Camp (SSC) for children. The camp was designed to promote inquiry in science learning for both teachers and the young elementary school-age campers. For this study a group of four children was video taped and observed for two weeks during one of the summers. Using a constructivist approach, written transcripts, video tapes, and fieldnotes were subjected to several methods of analysis to develop an understanding of how the children worked together and apart during this time. Various constructs developed from data gathered in other summers were used to help develop an understanding of the events of the two weeks. Several new constructs for investigating children's learning in science are proposed in this study, including a construct or a unit of study for analyzing children's learning called "spheres of activity." Examinations of spheres include looking at the commonalities expressed by the children included in a sphere. One of these is the way language is used by members of a sphere. Another is the development of fantasies within the sphere or the way fantasies develop out of the activities. This includes how individual children contribute to fantasy constructions and the role that the development of fantasies plays in the children's inquiries into the science phenomena under investigation. Further analysis is done on the deep structures of those fantasies. In addition, the way children use tasks or develop tasks out of the projects assigned by teachers is examined as are the kinds of relationships the children have with the phenomena under investigation. This study enlarges and expands, not only the ways of thinking about and looking at children's science investigations, but also the language we are then able to use when investigating and describing

  11. Summer Appendicitis

    African Journals Online (AJOL)

    hanumantp

    diet, during summer months could be contribute to the higher incidence of appendicitis ... To examine the global trends in the seasonality of appendicitis, .... Iran. Summer. [11]. 1998-2004. 1331. Italy. Summer. [12]. 1991-1998. 65,675. Canada.

  12. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part I - observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Diro, G.T. [The Abdus salam International Centre for Theoretical Physics, Earth System Physics section, Trieste (Italy); University of Reading, Department of Meteorology, Reading (United Kingdom); Grimes, D.I.F.; Black, E. [University of Reading, Department of Meteorology, Reading (United Kingdom)

    2011-07-15

    In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections. (orig.)

  13. The Influence of Science Summer Camp on African-American High School Students' Career Choices

    Science.gov (United States)

    Bhattacharyya, Sumita; Mead, Timothy P.; Nathaniel, Rajkumar

    2011-01-01

    This study explored if a weeklong science camp changed Louisiana African-American high school students' perception of science. A semi-structured survey was used before and after the camp to determine the changes in science attitudes and career choices. Among the perceived benefits were parental involvement, increased science academic ability, and…

  14. Results of Kinder Camp: Stovall-Shaw Elementary School, Summer 2001.

    Science.gov (United States)

    Irvine, David J.

    North Carolina's Kinder Camp is a 4-week program designed to prepare children for entry into kindergarten. All participants must have completed Project Family Read. A North Carolina elementary school measured the programs effectiveness by using the Cognitive/Language Profile of the American Guidance Service Early Screening Profiles as a pre- and…

  15. Pick it up with light! An advanced summer program for secondary school students

    Science.gov (United States)

    Mathew, Manoj; Kumar, S. C.; Valencia, Alejandra; Volpe, Giorgio; Volpe, Giovanni; Carrasco, Silvia

    2014-07-01

    A project to introduce secondary school students to statistical physics and biophotonics by means of an optical tweezers is presented. Interestingly, the project is completely experimental and no advanced calculus or physics knowledge is necessary. The project starts from the construction of the optical tweezers itself and therefore is also useful to introduce basic concepts of optics.

  16. Summer Research Program (1992). High School Apprenticeship Program (HSAP) Reports. Volume 12. Armstrong Laboratory.

    Science.gov (United States)

    1992-12-28

    1992. 1-15 THE STUDY OF GAS CROMATOGRAPHY : VOLATILE ORGANICS Esteban Arredondo Student Apprentice Volatile Organics Division Brackenridge High School...solve problems in the domain. Second, the system must be able to deduce a learner’s approximation of that knowledge. Third, the tutorial strategy must

  17. Modelling of air quality for Winter and Summer episodes in Switzerland. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S.; Keller, J.; Barmpadimos, L.; Oderbolz, D.; Tinguely, M.; Prevot, A. [Paul Scherrer Institute (PSI), Laboratory of Atmospheric Chemistry, Villigen (Switzerland); Alfarra, R. [University of Manchester, Manchester (United Kingdom); Sandradewi, J. [Jisca Sandradewi, Hoexter (Germany)

    2009-05-15

    This final report issued by the General Energy Research Department and its Laboratory of Atmospheric Chemistry at the Paul Scherrer Institute (PSI) reports on the results obtained from the modelling of regional air quality for three episodes, January-February 2006, June 2006 and January 2007. The focus of the calculations is on particulate matter concentrations, as well as on ozone levels in summer. The model results were compared with the aerosol data collected by an Aerosol Mass Spectrometer (AMS), which was operated during all three episodes as well as with the air quality monitoring data from further monitoring programs. The air quality model used in this study is described and the results obtained for various types of locations - rural, city, high-altitude and motorway-near - are presented and discussed. The models used are described.

  18. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    Science.gov (United States)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread

  19. An integrative estimation model of summer rainfall-band patterns in China

    Institute of Scientific and Technical Information of China (English)

    WEI Fengying

    2007-01-01

    Three variation indices are defined to objectively and quantitatively represent fluctuations of three rainfall-band patterns in summers in China for the period from 1951 to 2005, and the variation features of these indices are analyzed on both of interdecadal and interannual scales. A new method is proposed to establish an integrative estimation model based on the analysis of rainfall-band indices, and the model is applied to air, ocean factors to estimate their roles on variations of three rainfall-band patterns on different time-scales. The tests of estimation effects show that the fluctuations of three rainfall-band patterns are composed of variations on both significant interdecadal and interannual scales, of which the interannual variation is mainly influenced by the Elnino/Lanina events, the East Asia monsoon and the ridge locations of subtropical high pressures in western pacific, while the interdecadal variation is mainly controlled by the Pacific decadal oscillation and interdecadal oscillations of the Arctic oscillation, ENSO, Nino3 sea surface temperature and summer monsoon. The estimated results from the integrative estimation model of rainfall-band patterns suggest that the way of estimation first according to each time scale of both the interdecadal and interannual scales, then estimating with an integration, which is proposed in this paper, has an obvious improvement on that without separation of time scales.

  20. Projected changes in South Asian summer monsoon by multi-model global warming experiments

    Science.gov (United States)

    Sabade, S. S.; Kulkarni, Ashwini; Kripalani, R. H.

    2011-03-01

    South Asian summer monsoon (June through September) rainfall simulation and its potential future changes are evaluated in a multi-model ensemble of global coupled climate models outputs under World Climate Research Program Coupled Model Intercomparison Project (WCRP CMIP3) dataset. The response of South Asian summer monsoon to a transient increase in future anthropogenic radiative forcing is investigated for two time slices, middle (2031-2050) and end of the twenty-first century (2081-2100), in the non-mitigated Special Report on Emission Scenarios B1, A1B and A2 .There is large inter-model variability in the simulation of spatial characteristics of seasonal monsoon precipitation. Ten out of the 25 models are able to simulate space-time characteristics of the South Asian monsoon precipitation reasonably well. The response of these selected ten models has been examined for projected changes in seasonal monsoon rainfall. The multi-model ensemble of these ten models projects a significant increase in monsoon precipitation with global warming. The substantial increase in precipitation is observed over western equatorial Indian Ocean and southern parts of India. However, the monsoon circulation weakens significantly under all the three climate change experiments. Possible mechanisms for the projected increase in precipitation and for precipitation-wind paradox have been discussed. The surface temperature over Asian landmass increases in pre-monsoon months due to global warming and heat low over northwest India intensifies. The dipole snow configuration over Eurasian continent strengthens in warmer atmosphere, which is conducive for the enhancement in precipitation over Indian landmass. No notable changes have been projected in the El Niño-Monsoon relationship, which is useful for predicting interannual variations of the monsoon.

  1. Preparation For Medical School via an Intensive Summer Program for Future Doctors: A Pilot Study of Student Confidence and Reasoning Skills

    Science.gov (United States)

    Musick, David W.; Ray, Richard H.

    2016-01-01

    A medical school conducted a summer pre-matriculation program. The program provided basic sciences content comparable to first year medical student instruction along with clinical and other learning experiences. The study purpose was to examine self-confidence levels and reasoning skills of a single cohort of students. We examined the association…

  2. School Counselors' Experiences with a Summer Group Curriculum for High-Potential Children from Low-Income Families: A Qualitative Study

    Science.gov (United States)

    Peterson, Jean Sunde

    2013-01-01

    School counselors facilitated group guidance for children from low-income families and assisted in classrooms with a full economic range during a summer academic program for young gifted children in order to increase knowledge about giftedness. This qualitative study explored how the counselors experienced being immersed with gifted children. The…

  3. School Counselors' Experiences with a Summer Group Curriculum for High-Potential Children from Low-Income Families: A Qualitative Study

    Science.gov (United States)

    Peterson, Jean Sunde

    2013-01-01

    School counselors facilitated group guidance for children from low-income families and assisted in classrooms with a full economic range during a summer academic program for young gifted children in order to increase knowledge about giftedness. This qualitative study explored how the counselors experienced being immersed with gifted children. The…

  4. A Coupled Model Study on the Intensification of the Asian Summer Monsoon in IPCC SRES Scenarios

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered.Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakicenovic et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.

  5. 1991 Summer research program for high school juniors at the University of Rochester's Laboratory for Laser Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Meyerhofer, David D.

    1991-09-01

    Ten students participated in the 1991 summer high school student research program at the University of Rochester's Laboratory for Laser Energetics (LLE). The participants spent 8 weeks working and learning at LLE. They spent most of their time working on individual research projects. Each student was assigned a project, upon which he/she worked under the direct supervision of one of the staff members of the laboratory. The students, their high schools, and their projects are listed in Table 1. The program culminated in oral and written reports describing their work. The oral reports were presented at a symposium on 23 August 1991, at which the student's parents and teachers and members of the LLE staff were present. The written reports are collected in this volume. The titles of the works are UV alignment table; neutron yields can be measured by using the relative gain of a photomultiplier tube; scattering in isotropic and anisotropic media; a better approximation of the diffusion equation; use of the SLAC code to produce a photoemissive electrostatic electron gun; spatial resolution deteriorates with increasing film exposure; analysis of refractive image distortion; making of pinholes for x-ray pinhole cameras; does perturbation theory accurately describe multiphoton ionization and wave front analysis using shearing interferometry.

  6. A simple regional coupled model experiment for summer-time climate simulation over southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Ratnam, J.V.; Behera, S.K. [Research Institute for Global Change, Yokohama, Kanagawa (Japan); Application Laboratory, Yokohama (Japan); Masumoto, Y. [Research Institute for Global Change, Yokohama, Kanagawa (Japan); Takahashi, K. [Application Laboratory, Yokohama (Japan); Earth Simulator Center, Yokohama (Japan); Yamagata, T. [Application Laboratory, Yokohama (Japan); The University of Tokyo, School of Science, Tokyo (Japan)

    2012-11-15

    The main aim of this paper is to evaluate the Advanced Research Weather Research and Forecasting (WRF) regional model in simulating the precipitation over southern Africa during austral summer. The model's ability to reproduce the southern African mean climate and its variability around this mean state was evaluated by using the two-tier approach of specifying sea surface temperature (SST) to WRF and by using the one-tier approach of coupling the WRF with a simple mixed-layer ocean model. The boundary conditions provided by the reanalysis-II data were used for the simulations. Model experiments were conducted for twelve austral summers from DJF1998-99 to DJF2009-10. The experiments using both the two-tier and one-tier approaches simulated the spatial and temporal distributions of the precipitation realistically. However, both experiments simulated negative biases over Mozambique. Furthermore, analysis of the wet and dry spells revealed that the one-tier approach is superior to the two-tier approach. Based on the analysis of the surface temperature and the zonal wind shear it is noted that the simple mixed-layer ocean model coupled to WRF can be effectively used in place of two-tier WRF to simulate the climate of southern Africa. This is an important result because specification of SST at higher temporal resolutions in the subtropics is the most difficult task in the two-tier approach for most regional prediction models. The one-tier approach with the simple mixed-layer model can effectively reduce the complicacy of finding good SST predictions. (orig.)

  7. Understanding Business Models in Pharmacy Schools

    Science.gov (United States)

    Holdford, David A.

    2017-01-01

    The objectives of this article are to define business models, contrast the business models in pharmacy schools, and discuss issues that can arise from misunderstandings about whom pharmacy schools serve and how they do so. PMID:28720910

  8. [Modeling Study of A Typical Summer Ozone Pollution Event over Yangtze River Delta].

    Science.gov (United States)

    Zhang, Liang; Zhu, Bin; Gao, Jin-hui; Kang, Han-qing; Yang, Peng; Wang, Hong-lei; Li, Yue-e; Shao, Ping

    2015-11-01

    WRF/Chem model was used to analyze the temporal and spatial distribution characteristics and physical and chemical mechanism of a typical summer ozone pollution event over Yangtze River Delta (YRD). The result showed that the model was capable of reproducing the temporal and spatial distribution and evolution characteristics of the typical summer ozone pollution event over YRD. The YRD region was mainly affected by the subtropical high-pressure control, and the weather conditions of sunshine, high temperature and small wind were favorable for the formation of photochemical pollution on August 10-18, 2013. The results of simulation showed that the spatial and temporal distribution of O3 was obviously affected by the meteorological fields, geographic location, regional transport and chemical formation over YRD. The sensitivity experiment showed that the O3 concentration affected by maritime airstream was low in Shanghai, but the impact of Shanghai emissions on the spatial and temporal distribution of O3 concentration over YRD was significant; The main contribution of the high concentration of O3 in Nanjing surface was chemical generation ( alkene and aromatic) and the vertical transport from high-altitude O3, whereas the main contribution of the high concentration of O3 in Hangzhou and Suzhou was physics process. The influence of the 15:00 peak concentration of O3 over YRD was very obvious when O3 precursor was reduced at the maximum O3 formation rate (11-13 h).

  9. Modeling human health risks of airborne endotoxin in homes during the winter and summer seasons

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Vivian Hsiu-Chuan, E-mail: vivianliao@ntu.edu.tw [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan (China); Chio, Chia-Pin; Chou, Wei-Chun; Ju, Yun-Ru; Liao, Chung-Min [Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2010-03-01

    Endotoxin, a component of gram-negative bacterial cell walls, is a pro-inflammatory agent that induces local and systemic inflammatory responses in normal subjects which can contribute to the risk of developing asthma and chronic obstructive lung diseases. A probabilistic approach linking models of exposure, internal dosimetry, and health effects was carried out to quantitatively assess the potential inhalation risk of airborne endotoxin in homes during the winter and summer seasons. Combining empirical data and modeling results, we show that the half-maximum effect of the endotoxin dose (ED50) was estimated to be 707.9 (95% confidence interval (CI): 308.8-1287.0) endotoxin units (EU) for body temperature change, 481.8 (95% CI: 333.2-630.3) EU for elevation of neutrophils, and 1174.5 (95% CI: 816.0-1532.9) EU for elevation of the cytokine, interleukin-6. Our study also suggests that airborne endotoxin in homes may pose potential risks, and a higher risk for elevation of neutrophils and cytokine interleukin-6 appeared in winter season than in summer. Our study offers a risk-management framework for discussion of future studies of human respiratory exposure to airborne endotoxin.

  10. Boreal summer intraseasonal oscillations and seasonal Indian monsoon prediction in DEMETER coupled models

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Susmitha; Sahai, A.K.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Climate and Global Modeling Division, Pune (India)

    2010-09-15

    Even though multi-model prediction systems may have better skill in predicting the interannual variability (IAV) of Indian summer monsoon (ISM), the overall performance of the system is limited by the skill of individual models (single model ensembles). The DEMETER project aimed at seasonal-to-interannual prediction is not an exception to this case. The reasons for the poor skill of the DEMETER individual models in predicting the IAV of monsoon is examined in the context of the influence of external and internal components and the interaction between intraseasonal variability (ISV) and IAV. Recently it has been shown that the ISV influences the IAV through very long breaks (VLBs; breaks with duration of more than 10 days) by generating droughts. Further, all VLBs are associated with an eastward propagating Madden-Julian Oscillation (MJO) in the equatorial region, facilitated by air-sea interaction on intraseasonal timescales. This VLB-drought-MJO relationship is analyzed here in detail in the DEMETER models. Analyses indicate that the VLB-drought relationship is poorly captured by almost all the models. VLBs in observations are generated through air-sea interaction on intraseasonal time scale and the models' inability to simulate VLB-drought relationship is shown to be linked to the models' inability to represent the air-sea interaction on intraseasonal time scale. Identification of this particular deficiency of the models provides a direction for improvement of the model for monsoon prediction. (orig.)

  11. PREP Program: High school urban engineering technical progress report, Summer 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Urban Engineering Program at the New Jersey Institute of Technology which as its primary objective is to introduce the students to the excitement of science and engineering as potential career opportunities, and to encourage the youngsters to adequately prepare in high school and in college for such an attainable endeavor. Through the course work, workshops, projects, guest speakers, and laboratory experiences, the students are not only introduced to the problems in urban areas, but also are introduced to the tools and analysis available to solve such problems.

  12. USAF Summer Research Program - 1993 High School Apprenticeship Program Final Reports, Volume 15, Wright Laboratory

    Science.gov (United States)

    1993-12-01

    North Jackson St. Vol-Page No: 16- 1 Tullahoma High School Tullahoma, TN 37388-0000 Bowlby , Andrea Laboratory: PL/GP Mudge Way Vol-Page No: 13- 1...product was printed out computers and I learned what having a full time job is and compiled in a binder. like. I also plotted several graphs for John ...Sikora Ray Fisher Scott Hamilton Larry Kretz Larry Marcum Doug Dolvin Ron Dittmer John Pappas Fred Hussong Joe Pokorski 17-14 THE EFFECTS OF MOISTURE ON

  13. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere.

  14. SVD Iteration Model and Its Use in Prediction of Summer Precipitation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongling; DING Yuguo; WANG Jijun

    2008-01-01

    A new short-term climatic prediction model based on the singular value decomposition(SVD)iteration Was designed with solid mathematics and strict logical reasoning.Taking predictors into prediction model,using iteration computation,and substituting the last results into the next computation,we can acquire better results with improved precision. Precipitation prediction experiments were separately done for 16 stations in North China and 30 stations in the mid-lower catchment of the Yangtze River during 1991-2000.Their average mean square errors are 0.352 and 0.312,and the results are very stable.Mean square errors of 9 yr are less than 0.5 while only that of 1、yr is more than 0.5.The mean sign correlation coefficients between forecast and observed summer precipitation during 1991-2000 are 0.575 in North China and 0.623 in the mid-lower catchment of the Yangtze River.Librations of them in North China during the 10 years are small.0nly in 1996 the sign correlation coefficient is below 0.5:the others are all over 0.5.But sign correlation coefficients in the mid-lower catchment of the Yangtze River vary obviously.The lowest is only 0.3 in 1992,and the highest is 0.9 in 1998,As the distribution of the forecast precipitation anomaly field in the summer 1998 of is examined,it is known that the model captured the positive and negative anomalyies of precipitation,and also well forecasted the anomaly distributions.But the errors are obvious in quantities between the forecast and the observed precipitation anomalies. Climate characteristics of large scale meteorological elements,such as summer precipitation have obvious differences in spatial distribution. We Can forecast better if we divide a big region into many subregions according to the discrepancy of climatic characteristics in the region.and predict in each subregion.The research shows that the model of SVD iteration is a very effective forecast model and has a strongly applicable value.

  15. Understanding Stress-Related Behavioral Phenotypes: Report from the 1st International Neuroscience Summer School and the 11th International “Stress and Behavior” Conference

    Directory of Open Access Journals (Sweden)

    J. L. LaPorte

    2008-01-01

    Full Text Available The 1st International Neuroscience Summer School and the 11th International Multidisciplinary Neuroscience and Biopsychiatry Conference on Stress and Behavior were held in St. Petersburg, Russia, during May 9–20, 2008. The summer school gathered 30 talented young scientists from 15 countries worldwide, and was dedicated to different topics of behavioral neuroscience. Many interactive courses were provided on neuropharmacology, animal phenotyping, and biopsychology. The conference's excellent scientific and social program attracted almost 500 delegates from 40 countries from many areas of stress research. The eclectic interaction between medical doctors, basic scientists, psychologists, and students made for a productive and collaborative environment, which contributed greatly to the success of the school and conference.

  16. Multi-model evaluation of short-lived pollutant distributions over east Asia during summer 2008

    Science.gov (United States)

    Quennehen, B.; Raut, J.-C.; Law, K. S.; Daskalakis, N.; Ancellet, G.; Clerbaux, C.; Kim, S.-W.; Lund, M. T.; Myhre, G.; Olivié, D. J. L.; Safieddine, S.; Skeie, R. B.; Thomas, J. L.; Tsyro, S.; Bazureau, A.; Bellouin, N.; Hu, M.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Myriokefalitakis, S.; Quaas, J.; Rumbold, S. T.; Schulz, M.; Cherian, R.; Shimizu, A.; Wang, J.; Yoon, S.-C.; Zhu, T.

    2016-08-01

    The ability of seven state-of-the-art chemistry-aerosol models to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over eastern Asia in summer 2008, is evaluated. The study focuses on the performance of models used to assess impacts of pollutants on climate and air quality as part of the EU ECLIPSE project. Models, run using the same ECLIPSE emissions, are compared over different spatial scales to in situ surface, vertical profiles and satellite data. Several rather clear biases are found between model results and observations, including overestimation of ozone at rural locations downwind of the main emission regions in China, as well as downwind over the Pacific. Several models produce too much ozone over polluted regions, which is then transported downwind. Analysis points to different factors related to the ability of models to simulate VOC-limited regimes over polluted regions and NOx limited regimes downwind. This may also be linked to biases compared to satellite NO2, indicating overestimation of NO2 over and to the north of the northern China Plain emission region. On the other hand, model NO2 is too low to the south and west of this region and over South Korea/Japan. Overestimation of ozone is linked to systematic underestimation of CO particularly at rural sites and downwind of the main Chinese emission regions. This is likely to be due to enhanced destruction of CO by OH. Overestimation of Asian ozone and its transport downwind implies that radiative forcing from this source may be overestimated. Model-observation discrepancies over Beijing do not appear to be due to emission controls linked to the Olympic Games in summer 2008.With regard to aerosols, most models reproduce the satellite-derived AOD patterns over eastern China. Our study nevertheless reveals an overestimation of ECLIPSE model mean surface BC and sulphate aerosols in urban China in summer 2008. The effect of the short-term emission mitigation in Beijing

  17. Intraseasonal Variability of the Indian Summer Monsoon in the Regional Climate Model COSMO-CLM

    Science.gov (United States)

    Befort, Daniel J.; Leckebusch, Gregor C.; Cubasch, Ulrich

    2015-04-01

    The regional climate model COSMO-CLM driven by ERA-Interim reanalysis data with a spatial resolution of 55km is used to simulate observed features of the intraseasonal variability of the Indian summer monsoon (ISM) during the period 1979 until 2011. One of these features is the northward propagation of the monsoon intraseasonal oscillations. We find, that the temporal evolution of this oscillation between model and observation is in good agreement, but the strength is less well simulated. Additionally, the models capability to simulate observed dry and wet events on a weekly time scale is investigated using the standardized precipitation index. In general, the model is capable to simulate these events with a similar magnitude at the same time, but we find a higher ability for dry compared to wet events. We hypothesize this is related to differences in the atmospheric circulation during dry and wet events. Analyses show, that dry events are characterized by a cyclonic vortex over India as well as an anti-cyclonic vortex over Pakistan region in 500hPa, whereas wet events are characterized by an anti-cyclonic vortex over India, only. It is found that COSMO-CLM has a higher ability to simulate the observed anomalous circulation over Pakistan region compared to observed anomalous circulation patterns over India. Overall, this study shows that the current configuration of COSMO-CLM is able to simulate key features of the intraseasonal variability of the Indian summer monsoon. Thus, under consideration of its limitations, COSMO-CLM is suitable to investigate possible changes of the intraseasonal variability of ISM under changed climate conditions.

  18. Multi-model evaluation of short-lived pollutant distributions over East Asia during summer 2008

    Directory of Open Access Journals (Sweden)

    B. Quennehen

    2015-04-01

    Full Text Available The ability of six global and one regional model to reproduce distributions of tropospheric ozone and its precursors, as well as aerosols over Asia in summer 2008 is evaluated using satellite and in-situ observations. Whilst ozone precursors (NO2 and CO are generally underestimated by the models in the troposphere, surface NO2 concentrations are overestimated, suggesting that emissions of NOx are too high. Ozone integrated columns and vertical profiles are generally well modeled, but the global models face difficulties simulating the ozone gradient at the surface between urban and rural environments, pointing to the need to increase model resolution. The accuracy of simulated aerosol patterns over eastern China and northern India varies between the models, and although most of the models reproduce the observed pollution features over eastern China, significant biases are noted in the magnitude of optical properties (aerosol optical depth, aerosol backscatter. These results have important implications for accurate prediction of pollution episodes affecting air quality and the radiative effects of these short-lived climate pollutants over Asia.

  19. Impact of East Asian summer monsoon circulation on the regional aerosol distribution in observations and models

    Science.gov (United States)

    Wang, Hongli; Xie, Xiaoning; Yan, Libin; Liu, Xiaodong

    2017-06-01

    The East Asian summer monsoon (EASM) can change the spatio-temporal distribution of aerosols by influencing the aerosol horizontal and vertical transports and the wet deposition of aerosols over East Asia. In this paper, we examined the aerosol optical depth (AOD) during summer together with the intensity of the EASM based on moderate-resolution imaging spectroradiometer products on board the Terra satellite and the modeling results from the NCAR Community Atmospheric Model 5.1 in the mid-latitude monsoonal East Asia (20-45° N, 105-130° E). Our results from both observations and simulations show positive correlations of AOD with the monsoon intensity over the Northeast Asia sub-region (32.5-45° N, 105-130° E), and negative correlations with that over the southeast Asia sub-region (20-32.5° N, 105-130° E). The observed and simulated AODs were much larger over the northern sub-region and much smaller over the southern sub-region in the strongest monsoon years compared with those in the weakest monsoon years. The model results suggest that the mechanism responsible for the north-south difference in the aerosol distribution was mainly caused by lower-tropospheric meridional wind anomalies related to EASM. Compared with the weakest monsoon years, the strongest monsoon years experienced southerly wind anomalies, which enabled more aerosols to be transported northward and resulted in a convergence of aerosols over the northern sub-region. In addition, the wet deposition of aerosols reduced (enhanced) the aerosol concentrations in the northern (southern) sub-region during the strongest monsoon years compared with the weakest monsoon years, which partly offset the impact of the lower southerly winds on the aerosol distribution over East Asia.

  20. Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change

    Science.gov (United States)

    Syed, F. S.; Iqbal, Waheed; Syed, Ahsan Ali Bukhari; Rasul, G.

    2014-04-01

    The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971-2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071-2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.

  1. 60th Scottish Universities Summer School in Physics: 6th Laser-plasma interactions

    CERN Document Server

    Cairns, R A; Jaroszinski, D A

    2009-01-01

    Presents diagnostic methods, experimental techniques, and simulation tools used to study and model laser-plasma interactions. This book discusses the basic theory of the interaction of intense electromagnetic radiation fields with matter.

  2. Argus: An Io observer mission concept study from the 2014 NASA/JPL Planetary Science Summer School

    Science.gov (United States)

    Hays, L. E.; Holstein-Rathlou, C.; Becerra, P.; Basu, K.; Davis, B.; Fox, V. K.; Herman, J. F. C.; Hughes, A. C. G.; Keane, J. T.; Marcucci, E.; Mendez-Ramos, E.; Nelessen, A.; Neveu, M.; Parrish, N. L.; Scheinberg, A. L.; Wrobel, J. S.

    2014-12-01

    Jupiter's satellite Io represents the ideal target for studying extreme tidal heating and volcanism, two of the most important processes in the formation and evolution of planetary bodies. The 2011 Planetary Decadal Survey identified an Io Observer as a high-priority New Frontiers class mission to be considered for the decade 2013-2022. In response to the 2009 New Frontiers Announcement of Opportunity, we propose a mission concept for an Io Observer mission, named Argus (after the mythical watchman of Io), developed by the students of the August 2014 session of the Planetary Science Summer School hosted by NASA's Jet Propulsion Laboratory, together with JPL's Team X. The goals of our mission are: (i) Study the effects of tidal heating and its implications for habitability in the Solar System and beyond; (ii) Investigate active lava flows on Io as an analog for early Earth; (iii) Analyze the interaction of Io with the Jovian system through material exchange and magnetospheric activity; (iv) Study the internal structure of Io, as well as its chemical and tectonic history in order to gain insight into its formation and that of the other Galilean satellites.

  3. Mission to the Trojan Asteroids: lessons learned during a JPL Planetary Science Summer School mission design exercise

    CERN Document Server

    Diniega, Serina; Balcerski, Jeffrey; Carande, Bryce; Diaz-Silva, Ricardo A; Fraeman, Abigail A; Guzewich, Scott D; Hudson, Jennifer; Nahm, Amanda L; Potter-McIntyre, Sally; Route, Matthew; Urban, Kevin D; Vasisht, Soumya; Benneke, Bjoern; Gil, Stephanie; Livi, Roberto; Williams, Brian; Budney, Charles J; Lowes, Leslie L; 10.1016/j.pss.2012.11.011

    2013-01-01

    The 2013 Planetary Science Decadal Survey identified a detailed investigation of the Trojan asteroids occupying Jupiter's L4 and L5 Lagrange points as a priority for future NASA missions. Observing these asteroids and measuring their physical characteristics and composition would aid in identification of their source and provide answers about their likely impact history and evolution, thus yielding information about the makeup and dynamics of the early Solar System. We present a conceptual design for a mission to the Jovian Trojan asteroids: the Trojan ASteroid Tour, Exploration, and Rendezvous (TASTER) mission, that is consistent with the NASA New Frontiers candidate mission recommended by the Decadal Survey and the final result of the 2011 NASA-JPL Planetary Science Summer School. Our proposed mission includes visits to two Trojans in the L4 population: a 500 km altitude fly-by of 1999 XS143, followed by a rendezvous with and detailed observations of 911 Agamemnon at orbital altitudes of 1000 - 100 km over ...

  4. Modelling the upwelling offthe east Hainan Island coast in summer 2010

    Science.gov (United States)

    Bai, Peng; Gu, Yanzhen; Li, Peiliang; Wu, Kejian

    2016-11-01

    A synoptic-scale upwelling event that developed offthe east coast of the Hainan Island (EHIU) in the summer of 2010 is defined well via processing the Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) data. The Regional Ocean Modeling System (ROMS) with high spatial resolution has been used to investigate this upwelling event. By comparing the ROMS results against tide station data, Argo float profiles and MODIS SST, it is confirmed that the ROMS reproduces the EHIU well. The cooler-water core (CWC) distinguished by waters wind stress curl that dominated the east Qiongzhou Strait mouth area suppressed the intensity of the CWC by 0.2-0.4°C. Further, nonlinear interaction between tidal currents and wind stress enhanced vertical mixing greatly, which would benefit the development of the CWC.

  5. Preliminary Outcomes from a Week-Long Environmental Engineering Summer Camp for High School Female Students

    Science.gov (United States)

    Balasubramanian, S.; Koloutsou-Vakakis, S.

    2014-12-01

    There is a need for environment engineers and sustainability managers to address global environmental, energy and health challenges. Environmental literacy programs at K-12 level provide a unique opportunity in motivating young minds in joining STEM and also provide additional value in learning about "saving planet earth". The Women in Engineering at the University of Illinois organize an annual week long camp, for female high school students with tracks corresponding to different fields of Engineering. The Environmental Engineering and Sustainability (EES) track is organized by faculty and graduate students of the Civil and Environmental Engineering department and introduces students to concepts in sustainability and systems thinking in connection with air and water quality, climate change and renewable energy. This study is a preliminary assessment of the relevance of the EES outreach track conducted in July 2014 in student learning. Specific goals include assessing (a) demographics of participants and their motivation to join this camp, (b) educational and enjoyability quotients of the modules and (c) learning and motivational outcomes using the Likert scale. A pre-camp survey indicated keen interest in learning about environmental engineering (4.56/5.0) and expected this camp to be a venue to learn about related career choices (4.9/5.0). Five days of instruction were divided thematically and included a mix of lectures, activity based learning, demonstrations and field visits. Overall modules were rated as educational (4.4/5.0) and enjoyable (4.5/5.0). Modules with hands-on learning were best received (4.67/5.0) and rated unique (4.7/5.0). Post camp, participants acknowledged the important contribution of environmental engineers to society (4.8/5.0) and could relate the different modules to the role engineer's play (4.06/5.0) for sustainability. On an average, the participants evinced interest in engineering as a career choice (4.0/5.0) but there was a broader

  6. Multivariate Regression Analysis and Statistical Modeling for Summer Extreme Precipitation over the Yangtze River Basin, China

    Directory of Open Access Journals (Sweden)

    Tao Gao

    2014-01-01

    Full Text Available Extreme precipitation is likely to be one of the most severe meteorological disasters in China; however, studies on the physical factors affecting precipitation extremes and corresponding prediction models are not accurately available. From a new point of view, the sensible heat flux (SHF and latent heat flux (LHF, which have significant impacts on summer extreme rainfall in Yangtze River basin (YRB, have been quantified and then selections of the impact factors are conducted. Firstly, a regional extreme precipitation index was applied to determine Regions of Significant Correlation (RSC by analyzing spatial distribution of correlation coefficients between this index and SHF, LHF, and sea surface temperature (SST on global ocean scale; then the time series of SHF, LHF, and SST in RSCs during 1967–2010 were selected. Furthermore, other factors that significantly affect variations in precipitation extremes over YRB were also selected. The methods of multiple stepwise regression and leave-one-out cross-validation (LOOCV were utilized to analyze and test influencing factors and statistical prediction model. The correlation coefficient between observed regional extreme index and model simulation result is 0.85, with significant level at 99%. This suggested that the forecast skill was acceptable although many aspects of the prediction model should be improved.

  7. Prediction of Monthly Summer Monsoon Rainfall Using Global Climate Models Through Artificial Neural Network Technique

    Science.gov (United States)

    Nair, Archana; Singh, Gurjeet; Mohanty, U. C.

    2017-08-01

    The monthly prediction of summer monsoon rainfall is very challenging because of its complex and chaotic nature. In this study, a non-linear technique known as Artificial Neural Network (ANN) has been employed on the outputs of Global Climate Models (GCMs) to bring out the vagaries inherent in monthly rainfall prediction. The GCMs that are considered in the study are from the International Research Institute (IRI) (2-tier CCM3v6) and the National Centre for Environmental Prediction (Coupled-CFSv2). The ANN technique is applied on different ensemble members of the individual GCMs to obtain monthly scale prediction over India as a whole and over its spatial grid points. In the present study, a double-cross-validation and simple randomization technique was used to avoid the over-fitting during training process of the ANN model. The performance of the ANN-predicted rainfall from GCMs is judged by analysing the absolute error, box plots, percentile and difference in linear error in probability space. Results suggest that there is significant improvement in prediction skill of these GCMs after applying the ANN technique. The performance analysis reveals that the ANN model is able to capture the year to year variations in monsoon months with fairly good accuracy in extreme years as well. ANN model is also able to simulate the correct signs of rainfall anomalies over different spatial points of the Indian domain.

  8. Lectures given at the C.I.M.E. Summer School

    CERN Document Server

    Wong, M

    2008-01-01

    Pseudo-differential operators were initiated by Kohn, Nirenberg and Hörmander in the sixties of the last century. Beside applications in the general theory of partial differential equations, they have their roots also in the study of quantization first envisaged by Hermann Weyl thirty years earlier. Thanks to the understanding of the connections of wavelets with other branches of mathematical analysis, quantum physics and engineering, such operators have been used under different names as mathematical models in signal analysis since the last decade of the last century. The volume investigates the mathematics of quantization and signals in the context of pseudo-differential operators, Weyl transforms, Daubechies operators, Wick quantization and time-frequency localization operators. Applications to quantization, signal analysis and the modern theory of PDE are highlighted.

  9. Summer stream water temperature models for Great Lakes streams: New York

    Science.gov (United States)

    Murphy, Marilyn K.; McKenna, James E.; Butryn, Ryan S.; McDonald, Richard P.

    2010-01-01

    Temperature is one of the most important environmental influences on aquatic organisms. It is a primary driver of physiological rates and many abiotic processes. However, despite extensive research and measurements, synoptic estimates of water temperature are not available for most regions, limiting our ability to make systemwide and large-scale assessments of aquatic resources or estimates of aquatic species abundance and biodiversity. We used subwatershed averaging of point temperature measurements and associated multiscale landscape habitat conditions from over 3,300 lotic sites throughout New York State to develop and train artificial neural network models. Separate models predicting water temperature (in cold, cool, and warm temperature classes) within small catchment–stream order groups were developed for four modeling units, which together encompassed the entire state. Water temperature predictions were then made for each stream segment in the state. All models explained more than 90% of data variation. Elevation, riparian forest cover, landscape slope, and growing degree-days were among the most important model predictors of water temperature classes. Geological influences varied among regions. Predicted temperature distributions within stream networks displayed patterns of generally increasing temperature downstream but were patchy due to the averaging of water temperatures within stream size-classes of small drainages. Models predicted coldwater streams to be most numerous and warmwater streams to be generally associated with the largest rivers and relatively flat agricultural areas and urban areas. Model predictions provide a complete, georeferenced map of summer daytime mean stream temperature potential throughout New York State that can be used for planning and assessment at spatial scales from the stream segment class to the entire state.

  10. Interannual sedimentary effluxes of alkalinity in the southern North Sea: Model results compared with summer observations.

    Science.gov (United States)

    Paetsch, Johannes; Kuehn, Wilfried; Six, Katharina

    2016-04-01

    Alkalinity generation in the sediment of the southern North Sea is the focus of several recent studies. One motivation for these efforts is the potentially enhanced buffering capacity of anthropogenic CO2 invasion into the corresponding pelagic system. An adaptation of a global multilayer sediment model (Heinze et al., 1999) in combination with a pelagic ecosystem model for shelf sea dynamics was used to study the benthic reactions on very different annual cycles (2001 - 2009) including the River Elbe summer flooding in 2002. The focus of this study is the efflux of alkalinity, their different contributors (aerobic respiration, denitrification, net sulfate reduction, calcite dissolution, nitrification) and their seasonal and interannual cycles. Similar to the observations covering the southern North Sea (Brenner et al., 2015) the model results show large horizontal gradients from the near-shore high productive areas with benthic remineralization up to Rmin = 10.6 mol C m-2 yr-1 and TA generation RTA = 2 mol C m-2 yr-1 to off-shore moderate productive areas with mean Rmin = 2.5 mol C m-2 yr-1 and mean TA generation RTA = 0.4 mol C m-2 yr-1. Beside calcite dissolution, aerobic respiration (producing ammonium) and denitrification are the largest contributors to alkalinity generation. Nitrification is reducing alkalinity in the sediment. Due to low regenerated primary production in summer, the year 2001 exhibits the lowest input of particulate organic matter into the sediment (POCexp=2.3 mol C m-2 yr-1), while the year 2003 exhibits the highest export production (POCexp=2.6 mol C m-2 yr-1). The biogeochemical reactions and the effluxes from the sediment follow these pelagic amplitudes with a time lag of about one year with damped amplitudes. References Brenner, H., Braeckman, U., Le Guitton, M., Meysman, F.J.R., 2015. The impact of sedimentary alkalinity release on the water column CO2 system in the North Sea. Biogeosiences Discussion, 12(15): 12395-12453. Heinze, C

  11. Modeling the Frozen-In Anticyclone in the 2005 Arctic Summer Stratosphere

    Science.gov (United States)

    Allen, D. R.; Douglass, A. R.; Manney, G. L.; Strahan, S. E.; Krosschell, J. C.; Trueblood, J.

    2010-01-01

    Immediately following the breakup of the 2005 Arctic spring stratospheric vortex, a tropical air mass, characterized by low potential vorticity (PV) and high nitrous oxide (N2O), was advected poleward and became trapped in the easterly summer polar vortex. This feature, known as a "Frozen-In Anticyclone (FrIAC)", was observed in Earth Observing System (EOS) Aura Microwave Limb Sounder (MLS) data to span the potential temperature range from approximately 580 to 1100 K (approximately 25 to 40 km altitude) and to persist from late March to late August 2005. This study compares MLS N2O observations with simulations from the Global Modeling Initiative (GMI) chemistry and transport model, the GEOS-5/MERRA Replay model, and the VanLeer Icosahedral Triangular Advection isentropic transport model to elucidate the processes involved in the lifecycle of the FrIAC which is here divided into three distinct phases. During the "spin-up phase" (March to early April), strong poleward flow resulted in a tight isolated anticyclonic vortex at approximately 70-90 deg N, marked with elevated N2O. GMI, Replay, and VITA all reliably simulted the spin-up of the FrIAC, although the GMI and Replay peak N2O values were too low. The FrIAC became trapped in the developing summer easterly flow and circulated around the polar region during the "anticyclonic phase" (early April to the end of May). During this phase, the FrIAC crossed directly over the pole between the 7th and 14th of April. The VITA and Replay simulations transported the N2O anomaly intact during this crossing, in agreement with MLS, but unrealistic dispersion of the anomaly occurred in the GMI simulation due to excessive numerical mixing of the polar cap. The vortex associated with the FrIAC was apparently resistant to the weak vertical hear during the anticyclonic phase, and it thereby protected the embedded N20 anomaly from stretching. The vortex decayed in late May due to diabatic processes, leaving the N2O anomaly exposed to

  12. Model performance metrics and process diagnostics for boreal summer intraseasonal variability

    Science.gov (United States)

    Neena, J. M.; Waliser, Duane; Jiang, Xianan

    2017-03-01

    Representation of the boreal summer intraseasonal oscillations (BSISO) is evaluated in the 20-year climate simulations from 27 general circulation models (GCMs), produced as part of a global multi-model evaluation project coordinated to study the vertical structure and physical processes of the Madden-Julian oscillation (MJO). Model performance metrics are developed to assess the simulated BSISO characteristics, with a special focus on its northward propagation over the Asian monsoon domain. Several process-oriented diagnostics developed by the MJO community are also tested for the BSISO. Simulating the phase speed and meridional extent of BSISO northward propagation, the northwest-southeast tilted rain-band structure and the quasi-biweekly mode are identified as some of the persisting problems for many GCMs. Interestingly, many of the GCMs, which capture BSISO eastward propagation, also show good fidelity in simulating BSISO northward propagation. Meridional vertical profiles of anomalous wind, temperature and diabatic heating of BSISO are better simulated in the GCMs that simulate the northward propagation. Process-oriented diagnostics based on seasonal mean vertical shear of zonal and meridional wind, large-scale rain fraction and relative humidity are also examined, but it still remains challenge to find a process diagnostic which is strongly linked to BSISO northward propagation. The complex spatial structure and presence of multi-scale disturbances, demand the development of more focused GCM evaluation metrics and process diagnostics specifically for the BSISO.

  13. Model performance metrics and process diagnostics for boreal summer intraseasonal variability

    Science.gov (United States)

    Neena, J. M.; Waliser, Duane; Jiang, Xianan

    2016-05-01

    Representation of the boreal summer intraseasonal oscillations (BSISO) is evaluated in the 20-year climate simulations from 27 general circulation models (GCMs), produced as part of a global multi-model evaluation project coordinated to study the vertical structure and physical processes of the Madden-Julian oscillation (MJO). Model performance metrics are developed to assess the simulated BSISO characteristics, with a special focus on its northward propagation over the Asian monsoon domain. Several process-oriented diagnostics developed by the MJO community are also tested for the BSISO. Simulating the phase speed and meridional extent of BSISO northward propagation, the northwest-southeast tilted rain-band structure and the quasi-biweekly mode are identified as some of the persisting problems for many GCMs. Interestingly, many of the GCMs, which capture BSISO eastward propagation, also show good fidelity in simulating BSISO northward propagation. Meridional vertical profiles of anomalous wind, temperature and diabatic heating of BSISO are better simulated in the GCMs that simulate the northward propagation. Process-oriented diagnostics based on seasonal mean vertical shear of zonal and meridional wind, large-scale rain fraction and relative humidity are also examined, but it still remains challenge to find a process diagnostic which is strongly linked to BSISO northward propagation. The complex spatial structure and presence of multi-scale disturbances, demand the development of more focused GCM evaluation metrics and process diagnostics specifically for the BSISO.

  14. Modeling summer month hydrological drought probabilities in the United States using antecedent flow conditions

    Science.gov (United States)

    Austin, Samuel H.; Nelms, David L.

    2017-01-01

    Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.

  15. Summer Season Water Temperature Modeling under the Climate Change: Case Study for Fourchue River, Quebec, Canada

    Directory of Open Access Journals (Sweden)

    Jaewon Kwak

    2017-05-01

    Full Text Available It is accepted that human-induced climate change is unavoidable and it will have effects on physical, chemical, and biological properties of aquatic habitats. This will be especially important for cold water fishes such as trout. The objective of this study is to simulate water temperature for future periods under the climate change situations. Future water temperature in the Fourchue River (St-Alexandre-de-Kamouraska, QC, Canada were simulated by the CEQUEAU hydrological and water temperature model, using meteorological inputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5 Global Circulation Models (GCMs with Representative Concentration Pathway (RCP 2.6, 4.5 and 8.5 climate change scenarios. The result of the study indicated that water temperature in June will increase 0.2–0.7 °C and that in September, median water temperature could decrease by 0.2–1.1 °C. The rise in summer water temperature may be favorable to brook trout (Salvelinus fontinalis growth, but several days over the Upper Incipient Lethal Temperature (UILT are also likely to occur. Therefore, flow regulation procedures, including cold water releases from the Morin dam may have to be considered for the Fourchue River.

  16. On a Spectrum: International Models of School Librarianship.

    Science.gov (United States)

    Knuth, Rebecca

    1999-01-01

    Explains three basic models of school librarianship: the American model, where school libraries are funded by school districts; the British model, where school and public library systems are entwined; and a combined model, in which school and public libraries coexist. Discusses models for school librarianship in developing countries are also…

  17. 'Proteomic basics--sample preparation and separation': the 1st European Summer School in Kloster Neustift, 12-18 August, 2007 Brixen/Bressanone, South Tyrol, Italy.

    Science.gov (United States)

    Marcus, Katrin; Kühn-Hölsken, Eva; Schmidt, Carla; Schulenborg, Thomas; Urlaub, Henning

    2008-01-01

    Proteomics is rapidly developing into a routine approach for protein analysis in many laboratories. The series of European-wide Summer Schools 'Proteomics Basics' (http://www.proteomic-basics.eu/) aims at teaching of comprehensive knowledge in proteomics research and applied technologies for master and graduate students and postdocs currently moving into the field of proteomic research. In the next 3 years the series will cover the theoretical basis of the fundamental topics in the various areas of proteomic analysis, i.e. sample preparation and handling, mass spectrometry, post-translational modifications and quantitation given by leading experts in the field. This summer school series embodies a unique advantage in comparison with conventional scientific meetings and university curricula: internationally renowned experts will give a detailed perspective view of the fundamentals of their particular proteome research area, something which is usually not encountered at conferences and congresses. Here, we give a report on the first European Summer School 'Sample Preparation and Handling' within the series 'Proteomic Basics' that was held at the monastery in Neustift close to Bressanone/Brixen, Italy from August 12 to 18, 2007.

  18. Replicating the Moderating Role of Income Status on Summer School Effects across Subject Areas: A Meta-Analysis

    Science.gov (United States)

    Quinn, David M.; Lynch, Kathleen; Kim, James S.

    2014-01-01

    The finding that academic summer programs are effective for low income students has been replicated across meta-analytic reviews. However, these reviews have yielded contradictory evidence about whether summer programs are more effective for lower- or higher-income students. This discrepancy may be due to income-based differences in the summer…

  19. Performance evaluation of regional climate model to simulate sub-seasonal variability of Indian Summer Monsoon

    Science.gov (United States)

    Umakanth, U.; Kesarkar, Amit P.

    2017-07-01

    The study aims to evaluate the regional climate model (RegCM) over South Asian (SA) CORDEX domain to represent seasonal and sub-seasonal variability of Indian Summer Monsoon (ISM). The model's ability is evaluated by conducting two sets of experiments using one-tier approach of coupling the RegCM with a simple mixed-layer slab ocean model (SOM) and the two-tier approach of prescribing sea surface temperature (SST) to RegCM. Two model experiments are initialized at 1st January 2000 for a period of 13 year continuous simulation at a spatial resolution of 50 km. It is found that, one-tier approach realistically represents the spatial distribution of precipitation with significant improvement noticed over central India (CI) and head Bay of Bengal (BoB) regions. In addition, it also fairly reproduced the observed mean meridional circulation response to the diabatic heating produced during ISM. Most importantly, in one-tier approach the model could able to represent the observed SST and precipitation (P) relationship with significant improvement in correlation and model response time. An important result is the representation of northwest-southeast tilt of precipitation anomalies during active/break phase of monsoon. Additionally, the lagged response of vertical profiles of specific humidity, omega, vorticity and divergence over CI with respect to peak rainfall anomaly (active phase) are relatively better represented in one-tier approach. In brief, coupling improves the performance of RegCM in simulating the space-time characteristics of monsoon ISO mode.

  20. An analytical model for wind-driven Arctic summer sea ice drift

    Directory of Open Access Journals (Sweden)

    H.-S. Park

    2015-03-01

    Full Text Available The authors present an approximate analytical model for wind-induced sea-ice drift that includes an ice–ocean boundary layer with an Ekman spiral in the ocean velocity. This model provides an analytically tractable solution that is most applicable to the marginal ice zone, where sea-ice concentration is substantially below 100%. The model closely reproduces the ice and upper-ocean velocities observed recently by the first ice-tethered profiler equipped with a velocity sensor (ITPV. The analytical tractability of our model allows efficient calculation of the sea-ice velocity provided that the surface wind field is known and that the ocean surface geostrophic velocity is relatively weak. The model is applied to estimate intraseasonal variations in Arctic sea ice cover due to short-timescale (around 1 week intensification of the southerly winds. Utilizing 10 m surface winds from ERA-Interim reanalysis, the wind-induced sea-ice velocity and the associated changes in sea-ice concentration are calculated and compared with satellite observations. The analytical model captures the observed reduction of Arctic sea-ice concentration associated with the strengthening of southerlies on intraseasonal time scales. Further analysis indicates that the wind-induced surface Ekman flow in the ocean increases the sea-ice drift speed by 50% in the Arctic summer. It is proposed that the southerly wind-induced sea-ice drift, enhanced by the ocean's surface Ekman transport, can lead to substantial reduction in sea-ice concentration over a timescale of one week.

  1. Trends of Summer Air Temperatures in the Romanian Carpathians Detected by Using a Serially Correlated Errors Model

    Directory of Open Access Journals (Sweden)

    Adina-Eliza CROITORU

    2014-11-01

    Full Text Available This paper investigates summer temperature trends in the Romanian Carpathian Mountains, for three types of topographies: summit, slope and depression. We used a change-point regression model with serially correlated errors and compared it with a mainstream change-point model with independent errors. Statistical theory ensures that the former model gives a more accurate trend analysis than the latter model. For both models we identified strongly decreasing trends before the change-point and strongly increasing trends afterwards for most summer temperature series. The change-points are more consistent with each other, in the early 80’s, when using the former model. These general results occur for all topography types. A separate multiple regression model reveals that the temperature dynamics in the Romanian Carpathians can be explained by a linear effect of several major atmospheric circulation patterns

  2. On the necessary complexity of modeling of the Polar Mesosphere Summer Echo Overshoot Effect

    Science.gov (United States)

    Biebricher, Alexander; Havnes, Ove; Bast, Radovan

    2012-06-01

    Recent numerical studies of the Polar Mesosphere Summer Echo (PMSE) Overshoot Effect predict the basic shape of the Overshoot Characteristic Curve (OCC) to undergo dramatic changes as the frequency of the radar decreases. Principally, this may render earlier modeling, which assumed near-instantaneous diffusion of electrons and ions, moot and exacerbate algebraic analysis of OCC obtained in the future with, e.g. the MORRO-radar (56 MHz) and a synchronized radio wave emitter, both at or near the European Incoherent Scatter (EISCAT) Scientific Association's site in Ramfjordmoen near Tromsø, Norway. Since, however, by far the most observational results on the PMSE Overshoot Effect have been assembled with the help of the Very High Frequency (VHF, 224 MHz) radar and the an Ultra High Frequency (UHF, 929 MHz) radar, both at the EISCAT site, we examine more closely whether near-instantaneous diffusion is a valid assumption for these particular frequencies. We show that, indeed, the earlier less complex and analytically more accessible model can still be considered sufficient for most, if not all, existing experimental data.

  3. Indian Summer

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, E. [Sho-Ban High School, Fort Hall, ID (United States)

    1997-08-01

    This paper focuses on preserving and strengthening two resources culturally and socially important to the Shoshone-Bannock Indian Tribe on the Fort Hall Reservation in Idaho; their young people and the Pacific-Northwest Salmon. After learning that salmon were not returning in significant numbers to ancestral fishing waters at headwater spawning sites, tribal youth wanted to know why. As a result, the Indian Summer project was conceived to give Shoshone-Bannock High School students the opportunity to develop hands-on, workable solutions to improve future Indian fishing and help make the river healthy again. The project goals were to increase the number of fry introduced into the streams, teach the Shoshone-Bannock students how to use scientific methodologies, and get students, parents, community members, and Indian and non-Indian mentors excited about learning. The students chose an egg incubation experiment to help increase self-sustaining, natural production of steelhead trout, and formulated and carried out a three step plan to increase the hatch-rate of steelhead trout in Idaho waters. With the help of local companies, governmental agencies, scientists, and mentors students have been able to meet their project goals, and at the same time, have learned how to use scientific methods to solve real life problems, how to return what they have used to the water and land, and how to have fun and enjoy life while learning.

  4. Contribution of the North Atlantic subtropical high to regional climate model (RCM) skill in simulating southeastern United States summer precipitation

    Science.gov (United States)

    Li, Laifang; Li, Wenhong; Jin, Jiming

    2015-07-01

    This study assesses the skill of advanced regional climate models (RCMs) in simulating southeastern United States (SE US) summer precipitation and explores the physical mechanisms responsible for the simulation skill at a process level. Analysis of the RCM output for the North American Regional Climate Change Assessment Program indicates that the RCM simulations of summer precipitation show the largest biases and a remarkable spread over the SE US compared to other regions in the contiguous US. The causes of such a spread are investigated by performing simulations using the Weather Research and Forecasting (WRF) model, a next-generation RCM developed by the US National Center for Atmospheric Research. The results show that the simulated biases in SE US summer precipitation are due mainly to the misrepresentation of the modeled North Atlantic subtropical high (NASH) western ridge. In the WRF simulations, the NASH western ridge shifts 7° northwestward when compared to that in the reanalysis ensemble, leading to a dry bias in the simulated summer precipitation according to the relationship between the NASH western ridge and summer precipitation over the southeast. Experiments utilizing the four dimensional data assimilation technique further suggest that the improved representation of the circulation patterns (i.e., wind fields) associated with the NASH western ridge substantially reduces the bias in the simulated SE US summer precipitation. Our analysis of circulation dynamics indicates that the NASH western ridge in the WRF simulations is significantly influenced by the simulated planetary boundary layer (PBL) processes over the Gulf of Mexico. Specifically, a decrease (increase) in the simulated PBL height tends to stabilize (destabilize) the lower troposphere over the Gulf of Mexico, and thus inhibits (favors) the onset and/or development of convection. Such changes in tropical convection induce a tropical-extratropical teleconnection pattern, which modulates the

  5. CIME Summer School

    CERN Document Server

    Burger, Martin; Osher, Stanley; Rumpf, Martin

    2013-01-01

    This book takes readers on a tour through modern methods in image analysis and reconstruction based on level set and PDE techniques, the major focus being on morphological and geometric structures in images. The aspects covered include edge-sharpening image reconstruction and denoising, segmentation and shape analysis in images, and image matching. For each, the lecture notes provide insights into the basic analysis of modern variational and PDE-based techniques, as well as computational aspects and applications.

  6. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 25 July 09:15 - 11:00 A. PICH The Standard Model (2-3/8) 11:15 - 12:00 J. STACHEL Quark Gluon Plasma Physics (1/3) 12:00 Discussion Session Tuesday 26 July 09:15 - 10:00 A. PICH The Standard Model (4/8) 10:15 - 12:00 J. STACHEL Quark Gluon Plasma Physics (2-3/3) 12:00 Discussion Session Wednesday 27 July 09:15 - 11:00 A. PICH The Standard Model (5-6/8) 11:15 - 12:00 J-P. DELAHAYE The CLIC Concept and Technology for an e+e-Collider at the Energy Frontier 11:15 - 12:00 Discussion Session Thursday 28 July 09:15 - 10:00 A. PICH The Standard Model (7/8) 10:15 - 11:00 P. SPHICAS Data Acquisition Systems (1/2) 11:15 - 12:00 R. JACOBSEN From Raw data to Physics Results (1/2) 12:00 Discussion Session Friday 29 July 09:15 - 10:00 A. PICH The Standard Model (8/8) 10:15 - 11:00 P. SPHICAS Data Acquisition Systems (2/2) 11:15 - 12:00 R. JACOBSEN Fr...

  7. A regional ocean-atmosphere coupled model developed for CORDEX East Asia: assessment of Asian summer monsoon simulation

    Science.gov (United States)

    Zou, Liwei; Zhou, Tianjun

    2016-12-01

    In this study, a developed regional ocean-atmosphere coupled model FROALS was applied to the CORDEX East Asia domain. The performance of FROALS in the simulation of Asian summer monsoon during 1989-2010 was assessed using the metrics developed by the CLIVAR Asian-Australian Monsoon Panel Diagnostics Task Team. The results indicated that FROALS exhibited good performance in simulating Asian summer monsoon climatology. The simulated JJA mean SST biases were weaker than those of the CMIP5 multi-model ensemble mean (MMEM). The skill of FROALS approached that of CMIP5 MMEM in terms of the annual cycle of Asian summer monsoon. The simulated monsoon duration matched the observed counterpart well (with a spatial pattern correlation coefficient of 0.59). Some biases of CMIP5 MMEM were also found in FROALS, highlighting the importance of local forcing and model physics within the Asian monsoon domain. Corresponding to a strong East Asian summer monsoon, an anomalous anticyclone was found over western North Pacific in both observation and simulation. However, the simulated strength was weaker than the observed due to the responses to incorrect sea surface anomalies over the key regions. The model also accurately captured the spatial pattern of the intraseasonal variability variance and the extreme climate indices of Asian summer monsoons, although with larger amplitude. The results suggest that FROALS could be used as a dynamical downscaling tool nested within the global climate model with coarse resolution to develop high-resolution regional climate change projections over the CORDEX East Asia domain.

  8. Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School

    CERN Document Server

    Ambrosio, Luigi; Dziuk, Gerhard; Mimura, Masayasu; Solonnikov, Vsevolod A; Soner, Halil Mete

    2003-01-01

    Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free...

  9. Coupling of Community Land Model with RegCM4 for Indian Summer Monsoon Simulation

    Science.gov (United States)

    Maurya, R. K. S.; Sinha, P.; Mohanty, M. R.; Mohanty, U. C.

    2017-08-01

    Three land surface schemes available in the regional climate model RegCM4 have been examined to understand the coupling between land and atmosphere for simulation of the Indian summer monsoon rainfall. The RegCM4 is coupled with biosphere-atmosphere transfer scheme (BATS) and the National Center for Atmospheric Research (NCAR) Community Land Model versions 3.5, and 4.5 (CLM3.5 and CLM4.5, respectively) and model performance is evaluated for recent drought (2009) and normal (2011) monsoon years. The CLM4.5 has a more distinct category of surface and it is capable of representing better the land surface characteristics. National Centers for Environmental Prediction (NCEP) and Department of Energy (DOE) reanalysis version 2 (NNRP2) datasets are considered as driving force to conduct the experiments for the Indian monsoon region (30°E-120°E; 30°S-50°N). The NNRP2 and India Meteorological Department (IMD) gridded precipitation data are used for verification analysis. The results indicate that RegCM4 simulations with CLM4.5 (RegCM4-CLM4.5) and CLM3.5 (RegCM4-CLM3.5) surface temperature (at 2 ms) have very low warm biases ( 1 °C), while with BATS (RegCM4-BATS) has a cold bias of about 1-3 °C in peninsular India and some parts of central India. Warm bias in the RegCM4-BATS is observed over the Indo-Gangetic plain and northwest India and the bias is more for the deficit year as compared to the normal year. However, the warm (cold) bias is less in RegCM4-CLM4.5 than other schemes for both the deficit and normal years. The model-simulated maximum (minimum) surface temperature and sensible heat flux at the surface are positively (negatively) biased in all the schemes; however, the bias is higher in RegCM4-BATS and lower in RegCM4-CLM4.5 over India. All the land surface schemes overestimated the precipitation in peninsular India and underestimated in central parts of India for both the years; however, the biases are less in RegCM4-CLM4.5 and more in RegCM4-CLM3.5 and Reg

  10. Predicting Summer Dryness Under a Warmer Climate: Modeling Land Surface Processes in the Midwestern United States

    Science.gov (United States)

    Winter, J. M.; Eltahir, E. A.

    2009-12-01

    One of the most significant impacts of climate change is the potential alteration of local hydrologic cycles over agriculturally productive areas. As the world’s food supply continues to be taxed by its burgeoning population, a greater percentage of arable land will need to be utilized and land currently producing food must become more efficient. This study seeks to quantify the effects of climate change on soil moisture in the American Midwest. A series of 24-year numerical experiments were conducted to assess the ability of Regional Climate Model Version 3 coupled to Integrated Biosphere Simulator (RegCM3-IBIS) and Biosphere-Atmosphere Transfer Scheme 1e (RegCM3-BATS1e) to simulate the observed hydroclimatology of the midwestern United States. Model results were evaluated using NASA Surface Radiation Budget, NASA Earth Radiation Budget Experiment, Illinois State Water Survey, Climate Research Unit Time Series 2.1, Global Soil Moisture Data Bank, and regional-scale estimations of evapotranspiration. The response of RegCM3-IBIS and RegCM3-BATS1e to a surrogate climate change scenario, a warming of 3oC at the boundaries and doubling of CO2, was explored. Precipitation increased significantly during the spring and summer in both RegCM3-IBIS and RegCM3-BATS1e, leading to additional runoff. In contrast, enhancement of evapotranspiration and shortwave radiation were modest. Soil moisture remained relatively unchanged in RegCM3-IBIS, while RegCM3-BATS1e exhibited some fall and winter wetting.

  11. Denali Geographic 2012 : A University led scientific field experience for High School students at the Alaska Summer Research Academy

    Science.gov (United States)

    Shipman, J. S.; Webley, P. W.; Burke, S.; Chebul, E.; Dempsey, A.; Hastings, H.; Terry, R.; Drake, J.

    2012-12-01

    The Alaska Summer Research Academy (ASRA) annually provides the opportunity for ~150 exceptional high school students to engage in scientific exploration at the university level. In July 2012, University of Alaska Fairbanks instructors led a two-week long ASRA module, called 'Denali Geographic', where eight student participants from across the USA and Canada learned how to observe changes in the natural world and design their own experiments for a field expedition to Denali National Park and Preserve, with assistance from the National Park Service. Each student designed an experiment/observational project prior to the expedition to investigate changes across the expanse of the park. Projects included wildlife documentation; scat and track observations; soil ph and moisture with elevation and vegetation changes; wildflowers species distribution; waterborne insect populations; atmospheric pressure and temperature variations; construction of sustainable buildings to minimize human impact on the park; and park geology comparisons between outcrop and distal stream deposits. The students learned how to design experiments, purchase supplies needed to conduct the work, and select good locations in which to sample in the park. Students used equipment such as GPS to mark field locations; a range finder to determine distance from wildlife; a hygrometer for temperature and pressure; nets and sorting equipments to analyze insects; and the preparation of Plaster of Paris for creating casts of animal tracks. All observations were documented in their field notebooks and blog entries made to share their experiences. Day excursions as part of the module included Poker Flats Research Range, where students learned about the use of unmanned aerial vehicles in scientific exploration; Alaska Volcano Observatory, where students learned about volcanic hazards in Alaska and the North Pacific; Chena Hot Springs and the Ice Museum, where students learned about thermal imaging using a Forward

  12. Argus: A concept study for an Io observer mission from the 2014 NASA/JPL Planetary Science Summer School

    Science.gov (United States)

    Becerra, Patricio; Holstein-Rathlou, Christina; Hays, Lindsay E.; Keane, James T.; Neveu, Marc; Basu, Ko; Davis, Byron; Mendez-Ramos, Eugina; Nelessen, Adam; Fox, Valerie; Herman, Jonathan F.; Parrish, Nathan L.; Hughes, Andrea C.; Marcucci, Emma; Scheinberg, Aaron; Wrobel, Jonathan S.

    2014-11-01

    Jupiter’s moon Io is the ideal target to study extreme tidal heating and volcanism, two major processes shaping the formation and evolution of planetary bodies. In response to the 2009 New Frontiers Announcement of Opportunity, we propose an Io Observer mission concept named Argus (after the mythical watchman of Io). This concept was developed by the students of the August 2014 session of NASA’s Planetary Science Summer School, together with the Jet Propulsion Laboratory’s Team X.The science objectives of our mission are: (1) study the physical process of tidal heating and its implications for habitability in the Solar System and beyond; (2) investigate active lava flows on Io as an analog for volcanism on early Earth; (3) analyze the interaction between Io and the Jovian system via material exchange and magnetospheric activity; (4) study Io’s chemistry and geologic history to gain insight into the formation and evolution of the Galilean satellites. Our mission consists of a Jupiter-orbiting spacecraft performing ten close flybys of Io. The orbital inclination of ~31 degrees minimizes the total radiation dose received, at the cost of having to perform fast flybys (13 km/s).The instrument payload includes: (1) IGLOO, a multi-band camera for regional (500 m/pixel) and high-resolution (50 m/pixel) imaging; (2) IoLA, a laser altimeter to measure the triaxial shape and diurnal tidal deformation, and topographic profiles of individual surface features; (3) IGNITERS, a thermal emission radiometer/spectrometer to map nighttime temperatures, thermal inertia, and characterize Io’s atmosphere; (4) IoNIS, a near-infrared spectrometer to map global (10 km/pixel) and local (2 km/pixel) surface composition; (5) IoFLEX, a magnetometer and (6) IoPEX, a plasma particle analyzer to characterize the magnetic environment and understand the nature of Io’s induced and possible intrinsic magnetic fields; (7) IRAGE, a gravity science experiment to probe Io’s interior

  13. The Research Dynamic: A Professional Development Model for Secondary School Science Teachers

    OpenAIRE

    Silverman, Philip M.

    2009-01-01

    This essay summarizes the author's 10 years of experience at the Oklahoma Medical Research Foundation mentoring secondary school science teachers during 8-wk Summer Research Institutes. The summary is presented as a learning model, which we call the research dynamic. This model consists of three interlocked components: specified ignorance, peer interactions, and gateway experiments. Specified ignorance is based on the work of the sociologist Robert K. Merton. It is essentially the art of high...

  14. A Modeling and Verification Study of Summer Precipitation Systems Using NASA Surface Initialization Datasets

    Science.gov (United States)

    Jonathan L. Case; Kumar, Sujay V.; Srikishen, Jayanthi; Jedlovec, Gary J.

    2010-01-01

    One of the most challenging weather forecast problems in the southeastern U.S. is daily summertime pulse-type convection. During the summer, atmospheric flow and forcing are generally weak in this region; thus, convection typically initiates in response to local forcing along sea/lake breezes, and other discontinuities often related to horizontal gradients in surface heating rates. Numerical simulations of pulse convection usually have low skill, even in local predictions at high resolution, due to the inherent chaotic nature of these precipitation systems. Forecast errors can arise from assumptions within parameterization schemes, model resolution limitations, and uncertainties in both the initial state of the atmosphere and land surface variables such as soil moisture and temperature. For this study, it is hypothesized that high-resolution, consistent representations of surface properties such as soil moisture, soil temperature, and sea surface temperature (SST) are necessary to better simulate the interactions between the surface and atmosphere, and ultimately improve predictions of summertime pulse convection. This paper describes a sensitivity experiment using the Weather Research and Forecasting (WRF) model. Interpolated land and ocean surface fields from a large-scale model are replaced with high-resolution datasets provided by unique NASA assets in an experimental simulation: the Land Information System (LIS) and Moderate Resolution Imaging Spectroradiometer (MODIS) SSTs. The LIS is run in an offline mode for several years at the same grid resolution as the WRF model to provide compatible land surface initial conditions in an equilibrium state. The MODIS SSTs provide detailed analyses of SSTs over the oceans and large lakes compared to current operational products. The WRF model runs initialized with the LIS+MODIS datasets result in a reduction in the overprediction of rainfall areas; however, the skill is almost equally as low in both experiments using

  15. Simulation of the Indian summer monsoon onset-phase rainfall using a regional model

    KAUST Repository

    Srinivas, C. V.

    2015-09-11

    This study examines the ability of the Advanced Research WRF (ARW) regional model to simulate Indian summer monsoon (ISM) rainfall climatology in different climate zones during the monsoon onset phase in the decade 2000–2009. The initial and boundary conditions for ARW are provided from the NCEP/NCAR Reanalysis Project (NNRP) global reanalysis. Seasonal onset-phase rainfall is compared with corresponding values from 0.25° IMD (India Meteorological Department) rainfall and NNRP precipitation data over seven climate zones (perhumid, humid, dry/moist, subhumid, dry/moist, semiarid and arid) of India to see whether dynamical downscaling using a regional model yields advantages over just using large-scale model predictions. Results show that the model could simulate the onset phase in terms of progression and distribution of rainfall in most zones (except over the northeast) with good correlations and low error metrics. The observed mean onset dates and their variability over different zones are well reproduced by the regional model over most climate zones. It has been found that the ARW performed similarly to the reanalysis in most zones and improves the onset time by 1 to 3 days in zones 4 and 7, in which the NNRP shows a delayed onset compared to the actual IMD onset times. The variations in the onset-phase rainfall during the below-normal onset (June negative) and above-normal onset (June positive) phases are well simulated. The slight underestimation of onset-phase rainfall in the northeast zone could be due to failure in resolving the wide extent of topographic variations and the associated multiscale interactions in that zone. Spatial comparisons showed improvement of pentad rainfall in both space and quantity in ARW simulations over NNRP data, as evident from a wider eastward distribution of pentad rainfall over the Western Ghats, central and eastern India, as in IMD observations. While NNRP under-represented the high pentad rainfall over northeast, east and

  16. Bifurcations in a Nonlinear Dynamical Model between Western Pacific Subtropical High Ridge Line Index and Its Summer Monsoon Impact Factors

    Directory of Open Access Journals (Sweden)

    Mei Hong

    2014-01-01

    Full Text Available The western Pacific subtropical high (WPSH is closely related to Asian climate. Previous studies have shown that a precise dynamical model focusing on the interaction between WPSH and other summer monsoon factors has not been developed. Based on the concept of dynamical model reconstruction, this paper reconstructs a nonlinear dynamical model of subtropical high ridge line (SHRL and summer monsoon factors from recent 20 years data. Then, using genetic algorithm (GA, model inversion and model parameter optimization are carried out. Based on the reconstructed dynamical model, dynamical characteristics of SHRL are analyzed and an aberrance mechanism is developed, in which the external forcings resulting in the WPSH anomalies are explored. Results show that the configuration and diversification of the SHRL equilibriums have better represented the abnormal activities of the SHRL in short and medium term. Change of SHRL brought by the combination of equilibriums is more complex than that brought by mutation. The mutation behavior from high-value to low-value equilibriums of the SHRL in summer corresponds with the southward drop of the SHRL. The combination behavior of the two steady equilibriums corresponds with disappearance of the “double-ridge” phenomenon of WPSH. Dynamical mechanisms of these phenomena are explained.

  17. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 1 August 09:15 - 10:00 P. WELLS The Higgs Saga at LEP 10:15 - 11:00 E. KIRITSIS Beyond the Standard Model (1/4) 11:15 - 12:00 G. COWAN Introduction to Statistics (1/3) 12:00 Discussion Session Tuesday 2 August 09:15 - 11:00 E. KIRITSIS Beyond the Standard Model (2-3/4) 11:15 - 12:00 G. COWAN Introduction to Statistics (2/3) 12:00 Discussion Session Wednesday 3 August 09:15 - 10:00 G. COWAN Introduction to Statistics (3/3) 10:15 - 11:00 E. KIRITSIS Beyond the Standard Model (4/4) 11:15 - 12:00 K. JAKOBS Physics at Hadronic Colliders (1/4) 12:00 Discussion Session Thursday 4 August 09:15 - 11:00 K. JAKOBS Physics at Hadronic Colliders (2-3/4) 11:15 - 12:00 A. WEINSTEIN Gravitation Waves 12:00 Discussion Session 16:30 - 18:00 Poster Session Friday 5 August 09:15 - 11:00 A. Höcker CP Violation (1-2/4) 11:15 - 12:00 K. JA...

  18. A dynamic model of oceanic sulfur (DMOS) applied to the Sargasso Sea: Simulating the dimethylsulfide (DMS) summer paradox

    Science.gov (United States)

    Vallina, S. M.; Simó, R.; Anderson, T. R.; Gabric, A.; Cropp, R.; Pacheco, J. M.

    2008-03-01

    A new one-dimensional model of DMSP/DMS dynamics (DMOS) is developed and applied to the Sargasso Sea in order to explain what drives the observed dimethylsulfide (DMS) summer paradox: a summer DMS concentration maximum concurrent with a minimum in the biomass of phytoplankton, the producers of the DMS precursor dimethylsulfoniopropionate (DMSP). Several mechanisms have been postulated to explain this mismatch: a succession in phytoplankton species composition towards higher relative abundances of DMSP producers in summer; inhibition of bacterial DMS consumption by ultraviolet radiation (UVR); and direct DMS production by phytoplankton due to UVR-induced oxidative stress. None of these hypothetical mechanisms, except for the first one, has been tested with a dynamic model. We have coupled a new sulfur cycle model that incorporates the latest knowledge on DMSP/DMS dynamics to a preexisting nitrogen/carbon-based ecological model that explicitly simulates the microbial-loop. This allows the role of bacteria in DMS production and consumption to be represented and quantified. The main improvements of DMOS with respect to previous DMSP/DMS models are the explicit inclusion of: solar-radiation inhibition of bacterial sulfur uptakes; DMS exudation by phytoplankton caused by solar-radiation-induced stress; and uptake of dissolved DMSP by phytoplankton. We have conducted a series of modeling experiments where some of the DMOS sulfur paths are turned "off" or "on," and the results on chlorophyll-a, bacteria, DMS, and DMSP (particulate and dissolved) concentrations have been compared with climatological data of these same variables. The simulated rate of sulfur cycling processes are also compared with the scarce data available from previous works. All processes seem to play a role in driving DMS seasonality. Among them, however, solar-radiation-induced DMS exudation by phytoplankton stands out as the process without which the model is unable to produce realistic DMS simulations

  19. Books for Summer Reading.

    Science.gov (United States)

    Phi Delta Kappan, 1996

    1996-01-01

    Suggests several novels for educators' summer reading enjoyment, including classics by Robert Pirsig, Robertson Davies, John Steinbeck, Albert Camus, and Charles Dickens. Educators might also read Alex Kotlowitz's "There Are No Children Here" (Doubleday, 1991) and Sharon Quint's "Schooling Homeless Children" (Teachers College Press, 1994) to gain…

  20. Summer Learning That Sticks

    Science.gov (United States)

    Browne, Daniel

    2017-01-01

    A new RAND Corporation study shows that voluntary summer programs can benefit children from low-income families, particularly those with high attendance. Programs studied in five school districts had several elements in common: a mix of academics and enrichment activities, certified teachers, small class sizes, full-day programming provided five…

  1. Summer Learning That Sticks

    Science.gov (United States)

    Browne, Daniel

    2017-01-01

    A new RAND Corporation study shows that voluntary summer programs can benefit children from low-income families, particularly those with high attendance. Programs studied in five school districts had several elements in common: a mix of academics and enrichment activities, certified teachers, small class sizes, full-day programming provided five…

  2. Sensitivity of a data-driven soil water balance model to estimate summer evapotranspiration along a forest chronosequence

    Directory of Open Access Journals (Sweden)

    J. A. Breña Naranjo

    2011-11-01

    Full Text Available The hydrology of ecosystem succession gives rise to new challenges for the analysis and modelling of water balance components. Recent large-scale alterations of forest cover across the globe suggest that a significant portion of new biophysical environments will influence the long-term dynamics and limits of water fluxes compared to pre-succession conditions. This study assesses the estimation of summer evapotranspiration along three FLUXNET sites at Campbell River, British Columbia, Canada using a data-driven soil water balance model validated by Eddy Covariance measurements. It explores the sensitivity of the model to different forest succession states, a wide range of computational time steps, rooting depths, and canopy interception capacity values. Uncertainty in the measured EC fluxes resulting in an energy imbalance was consistent with previous studies and does not affect the validation of the model. The agreement between observations and model estimates proves that the usefulness of the method to predict summer AET over mid- and long-term periods is independent of stand age. However, an optimal combination of the parameters rooting depth, time step and interception capacity threshold is needed to avoid an underestimation of AET as seen in past studies. The study suggests that summer AET could be estimated and monitored in many more places than those equipped with Eddy Covariance or sap-flow measurements to advance the understanding of water balance changes in different successional ecosystems.

  3. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals.

    Directory of Open Access Journals (Sweden)

    Scott F Heron

    Full Text Available Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter. We found a high correlation (r(2 = 0.953 between summer warm thermal anomalies (Hot Snap and disease abundance during outbreak events. Inclusion of thermal conditions during the preceding winter revealed that a significant reduction in disease outbreaks occurred following especially cold winters (Cold Snap, potentially related to a reduction in pathogen loading. Furthermore, mild winters (i.e., neither excessively cool nor warm frequently preceded disease outbreaks. In contrast, disease outbreaks did not typically occur following warm winters, potentially because of increased disease resistance of the coral host. Understanding the balance between the effects of warm and cold winters on disease outbreak will be important in a warming climate. Combining the influence of winter and summer thermal effects resulted in an algorithm that yields both a Seasonal Outlook of disease risk at the conclusion of winter and near real-time monitoring of Outbreak Risk during summer. This satellite-derived system can provide coral reef managers with an assessment of risk three-to-six months in advance of the summer season that can then be refined using near-real-time summer observations. This system can enhance the capacity of managers to prepare for and respond to possible disease outbreaks and focus research efforts to increase understanding of environmental impacts on coral disease in

  4. Comparisons of observed seasonal climate features with a winter and summer numerical simulation produced with the GLAS general circulation model

    Science.gov (United States)

    Halem, M.; Shukla, J.; Mintz, Y.; Wu, M. L.; Godbole, R.; Herman, G.; Sud, Y.

    1979-01-01

    Results are presented from numerical simulations performed with the general circulation model (GCM) for winter and summer. The monthly mean simulated fields for each integration are compared with observed geographical distributions and zonal averages. In general, the simulated sea level pressure and upper level geopotential height field agree well with the observations. Well simulated features are the winter Aleutian and Icelandic lows, the summer southwestern U.S. low, the summer and winter oceanic subtropical highs in both hemispheres, and the summer upper level Tibetan high and Atlantic ridge. The surface and upper air wind fields in the low latitudes are in good agreement with the observations. The geographical distirbutions of the Earth-atmosphere radiation balance and of the precipitation rates over the oceans are well simulated, but not all of the intensities of these features are correct. Other comparisons are shown for precipitation along the ITCZ, rediation balance, zonally averaged temperatures and zonal winds, and poleward transports of momentum and sensible heat.

  5. Multi-model assessment of the impact of soil moisture initialization on mid-latitude summer predictability

    Science.gov (United States)

    Ardilouze, Constantin; Batté, L.; Bunzel, F.; Decremer, D.; Déqué, M.; Doblas-Reyes, F. J.; Douville, H.; Fereday, D.; Guemas, V.; MacLachlan, C.; Müller, W.; Prodhomme, C.

    2017-02-01

    Land surface initial conditions have been recognized as a potential source of predictability in sub-seasonal to seasonal forecast systems, at least for near-surface air temperature prediction over the mid-latitude continents. Yet, few studies have systematically explored such an influence over a sufficient hindcast period and in a multi-model framework to produce a robust quantitative assessment. Here, a dedicated set of twin experiments has been carried out with boreal summer retrospective forecasts over the 1992-2010 period performed by five different global coupled ocean-atmosphere models. The impact of a realistic versus climatological soil moisture initialization is assessed in two regions with high potential previously identified as hotspots of land-atmosphere coupling, namely the North American Great Plains and South-Eastern Europe. Over the latter region, temperature predictions show a significant improvement, especially over the Balkans. Forecast systems better simulate the warmest summers if they follow pronounced dry initial anomalies. It is hypothesized that models manage to capture a positive feedback between high temperature and low soil moisture content prone to dominate over other processes during the warmest summers in this region. Over the Great Plains, however, improving the soil moisture initialization does not lead to any robust gain of forecast quality for near-surface temperature. It is suggested that models biases prevent the forecast systems from making the most of the improved initial conditions.

  6. Summer Vacation

    Institute of Scientific and Technical Information of China (English)

    张鲁静

    2008-01-01

    @@ For teachers: Summer Camp in the USA by Jerilyn Watson Millions of American children attend all kinds of summer camps.Some play sports.Others make music,learn to use a computer or take part in other activities.Traditional American summer camps offer young people a chance to play many sports.These camps may be in the mountains.Or they may be in the woods,or at a lake.Other camps teach activities like painting or music.Or they teach computer programming or foreign languages.Children at all kinds of camps meet new friends.They learn new skills and develop independence.

  7. Scientists from all over the world attend the ''Frederic Joliot/Otto Hahn Summer School 2009'' at the Karlsruhe Institute of Technology (KIT); Wissenschaftler aus aller Welt bei der ''Frederic Joliot/Otto Hahn Summer School 2009'' am Karlsruhe Institute of Technologie (KIT)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Espinoza, Victor Hugo; Fischer, Ulrich [Karlsruhe Inst. of Tech. (KIT), Campus Nord/Inst. for Neutron Physics and Reactor Tech. (INR), Eggenstein-Leopoldshafen (Germany)

    2009-11-15

    The ''Frederic Joliot/Otto Hahn Summer School'' is organized each year alternately by the Karlsruhe Institute of Technology and the Commissariat a l'Energie Atomique (CEA), Cadarache. This year's Summer School, the 15th since its foundation, was run at the Advanced Training Center (FTU) of KIT Campus Nord on August 26 to September 4. The key topic this year was ''The Challenges in Implementing Fast Reactor Technology.'' These are the items discussed: Principles and challenges of future fast reactor designs, Fuels, fuel cycle, and recycling of minor actinides, Innovative cladding tube and structural materials, Special aspects of coolants and the challenges they pose, Fast reactor safety. Experts from 8 leading international research establishments and universities presented and discussed with the 58 participants from 16 countries the current state of the art and the latest development trends in the topics listed above. (orig.)

  8. Treatment-Resistant Depressed Youth Show a Higher Response Rate If Treatment Ends during Summer School Break

    Science.gov (United States)

    Shamseddeen, Wael; Clarke, Gregory; Wagner, Karen Dineen; Ryan, Neal D.; Birmaher, Boris; Emslie, Graham; Asarnow, Joan Rosenbaum; Porta, Giovanna; Mayes, Taryn; Keller, Martin B.; Brent, David A.

    2011-01-01

    Objective: There is little work on the effect of school on response to treatment of depression, with available research suggesting that children and adolescents with school difficulties are less likely to respond to fluoxetine compared with those with no school difficulties. Method: Depressed adolescents in the Treatment of Resistant Depression in…

  9. Treatment-Resistant Depressed Youth Show a Higher Response Rate If Treatment Ends during Summer School Break

    Science.gov (United States)

    Shamseddeen, Wael; Clarke, Gregory; Wagner, Karen Dineen; Ryan, Neal D.; Birmaher, Boris; Emslie, Graham; Asarnow, Joan Rosenbaum; Porta, Giovanna; Mayes, Taryn; Keller, Martin B.; Brent, David A.

    2011-01-01

    Objective: There is little work on the effect of school on response to treatment of depression, with available research suggesting that children and adolescents with school difficulties are less likely to respond to fluoxetine compared with those with no school difficulties. Method: Depressed adolescents in the Treatment of Resistant Depression in…

  10. COST MODEL FOR LARGE URBAN SCHOOLS.

    Science.gov (United States)

    O'BRIEN, RICHARD J.

    THIS DOCUMENT CONTAINS A COST SUBMODEL OF AN URBAN EDUCATIONAL SYSTEM. THIS MODEL REQUIRES THAT PUPIL POPULATION AND PROPOSED SCHOOL BUILDING ARE KNOWN. THE COST ELEMENTS ARE--(1) CONSTRUCTION COSTS OF NEW PLANTS, (2) ACQUISITION AND DEVELOPMENT COSTS OF BUILDING SITES, (3) CURRENT OPERATING EXPENSES OF THE PROPOSED SCHOOL, (4) PUPIL…

  11. Rethinking School Bullying: Towards an Integrated Model

    Science.gov (United States)

    Dixon, Roz; Smith, Peter K.

    2011-01-01

    What would make anti-bullying initiatives more successful? This book offers a new approach to the problem of school bullying. The question of what constitutes a useful theory of bullying is considered and suggestions are made as to how priorities for future research might be identified. The integrated, systemic model of school bullying introduced…

  12. Evaluation of cloud properties in the NCEP CFSv2 model and its linkage with Indian summer monsoon

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Dhakate, Ashish

    2016-04-01

    Cloud fraction, which varies greatly among general circulation models, plays a crucial role in simulation of Indian summer monsoon rainfall (ISMR). The NCEP Climate Forecast System version 2 (CFSv2) model is evaluated in terms of its simulation of cloud fraction, cloud condensate, outgoing longwave radiation (OLR), and tropospheric temperature (TT). Biases in these simulated quantities are computed using observations from CALIPSO and reanalysis data from MERRA. It is shown that CFSv2 underestimates (overestimates) high- (mid-) level clouds. The cloud condensate is also examined to see its impact on different types of clouds. The upper-level cloud condensate is underestimated, particularly during the summer monsoon period, which leads to a cold TT and a dry precipitation bias. The unrealistically weak TT gradient between ocean and land is responsible for the underestimation of ISMR. The model-simulated OLR is overestimated which depicts the weaker convective activity. A large underestimate of precipitable water is also seen along the cross-equatorial flow and particularly over the Indian land region collocated with a dry precipitation bias. The linkages among cloud microphysical, thermodynamical, and dynamical processes are identified here. Thus, this study highlights the importance of cloud properties, a major cause of uncertainty in CFSv2, and also proposes a pathway for improvements in its simulation of the Indian summer monsoon.

  13. Impact of Intensive Summer Reading Intervention for Children with Reading Disabilities and Difficulties in Early Elementary School

    Science.gov (United States)

    Christodoulou, Joanna A.; Cyr, Abigail; Murtagh, Jack; Chang, Patricia; Lin, Jiayi; Guarino, Anthony J.; Hook, Pamela; Gabrieli, John D. E.

    2017-01-01

    Efficacy of an intensive reading intervention implemented during the nonacademic summer was evaluated in children with reading disabilities or difficulties (RD). Students (ages 6-9) were randomly assigned to receive Lindamood-Bell's "Seeing Stars" program (n = 23) as an intervention or to a waiting-list control group (n = 24). Analysis…

  14. Scientists and professionals from all around the world in Karlsruhe. Frederic Joliot/Otto Hahn summer school 2013 on nuclear reactors 'Physics, Fuels and Systems'

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Espinoza, V.H.; Fischer, U. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Scientific Secretariat FJOHSS

    2014-02-15

    Every 2 years the Karlsruhe Institute of Technology (KIT) organizes the Frederic Joliot/Otto Hahn (FJOH) Summer School together with the Commissariat a l'-Energie Atomique (CEA) since 1999. In 2013, the FJOH Summer School took place in Karlsruhe from 21 to 30 August. The topic of this year's school was 'Advanced Nuclear Systems with Transuranium Fuels'. Experts from internationally well recognized research institutions and Universities from USA, Japan, Asia and Europe gave lectures about the current status and trends on the related fields. (orig.)

  15. Testing the Causal Links between School Climate, School Violence, and School Academic Performance: A Cross-Lagged Panel Autoregressive Model

    Science.gov (United States)

    Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.

    2016-01-01

    The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…

  16. Understanding Business Models in Pharmacy Schools

    National Research Council Canada - National Science Library

    David A Holdford

    2017-01-01

    [...]if schools find it difficult to recruit sufficient numbers of qualified PharmD candidates to fill class sizes, alternative business models might suggest ways to reduce costs or seek new funding streams...

  17. Report of the Preservation Management Summer School Held at The Public Record Office and The British Library, 19th-23rd July 1999

    Directory of Open Access Journals (Sweden)

    Mirjam M. Foot

    1999-05-01

    Full Text Available In July 1999 (19th-23rd one of the first comprehensive summer schools to be organised in the UK on preservation management was held at The Public Record Office, Kew and The British Library, St Pancras, London. Organised by The Public Record Office (PRO and The Ligue des Bibliothèques Européennes de Recherche (LIBER in conjunction with The British Library (BL, The European Commission on Preservation & Access (ECPA, University College London (UCL and the International Council on Archive (ICA, the goal of the Summer School was to introduce key elements of preservation management to archivists and librarians in middle managerial positions, and to give participants practical insights to the problems that arise and the possible solutions, thereby helping delegates to develop and plan preservation policy and practice for their own organisations. In a wider context the aim was to initiate and establish training specific to the requirements of institutions in the increasingly specialist field of preservation management.

  18. CMIP5 model-simulated onset, duration and intensity of the Asian summer monsoon in current and future climate

    Science.gov (United States)

    Dong, Guangtao; Zhang, H.; Moise, A.; Hanson, L.; Liang, P.; Ye, H.

    2016-01-01

    A number of significant weaknesses existed in our previous analysis of the changes in the Asian monsoon onset/retreat from coupled model intercomparison project phase 3 (CMIP3) models, including a lack of statistical significance tests, a small number of models analysed, and limited understanding of the causes of model uncertainties. Yet, the latest IPCC report acknowledges limited confidence for projected changes in monsoon onset/retreat. In this study we revisit the topic by expanding the analysis to a large number of CMIP5 models over much longer period and with more diagnoses. Daily 850 hPa wind, volumetric atmospheric precipitable water and rainfall data from 26 CMIP5 models over two sets of 50-year periods are used in this study. The overall model skill in reproducing the temporal and spatial patterns of the monsoon development is similar between CMIP3 and CMIP5 models. They are able to show distinct regional characteristics in the evolutions of Indian summer monsoon (ISM), East Asian summer monsoon (EASM) and West North Pacific summer monsoon (WNPSM). Nevertheless, the averaged onset dates vary significantly among the models. Large uncertainty exists in model-simulated changes in onset/retreat dates and the extent of uncertainty is comparable to that in CMIP3 models. Under global warming, a majority of the models tend to suggest delayed onset for the south Asian monsoon in the eastern part of tropical Indian Ocean and Indochina Peninsula and nearby region, primarily due to weakened tropical circulations and eastward shift of the Walker circulation. The earlier onset over the Arabian Sea and part of the Indian subcontinent in a number of the models are related to an enhanced southwesterly flow in the region. Weak changes in other domains are due to the offsetting results among the models, with some models showing earlier onsets but others showing delayed onsets. Different from the analysis of CMIP3 model results, this analysis highlights the importance of SST

  19. Observed and CMIP5 modeled influence of large-scale circulation on summer precipitation and drought in the South-Central United States

    Science.gov (United States)

    Ryu, Jung-Hee; Hayhoe, Katharine

    2017-02-01

    Annual precipitation in the largely agricultural South-Central United States is characterized by a primary wet season in May and June, a mid-summer dry period in July and August, and a second precipitation peak in September and October. Of the 22 CMIP5 global climate models with sufficient output available, 16 are able to reproduce this bimodal distribution (we refer to these as "BM" models), while 6 have trouble simulating the mid-summer dry period, instead producing an extended wet season ("EW" models). In BM models, the timing and amplitude of the mid-summer westward extension of the North Atlantic Subtropical High (NASH) are realistic, while the magnitude of the Great Plains Lower Level Jet (GPLLJ) tends to be overestimated, particularly in July. In EW models, temporal variations and geophysical locations of the NASH and GPLLJ appear reasonable compared to reanalysis but their magnitudes are too weak to suppress mid-summer precipitation. During warm-season droughts, however, both groups of models reproduce the observed tendency towards a stronger NASH that remains over the region through September, and an intensification and northward extension of the GPLLJ. Similarly, future simulations from both model groups under a +1 to +3 °C transient increase in global mean temperature show decreases in summer precipitation concurrent with an enhanced NASH and an intensified GPLLJ, though models differ regarding the months in which these decreases are projected to occur: early summer in the BM models, and late summer in the EW models. Overall, these results suggest that projected future decreases in summer precipitation over the South-Central region appear to be closely related to anomalous patterns of large-scale circulation already observed and modeled during historical dry years, patterns that are consistently reproduced by CMIP5 models.

  20. Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cherchi, Annalisa; Navarra, Antonio [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2007-02-15

    A set of experiments forced with observed SST has been performed with the Echam4 atmospheric GCM at three different horizontal resolutions (T30, T42 and T106). These experiments have been used to study the sensitivity of the simulated Asian summer monsoon (ASM) to the horizontal resolution. The ASM is reasonably well simulated by the Echam4 model at all resolutions. In particular, the low-level westerly flow, that is the dominant manifestation of the Asian summer monsoon, is well captured by the model, and the precipitation is reasonably simulated in intensity and space appearance. The main improvements due to an higher resolution model are associated to regional aspects of the precipitation, for example the Western Ghats precipitation is better reproduced. The interannual variability of precipitation and wind fields in the Asian monsoon region appears to be less affected by an increase in the horizontal resolution than the mean climatology is. A possible reason is that the former is mainly SST-forced. Besides, the availability of experiments at different horizontal resolution realized with the Echam4 model coupled to a global oceanic model allows the possibility to compare these simulations with the experiments previously described. This analysis showed that the coupled model is able to reproduce a realistic monsoon, as the basic dynamics of the phenomenon is captured. The increase of the horizontal resolution of the atmospheric component influences the simulated monsoon with the same characteristics of the forced experiments. Some basic features of the Asian summer monsoon, as the interannual variability and the connection with ENSO, are further investigated. (orig.)

  1. The Chancellor's Model School Project (CMSP)

    Science.gov (United States)

    Lopez, Gil

    1999-01-01

    What does it take to create and implement a 7th to 8th grade middle school program where the great majority of students achieve at high academic levels regardless of their previous elementary school backgrounds? This was the major question that guided the research and development of a 7-year long project effort entitled the Chancellor's Model School Project (CMSP) from September 1991 to August 1998. The CMSP effort conducted largely in two New York City public schools was aimed at creating and testing a prototype 7th and 8th grade model program that was organized and test-implemented in two distinct project phases: Phase I of the CMSP effort was conducted from 1991 to 1995 as a 7th to 8th grade extension of an existing K-6 elementary school, and Phase II was conducted from 1995 to 1998 as a 7th to 8th grade middle school program that became an integral part of a newly established 7-12th grade high school. In Phase I, the CMSP demonstrated that with a highly structured curriculum coupled with strong academic support and increased learning time, students participating in the CMSP were able to develop a strong foundation for rigorous high school coursework within the space of 2 years (at the 7th and 8th grades). Mathematics and Reading test score data during Phase I of the project, clearly indicated that significant academic gains were obtained by almost all students -- at both the high and low ends of the spectrum -- regardless of their previous academic performance in the K-6 elementary school experience. The CMSP effort expanded in Phase II to include a fully operating 7-12 high school model. Achievement gains at the 7th and 8th grade levels in Phase II were tempered by the fact that incoming 7th grade students' academic background at the CMSP High School was significantly lower than students participating in Phase 1. Student performance in Phase II was also affected by the broadening of the CMSP effort from a 7-8th grade program to a fully functioning 7-12 high

  2. Summer School organized by the International Centre for Theoretical Physics, Trieste, and the Institute for Information Sciences, University of Tübingen

    CERN Document Server

    Güttinger, Werner; Cin, Mario

    1974-01-01

    This volume is the record and product of the Summer School on the Physics and Mathematics of the Nervous System, held at the International Centre for Theoretical Physics in Trieste from August 21-31, 1973, and jointly organized by the Institute for Information Sciences, University of Tlibingen and by the Centre. The school served to bring biologists, physicists and mathemati­ cians together to exchange ideas about the nervous system and brain, and also to introduce young scientists to the field. The program, attended by more than a hundred scientists, was interdisciplinary both in character and participation. The primary support for the school was provided by the Volkswagen Foundation of West Germany. We are particularly indebted to Drs. G. Gambke, M. -L Zarnitz, and H. Penschuck of the Foundation for their in­ terest in and help with the project. The school also received major support from the International Centre for Theoretical Physics in Trieste and its sponsoring agencies, including the use of its exce...

  3. Numerical Modeling of Topography-Modulated Dust Aerosol Distribution and Its Influence on the Onset of East Asian Summer Monsoon

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2016-01-01

    Full Text Available A regional climate model coupled with a dust module was used to simulate dust aerosol distribution and its effects on the atmospheric heat source over the TP, East Asian summer monsoon onset, and precipitation in East Asia modulated by the uplift of the northern TP. We carried out four experiments, including a modern (i.e., high-mountain experiment with (HMD and without (HM the major deserts in Northwest China and a low-mountain experiment with (LMD and without (LM the deserts. The results show that dust greatly increases in the Taklamakan Desert accompanied with the uplift of the northern TP, and the increase exceeds 150 µg kg−1 in spring. A strong cyclone in the Tarim Basin produced by the uplifted northern TP enhances dust emissions in the Taklamakan Desert in summer. Meanwhile, the dust loading over the TP also increases induced by the uplift of the northern TP, causing the heat source over the TP decreased. Under the condition of the northern TP uplift to present altitude, dust delays the East Asia summer monsoon onset by two pentads and one pentad, respectively, in the southern and northern monsoon regions and greatly suppresses precipitation in East Asia compared with results in the low terrain experiments.

  4. A Modeling Study of the Effects of Anomalous Snow Cover over the Tibetan Plateau upon the South Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    刘华强; 孙照渤; 王举; 闵锦忠

    2004-01-01

    The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.

  5. Underrepresented minority high school and college students report STEM-pipeline sustaining gains after participating in the Loma Linda University Summer Health Disparities Research Program.

    Directory of Open Access Journals (Sweden)

    Lorena M Salto

    Full Text Available An urgent need exists for graduate and professional schools to establish evidence-based STEM (science, technology, engineering, and math pipeline programs to increase the diversity of the biomedical workforce. An untapped yet promising pool of willing participants are capable high school students that have a strong STEM interest but may lack the skills and the guided mentoring needed to succeed in competitive STEM fields. This study evaluates and compares the impact of the Loma Linda University (LLU Summer Health Disparities Research Program on high school (HS and undergraduate (UG student participants. The primary focus of our summer research experience (SRE is to enhance the research self-efficacy of the participants by actively involving them in a research project and by providing the students with personalized mentoring and targeted career development activities, including education on health disparities. The results of our study show that our SRE influenced terminal degree intent and increased participant willingness to incorporate research into future careers for both the HS and the UG groups. The quantitative data shows that both the HS and the UG participants reported large, statistically significant gains in self-assessed research skills and research self-efficacy. Both participant groups identified the hands-on research and the mentor experience as the most valuable aspects of our SRE and reported increased science skills, increased confidence in science ability and increased motivation and affirmation to pursue a science career. The follow-up data indicates that 67% of the HS participants and 90% of the UG participants graduated from college with a STEM degree; for those who enrolled in graduate education, 61% and 43% enrolled in LLU, respectively. We conclude that structured SREs can be highly effective STEM strengthening interventions for both UG and HS students and may be a way to measurably increase institutional and biomedical

  6. Impacts of SST Warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia

    Science.gov (United States)

    Zhao, Yong; Zhang, Huqiang

    2016-05-01

    Based on the historical and RCP8.5 experiments from 25 Coupled Model Intercomparison Project phase 5 (CMIP5) models, the impacts of sea surface temperature (SST) warming in the tropical Indian Ocean (IO) on the projected change in summer rainfall over Central Asia (CA) are investigated. The analysis is designed to answer three questions: (1) Can CMIP5 models reproduce the observed influence of the IO sea surface temperatures (SSTs) on the CA rainfall variations and the associated dynamical processes? (2) How well do the models agree on their projected rainfall changes over CA under warmed climate? (3) How much of the uncertainty in such rainfall projections is due to different impacts of IO SSTs in these models? The historical experiments show that in most models summer rainfall over CA are positively correlated to the SSTs in the IO. Furthermore, for models with higher rainfall-SSTs correlations, the dynamical processes accountable for such impacts are much closer to what have been revealed in observational data: warmer SSTs tend to favor the development of anti-cyclonic circulation patterns at low troposphere over north and northwest of the Arabian Sea and the Bay of Bengal. These anomalous circulation patterns correspond to significantly enhanced southerly flow which carries warm and moisture air mass from the IO region up to the northeast. At the same time, there is a cyclonic flow over the central and eastern part of the CA which further brings the tropical moisture into the CA and provides essential moist conditions for its rainfall generation. In the second half of twenty-first century, although all the 25 models simulate warmed SSTs, significant uncertainty exists in their projected rainfall changes over CA: half of them suggest summer rainfall increases, but the other half project rainfall decreases. However, when we select seven models out of the 25 based on their skills in capturing the dynamical processes as observed, then the model projected changes

  7. Wave influence on polar mesosphere summer echoes above Wasa: experimental and model studies

    Science.gov (United States)

    Dalin, P.; Kirkwood, S.; Hervig, M.; Mihalikova, M.; Mikhaylova, D.; Wolf, I.; Osepian, A.

    2012-08-01

    Comprehensive analysis of the wave activity in the Antarctic summer mesopause is performed using polar mesospheric summer echoes (PMSE) measurements for December 2010-January 2011. The 2-day planetary wave is a statistically significant periodic oscillation in the power spectrum density of PMSE power. The strongest periodic oscillation in the power spectrum belongs to the diurnal solar tide; the semi-diurnal solar tide is found to be a highly significant harmonic oscillation as well. The inertial-gravity waves are extensively studied by means of PMSE power and wind components. The strongest gravity waves are observed at periods of about 1, 1.4, 2.5 and 4 h, with characteristic horizontal wavelengths of 28, 36, 157 and 252 km, respectively. The gravity waves propagate approximately in the west-east direction over Wasa (Antarctica). A detailed comparison between theoretical and experimental volume reflectivity of PMSE, measured at Wasa, is made. It is demonstrated that a new expression for PMSE reflectivity derived by Varney et al. (2011) is able to adequately describe PMSE profiles both in the magnitude and in height variations. The best agreement, within 30%, is achieved when mean values of neutral atmospheric parameters are utilized. The largest contribution to the formation and variability of the PMSE layer is explained by the ice number density and its height gradient, followed by wave-induced perturbations in buoyancy period and the turbulent energy dissipation rate.

  8. Wave influence on polar mesosphere summer echoes above Wasa: experimental and model studies

    Directory of Open Access Journals (Sweden)

    P. Dalin

    2012-08-01

    Full Text Available Comprehensive analysis of the wave activity in the Antarctic summer mesopause is performed using polar mesospheric summer echoes (PMSE measurements for December 2010–January 2011. The 2-day planetary wave is a statistically significant periodic oscillation in the power spectrum density of PMSE power. The strongest periodic oscillation in the power spectrum belongs to the diurnal solar tide; the semi-diurnal solar tide is found to be a highly significant harmonic oscillation as well. The inertial-gravity waves are extensively studied by means of PMSE power and wind components. The strongest gravity waves are observed at periods of about 1, 1.4, 2.5 and 4 h, with characteristic horizontal wavelengths of 28, 36, 157 and 252 km, respectively. The gravity waves propagate approximately in the west-east direction over Wasa (Antarctica. A detailed comparison between theoretical and experimental volume reflectivity of PMSE, measured at Wasa, is made. It is demonstrated that a new expression for PMSE reflectivity derived by Varney et al. (2011 is able to adequately describe PMSE profiles both in the magnitude and in height variations. The best agreement, within 30%, is achieved when mean values of neutral atmospheric parameters are utilized. The largest contribution to the formation and variability of the PMSE layer is explained by the ice number density and its height gradient, followed by wave-induced perturbations in buoyancy period and the turbulent energy dissipation rate.

  9. Wave influence on polar mesosphere summer echoes above Wasa. Experimental and model studies

    Energy Technology Data Exchange (ETDEWEB)

    Dalin, P.; Kirkwood, S.; Mihalikova, M.; Mikhaylova, D.; Wolf, I. [Swedish Institute of Space Physics, Kiruna (Sweden); Hervig, M. [GATS Inc., Driggs, ID (United States); Osepian, A. [Polar Geophysical Institute, Murmansk (Russian Federation)

    2012-11-01

    Comprehensive analysis of the wave activity in the Antarctic summer mesopause is performed using polar mesospheric summer echoes (PMSE) measurements for December 2010-January 2011. The 2-day planetary wave is a statistically significant periodic oscillation in the power spectrum density of PMSE power. The strongest periodic oscillation in the power spectrum belongs to the diurnal solar tide; the semi-diurnal solar tide is found to be a highly significant harmonic oscillation as well. The inertial-gravity waves are extensively studied by means of PMSE power and wind components. The strongest gravity waves are observed at periods of about 1, 1.4, 2.5 and 4 h, with characteristic horizontal wavelengths of 28, 36, 157 and 252 km, respectively. The gravity waves propagate approximately in the west-east direction over Wasa (Antarctica). A detailed comparison between theoretical and experimental volume reflectivity of PMSE, measured at Wasa, is made. It is demonstrated that a new expression for PMSE reflectivity derived by Varney et al. (2011) is able to adequately describe PMSE profiles both in the magnitude and in height variations. The best agreement, within 30 %, is achieved when mean values of neutral atmospheric parameters are utilized. The largest contribution to the formation and variability of the PMSE layer is explained by the ice number density and its height gradient, followed by waveinduced perturbations in buoyancy period and the turbulent energy dissipation rate. (orig.)

  10. Comprehensive School Mental Health: An Integrated "School-Based Pathway to Care" Model for Canadian Secondary Schools

    Science.gov (United States)

    Wei, Yifeng; Kutcher, Stan; Szumilas, Magdalena

    2011-01-01

    Adolescence is a critical period for the promotion of mental health and the treatment of mental disorders. Schools are well-positioned to address adolescent mental health. This paper describes a school mental health model, "School-Based Pathway to Care," for Canadian secondary schools that links schools with primary care providers and…

  11. School Leadership Models: What Do We Know?

    Science.gov (United States)

    Bush, Tony; Glover, Derek

    2014-01-01

    The growth in the importance of school leadership has been accompanied by theory development, with new models emerging and established approaches being redefined and further developed. The purpose of this paper is to review current and recent writing on leadership models. The paper examines theoretical literature, to see how leadership is…

  12. Functional Behavioral Assessment: A School Based Model.

    Science.gov (United States)

    Asmus, Jennifer M.; Vollmer, Timothy R.; Borrero, John C.

    2002-01-01

    This article begins by discussing requirements for functional behavioral assessment under the Individuals with Disabilities Education Act and then describes a comprehensive model for the application of behavior analysis in the schools. The model includes descriptive assessment, functional analysis, and intervention and involves the participation…

  13. School Leadership Models: What Do We Know?

    Science.gov (United States)

    Bush, Tony; Glover, Derek

    2014-01-01

    The growth in the importance of school leadership has been accompanied by theory development, with new models emerging and established approaches being redefined and further developed. The purpose of this paper is to review current and recent writing on leadership models. The paper examines theoretical literature, to see how leadership is…

  14. Multi-year model simulations of mineral dust distribution and transport over the Indian subcontinent during summer monsoon seasons

    Science.gov (United States)

    Sijikumar, S.; Aneesh, S.; Rajeev, K.

    2016-08-01

    Aerosol distribution over the Arabian Sea and the Indian subcontinent during the northern hemispheric summer is dominated by mineral dust transport from the West Asian desert regions. The radiative impact of these dust plumes is expected to have a prominent role in regulating the Asian Summer Monsoon circulation. While satellite observations have provided information in the spatial distribution of aerosols over the oceanic regions during the season, their utility over the land is rather limited. This study examines the transport of mineral dust over the West Asian desert, the Indian subcontinent and the surrounding oceanic regions during the summer monsoon season with the help of a regional scale model, WRF-Chem. Geographical locations of prominent dust sources, altitude ranges of mineral dust transport and their inter-annual variations are examined in detail. Multi-year model simulations were carried out during 2007 to 2012 with a model integration from 15 May to 31 August of each year. Six-year seasonal mean (June to August) vertically integrated dust amount from 1000 to 300 hPa level shows prominent dust loading over the eastern parts of Arabian desert and the northwestern part of India which are identified as two major sources of dust production. Large latitudinal gradient in dust amount is observed over the Arabian Sea with the largest dust concentration over the northwestern part and is primarily caused by the prevailing northwesterly wind at 925 hPa level from the Arabian desert. The model simulations clearly show that most of the dust distributed over the Indo-Gangetic plane originates from the Rajasthan desert located in the northwestern part of India, whereas dust observed over the central and south peninsular India and over the Arabian Sea are mainly transported from the Arabian desert. Abnormal dust loading is observed over the north Arabian Sea during June 2008. This has been produced as a result of the low pressure system (associated with the onset of

  15. Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks

    Institute of Scientific and Technical Information of China (English)

    QIN Zhong; SU Gao-li; YU Qiang; HU Bing-min; LI Jun

    2005-01-01

    In this work, datasets of water and carbon fluxes measured with eddy covariance technique above a summer maize field in the North China Plain were simulated with artificial neural networks (ANNs) to explore the fluxes responses to local environmental variables. The results showed that photosynthetically active radiation (PAR), vapor pressure deficit (VPD), air temperature (T) and leaf area index (LAI) were primary factors regulating both water vapor and carbon dioxide fluxes. Three-layer back-propagation neural networks (BP) could be applied to model fluxes exchange between cropland surface and atmosphere without using detailed physiological information or specific parameters of the plant.

  16. Industrial Applications of solar Chemistry. Lectures from the summer school at the Plataforma Solar de Almeria. Solar Thermal Energy: The Clean Way to Generate Electricity and Produce Chemical. Training and Mobility of Researchers Programme. Almeria, 21-25 September, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    A Summer School entitled Solar Thermal Energy: The Clean Way to Generate Electricity and Produce Chemicals consisting of two one-week courses, was held at the Plataforma Solar de Almeria (PSA) in July and September, 1998. The first was called Solar Thermal Electricity Generation and the second. Industrial Applications of Solar Chemistry. Through both topics concerned the use of solar light as the energy source and the courses were organised within one. Summer School, they clearly cover very different disciplines and it therefore makes sense to publish course materials separately. This volume is a compilation of the lectures given in the course on Electricity Generation. (Author)

  17. Reduction of uncertainty associated with future changes in Indian summer monsoon projected by climate models and assessment of monsoon teleconnections

    Science.gov (United States)

    Rajendran, Kavirajan; Surendran, Sajani; Kitoh, Akio; Varghese, Stella Jes

    2016-05-01

    Coupled Model Intercomparison Project phase 5 (CMIP5) coupled global climate model (CGCM) Representative Concentration Pathway (RCP) simulations project clear future temperature increase but diverse changes in Indian summer monsoon rainfall (ISMR) with substantial inter-model spread. Robust signals of projected changes are derived based on objective criteria and the physically consistent simulations with the highest reliability suggest future reduction in the frequency of light rainfall but increase in high to extreme rainfall. The role of equatorial Indian and Pacific Oceans on the projected changes in monsoon rainfall is investigated. The results of coupled model projections are also compared with the corresponding projections from high resolution AGCM time-slice, multi-physics and multi-forcing ensemble experiments.

  18. The effect of a county's public high school summer remediation program on student gains on end-of-course standard of learning tests in Algebra I, Biology, Chemistry, Geometry and World History and Geography II

    Science.gov (United States)

    Aiken, Brenda L.

    The Commonwealth of Virginia requires high school students to receive a passing grade in core courses and a passing score on End-of-Course Standards of Learning (EOC SOL) tests to receive verified credits that lead to a Virginia high school diploma. These tests are believed to accurately reflect what students should know and be able to do in order to experience success in their endeavors beyond high school. For some students remediation is required to experience success on EOC SOL tests. This study sought to determine the effect of a County's public high school summer remediation program on student gains on EOC SOL tests in Algebra I, Biology, Chemistry, Geometry, and World History and Geography II. Specifically, the purpose of the study sought to determine the following: (a) If significant gains were made by students who attended the summer remediation program; (b) If significant gains were made by students who did not attend the summer remediation program; (c) If there were differences in gain scores of students who attended and those who did not attend the summer remediation program; and (d) If there were differences in gain scores among students who attended the summer remediation program related to school site, gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. The results of the study indicate that students who attended and those who did not attend the summer remediation program made significant gains. However, the gains for students who attended the summer remediation program were significantly greater than the gains made by students who did not attend. The study also found that there were no significant differences in gain scores among students who attended the summer remediation program related to gender, ethnicity, learning ability group, socioeconomic status, and level of English proficiency. There were significant differences in Algebra I gain scores related to school site. Recommendations for

  19. Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches

    Science.gov (United States)

    Vathsala, H.; Koolagudi, Shashidhar G.

    2017-01-01

    In this paper we discuss a data mining application for predicting peninsular Indian summer monsoon rainfall, and propose an algorithm that combine data mining and statistical techniques. We select likely predictors based on association rules that have the highest confidence levels. We then cluster the selected predictors to reduce their dimensions and use cluster membership values for classification. We derive the predictors from local conditions in southern India, including mean sea level pressure, wind speed, and maximum and minimum temperatures. The global condition variables include southern oscillation and Indian Ocean dipole conditions. The algorithm predicts rainfall in five categories: Flood, Excess, Normal, Deficit and Drought. We use closed itemset mining, cluster membership calculations and a multilayer perceptron function in the algorithm to predict monsoon rainfall in peninsular India. Using Indian Institute of Tropical Meteorology data, we found the prediction accuracy of our proposed approach to be exceptionally good.

  20. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    Science.gov (United States)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  1. THE ROLE OF ENVIRONMENTALEDUCATION IN GAINING ENVIRONMENTAL AWARENESS FOR ELEMENTARY SCHOOL STUDENTS: THE SAMPLE OF ECOLOGY BASED SUMMER CAMP PROJECT

    Directory of Open Access Journals (Sweden)

    Gökçe ASLAN

    2012-08-01

    Full Text Available The century we live in, the environmental problems that arise in connection with the fast depletion of natural resources now show their effects globally. Especially after the Industrial Revolution, people were reduced the environmental values to vehicle position in their economically enrichment race and these values were used unconsciously and doomed to extinction. However, these people don’tknow that they have been chopping down their own branch with their unconcerned attitudes. Uninhibited global environmental problems threaten the future of humanity as a common concern of all people. For constructing a more healthy human-nature relationship, giving people environmental awareness through environmental education is required. Ecology Based Summer Camp Project which was held in 2011 in cooperation with Niğde University and TUBITAK can be given as anexample of awareness-raising activity. This and similar projects play a key role in overcoming many environmental problems by providing students and their teachers with environmental awareness.

  2. Evaluate the urban effect on summer convective precipitation by coupling a urban canopy model with a Regional Climate Model

    Science.gov (United States)

    Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.

    2013-12-01

    One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation

  3. Influence of the Tibetan Plateau on the Summer Climate Patterns over Asia in the IAP/LASG SAMIL Model

    Institute of Scientific and Technical Information of China (English)

    DUAN Anmin; WU Guoxiong; LIANG Xiaoyun

    2008-01-01

    A series of numerical experiments are carried out by using the Spectral Atmospheric Model of State Key Laboratory of Numerical Modeling Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (SAMIL) to investigate how the Tibetan Plateau (TP) mechanical and thermal forcing affect the circulation and climate patterns over subtropical Asia. It is shown that, compared to mechanical forcing, the thermal forcing of TP plays a dominant role in determining the large-scale circulation in summer. Both the sensible heating and the latent heating over TP tend to generate a surface cyclonic circulation and a gigantic anticyclonic circulation in the mid- and upper layers, whereas the direct effect of the latter is much more significant. Following a requirement of the time-mean quasi-geostrophic vorticity equation for large-scale air motion in the subtropics, convergent flow and vigorous ascending motion must appear to the east of TP. Hence the summer monsoon in East China is reinforced efficiently by TP. In contrast, the atmosphere to the west of TP is characterized by divergent flow and downward motion, which induces the arid climate in Mid-Asia.

  4. Formation of summer phytoplankton bloom in the northwestern Bay of Bengal in a coupled physical-ecosystem model

    Science.gov (United States)

    Thushara, V.; Vinayachandran, P. N.

    2016-12-01

    The Bay of Bengal (BoB) is considered to be a region of low biological productivity, owing to nutrient limitation, caused by strong salinity stratification induced by the freshwater influx from rivers and precipitation. Satellite and in situ observations, however, reveal the presence of prominent regional blooms in the bay in response to monsoonal forcings. Bloom dynamics of the BoB are presumably determined by freshwater as well as the local and remote effect of winds and remain to be explored in detail. Using a coupled physical-ecosystem model, we have examined the oceanic processes controlling productivity in the northwestern BoB during the summer monsoon. The region exhibits a prominent bloom lasting for a period of about 2 months, supporting major fishing zones along the northeast coast of India. The ecosystem model simulates the spatial and temporal evolution of the surface bloom in good agreement with Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) observations. Vertical distribution of upper ocean physical and biological tracers and a nitrate budget analysis reveal the dominant role of coastal upwelling induced by alongshore winds in triggering the bloom. Horizontal advection plays a secondary role by supplying nutrients from coastal to offshore regions. The bloom decays with the weakening of winds and upwelling by the end of summer monsoon. The simulated bloom in the northwestern bay remains largely unaffected by the freshwater effects, since the peak bloom occurs before the arrival of river plumes.

  5. A Model Aerospace Curriculum: August Martin High School.

    Science.gov (United States)

    Strickler, Mervin K., Jr.

    This document presents an operational model of a thematic aerospace education school--the August Martin High School (New York). Part 1 briefly describes the nature of aviation/aerospace education and the background of the school. This background information includes how the school was formed, rationale for an aerospace thematic school, research…

  6. Transport pathways of carbon monoxide in the Asian summer monsoon diagnosed from Model of Ozone and Related Tracers (MOZART)

    Science.gov (United States)

    Park, Mijeong; Randel, William J.; Emmons, Louisa K.; Livesey, Nathaniel J.

    2009-04-01

    Satellite observations of tropospheric chemical constituents (such as carbon monoxide, CO) reveal a persistent maximum in the upper troposphere-lower stratosphere (UTLS) associated with the Asian summer monsoon anticyclone. Diagnostic studies suggest that the strong anticyclonic circulation acts to confine air masses, but the sources of pollution and transport pathways to altitudes near the tropopause are the subject of debate. Here we use the Model for Ozone and Related Tracers 4 (MOZART-4) global chemistry transport model, driven by analyzed meteorological fields, to study the source and transport of CO in the Asian monsoon circulation. A MOZART-4 simulation for one summer is performed, and results are compared with satellite observations of CO from the Aura Microwave Limb Sounder and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer. Overall, good agreement is found between the modeled and observed CO in the UTLS, promoting confidence in the model simulation. The model results are then analyzed to understand the sources and transport pathways of CO in the Asian monsoon region, and within the anticyclone in particular. The results show that CO is transported upward by monsoon deep convection, with the main surface sources from India and Southeast Asia. The uppermost altitude of the convective transport is ˜12 km, near the level of main deep convective outflow, and much of the CO is then advected in the upper troposphere northeastward across the Pacific Ocean and southwestward with the cross-equatorial Hadley flow. However, some of the CO is also advected vertically to altitudes near the tropopause (˜16 km) by the large-scale upward circulation on the eastern side of the anticyclone, and this air then becomes trapped within the anticyclone (to the west of the convection, extending to the Middle East). Within the anticyclone, the modeled CO shows a relative maximum near 15 km, in good agreement with observations.

  7. Sensitivity of summer ensembles of super-parameterized US mesoscale convective systems to cloud resolving model microphysics and resolution

    Science.gov (United States)

    Elliott, E.; Yu, S.; Kooperman, G. J.; Morrison, H.; Wang, M.; Pritchard, M. S.

    2014-12-01

    Microphysical and resolution sensitivities of explicitly resolved convection within mesoscale convective systems (MCSs) in the central United States are well documented in the context of single case studies simulated by cloud resolving models (CRMs) under tight boundary and initial condition constraints. While such an experimental design allows researchers to causatively isolate the effects of CRM microphysical and resolution parameterizations on modeled MCSs, it is still challenging to produce conclusions generalizable to multiple storms. The uncertainty associated with the results of such experiments comes both from the necessary physical constraints imposed by the limited CRM domain as well as the inability to evaluate or control model internal variability. A computationally practical method to minimize these uncertainties is the use of super-parameterized (SP) global climate models (GCMs), in which CRMs are embedded within GCMs to allow their free interaction with one another as orchestrated by large-scale global dynamics. This study uses NCAR's SP Community Atmosphere Model 5 (SP-CAM5) to evaluate microphysical and horizontal resolution sensitivities in summer ensembles of nocturnal MCSs in the central United States. Storm events within each run were identified using an objective empirical orthogonal function (EOF) algorithm, then further calibrated to harmonize individual storm signals and account for the temporal and spatial heterogeneity between them. Three summers of control data from a baseline simulation are used to assess model internal interannual variability to measure its magnitude relative to sensitivities in a number of distinct experimental runs with varying CRM parameters. Results comparing sensitivities of convective intensity to changes in fall speed assumptions about dense rimed species, one- vs. two-moment microphysics, and CRM horizontal resolution will be discussed.

  8. SUNYA Regional Climate Model Simulations of East Asia Summer Monsoon: Effects of Cloud Vertical Structure on the Surface Energy Balance

    Directory of Open Access Journals (Sweden)

    Wei Gong and Wei-Chyung Wang

    2007-01-01

    Full Text Available We used the State University of New York at Albany (SUNYA regional climate model to study the effect of cloud vertical distribution in affecting the surface energy balance of the East Asia summer monsoon (EASM. Simulations were conducted for the summers of 1988 and 1989, during which large contrast in the intra-seasonal cloud radiative forcing (CRF was observed at the top of the atmosphere. The model results indicate that both the high and low clouds are persistent throughout the summer months in both years. Because of large cloud water, low clouds significantly reduce the solar radiation flux reaching the surface, which nevertheless still dominate the surface energy balance, accounting for more than 50% of the surface heating. The low clouds also contribute significantly the downward longwave radiation to the surface with values strongly dependent on the cloud base temperature. The presence of low clouds effectively decreases the temperature and moisture gradients near surface, resulting in a substantial decrease in the sensible and latent heat fluxes from surface, which partially compensate the decrease of the net radiative cooling of the surface. For example, in the two days, May 8 and July 11 of 1988, the total cloud cover of 80% is simulated, but the respective low cloud cover (water was 63% (114 gm-2 and 22% (21 gm-2. As a result, the downward solar radiation is smaller by 161 Wm-2 in May 8. On the other hand, the cloud temperature was _ lower, yielding 56 Wm-2 smaller downward longwave radiation. The near surface temperature and gradient is more than _ smaller (and moisture gradient, leading to 21 and 81 Wm-2 smaller sensible heat and latent heat fluxes. It is also demonstrated that the model is capable to reproduce the intraseasonal variation of shortwave CRF, and catches the relationship between total cloud cover and SW CRF. The model results show the dominance of high cloud on the regional mean longwave CRF and low cloud on the intra

  9. Intensity vs. Duration: Comparing the Effects of a Fluency-Based Reading Intervention Program, in After-School vs. Summer School Settings

    Science.gov (United States)

    Katzir, Tami; Goldberg, Alyssa; Aryeh, Terry Joffe Ben; Donnelley, Katharine; Wolf, Maryanne

    2013-01-01

    Two versions of RAVE-O, a fluency-based reading intervention were examined over a 2-intervention period: a 9-month, 44-hour afterschool intervention program, and a month long, 44-hour summer intervention program. 80 children in grades 1-3 were tested on the two subtests of the Test of Word-Reading Efficiency and were assigned to one of 6 groups…

  10. Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain

    Science.gov (United States)

    Pattnayak, K. C.; Panda, S. K.; Saraswat, Vaishali; Dash, S. K.

    2017-07-01

    This study assess the performance of two versions of Regional Climate Model (RegCM) in simulating the Indian summer monsoon over South Asia for the period 1998 to 2003 with an aim of conducting future climate change simulations. Two sets of experiments were carried out with two different versions of RegCM (viz. RegCM4.2 and RegCM4.3) with the lateral boundary forcings provided from European Center for Medium Range Weather Forecast Reanalysis (ERA-interim) at 50 km horizontal resolution. The major updates in RegCM4.3 in comparison to the older version RegCM4.2 are the inclusion of measured solar irradiance in place of hardcoded solar constant and additional layers in the stratosphere. The analysis shows that the Indian summer monsoon rainfall, moisture flux and surface net downward shortwave flux are better represented in RegCM4.3 than that in the RegCM4.2 simulations. Excessive moisture flux in the RegCM4.2 simulation over the northern Arabian Sea and Peninsular India resulted in an overestimation of rainfall over the Western Ghats, Peninsular region as a result of which the all India rainfall has been overestimated. RegCM4.3 has performed well over India as a whole as well as its four rainfall homogenous zones in reproducing the mean monsoon rainfall and inter-annual variation of rainfall. Further, the monsoon onset, low-level Somali Jet and the upper level tropical easterly jet are better represented in the RegCM4.3 than RegCM4.2. Thus, RegCM4.3 has performed better in simulating the mean summer monsoon circulation over the South Asia. Hence, RegCM4.3 may be used to study the future climate change over the South Asia.

  11. Teaching East Asia in Middle Schools: Lesson Plans Contributed at the 1998 East Asian Studies Center Summer Workshop.

    Science.gov (United States)

    Indiana Univ., Bloomington. East Asian Studies Center.

    This document contains five middle school lesson plans that teach about East Asia, focusing on Japan, China, and Korea. Lessons deal with geography, history, cultural comparisons, and trade relations. Lesson plans include background information, materials needed, extension and enrichment ideas, a lesson script, a rubric, a list of resources, and…

  12. High School Students' Meta-Modeling Knowledge

    Science.gov (United States)

    Fortus, David; Shwartz, Yael; Rosenfeld, Sherman

    2016-12-01

    Modeling is a core scientific practice. This study probed the meta-modeling knowledge (MMK) of high school students who study science but had not had any explicit prior exposure to modeling as part of their formal schooling. Our goals were to (A) evaluate the degree to which MMK is dependent on content knowledge and (B) assess whether the upper levels of the modeling learning progression defined by Schwarz et al. (2009) are attainable by Israeli K-12 students. Nine Israeli high school students studying physics, chemistry, biology, or general science were interviewed individually, once using a context related to the science subject that they were learning and once using an unfamiliar context. All the interviewees displayed MMK superior to that of elementary and middle school students, despite the lack of formal instruction on the practice. Their MMK was independent of content area, but their ability to engage in the practice of modeling was content dependent. This study indicates that, given proper support, the upper levels of the learning progression described by Schwarz et al. (2009) may be attainable by K-12 science students. The value of explicitly focusing on MMK as a learning goal in science education is considered.

  13. Investigating the effects of a summer storm on the North Sea stratification using a regional coupled ocean-atmosphere model

    Science.gov (United States)

    Gronholz, Alexandra; Gräwe, Ulf; Paul, André; Schulz, Michael

    2017-02-01

    The influence of a summer storm event in 2007 on the North Sea and its effects on the ocean stratification are investigated using a regional coupled ocean (Regional Ocean Modeling System, ROMS)-atmosphere (Weather Research & Forecasting model, WRF) modeling system. An analysis of potential energy anomaly (PEA, Φ) and its temporal development reveals that the loss of stratification due to the storm event is dominated by vertical mixing in almost the entire North Sea. For specific regions, however, a considerable contribution of depth-mean straining is observed. Vertical mixing is highly correlated with wind induced surface stresses. However, peak mixing values are observed in combination with incoming flood currents. Depending on the phase between winds and tides, the loss of stratification differs strongly over the North Sea. To study the effects of interactive ocean-atmosphere exchange, a fully coupled simulation is compared with two uncoupled ones for the same vertical mixing parameters to identify the impact of spatial resolution as well as of SST feedback. While the resulting new mixed layer depth after the storm event in the uncoupled simulation with lower spatial and temporal resolution of the surface forcing data can still be located in the euphotic zone, the coupled simulation is capable to mix the entire water column and the vertical mixing in the uncoupled simulation with higher resolution of the surface forcing data is strongly amplified. These differences might have notable implications for ecosystem modeling since it could determine the development of new phytoplankton blooms after the storm and for sediment modeling in terms of sediment mobilization. An investigation of restratification after the extreme event illustrates the persistent effect of this summer storm.

  14. An Intercomparison of Cloud-Resolving Models with the Atmospheric Radiation Measurement Summer 1997 Intensive Observation Period Data

    Science.gov (United States)

    Xu, Kuan-Man; Cederwall, Richard T.; Donner, Leo J.; Grabowski, Wojciech W.; Guichard, Francoise; Johnson, Daniel E.; Khairoutdinov, Marat; Krueger, Steven K.; Petch, Jon C.; Randall, David A.

    2002-01-01

    This paper reports an intercomparison study of midlatitude continental cumulus convection simulated by eight two-dimensional and two three-dimensional cloud-resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulent fluxes, and radiative-heating profiles during three sub-periods of the summer 1997 Intensive Observation Period of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. Each sub-period includes two or three precipitation events of various intensities over a span of 4 or 5 days. The results can be summarized as follows. CRMs can reasonably simulate midlatitude continental summer convection observed at the ARM Cloud and Radiation Testbed site in terms of the intensity of convective activity, and the temperature and specific-humidity evolution. Delayed occurrences of the initial precipitation events are a common feature for all three sub-cases among the models. Cloud mass fluxes, condensate mixing ratios and hydrometeor fractions produced by all CRMs are similar. Some of the simulated cloud properties such as cloud liquid-water path and hydrometeor fraction are rather similar to available observations. All CRMs produce large downdraught mass fluxes with magnitudes similar to those of updraughts, in contrast to CRM results for tropical convection. Some inter-model differences in cloud properties are likely to be related to those in the parametrizations of microphysical processes. There is generally a good agreement between the CRMs and observations with CRMs being significantly better than single-column models (SCMs), suggesting that current results are suitable for use in improving parametrizations in SCMs. However, improvements can still be made in the CRM simulations; these include the proper initialization of the CRMs and a more proper method of diagnosing cloud boundaries in model outputs for comparison with satellite and radar cloud observations.

  15. CMS Data Analysis School Model

    CERN Document Server

    Malik, Sudhir; Cavanaugh, R; Bloom, K; Chan, Kai-Feng; D'Hondt, J; Klima, B; Narain, M; Palla, F; Rolandi, G; Schörner-Sadenius, T

    2014-01-01

    To impart hands-on training in physics analysis, CMS experiment initiated the  concept of CMS Data Analysis School (CMSDAS). It was born three years ago at the LPC (LHC Physics Center), Fermilab and is based on earlier workshops held at the LPC and CLEO Experiment. As CMS transitioned from construction to the data taking mode, the nature of earlier training also evolved to include more of analysis tools, software tutorials and physics analysis. This effort epitomized as CMSDAS has proven to be a key for the new and young physicists to jump start and contribute to the physics goals of CMS by looking for new physics with the collision data. With over 400 physicists trained in six CMSDAS around the globe , CMS is trying to  engage the collaboration discovery potential and maximize the physics output. As a bigger goal, CMS is striving to nurture and increase engagement of the myriad talents of CMS, in the development of physics, service, upgrade, education of those new to CMS and the caree...

  16. School Improvement Model to Foster Student Learning

    Science.gov (United States)

    Rulloda, Rudolfo Barcena

    2011-01-01

    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  17. Nematodes: Model Organisms in High School Biology

    Science.gov (United States)

    Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth

    2007-01-01

    In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…

  18. The Gravity Model for High School Students

    Science.gov (United States)

    Tribble, Paul; Mitchell, William A.

    1977-01-01

    The authors suggest ways in which the gravity model can be used in high school geography classes. Based on Newton's Law of Molecular Gravitation, the law states that gravitation is in direct ratio to mass and inverse ratio to distance. One activity for students involves determination of zones of influence of cities of various sizes. (Author/AV)

  19. Mechanism of early-summer low-temperature extremes in Japan projected by a nonhydrostatic regional climate model

    Directory of Open Access Journals (Sweden)

    Akihiko Murata

    2014-08-01

    Full Text Available We investigated the mechanisms associated with projected early-summer low-temperature extremes in Japan at the end of the 21st century by means of a well-developed nonhydrostatic regional climate model under the A1B scenario provided by the Intergovernmental Panel on Climate Change-Special Report on Emission Scenario. The projected surface air temperature reveals that even in a climate warmer than that at present, extremely low daily minimum temperatures in early summer are comparable to those in the present climate at several locations. At locations where future low temperatures are remarkable, the temperature drop at night is larger in the future than at present. This temperature drop results from mainly two heat fluxes: upward longwave radiation and latent heat flux. In the future climate, upward longwave radiation increases owing to high temperature at the surface around the time of the sunset. In addition, the upward flux of latent heat increases owing to low relative humidity just above the surface. These dryer conditions are associated with lower relative humidity at 850 hPa, suggesting the effects of synoptic systems. These two fluxes act to reduce the surface temperature, and hence surface air temperature.

  20. Modelling the Relationship Between Summer Maize NPK Uptake and Yield on the Basis of Soil Fertility Indices

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Quantitative estimation of fertilizer requirements can help to increase maize (Zea mays L.) yields and improve the fertilizer use efficiency. The model for the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) was calibrated for maize by use of soil fertility data and fertilizer trials at different sites of the Huang Huai Hal river plain in China. The QUEFTS model accounts for interactions between nitrogen (N), phosphorus (P) and potassium (K). It describes the effects of soil characteristics on maize yields in four steps: (1) assessment of the potential supply of N, P and K based on soil chemical data; (2) calculation of the actual uptake of N, P and K, in function of the potential supply as determined in step 1; (3) draft the yield ranges as a function of the actual uptake of N, P and K as determined in step 2; (4) calculation of the maize yield based on the three yield ranges established in step 3. Data of field experiments with different fertilization treatments of various regions in China during the years of 1985 to 1995 were used to calibrate the QUEFTS model for summer maize. In step 1 the N, P and K recovered from their amount applied were described by new equa tions. The minimum and maximum accumulated N, P and K (kg grain kg-1) in summer maize were determined as (21-64), (126-384) and (20-90), respectively. The simulated yields were in good agreement with the observed ones. It was concluded that the calibrated and adjusted QUEFTS model could be useful to improve fertilizer recommendations for maize in the Huang Huai Hai plain of China.

  1. 1991 Summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics. Student research reports

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    Ten students participated in the 1991 summer high school student research program at the University of Rochester`s Laboratory for Laser Energetics (LLE). The participants spent 8 weeks working and learning at LLE. They spent most of their time working on individual research projects. Each student was assigned a project, upon which he/she worked under the direct supervision of one of the staff members of the laboratory. The students, their high schools, and their projects are listed in Table 1. The program culminated in oral and written reports describing their work. The oral reports were presented at a symposium on 23 August 1991, at which the student`s parents and teachers and members of the LLE staff were present. The written reports are collected in this volume. The titles of the works are UV alignment table; neutron yields can be measured by using the relative gain of a photomultiplier tube; scattering in isotropic and anisotropic media; a better approximation of the diffusion equation; use of the SLAC code to produce a photoemissive electrostatic electron gun; spatial resolution deteriorates with increasing film exposure; analysis of refractive image distortion; making of pinholes for x-ray pinhole cameras; does perturbation theory accurately describe multiphoton ionization? and wave front analysis using shearing interferometry.

  2. Evaluation of the summer precipitation over China simulated by BCC_CSM model with different horizontal resolutions during the recent half century

    Science.gov (United States)

    Kan, Mengyun; Huang, Anning; Zhao, Yong; Zhou, Yang; Yang, Ben; Wu, Haomin

    2015-05-01

    The performance of Beijing Climate Center climate system model with different horizontal resolutions (BCC_CSM1.1 with coarse resolution and BCC_CSM1.1 m with fine resolution) in simulating the summer precipitation over China during the recent half century is evaluated, and the possible underlying physical mechanisms related to the model biases are also further analyzed and discussed. Results show that increasing horizontal resolution does improve the summer precipitation simulation over most part of China especially in western China due to the more realistic description of the topography. However, the summer precipitation amount (PA) over eastern China characterized by monsoonal climates is much more underestimated in the finer resolution model. It is also noted that the improvement (deterioration) of the summer PA over western (eastern) China in BCC_CSM1.1 m model is mainly due to the better (worse) simulation of the moderate and heavy precipitation relative to BCC_CSM1.1 model. In addition, increasing model horizontal resolution can significantly improve the convective precipitation simulation especially over western China but shows very limited improvement in the large-scale precipitation simulation. The much more underestimated summer PA over eastern China in BCC_CSM1.1 m model relative to BCC_CSM1.1 model is due to the significantly reduced positive biases of the convective PA but few changes in the negative biases of the large-scale PA. Further mechanism analysis suggests that both the underestimated land-sea thermal contrast and the overestimated Western Pacific subtropical high result in much less northeastward water vapor transport and summer PA over eastern China in BCC_CSM1.1 m model than in BCC_CSM1.1 model.

  3. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Wednesday 6 July 09:15 - 10:00 F. CERUTTI (CERN) Presentation of the Summer Student Programme D. Heagerty (CERN) Computer rules O. ULLALAND (CERN) Workshops presentation 10:15 - 11:00 D. SCHLATTER (CERN) Introduction to CERN 11:15 Film on CERN Thursday 7 July 09:15 - 11:00 L. Di Lella (CERN) Introduction to Particle Physics (1-2/4) 11:15 - 12:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (1/3) 12:00 Discussion Session 14:00 - 14:45 M. Lindroos (CERN) ISOLDE Facility 15:00 M. Lindroos (CERN) ISOLDE Visit Friday 8 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physics (3/4) 10:15 - 11:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (2/3) 11:15 - 12:00 G. ROLANDI (CERN) How an experiment is designed (1/2) 12:00 Discussion Session Monday 11 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physi...

  4. The Summer Treatment Program Meets the South Side of Chicago: Bridging Science and Service in Urban After-School Programs.

    Science.gov (United States)

    Frazier, Stacy L; Chacko, Anil; Van Gessel, Christine; O'Boyle, Caroline; Pelham, William E

    2012-05-01

    BACKGROUND: This paper describes efforts to apply the principles and strategies of an empirically-supported treatment for children with disruptive behaviour problems to a park after-school program serving children in urban poverty. METHOD: Collaboration with staff proceeded in stages: (1) relationship building, needs assessment, and resource mapping; (2) intervention adaptation and implementation; and (3) implementation support, problem-solving, and sustainability. RESULTS: Four tools capitalised on inherent strengths of the parks, accommodated child and staff needs, and emerged as feasible and effective: Group Discussion, Good Behaviour Game, Peers as Leaders, and Good News Notes. CONCLUSIONS: Recreational settings offer opportunities for mental health promotion for children in urban poverty.

  5. Modeling the cod larvae drift in the Bornholm Basin in summer 1994

    DEFF Research Database (Denmark)

    Hinrichsen, H.H.; Lehmann, A.; St. John, Michael

    1997-01-01

    -dimensional eddy-resolving baroclinic model of the Baltic Sea based on the Bryan-Cox-Semtner code. Larval drift was simulated by the incorporation of a passive tracer into the model utilized to represent individual cod larvae. Additionally, simulated Lagrangian drift trajectories are presented. For model purposes...... with the baroclinic model forced by wind data for the whole Baltic taken from the Europa-Modell (EM) of the German weather service, Offenbach. Verification of simulations was performed by comparison with field measurements of hydrographic variables and ADCP derived current measurements taken during the surveys...

  6. Sensitivity of a regional climate model to land surface parameterization schemes for East Asian summer monsoon simulation

    Science.gov (United States)

    Li, Wenkai; Guo, Weidong; Xue, Yongkang; Fu, Congbin; Qiu, Bo

    2016-10-01

    Land surface processes play an important role in the East Asian Summer Monsoon (EASM) system. Parameterization schemes of land surface processes may cause uncertainties in regional climate model (RCM) studies for the EASM. In this paper, we investigate the sensitivity of a RCM to land surface parameterization (LSP) schemes for long-term simulation of the EASM. The Weather Research and Forecasting (WRF) Model coupled with four different LSP schemes (Noah-MP, CLM4, Pleim-Xiu and SSiB), hereafter referred to as Sim-Noah, Sim-CLM, Sim-PX and Sim-SSiB respectively, have been applied for 22-summer EASM simulations. The 22-summer averaged spatial distributions and strengths of downscaled large-scale circulation, 2-m temperature and precipitation are comprehensively compared with ERA-Interim reanalysis and dense station observations in China. Results show that the downscaling ability of RCM for the EASM is sensitive to LSP schemes. Furthermore, this study confirms that RCM does add more information to the EASM compared to reanalysis that imposes the lateral boundary conditions (LBC) because it provides 2-m temperature and precipitation that are with higher resolution and more realistic compared to LBC. For 2-m temperature and monsoon precipitation, Sim-PX and Sim-SSiB simulations are more consistent with observation than simulations of Sim-Noah and Sim-CLM. To further explore the physical and dynamic mechanisms behind the RCM sensitivity to LSP schemes, differences in the surface energy budget between simulations of Ens-Noah-CLM (ensemble mean averaging Sim-Noah and Sim-CLM) and Ens-PX-SSiB (ensemble mean averaging Sim-PX and Sim-SSiB) are investigated and their subsequent impacts on the atmospheric circulation are analyzed. It is found that the intensity of simulated sensible heat flux over Asian continent in Ens-Noah-CLM is stronger than that in Ens-PX-SSiB, which induces a higher tropospheric temperature in Ens-Noah-CLM than in Ens-PX-SSiB over land. The adaptive

  7. Modelling the impact of noctilucent cloud formation on atomic oxygen and other minor constituents of the summer mesosphere

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2005-01-01

    Full Text Available The formation, evolution and eventual sublimation of noctilucent clouds (NLC may have a significant effect on the odd oxygen and hydrogen chemistry of the high latitude summer mesosphere. Three mechanisms are considered here: the direct uptake of atomic oxygen on the surface of the ice particles; the redistribution of water vapour, which changes the photochemical source of odd hydrogen species; and the direct photolysis of the ice particles themselves to produce odd hydrogen species in the gas phase. A 1-D photochemical model is employed to investigate the potential importance of these mechanisms. This shows, using the recently measured uptake coefficients of O on ice, that the heterogeneous removal of O on the surface of the cloud particles is too slow by at least a factor of 5x103 to compete with gas-phase O chemistry. The second and third mechanisms involve the solar Lyman-α photolysis of H2O in the gas and solid phase, respectively. During twilight, Lyman-α radiation is severely attenuated and these mechanisms are insignificant. In contrast, when the upper mesosphere is fully illuminated there is a dramatic impact on the O profile, with depletion of O at the base of the cloud layer of close to an order of magnitude. A correspondingly large depletion in O3 is also predicted, while H, OH, HO2 and H2O2 are found to be enhanced by factors of 3-5. In fact, rocket-borne mass spectrometer measurements during summer have revealed local H2O2 enhancements in the region of the clouds. Rocket-borne measurements of atomic O and O3 profiles in the presence of mesospheric clouds in the daytime are highly desirable to test the predictions of this model and our understanding of the genesis of mesospheric clouds.

  8. Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol–atmosphere–ocean model over the Mediterranean

    Directory of Open Access Journals (Sweden)

    P. Nabat

    2014-10-01

    Full Text Available The present study investigates the effects of aerosols on the Mediterranean climate daily variability during summer 2012. Simulations have been carried out using the coupled regional climate system model CNRM-RCSM5 which includes prognostic aerosols, namely desert dust, sea salt, organic, black-carbon and sulfate particles, in addition to the atmosphere, land surface and ocean components. An evaluation of the dust aerosol scheme of CNRM-RCSM5 has been performed against in-situ and satellite measurements. This scheme shows its ability to reproduce the spatial and temporal variability of aerosol optical depth (AOD over the Mediterranean region in summer 2012. Observations from the TRAQA/ChArMEx campaign also show that the model correctly represents dust vertical and size distributions. Thus CNRM-RCSM5 can be used for aerosol–climate studies over the Mediterranean. Here we focus on the effects of dust particles on surface temperature and radiation daily variability. Surface shortwave aerosol radiative forcing variability is found to be more than twice higher over regions affected by dust aerosols, when using a prognostic aerosol scheme instead of a monthly climatology. In this case downward surface solar radiation is also found to be better reproduced according to a comparison with several stations across the Mediterranean. Moreover, the radiative forcing due to the dust outbreaks also causes an extra cooling in land and sea surface temperatures. A composite study has been carried out for 14 stations across the Mediterranean to identify more precisely the differences between dusty days and the set of all the days. Observations show that dusty days receive less radiation at the surface and are warmer than average because of southwesterly fluxes often generating dust outbreaks. Only the simulation using the prognostic aerosol scheme is found to reproduce the observed intensity of the dimming and warming on dusty days. Otherwise, the dimming is

  9. Near-Surface Meteorology During the Arctic Summer Cloud Ocean Study (ASCOS): Evaluation of Reanalyses and Global Climate Models.

    Science.gov (United States)

    De Boer, G.; Shupe, M.D.; Caldwell, P.M.; Bauer, Susanne E.; Persson, O.; Boyle, J.S.; Kelley, M.; Klein, S.A.; Tjernstrom, M.

    2014-01-01

    Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS) are used to evaluate the performance of three atmospheric reanalyses (European Centre for Medium Range Weather Forecasting (ECMWF)- Interim reanalysis, National Center for Environmental Prediction (NCEP)-National Center for Atmospheric Research (NCAR) reanalysis, and NCEP-DOE (Department of Energy) reanalysis) and two global climate models (CAM5 (Community Atmosphere Model 5) and NASA GISS (Goddard Institute for Space Studies) ModelE2) in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large-scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms, are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, has demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the benefits gained by evaluating individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms that result in the best net energy budget.

  10. Decadal shifts of East Asian summer monsoon in a climate model free of explicit GHGs and aerosols

    Science.gov (United States)

    Lin, Renping; Zhu, Jiang; Zheng, Fei

    2016-12-01

    The East Asian summer monsoon (EASM) experienced decadal transitions over the past few decades, and the associated "wetter-South-drier-North" shifts in rainfall patterns in China significantly affected the social and economic development in China. Two viewpoints stand out to explain these decadal shifts, regarding the shifts either a result of internal variability of climate system or that of external forcings (e.g. greenhouse gases (GHGs) and anthropogenic aerosols). However, most climate models, for example, the Atmospheric Model Intercomparison Project (AMIP)-type simulations and the Coupled Model Intercomparison Project (CMIP)-type simulations, fail to simulate the variation patterns, leaving the mechanisms responsible for these shifts still open to dispute. In this study, we conducted a successful simulation of these decadal transitions in a coupled model where we applied ocean data assimilation in the model free of explicit aerosols and GHGs forcing. The associated decadal shifts of the three-dimensional spatial structure in the 1990s, including the eastward retreat, the northward shift of the western Pacific subtropical high (WPSH), and the south-cool-north-warm pattern of the upper-level tropospheric temperature, were all well captured. Our simulation supports the argument that the variations of the oceanic fields are the dominant factor responsible for the EASM decadal transitions.

  11. Summer 2011

    Directory of Open Access Journals (Sweden)

    Eric G. Strauss

    2011-01-01

    Full Text Available Cities and the Environment Editor, Eric Strauss, provides an introduction to the Summer 2011 issue. He discusses the journal's transition to its new home at Loyola Marymount University and the creation of the Center for Urban Resilience and Ecological Solution, while underscoring highlights of the special topics section on Urban Predators. The contributors to this section participated in the International Symposium on Urban Wildlife and the Environment hosted by the Wildlife Society at the University of Massachusetts Amherst in June of 2009. Finally, Dr. Strauss notes the breadth of our issue by mentioning the additional articles' focus on rain gardens, water quality, arthropod diversity, green roofs, and socio-ecological dynamics.

  12. Selecting and Implementing Whole School Improvement Models: A District and School Administrator Perspective

    Science.gov (United States)

    Graczewski, Cheryl; Ruffin, Monya; Shambaugh, Larisa; Therriault, Susan Bowles

    2007-01-01

    As a growing number of schools and districts are found to be underperforming under the requirements of NCLB, school and district administrators are increasingly searching for research-based whole school improvement programs, including comprehensive school reform (CSR) models and education service providers (ESPs), in order to create dramatic…

  13. The Development of a Secondary School Health Assessment Model

    Science.gov (United States)

    Sriring, Srinual; Erawan, Prawit; Sriwarom, Monoon

    2015-01-01

    The objective of this research was to: 1) involved a survey of information relating to secondary school health, 2) involved the construction of a model of health assessment and a handbook for using the model in secondary school, 3) develop an assessment model for secondary school. The research included 3 phases. (1) involved a survey of…

  14. Future projection of Indian summer monsoon variability under climate change scenario: An assessment from CMIP5 climate models

    Science.gov (United States)

    Sharmila, S.; Joseph, S.; Sahai, A. K.; Abhilash, S.; Chattopadhyay, R.

    2015-01-01

    In this study, the impact of enhanced anthropogenic greenhouse gas emissions on the possible future changes in different aspects of daily-to-interannual variability of Indian summer monsoon (ISM) is systematically assessed using 20 coupled models participated in the Coupled Model Inter-comparison Project Phase 5. The historical (1951-1999) and future (2051-2099) simulations under the strongest Representative Concentration Pathway have been analyzed for this purpose. A few reliable models are selected based on their competence in simulating the basic features of present-climate ISM variability. The robust and consistent projections across the selected models suggest substantial changes in the ISM variability by the end of 21st century indicating strong sensitivity of ISM to global warming. On the seasonal scale, the all-India summer monsoon mean rainfall is likely to increase moderately in future, primarily governed by enhanced thermodynamic conditions due to atmospheric warming, but slightly offset by weakened large scale monsoon circulation. It is projected that the rainfall magnitude will increase over core monsoon zone in future climate, along with lengthening of the season due to late withdrawal. On interannual timescales, it is speculated that severity and frequency of both strong monsoon (SM) and weak monsoon (WM) might increase noticeably in future climate. Substantial changes in the daily variability of ISM are also projected, which are largely associated with the increase in heavy rainfall events and decrease in both low rain-rate and number of wet days during future monsoon. On the subseasonal scale, the model projections depict considerable amplification of higher frequency (below 30 day mode) components; although the dominant northward propagating 30-70 day mode of monsoon intraseasonal oscillations may not change appreciably in a warmer climate. It is speculated that the enhanced high frequency mode of monsoon ISOs due to increased GHG induced warming

  15. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    Science.gov (United States)

    Unnikrishnan, C. K.; Rajeevan, M.; Rao, S. Vijaya Bhaskara

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climate model in recent years over Indian summer monsoon region is investigated. Two sets of regional climate model simulations are performed, one with a coarse resolution land surface initial conditions and second one used a high resolution land surface data for initial condition. The results show that all monsoon years respond differently to the high resolution land surface initialization. The drought monsoon year 2009 and extended break periods were more sensitive to the high resolution land surface initialization. These results suggest that the drought monsoon year predictions can be improved with high resolution land surface initialization. Result also shows that there are differences in the response to the land surface initialization within the monsoon season. Case studies of heat wave and a monsoon depression simulation show that, the model biases were also improved with high resolution land surface initialization. These results show the need for a better land surface initialization strategy in high resolution regional models for monsoon forecasting.

  16. Near-surface meteorology during the Arctic Summer Cloud Ocean Study (ASCOS: evaluation of reanalyses and global climate models

    Directory of Open Access Journals (Sweden)

    G. de Boer

    2013-07-01

    Full Text Available Atmospheric measurements from the Arctic Summer Cloud Ocean Study (ASCOS are used to evaluate the performance of three reanalyses (ERA-Interim, NCEP/NCAR and NCEP/DOE and two global climate models (CAM5 and NASA GISS ModelE2 in simulation of the high Arctic environment. Quantities analyzed include near surface meteorological variables such as temperature, pressure, humidity and winds, surface-based estimates of cloud and precipitation properties, the surface energy budget, and lower atmospheric temperature structure. In general, the models perform well in simulating large scale dynamical quantities such as pressure and winds. Near-surface temperature and lower atmospheric stability, along with surface energy budget terms are not as well represented due largely to errors in simulation of cloud occurrence, phase and altitude. Additionally, a development version of CAM5, which features improved handling of cloud macro physics, is demonstrated to improve simulation of cloud properties and liquid water amount. The ASCOS period additionally provides an excellent example of the need to evaluate individual budget terms, rather than simply evaluating the net end product, with large compensating errors between individual surface energy budget terms resulting in the best net energy budget.

  17. Possible role of warm SST bias in the simulation of boreal summer monsoon in SINTEX-F2 coupled model

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Susmitha; Sahai, A.K.; Goswami, B.N. [Indian Institute of Tropical Meteorology, Pune (India); Terray, Pascal; Masson, Sebastian [LOCEAN, Paris (France); Luo, J.J. [RIGC, Yokohama (Japan)

    2012-04-15

    Reasonably realistic climatology of atmospheric and oceanic parameters over the Asian monsoon region is a pre-requisite for models used for monsoon studies. The biases in representing these features lead to problems in representing the strength and variability of Indian summer monsoon (ISM). This study attempts to unravel the ability of a state-of-the-art coupled model, SINTEX-F2, in simulating these characteristics of ISM. The coupled model reproduces the precipitation and circulation climatology reasonably well. However, the mean ISM is weaker than observed, as evident from various monsoon indices. A wavenumber-frequency spectrum analysis reveals that the model intraseasonal oscillations are also weaker-than-observed. One possible reason for the weaker-than-observed ISM arises from the warm bias, over the tropical oceans, especially over the equatorial western Indian Ocean, inherent in the model. This warm bias is not only confined to the surface layers, but also extends through most of the troposphere. As a result of this warm bias, the coupled model has too weak meridional tropospheric temperature gradient to drive a realistic monsoon circulation. This in turn leads to a weakening of the moisture gradient as well as the vertical shear of easterlies required for sustained northward propagation of rain band, resulting in weak monsoon circulation. It is also noted that the recently documented interaction between the interannual and intraseasonal variabilities of ISM through very long breaks (VLBs) is poor in the model. This seems to be related to the inability of the model in simulating the eastward propagating Madden-Julian oscillation during VLBs. (orig.)

  18. Impact of Kalpana-1 retrieved atmospheric motion vectors on mesoscale model forecast during summer monsoon 2011

    Science.gov (United States)

    Kaur, Inderpreet; Kumar, Prashant; Deb, S. K.; Kishtawal, C. M.; Pal, P. K.; Kumar, Raj

    2015-05-01

    The atmospheric motion vectors (AMVs) retrieved from multi-spectral geostationary satellites form a very crucial input to improve the initial conditions of numerical weather prediction (NWP) models at all operational agencies throughout the globe. With the recent update of operational AMV retrieval algorithm using infrared, water vapor, and visible channels of Indian geostationary meteorological satellite Kalpana-1, an attempt has been made to assess the impact of AMVs in the NWP models. In this study, the impact of Kalpana-1 AMVs is assessed by assimilating them in the Weather Research and Forecasting (WRF) model using three-dimensional variational data assimilation method during the entire month of July 2011 over the Indian Ocean region. Apart from Kalpana-1 AMVs, the other AMVs available from Global Telecommunications System (GTS) are also assimilated to generate the WRF model analyses. After the initial verification of WRF model analyses, the 12-h wind forecasts from the WRF model are compared with National Centers for Environmental Prediction Global Data Assimilation System final analyses. The assimilation of Kalpana-1 AMVs shows positive impact in 12-h wind forecast over the tropical region in the upper troposphere. Similar results are obtained when other AMVs available through GTS are used for assimilation, though the magnitude of positive impact of Kalpana-1 AMVs is slightly higher over tropical region. The 24-h rainfall forecasts are also improved over the Western India and the Bay of Bengal region, when Kalpana-1 AMVs are used for assimilation against control experiments.

  19. School Teams up for SSP Functional Models

    Science.gov (United States)

    Pignolet, G.; Lallemand, R.; Celeste, A.; von Muldau, H.

    2002-01-01

    Space Solar Power systems appear increasingly as one of the major solutions to the upcoming global energy crisis, by collecting solar energy in space where this is most easy, and sending it by microwave beam to the surface of the planet, where the need for controlled energy is located. While fully operational systems are still decades away, the need for major development efforts is with us now. Yet, for many decision-makers and for most of the public, SSP often still sounds like science fiction. Six functional demonstration systems, based on the Japanese SPS-2000 concept, have been built as a result of a cooperation between France and Japan, and they are currently used extensively, in Japan, in Europe and in North America, for executive presentations as well as for public exhibitions. There is demand for more models, both for science museums and for use by energy dedicated groups, and a senior high school in La Reunion, France, has picked up the challenge to make the production of such models an integrated practical school project for pre-college students. In December 2001, the administration and the teachers of the school have evaluated the feasibility of the project and eventually taken the go decision for the school year 2002- 2003, when for education purposes a temporary "school business company" will be incorporated with the goal to study and manufacture a limited series of professional quality SSP demonstration models, and to sell them world- wide to institutions and advocacy groups concerned with energy problems and with the environment. The different sections of the school will act as the different services of an integrated business : based on the current existing models, the electronic section will redesign the energy management system and the microwave projector module, while the mechanical section of the school will adapt and re-conceive the whole packaging of the demonstrator. The French and foreign language sections will write up a technical manual for

  20. Expression Rights of Public School Employees and Students. A Legal Memorandum: Quarterly Law Topics for School Leaders. Vol. 8, No. 4, Summer 2008

    Science.gov (United States)

    McCarthy, Martha

    2008-01-01

    What is the scope of First Amendment free expression rights of public school employees and students? Following a long period with no Supreme Court rulings pertaining to public employee or student speech, the Court since 2006 has delivered significant opinions in this regard. These decisions continue the trend of narrowing the circumstances under…

  1. Expression Rights of Public School Employees and Students. A Legal Memorandum: Quarterly Law Topics for School Leaders. Vol. 8, No. 4, Summer 2008

    Science.gov (United States)

    McCarthy, Martha

    2008-01-01

    What is the scope of First Amendment free expression rights of public school employees and students? Following a long period with no Supreme Court rulings pertaining to public employee or student speech, the Court since 2006 has delivered significant opinions in this regard. These decisions continue the trend of narrowing the circumstances under…

  2. Cruise observation and numerical modeling of turbulent mixing in the Pearl River estuary in summer

    Science.gov (United States)

    Pan, Jiayi; Gu, Yanzhen

    2016-06-01

    The turbulent mixing in the Pearl River estuary and plume area is analyzed by using cruise data and simulation results of the Regional Ocean Model System (ROMS). The cruise observations reveal that strong mixing appeared in the bottom layer on larger ebb in the estuary. Modeling simulations are consistent with the observation results, and suggest that inside the estuary and in the near-shore water, the mixing is stronger on ebb than on flood. The mixing generation mechanism analysis based on modeling data reveals that bottom stress is responsible for the generation of turbulence in the estuary, for the re-circulating plume area, internal shear instability plays an important role in the mixing, and wind may induce the surface mixing in the plume far-field. The estuary mixing is controlled by the tidal strength, and in the re-circulating plume bulge, the wind stirring may reinforce the internal shear instability mixing.

  3. Evaluation of Enviro-HIRLAM model and aerosols effect during wildfires episodes in Europe and Central Russia in summer 2010

    Science.gov (United States)

    Nuterman, Roman; Pagh Nielsen, Kristian; Baklanov, Alexander; Kaas, Eigil

    2014-05-01

    The summer of 2010 was characterized by severe weather events such as floods, heat waves and droughts across Middle East, most of Europe and European Russia. Among them the wildfires in Portugal and European Russia were some of the most prominent and led to substantial increase of atmospheric aerosols concentration. For instance, pollution from Russian wildfires, which were the most noticeable, spread around the entire central part of the country and also dispersed towards the Northern Europe. This study is devoted to Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) model evaluation and analysis of radiation balance change due to increased aerosol burden caused by wildfires in Russia. For this purpose the model was forced by boundary and initial conditions produced by ECMWF (European Center for Medium-Range Weather Forecast) IFS and MOZART models for meteorology and atmospheric composition, respectively. The model setup included aerosol microphysics module M7 with simple tropospheric sulfur chemistry, anthropogenic emissions by TNO, wildfires emissions by FMI and interactive sea-salt and dust emissions. During the model run surface data assimilation of meteorological parameters was applied. The HIRLAM Savijarvi radiation scheme has been improved to account explicitly for aerosol radiation interactions. So that the short-wave radiative transfer calculations are performed as standard 2-stream calculations for averages of aerosol optical properties weighted over the entire spectrum. The model shows good correlation of particulate matter (PM) concentrations on diurnal cycle as well as day-to-day variability, but one always has negative bias of PM. The Enviro-HIRLAM is able to capture concentration peaks both from short-term and long-term trans boundary transport of PM and predicted the Aerosol Optical Thickness (at 550 nm) up to 2 over wildfire-polluted regions. And the direct radiative forcing is less than -100 W/m2.

  4. The characteristics of summer sub-hourly rainfall over the southern UK in a high-resolution convective permitting model

    Science.gov (United States)

    Chan, S. C.; Kendon, E. J.; Roberts, N. M.; Fowler, H. J.; Blenkinsop, S.

    2016-09-01

    Flash flooding is often caused by sub-hourly rainfall extremes. Here, we examine southern UK sub-hourly 10 min rainfall from Met Office state-of-the-art convective-permitting model simulations for the present and future climate. Observational studies have shown that the duration of rainfall can decrease with temperature in summer in some regions. The duration decrease coincides with an intensification of sub-hourly rainfall extremes. This suggests that rainfall duration and sub-hourly rainfall intensity may change in future under climate change with important implications for future changes in flash flooding risk. The simulations show clear intensification of sub-hourly rainfall, but we fail to detect any decrease in rainfall duration. In fact, model results suggest the opposite with a slight (probably insignificant) lengthening of both extreme and non-extreme rainfall events in the future. The lengthening is driven by rainfall intensification without clear changes in the shape of the event profile. Other metrics are also examined, including the relationship between intense 10 min rainfall and temperature, and return levels changes; all are consistent with results found for hourly rainfall. No evaluation of model performance at the sub-hourly timescale is possible, highlighting the need for high-quality sub-hourly observations. Such sub-hourly observations will advance our understanding of the future risks of flash flooding.

  5. Simple multiple regression model for long range forecasting of Indian summer monsoon rainfall

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.; Murthy, T.V.R.

    ) and ISMR is found to be 0.62. The multiple correlation using the above two parameters is 0.85 which explains 72% variance in ISMR. Using the above two parameters a linear multiple regression model to predict ISMR is developed. The results are comparable...

  6. Multi-model forecast skill for mid-summer rainfall over southern Africa

    CSIR Research Space (South Africa)

    Landman, WA

    2012-02-01

    Full Text Available . Multi-model forecasts are obtained by: i) downscaling each model’s 850 hPa geopotential height field forecast using canonical correlation analysis (CCA) and then simply averaging the rainfall forecasts; and ii) by combining the three models’ 850 h...

  7. Summer Teacher Enhancement Institute for Science, Mathematics, and Technology Using the Problem-Based Learning Model

    Science.gov (United States)

    Petersen, Richard H.

    1997-01-01

    The objectives of the Institute were: (a) increase participants' content knowledge about aeronautics, science, mathematics, and technology, (b) model and promote the use of scientific inquiry through problem-based learning, (c) investigate the use of instructional technologies and their applications to curricula, and (d) encourage the dissemination of TEI experiences to colleagues, students, and parents.

  8. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 Monday 8 August 09:15 - 10:00 A. Höcker CP Violation (3/4) 10:15 - 12:00 J-J. GOMEZ-CADENAS Neutrino Physics (1-2/4) 12:00 Discussion Session Tuesday 9 August 09:15 - 10:00 A. Höcker CP Violation (4/4) 10:15 - 11:00 J-J. GOMEZ-CADENAS Neutrino Physics (3/4) 11:15 - 12:00 F. GREY The GRID 12:00 Discussion Session 14:15 - 17:00 Student Sessions Wednesday 10 August 09:15 - 10:00 J-J. GOMEZ-CADENAS Neutrino Physics (4/4) 10:15 - 12:00 J. LESGOURGUES Introduction to Cosmology (1-2/5) 12:00 Discussion Session 14:15 - 17:00 Student Sessions Thursday 11 August 09:15 - 11:00 J. LESGOURGUES Introduction to Cosmology (3-4/5) 11:15 - 12:00 G. KALMUS The ILC Story 12:00 Discussion Session Friday 12 August 09:15 - 10:00 J. LESGOURGUES Introduction to Cosmology (5/5) 10:15 - 11:00 G. VENEZIANO String theory: has Einstein's dream come true? 11:00  Discussion...

  9. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 18 July 09:15 - 11:00 G. ROSS Fundamental concepts in Particle Physics (1-2/6) 11:15 - 12:00 N. PALANQUE-DELABROUILLE Astroparticle Physics (1/3) 12:00 Discussion Session Tuesday 19 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (3/6) 10:15 - 12:00 N. PALANQUE-DELABROUILLE Astroparticle Physics (2-3/3) 12:00 Discussion Session Wednesday 20 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (4/6) 10:15 - 11:00 F. RADEMAKERS ROOT 11:15 - 12:00 L. ROSSI Super-conducting magnet technology for particle accelerators and detectors 12:00 Discussion Session Thursday 21 July 09:15 - 10:00 G. ROSS Fundamental concepts in Particle Physics (5/6) 10:15 - 12:00 C. DE LA TAILLE Introduction to Electronics (1-2/3) 12:00 Discussion Session Friday 22 July 09:15 - 10:00 C. DE LA TAILLE Introduction to Electronics (3/3) 10:15 -...

  10. Summer Students

    CERN Multimedia

    2005-01-01

    SUMMER STUDENT LECTURE PROGRAMME Main Auditorium, bldg. 500 DATE TIME LECTURER TITLE Monday 11 July 09:15 - 10:00 L. Di Lella (CERN) Introduction to Particle Physics (4/4) 10:15 - 11:00 P. Chomaz (GANIL / CERN) Introduction to Nuclear Physics (3/3) 11:15 - 12:00 G. ROLANDI (CERN) How an experiment is designed (2/2) 12:00 Discussion Session Tuesday 12 July  09:15 - 11:00 O. BrÜning (CERN) Accelerators (1-2/5) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (1/5) 12:00 Discussion Session Wednesday 13 July 09:15 - 10:00 O. BrÜning (CERN) Accelerators (3/5) 10:15 - 11:00 R. LANDUA (CERN) Antimatter in the Lab (1/2) 11:15 - 12:00 O. ULLALAND (CERN) Detectors (2/5) 12:00 Discussion Session Thursday 14 July 09:15 - 10:00 O. ULLALAND (CERN) Detectors (3/5) 10:15 - 11:00 G. ROLANDI (CERN) Antimatter in the Lab (2/2) 11:15 - 12:00 O. BrÜning (CERN) Accelerators (4/5) 12:00 Discussion Session Friday 1...

  11. Examining Impact of Global warming on the summer monsoon system using regional Climate Model (PRECIS)

    Science.gov (United States)

    Patwardhan, S. K.; Kundeti, K.; Krishna Kumar, K.

    2011-12-01

    Every year, southwest monsoon arrives over Indian region with remarkable regularity. It hits the southern state of Kerala first by the end of May or the early June. More than 70% of the annual precipitation is received during the four monsoon months viz. June to September. This monsoon rainfall is vital for the agriculture as well as for the yearly needs of Indian population. The performance of the monsoon depends on the timely onset over southern tip of India and its progress along the entire country. This northward progression of monsoon to cover the entire Indian landmass, many times, is associated with the formation of synoptic scale system in the Bay of Bengal region and their movement along the monsoon trough region. The analysis of the observed cyclonic disturbances show that their frequency has reduced in recent decades. It is, therefore, necessary to assess the effect of global warming on the monsoon climate of India. A state-of-art regional climate modelling system, known as PRECIS (Providing REgional Climates for Impacts Studies) developed by the Hadley Centre for Climate Prediction and Research, U.K. is applied over the South Asian domain to investigate the impact of global warming on the cyclonic disturbances. The PRECIS simulations at 50 km x 50 km horizontal resolution are made for two time slices, present (1961-1990) and the future (2071-2100), for two socio-economic scenarios A2 and B2. The model skills are evaluated using observed precipitation and surface air temperature. The model has shown reasonably good skill in simulating seasonal monsoon rainfall, whereas cold bias is seen in surface air temperature especially in post-monsoon months. The typical monsoon features like monsoon trough, precipitation maxima over west coast and northeast India are well simulated by the model. The model simulations under the scenarios of increasing greenhouse gas concentrations and sulphate aerosols are analysed to study the likely changes in the quasi

  12. Expanding the Professional Development School Model: Developing Collaborative Partnerships with School Counselors

    Science.gov (United States)

    Foust, Gretchen E.; Goslee, Patricia A.

    2014-01-01

    The Professional Development School (PDS) model, a successful collaborative partnership model between university teacher education programs and P-12 schools, focuses on ''preparing future educators, providing current educators with ongoing professional development, encouraging joint school-university faculty investigation of…

  13. A Positive Model for Reducing and Preventing School Burnout in High School Students

    Science.gov (United States)

    Aypay, Ayse

    2017-01-01

    This study aims to develop and test the validity of a model limited to attitude towards the future and subjective well-being for reducing and preventing the school burnout that high school students can experience. The study is designed as a relational screening model conducted over 389 high school students. The data in this study are analyzed…

  14. Impact of air-sea interaction on simulation of East Asian summer monsoon in CMIP5 models

    Science.gov (United States)

    Lee, Soheon; Cha, Dong-Hyun

    2017-04-01

    In the western North Pacific (WNP), it is well known that there is a negative correlation between sea surface temperature (SST) and precipitation indicating that the atmosphere may force the ocean. If global climate models (GCMs) cannot capture the air-sea interaction over the WNP, it leads to the failure in simulating regional climate over East Asia. The East Asian summer monsoon (EASM) is an intrinsic atmospheric phenomenon in East Asia, which significantly affect the surrounding countries. In this study, therefore, we investigate the impact of the air-sea interaction on simulating the EASM in multi-GCMs. The GCMs from the Coupled Model Intercomparison Project 3 (CMIP3) have large errors in cross correlation between SST and precipitation over the WNP, which means that the models could not capture the negative correlation realistically. On the contrary, the GCMs participating in CMIP5 improve the air-sea interaction compared to CMIP3 models. They have smaller errors in cross correlation between SST and precipitation. Among CMIP5 models, the models which have the smaller errors in cross correlation showed realistic simulation of the EASM in terms of its evolution and associated principal mode. However, GCMs with larger errors tend to simulate the EASM unreasonably. This indicates that the realistic air-sea interaction over the WNP is required to improve the EASM simulation. Acknowledgements The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  15. Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.

    Directory of Open Access Journals (Sweden)

    Christian Winter

    Full Text Available One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells and viruses (high- and low-fluorescent viruses among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.

  16. Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.

    Science.gov (United States)

    Winter, Christian; Payet, Jérôme P; Suttle, Curtis A

    2012-01-01

    One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.

  17. Effect of cloud microphysics on Indian summer monsoon precipitating clouds: A coupled climate modeling study

    Science.gov (United States)

    Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh K.; Pokhrel, Samir

    2017-04-01

    The quest for one of the most dominant processes controlling the large-scale circulations in the tropics is unraveled. The impact of cloud microphysical processes is known to have effects on rainfall and local atmospheric thermodynamics; however, its effect on the prevailing mean circulations is not yet studied. Two sets of coupled global climate model experiments (ICE and NO ICE microphysics) reveal that ice microphysics improves the strength of the Hadley circulation with respect to observation. Results pinpoint that ICE simulation enhances high cloud fraction (global tropics: 59%, India: 51%) and stratiform rain (global tropics: 5%, India: 15%) contribution. ICE and NO ICE cloud microphysics impacts differently on the outgoing longwave radiation (OLR), tropospheric temperature, and surface shortwave and longwave radiation. The effect of ice microphysics reduces OLR, which signifies deeper convection in the ICE run. The global annual average of the net radiation flux (shortwave and longwave) at the surface in ICE run (108.1 W/m2) is close to the observation (106 W/m2), which is overestimated in NO ICE run (112 W/m2). The result of apparent heat source term over the land and ocean surface eventually modifies regional Hadley circulation. Thus, the effect of ice microphysics in the global coupled model is important not only because of microphysics but also due to the radiation feedbacks. Therefore, better ice-phase microphysics is required in the new generation of climate forecast model, which may lead to improvements in the simulation of monsoon.

  18. Summer Science Camps Program (SSC).

    Science.gov (United States)

    National Science Foundation, Washington, DC. Directorate for Education and Human Resources.

    The Summer Science Camps (SSC) Program supports residential and commuter enrichment projects for seventh through ninth grade minority students who are underrepresented in science, engineering, and mathematics. Eligible organizations include school districts, museums, colleges, universities, and nonprofit youth-centered and/or community-based…

  19. Personal Construct Psychology Model of School Counselling Delivery

    Science.gov (United States)

    Truneckova, Deborah; Viney, Linda L.

    2012-01-01

    With increasing focus on the mental health of young people by schools, greater attention is directed to the responsiveness and effectiveness of models of psychological practice in schools. A model will be presented with a coherent theoretical structure within which the school counsellor can understand the diverse psychological symptoms and…

  20. A Model for Determining School District Cash Flow Needs.

    Science.gov (United States)

    Dembowski, Frederick L.

    This paper discusses a model to optimize cash management in school districts. A brief discussion of the cash flow pattern of school districts is followed by an analysis of the constraints faced by the school districts in their investment planning process. A linear programming model used to optimize net interest earnings on investments is developed…

  1. Simulating the link between ENSO and summer drought in Southern Africa using regional climate models

    Science.gov (United States)

    Meque, Arlindo; Abiodun, Babatunde J.

    2015-04-01

    This study evaluates the capability of regional climate models (RCMs) in simulating the link between El Niño Southern Oscillation (ENSO) and Southern African droughts. It uses the Standardized Precipitation-Evapotranspiration Index (SPEI, computed using rainfall and temperature data) to identify 3-month drought over Southern Africa, and compares the observed and simulated correlation between ENSO and SPEI. The observation data are from the Climate Research Unit, while the simulation data are from ten RCMs (ARPEGE, CCLM, HIRHAM, RACMO, REMO, PRECIS, RegCM3, RCA, WRF, and CRCM) that participated in the regional climate downscaling experiment (CORDEX) project. The study analysed the rainy season (December-February) data for 19 years (1989-2008). The results show a strong link between ENSO and droughts (SPEI) over Southern Africa. The link is owing to the influence of ENSO on both rainfall and temperature fields, but the correlation between ENSO and temperature is stronger than the correlation between ENSO and rainfall. Hence, using only rainfall to monitor droughts in Southern Africa may underestimate the influence of ENSO on the droughts. Only few CORDEX RCMs simulate the influence of ENSO on Southern African drought as observed. In this regard, the ARPEGE model shows the best simulation, while CRCM shows the worst. The different in the performance may be due to their lateral boundary conditions. The RCA-simulated link between ENSO and Southern African droughts is sensitive to the global dataset used as the lateral boundary conditions. In some cases, using RCA to downscale global circulation models (GCM) simulations adds value to the simulated link between ENSO and the droughts, but in other cases the downscaling adds no value to the link. The added value of RCA to the simulated link decreases as the capability of the GCM to simulate the link increases. This study suggests that downscaling GCM simulations with RCMs over Southern Africa may improve or depreciate the

  2. Summer Arctic Clouds in the ECMWF Forecast Model: an Evaluation of Cloud Parameterization Schemes

    Science.gov (United States)

    Sotiropoulou, G.; Sedlar, J.; Forbes, R.; Tjernstrom, M. K. H.

    2015-12-01

    The Arctic is experiencing significant changes and is an important part of the global climate, which needs to be understood and accurately represented in both climate and weather prediction models. Mixed-phase clouds are an integral part of the Arctic system, for precipitation and for their interactions with radiation and the local thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phase that is dependent solely on temperature. However, increasingly more complex microphysical parameterizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from the ASCOS campaign in the central Arctic to evaluate the impact of a change from a diagnostic to a prognostic parameterization of mixed-phase clouds and increased vertical resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation and there remains a warm and moist bias in the lowest part of the atmosphere. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, in the model the cloud remains coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary layer turbulence, cloud radiative properties

  3. Ice-free summers predominant in the late Miocene central Arctic Ocean - New insights from a proxy-modeling approach

    Science.gov (United States)

    Stein, Ruediger; Fahl, Kirsten; Schreck, Michael; Knorr, Gregor; Forwick, Matthias; Lohmann, Gerrit; Niessen, Frank

    2016-04-01

    During Polarstern Expedition PS87/2014, we discovered multiple submarine landslides over a distance of >350 km along Lomonosov Ridge between about 81°N and 84°N (Stein, 2015). The load and erosional behaviour of an extended ice sheet/shelf that probably occurred during major Quaternary glaciations, may have caused physical conditions that triggered these landslides and major down-slope transport of sediments at this part of Lomonosov Ridge (Stein et al., 2016 and further references therein). The removal of younger sediments from steep headwalls has led to exhumation of Miocene to early Quaternary sediments close to the seafloor, allowing the retrieval of such old sediments by gravity coring and multi-proxy studies of theses sediments. Within one of these studies (Stein et al., 2016), we used for the first time the sea-ice biomarker IP25 (for background of approach see Belt et al., 2007; Müller et al., 2009, 2011) together with alkenone-based sea-surface temperatures (SST) to reconstruct upper Miocene Arctic Ocean sea-ice and SST conditions. The presence of IP25 as proxy for spring sea-ice cover and alkenone-based relatively warm summer SST of >4 °C support a seasonal sea-ice cover with an ice-free summer season being dominant during (most of) the late Miocene central Arctic Ocean. A comparison of our proxy data with Miocene climate simulations seems to favour either relatively high late Miocene atmospheric CO2 concentrations and/or an overly weak sensitivity of the model to simulate the magnitude of high-latitude warming in a warmer than modern climate. References: Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, and C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25, Organic Geochemistry 38, 16-27. Müller, J., Massé, G., Stein, R., and Belt, S., 2009. Extreme variations in sea ice cover for Fram Strait during the past 30 ka. Nature Geoscience, DOI: 10.1038/NGEO665. Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., and

  4. Numerical Simulation of the Heavy Rainfall in the Yangtze-Huai River Basin during Summer 2003 Using the WRF Model

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-Bo

    2012-01-01

    In this study, a 47-day regional climate simulation of the heavy rainfall in the Yangtze-Huai River Basin during the summer of 2003 was conducted using the Weather Research and Forecast (WRY) model. The simulation reproduces reasonably well the evolution of the rainfall during the study period's three successive rainy phases, especially the frequent heavy rainfall events occurring in the Huai River Basin. The model captures the major rainfall peak observed by the monitoring stations in the morning. Another peak appears later than that shown by the observations. In addition, the simulation realistically captures not only the evolution of the low-level winds but also the characteristics of their diurnal variation. The strong southwesterly (low-level jet, LLJ) wind speed increases beginning in the early evening and reaches a peak in the morning; it then gradually decreases until the afternoon. The intense LLJ forms a strong convergent circulation pattern in the early morning along the Yangtze-Huai River Basin. This pattern partly explains the rainfall peak observed at this time. This study furnishes a basis for the further analysis of the mechanisms of evolution of the LLJ and for the further study of the interactions between the LLJ and rainfall.

  5. Impact of GCM boundary forcing on regional climate modeling of West African summer monsoon precipitation and circulation features

    Science.gov (United States)

    Kebe, Ibourahima; Sylla, Mouhamadou Bamba; Omotosho, Jerome Adebayo; Nikiema, Pinghouinde Michel; Gibba, Peter; Giorgi, Filippo

    2017-03-01

    In this study, the latest version of the International Centre for Theoretical Physics Regional Climate Model (RegCM4) driven by three CMIP5 Global Climate Models (GCMs) is used at 25 km grid spacing over West Africa to investigate the impact of lateral boundary forcings on the simulation of monsoon precipitation and its relationship with regional circulation features. We find that the RegCM4 experiments along with their multimodel ensemble generally reproduce the location of the main precipitation characteristics over the region and improve upon the corresponding driving GCMs. However, the provision of different forcing boundary conditions leads to substantially different precipitation magnitudes and spatial patterns. For instance, while RegCM4 nested within GFDL-ESM-2M and HadGEM2-ES exhibits some underestimations of precipitation and an excessively narrow Intertropical Convergence Zone, the MPI-ESM-MR driven run produces precipitation spatial distribution and magnitudes more similar to observations. Such a superior performance originates from a much better simulation of the interactions between baroclinicity, temperature gradient and African Easterly Jet along with an improved connection between the Isentropic Potential Vorticity, its gradient and the African Easterly Waves dynamics. We conclude that a good performing GCM in terms of monsoon dynamical features (in this case MPI-ESM-MR) is needed to drive RCMs in order to achieve a better representation of the West Africa summer monsoon precipitation.

  6. United States Air Force Summer Research Program -- 1992 High School Apprenticeship Program (HSAP) Reports. Volume 14. Rome Laboratory

    Science.gov (United States)

    1992-01-01

    LabView program. Optical Power Measurements For measuring the output power of the laser, an UDT model 370 optometer with a 2500 integrating sphere will be...used. The optometer will be continually taking measurements of the laser’s output power and will periodically be asked for a reading. LabView Program...power meter. The first program is "UDT 370 Optometer Setup". This allows the user to set the unit of measure, the wavelength to be measured, and the

  7. Modelling the impact of noctilucent cloud formation on atomic oxygen and other minor constituents of the summer mesosphere

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2004-11-01

    Full Text Available The formation, evolution and eventual sublimation of noctilucent clouds (NLC could have a significant effect on the odd oxygen and hydrogen chemistry of the high latitude summer mesosphere. Three mechanisms are considered here: the direct uptake of atomic oxygen on the surface of the ice particles; the redistribution of water vapour, which changes the photochemical source of odd hydrogen species; and the direct photolysis of the ice particles themselves to produce odd hydrogen species in the gas phase. A 1-D photochemical model is employed to investigate the potential importance of these mechanisms. This shows, using the recently measured uptake coefficients of O on ice, that the heterogeneous removal of O on the surface of the cloud particles is too slow by at least a factor of 5×103 to compete with gas-phase O chemistry. The second and third mechanisms involve the solar Lyman-α photolysis of H2O in the gas and solid phase, respectively. During twilight, Lyman-α radiation is severely attenuated and these mechanisms are insignificant. In contrast, when the upper mesosphere is fully illuminated there is a dramatic impact on the O profile, with depletion of O at the base of the cloud layer of close to an order of magnitude. A correspondingly large depletion in O3 is also predicted, while H, OH, HO2 and H2O2 are found to be enhanced by factors of 3–5. In fact, rocket-borne mass spectrometer measurements during summer have revealed local H2O2 enhancements in the region of the clouds. Rocket-borne measurements of atomic O and O3 profiles in the presence of mesospheric clouds in the daytime are highly desirable to test the predictions of this model and our understanding of the genesis of mesospheric clouds.

  8. Districts Add Web Courses for Summer

    Science.gov (United States)

    Borja, Rhea R.

    2005-01-01

    More and more school districts, as well as for-profit companies and nonprofit organizations, are offering Internet-based summer classes in core subjects, such as algebra and reading, and electives such as creative writing. In this article, the author discusses the growth of enrollment in online education for summer. The logistical ease of…

  9. Transport of aerosol pollution in the UTLS during Asian summer monsoon as simulated by ECHAM5-HAMMOZ model

    Directory of Open Access Journals (Sweden)

    S. Fadnavis

    2012-11-01

    Full Text Available An eight member ensemble of ECHAM5-HAMMOZ simulations for the year 2003 is analyzed to study the transport of aerosols in the Upper Troposphere and Lower Stratosphere (UTLS during the Asian Summer Monsoon (ASM. Simulations show persistent maxima in black carbon, organic carbon, sulfate, and mineral dust aerosols within the anticyclone in the UTLS throughout the ASM (period from July to September when convective activity over the Indian subcontinent is highest. Model simulations indicate boundary layer aerosol pollution as the source of this UTLS aerosol layer and identify ASM convection as the dominant transport process. Evidence of ASM transport of aerosols into the stratosphere is observed in HALogen Occultation Experiment (HALOE and Stratospheric Aerosol and Gas Experiment (SAGE II aerosol extinction. The impact of aerosols in the UTLS region is analyzed by evaluating the differences between simulations with (CTRL and without aerosol (HAM-off loading. The transport of anthropogenic aerosols in the UTLS increases cloud ice, water vapour and temperature, indicating that aerosols play an important role in enhancement of cloud ice in the Upper-Troposphere (UT. Aerosol induced circulation changes include a weakening of the main branch of the Hadley circulation and increased vertical transport around the southern flank of the Himalayas and reduction in monsoon precipitation over the India region.

  10. Impact of high resolution land surface initialization in Indian summer monsoon simulation using a regional climate model

    Indian Academy of Sciences (India)

    C K Unnikrishnan; M Rajeevan; S Vijaya Bhaskara Rao

    2016-06-01

    The direct impact of high resolution land surface initialization on the forecast bias in a regional climatemodel in recent years over Indian summer monsoon region is investigated. Two sets of regional climatemodel simulations are performed, one with a coarse resolution land surface initial conditions and secondone used a high resolution land surface data for initial condition. The results show that all monsoonyears respond differently to the high resolution land surface initialization. The drought monsoon year2009 and extended break periods were more sensitive to the high resolution land surface initialization.These results suggest that the drought monsoon year predictions can be improved with high resolutionland surface initialization. Result also shows that there are differences in the response to the land surfaceinitialization within the monsoon season. Case studies of heat wave and a monsoon depression simulationshow that, the model biases were also improved with high resolution land surface initialization. Theseresults show the need for a better land surface initialization strategy in high resolution regional modelsfor monsoon forecasting.

  11. Tropospheric Ozone Source Attribution in Southern California during Summer 2014 Based on Lidar Measurements and Model Simulations

    Science.gov (United States)

    Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry

    2016-01-01

    In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.

  12. Daily exposure to summer circadian cycles affects spermatogenesis, but not fertility in an in vivo rabbit model.

    Science.gov (United States)

    Sabés-Alsina, Maria; Planell, Núria; Torres-Mejia, Elen; Taberner, Ester; Maya-Soriano, Maria José; Tusell, Llibertat; Ramon, Josep; Dalmau, Antoni; Piles, Miriam; Lopez-Bejar, Manel

    2015-01-15

    Heat stress (HS) in mammals is a determining factor in the deterioration of spermatogenesis and can cause infertility. The aim of this study was to evaluate the effect of continuous summer circadian cycles on semen production, sperm cell features, fertility, prolificacy, and fecal cortisol metabolites from rabbits kept under an in vivo HS model. We split randomly 60 New Zealand White rabbits into two temperature-controlled rooms: The control group was maintained at comfort temperature (18 °C-22 °C) and an HS group, where the environmental temperature was programmed to increase from 22 °C to 31 °C and be maintained for 3 hours to this temperature at the central part of the day. Fecal cortisol metabolites were assessed to evaluate the stress conditions. Seminal parameters were analyzed. Although animals exposed to HS showed higher values of fecal cortisol metabolites (P = 0.0003), no differences were detected in fertility or prolificacy. Semen samples from HS males showed a significant decrease (P cycle that allows periods of time to recover as it occurs under natural conditions. Although negative effects have been detected in several sperm parameters, fertility and prolificacy were not affected, suggesting a recovery of the reproductive function when normal conditions are reestablished.

  13. A Model of Successful School Leadership from the International Successful School Principalship Project

    Directory of Open Access Journals (Sweden)

    David Gurr

    2015-03-01

    Full Text Available The International Successful School Principalship Project (ISSPP has been actively conducting research about the work of successful principals since 2001. Findings from four project books and eight models derived from this project are synthesised into a model of successful school leadership. Building on Gurr, Drysdale and Mulford’s earlier model, the work of school leaders is described as engaging within the school context to influence student and school outcomes through interventions in teaching and learning, school capacity building, and the wider context. The qualities a leader brings to their role, a portfolio approach to using leadership ideas, constructing networks, collaborations and partnerships, and utilising accountability and evaluation for evidence-informed improvement, are important additional elements. The model is applicable to all in leadership roles in schools.

  14. Breakfast habits of 1,202 northern Italian children admitted to a summer sport school. Breakfast skipping is associated with overweight and obesity.

    Science.gov (United States)

    Vanelli, Maurizio; Iovane, Brunella; Bernardini, Anna; Chiari, Giovanni; Errico, Maria Katrin; Gelmetti, Chiara; Corchia, Matteo; Ruggerini, Anna; Volta, Elio; Rossetti, Stefano

    2005-09-01

    Very little is known about the differences in breakfast of children performing physical activity in the morning. This paper analyzed the breakfast habits of 747 boys and 455 girls, distributed in 2 homogeneous age groups, 6-10 and 11-14 year-old, participating in a Summer Sport School. Children were asked whether, when, where, how and with whom they consumed breakfast; who prepared meals; what they ate and drank; what they did during breakfast. Weight, height and BMI were recorded. Seventy-eight percent of children usually had breakfast, but 22% reported skipping breakfast. In the non-breakfast consumer subjects, 27.5% were overweight and 9.6% obese vs 9.1 and 4.5% respectively in breakfast eaters. Bakery products (76%) and milk (71%) were the most frequently consumed foods. Only 15% of parents encouraged their children to consume additional foods at breakfast before exercising, and 42% of children believed that this extra nutrition was unnecessary. In 80% of cases, the chief decision-maker for breakfast was the mother, the father played little part (1%). During breakfast, 48% of children ate and drank in silence, 26% played with brothers and sisters, 18% watched television and only 8% talked with parents. A high prevalence of over-weight and obesity was found among non-breakfast consumer children. Breakfast omission in children exercising conflicts with their increased energy requirements and may be connected to the trend of parents and children to under-estimate the importance of breakfast for nutritional balance and for environment promotion of physical performance.

  15. Forced response of the East Asian summer rainfall over the past millennium: results from a coupled model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Wang, Hongli; Ti, Ruyuan [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology and IPRC, Honolulu, HI (United States); Kuang, Xueyuan [Nanjing University, School of Atmospheric Sciences, Nanjing (China)

    2011-01-15

    The centennial-millennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000 years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial-millennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial-millennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual-decadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength. (orig.)

  16. Arctic Summer Ice Processes

    Science.gov (United States)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  17. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    Science.gov (United States)

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  18. Diabetes Management at School: Application of the Healthy Learner Model

    Science.gov (United States)

    Bobo, Nichole; Kaup, Tara; McCarty, Patricia; Carlson, Jessie Parker

    2011-01-01

    Every child with diabetes deserves a school nurse with the capacity to effectively manage the disease at school. The school nurse needs knowledge and skills to confidently provide care and communicate with health care providers and families. The Healthy Learner Model for Chronic Condition Management provided a framework to eliminate the disjointed…

  19. Influenza Vaccinations, Fall 2009: Model School-Located Vaccination Clinics

    Science.gov (United States)

    Herl Jenlink, Carolyn; Kuehnert, Paul; Mazyck, Donna

    2010-01-01

    The 2009 H1N1 influenza virus presented a major challenge to health departments, schools, and other community partners to effectively vaccinate large numbers of Americans, primarily children. The use of school-located vaccination (SLV) programs to address this challenge led health departments and schools to become creative in developing models for…

  20. Diabetes Management at School: Application of the Healthy Learner Model

    Science.gov (United States)

    Bobo, Nichole; Kaup, Tara; McCarty, Patricia; Carlson, Jessie Parker

    2011-01-01

    Every child with diabetes deserves a school nurse with the capacity to effectively manage the disease at school. The school nurse needs knowledge and skills to confidently provide care and communicate with health care providers and families. The Healthy Learner Model for Chronic Condition Management provided a framework to eliminate the disjointed…

  1. Sub-seasonal behaviour of Asian summer monsoon under a changing climate: assessments using CMIP5 models

    Science.gov (United States)

    Sooraj, K. P.; Terray, Pascal; Xavier, Prince

    2016-06-01

    Numerous global warming studies show the anticipated increase in mean precipitation with the rising levels of carbon dioxide concentration. However, apart from the changes in mean precipitation, the finer details of daily precipitation distribution, such as its intensity and frequency (so called daily rainfall extremes), need to be accounted for while determining the impacts of climate changes in future precipitation regimes. Here we examine the climate model projections from a large set of Coupled Model Inter-comparison Project 5 models, to assess these future aspects of rainfall distribution over Asian summer monsoon (ASM) region. Our assessment unravels a north-south rainfall dipole pattern, with increased rainfall over Indian subcontinent extending into the western Pacific region (north ASM region, NASM) and decreased rainfall over equatorial oceanic convergence zone over eastern Indian Ocean region (south ASM region, SASM). This robust future pattern is well conspicuous at both seasonal and sub-seasonal time scales. Subsequent analysis, using daily rainfall events defined using percentile thresholds, demonstrates that mean rainfall changes over NASM region are mainly associated with more intense and more frequent extreme rainfall events (i.e. above 95th percentile). The inference is that there are significant future changes in rainfall probability distributions and not only a uniform shift in the mean rainfall over the NASM region. Rainfall suppression over SASM seems to be associated with changes involving multiple rainfall events and shows a larger model spread, thus making its interpretation more complex compared to NASM. Moisture budget diagnostics generally show that the low-level moisture convergence, due to stronger increase of water vapour in the atmosphere, acts positively to future rainfall changes, especially for heaviest rainfall events. However, it seems that the dynamic component of moisture convergence, associated with vertical motion, shows a

  2. The Response of the South Asian Summer Monsoon Circulation to Intensified Irrigation in Global Climate Model Simulations

    Science.gov (United States)

    Shukla, Sonali P.; Puma, Michael J.; Cook, Benjamin I.

    2013-01-01

    Agricultural intensification in South Asia has resulted in the expansion and intensification of surface irrigation over the twentieth century. The resulting changes to the surface energy balance could affect the temperature contrasts between the South Asian land surface and the equatorial Indian Ocean, potentially altering the South Asian Summer Monsoon (SASM) circulation. Prior studies have noted apparent declines in the monsoon intensity over the twentieth century and have focused on how altered surface energy balances impact the SASM rainfall distribution. Here, we use the coupled Goddard Institute for Space Studies ModelE-R general circulation model to investigate the impact of intensifying irrigation on the large-scale SASM circulation over the twentieth century, including how the effect of irrigation compares to the impact of increasing greenhouse gas (GHG) forcing. We force our simulations with time-varying, historical estimates of irrigation, both alone and with twentieth century GHGs and other forcings. In the irrigation only experiment, irrigation rates correlate strongly with lower and upper level temperature contrasts between the Indian sub-continent and the Indian Ocean (Pearson's r = -0.66 and r = -0.46, respectively), important quantities that control the strength of the SASM circulation. When GHG forcing is included, these correlations strengthen: r = -0.72 and r = -0.47 for lower and upper level temperature contrasts, respectively. Under irrigated conditions, the mean SASM intensity in the model decreases only slightly and insignificantly. However, in the simulation with irrigation and GHG forcing, inter-annual variability of the SASM circulation decreases by *40 %, consistent with trends in the reanalysis products. This suggests that the inclusion of irrigation may be necessary to accurately simulate the historical trends and variability of the SASM system over the last 50 years. These findings suggest that intensifying irrigation, in concert with

  3. Summer Camp, July 2016

    CERN Multimedia

    Staff Association

    2016-01-01

    During the month of July, the Staff Association’s Children’s Day-Care Centre and School EVEE held a summer camp for 4- to 6-year-olds. 24 children altogether joined in on the adventures. On the summer camp, the children got to “travel” to a different continent of the world every week. Day after day, they would pass through make-believe Customs upon arrival and get their passports stamped by a “customs officer”. For the first week, we went on a trip to Africa. In the spirit of the theme, the children got to do plenty of crafts and coloring, make their own little bindles and play various games. They even had the chance to visit the Museum of Ethnography in Geneva (MEG), learn to play the balafon and make musical instruments with Sterrenlab. For the second week, we set off to discover the Americas, exploring both the South and the North. Alongside different workshops (singing, dancing, storytelling, crafts), the children could enjoy several special ac...

  4. The diurnal evolution of the urban heat island of Paris: a model-based case study during Summer 2006

    Directory of Open Access Journals (Sweden)

    H. Wouters

    2012-10-01

    Full Text Available The urban heat island (UHI over Paris during summer 2006 was simulated using the Advanced Regional Prediction System (ARPS updated with a simple urban parametrization at a horizontal resolution of 1 km. Two integrations were performed, one with the urban land cover of Paris and another in which Paris was replaced by cropland. The focus is on a five-day clear-sky period, for which the UHI intensity reaches its maximum. The diurnal evolution of the UHI intensity was found to be adequately simulated for this five day period. The maximum difference at night in 2-m temperature between urban and rural areas stemming from the urban heating is reproduced with a relative error of less than 10%. The UHI has an ellipsoidal shape and stretches along the prevailing wind direction. The maximum UHI intensity of 6.1 K occurs at 23:00 UTC located 6 km downstream of the city centre and this largely remains during the whole night. An idealized one-column model study demonstrates that the nocturnal differential sensible heat flux, even though much smaller than its daytime value, is mainly responsible for the maximum UHI intensity. The reason for this nighttime maximum is that additional heat is only affecting a shallow layer of 150 m. At the same time, an idealized study shows that the orography around the city of Paris induces an uplift. This leads to a considerable nocturnal adiabatic cooling over cropland. In contrast, this uplift has little effect on the mixed-layer temperature over the city. About twenty percent of the total maximum UHI intensity is estimated to be caused by this uplift.

  5. Meta-heuristic ant colony optimization technique to forecast the amount of summer monsoon rainfall: skill comparison with Markov chain model

    Science.gov (United States)

    Chaudhuri, Sutapa; Goswami, Sayantika; Das, Debanjana; Middey, Anirban

    2014-05-01

    Forecasting summer monsoon rainfall with precision becomes crucial for the farmers to plan for harvesting in a country like India where the national economy is mostly based on regional agriculture. The forecast of monsoon rainfall based on artificial neural network is a well-researched problem. In the present study, the meta-heuristic ant colony optimization (ACO) technique is implemented to forecast the amount of summer monsoon rainfall for the next day over Kolkata (22.6°N, 88.4°E), India. The ACO technique belongs to swarm intelligence and simulates the decision-making processes of ant colony similar to other adaptive learning techniques. ACO technique takes inspiration from the foraging behaviour of some ant species. The ants deposit pheromone on the ground in order to mark a favourable path that should be followed by other members of the colony. A range of rainfall amount replicating the pheromone concentration is evaluated during the summer monsoon season. The maximum amount of rainfall during summer monsoon season (June—September) is observed to be within the range of 7.5-35 mm during the period from 1998 to 2007, which is in the range 4 category set by the India Meteorological Department (IMD). The result reveals that the accuracy in forecasting the amount of rainfall for the next day during the summer monsoon season using ACO technique is 95 % where as the forecast accuracy is 83 % with Markov chain model (MCM). The forecast through ACO and MCM are compared with other existing models and validated with IMD observations from 2008 to 2012.

  6. Missing OH source in a suburban environment near Beijing: observed and modelled OH and HO2 concentrations in summer 2006

    Science.gov (United States)

    Lu, K. D.; Hofzumahaus, A.; Holland, F.; Bohn, B.; Brauers, T.; Fuchs, H.; Hu, M.; Häseler, R.; Kita, K.; Kondo, Y.; Li, X.; Lou, S. R.; Oebel, A.; Shao, M.; Zeng, L. M.; Wahner, A.; Zhu, T.; Zhang, Y. H.; Rohrer, F.

    2013-01-01

    Measurements of ambient OH and HO2 radicals were performed by laser induced fluorescence (LIF) during CAREBeijing2006 (Campaigns of Air Quality Research in Beijing and Surrounding Region 2006) at the suburban site Yufa in the south of Beijing in summer 2006. On most days, local air chemistry was influenced by aged air pollution that was advected by a slow, almost stagnant wind from southern regions. Observed daily concentration maxima were in the range of (4-17) × 106 cm-3 for OH and (2-24) × 108 cm-3 for HO2 (including an estimated interference of 25% from RO2). During daytime, OH reactivities were generally high (10-30 s-1) and mainly contributed by observed VOCs and their calculated oxidation products. The comparison of modelled and measured HOx concentrations reveals a systematic underprediction of OH as a function of NO. A large discrepancy of a factor 2.6 is found at the lowest NO concentration encountered (0.1 ppb), whereas the discrepancy becomes insignificant above 1 ppb NO. This study extends similar observations from the Pearl-River Delta (PRD) in South China to a more urban environment. The OH discrepancy at Yufa can be resolved, if NO-independent additional OH recycling is assumed in the model. The postulated Leuven Isoprene Mechanism (LIM) has the potential to explain the gap between modelled and measured OH at Beijing taking into account conservative error estimates, but lacks experimental confirmation. This and the hereby unresolved discrepancy at PRD suggest that other VOCs besides isoprene might be involved in the required, additional OH recycling. Fast primary production of ROx radicals up to 7 ppb h-1 was determined at Beijing which was dominated by the photolysis of O3, HONO, HCHO, and dicarbonyls. For a special case, 20 August, when the plume of Beijing city was encountered, a missing primary HOx source (about 3 ppb h-1) was determined under high NOx conditions similar to other urban areas like Mexico City. CAREBeijing2006 emphasizes the

  7. SCHOOL INFORMATION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chinese Culture Summer Tours Beijing Huijia Private School has successfully launched a range of Chinese-learning courses and travel programs for summer and winter. The courses have attracted hundreds of Chinese-language-learning stu- dents from around t

  8. Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison

    Directory of Open Access Journals (Sweden)

    F. C. Bassinot

    2011-07-01

    Full Text Available The relative abundance of Globigerinoides bulloides was used to infer Holocene paleo-productivity changes on the Oman margin and at the southern tip of India. Today, the primary productivity at both sites reaches its maximum during the summer season, when monsoon winds result in local Eckman pumping, which brings more nutrients to the surface. On a millennium time-scale, however, the % G. bulloides records indicate an opposite evolution of paleo-productivity at these sites through the Holocene. The Oman Margin productivity was maximal at ~9 ka (boreal summer insolation maximum and has decreased since then, suggesting a direct response to insolation forcing. On the contrary, the productivity at the southern tip of India was minimum at ~9 ka, and strengthened towards the present.

    Paleo-reconstructions of wind patterns, marine productivity and foraminifera assemblages were obtained using the IPSL-CM4 climate model coupled to the PISCES marine biogeochemical model and the FORAMCLIM ecophysiological model. These reconstructions are fully coherent with the marine core data. They confirm that the evolution of particulate export production and foraminifera assemblages at our two sites were directly linked with the strength of the upwelling. Model simulations at 9 ka and 6 ka BP show that the relative evolution between the two sites since the early Holocene can be explained by the weakening but also the southward shift of monsoon winds over the Arabian Sea during boreal summer.

  9. Modeling the influence of school leaders on student achievement: How can school leaders make a difference?

    NARCIS (Netherlands)

    Bruggencate, ten Gerdy; Luyten, Hans; Scheerens, Jaap; Sleegers, Peter

    2013-01-01

    Purpose: The aim of this study was to examine the means by which principals achieve an impact on student achievement. Research Design: Through the application of structural equation modeling, a mediated-effects model for school leadership was tested, using data from 97 secondary schools in the Nethe

  10. Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer

    NARCIS (Netherlands)

    Beekmans, Bas W.P.M.; Forcada, Jaume; Murphy, Eugene J.; Baar, de Hein J.W.; Bathmann, Ulrich V.; Fleming, Andrew H.

    2010-01-01

    There is a need to characterise the physical environment associated with Antarctic minke whale density in order to understand long-term changes in minke whale distribution and density in open waters of the Southern Ocean during austral summer months. To investigate environmental drivers of Antarctic

  11. Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer

    NARCIS (Netherlands)

    Beekmans, Bas W.P.M.; Forcada, Jaume; Murphy, Eugene J.; Baar, de Hein J.W.; Bathmann, Ulrich V.; Fleming, Andrew H.

    2010-01-01

    There is a need to characterise the physical environment associated with Antarctic minke whale density in order to understand long-term changes in minke whale distribution and density in open waters of the Southern Ocean during austral summer months. To investigate environmental drivers of Antarctic

  12. A comparison of overshoot modelling with observations of polar mesospheric summer echoes at radar frequencies of 56 and 224 MHz

    Science.gov (United States)

    Havnes, O.; Pinedo, H.; La Hoz, C.; Senior, A.; Hartquist, T. W.; Rietveld, M. T.; Kosch, M. J.

    2015-06-01

    We have compared radar observations of polar mesospheric summer echoes (PMSEs) modulated by artificial electron heating, at frequencies of 224 MHz (EISCAT VHF) and 56 MHz (MORRO). We have concentrated on 1 day of observation, lasting ~ 3.8 h. The MORRO radar, with its much wider beam, observes one or more PMSE layers all the time while the VHF radar observes PMSEs in 69% of the time. Statistically there is a clear difference between how the MORRO and the VHF radar backscatter reacts to the heater cycling (48 s heater on and 168 s heater off). While MORRO often reacts by having its backscatter level increased when the heater is switched on, as predicted by Scales and Chen (2008), the VHF radar nearly always sees the "normal" VHF overshoot behaviour with an initial rapid reduction of backscatter. However, in some heater cycles we do see a substantial recovery of the VHF backscatter after its initial reduction to levels several times above that just before the heater was switched on. For the MORRO radar a recovery during the heater-on phase is much more common. The reaction when the heater was switched off was a clear overshoot for nearly all VHF cases but less so for MORRO. A comparison of individual curves for the backscatter values as a function of time shows, at least for this particular day, that in high layers above ~ 85 km height, both radars see a reduction of the backscatter as the heater is switched on, with little recovery during the heater-on time. These variations are well described by present models. On the other hand, the backscatter in low layers at 81-82 km can be quite different, with modest or no reduction in backscatter as the heater is switched on, followed by a strong recovery for both radars to levels several times above that of the undisturbed PMSEs. This simultaneous, nearly identical behaviour at the two very different radar frequencies is not well described by present modelling.

  13. Summer Camp July 2017 - Registration

    CERN Multimedia

    EVE et École

    2017-01-01

    The CERN Staff Association’s Summer Camp will be open for children from 4 to 6 years old during four weeks, from 3 to 28 July. Registration is offered on a weekly basis for 450 CHF, lunch included. This year, the various activities will revolve around the theme of the Four Elements. Registration opened on 20 March 2017 for children currently attending the EVE and School of the Association. It will be open from 3 April for children of CERN Members of Personnel, and starting from 24 April for all other children. The general conditions are available on the website of the EVE and School of CERN Staff Association: http://nurseryschool.web.cern.ch. For further questions, please contact us by email at Summer.Camp@cern.ch.

  14. Evaluating a Community-School Model of Social Work Practice

    Science.gov (United States)

    Diehl, Daniel; Frey, Andy

    2008-01-01

    While research has shown that social workers can have positive impacts on students' school adjustment, evaluations of overall practice models continue to be limited. This article evaluates a model of community-school social work practice by examining its effect on problem behaviors and concerns identified by teachers and parents at referral. As…

  15. Simulation of Indian summer monsoon intraseasonal oscillations in a superparameterized coupled climate model: need to improve the embedded cloud resolving model

    Science.gov (United States)

    Goswami, Bidyut B.; Mukhopadhyay, P.; Khairoutdinov, Marat; Goswami, B. N.

    2013-09-01

    The characteristic features of Indian summer monsoon (ISM) and monsoon intraseasonal oscillations (MISO) are analyzed in the 25 year simulation by the superparameterized Community Climate System Model (SP-CCSM). The observations indicate the low frequency oscillation with a period of 30-60 day to have the highest power with a dominant northward propagation, while the faster mode of MISO with a period of 10-20 day shows a stationary pattern with no northward propagation. SP-CCSM simulates two dominant quasi-periodic oscillations with periods 15-30 day and 40-70 day indicating a systematic low frequency bias in simulating the observed modes. Further, contrary to the observation, the SP-CCSM 15-30 day mode has a significant northward propagation; while the 40-70 day mode does not show prominent northward propagation. The inability of the SP-CCSM to reproduce the observed modes correctly is shown to be linked with inability of the cloud resolving model (CRM) to reproduce the characteristic heating associated with the barotropic and baroclinic vertical structures of the high-frequency and the low-frequency modes. It appears that the superparameterization in the General Circulation Model (GCM) certainly improves seasonal mean model bias significantly. There is a need to improve the CRM through which the barotropic and baroclinic modes are simulated with proper space and time distribution.

  16. CONTINUING EDUCATION MODEL OF SCHOOL OF FUTURE (CASE STUDY OF ENGINEERING SCHOOL

    Directory of Open Access Journals (Sweden)

    Olga A. Karlova

    2013-01-01

    Full Text Available The paper presents the concept of continuous engineering education for the educational complex kindergarten-school-high school. Basing on the space-time model of memory and thinking, we define the didactic requirements for organization of the educational process to ensure the strength and depth of knowledge, the formation of engineering students' thinking. In this work we offer the model of the School of Engineering, which implements the necessary requirements through the cloud and cluster technologies of multi-age learning and mega-class. Besides, the paper marks the ways of the formation of the Engineering School in Zheleznogorsk. 

  17. Coupling LiDAR and thermal imagery to model the effects of riparian vegetation shade and groundwater inputs on summer river temperature.

    Science.gov (United States)

    Wawrzyniak, Vincent; Allemand, Pascal; Bailly, Sarah; Lejot, Jérôme; Piégay, Hervé

    2017-03-16

    In the context of global warming, it is important to understand the drivers controlling river temperature in order to mitigate temperature increases. A modeling approach can be useful for quantifying the respective importance of the different drivers, notably groundwater inputs and riparian shading which are potentially critical for reducing summer temperature. In this study, we use a one-dimensional deterministic model to predict summer water temperature at an hourly time step over a 21km reach of the lower Ain River (France). This sinuous gravel-bed river undergoes summer temperature increase with potential impacts on salmonid populations. The model considers heat fluxes at the water-air interface, attenuation of solar radiation by riparian forest, groundwater inputs and hydraulic characteristics of the river. Modeling is performed over two periods of five days during the summers 2010 and 2011. River properties are obtained from hydraulic modeling based on cross-section profiles and water level surveys. We model shadows of the vegetation on the river surface using LiDAR data. Groundwater inputs are determined using airborne thermal infrared (TIR) images and hydrological data. Results indicate that vegetation and groundwater inputs can mitigate high water temperatures during summer. Riparian shading effect is fairly similar between the two periods (-0.26±0.12°C and -0.31±0.18°C). Groundwater input cooling is variable between the two studied periods: when groundwater discharge represents 16% of the river discharge, it cools the river down by 0.68±0.13°C while the effect is very low (0.11±0.01°C) when the groundwater discharge contributes only 2% to the discharge. The effect of shading varies through the day: low in the morning and high during the afternoon and the evening whereas those induced by groundwater inputs is more constant through the day. Overall, the effect of riparian vegetation and groundwater inputs represents about 10% in 2010 and 24% in 2011

  18. The Nasa space radiation school, an excellent training in radiobiology and space radiation protection; La NASA space radiation summer school, une formation d'excellence en radiobiologie et radioprotection spatiale

    Energy Technology Data Exchange (ETDEWEB)

    Vogin, G. [Centre Alexis-Vautrin, 54 - Nancy (France)

    2009-10-15

    The astronauts have to spend more time in space and the colonization of the moon and Mars are in the cross hairs of international agencies. The cosmic radiation from which we are protected on ground by atmosphere and by the terrestrial magnetosphere (.4 mSv/year according to Who) become really threatening since 20 km altitude, delivering an average radiation dose of a therapeutic kind to astronauts with peaks related to solar events. It is composed in majority of hadrons: protons (85%) and heavy ions (13%), but also photons (2%) of high energy (GeV/n)). the incurred risks are multiple: early ones(cataract, central nervous system damages, whole body irradiation) but especially delayed ones (carcinogenesis). The astronauts radiation protection turns poor and the rate of death risk by cancer returning from a mission on Mars has been estimated at 5%. The Nasa created in 2004 a summer school aiming to awareness young researchers to the space radiobiology specificities. Areas concerned as follow: radioinduced DNA damage and repair, cell cycle, apoptosis, bystander effect, genome instability, neuro degeneration, delayed effects and carcinogenesis in relation with radiation exposure. (N.C.)

  19. From Schelling to Schools : A comparison of a model of residential segregation with a model of school segregation

    NARCIS (Netherlands)

    Stoica, Victor; Flache, Andreas

    2014-01-01

    We address theoretically whether and under what conditions Schelling's celebrated result of 'self-organized' unintended residential segregation may also apply to school segregation. We propose here a computational model of school segregation that is aligned with a corresponding Schelling-type model

  20. Changes in the Intensity and Frequency of Atmospheric Blocking and Associated Heat Waves During Northern Summer Over Eurasia in the CMIP5 Model Simulations

    Science.gov (United States)

    Kim, Kyu-Myong; Lau, K. M.; Wu, H. T.; Kim, Maeng-Ki; Cho, Chunho

    2012-01-01

    The Russia heat wave and wild fires of the summer of 2010 was the most extreme weather event in the history of the country. Studies show that the root cause of the 2010 Russia heat wave/wild fires was an atmospheric blocking event which started to develop at the end of June and peaked around late July and early August. Atmospheric blocking in the summer of 2010 was anomalous in terms of the size, duration, and the location, which shifted to the east from the normal location. This and other similar continental scale severe summertime heat waves and blocking events in recent years have raised the question of whether such events are occurring more frequently and with higher intensity in a warmer climate induced by greenhouse gases. We studied the spatial and temporal distributions of the occurrence and intensity of atmospheric blocking and associated heat waves for northern summer over Eurasia based on CMIPS model simulations. To examine the global warming induced change of atmospheric blocking and heat waves, experiments for a high emissions scenario (RCP8.S) and a medium mitigation scenario (RCP4.S) are compared to the 20th century simulations (historical). Most models simulate the mean distributions of blockings reasonably well, including major blocking centers over Eurasia, northern Pacific, and northern Atlantic. However, the models tend to underestimate the number of blockings compared to MERRA and NCEPIDOE reanalysis, especially in western Siberia. Models also reproduced associated heat waves in terms of the shifting in the probability distribution function of near surface temperature. Seven out of eight models used in this study show that the frequency of atmospheric blocking over the Europe will likely decrease in a warmer climate, but slightly increase over the western Siberia. This spatial pattern resembles the blocking in the summer of 2010, indicating the possibility of more frequent occurrences of heat waves in western Siberia. In this talk, we will also

  1. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  2. The dependence on atmospheric resolution of ENSO and related East Asian-western North Pacific summer climate variability in a coupled model

    Science.gov (United States)

    Liu, Bo; Zhao, Guijie; Huang, Gang; Wang, Pengfei; Yan, Bangliang

    2017-08-01

    The authors present results for El Niño-Southern Oscillation (ENSO) and East Asian-western North Pacific climate variability simulated in a new version high-resolution coupled model (ICM.V2) developed at the Center for Monsoon System Research of the Institute of Atmospheric Physics (CMSR, IAP), Chinese Academy of Sciences. The analyses are based on the last 100-year output of a 1000-year simulation. Results are compared to an earlier version of the same coupled model (ICM.V1), reanalysis, and observations. The two versions of ICM have similar physics but different atmospheric resolution. The simulated climatological mean states show marked improvement over many regions, especially the tropics in ICM.V2 compared to those in ICM.V1. The common bias in the cold tongue has reduced, and the warm biases along the ocean boundaries have improved as well. With improved simulation of ENSO, including its period and strength, the ENSO-related western North Pacific summer climate variability becomes more realistic compared to the observations. The simulated East Asian summer monsoon anomalies in the El Niño decaying summer are substantially more realistic in ICM.V2, which might be related to a better simulation of the Indo-Pacific Ocean capacitor (IPOC) effect and Pacific decadal oscillation (PDO).

  3. MODELS OF THE USE OF DISTANCE LEARNING ELEMENTS IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Vasyl I. Kovalchuk

    2017-09-01

    Full Text Available The article presents three models of the use of elements of distance learning at school. All models partially or fully implement the training, interaction and collaboration of the participants in the educational process. The first model is determined by the use of open cloud services and Web 2.0 for the implementation of certain educational and managerial tasks of the school. The second model uses support for learning management and content creation. The introduction of the second model is possible with the development of the IT infrastructure of the school, the training of teachers for the use of distance learning technologies, the creation of electronic educational resources. The third model combines the use of Web 2.0 technologies and training and content management systems. Models of the use of elements of distance learning are presented of the results of regional research experimental work of schools.

  4. An Assessment on the Performance of IPCC AR4 Climate Models in Simulating Interdecadal Variations of the East Asian Summer Monsoon

    Institute of Scientific and Technical Information of China (English)

    SUN Ying; DING Yihui

    2008-01-01

    Observations from several data centers together with a categorization method are used to evaluate the IPCC AR4 (Intergovernmental Panel on Climate Change, the Fourth Assessment Report) climate models' performance in simulating the interdecadal variations of summer precipitation and monsoon circulation in East Asia. Out of 19 models under examination, 9 models can relatively well reproduce the 1979-1999 mean June-July-August (JJA) precipitation in East Asia, but only 3 models (Category-1 models) can capture the interdecadal variation of precipitation in East Asia. These 3 models are: GFDL-CM2.0, MIROC3.2 (hires), and MIROC3.2 (medres), among which the GFDL-CM2.0 gives the best performance. The reason for the poor performance of most models in simulating the East Asian summer monsoon interdecadal variation lies in that the key dynamic and thermal-dynamic mechanisms behind the East Asian monsoon change are missed by the models, e.g., the large-scale tropospheric cooling and drying over East Asia. In contrast, the Category-1 models relatively well reproduce the variations in vertical velocity and water vapor over East Asia and thus show a better agreement with observations in simulating the pattern of "wet south and dry north" in China in the past 20 years.It is assessed that a single model's performance in simulating a particular variable has great impacts on the ensemble results. More realistic outputs can be obtained when the multi-model ensemble is carried out using a suite of well-performing models for a specific variable, rather than using all available models. This indicates that although a multi-model ensemble is in general better than a single model, the best ensemble mean cannot be achieved without looking into each member model's performance.

  5. Summer Meal Capacity Builder

    Data.gov (United States)

    Department of Agriculture — Allows users to search for summer meal sites from the previous summer by zip code, adding “layers” of information, such as free and reduced-price lunch participation...

  6. The Misattribution of Summers in Teacher Value-Added

    Science.gov (United States)

    Atteberry, Allison

    2012-01-01

    This paper investigates the extent to which spring-to-spring testing timelines bias teacher value-added as a result of conflating summer and school-year learning. Using a unique dataset that contains both fall and spring standardized test scores, the author examines the patterns in school-year versus summer learning. She estimates value-added…

  7. School Attendance and Child Labor - A Model of Collective Behavior

    OpenAIRE

    Strulik, Holger

    2010-01-01

    This paper theoretically investigates how community approval or disapproval affects school attendance and child labor and how aggregate behavior of the community feeds back towards the formation and persistence of an anti- (or pro-) schooling norm. The proposed community-model continues to take aggregate and idiosyncratic poverty into account as an important driver of low school attendance and child labor. But it provides also an explanation for why equally poor villages or regions can displa...

  8. Well-being in schools: a conceptual model.

    Science.gov (United States)

    Konu, Anne; Rimpelä, Matti

    2002-03-01

    Health and well-being have mostly been separated from other aspects of school life. Health services and health education have been available for school-aged children in Western societies for a long time. Recently, more comprehensive school health programmes have been developed, e.g. the WHO 'health promoting school' and 'coordinated school health programme' in the USA. They focus on how to implement health promotion and health education in school. However, a theoretically grounded model based on the sociological concept of well-being is needed for planning and evaluation of school development programmes. The School Well-being Model is based on Allardt's sociological theory of welfare and assesses well-being as an entity in school setting. Well-being is connected with teaching and education, and with learning and achievements. Indicators of well-being are divided into four categories: school conditions (having), social relationships (loving), means for self-fulfilment (being) and health status. 'Means for self-fulfilment' encompasses possibilities for each pupil to study according to his/her own resources and capabilities. 'Health status' is seen through pupils' symptoms, diseases and illnesses. Each well-being category contains several aspects of pupils' life in school. The model takes into account the important impact of pupils' homes and the surrounding community. Compared with others, The School Well-being Model's main differences are the use of the well-being concept, the definition of health and the subcategory means for self-fulfilment. Making the outline of the well-being concept facilitates the development of theoretically grounded subjective and objective well-being indicators.

  9. The Relationship among School Safety, School Liking, and Students' Self-Esteem: Based on a Multilevel Mediation Model

    Science.gov (United States)

    Zhang, Xinghui; Xuan, Xin; Chen, Fumei; Zhang, Cai; Luo, Yuhan; Wang, Yun

    2016-01-01

    Background: Perceptions of school safety have an important effect on students' development. Based on the model of "context-process-outcomes," we examined school safety as a context variable to explore how school safety at the school level affected students' self-esteem. Methods: We used hierarchical linear modeling to examine the link…

  10. The Relationship of School Art Therapy and the American School Counselor National Model

    Science.gov (United States)

    Randick, Nicole M.; Dermer, Shannon B.

    2013-01-01

    Art therapists must overcome systemic challenges in order to continue to provide art therapy services in U.S. public schools. An understanding of how art therapy programs fit within the national standards of the American School Counselor Association (ASCA) and the ASCA National Model may help in this effort. This review article compares recently…

  11. Does a Socio-Ecological School Model Promote Resilience in Primary Schools?

    Science.gov (United States)

    Lee, Patricia C.; Stewart, Donald E.

    2013-01-01

    Background: This research investigates the extent to which the holistic, multistrategy "health-promoting school" (HPS) model using a resilience intervention can lead to improved resilience among students. Methods: A quasi-experimental design using a study cohort selected from 20 primary schools in Queensland, Australia was employed. Ten…

  12. Modeling the Relations among Parental Involvement, School Engagement and Academic Performance of High School Students

    Science.gov (United States)

    Al-Alwan, Ahmed F.

    2014-01-01

    The author proposed a model to explain how parental involvement and school engagement related to academic performance. Participants were (671) 9th and 10th graders students who completed two scales of "parental involvement" and "school engagement" in their regular classrooms. Results of the path analysis suggested that the…

  13. The Relationship of School Art Therapy and the American School Counselor National Model

    Science.gov (United States)

    Randick, Nicole M.; Dermer, Shannon B.

    2013-01-01

    Art therapists must overcome systemic challenges in order to continue to provide art therapy services in U.S. public schools. An understanding of how art therapy programs fit within the national standards of the American School Counselor Association (ASCA) and the ASCA National Model may help in this effort. This review article compares recently…

  14. Analysis of the Impacts of City Year's Whole School Whole Child Model on Partner Schools' Performance

    Science.gov (United States)

    Meredith, Julie; Anderson, Leslie M.

    2015-01-01

    City Year is a learning organization committed to the rigorous evaluation of its "Whole School Whole Child" model, which trains and deploys teams of AmeriCorps members to low-performing, urban schools to empower more students to reach their full potential. A third-party study by Policy Studies Associates (PSA) examined the impact of…

  15. Impact of anthropogenic aerosols on summer precipitation in the Beijing-Tianjin-Hebei urban agglomeration in China: Regional climate modeling using WRF-Chem

    Science.gov (United States)

    Wang, Jun; Feng, Jinming; Wu, Qizhong; Yan, Zhongwei

    2016-06-01

    The WRF model with chemistry (WRF-Chem) was employed to simulate the impacts of anthropogenic aerosols on summer precipitation over the Beijing-Tianjin-Hebei urban agglomeration in China. With the aid of a high-resolution gridded inventory of anthropogenic emissions of trace gases and aerosols, we conducted relatively long-term regional simulations, considering direct, semi-direct and indirect effects of the aerosols. Comparing the results of sensitivity experiments with and without emissions, it was found that anthropogenic aerosols tended to enhance summer precipitation over the metropolitan areas. Domain-averaged rainfall was increased throughout the day, except for the time around noon. Aerosols shifted the precipitation probability distribution from light or moderate to extreme rain. Further analysis showed that the anthropogenic aerosol radiative forcing had a cooling effect at the land surface, but a warming effect in the atmosphere. However, enhanced convective strength and updrafts accompanied by water vapor increases and cyclone-like wind shear anomalies were found in the urban areas. These responses may originate from cloud microphysical effects of aerosols on convection, which were identified as the primary cause for the summer rainfall enhancement.

  16. Water consumption in summer maize and winter wheat cropping system based on SEBAL model in Huang-Huai-Hai Plain, China

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-ying; MEI Xu-rong; HUO Zhi-guo; YAN Chang-rong; JU Hui; ZHAO Feng-hua; LIU Qin

    2015-01-01

    Crop consumptive water use is recognized as a key element to understand regional water management performance. This study documents an attempt to apply a regional evapotranspiration model (SEBAL) and crop information for assessment of regional crop (summer maize and winter wheat) actual evapotranspiration (ETa) in Huang-Huai-Hai (3H) Plain, China. The average seasonal ETa of summer maize and winter wheat were 354.8 and 521.5 mm respectively in 3H Plain. A high-ETa belt of summer maize occurs in piedmont plain, while a low ETa area was found in the hil-irrigable land and dry land area. For winter wheat, a high-ETa area was located in the middle part of 3H Plain, including low plain-hydropenia irrigable land and dry land, hil-irrigable land and dry land, and basin-irrigable land and dry land. Spatial analysis demonstrated a linear relationship between crop ETa, normalized difference vegetation index (NDVI), and the land surface temperature (LST). A stronger relationship between ETa andNDVI was found in the metaphase and last phase than other crop growing phase, as indicated by higher correlation coefifcient values. Additionaly, higher correlation coefifcients were detected between ETa and LST than that between ETa and NDVI, and this signiifcant relationship ran through the entire crop growing season. ETa in the summer maize growing season showed a signiifcant relationship with longitude, while ETa in the winter wheat growing season showed a signiifcant relationship with latitude. The results of this study wil serve as baseline information for water resources management of 3H Plain.

  17. The National Association of School Psychologists' Self-Assessment Tool for School Psychologists: Factor Structure and Relationship to the National Association of School Psychologists' Practice Model

    Science.gov (United States)

    Eklund, Katie; Rossen, Eric; Charvat, Jeff; Meyer, Lauren; Tanner, Nick

    2016-01-01

    The National Association of School Psychologists' Model for Comprehensive and Integrated School Psychological Services (2010a), often referred to as the National Association of School Psychologists' Practice Model, describes the comprehensive range of professional skills and competencies available from school psychologists across 10 domains. The…

  18. Optimal schooling formations using a potential flow model

    Science.gov (United States)

    Tchieu, Andrew; Gazzola, Mattia; de Brauer, Alexia; Koumoutsakos, Petros

    2012-11-01

    A self-propelled, two-dimensional, potential flow model for agent-based swimmers is used to examine how fluid coupling affects schooling formation. The potential flow model accounts for fluid-mediated interactions between swimmers. The model is extended to include individual agent actions by means of modifying the circulation of each swimmer. A reinforcement algorithm is applied to allow the swimmers to learn how to school in specified lattice formations. Lastly, schooling lattice configurations are optimized by combining reinforcement learning and evolutionary optimization to minimize total control effort and energy expenditure.

  19. Using Disability Models to Rethink Bullying in Schools

    Science.gov (United States)

    Duncan, Neil

    2013-01-01

    Much research on bullying in schools positions individual children within a deficit model of personal variables, categorising and cataloguing them with high levels of aggressiveness, low levels of empathy and so on. While less than optimal school characteristics are sometimes noted, the expectation for change is on the children. This article…

  20. Models for Delivering School-Based Dental Care.

    Science.gov (United States)

    Albert, David A.; McManus, Joseph M.; Mitchell, Dennis A.

    2005-01-01

    School-based health centers (SBHCs) often are located in high-need schools and communities. Dental service is frequently an addition to existing comprehensive services, functioning in a variety of models, configurations, and locations. SBHCs are indicated when parents have limited financial resources or inadequate health insurance, limiting…

  1. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  2. Opinions of Secondary School Mathematics Teachers on Mathematical Modelling

    Science.gov (United States)

    Tutak, Tayfun; Güder, Yunus

    2013-01-01

    The aim of this study is to identify the opinions of secondary school mathematics teachers about mathematical modelling. Qualitative research was used. The participants of the study were 40 secondary school teachers working in the Bingöl Province in Turkey during 2012-2013 education year. Semi-structured interview form prepared by the researcher…

  3. Using Disability Models to Rethink Bullying in Schools

    Science.gov (United States)

    Duncan, Neil

    2013-01-01

    Much research on bullying in schools positions individual children within a deficit model of personal variables, categorising and cataloguing them with high levels of aggressiveness, low levels of empathy and so on. While less than optimal school characteristics are sometimes noted, the expectation for change is on the children. This article…

  4. Stutter-Step Models of Performance in School

    Science.gov (United States)

    Morgan, Stephen L.; Leenman, Theodore S.; Todd, Jennifer J.; Kentucky; Weeden, Kim A.

    2013-01-01

    To evaluate a stutter-step model of academic performance in high school, this article adopts a unique measure of the beliefs of 12,591 high school sophomores from the Education Longitudinal Study, 2002-2006. Verbatim responses to questions on occupational plans are coded to capture specific job titles, the listing of multiple jobs, and the listing…

  5. Future changes in seasonal development in East Asia: southward strengthening of the jet stream in summer in CMIP3 and CMIP5 models

    Science.gov (United States)

    Harada, M.; Hirahara, S.; Ohno, H.; Hagiya, S.; Murai, H.; Oikawa, Y.; Maeda, S.

    2012-12-01

    Future changes in seasonal development in East Asia as a result of global warming in the late 21st century are investigated using the Coupled Model Intercomparison Project (CMIP3 and CMIP5) multi-model dataset. The future projections of CMIP3 and CMIP5 are based on the SRES A1B and RCP4.5 scenarios, respectively. We mainly focus on the seasonal progress of the westerly jet in the upper troposphere since the jet is one of the key components which control the seasonal development in East Asia. To reduce uncertainties in future projection, we first evaluate model performance and select models which have high ability to reproduce the current seasonal progress of the jet. Future projection by the selected models indicate that in summer the westerly jet will intensify to the south of the current jet axis, while the jet shift northward in winter as pointed out by many previous studies. The former is associated with weakening of the upper tropospheric divergence in the western North Pacific and shrinking of the Tibetan high as the response to the tropical circulation change (i.e. Matsuno-Gill pattern). The change of the jet position in the late 21st century act to weaken the seasonal contrast in East Asia: the end of the rainy season in Japan will be obscure and the temperature difference between summer and winter will be smaller.

  6. HAARP 2011 Summer Student Research Campaign

    Science.gov (United States)

    2012-10-16

    lasting ten days to two weeks. The goal of this program, called the Polar Aeronomy and Radio Science (PARS) Summer School, was to acquaint university...Alaska, Fairbanks to conduct a comprehensive summer learning activity aimed at Graduate level students. Until 2008, this Polar Aeronomy and Radio...Research Associates ONR Office of Naval Research OPL Out-shifted Plasma Line PARS Polar Aeronomy and Radio Science PCA Polar Cap Absorption PDI

  7. S'Cool LAB Summer CAMP 2017

    CERN Multimedia

    Woithe, Julia

    2017-01-01

    The S’Cool LAB Summer CAMP is an opportunity for high-school students (aged 16-19) from all around the world to spend 2 weeks exploring the fascinating world of particle physics. The 24 selected participants spend their summer at S’Cool LAB, CERN’s hands-on particle physics learning laboratory, for an epic programme of lectures and tutorials, team research projects, visits of CERN’s research installations, and social activities.

  8. Holocene evolution of summer winds and marine productivity in the tropical Indian Ocean in response to insolation forcing: data-model comparison

    Directory of Open Access Journals (Sweden)

    F. C. Bassinot

    2011-02-01

    Full Text Available The relative abundance of Globigerinoides bulloides was used to infer Holocene paleo-productivity changes at ODP Site 723 (19°03' N, 57°37' E; Oman Margin and core MD77-191 (07°30' N, 76°43' E; Southern tip of India. Today, the primary productivity at both sites peaks during the summer season, when monsoon winds result in local Eckman pumping, which brings more nutrients to the surface. On a millennium time-scale, however, the % G.~bulloides records indicate an opposite evolution of paleo-productivity at these sites through the Holocene. The Oman Margin productivity was maximal at ~9 ka (boreal summer insolation maximum and decreased since then, suggesting a direct response to insolation forcing. On the opposite, the productivity at the southern tip of India was minimum at ~9 ka, and strengthened towards the present.

    Paleo-reconstructions of wind patterns, marine productivity and foraminifera assemblages were obtained using the IPSL-CM4 climate model coupled to the PISCES marine biogeochemical model and the FORAMCLIM ecophysiological model. These reconstructions are fully coherent with the marine core data. They confirm that the evolution of particulate export production and foraminifera assemblages at our two sites have been directly linked with the strength of the upwelling. Model simulations at 9 ka and 6 ka BP show that the relative evolution between the two sites since the early Holocene can be explained by the weakening but also the southward shift of monsoon winds over the Arabian sea during boreal summer.

  9. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  10. Elucidating the role of topological pattern discovery and support vector machine in generating predictive models for Indian summer monsoon rainfall

    Science.gov (United States)

    Chattopadhyay, Manojit; Chattopadhyay, Surajit

    2016-10-01

    The present paper reports a study, where growing hierarchical self-organising map (GHSOM) has been applied to achieve a visual cluster analysis to the Indian rainfall dataset consisting of 142 years of Indian rainfall data so that the yearly rainfall can be segregated into small groups to visualise the pattern of clustering behaviour of yearly rainfall due to changes in monthly rainfall for each year. Also, through support vector machine (SVM), it has been observed that generation of clusters impacts positively on the prediction of the Indian summer monsoon rainfall. Results have been presented through statistical and graphical analyses.

  11. Statistical Downscaling for Multi-Model Ensemble Prediction of Summer Monsoon Rainfall in the Asia-Pacific Region Using Geopotential Height Field

    Institute of Scientific and Technical Information of China (English)

    ZHU Congwen; Chung-Kyu PARK; Woo-Sung LEE; Won-Tae YUN

    2008-01-01

    The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific(Asia-Pacific)summer monsoon region(0°-50°N,100°-150°E)were evaluated in nine different AGCM,used in the Asia-Pacific Economic Cooperation Climate Center(APCCl multi.model ensemble seasonal prediction system.The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially difierent from the observed counterparts in this region.but the summer monsoon circulations are reasonably predicted.For example,all models can well produce the interannual variability of the western North Pacific monsoon index(WNPMI)defined by 850 hPa winds,but they failed to predict the relationship between WNPMI and precipitation anomalies.The interannual variability of the 500 hPa geopotential height(GPH)can be well predicted by the models in contrast to precipitation anomalies.On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies.we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly Oll the basis of EOF and singular value decomposition(SVD).In this scheme,the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation.respectively.Then. the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field,which is assembled by the forecasted expansion toeffcients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period.The cross-validated forecasts suggest that this dowuscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea,western North Pacific and the East Asia Pacific regions

  12. "banca del Fare" Summer School in Alta Langa: «THE Ruins to BE Rebuilt Will BE Our CLASSROOMS». Knowledge from Artisans to New Generations, from Ancient Skills to New Building Techniques

    Science.gov (United States)

    Villata, M.

    2017-05-01

    "Banca del fare" is an ambitious project proposed by "Cultural Park Alta Langa". It is born to hand ancient knowledges down to young people, as meeting place useful to exchange the development of new construction techniques and at the same time the traditional ones. A program of educational workshops, which constitute the summer school, was organized for increasing communication among different generations. Indeed, the last local craftsmen or artisans are coming out from their employment and there is no training process to ensure the migration of knowledge to young architects. The activities of the school took place for the first time during summer of 2016 in Alta Langa, the southern part of Langhe in Piedmont. The landscape of this area is marked by small rural architectures called "ciabòts" shed all over the countryside. Artisans and students work together to recover these buildings every year. The aim of this landscape heritage's valorization is to relate the restored ciabòt into a network, in order to create a widespread hotels system. Therefore, the essay wants to present the results of "Banca del fare" and to suggest a GIS project that can gather information about numerous "ciabòt" widespread in this territory. The interaction between land development and networking process can ensure the optimal reuse of these rural architectures.

  13. Instructional Technology and School Ethos: A Primary School Model in Southwest England

    Directory of Open Access Journals (Sweden)

    Erik Jon Byker

    2014-04-01

    Full Text Available The way in which information and communication technology (ICT enhances the dimensions of teaching and student learning is not well understood. As a result, schools and teacher often integrate ICT with little thought to how it could be educationally profitable or pedagogically meaningful. The literature calls for models of primary school ICT integration. This paper reports on a case study of a primary school (or elementary school model of technology integration. Specifically, the case study investigates a public, primary school located in rural Southwest England. In particular, the paper describes how ICT is integrated in a Grade Six classroom in this primary school. Using a mixed-methods research methodology, the study’s data is drawn from 60 participants (n=60, including the school’s teachers and students. The analyses of this study uncovered a strong link between successful ICT integration and school ethos. Furthermore, the study found that along with school ethos the teacher leadership fostered an environment where the integration of ICT can flourish and students are motivated to learn.

  14. Towards a Model for Research on the Effects of School Organizational Health Factors on Primary School Performance in Trinidad & Tobago

    Science.gov (United States)

    Ramdass, Mala; Lewis, Theodore

    2012-01-01

    This article presents a model for research on the effects of school organizational heath factors on primary school academic achievement in Trinidad and Tobago. The model can be applicable for evaluating schools in other developing countries. As proposed, the model hypothesizes relationships between external factors (exogenous variables),…

  15. Implementing Student-Level Random Assignment during Summer School: Lessons Learned from an Efficacy Study of Online Algebra I for Credit Recovery

    Science.gov (United States)

    Heppen, Jessica; Allensworth, Elaine; Walters, Kirk; Pareja, Amber Stitziel; Kurki, Anja; Nomi, Takako; Sorensen, Nicholas

    2011-01-01

    Credit recovery is one strategy to deal with high failure rates. The primary goal of credit recovery programs is to give students an opportunity to retake classes that they failed in an effort to get them back on track and keep them in school (Watson & Gemin, 2008). Most recently, as schools across the nation struggle to keep students on track…

  16. Universal free school breakfast: a qualitative model for breakfast behaviors

    Directory of Open Access Journals (Sweden)

    Louise eHarvey-Golding

    2015-06-01

    Full Text Available In recent years the provision of school breakfast has increased significantly in the UK. However, research examining the effectiveness of school breakfast is still within relative stages of infancy, and findings to date have been rather mixed. Moreover, previous evaluations of school breakfast schemes have been predominantly quantitative in their methodologies. Presently there are few qualitative studies examining the subjective perceptions and experiences of stakeholders, and thereby an absence of knowledge regarding the sociocultural impacts of school breakfast. The purpose of this study was to investigate the beliefs, views and attitudes, and breakfast consumption behaviors, among key stakeholders, served by a council-wide universal free school breakfast initiative, within the North West of England, UK. A sample of children, parents and school staff were recruited from three primary schools, participating in the universal free school breakfast scheme, to partake in semi-structured interviews and small focus groups. A Grounded Theory analysis of the data collected identified a theoretical model of breakfast behaviors, underpinned by the subjective perceptions and experiences of these key stakeholders. The model comprises of three domains relating to breakfast behaviors, and the internal and external factors that are perceived to influence breakfast behaviors, among children, parents and school staff. Findings were validated using triangulation methods, member checks and inter-rater reliability measures. In presenting this theoretically grounded model for breakfast behaviors, this paper provides a unique qualitative insight into the breakfast consumption behaviors and barriers to breakfast consumption, within a socioeconomically deprived community, participating in a universal free school breakfast intervention program.

  17. Experimental modeling of the influence of the rise in average summer temperatures on carbon circulation in tundra ecosystems

    Science.gov (United States)

    Barkhatov, Yu. V.; Tikhomirov, A. A.; Ushakova, S. A.; Shikhov, V. N.; Bartsev, S. I.; Degermendzhi, A. G.

    2016-11-01

    A sealed vegetation chamber was designed and constructed for physical simulation of climate conditions in the Subarctic zone during the spring-summer time. The small laboratory tundra-simulating ecosystem (TSE) was created for comparative evaluation of the rates of soil respiration and of the total balance of carbon fluxes in tundra ecosystems. The test experiment was performed to study the TSE response to a temperature rise in air and soil by 2°C in terms of the intensity of the CO2 flux. It was shown that this increase in temperature would cause a pronounced shift in the balance of CO2 production and utilization in the ecosystem from near-zero values to a stable generation of 24 μmol/h of CO2 per 1 kg of dry biomass.

  18. iUTAH Summer Research Institutes: Supporting the STEM Pipeline Through Engagement of High School, Undergraduate and Graduate Students, Secondary Teachers, and University Faculty in Authentic, Joint Research Experiences

    Science.gov (United States)

    Stark, L. A.; Malone, M.

    2015-12-01

    Multiple types of programs are needed to support the STEM workforce pipeline from pre-college through graduate school and beyond. Short-term, intensive programs provide opportunities to participate in authentic scientific research for students who may not be sure of their interest in science and for teachers who may be unable to devote an entire summer to a research experience. The iUTAH (innovative Urban Transitions and Aridregion Hydro-Systainability) Summer Research Institute utilizes an innovative approach for a 5-day program that engages high school and undergraduate students as well as middle and high school teachers in conducting research projects led by graduate students and faculty members. Each Institute involves 3-4 half to full-day research projects. Participants collect (usually in the field) and analyze data for use in on-going research or that is related to a current research project. The participants work in groups with the graduate students to create a poster about each research project. They present their posters on the last day of the Institute at the state-wide meeting of all researchers and involved in this EPSCoR-funded program. In addition to introducing participants to research, one of the Institute's goals is to provide opportunities for meaningful near-peer interactions with students along the STEM pipeline from high school to undergraduate to graduate school. On the end-of-Institute evaluations, almost all students have reported that their discussions with other participants and with graduate students and faculty were a "Highly effective" or "Effective" part of the Institute. In response to a question about how the Institute will impact their course choices or their plans to pursue a career in science, many high school and undergraduate students have noted that they plan to take more science courses. Each year several undergraduates who were previously unsure about a career in science have indicated that they now intend to pursue a

  19. Development toward School Readiness: A Holistic Model

    Science.gov (United States)

    Gaynor, Alan Kibbe

    2015-01-01

    A systemic analysis of early childhood development factors explains the variance in school readiness among representative U.S. 5-year-olds. The underlying theory incorporates a set of causally interactive endogenous variables that are hypothesized to be driven by the effects of three exogenous variables: parental education, immigrant status and…

  20. United States Air Force Summer Research Program -- 1991. High School Apprenticeship Program (HSAP) Reports, Volume 12: Rome Laboratory, Arnold Engineering Development Plan

    Science.gov (United States)

    1991-12-01

    is used to control the graphical output of the system and act as a shell between the user and GNUPLOT . The interface controls such functions as...space. Later this plot can be viewed using a stand-alone version of GNUPLOT on any PC or workstation or 26-4 may be used a, a data file in a...8217 that allows the user to bypass the user interface and send commands directly to GNUPLOT . Later in the summer I began work on modifying GNUPLOT , a

  1. Model of Providing Assistive Technologies in Special Education Schools.

    Science.gov (United States)

    Lersilp, Suchitporn; Putthinoi, Supawadee; Chakpitak, Nopasit

    2015-05-14

    Most students diagnosed with disabilities in Thai special education schools received assistive technologies, but this did not guarantee the greatest benefits. The purpose of this study was to survey the provision, use and needs of assistive technologies, as well as the perspectives of key informants regarding a model of providing them in special education schools. The participants were selected by the purposive sampling method, and they comprised 120 students with visual, physical, hearing or intellectual disabilities from four special education schools in Chiang Mai, Thailand; and 24 key informants such as parents or caregivers, teachers, school principals and school therapists. The instruments consisted of an assistive technology checklist and a semi-structured interview. Results showed that a category of assistive technologies was provided for students with disabilities, with the highest being "services", followed by "media" and then "facilities". Furthermore, mostly students with physical disabilities were provided with assistive technologies, but those with visual disabilities needed it more. Finally, the model of providing assistive technologies was composed of 5 components: Collaboration; Holistic perspective; Independent management of schools; Learning systems and a production manual for users; and Development of an assistive technology center, driven by 3 major sources such as Government and Private organizations, and Schools.

  2. Industrial Applications of Solar Chemistry. Lectures from the Summer School at the Plataforma Solar de Almeria. Solar Thermal Energy: The Clean Way to Generate Electricity and Produce Chemicals.Training and Mobility of Researchers Programme. Almeria, 21-25, September, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    A Summer School entitled Solar thermal Energy. The Clean Way to Generate Electricity and Produce Chemicals consisting of two one-week courses, was held at the Plataforma Solar de Almeria (PSA) in July and September, 1998. The first was called Solar Thermal Electricity Generation and the second. Industrial Applications of Solar Chemistry. Through both topics concerned the use of solar light as the energy source and the courses were organised within one. Summer School, they clearly cover very different disciplines and it therefore makes sense to publish course materials separately. This volume is a compilation of the lectures given in the course on Electricity Generation. (Author)

  3. Under Summer Skies

    Science.gov (United States)

    Texley, Juliana

    2009-01-01

    There's no better way to celebrate 2009, the International Year of Astronomy, than by curling up with a good book under summer skies. To every civilization, in every age, the skies inspired imagination and scientific inquiry. There's no better place to start your summer reading than under their influence. Here are a few selections identified by…

  4. Statistical modelling of wildfire size and intensity: a step toward meteorological forecasting of summer extreme fire risk

    Science.gov (United States)

    Hernandez, C.; Keribin, C.; Drobinski, P.; Turquety, S.

    2015-12-01

    In this article we investigate the use of statistical methods for wildfire risk assessment in the Mediterranean Basin using three meteorological covariates, the 2 m temperature anomaly, the 10 m wind speed and the January-June rainfall occurrence anomaly. We focus on two remotely sensed characteristic fire variables, the burnt area (BA) and the fire radiative power (FRP), which are good proxies for fire size and intensity respectively. Using the fire data we determine an adequate parametric distribution function which fits best the logarithm of BA and FRP. We reconstruct the conditional density function of both variables with respect to the chosen meteorological covariates. These conditional density functions for the size and intensity of a single event give information on fire risk and can be used for the estimation of conditional probabilities of exceeding certain thresholds. By analysing these probabilities we find two fire risk regimes different from each other at the 90 % confidence level: a "background" summer fire risk regime and an "extreme" additional fire risk regime, which corresponds to higher probability of occurrence of larger fire size or intensity associated with specific weather conditions. Such a statistical approach may be the ground for a future fire risk alert system.

  5. Hydromania: Summer Science Camp Curriculum.

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Joan

    1995-07-01

    In 1992, Bonneville Power Administration (BPA) and the US Department of Energy (DOE) began a collaborative pilot project with the Portland Parks and Recreation Community Schools Program and others to provide summer science camps to children in Grades 4--6. Camps run two weeks in duration between late June and mid-August. Sessions are five days per week, from 9 a.m. to 3 p.m. In addition to hands-on science and math curriculum, at least three field trips are incorporated into the educational learning experience. The purpose of the BPA/DOE summer camps is to make available opportunities for fun, motivating experiences in science to students who otherwise would have difficulty accessing them. This includes inner city, minority, rural and low income students. Public law 101-510, which Congress passed in 1990, authorizes DOE facilities to establish collaborative inner-city and rural partnership programs in science and math. A primary goal of the BPA summer hands on science camps is to bring affordable science camp experiences to students where they live. It uses everyday materials to engage students` minds and to give them a sense that they have succeeded through a fun hands-on learning environment.

  6. Day/Night Cycle: Mental Models of Primary School Children

    Science.gov (United States)

    Chiras, Andreas

    2008-01-01

    The study investigated the mental models of primary school children related to the day/night cycle. Semi-structure interviews were conducted with 40 fourth-grade and 40 sixth-grade children. Qualitative and quantitative analysis of the data indicated that the majority of the children were classified as having geocentric models. The results also…

  7. Teacher Training by Means of a School-Based Model

    Science.gov (United States)

    Richter, Barry

    2016-01-01

    The purpose of the study was to explore how a school-based training model (SBTM) could help to address the shortage of teachers. This model also allows, among other aspects, for poor and disadvantaged students to study while they gain experience. This article reports on the results of the SBTM implemented by a South African university, whereby…

  8. The Implementation of Character Education Model Based on Empowerment Theatre for Primary School Students

    Science.gov (United States)

    Anggraini, Purwati; Kusniarti, Tuti

    2016-01-01

    This study aimed at constructing character education model implemented in primary school. The research method was qualitative with five samples in total, comprising primary schools in Malang city/regency and one school as a pilot model. The pilot model was instructed by theatre coach teacher, parents, and school society. The result showed that…

  9. Japanese Summer: Journal Excerpts for Classroom Use.

    Science.gov (United States)

    Harris, Judy

    1986-01-01

    Using diary excerpts from a teacher's trip to Japan in the summer of 1985, this article provides four lesson plans for involving elementary through high school students in the study of cultural values, critical thinking skills, leadership, and international understanding. (JDH)

  10. A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2009-10-01

    Full Text Available In the present work it is investigated the direct shortwave effect of anthropogenic aerosols on the near surface temperature over Southeastern Europe and the atmospheric circulation during summer 2000. In summer 2000, a severe heat-wave and droughts affected many countries in the Balkans. The study is based on two yearly simulations with and without the aerosol feedback of the regional climate model RegCM3 coupled with a simplified aerosol model. The surface radiative forcing associated with the anthropogenic aerosols is negative throughout the European domain with the more negative values in Central and Central-eastern Europe. A basic pattern of the aerosol induced changes in air temperature at the lower troposphere is a decrease over Southeastern Europe and the Balkan Peninsula (up to about 1.2°C thus weakening the pattern of the climatic temperature anomalies of summer 2000. The aerosol induced changes in air temperature from the lower troposphere to upper troposphere are not correlated with the respective pattern of the surface radiative forcing implying the complexity of the mechanisms linking the aerosol radiative forcing with the induced atmospheric changes through dynamical feedbacks of aerosols on atmospheric circulation. Investigation of the aerosol induced changes in the circulation indicates a southward shift of the subtropical jet stream playing a dominant role for the decrease in near surface air temperature over Southeastern Europe and the Balkan Peninsula. The southward shift of the jet exit region over the Balkan Peninsula causes a relative increase of the upward motion at the northern flank of the jet exit region, a relative increase of clouds, less solar radiation absorbed at the surface and hence relative cooler air temperatures in the lower troposphere between 45° N and 50° N. The southward extension of the lower troposphere aerosol induced negative temperature changes in the latitudinal band 35° N–45° N over the

  11. The impacts of the Indian summer rainfall on North China summer rainfall

    Science.gov (United States)

    Wu, Renguang; Jiao, Yang

    2017-05-01

    Previous studies have indicated a connection between interannual variations of the Indian and North China summer rainfall. An atmospheric circulation wave pattern over the mid-latitude Asia plays an important role in the connection. The present study compares the influence of the above-normal and below-normal Indian summer rainfall on the North China summer rainfall variations. Composite analysis shows that the mid-latitude Asian atmospheric circulation and the North China rainfall anomalies during summer tend to be anti-symmetric in above-normal and below-normal Indian rainfall years. Analysis indicates that the Indian-North China summer rainfall relation tends to be stronger when larger Indian rainfall anomaly occurs during a higher mean rainfall period. The observed long-term change in the Indian-North China summer rainfall relationship cannot be explained by the impact of the El Niño-Southern Oscillation (ENSO). The present study evaluates the Indian-North China summer rainfall relationship in climate models. Analysis shows that the Indian-North China summer rainfall relationship differs largely among different climate models and among different simulations of a specific model. The relationship also displays obvious temporal variations in both individual and ensemble mean model simulations. This suggests an important role of the atmospheric internal variability in the change of the Indian-North China summer rainfall relationship.

  12. Early Entry for Youth into the Ocean Science Pipeline Through Ocean Science School Camp and Summer Camp Programs: A Key Strategy for Enhancing Diversity in the Ocean Sciences

    Science.gov (United States)

    Crane, N. L.; Wasser, A.; Weiss, T.; Sullivan, M.; Jones, A.

    2004-12-01

    Educators, policymakers, employers and other stakeholders in ocean and other geo-science fields face the continuing challenge of a lack of diversity in these fields. A particular challenge for educators and geo-science professionals promoting ocean sciences is to create programs that have broad access, including access for underrepresented youth. Experiential learning in environments such as intensive multi-day science and summer camps can be a critical captivator and motivator for young people. Our data suggest that youth, especially underrepresented youth, may benefit from exposure to the oceans and ocean science through intensive, sustained (eg more than just an afternoon), hands-on, science-based experiences. Data from the more than 570 youth who have participated in Camp SEA Lab's academically based experiential ocean science camp and summer programs provide compelling evidence for the importance of such programs in motivating young people. We have paid special attention to factors that might play a role in recruiting and retaining these young people in ocean science fields. Over 50% of program attendees were underrepresented youth and on scholarship, which gives us a closer look at the impact of such programs on youth who would otherwise not have the opportunity to participate. Both cognitive (knowledge) and affective (personal growth and motivation) indicators were assessed through surveys and questionnaires. Major themes drawn from the data for knowledge growth and personal growth in Camp SEA Lab youth attendees will be presented. These will be placed into the larger context of critical factors that enhance recruitment and retention in the geo-science pipeline. Successful strategies and challenges for involving families and broadening access to specialized programs such as Camp SEA Lab will also be discussed.

  13. NEWS: AAPT Summer Meeting

    Science.gov (United States)

    Mellema, Steve

    2000-11-01

    The 2000 Summer Meeting of the American Association of Physics Teachers (AAPT) was held from 28~July-2~August at the University of Guelph in Ontario, Canada. Despite somewhat rainy weather throughout the week, the annual gathering was an enjoyable one, filled with interesting talks on the state of physics education in North America. Using a new scheduling format for the summer meeting, all of the paid workshops and tutorials were held on Saturday and Sunday 29-30 July. The invited and contributed papers for the main AAPT meeting were then presented on Monday, Tuesday and Wednesday. As had been done in 1999 in San Antonio, a two-day tandem meeting dedicated to Physics Education Research (PER) was held on Wednesday and Thursday 2-3 August, immediately after the main AAPT meeting. Over the three days of the main meeting, 60 sessions were held under the sponsorship of various AAPT committees. These included sessions (numbers in parentheses) organized by the committees on Apparatus (1), Astronomy Education (3), Awards (2), Computers (5), Graduate Education (2), High Schools (1), History and Philosophy (1), Instructional Media (3), International Education (1), Laboratories (2), Pre-High School Education (2), Programs (4), Professional Concerns (6), Research in Physics Education (8), Science Education for the Public (2), Two-Year Colleges (5), Undergraduate Education (7) and Women in Physics (4). Figure 1. Guelph Church of Our Lady. The main meeting opened on Sunday evening with an invited lecture by Dr John J Simpson from the host institution, the University of Guelph, describing the Sudbury Neutrino Observatory. At the ceremonial session that began the activities on Monday morning, recognition was given to Clifford Swartz for his almost 30 years of service as Editor of the AAPT journal, The Physics Teacher. This was followed by an invited talk by Jim Nelson from Seminole County Public School in Florida, who received the Excellence in Pre-College Teaching Award. The

  14. Building Enrollment in Summer Programs.

    Science.gov (United States)

    Child Care Information Exchange, 1994

    1994-01-01

    Presents suggestions from 17 day-care center directors on ways to improve summer enrollment. Suggestions include marketing summer programs early; offering reasonable fees, with reduced fees for low-income families; organizing new or different summer programs; creating a summer camp atmosphere; offering short-term summer programs; and including…

  15. Analysis of the atmospheric composition during the summer 2013 over the Mediterranean area using the CHARMEX measurements and the CHIMERE model

    Directory of Open Access Journals (Sweden)

    L. Menut

    2014-09-01

    Full Text Available The ADRIMED campaign provides measurements of all key parameters regarding atmospheric composition in the Mediterranean area during the summer 2013. This is an opportunity to quantify the ability of current models to adequately represent the atmospheric composition in this complex region, which is influenced by anthropogenic emissions from Europe, Africa, the Middle-East and from shipping activities as well as mineral dust emissions mostly from the arid areas in Africa, sea-salt emissions, biomass burning emissions and biogenic emissions from the vegetation. The CHIMERE model in its present version is a chemistry-transport model which takes into account all these processes. We show here by simulating the period from 5 June to 15 July 2013 with the CHIMERE model and comparing the results to both routine and specific ADRIMED measurements that this model allows an adequate representation the atmospheric composition over the western Mediterranean, in terms of ozone concentration, particulate matter (PM and aerosol optical depth (AOD. It is also shown that the concentrations of PM on all the considered area is dominated by mineral dust, even though local dust emissions in Europe are certainly overestimated by the model. A comparison with sulphate concentrations at Cape Corsica exhibits some discrepancies related to the regridding of shipping emissions.

  16. Organizational effectiveness: toward an integrated model for schools of nursing.

    Science.gov (United States)

    Baker, C M; Reising, D L; Johnson, D R; Stewart, R L; Baker, S D

    1997-01-01

    Assessing the quality of academic institutions involves much more than the opinions of peers or experts. Examination of the organizational effectiveness of schools of nursing has been neglected. Current emphasis on assessing educational outcomes has diverted attention from the construct, organizational effectiveness, and more comprehensive theory-driven approaches to evaluation. This review of the organizational effectiveness literature focuses on the major assessment models: goal attainment, human relations, open systems, internal processes, culture, and life cycle. Attention is given to the influence of organizational maturation on an integrated model of organizational effectiveness. Selected macrolevel studies of schools of nursing are examined, and an agenda for nursing research is proposed.

  17. Registration Summer Camp 2016

    CERN Multimedia

    2016-01-01

    Reminder: registration for the CERN Staff Association Summer Camp is now open for children from 4 to 6 years old.   More information on the website: http://nurseryschool.web.cern.ch/. The summer camp is open to all children. The proposed cost is 480.-CHF/week, lunch included. The camp will be open weeks 27, 28, 29 and 30, from 8:30 a.m. to 5:30 p.m. For further questions, you are welcome to contact us by email at Summer.Camp@cern.ch. CERN Staff Association

  18. Using the internet in middle schools: A model for success

    Energy Technology Data Exchange (ETDEWEB)

    Addessio, B.; Boorman, M.; Eker, P.; Fletcher, K.; Judd, B.; Trainor, M. [Los Alamos National Lab., NM (United States); Corn, C.; Olsen, J.; Trottier, A. [Los Alamos Middle School, Los Alamos, New Mexico (United States)

    1994-03-01

    Los Alamos National Laboratory (LANL) developed a model for school networking using Los Alamos Middle School as a testbed. The project was a collaborative effort between the school and the Laboratory. The school secured administrative funding for hardware and software; and LANL provided the network architecture, installation, consulting, and training. The model is characterized by a computer classroom linked with two GatorBoxes and a UNIX-based workstation server. Six additional computers have also been networked from a teacher learning center and the library. The model support infrastructure includes: local school system administrators/lead teachers, introductory and intermediate hands-on teacher learning, teacher incentives for involvement and use, opportunities for student training and use, and ongoing LANL consulting. Formative evaluation data reveals that students and teachers alike are finding the Internet to be a tool that crosses disciplines, allowing them to obtain more, timely information and to communicate with others more effectively and efficiently. A lead teacher`s enthusiastic comments indicate some of the value gained: ``We have just scratched the surface. Each day someone seems to find something new and interesting on the Internet. The possibilities seem endless.``

  19. The limitations of mathematical modeling in high school physics education

    Science.gov (United States)

    Forjan, Matej

    The theme of the doctoral dissertation falls within the scope of didactics of physics. Theoretical analysis of the key constraints that occur in the transmission of mathematical modeling of dynamical systems into field of physics education in secondary schools is presented. In an effort to explore the extent to which current physics education promotes understanding of models and modeling, we analyze the curriculum and the three most commonly used textbooks for high school physics. We focus primarily on the representation of the various stages of modeling in the solved tasks in textbooks and on the presentation of certain simplifications and idealizations, which are in high school physics frequently used. We show that one of the textbooks in most cases fairly and reasonably presents the simplifications, while the other two half of the analyzed simplifications do not explain. It also turns out that the vast majority of solved tasks in all the textbooks do not explicitly represent model assumptions based on what we can conclude that in high school physics the students do not develop sufficiently a sense of simplification and idealizations, which is a key part of the conceptual phase of modeling. For the introduction of modeling of dynamical systems the knowledge of students is also important, therefore we performed an empirical study on the extent to which high school students are able to understand the time evolution of some dynamical systems in the field of physics. The research results show the students have a very weak understanding of the dynamics of systems in which the feedbacks are present. This is independent of the year or final grade in physics and mathematics. When modeling dynamical systems in high school physics we also encounter the limitations which result from the lack of mathematical knowledge of students, because they don't know how analytically solve the differential equations. We show that when dealing with one-dimensional dynamical systems

  20. GOOGLE SUMMER OF CODE

    National Research Council Canada - National Science Library

    Leslie Hawthorn

    2008-01-01

      This article examines the Google Summer of Code (GSoC) program, the world's first global initiative to introduce College and University students to free/libre open source software (F/LOSS) development...